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Abstract

This paper finds that the combination of case detection and social distancing is

crucial for the efficient eradication of a new infectious disease. Theoretically, I charac-

terize the optimal suppression policy as a simple function of observables, which eases

its implementation. Together with the number of infected, optimal social distancing

decreases over time. The fundamental trade-off is between its intensity and its dura-

tion. Quantitatively, I calibrate the model to the COVID-19 pandemic in Italy. Given

the observed prevalence and detection efficiency on May 10th, suppression costs 11 %

of annual GDP. Efficient digital contact tracing reduces this cost to 0.4 %.
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1 Introduction

What is the optimal response to a rapidly spreading and deadly infectious disease, when

no vaccine or efficient medication is available? Due to the COVID-19 pandemic, it has

become very urgent to answer this policy question. In a broad sense, two different policy-

approaches are possible: mitigation and suppression. On the one hand, mitigation controls

the spread of the virus until contagions stop because the population achieves herd immu-

nity.1 However, to acquire immunity, a considerable number of individuals need to contract

the disease and recover. Inevitably, some will die in the process. The consequent number of

casualties is the main drawback to this policy-approach. On top of that, the strategy bears

the risk that immunity vanishes over time, or that the virus mutates. In both cases, the virus

becomes endemic, and the policy fails. On the other hand, suppression policies push the

viral growth rate below zero, such that the disease dies-out over time. The policy avoids

the infection of a large part of the population; however, controlling viral growth is costly.

This paper shows how to optimally suppress a virus when the policymaker has two

tools: social distancing and case detection. Social distancing reduces the growth rate of

the virus by reducing the rate of social contacts between all individuals in the population.

Case detection, for instance, with the help of tests and contact tracing, reduces growth by

actively finding infectious individuals and isolating them from the susceptible population.

The optimal policy minimizes total economic and health costs. While the main focus of this

paper is on suppression policies, I compare them with mitigation policies in the conclusion.

The first contribution of the paper is theoretical. I characterize the properties of the

optimal policy to derive concrete policy implications. I find that optimal social distancing

decreases when viral prevalence decreases. This simple property offers important guidance

for policy-design. Suppose a policymaker discovers a first outbreak of a virus. In the opti-

mum, she immediately implements social distancing measures to reverse viral growth. As

a consequence, the number of infectious reduces and converges to zero. Importantly, as

the number of infectious decreases, the policymaker gradually relaxes the social distancing

measures. The optimal response is instantaneous and the largest at the onset. In particular,

it is not optimal to "smooth in" social distancing or to wait before imposing measures, a

1A population reaches herd immunity when a large enough fraction is immune to infection, i.e., not
susceptible. The fraction is large enough when, on average, one infected individual meets and transmits the
disease to less than one susceptible individual.
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mistake made by many countries at the beginning of the COVID-19 pandemic. Any initial

hesitation or delay in implementing sufficiently strong social distancing measures worsens

economic and health outcomes. The reason is that weak measures allow the virus to grow

further, which increases the number of casualties and the time and intensity of an afterward

necessary measures. Moreover, a too fast exit easing of social distancing is not optimal. On

the optimal path, the number of infections does not rise. In case a policymaker discovers

signs of rebounding case numbers - such as an increase in the flow of confirmed cases,

symptomatic patients, hospitalizations, or death - a swift increase in social distancing is the

optimal response.

Two simple and observable sufficient statistics characterize the optimal policy at each

point in time: first, the instantaneous growth rate of the virus, and second, the instant flow

of costs from suppression measures and health outcomes.2 A policy at a certain point in

time is optimal if the elasticity of the current flow cost to the current growth rate is equal to

one. Note that this property is somewhat surprising. In principle, the optimal policy at a cer-

tain point in time depends on the past and the future. However, the two sufficient statistics

contain all relevant dynamic information. The condition gives specific and straightforward

guidance on how to stay on the optimal suppression path over time, and, in particular, on

how fast to relax social distancing measures. To decide upon relaxing a particular measure,

the policymaker only needs to evaluate the relative impact on the current flow of costs and

the viral growth rate . If the percentage reduction in cost is larger than the percentage in-

crease in growth, a measure should be relaxed.

Methodologically, I exploit the fact that when the number of infectious is low compared

to the number of susceptible, a simple exponential process approximates the dynamic be-

havior of infections. Note that this is the relevant case for studying suppression because the

number of infectious goes to zero. The approximation simplifies the heavy SIR machinery

currently used in the literature. I solve the model with pen and paper, which allows me

to study the dependence of the optimal policy and welfare on the unknown functions and

parameters. These unknowns are the economic cost and viral growth impact of social dis-

tancing policies, the flow of death per infection and its social cost, the uncontrolled growth

rate of the virus, and the speed of detection as a function of the overall stock of infected.

Although possible to estimate, typically, very little is know about these key determinants

2For a real-time estimation of the economic costs of the pandemic, see Chetty, Friedman, Hendren, Step-
ner et al. (2020).
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for optimal policy when dealing with a new infectious disease. Therefore, it is crucial to

study the properties of optimal policy without making restrictive assumptions on the un-

knowns.

The exact characterization of the optimal policy at each point in time follows from

simple intuition. The critical dynamic trade-off when suppressing the virus is between the

intensity of social distancing and the time it needs to stay in place. Too extreme measures

rapidly reduce the number of infections in the population; however, they have very high

instantaneous costs, because even the most fundamental economic activities are on hold.

Too weak measures have low instant costs; however, to eradicate the virus, they need to

stay in place for a very long time. The optimal policy trades off these two margins at every

instant. Consider a particular current level of infectious, and consider the cost of reducing it

by one unit. This unit cost is the current flow cost from health outcomes and social distanc-

ing measures, multiplied by the time it takes to reduce infections by one unit. Both factors

depend on the intensity of social distancing. The stricter social distancing, the higher the

cost, and the lower the time it takes to suppress one unit. The unit cost is at its minimum

when the percentage change in cost is equal to the percentage change in time - a property of

interior extrema of products of functions. As time is inversely proportional to the growth

rate, the same property is valid for the growth rate instead of time. What follows is the

optimality condition as a relation of two simple sufficient statistics: the current flow cost

and the current growth rate. A policy is optimal if, at each point in time, its relative impact

on the flow cost is equal to its relative impact on the viral growth rate. The optimal total

cost is simply the integral over the optimal unit costs.

In the long-run, the optimal degree of social distancing depends crucially on the detection-

technology. A key property is the detection rate, i.e., the number of daily detected cases

relative to the overall number of currently infectious. Due to decreasing returns to scale,

the rate of detection is decreasing in prevalence. The optimal long-run policy depends on

the detection rate at zero prevalence. On the one hand, if the rate of detection at zero is

larger than the uncontrolled growth rate of the virus, optimal social distancing measures are

entirely removed in the long run. I call this case efficient detection. It means that society is

going back to normal, along with the decreasing number of overall infectious in the popu-

lation. Intuitively, the smaller the number of infectious, the more significant is the relative

amount of control coming from case detection. In the long run, case detection is efficient
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enough to control the virus completely. On the other hand, if the rate of detection at zero is

lower than the uncontrolled growth rate of the virus, optimal long-run social distancing is

constant and positive. Detection alone cannot control the disease and needs to be comple-

mented by social distancing until the disease dies out.

The efficiency of case detection, and therefore, the long-run behavior of the optimal

policy, has stark consequences for the total cost of suppression. The more efficient is the

tracing technology, the lower is the necessary amount of long-run social distancing, and

therefore, the cost of suppression. On the one hand, if case detection is inefficient, the

total cost of suppression depends on the extinction threshold of the virus. The extinction

threshold is the level of prevalence where the virus dies out. In the limit, when the ex-

tinction threshold goes to zero, the total cost of suppression goes to infinity. Typically, the

extinction threshold is very small. The result shows that the total cost of suppression is

substantial under inefficient case detection. The reason is that prevalence follows an expo-

nential decay process. In the long run, the reduction in infections becomes infinitely slow.

Besides, some degree of social distancing needs to stay in place until the virus becomes

extinct. As a consequence, the total cost is unbounded in the limit. On the other hand,

in stark contrast, if case detection is efficient, the total cost of suppression is bounded for

any extinction threshold. As a result, the total cost of suppression is relatively low. These

results suggest that efficient case detection, at least at low infection levels, has enormous

benefits. Note, however, I do not take welfare losses from an eventual loss in privacy into

account.

The results of the last paragraph show that to limit the overall cost of suppression,

the combination of efficient case detection and social distancing is crucial. They become

particularly intuitive when considering the case where only social distancing is used to

suppress the virus. Relying on social distancing alone poses two problems. First, social

distancing affects all individuals in a population, making it very costly. Second, because

the decrease in viral prevalence follows an exponential decay process, social distancing be-

comes very inefficient when prevalence is low. It takes the same effort to reduce the number

of infected from 20,000 to 10,000 as it does to reduce it from from 20 to 10. Towards the

end of a pandemic, it is necessary to impose costly measures on the whole population just

to avoid one last transmission of the virus.
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The theoretical results give concrete policy advice on how to respond to a future pan-

demic. If a sufficiently efficient case detection procedure is in place when a new infectious

disease appears, social distancing is unnecessary. As a consequence, high economic costs

are avoidable. Otherwise, if detection is not efficient enough, it is necessary to complement

case detection with social distancing immediately. In combination, the two measures need

to be strong enough to stop the spread of the disease. If the policymaker fails to respond,

infections will spread. Bringing them back under control necessitates more intense, and

consequently, more costly social distancing later, just to bring the epidemic back to the

starting point. Many countries painfully learned this lesson during the first outbreak of

COVID-19.

The second contribution of the paper is quantitative. To compare how the total cost and

time of suppression depends on realistic detection technologies, I calibrate the unknown

functions and parameter values using data from Italy and South Korea. I use 0.07% preva-

lence - the estimate for Italy on May 10th - as an initial condition. I consider three different

detection scenarios. In the first scenario, Italy uses fast and efficient digital contact tracing

like South Korea. In the second scenario, Italy uses slower and less efficient manual trac-

ing. In the third scenario, Italy continues to detect cases at the observed low rate.3

I find that the total cost of suppressing COVID-19, using digital tracing, is only 0.4%

of annual GDP. The strategy allows for a fast and continuing reduction of social distancing.

After 39 days already, optimal social distancing is at such a low level that its flow-cost is

only 1% of daily GDP. Afterward, the daily cost continues to converge to zero. The virus

is entirely under control, and social activity is back to a normal level well before a vaccine

arrives. Additionally, the strategy is robust to a certain degree of imported cases. The num-

ber of additional casualties under this scenario would be 3,300. Under the second scenario,

when using manual contact tracing, I find that the total cost of suppression is 1.7% of an-

nual GDP. The flow-cost of social distancing drops below 1% of daily GDP after 3 months.

Manual tracing is not efficient enough to allow for a total return to normality. In the long

run, some degree of social distancing needs to stay in place; however, its flow-cost is only

3Digital contact tracing uses mobile phone data to identify and inform the past contacts of a confirmed
infectious individual. It is particularly fast and efficient. Its maximal detection rate is 35% per day (Ferretti,
Wymant, Kendall, Zhao, Nurtay, Abeler-Dörner, Parker, Bonsall, and Fraser, 2020). Manual contact tracing
relies on teams of tracing personal who question confirmed infectious and find their contacts manually. Its
maximal detection rate is 10% per day. See Ferretti et al. (2020) for an extensive discussion. Currently, Italy
detects 3% of cases per day.
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0.1% of daily GDP. The virus dies out after 15 months. The number of additional casualties

under this scenario would be 4,200. In stark contrast, the total cost of suppression in the

no tracing scenario is 11% of annual GDP. The reason is that, in this case, optimal social

distancing is very close to constant. Its flow-cost is 19% of daily GDP. The cost accrues

until the virus becomes extinct after 8 months. Additionally, if new cases are imported

after extinction, the pandemic restarts. Therefore, meticulous border controls need to stay

in place until a vaccine arrives. The number above does not take into account their costs.

The number of additional casualties would be 2,900. I compare the optimal suppression

policy with optimal mitigation policies in the conclusion.

Relevant Literature This paper contributes to the economic literature on optimal dis-

ease control. A large and recent literature studies mitigation policies, using variants of the

SIR model augmented with economic interactions. As discussed above and in the con-

clusion, mitigation policies are very distinct from a suppression policies, which I study in

this paper. The mitigation literature mostly uses numerical methods to solve for the opti-

mal policy, or to simulate the impact of certain policies of interest. See Acemoglu, Cher-

nozhukov, Werning, and Whinston (2020), Alvarez, Argente, and Lippi (2020), Atkeson

(2020), Berger, Herkenhoff, and Mongey (2020), Bethune and Korinek (2020), Chari, Kir-

palani, and Phelan (2020), Eichenbaum, Rebelo, and Trabandt (2020), Farboodi, Jarosch,

and Shimer (2020), Favero, Ichino, and Rustichini (2020), Gollier (2020), Gonzalez-Eiras

and Niepelt (2020), Hornstein (2020), Jones, Philippon, and Venkateswaran (2020), Miclo,

Spiro, and Weibull (2020),Obiols-Homs (2020), and Piguillem and Shi (2020). The list is

far from exhaustive. Assenza, Collard, Dupaigne, Fève, Hellwig, Kankanamge, Werquin

et al. (2020), Garibaldi, Moen, and Pissarides (2020), and Rachel (2020) characterize the

theoretical properties of optimal mitigation policies.

A smaller part of the literature studies suppression. Gollier (2020), Scherbina (2020),

and Ugarov (2020) simulate the impact of a uniform lock-down. Dorn, Khailaie, Stoeckli,

Binder, Lange, Lautenbacher, Peichl, Vanella, Wollmershaeuser, Fuest et al. (2020) simu-

late the effects of various control scenarios using a detailed economic and epidemiological

model. Wang (2020) simulates the effect of mass testing and shows that it can lead to sup-

pression before herd immunity. I contribute to this literature by explicitly characterizing

the optimal time-variable suppression policy.
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Closest to my paper are Gerlagh (2020), Piguillem and Shi (2020), Bethune and Ko-

rinek (2020), and Alvarez et al. (2020). Gerlagh (2020) solves for the optimal suppression

policy when case-detection is constant and ineffective, and assumes extinction is not pos-

sible. I explicitly model case-detection and extinction. Piguillem and Shi (2020) solve for

the optimal suppression policy in a SIR model with social distancing and random testing.

Bethune and Korinek (2020) solve for the optimal suppression policy under two polar as-

sumptions on the information set of the planner: the planner exactly knows who is infected,

and the planner has no information at all on who is infected. Alvarez et al. (2020) solve

for the optimal policy with tracing. They explicitly assume a functional form for tracing.

The last three contributions are quantitative. I contribute to this literature by characterizing

the optimal suppression policy as the solution of two simple sufficient statistics. I derive

its properties under general functional forms and parameter values. It is important because

very little is know about key parameters and relevant functions influencing optimal policy.

In particular, I show that the optimal suppression policy and its cost depend crucially on

well-defined properties of the detection technology. The tracing function used by Alvarez

et al. (2020) is infinitely efficient in the limit. This property is at odds with the epidemio-

logical literature on case detection; see Ferretti et al. (2020). The property leads to overly

optimistic estimates for the efficiency of suppression. Quantitatively, I contribute to this lit-

erature by comparing the optimal suppression policy under realistic detection technologies.

I use epidemiological estimates (Ferretti et al., 2020) to calibrate the detection technologies.

Pueyo (2020) gives an extensive informal discussion of possible policy responses.

2 The Model

Assume there is an initial mass I0 of infectious individuals in a susceptible population.

The virus transmits from infectious to susceptible. Infected individuals die or recover from

the disease after a certain time. Assume that, when uncontrolled, the mass of infectious

individuals It at time t follows:

İt = r0It. (1)

The variable İt denotes the time derivative, and r0 is the uncontrolled viral growth rate.

Assume that r0 > 0; the virus is spreading. The equation describes an exponential growth

process with a growth rate of r0.
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When the number of infectious is small compared to the number of susceptible, the

above process approximates the standard SIR model. The SIR model is widely used in the

economics literature on optimal disease control. When suppressing the disease, the number

of infected needs to converge to zero, and therefore, at some point, the number of infectious

is inevitably small compared to the number of susceptible. In the limit, when It = 0, the

approximation is exact. The general SIR model can only be solved numerically. Using the

above approximation has the advantage of simplifying the analysis considerably. It allows

me to solve for the optimal suppression policy analytically. For a discussion of the SIR

model, as-well-as its relation to the above equation, see appendix A.1. For the quantitative

results I calibrate the model to Italy, using the situation on May 10th as an initial condition.

This date is 3 months after the onset of the pandemic in Italy. The country was hardly hit

by the virus, and it went through a period of strict lock-down. The mass of infectious on

that date is equal to 0.07%, and the mass of susceptible is equal to 96%. The quantitative

exercise in Section 4 shows that the change in the mass of susceptible on the optimal sup-

pression path is smaller than 0.7%, and therefore negligible.

The policymaker can alter the spread of the virus by using two tools: case detection and

social distancing.

2.1 Case Detection

Case detection allows for quarantining a mass X of infectious individuals at each instant

of time. I assume infectious individuals in quarantine do not infect susceptible individuals.

X(I) is the flow of detected cases into quarantine as a function of the mass of infectious I .

Intuitively, it is the speed of detection. When there is case detection the mass of infectious

follows

İt = r0It −X(It). (2)

For a derivation from the SIR model, see appendix A.1.2. Assume X(0) = 0; if there are

no infectious, none can be detected. X ′(I) > 0; the speed of detection increases with the

number of infectious. When there are more infectious, it is easier to detect them. Assume

that the overall resources for case detection in a country are fixed and constant over time.

Consequently, assume that X ′′(I) < 0; the increase in speed is decreasing in the number of
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infectious. The detection-technology becomes overwhelmed if there are too many infected,

i.e., there are decreasing returns to scale. In the limit, if I goes to infinity, X ′(I) goes to

zero. A discussion of this assumption is in appendix A.1.1. Note that for many countries,

it has been difficult to increase the detection capacity in the short term. For this reason, I

focus on the simple case where resources for detection are constant. An extension to the

case where resources for detection are variable is in appendix A.3.2.

Define the detection rate as

X(I)

I
. (3)

Intuitively, it gives the percentage of overall cases that are detected daily. Under the above

assumptions, the detection rate is decreasing in I . The proof of this statement is in Lemma

2 in the appendix. It is the largest at zero. The detection rate at zero is a key parameter for

the analysis. Denote it as ξ0:

ξ0 = lim
I→0

X(I)

I
= X ′(0). (4)

There are two distinct cases:

Lemma 1. .

1. If ξ0 ≤ r0, the rate of case detection is never larger than the uncontrolled viral

growth rate. Therefore, detection alone cannot suppress the virus.

2. If ξ0 > r0, there exists a level of infectious I∗ > 0, such that for all I < I∗, it holds

that İ(I) < 0. Therefore, if It < I∗, detection alone suppresses the virus. I∗ is the

point where r0I∗ = X(I∗).

The proof is in appendix A.1.2.

2.2 Social Distancing

Assume social distancing policies are indexed by p ∈ [0, 1]. Each policy p has mass zero.

As an example, think of policy p as closing a sector p of the economy. Each p reduces

the growth rate of the virus by dr(p) and has a social cost dc(p). Assume policies are
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indexed such that the cost benefit ratio dc(p)
dr(p)

is increasing. Also, assume that dc(0)
dr(0)

= 0 and
dc(1)
dr(1)

=∞. Applying policies 0 to p has a growth impact of

r(p) =

∫ p

0

r′(p̃)dp̃. (5)

Following the sectoral interpretation, applying policies 0 to p means closing a fraction of

p of the economy. The order of sectoral closure is such that the social cost relative to the

growth benefit is increasing. Assume that there are enough policies available such that

r(1) >> r0. Strict enough measures allow pushing the growth rate of the virus below zero,

i.e., exponential decay. Denote by pt the fraction of policies applied by the policymaker at

time t. The spread of the virus follows the process:

İt = (r0 − r(pt))It. (6)

For a derivation from the SIR model, see appendix A.1.2. If r(pt) > r0 the process follows

an exponential decay. Physically, for any initial level of infections I0, the suppression of

the virus is possible by keeping r(pt) > r0. However, İt goes to zero as It goes to zero.

The smaller It, the slower the suppression is advancing. In the limit, the process becomes

infinitely slow. This property has important consequences for the cost of suppressing the

virus, which I discuss in Section 3.4.

The flow cost of applying policies 0 to p is

c(p) =

∫ p

0

c′(p̃)dp̃. (7)

To summarize, the functions r(p) and c(p) have the following properties: they are increas-

ing and zero at zero, c
′(p)
r′(p)

is increasing and zero at zero, r(1) >> r0, and c(1) =∞.

For some derivations, it is more convenient to express the flow-cost as a function of r

instead of p:

c(r) = c(p(r)). (8)

It follows that c(r) is increasing and convex: c′(.) > 0 and c′′(.) > 0. The cost, as well as
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the marginal cost, is zero in the origin: c(0) = 0 and c′(0) = 0. Note that this is an abuse

of notation. I use the same letter for two different functions. Which function is meant will

be clear from the context.

For parts of the results, I assume a very small but positive extinction threshold Iε > 0

exits, i.e., as soon as the number of infectious falls below Iε, the virus dies out. This as-

sumption is a convenient short-cut for describing the extinction behavior when the number

of infectious is low. It is common in the economics literature (see Gollier, 2020, and Pigu-

illem and Shi, 2020; the assumption is implicit in quantitative models). As common in the

deterministic SIR models, I assume the number of infected is a continuous mass. This as-

sumption makes the model tractable. However, it implies that at a low mass of I , a fraction

of an individual is infected, which is not possible in reality. For low numbers of infected,

the true infection-process becomes discrete. At each instant of time, a discrete number of

individuals becomes infected. New infections and the exit from the state of infectiousness

are probabilistic. In particular, if I is sufficiently low, there is a positive probability that all

infected recover without infecting a new susceptible individual. In this case, the virus dies

out. Note that in the deterministic model, the virus never dies out. Even if there is constant

and negative growth, in the limit, an infinitesimal fraction of one individual is infected. The

extinction threshold Iε is a convenient way to make the deterministic model more realistic

and introduce extinction. I leave a generalization to probabilistic extinction for future re-

search. Note that all results in this paper hold for arbitrarily small extinction thresholds.

The results for the case when the rate of detection ξ0 is larger than the uncontrolled growth

rate r0 also hold when the extinction threshold Iε is equal to zero.

3 The Optimal Policy

Assume that each new infection has a health cost of v. Note that infectious exit the state of

infectiousness at rate θ. When they exit they recover or die. (r0 − r(pt))It is the net flow

of infections. Therefore, the flow of new infections is (r0 − r(pt) + θ)It. For the detailed

derivation see appendix A.1.2. Denote the probability that the outcome of an infection is

death by δ. Denote the value of a statistical life by vsl. The flow cost per infection v is

12



equal to v = δ vsl.4 The problem of the policymaker is:

min
pt

C(pt) =

∫ ∞
0

c(pt) + vIt(r
0 − r(pt) + θ)dt (9)

such that

İt = (r0 − r(pt))It −X(It). (10)

Note that in problem (9), I neglect time discounting. This assumption simplifies the prob-

lem considerably. Time discounting is not very important for the problem of the optimal

suppression policy. The time frame is days, and daily interest rates are very low. The prob-

abilistic arrival of an effective cure or mass vaccine for a disease has the same effect as

time discounting. However, the daily arrival-probability of an effective treatment or mass

vaccine for COVID-19 is very low as-well. I solve for the general case with discounting

and a random vaccine or treatment arrival in appendix A.3.1. I find that, as long as the

discount rate and arrival-probability are low enough, the qualitative results in this chapter

do not change.

The solution to the problem is an optimal control function pt. Assume that at the op-

timum limt→∞ It = 0 and İt < 0 for all t. These assumptions can be verified ex-post. It

follows that It is strictly decreasing in time and therefore invertible. Use the invertibility of

I to eliminate time in the minimization problem (9):

min
p(.)

C(p(.)) =

∫ Iε

I0

c(p(I)) + vI(r0 − r(p(I)) + θ)

İ(I)
dI, (11)

where

İ(I) = (r0 − r(p(I)))I −X(I). (12)

The solution to the problem is a control function p(.). It is the solution to a simple pointwise

minimization of the above integral. Its solution gives the main result of the paper:

Proposition 1. .

4 v may be interpreted more broadly as containing all other costs caused by an infection, such as the
dis-utility of being sick and chronic damages caused by the virus. The cost can be generalized to a nonlinear
cost in I , accounting for congestion effects in the health care sector.
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For each amount of currently infectious I , the optimal policy p(I) solves:

c′(p)− vIr′(p)
c(p) + vI(r0 − r(p) + θ)

=
r′(p)

r(p) + X(I)
I
− r0

. (13)

An optimal solution p(.) exists and is unique.

The proof is in appendix A.2.1. Note that the denominator on the left of Condition (13),

c(p) + vI(r0 − r(p) + θ), is the instantaneous flow cost from suppression measures and

health outcomes, while the denominator on the right, r(p) + X(I)
I
− r0, is the instantaneous

negative viral growth rate. The respective enumerators are the marginal impacts of a policy

change on these two variables. This fact gives rise to the following corollary:

Corollary 1. .

A policy p(I) is optimal if at each point in time, its relative effect on the flow cost is equal

to its relative effect on the viral growth rate:

d log (c(p) + vI(r0 − r(p) + θ))

d p
=
d log

(
r(p) + X(I)

I
− r0

)
d p

. (14)

Corollary 1 has concrete policy implications, which I discuss in Section 3.2. Alterna-

tively, one can express Condition (13) as an elasticity:

Corollary 2. .

A policy is optimal if at each point in time, the elasticity of the flow cost to the negative

viral growth rate is equal to one:

d log
(
c
(
−g + r0 − X(I)

I

)
+ vI

(
g + X(I)

I
+ θ
))

d log(−g)
= 1. (15)

Note that Corollary 2 follows from the fact that, for each level of infectious I , there is

a one to one mapping from policy p to the instantaneous negative growth rate g:

−g(p, I) = r(p) +
X(I)

I
− r0. (16)

Therefore, one can change variable in (13) from p to −g.
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3.1 The Intuition Behind Proposition 1

To better understand the intuition behind the optimality condition (13), it is useful to recall

each mathematical step in the derivation intuitively:

The first step is the change in variable from t to I . Integrating over time means sum-

ming the flow costs at each point in time. Integrating over I means summing the flow cost

for each reduction in I . The policymaker would like to reduce new infections from I0 to

0. As a consequence of the extinction threshold, the policymaker only needs to reduce

infections to Iε > 0. It is useful to think about the reduction as of a distance to cover. In

particular, partition the distance into many small and constant intervals ∆I . The minimiza-

tion problem consists in minimizing the cost for each of these intervals. The cost to reduce

new infections at I to I − ∆I depends on the flow cost and the time it takes to cross the

interval:

(
c(p) + vI(r0 − r(p) + θ)

)︸ ︷︷ ︸
flow cost

× ∆t(I, p)︸ ︷︷ ︸
crossing time

. (17)

Note that the crossing time is a function of p and I:

∆t =
∆I

(r(p)− r0)I +X(I)
. (18)

The flow cost is increasing in the intensity of applied policies p while the crossing time is

decreasing p. Note that for small I , vI is only marginally relevant. The following corollary

summarizes this finding:

Corollary 3. .

The key trade-off for suppressing the disease is between the cost of social distancing, c(p),

and the time it needs to stay in place, ∆t(p). The optimal policy trades off these two

margins at every instant of time.

To find the optimal policy p(I), take the logarithm of the above expression and perturb

the current policy p by a small amount ∆p to derive a change in cost ∆C:

∆C =

(
c′(p)− vIr′(p)

c(p) + vI(r0 − r(p) + θ)
+

∂∆t(I,p)
∂p

∆t(I, p)

)
∆p. (19)

A policy is optimal if there exits no policy perturbation that reduces the cost. It is the case
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when the expression in brackets is equal to zero.

Instead of using ∆t in the condition above, it is possible to express the same condition

as a function of the viral growth rate. Define the growth rate g as İ
I
. The crossing time ∆t

is inversely proportional to the growth rate:

∆t(I, p) =
∆I

I

1

−g(I, p)
. (20)

Therefore, the change in cost ∆C as a function of the growth rate is:

∆C =

(
c′(p)− vIr′(p)

c(p) + vI(r0 − r(p) + θ)
−

∂−g(I,p)
∂p

−g(I, p)

)
∆p. (21)

Using the definition of the growth rate gives the expression in Proposition 1:

c′(p)− vIr′(p)
c(p) + vI(r0 − r(p) + θ)

=
r′(p)

r(p) + X(I)
I
− r0

. (22)

3.2 The Policy Implications of Corollary 1

Two simple and observable sufficient statistics characterize the optimal policy: the current

flow-cost and the current viral growth rate. The policymaker only needs to consider the rel-

ative change of these two observables to a change in policy to evaluate the current policy’s

optimality. Optimality solely depends on current variables, which is somewhat surprising.

The problem is a dynamic optimization problem, and, to be optimal, a decision at a certain

point in time needs to account for its effects on the whole future. However, the two observ-

ables summarize all relevant dynamic information.

The optimality condition gives specific guidance to organize a de-confinement after an

extended lock-down. For relaxing a certain confinement measure, the policymaker only

needs to evaluate its relative impact on the current social cost and viral growth rate. If the

relative reduction in cost is larger than the relative increase in growth, a measure should

be relaxed. For instance, a policymaker may want to evaluate reopening a particular sector

of the economy, such as construction. To make an optimal decision, the policymaker only

needs information on how many percentage points such a measure would ease the current

cost of the confinement and how many percentage points it would increase the virus’s cur-

rent growth rate.
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Note that how to reopen, which is which policy to reverse first, is determined by the

ratio dc(p)
dr(p)

. While the question of which policy to reverse first is an empirical problem,

theoretically, it is not very difficult to answer. Policies with a high ratio should be relaxed

first. The harder theoretical question is how fast to reopen, which is determined by the

above optimality condition. The optimality condition is robust to complementaries between

policies, both in cost and in growth impact. The optimal decision only depends on the

marginal impact of the most efficient policy at a certain point in time.

3.3 The Properties of the Optimal Policy

To derive the optimal policy’s properties, it is simpler to use r as a control variable instead

of p. Note that such a change in the variable is without loss of generality. The optimal

policy is characterized by a function r(I).

Proposition 2. .

1. In the optimum, social distancing measures are always positive, and increasing in the

number of infectious. Social distancing is the largest at the beginning when I = I0.

It is gradually released, when the number of infectious decreases:

r(I) > 0, for all I > 0, and r′(I) > 0. (23)

2. In the limit, at Iε, the optimal policy r(Iε) has the following properties:

• If ξ0 ≥ r0, social distancing goes to zero: limIε→0 r(Iε) = 0;

• If ξ0 < r0, social distancing goes to a constant: limIε→0 r(Iε) = 2(r0−ξ0) > 0.

3. Under the optimal policy, the growth rate of I is negative: g(I) < 0. In the limit it

is equal to limIε→0 g(Iε) = −|ξ0 − r0|. In particular, the growth rate goes to −∞ if

ξ0 =∞.

The proof is in the appendix. Note that for the case ξ0 < r0, I assume a quadratic

cost. The proposition underlines the crucial role of ξ0, i.e., the rate of detection at zero.

It governs the amount of time it takes to suppress the virus and the optimal policy in the

limit. If detection is efficient enough, social contacts go gradually back to the pre-crisis

level. The same is not true, when case detection is inefficient. Note that the efficiency of
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detection is characterized by the derivative of the flow of detections in zero. With inefficient

detection, some amount of social distancing needs to stay in place until the extinction limit

Iε is reached. If this limit is infinitely small, suppression takes infinitely long. However, the

efficiency of detection still matters in this case. It determines the level of necessary social

distancing in the limit. The necessary level may consist of mild measures such as washing

hands, wearing masks, and forbidding mass events. In the next step, I study the cost of

suppression at the optimum.

3.4 The Cost of the Optimal Policy

In the optimum, the total cost of suppressing a mass I0 of infectious is

C =

∫ I0

Iε

c(r(I)) + vI(r0 − r(I) + θ)(
r(I) + X(I)

I
− r0

)
I

dI, (24)

where r(I) denotes the optimal policy. The unit cost of suppression, intuitively, the cost to

suppress one more infectious, is equal to

dC

dI
=

c(r(I))(
r(I) + X(I)

I
− r0

)
I

+
v(r0 − r(I) + θ)(
r(I) + X(I)

I
− r0

) . (25)

It consists of two parts: an economic unit cost, the first summand, which comes from the

costs of the taken suppression policies, and a social unit cost, the second summand, which

comes from the health costs.

Proposition 3. .

Case 1, ξ0 > r0:

• As I converges to zero, the economic unit cost of suppression converges to zero, and

the social unit cost of suppression converges to a constant. In particular, if ξ0 =∞,

also the social unit cost converges to zero.

• The total cost of suppression is bounded, even if Iε = 0.

Case 2, ξ0 < r0:

• As I converges to zero, the economic unit cost of suppression converges to infinity,

and the social unit cost of suppression converges to a constant.
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• If the extinction limit Iε goes to zero, the total cost of suppression goes to infinity.

The case ξ0 < r0 assumes a quadratic cost. The proposition underlines the importance

of the properties of case detection when I goes to zero. If the detection rate is high enough,

social contacts gradually go back to normal, which bounds the total cost. If the rate is not

high enough, the total cost goes to infinity if Iε goes to zero. When ξ0 < r0, optimal social

distancing does not go to zero in the limit; therefore, its cost does not go to zero. On top

of that, the time to suppress the virus goes to infinity if Iε goes to zero. It follows that the

total cost of suppression goes to infinity if Iε goes to zero. However, this does not mean

suppression is not a good idea. The necessary long-run measures may be very mild, and

therefore worth enduring. Even if ξ0 < r0, its size still matters, because it determines the

amount of social distancing necessary in the long run. It may still be cheaper to suppress the

virus than to use another solution, such as herd immunity. Especially, suppression avoids

the risk that the virus mutates and becomes endemic. I further discuss these issues in the

conclusion.

3.5 The Problem of Using Social Distancing Alone

Assume the policymaker would like to minimize only the total economic cost of suppress-

ing the virus. Additionally, assume the only available tool to do so is social distancing:

C = min
r(.)

∫ Iε

I0

c(r(I))

İ(I)
dI, (26)

where İ = (r0 − r(I))I. (27)

Corollary 4. .

1. When only using social distancing, the optimal cost-minimizing policy is constant

over time.

2. The optimal policy r is equal to

c′(r)

c(r)
=

1

r − r0
. (28)

3. Assume c(r) is iso elastic. It follows that the optimal effect of social distancing r is
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equal to

r = r0 ζ1

ζ1 − 1
, (29)

where ζ1 > 1 is the cost-elasticity.

4. The optimal economic unit cost of reducing an infection goes to infinity as I goes to

zero.

Points one to three follow as special cases from Proposition 1. Point 4 follows as a

special case from Proposition 3. In particular, point 4 shows the problem of using social

distancing alone to suppress the virus. Even in the optimum, the cost-efficiency of social

distancing measures decreases as I decreases, because the reduction in infectious becomes

infinitely slow when I goes to zero. This result is quite intuitive. Given a certain intensity

of social distancing, it takes the same time to reduce infections from 10 million to 1 million

as reducing them from 10 to 1. Suppressing the virus by social distancing is possible, but

very costly. One may be tempted to think that point 4 of Corollary 4 is not relevant in

practice. The last unit to reduce is at I = Iε and not at I = 0. However, Iε is very small.

Therefore, point 4 shows that the costs of reducing the last units close to Iε are very high.

Note that the discussed policy is the cost-minimizing policy in an economic sense. When

maximizing social welfare, as discussed above, the result becomes even more extreme.

4 Quantitative Results

The results discussed so far are theoretical and robust to the huge parameter uncertainty

related to Covid-19. However, they are unable to answer two crucial questions. What are

the economic and health costs of the optimal suppression policy under different realistic de-

tection technologies? And, how do these costs compare to the costs of optimal mitigation

policies? To calculate the total cost of suppression, it is necessary to know the functions

c(p), r(p) and X(I), as well as the parameters r0 and v. Therefore, due to the high param-

eter uncertainty, a precise answer to these questions is impossible. Following the literature,

I use a calibration exercise to obtain approximate answers.
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4.1 Data Sources

I use frequently updated epidemiological data from the Institute for Health Metrics and

Evaluation (IHME) at the University of Washington.5 They provide a time series of con-

firmed cases and estimates for the real number of daily infections for many countries. Their

estimates are based on Murray et al. (2020). I use data from Italy and South Korea.

4.2 Calibration

4.2.1 Parameters Literature

I use the following parameters from the literature as a starting point for my calibration:

Parameter Symbol Value Source
Mortality rate δ 0.01 Alvarez et al. (2020)

Time of contagiousness 1
θ

5 days Fernández-Villaverde and Jones (2020)
Value of statistical life vsl 20 GDP

capita Alvarez et al. (2020)
Uncontrolled growth rate r0 0.14 Ferretti et al. (2020)

Max. rel. speed digital tracing ξd0 0.35 Ferretti et al. (2020)
Max. rel. speed manual tracing ξm0 0.1 Ferretti et al. (2020)

GDP loss strict lock-down cLD 0.5 Gollier (2020)

Table 1: Parameters Literature

4.2.2 The Cost Function

I use a direct relation between the cost of social distancing, measured as lost GDP, and the

reduction in the viral viral growth rate r. I assume the function is iso-elastic:

c(r) = ζ0r
ζ1 , (30)

where ζ0 > 0 and ζ1 > 1. Neglecting the value of lives lost as well as tracing, by Corollary

4, it holds that the optimal r solves

ζ1 =
r

r − r0
. (31)

5I downloaded the data from http://www.healthdata.org on May 12th, 2020.
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From March 10th until April 26th, the Italian government imposed a nationwide lock-

down. A lock-down is a strict form of social distancing. Any no-essential social contacts

are forbidden. A large part of the population is forced to stay at home. Going outside is

permitted only if essential. To calibrate ζ1, I assume the strict lock-down in Italy was close

to optimal. Note that Italy did not use much tracing during the time of the lock-down. The

value of lives lost is small compared to the lost GDP. The assumption of optimality is cer-

tainly strong. However, in many countries such as France, Spain, the UK, and Germany, we

have seen very similar lock-downs intensities. This is consistent with Equation (31). Note

that the optimal intensity of r does not depend on the level of infections. It only depends

on ζ1, which parametrizes the convexity of the cost. Once a country discovers an outbreak,

it should hit hard to reduce new infections. If tracing is infeasible in the short term, and the

number of death is relatively small, Equation (31) is a good approximation for the optimal

policy. The intensity of r does only depend on the convexity of the cost ζ1. Note that the

convexity should be similar between countries. The more convex the cost c(.), the more

it costs to implement a strict lock-down. The similarly intense lock-downs between coun-

tries suggest that governments approximately followed the optimal lock-down strategy. A

different interpretation of the optimality assumption is that it makes the simulated costs

consistent with the strict lock-down. Assume the government acted optimally, given its

best estimate of the cost function. The implied simulated policies and costs are consistent

with the estimate.

Under the assumption that the intensity of the lock-down was optimal, it is informative

about the cost function’s convexity. Using the epidemiological data from Murray et al.

(2020), I estimate the growth rate under the Italian lock-down at gLD = −0.032. I use

the estimated number of new infections form the peak on March 11th until the most recent

estimates on May 10th. Together with an uncontrolled growth rate of r0 = 0.14 (see Ferretti

et al. (2020)), I estimated growth reduction during the lock-down is rLD = r0 − gLD =

0.172. Using Equation (31), it implies an elasticity of ζ1 ≈ 5. Following Gollier (2020), I

assume a strict lock-down implies a daily GDP loss of around cLD = 50%.6 The implied

ζ0 ≈ 3300.
6The number in Gollier (2020) is based on GDP estimates from the "National Institute of Statistics and

Economic Studies" in France (https://www.insee.fr/fr/statistiques/4485632).
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4.2.3 The Case Detection Function

I use the following case detection function:

X ′(I) =
(
ξ
− 1
α

0 + ξ1I
)−α

, (32)

and X(0) = 0. The function fulfills the necessary properties of a detection function speci-

fied above. ξ0 > 0 is the value of the function for I = 0. Note that it is equal to limI→0
X(I)
I

,

i.e., the relative speed of tracing at zero. The parameter ξ1 > 0 controls the function’s be-

havior for large values of I . α ≥ 0 controls how fast X ′(I) goes from ξ0 to its behavior for

large I . This function is quite general and contains some intuitive tracing functions as spe-

cial cases. For α = 0 it reduces to a constant returns to scale tracing function: X(I) = ξ0I .

In particular, if ξ0 is equal to the daily flow of tests, it is equal to tracing under random test-

ing. When ξ0 goes to infinity, the function reduces to a power function as used in Alvarez

et al. (2020). The disadvantage of a power function is thatX ′(0) =∞ by assumption. This

assumption is unrealistic. It makes tracing overly efficient at the end of suppression.

To calibrate the parameters, I distinguish two cases: digital tracing and manual tracing.

I use micro estimates to calibrate the function for both cases. I use results from Ferretti

et al. (2020). This epidemiological paper estimates how much optimal contact tracing can

reduce daily new infections. They compare digital contact tracing with manual contact

tracing. Ferretti et al. (2020) estimate that, under optimal conditions, digital contact tracing

can find infectious individuals at a rate of ξd0 = 35% per day. It means that the stock of cur-

rently infectious can be reduced by 35% in one day. Manual contact tracing is much slower.

The authors argue that optimal manual contact tracing achieves a rate of ξm0 = 10% per day

because of unavoidable delays. I use these estimates as values for ξ0 in the two cases. I

assume that, if a country uses its full resources to find the last cases, tracing achieves its

optimal rate. However, as soon as the caseload grows, the system becomes overwhelmed,

and the efficiency of tracing decreases.

I calibrate ξ1 such that at a prevalence level of 10%, i.e., 10% of the population is in-

fected at the same time, X ′(I) = ξ0/10000, which is close to zero. It means that at a

prevalence level of 10%, the system is so overloaded that any further increase in the num-

ber of infected will not lead to more traced cases. To calibrate α, I use estimates of the

fraction of traced cases from Italy and South Korea. I use data from Murray et al. (2020),
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and I use the date with the maximal detection rate in both countries. I estimate that Korea,

using digital tracing, at a prevalence of 56 infected per million, found 21 % of total cases

daily. I assume the number of confirmed cases is equal to the number of traced cases. Note

that the estimated rate is not too far from the theoretical limit of 35%. It implies that, for

digital tracing, αd = 1.2. For manual tracing, I use the same procedure using data from

Italy. On May 10th, at an estimated prevalence of 700 per million, Italy manages to confirm

3% of the total cases daily. It implies that, for manual tracing, αm = 1.5.

4.2.4 Remaining Parameter Values

As already mentioned, I use r0 = 0.14 as in Ferretti et al. (2020).

To estimate the current prevalence in Italy, I use the data from Murray et al. (2020). I use

May 10th as a starting date because it is the last date of available observations. Murray et al.

(2020) estimate daily new infections. I use new infections to calculate the current stock of

infectious by summing the infections over the 5 preceding days. I assume an infected stays

infectious for 1/θ = 5 days, following Fernández-Villaverde and Jones (2020). On May

10th, I find a level of prevalence of I0 = 0.0007 and a level of susceptible of S = 0.96. It

shows that the number of infectious is indeed small compared to the number of susceptible.

Therefore, The assumption that the number of susceptible is constant is approximately true.

I will confirm the assumption ex-post in Section 4.3.1.

To estimate the health cost, I assume that an infectious dies with probability δ = 0.01,

following Alvarez et al. (2020). Following Alvarez et al. (2020), I use a value of statistical

life of 20 times the annual output per capita. It follows that v = vsl ∗ 365 ∗ δ = 73. Note

that my results are very insensitive to the assumptions related to mortality because of the

low prevalence level.
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4.2.5 Summary Relevant Parameters

Parameter Symbol Value Matched Moment or Source
Factor cost function ζ0 3300 GDP loss lock-down

Cost-elasticity ζ1 5 Lock-down intensity
Max. rel. speed digital tracing ξd0 0.35 Ferretti et al. (2020)
Max. rel. speed manual tracing ξm0 0.10 Ferretti et al. (2020)

Scalability digital tracing αd 1.2 Confirmed cases Korea
Scalability manual tracing αm 1.5 Confirmed cases Italy

Initial Prevalence I0 0.07% Estimate for Italy May 11th
Flow value of casualties v 73 Alvarez et al. (2020)
Uncontrolled growth rate r0 0.14 Ferretti et al. (2020)

Table 2: Relevant Parameters

4.3 Results

I take the current prevalence in Italy as given and analyze the optimal suppression policy

for three different tracing scenarios:

1. Italy continues to isolate infectious at the current rate of 3% per day. I refer to this

case as no tracing.

2. Italy adopts an optimal manual contact tracing strategy.

3. Italy adopts an optimal digital contact tracing strategy like South Korea.

To compare the three scenarios, I examine the intensity of the optimal social distancing

measures, their implied flow costs, the time it takes to reach certain thresholds in daily cost,

and the total cost.

Cost or intensity measure No tracing Manual tracing Digital tracing
Optimal intensity r on May 10th 0.14 0.14 0.12
Implied daily cost [daily GDP] 19 % 19 % 8.7%

Time until cost drops to 1% of daily GDP never 3.4 months 39 days
Daily cost in the limit 16% 0.1% 0

Time to reach extinction threshold 1 ppm 7.8 months 15 months 3.0 months
Total cost until extinction [annual GDP] 11 % 1.7% 0.44%

Total additional death until extinction 2,900 4,200 3,300

Table 3: Comparison Scenarios
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The optimal reduction in social distancing intensity is such that r goes from 0.17 under

the lock-down, to 0.14 (no tracing/manual tracing), and 0.12 (digital tracing). Some degree

of easing is optimal. The reason is that identifying a fraction of the contagious takes over

some of the burdens to keep viral growth at an optimal level. This modest reduction in

social distancing already has an essential impact on economic cost. It reduces from 50% of

daily GDP under the lock-down, to 19 % under no tracing/manual tracing, and 8.7% under

digital tracing. Said differently, on May 10th, it is possible to ease the lock-down by around

half, measured in lost daily GDP. An immediate switch to the Korean strategy would allow

for an easing of a factor of almost 6.

The cost of social distancing drops over time because the number of infectious reduces

and social distancing is gradually relaxed in the optimum. Under digital tracing, the cost

drops below 1% of daily GDP after 39 days already. Under manual tracing, it takes 3.4

months to reach this point. However, under no tracing, this point is never reached. The

optimal intensity is almost constant and stays close to 0.14. A cost close to 19% of daily

GDP needs to be paid until the virus disappears. In the long run, the daily cost reduces

to 0.1% for manual tracing, and 0% for digital tracing. The numerical results confirm the

theoretical results. Only efficient tracing with ξ0 > r0 allows the society to go back to a

normal activity level. If tracing is inefficient, i.e., ξ0 << r0 relatively strong and costly

social distancing measures need to stay in place until the virus disappears. Mild efficiency

implies that measures have to stay in place in the long run; however, they are mildly in-

tense and not very costly. For instance, this may correspond to the case where society only

imposes restrictions on mass events and general hygiene measures such as mask-wearing.

Next, to compare the different strategies’ total cost, following Piguillem and Shi (2020),

I assume the virus disappears when prevalence falls below an extinction threshold of 1 in-

fectious per million inhabitants. Piguillem and Shi (2020) use a threshold of 10 per million.

I use a more conservative threshold because South Korea already reached a prevalence of

6 per million, and the virus did not get extinct.

The differences in cost between the different strategies are enormous. No tracing takes

7.8 months and costs 11% of annual GDP. Note that this cost is in addition to the already

incurred cost due to the strict lock-down. Also, under this policy, the virus causes around

2,900 additional victims. The suppression with the help of manual tracing takes 15 months.
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Manual tracing is slower but much less costly. The reason is that social distancing is grad-

ually relaxed in the optimum. It reaches a limit where its cost is only 0.1% of daily GDP.

The total cost is 1.7% of annual GDP, and the number of additional casualties is around

4,200. Note that the number of casualties is higher in the manual tracing scenario than in

the no tracing scenario. The health cost has only a very small influence on the optimal pol-

icy. Because manual tracing is cheaper, the optimal policy takes longer. Additionally, more

control is exerted with the help of tracing. Tracing does not avoid new infections, because

individuals are traced after they got infected. Both factors contribute to a higher number

of casualties. The total cost under manual tracing is still substantial. The cheapest option

is digital tracing. The virus disappears in 3 months. Social distancing is relaxed quickly

and substantially, well before that date. The total cost is only 0.44 % of annual GDP. The

number of additional casualties is around 3,300. For all strategies, after extinction, social

distancing is completely relaxed. In case there is an import of new cases, the pandemic

restarts under no tracing and manual tracing, but not under digital tracing. Digital tracing

alone can keep small new outbreaks under control. I do not count the cost to avoid or con-

trol new outbreaks when digital tracing is not used. In case a country decides to suppress

the virus using no tracing or optimal manual tracing, the policy needs to be complemented

by meticulous border controls until a vaccine arrives. I leave the quantification of these

additional costs for future research.

Note that the total cost of suppression with digital tracing is by an order of magnitude

smaller than estimates for the total cost under optimal mitigation strategies. Acemoglu

et al. (2020) and Gollier (2020) evaluate mitigation strategies with age-depended social

distancing measures. Age-depended policies give the most optimistic estimates for total

costs and casualties of mitigation policies. They find a total cost of mitigation in the range

of 7 to 13 % of annual GDP. The death toll of optimal mitigation strategies in the most

optimistic scenarios is 0.2% of the population. In Italy’s case, these are around 120,000

casualties, which stand in stark contrast to the 3,300 additional casualties of an optimal

suppression policy.

4.3.1 The Evolution of the Number of Susceptible

I find that the change in the mass of susceptible ∆S is small under all three scenarios:
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No tracing Manual tracing Digital tracing
0.49% 0.69% 0.48%

Table 4: Change in the Number of Susceptible ∆S

The initial mass of susceptible is S0 = 96%, and therefore, it is indeed very close to

constant.

5 Conclusion

This paper characterizes the optimal policy to suppress COVID-19. I find that complete

and efficient eradication of COVID-19 is possible at a reasonable economic cost of 0.4% of

annual GDP. A simple function of observables, the optimal policy is easily implementable.

However, some crucial questions are still unanswered. In particular, is it more efficient to

use mitigation or suppression?

Remember, mitigation controls the spread of the virus until contagions stop because

the population achieves herd immunity. If the current number of infectious individuals is

sufficiently low, and case detection is efficient enough, the answer to this question is un-

doubtedly suppression. The same is true if the value of lives lost is large enough. However,

for all other cases, it becomes much harder to make an optimal decision. Moreover, a deci-

sion needs to be made. The two policy responses dictate a very different optimal time path

of infections. A mitigation policy lets infections grow because the virus needs to reach a

large enough part of the population. Optimal suppression never allows infections to grow.

The policymaker stands at a crossroads and needs to decide which path to take. The to-

tal cost of either of them is still very uncertain. It depends crucially on: the cost and viral

growth impact of social distancing policies, the speed of tracing, especially at low infection

levels, the statistical value of life, and the capacity of the health care system and its impact

on mortality rates. All of these variables are highly uncertain. Only the precise estimates

of the mentioned unknowns can give a definite answer to the question.

However, the calibration exercise in this paper can give rough guidance on how to an-

swer the question. I find that the total cost of suppression is 0.44% of annual GDP when

using digital contact tracing and 1.7 % of GDP when using manual tracing. In comparison,

the cost-estimates of an optimal mitigation strategy range from 7% (Gollier, 2020), to 7-
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14% (Acemoglu et al., 2020), to around 30% (Alvarez et al., 2020). Acemoglu et al. (2020)

estimate the additional number of casualties in the most optimistic scenario to around 0.2%

of the population. In the case of Italy, these are around 120,000 additional casualties. The

estimates in Acemoglu et al. (2020) and Gollier (2020) rely on the optimistic assumption

that it is possible to shelter the most vulnerable part of the population. Even in that case, the

number of casualties of an optimal mitigation policy stands in stark contrast to the 3,300

additional casualties of an optimal suppression policy. None of these estimates take the risk

that the virus could become endemic into account. The comparison suggests that suppres-

sion is the most cost-efficient strategy. It is certainly the strategy that reduces the number

of casualties.

Curiously, it is easier to find the exact optimal amount of social distancing at each

point when following a suppression policy, than to decide on the optimal broad direction of

policy. The policymaker can turn to the econometrician and the epidemiologist - they can

estimate the local impact of a policy change on the flow cost and the viral growth rate - and

apply the condition derived in this paper.
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A Appendix

A.1 The SIR Model

Assume the population has a mass of one and consists of three groups. It denotes the frac-

tion of infectious individuals at time t. St denotes the fraction of the population susceptible

to getting infected by the disease when meeting an infectious. Rt denotes the number of

recovered individuals. Infectious and susceptible meet randomly, and the disease transmits

at a certain rate. When there are no active control measures, the infection rate is β0. The re-

covery rate, once infected, is θ. The initial fraction of infectious and susceptible is denoted

by I0 and S0. Three differential equations describe the dynamics of the three groups:

İt = (β0St − θ)It; (33)

Ṡt = −β0StIt; (34)

Ṙt = θIt, (35)

where the dot superscript denotes the time derivative. When It is small compared to St,

then Ṡt is small compared to St. As a consequence, St is approximately constant: St ≈ S.

The dynamic behavior of the infectious is approximately described by Equation (1):

İ = r0It,

where r0 = β0S − θ.

Note that It is small compared to St at the beginning of the pandemic, as well as after

an extended period of effective control measures. Even if part of the population is immune,

as long as It is small compared to the number of susceptible, the above approximation is

valid. The lower fraction of susceptible is captured by a lower r0.

A.1.1 The Detection Technology

X̃(I, z) denotes the flow of detected cases. It is a production function with two inputs:

the number of undetected cases I and the amount of resources allocated to case detec-

tion z. I assume X̃(I, z) fulfills the following standard properties of a production func-

tion: X̃(0, z) = 0, X̃(I, 0) = 0, ∂X̃(I,z)
∂I

> 0, ∂X̃(I,z)
∂z

> 0, ∂2X̃(I,z)
∂I2

< 0, ∂2X̃(I,z)
∂z2

< 0,

limI→∞
∂X̃(I,z)
∂I

= 0. In particular, the concavity in I comes from the fact that, if resources
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are fixed, the resources per undetected case I decrease as I increases. An additional detec-

tion is carried out with fewer resources. Therefore, it is slower, and ∂2X̃(I,z)
∂I2

< 0.

Assume the overall resources a country can allocate to case detection are fixed and

constant: z = ẑ. Define X(I) = X̃(I, ẑ). It follows that X(0) = 0, X ′(I) > 0, X ′′(I) < 0

and limI→∞X
′(I) = 0.

Lemma 2. If X ′′(I) < 0 and X ′(I) > 0 for all I , it follows that X(I)
I

is decreasing for all

I .

PROOF:

If X ′′(.) < 0 it follows that ∫ I

0

(X ′(Ĩ)−X ′(I))dĨ > 0, (36)

because X ′(.) is a decreasing and positive function. It follows that X(I) − X ′(I)I > 0,

which implies

d X(I)
I

d I
=
X ′(I)I −X(I)

I2
< 0. (37)

qed.

A.1.2 The Derivation of Equation (2) and (6) from the SIR Model

The mass of not quarantined infectious is It. Denote by Jt the overall mass of infected and

by Qt the mass of quarantined. It follows that Jt = Qt + It and J̇t = Q̇t + İt. The flow of

new infections follows

J̇t = (β0S − β(pt)S)It − θJt (38)

Q̇t = X(It)− θQt (39)

β(pt) is the reduction in viral transmission due to application of policy pt, where pt ∈ [0, 1].

Denote β0S − θ = r0 and β(pt)S = r(pt) to get

İt = (r0 − r(pt))It −X(It),
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which gives Equation (2) when pt = 0 and Equation (6) when detection is not used and

X(I) = 0.

Note that, by Equation (38), the flow of new infections is β0S − β(pt)S, which, by

using the according definitions, is equal to r0 − r(pt) + θ.

PROOF of Lemma 1:
X(I)
I

is strictly decreasing from ξ0 to 0. It follows that there exits an I∗ such that X(I)
I

= r0.

For all I < I∗, r0 − X(I)
I

< 0. Therefore, İ =
(
r0 − X(I)

I

)
I < 0.

qed.

A.2 Proofs Section 3

A.2.1 Proof Proposition 1

The minimum of the integral

min
p(.)

C(p(.)) =

∫ I0

Iε

−c(p(I)) + vI(r0 − r(p(I)) + θ)

(r0 − r(p(I)))I −X(I)
dI (40)

is at the point-wise minimum of each integrand. Note that I swapped the bounds. Change

policy variable from p to r. For each I , the integrand is equal to

c(r) + vI(r0 − r + θ)(
r − r0 + X(I)

I

)
I

. (41)

Note that İ < 0 by assumption. Therefore, the denominator has to be positive, which is the

case when r > r0 − X(I)
I
. Also, r ≥ 0 by definition. Note that r ≤ r0 + θ. At this bound

social contacts are zero. Assume that c(r0 + θ) =∞. There are two cases:

First, if r0 − X(I)
I

> 0 it holds that r ∈
(
r0 − X(I)

I
, r0 + θ

]
.

Second, if if r0 − X(I)
I
≤ 0 it holds that r ∈ [0, r0 + θ] .

Note that the integrand is finite, positive, and continuous for any interior r.

Lemma 3. There exists a minimum of the integrand, and it is interior.

PROOF:
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Case 1, r0 − X(I)
I

> 0:

It follows that r ∈
(
r0 − X(I)

I
, r0 + θ

]
. If r goes to the left limit, the integrand goes to

infinity. If r goes to the right limit, the integrand goes to infinity as well. The integrand

is finite, positive, and continuous for any interior r. It follows that there exists an interior

minimum.

Case 2, r0 − X(I)
I

< 0:

It follows that r ∈ [0, r0 + θ]. At the left boundary, the integrand is equal to v(r0+θ)
X(I)
I
−r0

. The

minimum cannot be at zero, because the integrand is strictly decreasing in zero:

(c′(0)− vI)
(

0− r0 + X(I)
I

)
I − (c(0) + vI(r0 − 0 + θ)) I(

0− r0 + X(I)
I

)2

I2

=
−v
(
X(I)
I

+ θ
)

(
−r0 + X(I)

I

)2 < 0.

(42)

If r goes to the right limit, the integrand goes to infinity. The integrand is finite, positive,

and continuous for all r. It follows that there exists an interior minimum.

Case 3, r0 − X(I)
I

= 0:

It follows that r ∈ [0, r0 + θ]. As case 1. The integrand goes to infinity at both boundaries.

qed.

Any interior extremum fulfills the first order condition:

c(r) + vI(r0 − r + θ)(
r − r0 + X(I)

I

)
I

(
c′(r)− vI

c(r) + vI(r0 − r + θ)
− 1

r + X(I)
I
− r0

)
= 0 (43)

Cancel the left factor and change the choice variable back from r to p to get the optimality

condition in Proposition 1.

Each interior extremum is a strict minimum. To see that, rearrange the first derivative
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of the integrand to:

1(
r − r0 + X(I)

I

)2

I

(
−c(r)− vI(r0 − r + θ) + (c′(r)− vI)

(
r +

X(I)

I
− r0

))
(44)

Take the derivative to get the second order condition. Note that it is equal to a′b + ab′

where a is the first factor above and b is the second factor. If the FOC holds, b is zero.

Also, a is always positive. The sign of the SOC only depends on the sign of b′. b′ =

c′′(r)
(
r + X(I)

I
− r0

)
, which is strictly greater than zero.

As each minimum is a strict minimum, and the function is continuous, there can only

be one minimum. In particular, it fulfills the first order condition. As guessed, İt < 0 for

all t and limt→∞ It = 0.

There can be no minimum where It does not converge to zero. In that case, the integral

does not exist because the integrated cost becomes infinitely large. İt ≥ cannot be optimal

because growing infections increase the health cost vI(r0 − r + θ) and only transfers the

cost of reducing infections to a later point in time.

qed.

A.2.2 Proof Proposition 2

Lemma 4. .

Consider the case where limI→0
X(I)
I
≥ r0. It follows that:

1) The optimal policy r(I) converges to zero as I converges to zero:

lim
I→0

r(I) = 0. (45)

2) For small I the optimal policy r(I) is approximately equal to

r(I) ≈ −
(
X(I)

I
− r0

)
+

√(
X(I)

I
− r0

)2

+ 2
v

c′′(0)
I

(
X(I)

I
+ θ

)
. (46)
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In particular, r(I) > 0 for I > 0.

3) For small I the growth rate under the optimal policy g(I) is approximately equal to

g(I) ≈ −

√(
r0 − X(I)

I

)2

+ 2
v

c′′(0)
I

(
X(I)

I
+ θ

)
. (47)

4) Under the optimal policy r(I) the growth rate converges to

lim
I→0

g(I) = −(x0 − r0). (48)

In particular, for

lim
I→0

X(I)

I
=∞, it holds that lim

I→0
g(I) = −∞. (49)

The decay of the virus is accelerating as I approaches zero.

PROOF:

The optimality condition with r as the policy variable writes

c′(r)− vI
c(r) + vI(r0 − r + θ)

=
1

r + X(I)
I
− r0

. (50)

Taylor approximate the function c(r) in the origin:

c(r) ≈ 1

2
c′′(0)r2. (51)

Use the approximation in the optimality condition to solve for Equation (46), which proofs

point 2). Note that r(I) is the solution of a quadratic equation. The second solution can

be discarded as it violates İ < 0. Point 1) follows from taking the limit in Equation (46).

Point 3) follows from using the definition of the growth rate. Point 4) follows from taking

the limit in Equation (47).

qed.

Lemma 5. .

Consider the case where limI→0
X(I)
I

= ξ0 < r0. Assume that the cost function is quadratic:

c(r) = 1
2
c′′(0)r2 It follows that:
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1) As I converges to zero, the optimal policy r(I) converges to:

lim
I→0

r(I) = 2(r0 − ξ0). (52)

In particular, if there is no test and trace ξ0 = 0, and

lim
I→0

r(I) = 2r0. (53)

3) The optimal policy r(I) is equal to

r(I) = r0 − X(I)

I
+

√(
r0 − X(I)

I

)2

+ 2
v

c′′(0)
I

(
X(I)

I
+ θ

)
. (54)

3) The implied optimal growth rate g(I) is equal to

g(I) = −

√(
r0 − X(I)

I

)2

+ 2
v

c′′(0)
I

(
X(I)

I
+ θ

)
. (55)

In particular r(I) > 0 for all I .

4) Under the optimal policy r(I) the growth rate converges to

lim
I→0

g(I) = −(r0 − x0). (56)

PROOF:

As above. However, the cost function is quadratic by assumption and not by approxima-

tion.

qed.

Lemma 6. .

The optimal policy r(I) is strictly increasing in I:

r′(I) > 0. (57)

PROOF:
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The optimal policy solves

c′(r(I))− vI
c(r(I)) + vI(r0 − r(I) + θ)

=
1

r(I) + X(I)
I
− r0

. (58)

Differentiate with respect to I to obtain

r′(I) =
v
(
θ + X(I)

I

)
− (c′(r(I))− vI)

d
X(I)
I

dI

−g(r(I), I)c′′(r(I))
. (59)

The expression is positive because v > 0, d
X(I)
I

dI
< 0, g(r(I), I) < 0, c′′(.) > 0, and

c′(r(I))− vI > 0. The last inequality follows from the FOC.

qed.

Point 1 of Proposition 2 follows directly from Proposition 1 and Lemma 6. Point 2 of

Proposition 2 follows from point 1 in Lemma 4 and 5. Point 3 of Proposition 2 follows

directly from Proposition 1 and from point 4 in Lemma 4 and 5.

qed.

A.2.3 Proof Proposition 3

Lemma 7. .

If ξ0 = ∞, the total unit cost of suppression goes to zero as the mass of infectious goes to

zero.

PROOF:
dC
dI

is the unit cost in the optimum. It is smaller or equal to the unit cost under any other

policy that satisfies İ(I) < 0. In particular, take the policy r̃(I) = 0 for all I < I∗/2. It

follows that

0 ≤ c(r(I))(
r(I) + X(I)

I
− r0

)
I

+
v(r0 − r(I) + θ)(
r(I) + X(I)

I
− r0

) ≤ v(r0 + θ)
X(I)
I
− r0

. (60)

Take the limit on both sides to obtain the result.

qed.
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Lemma 8. .

If ξ0 > r0, the economic unit cost of suppression goes zero, and the social unit cost from

the flow of death goes to a constant, as the mass of infectious goes to zero.

PROOF:

Use the same argument as above. In the limit

0 ≤ lim
I→0

c(r(I))(
r(I) + X(I)

I
− r0

)
I

+
v(r0 + θ)

ξ0 − r0
≤ v(r0 + θ)

ξ0 − r0
, (61)

which proves the result.

qed.

Lemma 9. .

If ξ0 > r0, the total cost of suppression is bounded in the optimum.

PROOF:

The total cost of suppression at the optimum is smaller or equal to the total cost of suppres-

sion under any other policy that satisfies İ(I) < 0. In particular, take the policy r̃(I) = 0

for I ≤ I∗/2 and r̃(I) = r0 for I > I∗/2. It follows that

∫ I0

0

c(r(I)) + vI(
r(I) + X(I)

I
− r0

)
I
dI ≤

∫ I∗/2

0

v(r0 + θ)
X(I)
I
− r0

dI +

∫ I0

I∗/2

c(r0) + vIθ

X(I)
dI (62)

Both integrals exist, which gives the result.

qed.

Lemma 10. .

If ξ0 < r0, and the cost function is quadratic, the economic unit cost of suppression goes to

infinity and the social unit cost goes to a constant as the mass of infectious goes to zero.

PROOF:

Take the definition of the total unit cost and take the limit. Use the results from Lemma

5. Assume that 2(r0 − ζ0) << r0 + θ. Intuitively, it means the system is far enough from

the right limit r0 + θ. Note that r close to the limit are at odds with the assumption of a
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quadratic cost:

lim
I→0

c(r(I))(
r(I) + X(I)

I
− r0

)
I

+ lim
I→0

v(r0 − r(I) + θ)(
r(I) + X(I)

I
− r0

) =
c(2(r0 − ξ0))

r0 − ξ0

lim
I→0

1

I
+
v(r0 + θ − 2(r0 − ξ0))

r0 − ξ0

.

(63)

qed.

Lemma 11. .

If ξ0 < r0, and the cost function is quadratic, the total cost of suppression goes to infinity

if the extinction threshold Iε goes to zero, even in the optimum.

PROOF:

Take the expression for the total cost and use the optimality condition to get

C =

∫ I0

Iε

c(r(I)) + vI(r0 − r(I) + θ)(
r(I) + X(I)

I
− r0

)
I

dI =

∫ I0

Iε

c′(r(I))− vI
I

dI (64)

The optimal policy is increasing and larger than zero in zero; therefore

C ≥
∫ I0

Iε

c′(r(0))− vI
I

dI (65)

Take the limit for Iε going to zero to get the result.

qed.

Lemma 7 to 9 prove the statements on case 1 in Proposition 3. Lemma 10 and 11 prove

the statements on case 2.

qed.

A.3 Extensions

A.3.1 Discounting, Vaccine, and Cure

Suppose the planner discounts the future at a positive time-discount rate. Additionally, a

vaccine or cure that immediately end the pandemic arrive stochastically at a positive and
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constant Poisson-rate. Together, the two phenomena give rise to a total discount factor of

i. The planner’s problem is:

min
rt

C(rt) =

∫ ∞
0

e−it
(
c(rt) + vIt(r

0 − rt + θ)
)
dt (66)

such that

İt = (r0 − rt)It −X(It). (67)

Only consider solutions that converge to Iε and İt < 0 for all t. Change variable to I . Note

that

t(I) =

∫ I

I0

1

İ(I)
dI (68)

It follows that

min
r(I)

C(r(I)) =

∫ Iε

I0

e
−i

∫ I
I0

1
İ(Ĩ)

dĨ

(
c(r(I)) + vI(r0 − r(I) + θ)

İ(I)

)
dI. (69)

The solution to this problem is a control function r(I).

Proposition 4. .

1. For every I , the solution r(I) of Problem (69) fulfills

c′(r(I))− vI
c(r(I)) + vI(r0 − r(I) + θ)

+

+
i

(c(r(I)) + vI(r0 − r(I) + θ)(−g(r(I), I))
C(I) =

1

−g(r(I), I)
, (70)

where C(I) denotes the value function and g(r(I), I) the growth rate.

2. The optimal policy for discount rate i, denote it by ri(I), is smaller than the optimal

policy for discount rate i = 0, denoted by ri=0(I) and characterized in Proposition

1.

3. For i close to zero or I0 close to Iε, the optimal policy for discount rate i, ri(I), is

close to the optimal policy for discount rate i = 0, ri=0(I). In the limit when i = 0

or I = Iε the policies are equal.
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4. For i close to zero or I0 close to Iε the solution r(I) of Problem (69) exists.

5. There exist i, X(.), and I0, such that Problem (66) has local minima where preva-

lence converges to a constant steady state level Iss: limt→∞ It = Iss 6= Iε.

6. For i close to zero or I0 close to Iε, the solution r(I) of Problem (69), converging to

Iε, is a global minimum of Problem (66).

7. For i close to zero it holds that optimal social distancing is increasing in prevalence:

r′(I) > 0 for all I ∈ [Iε, I0].

The proposition shows that for small enough discount rates the qualitative results in

Proposition 1 and 2 do not change. This is the relevant case. The pandemic moves fast

such that the relevant time discount rate is the daily or weekly rate. This rate is very low.

Similarly, the daily or weekly probability for an effective cure or mass vaccine is currently

very low. Point 2 shows that quantitatively, social distancing is less intense under discount-

ing. This result is intuitive. Under discounting, costs can be reduced to some extend by

deferring them into the future. In order to do that, suppression needs to progress slower,

which is why r is smaller. The effect is driven by the second summand on the left in Con-

dition (70).

Interestingly, as Point 5 shows, the suppression solution may not be the only local min-

imum of the problem. For some I0, X(I), and i, it does not even exist. One or several

other local minima exist where prevalence converges to some steady-state value Iss. In this

case, the question of which local minimum is the global minimum is a quantitative ques-

tion. In some cases, the global minimum is a path that converges to a steady-state level

of prevalence. This second solution is the mitigation solution discussed in the conclusion.

However, a steady-state level of prevalence is at odds with the initial assumption that the

number of susceptible is approximately constant. As a consequence, mitigation needs to

be studied in the full SIR model, which has already been done in the literature. Therefore,

it is beyond the scope of this paper.

PROOF of Proposition 4:

Point 1:
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Take the derivative of (69) with respect to each r(I):(
(c′(r(I))− vI)

1

İ(I)
+
(
c(r(I)) + vI(r0 − r(I) + θ)

) 1

İ(I)2
I

)
e
−i

∫ I
I0

1
İ(Ĩ)

dĨ
+

+

∫ Iε

I

e
−i

∫ Ĩ
I0

1

İ( ˜̃I)
d ˜̃I
(
− 1

İ(I)2
Ii

)(
c(r(Ĩ)) + vĨ(r0 − r(Ĩ) + θ)

İ(Ĩ)

)
dĨ = 0. (71)

The FOC simplifies to

(c′(r(I))− vI)
1

−İ(I)
−
(
c(r(I)) + vI(r0 − r(I) + θ)

) I

İ(I)2
+

iI

İ(I)2
C(I) = 0, (72)

where C(I) is the value function.

To show that it is a local minimum consider the SOC. Rearrange the FOC to

1(
r − r0 + X(I)

I

)2

I

(
−c(r)− vI(r0 − r + θ) + iC(I) + (c′(r)− vI)

(
r +

X(I)

I
− r0

))
(73)

Take the derivative to get the second order condition. Note that it is equal to a′b + ab′

where a is the first factor above and b is the second factor. If the FOC holds, b is zero.

Also, a is always positive. The sign of the SOC only depends on the sign of b′. b′ =

c′′(r)
(
r + X(I)

I
− r0

)
, because dC(I)

dr(I)
= 0. b′ > 0, therefore, the SOC>0 and the FOC

characterizes a local minimum.

Rewrite the FOC to get

c′(r(I))− vI
c(r(I)) + vI(r0 − r(I) + θ)

+
i

(c(r(I)) + vI(r0 − r(I) + θ)(−g(r(I), I))
C(I) =

1

−g(r(I), I)
,

which is the condition in the proposition.

Point 2:

Rewrite the FOC to

(c′(r)− vI)

(
r +

X(I)

I
− r0

)
− (c(r(I)) + vI(r0 − r + θ)) = −iC(I). (74)
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The right hand side is negative. For ri=0(I) the left hand side is equal to zero. The left hand

side is increasing in r. Therefore, ri(I) < ri=0(I).

Point 3:

C(I) is bounded. If i goes to zero, iC(I) goes to zero and Condition (70) goes to Con-

dition (13). Therefore, ri(I) goes to ri=0(I). Similarly, when I goes to Iε, C(I) goes to

zero. Therefore, iC(I) goes to zero and the same argument applies.

Point 4:

The solution exists if İ < 0 for all I ∈ [Iε, I0]. When I0 is close to Iε or i is close to

0, then ri is close to ri=0. By Proposition 1, the zero discount solution exists. Therefore

İ(ri=0(I)) < 0), which by continuity is also true for all r close to ri=0.

Point 5:

Use the Hamiltonian to solve Problem (66):

c′(rt)− vIt = λtIt (75)

λ̇t = (i+X ′(It) + rt − r0)λt − v(r0 − r + θ) (76)

İt = (r0 − rt)It −X(It) (77)

lim
t→∞

e−itλt = 0 (78)

It follows that

ṙt =
(i+X ′(It)−X(It)/It) (c′(rt)− vIt)− vIt

(
θ + X(I)

I

)
c′′(rt)

(79)

İt = (r0 − rt)It −X(It) (80)

The two equations give two loci. İ is zero if

r = r0 −X(I)/I. (81)
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ṙ is zero if

c′(r) =
vI(θ + i+X ′(I))

i− (X(It)/It −X ′(It))
. (82)

One or several steady states with positive I may exist, dependent on if the above system

has a solution, i.e., the two loci cross at least once. Choose i and X(.) such that the two

loci cross at least once and I0 equal to the corresponding steady-state prevalence Iss.

Point 6:

Choose i small enough such that for all I ∈ [Iε, I0] it holds that i−(X(It)/It−X ′(It)) <
0. Note that such an i > 0 exists because (X(I)/I − X ′(I) > 0 for all I > 0. It follows

that ṙt < 0 for all t. The only path fulfilling the boundary condition of the Hamiltonian

converges to Iε.

If a saddle path from Iε to the steady state Iss exists, denote by Css(Iε) the value func-

tion to reach it. It is larger than zero. Denote by Cε(I0) the value function of reaching Iε
from I0. Point 4 shows that it exists. Cε(I0) goes to zero if I0 goes to Iε. Choose I0 low

enough such that Css(Iε) > Cε(I0).

Point 7:

The total cost under the optimal policy is

C(I) =

∫ Iε

I

e
−i

∫ Ĩ
I

1

İ( ˜̃I)
d ˜̃I

(
c(r(Ĩ)) + vĨ(r0 − r(Ĩ) + θ)

İ(Ĩ)

)
dĨ. (83)

The derivative is

C ′(I) =
c(r(I) + vI(r0 − r(I) + θ)

−İ(I)
−

− i

−İ(I)

∫ Iε

I

e
−i

∫ Ĩ
I

1

İ( ˜̃I)
d ˜̃I

(
c(r(Ĩ)) + vĨ(r0 − r(Ĩ) + θ)

İ(Ĩ)

)
dĨ, (84)
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which can be written as

C ′(I) =
c(r(I)) + vI(r0 − r(I) + θ)

−İ(I)
− i

−İ(I)
C(I). (85)

Together with Condition (70) it gives

C ′(I) =
c′(r(I))− vI

I
. (86)

Differentiate the Condition (70) with respect to I and use the result for C ′(I) to get

r′ =
v
(
θ + X(I)

I

)
+ c′(r)−vI

I

(
X(I)
I
−X ′(I)− i

)
(
r + X(I)

I
− r0

)
c′′(r)

. (87)

In general, it is possible that r′ is negative. However, if i is small enough r′ is always posi-

tive. Choose i small enough such that for all I ∈ [Iε, I0] it holds that X(I)/I−X ′(I)− i >
0. Note that such an i > 0 exists, because (X(I)/I −X ′(I)) > 0 for all I > 0. Also, note

that, by Condition 75, c′(r)− vI > 0.

qed.

A.3.2 Endogenous Choice of Detection

The function X̃(I, z) is the detection function discussed in Section A.1.1. I is the number

of undetected cases and z is the amount of resources spend for detection. The planner’s

problem is

min
r(.),z(.)

C(r(.), z(.)) =

∫ 0

I0

(c(r(I)) + z(I) + vI(r0 − r(I) + θ))
1

İ(I)
dI, (88)

where

İ(I) = I(r0 − r(I)− X̃(I, z(I)). (89)

Proposition 5. .
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For each level of prevalence I , the optimal policy {r(I), z(I)} solves

c′(r)− vI
c(r) + z + vI(r0 − r + θ)

=
1

r + X̃(I,z)
I
− r0

, (90)

I
∂X̃(I,z)
∂z

c(r) + z + vI(r0 − r + θ)
=

1

r + X̃(I,z)
I
− r0

. (91)

PROOF:

As for Proposition 1 in Section A.2.1.
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