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Abstract

We consider an industry with n � 3 �rms owning upstream inputs and interacting

noncooperatively in a downstream market. Under general conditions, upstream bilat-

eral agreements giving �rms access to one another�s input lead to industry pro�t maxi-

mization. This decentralization result applies to various upstream agreements including

cross-licensing agreements among patent-holding manufacturers, interconnection agree-

ments among telecommunication companies, interbank payments for ATM networks, and

data-sharing agreements among competitors or complementors.
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1 Introduction

It is common for two �rms that interact in product markets as competitors or complementors

to sign an upstream bilateral agreement through which they provide some input to one an-

other. The input can take the form of intellectual property rights, data, access to proprietary

networks, etc. For instance, cross-licensing of patents is a widespread practice across many in-

dustries.1 Similarly, bilateral agreements to provide mutual access to proprietary networks are

signed among telecommunications operators (Armstrong, 1998; La¤ont et al., 1998), among

Internet backbone companies (Crémer et al., 2000) and among banks for the use of ATMs

(Donze and Dubec, 2006). Additionally, as data are becoming a key input for marketing and

innovation, it is expected that increasingly more �rms will engage in data-sharing agreements.2

We consider a situation in which n � 3 �rms engage in downstream interactions and

study the outcome resulting from upstream bilateral agreements. Speci�cally, we consider

a two-stage game in which every pair of �rms simultaneously decides whether to sign an

upstream bilateral agreement that provides each �rm with access to the other �rm�s input

before all n �rms simultaneously choose, in a noncooperative way, their downstream actions.

Our framework is general in that it allows for any number of �rms and any form of asymmetry

among them and that it covers both complementarity and substitutability in downstream

interactions. We �nd that, under a very wide range of circumstances, equilibrium upstream

bilateral agreements lead to industry pro�t maximization. In other words, upstream bilateral

agreements allow the �rms to implement the fully cooperative outcome in a decentralized

way. We also consider two extensions. First, we show that equilibrium upstream bilateral

agreements not only maximize the joint pro�t of all �rms but also the pro�t of any subset of

�rms, which makes them robust to deviations by a coalition of any size. Second, we establish

that our central result holds not only for private agreements (as in the baseline model) but

also for public agreements.

We assume that two �rms reaching an upstream bilateral agreement maximize their joint

pro�t, which they can share through �xed payments. We consider a simple bilateral con-

tract between �rms i and j that speci�es a �xed transfer and a pair of per-unit input prices

(ri!j; rj!i) where ri!j is paid by �rm i to �rm j per unit of the former�s output. Joint pro�t

maximization requires �rms i and j to choose the pair (ri!j; rj!i) that induces each of them

1Taylor and Silberston (1973) report that cross-licensing accounts for a signi�cant share of all licensing
arrangements in many industries. In particular, cross-licensing in the semiconductor industry has received
much attention in the literature (e.g., Grindley and Teece, 1997 and Hall and Ziedonis, 2001).

2See Arnaut et al. (2018) for a study of data sharing between companies in Europe. In their report
for the European Commission, Crémer et al. (2019) emphasize the need to carry out economic research on
data-sharing agreements.
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to adopt the downstream actions xi and xj that maximize their joint pro�t. The key condition

under which our main result holds is that input prices are pairwise independent instruments,

in the sense that they allow �rms i and j to achieve any local deviation in downstream actions

through some local deviation in input prices.

The main intuition for our central result can be given as follows. Firm i maximizes its own

pro�t when it chooses its downstream action. The upstream bilateral contract it signs with

�rm j essentially induces �rm i to internalize the impact of its action on �rm j�s pro�t (and

vice versa) through an adequate choice of the per-unit input prices (ri!j; rj!i). If �rm i signs a

bilateral agreement with all other �rms, it ends up internalizing the impact of its action on all

�rms�pro�ts. Therefore, a complete network of bilateral agreements leads to industry pro�t

maximization. We �nd our central result surprising because it shows that simple bilateral

contracts can enable �rms to implement the fully cooperative outcome in a decentralized way.

Related literature. Our paper is related to the literature on bilateral monopoly/oligopoly
pioneered by Crémer and Riordan (1987) and Horn and Wolinsky (1988), which recently ex-

panded because many empirical papers embraced this framework.3 Among the theoretical

papers in that literature, the closest to ours are Nocke and Rey (2018), Collard-Wexler et al.

(2019) and Rey and Vergé (2019), as they also consider settings with interlocking relation-

ships. The main di¤erence between these three papers and ours is that they mainly consider

bilateral agreements between (pure) upstream �rms and (pure) downstream �rms, while we

consider bilateral agreements among vertically integrated �rms. Collard-Wexler et al. (2019)

provide a noncooperative foundation for �Nash-in-Nash�bargaining. However, they restrict

attention to lump-sum payments, thus focusing on the division of gains from trade, while

we consider two-part tari¤s. In that respect, our paper is closer to Nocke and Rey (2018)

and Rey and Vergé (2019), as they both consider negotiations over (general) nonlinear tar-

i¤s. However, Nocke and Rey (2018) restrict attention to private upstream agreements and

downstream Cournot competition, while we allow for both private and public agreements and

consider a general model of downstream interactions. Moreover, their focus is on the e¤ects of

exclusive dealing and vertical integration, while ours is on whether upstream bilateral agree-

ments among vertically integrated �rms can lead to industry pro�t maximization.4 Rey and

Vergé (2019) also consider a speci�c form of downstream interaction, namely, competition in

prices with di¤erentiated products, and focus mainly on a setting with no vertically integrated

3See, e.g., Crawford and Yurukoglu (2012), Grennan (2013), Gowrisankaran et al. (2015), Ho and Lee
(2017), and Crawford et al. (2018).

4Another di¤erence between our paper and Nocke and Rey (2018) is that we do not use the same equilibrium
concept.

2



�rms.5 Finally, our paper is related to de Fontenay and Gans (2014), who provide an analysis

of a noncooperative pairwise bargaining game in a buyer-supplier network (as well as more

general networks). However, they focus on contracts that are contingent on the set of realized

agreements, while we assume that a contract depends only on the quantities produced by the

�rms signing it.

The idea that �rms can implement the industry-pro�t-maximizing outcome through up-

stream bilateral agreements has been illustrated in a duopoly setting in the context of inter-

connection agreements between telecommunication companies and cross-licensing agreements

between competitors. Armstrong (1998) and La¤ont et al. (1998) show that termination

fees can be used as a collusive device in a telecommunication industry with two competing

networks, and Katz and Shapiro (1985) and Fershtman and Kamien (1992) obtain a similar

result in a setting with two duopolists signing a cross-licensing agreement. In Jeon and Lefouili

(2018), we consider a setting with more than two �rms and show that a complete network

of bilateral cross-licensing agreements among competing �rms generates the industry-pro�t-

maximizing outcome. The current paper substantially generalizes Jeon and Lefouili (2018) in

several directions. While the latter focuses on cross-licensing of patents between symmetric

Cournot oligopolists who sign private bilateral contracts, the current paper (i) considers a gen-

eral class of two-stage games with any type of upstream input and any form of downstream

interactions (including Bertrand and Cournot competition as well as strategic interactions

between complementors), (ii) allows for asymmetric players, and (iii) considers both private

and public contracts. These di¤erences require us to use an approach fundamentally di¤erent

from the one we used in Jeon and Lefouili (2018).

Finally, our paper is related to Watson (2018). Both papers show that private bilateral

contracting among multiple players can lead to an outcome that maximizes (or almost max-

imizes) the joint payo¤ of all players. However, there are several key di¤erences between the

two papers that make them complementary. In particular, the type of networks, negotiations

and contracts we consider di¤er from those in Watson (2018). Speci�cally, we consider a sin-

gle round of simultaneous negotiations, allow each �rm to sign a bilateral contract with any

other �rm (thus allowing for endogenously complete networks) and assume that payments in a

bilateral contract between two �rms i and j can be contingent only on the quantity of output

produced by �rm i and the output produced by �rm j.6 In contrast, Watson (2018) allows for

5They also consider an extension in which there is one vertically integrated �rm interacting with independent
suppliers and independent retailers.

6The output of �rm i coincides with �rm i�s action only if the second-stage game is Cournot competition.
Otherwise (for instance, in the case of price competition), the output of �rm i is di¤erent from its action.
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multiple rounds of (private) negotiations,7 considers an exogenous network with potentially

missing (direct) links and assumes that payments in a bilateral contract between two players

can be contingent on actions taken by other players.

The remainder of the paper is organized as follows. Section 2 lays out the baseline model.

Section 3 presents our main result. Section 4 extends our analysis in two directions. Section 5

concludes the paper.

2 Baseline Model

Setting and description of the game. Consider n(� 3) �rms, each owning an upstream input

and interacting in a downstream market. The upstream input can be, for instance, a patent

covering a product or a technology, a dataset, or a proprietary network, while the downstream

interaction can be, for example, the production and marketing of substitutable or complemen-

tary goods. Each pair of �rms decides whether to sign a bilateral contract that provides each

�rm with access to the other �rm�s upstream input. We assume that an upstream bilateral

contract between �rms i and j speci�es a pair of per-unit input prices (ri!j; rj!i) as well as

a (possibly negative) �xed transfer fi!j, where ri!j refers to the input price per unit of �rm

i�s output paid by �rm i to �rm j and fi!j refers to the �xed fee paid by �rm i to �rm j.8 In

our baseline model, we assume that upstream agreements are private: whether an upstream

contract is signed between two given �rms and the terms of the contract if any are known

only to these two �rms.9 For the sake of exposition, we use the term �upstream agreement�

in a broader sense than the term �upstream contract�: the former accounts for the possibility

that a pair of �rms choose the null upstream contract, i.e., not to sign any upstream contract.

After �rms decide whether they share access to their inputs, each �rm chooses a downstream

action noncooperatively. This action can be, for instance, a price or a quantity. Speci�cally,

the timing of the game is as follows:

� Stage 1 (upstream bilateral agreements): Every pair of �rms (i; j) with 1 � i; j � n

simultaneously decides whether to sign a bilateral contract that provides each �rm with

access to the other �rm�s upstream input and the terms of the corresponding contract

if they agree on one.
7Moreover, players are allowed to cancel the bilateral contracts agreed upon in previous rounds of negotia-

tions.
8We assume that �rm j charges �rm i an input price per unit of �rm i�s output to �x ideas. However, our

analysis would be qualitatively unchanged if we assumed, for instance, that �rm j charges �rm i an input price
per unit of �rm j�s input.

9Section 4.2 provides an extension in which all upstream agreements are public and shows that our main
�nding holds in that alternative scenario.
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� Stage 2 (downstream noncooperative actions): Each �rm i chooses a (real-valued) down-
stream action xi noncooperatively and simultaneously.

Notations and basic assumptions. Let R � (ri!j)1�i;j�n be the matrix of per-unit input prices,
with the convention that ri!i = 0 for any i 2 f1; :::; ng and ri!j = 0 for any pair of �rms

(i; j) that do not sign an upstream bilateral contract. Similarly, de�ne F � (fi!j)1�i;j�n as

the matrix of �xed fees paid by �rms to each other, with the convention that fi!i = 0 for any

i 2 f1; :::; ng and fi!j = 0 for any pair of �rms (i; j) that do not sign an upstream bilateral

contract. Note that fj!i = �fi!j for any pair of �rms (i; j). Finally, let x = (x1; :::; xn) denote
the vector of �rms�actions, and let x�i (resp. x�ij) be the vector obtained from vector x by

removing xi (resp. by removing xi and xj).

Consider a graph (N;G) consisting of a set of nodes N = f1; :::; ng and an n � n matrix
G with elements gij 2 f0; 1g, where gij = 1 (i.e., �rms i and j are linked) if �rm i and �rm

j sign an upstream bilateral contract and gij = 0 if they do not; we set gii = 1 without loss

of generality. We will call (G;R; F ) a network of upstream agreements.10 Thus, an upstream

agreement between �rms i and j is represented by (gij; ri!j; rj!i; fi!j), where we do not write

fj!i as fj!i = �fi!j, and where ri!j = rj!i = fi!j = 0 whenever gij = 0.
Let �i (G;R; F;x) represent player i�s payo¤ function for a given network of upstream

agreements (G;R; F ) and given actions x. We make the following assumptions regarding the

e¤ects of upstream agreements on payo¤s:

A1 For any i with 1 � i � n, there exists a function �i di¤erentiable with respect to the
vector of actions x such that, for any (G;R; F;x), �i (G;R; F;x) = �i (G;R;x)�

P
j 6=i
fi!j.

A2 For any i; j such that 1 � i; j � n and i 6= j and for any (G;R;x), �i (G;R;x) +

�j (G;R;x) does not depend on ri!j. Moreover, for any i; j; k such that 1 � i; j; k � n, i 6= j

and k =2 fi; jg and any (G;R;x), �k (G;R;x) does not depend on ri!j.

AssumptionA1 states that fi!j is a �xed fee for any i; j and provides a regularity condition
with respect to the �rms�downstream actions. Assumption A2 means that ri!j is a transfer
within the coalition fi; jg, i.e., it a¤ects neither the joint pro�t of �rms i and j nor the pro�t
of any third �rm k for a given action pro�le. Note that we allow input prices ri!j to take

positive and negative values. This rules out noninterior equilibria, which simpli�es our analysis

by making it possible to rely on �rst-order conditions.

To de�ne our equilibrium concept, we make the following assumption:

10Note that as agreements are private, node ij is not observable to any �rm k 6= i; j. However, in equilibrium,
any �rm will correctly anticipate G.
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A3 For any network of upstream agreements (G;R; F ), any pair of �rms (i; j), and any

actions x�ij of �rms k 6= i; j; the two-player simultaneous game derived from the n-player

downstream game by �xing the actions of �rms k 6= i; j to x�ij has a unique Nash equilibrium,
i.e., there is a unique pair of actions (~xi (G;R;x�ij) ; ~xj (G;R;x�ij)) such that(

~xi (G;R;x�ij) 2 argmaxxi �i (G;R;x�ij; ~xj (G;R;x�ij) ; xi)
~xj (G;R;x�ij) 2 argmaxxj �j (G;R;x�ij; ~xi (G;R;x�ij) ; xj)

:

Finally, to capture upstream deviations by a pair of �rms, let Dij (G;R; F ) denote the set

of upstream network agreements that di¤er from a given network (G;R; F ) only through the

agreement between �rms i and j, i.e., the set of networks (G0; R0; F 0) 6= (G;R; F ) such that
g0kl = gkl, r

0
k!l = rk!l, and f

0
k!l = fk!l for any (k; l) 6= (i; j).

Equilibrium concept. We are now in a position to de�ne our equilibrium concept. We adopt

the contract equilibrium approach proposed by Crémer and Riordan (1987) and Horn and

Wolinsky (1988) and used most recently by Collard-Wexler et al. (2019) and Rey and Vergé

(2019). Following Rey and Vergé (2019), we allow for �balanced�bargaining and let �ij 2 [0; 1]
denote the bargaining power of �rm i in its bargaining with �rm j. In equilibrium, each �rm

chooses the downstream action that maximizes its pro�t given the upstream agreements it is

involved in and assuming that all other �rms choose their equilibrium downstream actions.

Moreover, in Stage 1, each pair of �rms (i; j) chooses an upstream agreement that satis�es

the following two conditions. First, it maximizes their joint pro�t given all other upstream

agreements and the induced downstream actions of �rms i and j, assuming that all other

�rms k 6= i; j play their equilibrium downstream actions. Second, if �rms i and j sign an

upstream contract,11 a share �ij of the resulting gain from trade goes to �rm i, while a share

�ji = 1� �ij goes to �rm j.

De�nition 1 (Bilaterally e¢ cient equilibrium) A bilaterally e¢ cient equilibrium (G�; R�; F �;x�)
is an equilibrium network of upstream agreements (G�; R�; F �) together with an equilibrium

vector of actions x� = (x�i )1�i�n such that:

- in Stage 2, the equilibrium action of each �rm maximizes its pro�t given the actions of

all other �rms: x�i 2 argmaxxi �i
�
G�; R�;x��i; xi

�
.

- in Stage 1, the equilibrium upstream agreement between any pair of �rms i and j max-

imizes their joint pro�t given the equilibrium actions of all other �rms k 6= i; j, all other

upstream agreements, and the induced downstream actions of �rms i and j: for any (i; j) 2
11Recall that �rms i and j may agree on not signing such a contract.
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f1; :::; ng2 such that i 6= j and any (G;R; F ) 2 Dij (G
�; R�; F �) ;

(�i + �j) (G
�; R�;x�) � (�i + �j)

�
G;R;x��ij; ~xi(G;R;x

�
�ij); ~xj(G;R;x

�
�ij)
�
:

Moreover, if �rms i and j agree on signing an upstream contract, then �rm i (resp. �rm j)

obtains a share �ij (resp. 1� �ij) of the additional pro�t generated by this contract.

Rey and Vergé (2019) provide a noncooperative foundation for a similar equilibrium con-

cept in a setting where (pure) upstream �rms sell their inputs to (pure) downstream �rms.

Their microfoundation relies on a sequential noncooperative game of delegated negotiations,

in which each �rm sends di¤erent agents to negotiate with its potential partners, and for each

negotiation, one of the two agents is randomly selected to make a take-it-or-leave-it o¤er. We

expect that a noncooperative foundation based on delegated negotiations can also be provided

for our setting, but establishing this formally is beyond the scope of this paper.

Illustrations. The general model above can serve to describe several settings in which �rms

can provide upstream inputs to each other before interacting in a downstream market. These

include:

� Cross-licensing of patents: ri!j is the per-unit royalty paid by patent-owning �rm i to

patent-owning �rm j, and xi is a price or a quantity chosen by i. Note that the model

applies not only to the case in which cross-licensing �rms produce substitutable goods

but also to the case in which they produce complementary goods (see Jeon and Lefouili,

2018 for the special case of perfectly substitutable products sold by symmetric Cournot

oligopolists and produced with constant marginal costs).

� Two-way access pricing in telecommunication networks: ri!j is the per-unit access charge
paid by network i to network j, and xi is the linear retail price charged by network i to

its customers (see Armstrong, 1998, and La¤ont et al., 1998, for an analysis of this issue

in a duopolistic setting).

� Interconnection among Internet backbone companies: ri!j is the per-unit access charge
paid by backbone company i to j in a transit agreement, and xi is the capacity choice

made by i (see Crémer et al., 2000).

� Interbank payments for the use of ATMs: ri!j is the per-unit interchange fee paid by
bank i to bank j, and xi is the number of ATMs deployed by bank i (see Donze and

Dubec, 2006, for a setting with a multilateral negotiation of the interchange fee).
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� Data-sharing agreements: ri!j is a per-unit fee paid by �rm j to �rm i, and xi is the

price or the quantity of the product sold by �rm i:

3 Analysis and Main Result

In this section, we analyze our baseline model with private upstream agreements. We �rst pro-

vide two conditions under which an equilibrium network of upstream agreements is necessarily

complete, i.e., all pairs of �rms sign an upstream contract.12

C1 (Gain from trade) For any pair of �rms (i; j) 2 f1; ::; ng2 satisfying i 6= j, any network
of upstream agreements (G;R; F ) such that gij = 0 and any vector of actions x, the following

holds for any upstream network (G0; R0; F 0) 2 Dij (G;R; F ) such that g0ij = 1:

�i (G
0; R0;x) + �j (G

0; R0;x) > �i (G;R;x) + �j (G;R;x) :

This condition says that signing an upstream bilateral contract strictly increases the joint

payo¤ of �rms i and j for any given action pro�le. For instance, in the case of cross-licensing

of patents, an upstream contract between two �rms giving each �rm access to the other �rm�s

patented technology reduces production costs or increases product quality, which leads to

higher pro�ts (holding �xed all downstream actions). Similarly, data sharing can increase the

quality of each �rm�s service and thus increase its pro�t.

C2 (Replicability) For any pair of �rms (i; j) 2 f1; ::; ng2 satisfying i 6= j, any network

of upstream agreements (G;R; F ) such that gij = 0 and any vector x�ij of actions of �rms

k 6= i; j, there exists a network of upstream agreements (G0; R0; F 0) 2 Dij (G;R; F ) with

g0ij = 1 such that

~xi (G
0; R0;x�ij) = ~xi (G;R;x�ij) and ~xj (G

0; R0;x�ij) = ~xj (G;R;x�ij) :

This condition can be interpreted as follows. Consider a network of upstream agreements

such that �rms i and j do not sign an upstream contract. ConditionC2means that there exists
an upstream contract between these two �rms that generates the same equilibrium actions of

12These assumptions are relevant only when bilateral agreements are voluntary, as in our game. There are
alternative settings of interest in which upstream agreements are mandated by a regulator. This is for instance
the case for interconnection agreements among mobile phone companies in several jurisdictions. If upstream
agreements are mandated by a regulator (while the terms of the agreements are decided by the �rms), then the
network of bilateral agreements is necessarily complete, and therefore, Conditions C1 and C2 are not needed.
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�rms i and j in Stage 2 for �xed actions by �rms k 6= i; j and �xed upstream agreements by

pairs of �rms (k; l) 6= (i; j).

It is straightforward that under ConditionsC1 andC2, any two distinct �rms that have not
signed an upstream contract can (strictly) increase their joint payo¤ by signing an agreement

and, conversely, that an upstream bilateral deviation consisting of not signing a contract

cannot be strictly (jointly) optimal for any deviating pair of �rms. This generalizes the

argument that Jeon and Lefouili (2018) use to show that in the case of cross-licensing and

Cournot downstream competition, any pair of �rms has an incentive to sign a cross-licensing

agreement.13 Therefore, denoting by Gc the complete network structure, i.e., the network

structure such that all pairs of �rms sign an upstream contract (gij = 1 for any i; j), we obtain

the following result:

Lemma 1 Under Assumptions A1-A3 and Conditions C1-C2, an equilibrium network of

upstream agreements (G�; R�; F �) is necessarily such that G� = Gc.

In what follows, we focus on complete networks of upstream agreements (Gc; R; F ). We

�rst provide a necessary condition for a network of this type to be an equilibrium network.

To this end, let us de�ne for each (i; j) 2 f1; :::; ng2 such that i 6= j the matrix

Mprivate
ij (R;x�ij) �

 
@~xi
@ri!j

@~xj
@ri!j

@~xi
@rj!i

@~xj
@rj!i

!
;

where all partial derivatives are evaluated at (Gc; R;x�ij), and let us introduce the following

condition:

C3 (Independence) detMprivate
ij (R;x�ij) 6= 0 for any (i; j) satisfying i 6= j and any

(R;x�ij).

This rank condition can be interpreted as follows. It means that the per-unit input prices

paid by each �rm to the other, ri!j and rj!i, are pairwise independent instruments in the

sense that any local downstream deviation can be obtained through a local upstream deviation.

This ensures that the set of upstream instruments used by a given pair of �rms is rich enough

13In Jeon and Lefouili (2018), licensing �rm i�s patents to �rm j reduces the latter�s marginal cost. Suppose
that, initially, i does not license its patent to j. These two �rms can (weakly) increase their joint pro�t if i
licenses its patent to j by specifying the payment of a per-unit royalty rj!i equal to the reduction �j!i in
marginal cost generated by j�s use of the technology covered by i�s patent. Such a licensing agreement would
not a¤ect the �rms�marginal costs of production but would allow them to save (jointly) �j!i per unit of
output produced by j. It will therefore (weakly) increase their joint pro�t.
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to implement any desired downstream actions of these two �rms given the actions of all other

�rms (and given all other upstream agreements).

The following examples describe two environments in which Conditions C1, C2, and C3
are satis�ed. In Example 1, patent-holding �rms producing substitutable or complementary

goods need to decide whether they will sign bilateral cross-licensing agreements before inter-

acting in the downstream market.14 In Example 2, �rms producing substitutable goods must

decide whether they will sign data-sharing agreements before competing in the downstream

market.

Example 1. Consider n �rms i = 1; :::; n producing goods that can be either (imperfectly)
substitutable or complementary. Speci�cally, they face the following demand system:

qi =
1

1� 
2

"
v (1� 
)� xi + 


X
j 6=i

xj

#
;

i = 1; 2; :::; n, where xi is the price set by �rm i, qi is the demand addressed to �rm i, and


 2 (�1= (n� 1) ; 1) measures the degree of substitution or complementarity between the
products (products are substitutes if 
 > 0 and complements if 
 < 0).15 Each �rm owns one

patent covering a cost-reducing technology and can obtain access to its rivals�technologies

through cross-licensing agreements. For the sake of exposition, we assume that the patents

are symmetric in the sense that the marginal cost of a �rm depends only on the number of

patents to which it has access. Let ci(li) be �rm i�s marginal cost when it has access to a

number li 2 f1; :::; ng of patents with ci(n)(� ci) < ci(n � 1) < ::: < ci(1)(� �ci): We show in
the Appendix that Conditions C1, C2 and C3 are satis�ed in this environment.

Example 2. Consider n �rms producing di¤erentiated goods at a constant marginal cost
ci and competing against each other in quantity. Each �rm owns one dataset that can be used

to improve the value of its product (and the other �rms�products if they have access to it).

Let vi(l) denote the value of the product produced by �rm i when it has access to l 2 f1; :::; ng
number of distinct datasets with (�vi �)vi(n) > vi(n� 1) > ::: > vi(1)(� vi). Assume further
that the demand system is linear. We show in the Appendix that Conditions C1, C2 and C3
14This example is di¤erent from the special case of cross-licensing agreements among symmetric Cournot

oligopolists studied in Jeon and Lefouili (2018) (Conditions C1, C2, and C3 also hold in that scenario). Note
that there is a major di¤erence between the Bertrand game with cross-licensing and the Cournot game with
cross-licensing. In the latter, a �rm�s best-response function only depends on the per-unit royalties that it
pays (as its licensing revenues are �xed for given rivals�quantities), while in the former, a �rm�s best-response
function also depends on the per-unit royalties it receives because a change in a rival�s price a¤ects its licensing
revenues (through its impact on the demand addressed to all rival �rms).
15We need to assume that 
 > �1=(n� 1) for the problem to be well-behaved; see, e.g., Amir et al. (2017).
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are satis�ed in this environment.

We now provide a necessary condition for a complete network of upstream agreements to

be an equilibrium network.

Lemma 2 Suppose that AssumptionsA1-A3 and Condition C3 hold. Then, a necessary con-
dition for a complete network of upstream agreements (Gc; R;x) to be an equilibrium network

is that
@�i
@xj

(Gc; R;x) = 0;

for any (i; j) 2 f1; :::; ng2such that i 6= j.

Proof. See Appendix.
The intuition behind Lemma 2 is as follows. Under ConditionC3, each pair of �rms (i; j) is

able to use upstream input prices to induce the downstream actions that maximize their joint

pro�ts (everything else being equal). Since �rm j maximizes its pro�t with respect to its own

downstream action, the impact of a marginal change in an input price on the pro�t of �rm j

through a change in �rm j�s downstream action is a second-order e¤ect, while the impact on

�rm i�s pro�t is a �rst-order e¤ect. This implies that a bilaterally e¢ cient agreement between

�rms i and j induces �rm j to choose a downstream action that maximizes �rm i�s pro�t (for

given actions of all �rms k 6= i; j). In other words, it induces �rm j to fully internalize the

e¤ect of its downstream action on �rm i.

To state our main result, we �rst need to consider the benchmark situation in which all n

�rms maximize industry pro�ts
nP
i=1

�i (G
c; R; F;x) under a complete network structure with

respect to their downstream actions x.16 Note that byA1-A2, this joint payo¤does not depend
on R and F . We make the following assumption regarding the existence and uniqueness of

the vector of actions that maximizes industry pro�ts:

A4 There exists a unique vector xc of downstream actions that maximizes industry pro�ts
nP
i=1

�i (G
c; R; F;x) under a complete network of upstream agreements;17 moreover, the industry

pro�t function is di¤erentiable at xc, and the latter is the unique solution to the corresponding

system of �rst-order conditions.

We can now state our main result.
16Notice that assumption C1 implies that a necessary condition for all �rms to maximize their joint payo¤

is that all pairs of �rms sign an upstream contract.
17Note that under Condition C1, industry pro�t maximization cannot be achieved unless all pairs of �rms

sign an upstream agreement, i.e., unless the network of upstream agreements is complete.
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Proposition 1 (i) Under Assumptions A1-A4 and Conditions C1-C3, any bilaterally e¢ -
cient equilibrium maximizes industry pro�ts.

(ii) Moreover, under Assumptions A1-A4 and Conditions C1 and C3, any bilaterally
e¢ cient equilibrium involving a complete network of upstream agreements maximizes industry

pro�ts.

Proof. See Appendix.
Providing su¢ cient conditions for the existence of an equilibrium in our general frame-

work is a challenging task that we do not undertake in this paper.18 However, Proposition 1

shows that whenever such an equilibrium exists, it maximizes industry pro�ts. To understand

why, recall that a bilaterally e¢ cient network of upstream agreements induces each �rm to

internalize the impact of its downstream actions on the �rms with which it has signed an

upstream bilateral contract. If such a network is complete (as is the case under Conditions C1
and C2), then each �rm�s downstream action maximizes the pro�ts of all other �rms. Since a
�rm�s downstream action also maximizes its own pro�t, it follows that any bilaterally e¢ cient

equilibrium maximizes industry pro�ts.

4 Extensions

4.1 Robustness to upstream deviations by coalitions

In this section, we show that under a wide range of circumstances, a bilaterally e¢ cient

upstream network not only maximizes industry pro�ts but is robust to upstream deviations by

coalitions of any size.19 To formalize and show this, let us �rst de�ne for any s 2 f3; :::; n� 1g
the set �s of functions � from f1; 2; :::; sg to f1; 2; :::; ng such that �(i) < �(i0) for any i; i0 2
f1; 2; :::; sg satisfying i < i0.20 Then, the set ff� (1) ; � (2) ; :::; � (s)g; � 2 �sg represents all the
possible coalitions of size s. For a given coalition f� (1) ; � (2) ; :::; � (s)g and a given vector
of actions x, let x�� denote the vector of n � s actions obtained from x by removing x�(1);

18This amounts to providing su¢ cient conditions under which a given system of n(n� 1) potentially asym-
metric and non-linear �rst-order equations with n(n � 1) unknown variables has at least one solution. Note,
however, that Jeon and Lefouili (2018) demonstrate the existence of an equilibrium in the speci�c context of
cross-licensing agreements among symmetric Cournot oligopolists.
19Our result that a bilaterally e¢ cient network of upstream agreements maximizes the joint pro�t of all

�rms means that these agreements are robust to upstream deviations by the grand coalition. Moreover, by
de�nition, a bilaterally e¢ cient network of upstream agreements is robust to upstream deviations by pairs of
�rms.
20We assume in this section that n � 4. In the case of n = 3, Proposition 1 is su¢ cient to state that

(complete) networks of bilaterally e¢ cient agreements are robust to upstream deviations by coalitions of any
size because the only coalition of size n 6= 2 in this case is the grand coalition.
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x�(2); :::; x�(s). Finally, for a given network of upstream agreements (G;R; F ) and a given � 2
�s, letD� (G;R; F ) denote the set of networks of upstream agreements (G0; R0; F 0) 6= (G;R; F )
such that g0kl = gkl, r

0
k!l = rk!l and f

0
k!l = fk!l for any (k; l) =2 f� (1) ; � (2) ; :::; � (s)g

2.

The following assumption extends AssumptionA3 to coalitions of any size s 2 f3; :::; n� 1g.

A5 For any network of upstream agreements (G;R; F ), any s 2 f3; :::; n� 1g, any � 2 �s,
and any actions x�� of �rms k =2 f� (1) ; � (2) ; :::; � (s)g, the s-player simultaneous game de-
rived from the n-player downstream game, by �xing the actions of �rms k =2 f� (1) ; � (2) ; :::; � (s)g
to x��, has a unique Nash equilibrium, i.e., there is a unique vector of actions

�
�x�(i) (G;R;x��)

�
1�i�s

such that

�x�(i) (G;R;x��) 2 argmax
x�(i)

�i

�
G;R;x��;

�
�x�(j) (G;R;x��)

�
1�j�s; j 6=i ; x�(i)

�
:

We also make the following assumption that extends Assumption A4 to coalitions of any
size s 2 f3; :::; n� 1g.

A6 For any complete network (Gc; R; F ), any s 2 f3; :::; n� 1g, any � 2 �s, and any

actions x�� of �rms k =2 f� (1) ; � (2) ; :::; � (s)g ; there exists a unique vector of actions�
xc�(i) (x��)

�
1�i�s

that maximizes the joint payo¤of the �rms in the coalition f� (1) ; � (2) ; :::; � (s)g;

moreover, the joint payo¤ of these �rms is di¤erentiable at
�
xc�(i) (x��)

�
1�i�s

, and the latter

is the unique solution to the corresponding system of �rst-order conditions.

We can now state the main result of this section.

Proposition 2 Consider s 2 f3; :::; n� 1g.
(i) Under Assumptions A1-A6 and Conditions C1-C3, in any bilaterally e¢ cient equilib-

rium (Gc; R�; F �;x�), the equilibrium upstream agreements between all pairs of �rms within a

coalition of size s maximizes the joint pro�t of the coalition given all the equilibrium upstream

agreements involving at least one �rm outside the coalition, the equilibrium actions of all �rms

outside the coalition, and the induced downstream actions of the �rms within the coalition: for

any � 2 �s and any (G;R; F ) 2 D� (G
�; R�; F �) ;

P
1�i�s

��(i) (G
�; R�;x�) �

P
1�i�s

��(i)

�
G;R;x���;

�
�x�(j)

�
G;R;x���

��
1�j�s

�
:

(ii) Under Assumptions A1-A6 and Conditions C1 and C3, the same holds for any
bilaterally e¢ cient equilibrium involving a complete network of upstream agreements.

Proof. See Appendix.
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This proposition shows that, in any complete network of bilaterally e¢ cient upstream

agreements, an upstream deviation by a coalition of �rms is unpro�table for any coalition of

size s 2 f3; :::; n� 1g. This, combined with the de�nition of bilateral e¢ ciency and Proposition
1 implies that a bilaterally e¢ cient complete network is robust to upstream deviations by any

coalition of �rms. The intuition behind this result is that in a bilaterally e¢ cient equilibrium

involving a complete network, a �rm�s downstream action maximizes each other �rm�s pro�t

(see Lemma 2). This implies that a �rm�s downstream action maximizes the joint pro�t of any

coalition of �rms. Therefore, a bilaterally e¢ cient equilibrium involving a complete network

is robust to upstream deviations by any coalition, as the only purpose of such deviations is to

a¤ect downstream actions.

4.2 Public agreements

In this section, we suppose that (�rst-stage) upstream agreements become public after they are

made, i.e., they are observed by all �rms before they choose their (second-stage) downstream

actions.

We maintain AssumptionsA1-A2 on the payo¤ functions but replace assumptionA3 with
the following assumption that takes account of the public nature of upstream agreements:

A3�For any network of upstream agreements (G;R; F ), the n-player downstream game

has a unique Nash equilibrium, i.e., there exists a unique vector of actions x̂ (G;R) such that

x̂i (G;R) 2 argmax
xi
�i (G;R; x̂�i (G;R) ; xi)

for all i 2 f1; :::; ng :

We also need to adapt our equilibrium concept as follows.

De�nition 2 (Bilaterally e¢ cient equilibrium: public contracting) A bilaterally e¢ cient equi-
librium in the case of public upstream contracting is an equilibrium network of public upstream

agreements (G�; R�; F �) together with an equilibrium vector of actions x� = (x�i )1�i�n , such

that:

- in Stage 2, the equilibrium action of each �rm maximizes its pro�t given the actions of

all other �rms: x�i 2 argmaxxi �i
�
G�; R�;x��i

�
;

- in Stage 1, the equilibrium upstream agreement between any pair of �rms i and j maxi-

mizes their joint pro�t given all other upstream agreements and the induced downstream actions
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of all �rms: for any (i; j) 2 f1; :::; ng2 such that i 6= j and any (G;R; F ) 2 Dij (G
�; R�; F �) ;

(�i + �j) (G
�; R�;x�) � (�i + �j) (G;R; x̂ (G;R)) :

Finally, while we maintain Condition C1 in its current form, we need to modify Condition
C2 to account for the fact that an upstream bilateral deviation now leads to a (potential)

change in the actions of all �rms and not only the deviating pair of �rms. Speci�cally, we

replace it with the following condition:

C2�For any pair of �rms (i; j) 2 f1; ::; Ng satisfying i 6= j and for any network of up-

stream agreements (G;R; F ) such that gij = 0, there exists a network of upstream agreements

(G0; R0; F 0) 2 Dij (G;R; F ) with g0ij = 1 such that x̂k (G
0; R0) = x̂k (G;R) for any k 2 f1; :::; ng :

Condition C2�seems a priori more demanding than Condition C2 because it requires that
the downstream equilibrium actions of all �rms be preserved. However, this is not necessarily

the case. To illustrate that, let us consider the special, but relevant, scenario in which for

any (G;R;x) and any i; j; k such that i 6= j and k =2 fi; jg, �k (G;R;x) does not depend
on gij. In other words, for given downstream actions, a �rm�s payo¤ does not depend on

whether two other �rms have signed an upstream bilateral contract. This is, for instance,

the case if access to an upstream input a¤ects only a �rm�s cost function (as is the case for

a cost-reducing patented innovation). In this scenario, if moving from network (G;R; F ) to

a network (G0; R0; F 0) 2 Dij (G;R; F ) does not a¤ect the equilibrium downstream actions of

�rms i and j, then it does not a¤ect the downstream equilibrium actions of any �rm.21 This

implies that C2� is not more demanding than C2 in the sense that it is su¢ cient that a
network (G0; R0; F 0) 2 Dij (G;R; F ) preserves the equilibrium downstream actions of �rms i

and j for C2�to be satis�ed.
It is straightforward to derive the following lemma, which is the counterpart of Lemma 1

for the case of public upstream agreements.

Lemma 3 Under Assumptions A1, A2 and A3�and Conditions C1 and C2�, an equilibrium
network of public upstream agreements (G�; R�; F �) is necessarily such that G� = Gc.

21To see why, note �rst that Assumptions A1-A2 combined with the assumption that for given downstream
actions, a �rm�s payo¤ does not depend on whether two other �rms have signed a bilateral upstream contract,
imply that the best-response function of a �rm l =2 fi; jg does not depend on the agreement between �rms
i and j, i.e., it does not depend on (gij ; ri!j ; rj!i). This implies that moving from network (G;R; F ) to a
network (G0; R0; F 0) 2 Dij (G;R; F ) a¤ects the equilibrium downstream action of a �rm l =2 fi; jg only through
the e¤ect on the equilibrium actions of �rms i and j. Thus, if the latter are preserved, then the equilibrium
actions of all �rms remain unchanged.
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As in the case of private agreements, we focus on complete networks, and we provide a

necessary condition for a network of this type to be an equilibrium network. To this end,

we need to adapt the rank condition C3, meaning that per-unit input prices are pairwise
independent from the public nature of upstream agreements. For this purpose, let us de�ne

Mpublic (R) as the n2 � n2 matrix whose elements are given by

Mpublic
n(i�1)+j;n(l�1)+k (R) =

8>>>><>>>>:
@x̂k
@ri!j

if l = i and i 6= j
@x̂k
@ri!j

if l = j and i 6= j
1 if l = k = i = j

0 otherwise

for any i; j; l; k 2 f1; :::; ng where the elements of the matrix are all evaluated at (Gc; R). The
counterpart of Condition C3 in the context of public agreements is the following:

C3�detMpublic (R) 6= 0 for any R.

Similar to the case of private upstream agreements, this condition ensures that any local

downstream deviation by a pair of �rms can be obtained through a local upstream deviation

in the per-unit input prices they pay each other. The reason that Condition C3�is less simple
than Condition C3 is that a two-�rm coalition contemplating a deviation now has to take

into account the responses of the �rms outside the coalition in the second stage of the game.

Example 3 in the Appendix shows that Conditions C1, C2�and C3�are satis�ed in the cross-
licensing setting considered in Example 1 for all of the values of the substitutability parameter

but one when upstream agreements are public and the number of �rms is n = 3.

The following lemma is the counterpart of Lemma 2 when upstream agreements are public.

Lemma 4 Suppose that Assumptions A1, A2 and A3� and Condition C3�hold. Then, a
necessary condition for a complete network of upstream agreements (Gc; R;x) to be an equi-

librium network is that
@�i
@xj

(Gc; R;x) = 0;

for any (i; j) 2 f1; :::; ng2such that i 6= j.

Proof. See Appendix.

Maintaining Assumption A4 as it is, we can now extend our main result to the case of
public upstream agreements.
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Proposition 3 (i) Under Assumptions A1, A2, A3�, and A4 and Conditions C1, C2�, and
C3�, any bilaterally e¢ cient equilibrium maximizes industry pro�ts.

(ii) Moreover, under AssumptionsA1, A2, A3�, andA4 and ConditionsC1 andC3�, any
bilaterally e¢ cient equilibrium involving a complete network of upstream agreements maximizes

industry pro�ts.

Proof. Similar to the proof of Proposition 1.
Thus, our main result does not depend on the private nature of upstream bilateral agree-

ments. Public bilateral agreements can also allow them to achieve the fully cooperative out-

come if the input prices are independent instruments. It can also be readily shown that this

result extends to an environment in which some of the agreements are private while others are

public, as well as a setting in which each agreement becomes public with a certain probability

(because of a leakage, for instance).22

5 Conclusion

This paper shows that under a wide range of circumstances, upstream bilateral agreements

among �rms interacting in a downstreammarket can allow them to achieve the industry-pro�t-

maximizing outcome. This result has been shown to hold under relatively mild conditions,

independent of the nature of downstream interactions, regardless of whether the agreements

are public or private and regardless of whether the �rms are symmetric.

We have focused in our model on the scenario wherein all �rms own an upstream input.

However, our analysis can be extended in a straightforward way to a situation in which only a

subset of �rms own upstream inputs and can engage in (private) upstream bilateral agreements.

In that case, it can be shown that under conditions of the same nature as those used in our

analysis, upstream bilateral agreements between these (vertically integrated) �rms allow them

to achieve an outcome that maximizes the joint pro�ts of all of them, given the downstream

actions of all �rms that do not own an upstream input.

Another (perhaps simpler) way for �rms to achieve the outcome that maximizes industry

pro�ts is to sign a multilateral upstream agreement involving all of them. However, such agree-

ments are sometimes regarded with suspicion by regulators. For instance, a cross-licensing

agreement involving more than two �rms in a given industry cannot bene�t from the safe

harbor provided by the European Commission�s Technology Transfer Block Exemption Reg-

ulation. Our main result suggests that policymakers should not regard a complete network of

22The matrix Mpublic (R) needs, however, to be adapted to these alternative settings.
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upstream bilateral agreements between �rms interacting in both upstream and downstream

markets to be fundamentally di¤erent from that of a multilateral upstream agreement involv-

ing all of them. In particular, this implies that if such a multilateral agreement is deemed

undesirable by policymakers, e.g., because the fully cooperative outcome reduces social welfare,

then it should also be the case for a complete network of upstream bilateral agreements.
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Appendix

Example 1. Access by any �rm to the technology of another �rm leads to a strict decrease

in its marginal cost. This implies that Condition C1 is satis�ed.
Let us now show that Condition C2 holds. Let (G;R; F ) be a network of upstream

bilateral agreements such that gij = 0: Let Si(G) denote the set of �rms that signed a cross-

licensing contract with �rm i, i.e., �rms k 6= i such that gik = 1, and let mi(G) denote the

number of �rms in Si(G). Similarly, let Sj(G) denote the set of �rms that signed a cross-

licensing contract with �rm j, and mj(G) denote the number of �rms in Sj(G). Moreover, let

�i (G) � ci(mi(G))� ci(mi(G) + 1) and �j (G) � cj(mj(G))� cj(mj(G) + 1):

Under (G;R; F ) and for a given vector x�ij of actions of �rms k 6= i; j, the actions of �rms
i and j satisfy the following equalities:

xi =
1

2

24v(1� 
) + 
X
k 6=i

xk + ci(mi(G)) +
X

k2Si(G)

ri!k + 

X

k2Si(G)

rk!i

35 (1)

xj =
1

2

24v(1� 
) + 
X
k 6=j

xk + cj(mj(G)) +
X

k2Sj(G)

rj!k + 

X

k2Sj(G)

rk!j

35 (2)
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For any network (G0; R0; F 0) 2 Dij (G;R; F ) with g0ij = 1 and for a given vector x�ij of actions

of �rms k 6= i; j, the actions of �rms i and j satisfy the following equalities:

xi =
1

2

24v(1� 
) + 
X
k 6=i

xk + ci(mi(G) + 1) +
X

k2Si(G)

ri!k + r
0
i!j + 


X
k2Si(G)

rk!i + 
r
0
j!i

35 (3)

xj =
1

2

24v(1� 
) + 
X
k 6=j

xk + cj(mj(G) + 1) +
X

k2Sj(G)

rj!k + r
0
j!i + 


X
k2Sj(G)

rk!j + 
r
0
i!j

35
(4)

To show that C2 holds, it is su¢ cient to show that there exist (r0i!j; r
0
j!i) such that equations

(1) and (3) are identical and equations (2) and (4) are identical. This is the case if and only if

ci(mi(G)) = ci(mi(G) + 1) + r
0
i!j + 
r

0
j!i

and

cj(mj(G)) = cj(mj(G) + 1) + r
0
j!i + 
r

0
i!j;

or equivalently,

(r0i!j; r
0
j!i) =

�
�i � 
�j

1� 
2 ;
�j � 
�i

1� 
2

�
:

Hence, Condition C2 holds.
Finally, let us show that Condition C3 holds. Under a complete network of upstream

agreements, �rm i�s pro�t (gross of �xed payments) is given by

�i (G
c; R;x) =

 
xi � ci �

X
j 6=i

ri!j

!
qi +

X
j 6=i

rj!iqj

=
1

1� 
2

 
xi � ci �

X
j 6=i

ri!j

!"
v (1� 
)� xi + 


X
j 6=i

xj

#

+
1

1� 
2
X
j 6=i

rj!i[v (1� 
)� xj + 

X
k 6=j

xk]:

Di¤erentiating �rm i�s pro�t with respect to xi yields

xi =
1

2

"
v(1� 
) + 


X
j 6=i

xj + ci +
X
j 6=i

ri!j + 

X
j 6=i

rj!i

#
:
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The pair (~xi (Gc; R;x�ij) ; ~xj (Gc; R;x�ij)) is the solution of the following two-equation system:8>>>><>>>>:
xi =

1
2

"
v(1� 
) + 
xj + 


X
k 6=i;j

xk + ci + ri!j +
X
k 6=i;j

ri!k + 
rj!i +
X
k 6=i;j

rk!i

#

xj =
1
2

"
v(1� 
) + 
xi + 


X
k 6=i;j

xk + cj + rj!i +
X
k 6=i;j

rj!k + 
ri!j +
X
k 6=i;j

rk!j

#

and therefore, 8<:
@~xi
@ri!j

= 1
2

h



@~xj
@ri!j

+ 1
i

@~xj
@ri!j

= 1
2

h

 @~xi
@ri!j

+ 

i

which leads to
@~xi
@ri!j

=
2 + 
2

4� 
2 and
@~xj
@ri!j

=
3


4� 
2 ;

hence, the following expression for Mprivate
i;j :

Mprivate
ij =

 
2+
2

4�
2
3

4�
2

3

4�
2

2+
2

4�
2

!
:

This implies that

detMprivate
ij =


4 � 5
2 + 4
(4� 
2)2

=
1� 
2
4� 
2 6= 0;

i.e., Condition C3 holds.

Example 2. Let v � (v1; :::; vN) be the vector representing the value of each �rm�s product
after Stage 1 (for a given network of upstream agreements). Let v � min1�i��n vi.
We de�ne Cournot competition for a given v � (v1; :::; vN) as follows. Each �rm i simulta-

neously chooses its quantity xi. Given v � (v1; :::; vN), x � (x1; :::; xN) and X = x1+ :::+ xn,

the quality-adjusted equilibrium prices are determined by the following two conditions: (i) the

indi¤erence condition:

vi � pi = vj � pj for all (i; j) 2 f1; :::; Ng2 ;

and (ii) the market clearing condition:

X = D(p) where pi = p+ vi � v:

The market clearing condition means that this price is adjusted to make the total supply
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equal to demand. The indi¤erence condition implies that the price each �rm charges is ad-

justed such that all consumers who buy any product are indi¤erent among all products. A

microfoundation of this setup can be provided as follows. There is a mass one of consumers.

Each consumer has unit demand and hence buys at most one unit among all products. A

consumer�s gross utility from having a unit of the product of �rm i is given by u + vi, where

u is speci�c to the consumer while vi is common to all consumers. Let F (u) represent the cu-

mulative distribution function of u: Then, by the construction of quality-adjusted prices, any

consumer is indi¤erent among all products, and the marginal consumer indi¤erent between

buying any product and not buying is characterized by u+ v � p = 0, implying

D(p) = 1� F (p� v):

In equilibrium, p is adjusted such that 1 � F (p � v) = X. Let P (X) be the inverse demand
function, and let us assume that it is linear, i.e., P (X) = a�X. Hence, denoting by Si(G) the
set of �rms that signed an upstream contract with �rm i, i.e., �rms k 6= i such that gik = 1,
and mi(G) the number of �rms in Si(G), �rm i�s pro�t (gross of �xed payments) is given by

�i (G;R;x) =

0@a�X + vi (G)� v � ci � X
k2Si(G)

ri!k

1Axi + X
k2Si(G)

rk!ixk:

where we now make the dependence of vi upon G explicit. Since access to an additional

dataset strictly increases the value of its product, it is straightforward that Condition C1 is
satis�ed.

Denoting ai(G) = a+ vi(G)� v � ci, �rm i�s pro�t (gross of �xed payments) can then be

written as

�i (G;R;x) =

0@ai(G)� X
k2Si(G)

ri!k �X

1Axi + X
k2Si(G)

rk!ixk:

Assume now that gij = 0 for some (i; j) 2 f1; ::::; ng2 : The FOCs associated with the maxi-
mization of �i (G;R;x) with respect to xi and the maximization of �j (G;R;x) with respect

to xj are respectively given by

xi =
1

2

0@ai(G)� X
k2Si(G)

ri!k � xj �
X
k 6=i;j

xk

1A (5)
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and

xj =
1

2

0@aj(G)� X
k2Sj(G)

rj!k � xi �
X
k 6=i;j

xk

1A (6)

Similarly, for any network (G0; R0; F 0) 2 Dij (G;R; F ) with g0ij = 1, the FOCs associated

with the maximization of �i (G0; R0;x) with respect to xi and the maximization of �j (G0; R0;x)

with respect to xj are respectively given by

xi =
1

2

0@ai(G0)� r0i!j � X
k2Si(G)

ri!k � xj �
X
k 6=i;j

xk

1A (7)

and

xj =
1

2

0@aj(G0)� r0j!i � X
k2Sj(G)

rj!k � xi �
X
k 6=i;j

xk

1A : (8)

This shows that a necessary and su¢ cient condition for equations (5) and (7) to be identical

and equations (6) and (8) to be identical is that

r0i!j = ai(G
0)� ai(G) and r0j!i = aj(G0)� aj(G),

which proves that Condition C2 holds.
Let us now show that Condition C3 also holds. Considering a complete network of up-

stream agreements (Gc; R; F ), we have

�i (G
c; R;x) =

 
ai(G

c)�
X
k 6=i

ri!k �X
!
xi +

X
k 6=i

rk!ixk:

The pair (~xi (Gc; R;x�ij) ; ~xj (Gc; R;x�ij)) is the solution of the following two-equation system:8>>>><>>>>:
xi =

1
2

 
ai(G

c)�
X
k 6=i;j

xk �
X
k 6=i

ri!k � xj

!

xj =
1
2

 
aj(G

c)�
X
k 6=i;j

xk �
X
k 6=j

rj!k � xi

!

Therefore, 8<: @~xi
@ri!j

= �1
2

�
@~xj
@ri!j

+ 1
�

@~xj
@ri!j

= �1
2
@~xi
@ri!j
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which yields
@~xi
@ri!j

= �2
3
and

@~xj
@ri!j

=
1

3
:

Hence,

Mprivate
ij =

 
�2
3

1
3

1
3

�2
3

!
:

This implies that

detMprivate
ij =

1

3
6= 0;

i.e., Condition C3 holds.

Proof of Lemma 2. Suppose that AssumptionsA1-A3 and Condition C3 hold, and assume
that the complete network of upstream agreements (Gc; R�;x�) is an equilibrium network.

Then, for any given (i; j) 2 f1; :::; ng2 such that i 6= j, it must hold that

(�i + �j) (G
c; R�;x�) � (�i + �j)

�
Gc; R; ~xi(G

c; R;x��ij); ~xj(G
c; R;x��ij);x

�
�ij
�
:

for any (Gc; R; F ) 2 Dij (G
c; R�; F �).

From A3 and our assumption that (Gc; R�;x�) is an equilibrium network, it follows that

~xi(G
c; R�;x��ij) = x

�
i and ~xj(G

c; R�;x��ij) = x
�
j , which implies that

(�i + �j)
�
Gc; R�; ~xi(G

c; R�;x��ij); ~xj(G
c; R�;x��ij);x

�
�ij
�
= (�i + �j) (G

c; R�;x�) :

Hence,
(�i + �j)

�
Gc; R�; ~xi(G

c; R�;x��ij); ~xj(G
c; R�;x��ij);x

�
�ij
�

� (�i + �j)
�
Gc; R; ~xi(G

c; R;x��ij); ~xj(G
c; R;x��ij);x

�
�ij
�

for any (Gc; R; F ) 2 Dij (G
�; R�; F �). Considering the special case of matrices R that are

di¤erent from R� only through ri!j, the latter inequality implies that

(�i + �j)
�
Gc; R; ~xi(G

c; R;x��ij); ~xj(G
c; R;x��ij);x

�
�ij
�
is maximized at ri!j = r�i!j, which re-

quires that23

d (�i + �j)

dri!j

�
Gc; R; ~xi(G

c; R;x��ij); ~xj(G
c; R;x��ij);x

�
�ij
�
= 0:

Since ri!j a¤ects (�i + �j)
�
Gc; R; ~xi(G

c; R;x��ij); ~xj(G
c; R;x��ij);x

�
�ij
�
only through its e¤ect

23We use the notation d(�i+�j)
dri!j

instead of @(�i+�j)@ri!j
to emphasize that we consider the total derivative of

�i + �j with respect to ri!j .
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on ~xi(Gc; R;x��ij) and ~xj(G
c; R;x��ij) (this follows from A2), the latter can be rewritten as

@�i
@xi

@~xi
@ri!j

+
@�j
@xi

@~xi
@ri!j

+
@�i
@xj

@~xj
@ri!j

+
@�j
@xj

@~xj
@ri!j

= 0; (9)

where @~xi
@ri!j

and @~xj
@ri!j

are evaluated at
�
Gc; R�;x��ij

�
, and @�i

@xi
, @�i
@xj
, @�j
@xi
, @�j
@xj

are evaluated at�
Gc; R�; ~xi(G

c; R�;x��ij); ~xj(G
c; R�;x��ij);x

�
�ij
�
= (Gc; R�;x�) :

Moreover, since (Gc; R�;x�) is an equilibrium network, it holds that

@�i
@xi

(Gc; R�;x�) =
@�j
@xj

(Gc; R�;x�) = 0: (10)

Combining (9) and (10) leads to

@~xj
@ri!j

@�i
@xj

+
@~xi
@ri!j

@�j
@xi

= 0; (11)

where @~xj
@ri!j

and @~xi
@ri!j

are evaluated at
�
Gc; R�;x��ij

�
and @�i

@xj
and @�j

@xi
are evaluated at

(Gc; R�;x�).

By symmetry, we also have

@~xi
@rj!i

@�j
@xi

+
@~xj
@rj!i

@�i
@xj

= 0; (12)

where @~xi
@rj!i

and @~xj
@rj!i

are evaluated at
�
Gc; R�;x��ij

�
and @�i

@xj
and @�j

@xi
are evaluated at

(Gc; R�;x�).

Denoting yij = @�i
@xj
(Gc; R�;x�) and yji =

@�j
@xi
(Gc; R�;x�), (11) and (12) can be rewritten

as a linear system of two equations in yji and yij :(
@~xi
@ri!j

yji +
@~xj
@ri!j

yij = 0
@~xi
@rj!i

yji +
@~xj
@rj!i

yij = 0

Condition C3 says that the determinant of this system is di¤erent from zero, which implies

that the unique solution is yji = yij = 0.

Therefore, we can conclude that

@�i
@xj

(Gc; R�;x�) = 0;

for any (i; j) 2 f1; :::; ng2such that i 6= j.
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Proof of Proposition 1. Suppose thatA1-A4,C1 andC3 hold and assume that (Gc; R�; F �;x�)
is a bilaterally e¢ cient equilibrium (recall that under additional assumption C2, any equilib-
rium network of upstream agreements is complete). From Lemma 2, it follows that

nX
i=1;i6=j

@�i
@xj

(Gc; R�;x�) = 0:

This, combined with @�j
@xj
(Gc; R�;x�) = 0 (which results from x� being an equilibrium vector

of actions), yields
nX
i=1

@�i
@xj

(Gc; R�;x�) = 0:

Since xc is the unique maximizer of industry pro�ts and is characterized by the corresponding

�rst-order conditions (byA4), we can conclude that x� = xc, which means that the considered
equilibrium maximizes industry pro�ts.

Proof of Proposition 2. Suppose that A1-A6, C1 and C3 hold, and assume that

(Gc; R�;x�) is an equilibrium network of upstream agreements (recall again that under addi-

tional assumptionC2, any equilibrium network of upstream agreements is complete). Consider
s 2 f3; :::; n� 1g and � 2 �s. From Lemma 2, we know that

@�i
@xj

(Gc; R�;x�) = 0

for any (i; j) 2 f1; :::; ng2 with i 6= j. This, combined with @�i
@xi
(Gc; R�;x�) = 0 (which results

from x� being an equilibrium vector of actions), implies that for any s 2 f3; :::; n� 1g, any
� 2 �s and any l 2 f1; :::; sg,

sX
k=1

@��(k)
@x�(l)

(Gc; R�;x�) = 0,

or equivalently,
sX
k=1

@��(k)
@x�(l)

�
Gc; R�; (x��(i))1�i�s;x

�
��
�
= 0:

Then, from Assumption A6, it follows that (x��(i))1�i�s maximizes the joint pro�t of the �rms
in the coalition f�(1); :::; �(s)g given that the actions of the �rms outside the coalition are
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given by x���. In other words,P
1�k�s

��(k) (G
c; R�;x�) �

P
1�k�s

��(k)

�
Gc; R�; (x

0

�(i))1�i�s;x
�
��

�
for any (x

0

�(i))1�i�s. In particular,

P
1�k�s

��(k) (G
c; R�;x�) �

P
1�k�s

��(k)

�
Gc; R�;

�
�x�(i)

�
G;R;x���

��
1�i�s ;x

�
��

�
for any (G;R; F ) 2 D� (G

c; R�; F �). Moreover, for any (G;R; F ) 2 D� (G
c; R�; F �), we have

P
1�k�s

��(k)

�
Gc; R�;

�
�x�(j)

�
G;R;x���

��
1�j�s ;x

�
��

�
=

P
1�k�s

��(k)

�
Gc; R;

�
�x�(i)

�
G;R;x���

��
1�i�s ;x

�
��

�
�

P
1�k�s

��(k)

�
G;R;

�
�x�(i)

�
G;R;x���

��
1�i�s ;x

�
��

�
where the equality follows fromA2 and the inequality fromC1. Therefore, for any (G;R; F ) 2
D� (G

c; R�; F �),

P
1�k�s

��(k) (G
c; R�;x�) �

P
1�k�s

��(k)

�
G;R;

�
�x�(i)

�
G;R;x���

��
1�i�s ;x

�
��

�
:

Example 3. Consider the cross-licensing setting presented in Example 1 with n = 3 �rms,
and assume that upstream agreements are public.

We have already shown that Condition C1 is satis�ed in that setting. Let us now show
that Condition C2�holds. To this end, consider an upstream network of agreements (G;R; F )
such that g12 = 0. The equilibrium downstream x̂ (G;R) solves for the following system of

equations:8>>>><>>>>:
x1 =

1
2
[v(1� 
) + 
 (x2 + x3) + c1(1 + 1g13=1) + (r1!3 + 
r3!1)1g13=1]

x2 =
1
2
[v(1� 
) + 
 (x1 + x3) + c2(1 + 1g23=1) + (r2!3 + 
r3!2)1g23=1]
x3 =

1
2
[v(1� 
) + 
 (x1 + x2) + c3(1 + 1g31=1 + 1g32=1)

+(r3!1 + 
r1!3)1g31=1 + (r3!2 + 
r2!3)1g32=1]

Consider now a network of upstream agreements (G0; R0; F 0) 2 D12 (G;R; F ) with g012 = 1.

It is straightforward that the corresponding equilibrium downstream actions x̂ (G0; R0) solves
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the set of equations above if and only if(
c1(2 + 1g13=1) + r

0
1!2 + 
r

0
2!1 = c1(1 + 1g13=1)

c2(2 + 1g23=1) + r
0
2!1 + 
r

0
1!2 = c2(1 + 1g23=1)

which holds if 8<: r01!2 =
c1(1+1g13=1)�c1(2+1g13=1)�
[c2(1+1g23=1)�c2(2+1g23=1)]

1�
2

r02!1 =
c2(1+1g23=1)�c2(2+1g23=1)�
[c1(1+1g13=1)�c1(2+1g13=1)]

1�
2

:

This shows that Condition C2�is satis�ed.
Finally, let us establish that Condition C3�also holds. The matrix Mpublic is equal to0BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
@x̂1
@r1!2

@x̂2
@r1!2

@x̂3
@r1!2

@x̂1
@r1!2

@x̂2
@r1!2

@x̂3
@r1!2

0 0 0
@x̂1
@r1!3

@x̂2
@r1!3

@x̂3
@r1!3

0 0 0 @x̂1
@r1!3

@x̂2
@r1!3

@x̂3
@r1!3

@x̂1
@r2!1

@x̂2
@r2!1

@x̂3
@r2!1

@x̂1
@r2!1

@x̂2
@r2!1

@x̂3
@r2!1

0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 @x̂1
@r2!3

@x̂2
@r2!3

@x̂3
@r2!3

@x̂1
@r2!3

@x̂2
@r2!3

@x̂3
@r2!3

@x̂1
@r3!1

@x̂2
@r3!1

@x̂3
@r3!1

0 0 0 @x̂1
@r3!1

@x̂2
@r3!1

@x̂3
@r3!1

0 0 0 @x̂1
@r3!2

@x̂2
@r3!2

@x̂3
@r3!2

@x̂1
@r3!2

@x̂2
@r3!2

@x̂3
@r3!2

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCCA
:

The equilibrium downstream actions x̂ (Gc; R) for a given R solve the following system of

equations:8><>:
x1 =

1
2
[v(1� 
) + 
 (x2 + x3) + c1 + r1!2 + r1!3 + 
 (r2!1 + r3!1)]

x2 =
1
2
[v(1� 
) + 
 (x1 + x3) + c2 + r2!1 + r2!3 + 
 (r1!2 + r3!2)]

x3 =
1
2
[v(1� 
) + 
 (x1 + x2) + c3 + r3!1 + r3!2 + 
 (r1!3 + r2!3)]

Summing the three equations and denoting X = x1 + x2 + x3, we obtain

X =
3

2
v(1� 
)+ 
X + 1

2
(c1 + c2 + c3)+

1

2
(1 + 
) (r1!2 + r1!3 + r2!1 + r3!1 + r2!3 + r3!2)

and therefore,

X =
1

2(1� 
) [3v(1� 
) + (c1 + c2 + c3) + (1 + 
) (r1!2 + r1!3 + r2!1 + r3!1 + r2!3 + r3!2)]

(13)
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Moreover, multiplying the equations of the system above by
�
1 + 


2

�
and rearranging terms

leads to 8><>:
x1 =

1
2+


[v(1� 
) + 
X + c1 + r1!2 + r1!3 + 
 (r2!1 + r3!1)]
x2 =

1
2+


[v(1� 
) + 
X + c2 + r2!1 + r2!3 + 
 (r1!2 + r3!2)]
x3 =

1
2+


[v(1� 
) + 
X + c3 + r3!1 + r3!2 + 
 (r1!3 + r2!3)]
(14)

Di¤erentiating (13) and (14) with respect to r1!2; r1!3; r2!1; r3!1; r2!3; r3!2 yields

@x̂1
@r1!2

=
@x̂1
@r1!3

=
@x̂2
@r2!1

=
@x̂2
@r2!3

=
@x̂3
@r3!1

=
@x̂3
@r3!2

=
2� 
 + 
2

2(1� 
)(2 + 
) ;

@x̂1
@r2!1

=
@x̂1
@r3!1

=
@x̂2
@r1!2

=
@x̂2
@r3!2

=
@x̂3
@r1!3

=
@x̂3
@r2!3

=
3
 � 
2

2(1� 
)(2 + 
) ;

@x̂1
@r2!3

=
@x̂1
@r3!2

=
@x̂2
@r1!3

=
@x̂2
@r3!1

=
@x̂3
@r1!2

=
@x̂3
@r2!1

=

 + 
2

2(1� 
)(2 + 
) ;

which determines all the coe¢ cients of Mpublic. Computing the determinant of this matrix,

we �nd that

detMpublic =
16 (1� 
)2 (2
 � 1)3 (1 + 2
) (2 + 3
)2

[2(1� 
)(2 + 
)]9
;

which is di¤erent from 0, for all values 
 2
�
�1
2
; 1
�
nf1

2
g:24

Proof of Lemma 4. Suppose that Assumptions A1, A2 and A3� and Condition C3�
hold, and assume that the complete network of public upstream agreements (Gc; R�;x�) is an

equilibrium network. It must then hold that

(�i + �j) (G
c; R�; x̂ (Gc; R�)) = (�i + �j) (G

c; R�;x�) � (�i + �j) (Gc; R; x̂ (Gc; R))

for any (Gc; R; F ) 2 Dij (G
c; R�; F �) :

Considering the special case of matrices R that are di¤erent from R� only through ri!j, the

latter inequality implies that (�i + �j) (Gc; R; x̂ (Gc; R)) is maximized at ri!j = r�i!j, which

requires that25
d (�i + �j)

dri!j
(Gc; R�; x̂ (Gc; R�)) = 0:

Since ri!j a¤ects (�i + �j) (Gc; R�; x̂ (Gc; R�)) only through its e¤ect on x̂ (Gc; R�) (by A2),

24Recall that we need to restrict 
 to be above �1=(n� 1) = �1=2 when n = 3:
25We again use the notation d(�i+�j)

dri!j
instead of @(�i+�j)@ri!j

to emphasize that we consider the total derivative
of �i + �j with respect to ri!j .
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the latter can be rewritten as

nX
k=1

@x̂k
@ri!j

(Gc; R�)
@�i
@xk

(Gc; R�; x̂ (Gc; R�)) +

nX
k=1

@x̂k
@ri!j

(Gc; R�)
@�j
@xk

(Gc; R�; x̂ (Gc; R�)) = 0;

or equivalently,

nX
k=1

@x̂k
@ri!j

(Gc; R�)
@�i
@xk

(Gc; R�;x�) +

nX
k=1

@x̂k
@ri!j

(Gc; R�)
@�j
@xk

(Gc; R�;x�) = 0:

By symmetry, the �rst-order condition with respect to rj!i can be written as

nX
k=1

@x̂k
@rj!i

(Gc; R�)
@�i
@xk

(Gc; R�;x�) +
nX
k=1

@x̂k
@rj!i

(Gc; R�)
@�j
@xk

(Gc; R�;x�) = 0:

Hence, the �rst-order conditions associated with the suboptimality of upstream deviations

(with respect to both ri!j and rj!i) give rise to n(n � 1) conditions. Adding these to the n
�rst-order conditions @�i

@xi
(Gc; R�;x�) = 0 associated with the downstream Nash equilibrium,

we end up with a system of n2 equations. The latter can be represented as a linear system

MpublicY = 0, where Y is a n2�1 matrix whose elements (which are the �unknown variables�)
are de�ned as follows:

Yn(l�1)+k =
@�l
@xk

(Gc; R�;x�) :

Since detMpublic 6= 0, this linear system has a unique solution given by

@�l
@xk

(Gc; R�;x�) = 0;

for any k; l 2 f1; :::; ng ; which completes the proof.
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