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Abstract. Econometric land use models study determinants of land-use-shares of
different classes:“agriculture”, “forest”, “urban” and “other” for example. Land-use-
shares have a compositional nature as well as an important spatial dimension. We
compare two compositional regression models with a spatial autoregressive nature
in the framework of land use. We study the impact of the choice of coordinate
space and prove that a choice of coordinate representation does not have any impact
on the parameters in the simplex as long as we do not impose further restrictions.
We discuss parameters interpretation taking into account the non linear structure as
well as the spatial dimension. In order to assess the explanatory variables impact,
we compute and interpret the semi-elasticities of the shares with respect to the
explanatory variables and the spatial impact summary measures.

Keywords. spatial error regression models, spatial lag regression models, land-
use-share model, simplicial regression, semi-elasticities, compositional data.

1 Introduction

Land use and land use changes are among the main human pressures on the environ-
ment in terms of biodiversity loss, carbon cycle and water quality [Foley et al., 2005,
Pielke, 2005, Lal, 2004, Verburg et al., 2013]. Given the environmental impacts and
societal issues associated to land use, numerous empirical land use models have
been developed among different disciplines. The aim of these models is to sup-
port future land-use planning and environmental impact assessments of land-use
change. All these models have mainly two different research focuses: explain-
ing the underlying process behind land use or predicting spatial land use pat-
terns or dynamics. The distinction between these two approaches is often not easy
[Shmueli, 2010]. In summary, the purpose of econometric models, mostly devel-
oped by economists, is to test theoretical results and identify the economic processes
behind observed land use changes and patterns. This leads to the search for par-
simonious models, i.e. models with limited number of explanatory variables sug-
gested by the theoretical model. Statisticians, geographers and other researchers
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outside of economics typically have focused on prediction models of land use
[Munroe and Müller, 2007, Veldkamp and Lambin, 2001]. These models are useful
for prediction of land use patterns but they provide little insight into the underlying
economic and other processes that generate these patterns. There is clearly no land
use model which is preferable in absolute terms. The choice of the best model is
largely dependent on the research question, data availability and calculation costs.

In terms of methodology, econometric land use studies can be classified into
different groups depending on the type of data used (aggregated data vs. micro-
geographic data), the type of model (spatially explicit vs. aspatial model) and the
land use categories under consideration (rural vs. urban, agriculture vs. forest, and
developed vs. non-developed).

Among land use models, we restrict attention to econometric formulations based
on simultaneous spatial autoregressive models (SAR) because they are common
in the econometric land use literature (see for instance [LeSage and Pace, 2009])
and easy to fit. There are alternative approaches based on conditional autoregres-
sive models such as [Pirzamanbein et al., 2018] and [Leininger et al., 2013] but they
require MCMC techniques, see [Nguyen et al., 2019] for further details.

Our starting point is the application to land use in [Chakir and Lungarska, 2017]
and [Lungarska and Chakir, 2018] which is based on a spatial error model (SEM)
in alr coordinates. The objective, using [Nguyen et al., 2019], is to propose and
compare alternative models based on alternative coordinate systems (ilr instead of
alr) and alternative model formulations in the same family (LAG instead of SEM
as we will explain later on). Using the same dataset, we estimate both models and
question model specification and interpretation. The two approaches differ in sev-
eral important dimensions. First of all, the first approach specifies the model in an
alr coordinate space whereas the second one uses an ilr coordinate space, see e.g.
[Pawlowsky-Glahn et al., 2015] for the definition of alr and ilr transformations. Sec-
ondly the first approach uses a spatial error model formulation for each coordinate
separately while the second approach uses a joint multivariate spatial lag model. Fi-
nally, the first approach performs a separate maximum likelihood for each coordinate
whereas the second one uses the simultaneous Spatial two stage least squares method
(acronym S2SLS) which will be presented in Section 2. This confrontation raises
many questions: in particular is it possible to write a simplex formulation of the first
model ? and since parameters of the models are linked to a particular transformation,
what are the links between parameters associated to different transformations ? For
models using ilr coordinates, the link between parameters in the simplex space and
in coordinate space is well known ([Chen et al., 2017]). We extend these formulas
to models using alr coordinates.

Section 3.2 is devoted to the interpretation of model parameters. The first ap-
proach uses plots of the fitted shares as a function of each explanatory variable.
[Morais and Thomas-Agnan, 2020] prove that semi-elascities are natural tools for
the interpretation of model parameters in simplicial regression models with a com-
positional dependent variable because they are derived from simplicial derivatives
and because they describe variations in the simplex rather than in coordinate space.
However their framework does not encompass the case of spatial models. We thus
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derive an approximation formula for semi-elasticities in the present models which
is illustrated later in Section 4.3. In Section 4, after presenting the data set and
paying attention to the treatment of missing values according to compositional data
analysis (CoDa) principles, we analyze it with the different models and propose a
comparison.

2 Multivariate SAR models

In this section, after recalling some classical facts about compositional data analysis,
we recall the models from [Chakir and Lungarska, 2017] and [Nguyen et al., 2019]
with a common notation and refer to the first one as to the UniSEM model and to
the second one as to the MultiLAG model.

2.1 Notations

In the Compositional Data analysis (CoDa) literature, a �-composition u is a vector
with positive components conveying relative information which can be represented
by an element of the so-called simplex space S� defined by [Aitchison, 1986]:

S� =

{
u = (D1, . . . , D�)) : D< > 0, < = 1, ..., �;

�∑
<=1

D< = 1

}
,

where ) is the transpose operator. S� can be equipped with a vector structure and
the compositional/Aitchison inner product.

The analysis of compositional data makes use of some classical log-ratio trans-
formations which are the additive log-ratio (alr), the centered log-ratio (clr) and
the isometric log-ratio (ilr) transformations. In this paper, we will use alr and ilr
transformations.
For the reference level �, let us recall that the alr transformation u∗ of a vector u in
S� is defined by:

u∗ = alr� (u) = (ln(D1/D�), . . . , ln(D�−1/D�))

and its inverse transformation alr−1
� is given by:

u = alr−1
� (u∗) = C(exp(D∗1), . . . , exp(D∗�−1), 1)

where C(.) denotes the closure operation defined by

C(w) =
(

F1∑�
<=1 F<

, · · · , F�∑�
<=1 F<

)
,



4

for any vector w ∈ R�+ . A similar definition can be given changing the reference
level � into any other level < = 1, . . . , � − 1.

A given additive log-ratio transformation for reference level < = 1, . . . , � can
also be expressed using a (� − 1) ×� matrix F< by alr< (u) = F< ln(u) for a vector
u ∈ S� . For example, in the case < = �, F� = [I�−1 − j�−1] where j�−1 denotes
the (� − 1)-dimensional column vector of ones and I�−1 is the (� − 1) × (� − 1)
identity matrix.

Similarly, in order to define an ilr transformation, let V be a � × (� − 1)
contrast matrix associated to a given orthonormal basis (e1, · · · , e�−1) of S� by
V = clr(e1, · · · , e�−1), where clr is understood columnwise and where 6(u) =
(∏�

8=1 D8)1/� is the geometric mean of the components of u ∈ S�:

clr(u) =
(
ln

D<

6(u)

)
<=1,...,�

.

For each such matrix V, an isometric log-ratio transformation (ilr) is then defined
by:

u∗ = ilr+ (u) = V) ln(u)

where the logarithm of u ∈ S� is understood componentwise. Note that we use the
same star notation throughout the paper to indicate either an ilr or an alr transformed
vector. It is to emphasize the similarity of treatment and the meaning will be clear
from the context. The inverse transformation is given by:

u = ilr−1
+ (u∗) = C(exp(Vu∗)).

Moreover, the compositional product of a matrix by a composition vector is
denoted by �. It is defined for a � × � matrix B = (1;<), ;, < = 1, . . . � such that
Bj� = 000� and B) j� = 000� (with 0� a �-dimensional vector of zeros) and for a
vector u ∈ S� by:

B � u = C
(
�∏
<=1

D11<
< , · · · ,

�∏
<=1

D1�<<

))
.

As detailed in [Pawlowsky-Glahn et al., 2015], the previous expression comes from
the usual product matrix definition in the coordinate space for an ilr+ transformation:
B � u = ilr−1

+ (B∗ilr+ (u)) where B∗ = V)BV. We also have

B � u = ilr−1
+

(
V)B ln(u)

)
.

Note that this matrix product in the simplex does not depend on the particular choice
of contrast matrix V. This product also verifies the following property (see the proof
in Appendix 6.1):

B � u = alr−1
< (F<B ln(u)) .
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In what follows, the data we consider is made of samples of composition vectors
and is stored in a =×� matrix Y = (Y8;), 8 = 1, . . . , =, ; = 1, . . . , �. We propose to
generalize the matrix product to a =×� matrix Y of composition vectors multiplied
by a � × � matrix B (such that Bj� = 000� and B) j� = 000�) by applying the usual
matrix product to each row of Y. We have

Y � B = ilr−1
+ (ln(Y)BV) = alr−1

<

(
ln(Y)BF)<

)
. (1)

For a = × � matrix of compositions Y, and a = × = weight matrix W,
[Nguyen et al., 2019] define the following operation ·4 as a map from the cartesian
product of simplex spaces (S�)= to itself specified by

W ·4Y = ilr−1
+ (Wilr+ (Y)) = ilr−1

+ (W ln(Y)V). (2)

The operation W ·4Y defines a = × � matrix of compositions whose components are
weighted geometric means of the Y values weighted by the W weights.

2.2 The MultiLAG model

In [Nguyen et al., 2019], the authors propose to define the MultiLAG model for
a simplex-valued dependent variable. In the present paper, we consider a simpler
version of this model which involves in each ilr coordinate equation spatial lags of
the other coordinates but not the other coordinates themselves.

Let us consider a sample of size =. Let Y be a = × � matrix of dependent
compositional vectors and X be a = ×  matrix of classical (non-compositional)
explanatory variables. An extension to models including compositional explanatory
variables would be straightforward with some adjustments for the interpretation
section. LetW be a =×= spatial weight matrix specifying the neighborhood structure.
For = spatial locations, the elements F8 9 of the matrix W are measures of proximity
between locations 8 and 9 . The model can be written in the simplex as follows

Y = (W ·4Y) � R ⊕ X � VVV ⊕ nnn, (3)

where R is a � × � matrix of parameters such that Rj� = 000� and R) j� = 000� ,
VVV is a  × � matrix of parameters. nnn is a = × � matrix of compositional errors
satisfying the following conditions. Denoting by nnn .; the columns of nnn and by nnn 8. its
rows, we assume that E(nnn∗

8.
nnn∗
9.
) ) = ΣΣΣ∗ if individuals 8 and 9 are equal and 000 if they

are different, where ΣΣΣ∗ is a (� − 1) × (� − 1) covariance matrix. Note that the sum
in the simplex sense (⊕) over individuals of the rows of the matrix nnn is the neutral
element of the simplex.

Following [Nguyen et al., 2019], the model can be written in ilr coordinate space
with a coordinate-wise formulation:
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Y∗.; =
∑

<∈(WY∗
;

R∗<;WY∗.< + X(X
;
VVV∗
(X
;

+ nnn∗.; , ; = 1, . . . , � − 1. (4)

where R∗ and VVV∗ are the parameters of the model in coordinate space and where Y∗
.;

and nnn∗
.;
denote respectively ilr+ (Y.;) and ilr+ (nnn .;) for any given contrast matrix V.

We allow for using a different set of explanatory variables in each equation. For this
reason, (Y∗

;
, (X

;
, (WY∗

;
denote the sets of indices of the variables which appear in

the ;Cℎ equation for Y∗, X, WY∗ respectively.
It is important to note that R∗ and VVV∗ depend upon the specific choice of V despite

the fact that we do not indicate it in the notation for simplification purposes. The
relation between R∗ and R, and between VVV∗ and VVV will be explored in Section 3.
This model can be easily estimated via the S2SLS method in a multivariate fashion.
Two stage least squares also called instrumental variables regression is popular in
econometrics when an explanatory variable of interest is correlated with the error
term and it has been adapted to the spatial models by [Kelejian and Prucha, 1998].
Ignoring the dependence between coordinates and performing a univariate estimation
coordinate by coordinate would result in the same parameters estimates but incorrect
standard errors estimates.

In view of Section 4, we need another formulation of the MultiLAG spatial model
in ilr coordinate space with a matrix formulation as in [Kelejian and Prucha, 2004]
since [Nguyen et al., 2019] only give a coordinatewise formulation. Let Y∗ be the
=×(�−1) matrix whose columns are the ilr coordinatesY∗

.;
. The matrix formulation

of model (4) is given by

Y∗ = WY∗R∗ +
[
X(X

1
VVV∗
(X

1
. . . X(X

�−1
VVV∗
(X
�−1

]
+ nnn∗, (5)

where [�1 . . . �: ] is a notation for a block matrix with blocks �1 through �: .
In order to be able to compute fitted values and marginal effects, we also need a
formulation of the so-called reduced formof themodel: it is an equivalent formulation
of the model where the dependent variable appears only on the left hand side of the
equation. It is possible to do so using a vectorized formulation. For a matrix A, let
vec2A be the column vectorization obtained by stacking the columns of A.

Theorem 0.1 The reduced form of model (4) expressed in vectorized formulation is
given by

vec2Y∗ =
(
I=(�−1) − ((R∗)) ⊗W)

)−1 [
X(X

1
VVV∗
(X

1
. . . X(X

�−1
VVV∗
(X
�−1

])
+ vec2nnn∗ (6)

where ⊗ denotes the Kronecker product of matrices.

The matrix A(W) = (I=(�−1) − ((R∗)) ⊗ W))−1 is called the filter matrix. The
proofs of equation (5) and Theorem 0.1 are in the appendix.
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2.3 The UniSEM model

Even though [Chakir and Lungarska, 2017] do not use the compositional data anal-
ysis formalism, their model can be formulated in a similar fashion as that of
[Nguyen et al., 2019]. Indeed if we use the same star notation for denoting now
an alr transformation instead of an ilr one, it is easy to see that the specification (3)
in [Chakir and Lungarska, 2017] can be reformulated as

Y∗
.;

= X(X
;
VVV∗
(X
;

+ nnn∗
.;

nnn∗
.;

=
∑
<∈(WY∗

;
R∗
<;

Wnnn∗.< + aaa∗.;
(7)

with the restriction that the R∗ matrix is diagonal and that the alr coordinates are
independent (i.e. the errors aaa∗

.;
are independent). Therefore the reduced form of the

model can be derived as in Theorem 0.1. It is also easy to see that we can reformulate
this model in the simplex as {

Y = X � VVV ⊕ nnn
nnn = (W ·4nnn) � R ⊕ aaa

. (8)

The motivation for returning to the simplex is twofold. In this work, we need to
compare models which are using different alr and ilr transformations and correspond
to different coordinate spaces: only the simplex parameters are comparable.Moreover
[Morais and Thomas-Agnan, 2020] advocate the interpretation of parameters in the
simplex as being more informative. Model 8 will be called the MultiSEM model
when no restriction is made on the R∗ matrix and UniSEM with the diagonality
restriction as in [Chakir and Lungarska, 2017].

2.4 Summary of models

We just recalled the definition of the MultiLAG and the UniSEM models which are
solutions for defining a compositional dependent variable regressionmodel with spa-
tial dependence. The MultiLAG takes into account the possible dependence between
coordinates. The submodel of MultiLAG obtained by constraining the coordinates
to be independent as in the UniSEM will be called the UniLAG. For the same type
of data, an ordinary regression model for compositional dependent variable without
spatial dependence could also be considered and we will later refer to it as the OLM
model for ordinary linear model (see [Filzmoser et al., 2018]). Fitting the UniLAG
or the UniSEM just requires code for spatial univariate regression models as in the
R package spdep [Bivand and Wong, 2018]. Fitting the MultiLAG with the S2SLS
method just requires code for multivariate regression such as the R function lm but
we keep the implementation of MultiSEM for future work because of the lack of
specific code for this case.
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3 Model specification and interpretation

3.1 Influence of the transformation

The impact of the coordinate system on the model is crucial for compositional
data: indeed a model formulation involving some restrictions on the parameters
which are dependent upon a particular choice of coordinate system is inappropri-
ate since it means that the model does not have an intrinsic simplex formulation.
[Chakir and Lungarska, 2017] specify the model in coordinate space after choosing
a particular alr transformation. We have shown in Section 2 that this model can
also be formulated in the simplex. [Nguyen et al., 2019] first specify the model in
coordinate space with a particular ilr transformation, but then show that the model
can also be specified in the simplex. If the formulation of a model is done in the
simplex, it is independent of any choice of transformation. A natural question is then
to establish the relationships between parameters in the simplex and parameters in
coordinate space.

[Nguyen et al., 2019] show that the relationship between the simplex parameters
of (3) R and VVV and the coordinate parameters of (4) R∗ and VVV∗ is then{

R = VR∗V)

VVV = ilr+ −1 (VVV∗)
(9)

which can also be written as V)R = R∗V) .
Consider now the UniSEM model specified by (8). Let us derive the correspon-

dence between the parameters in alr space and in the simplex. The following theorem
establishes the equivalent of (9) for alr. Our statements and proofs below concern
the alr� transformations but are easily generalized to any alr.

Theorem 0.2 If R and VVV are the simplex parameters of model (8) and if alr� (R) =
R∗ and alr� (VVV) = VVV∗, then {

R = K�R∗F�
VVV = alr�−1 (VVV∗)

(10)

where F� is the matrix associated to the alr transformation alr� and K� is defined
by

K� =

[
I�−1 − j�−1j)

�−1/�
−j)
�−1/�

]
.

Proof. Let us start with model (3) and apply the alr� transformation to both sides of
the equation. Using equation (1), it is easy to see that

alr� (R � W ·4Y ⊕ X � VVV ⊕ nnn) = F�R ln(W ·4Y) + Xalr� (VVV) + alr� (nnn) (11)

Comparing to (11) the right hand side of (4) where star would mean the alr� trans-
formation, we get that alr� (VVV) corresponds to VVV∗(which proves the second part of
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(10)) and that F�R = R∗F� . Then lemma 0.1 in Appendix 6.3 allows to show that
F�R = R∗F� is equivalent to the first equation of (10).

Note that these relationships between simplex-space parameters and coordinate-
space parameters induce the same relationships between their estimated counterparts
for the MultiLAG model when estimated by S2SLS (see [Nguyen et al., 2019]).
It also holds for the UniSEM estimated by maximum likelihood since maximum
likelihood is preserved by a one to one transformation. Finally, we see that if we
specify the model in the simplex, the choice of a particular transformation for
estimation does not change the final result in the simplex. However a restriction like
R∗ is diagonal, used in [Chakir and Lungarska, 2017], in a given coordinate space
(ilr or alr) does not imply that the same is true in another coordinate space. In this
sense one can say that it is not a simplex assumption.

Moreover another issue with the choice of coordinate system is the relationships
between the mean and variance parameters associated to each system. For the case of
two ilr transformations, the result can be found in [Pawlowsky-Glahn et al., 2015].
Let us derive the same type of relationship for the case of two alr transformations
and for the case of an alr and an ilr transformation.

Theorem 0.3 If we assume that 0;A� (X) ∼ NS� (`̀̀alr� ,ΣΣΣalr� ), and ifV is a contrast
matrix, then the means and variances of 8;A+ (X) and alr 9 (X) are related as follows
to those of alr� (X)

`̀̀ ilrV = V)K� `̀̀alr� (12)
ΣΣΣilrV = V)K�ΣΣΣalr� (V)K�)) (13)
`̀̀alr 9 = F 9K� `̀̀alr� (14)

ΣΣΣalr 9 = F 9K�ΣΣΣalr� (F 9K�)) (15)

Proof.We recall that alr 9 (X) = F 9 ln(X) for 9 = 1, . . . , � and ilr+ (X) = V) ln(X).
Let us prove that

ilr+ (X) = V)K�alr� (X) (16)
alr 9 (-) = F 9K�alr� (X) (17)

It is easy to prove that F�K� = V)V = I�−1 and K�F� = K 9F 9 = VV) . Thus,

ilr+ (X) = V)Vilr+ (X)
= V)VV) ln(X)
= V)K�F� ln(X)
= V)K�alr� (X)

and
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alr 9 (X) = F 9K 9alr 9 (X)
= F 9K 9F 9 ln(X)
= F 9K�F� ln(X)
= F 9K�alr� (X)

Equations (12) and (13) (resp. (14) and (15)) are then directly derived from (16)
(resp. (17)).

This theorem implies that ifΣalr� is diagonal, thenΣilr+ is not necessarily diagonal
and Σalr 9 neither implying that this restriction is not simplex compatible.

3.2 Model interpretation

Concerning the impact of explanatory variables, we first focus on looking at how
the fitted shares in the simplex depend upon the values of a particular explanatory
variable. For the UniSEM model, the question is quite simple: the fitted values in
coordinate space are straightforward to compute and their inverse alr transformation
yield the fitted shares.
For the MultiLAG model, thanks to Theorem 0.1, it is first easy to derive the fitted
values of Y∗ in coordinate space by substituting the parameters by their estimates
and we get

vec2Ŷ∗ =
(
I=(�−1) − ((R̂∗)) ⊗W)

)−1


X(1 V̂VV
∗
1

.

X(�−1 V̂VV
∗
�−1

 (18)

Applying the inverse ilr transformation to (18), we can compute the fitted shares in
the simplex and use them to illustrate the impact of the covariates by a graph as
follows. Since this investigation is relative to a single variable at a time, we can drop
the variable index in this paragraph to simplify the derivation. With this notation,
for a given covariate X, G 9 denotes the value of X at location 9 .

For a given spatial unit and a given covariate, we imagine changing the value of
that particular covariate at that particular location holding everything else constant.
We denote by Y8<(G 9 + X) the value of the component < of the share vector Y
for location 8 obtained by increasing by X the value of X at location 9 (note that
we only indicate the location that changes). We then compute the new fitted shares
Ŷ8< (G 9 + X) for a grid of points G 9 + X in the range of the covariate of interest. Finally
we draw a scatterplot of the fitted shares as a function of the grid points. Some
Figures in Section 4 illustrate this approach.

A further step in this investigation implies computing the semi-elasticities in the
simplex as in [Morais and Thomas-Agnan, 2020]. This comprises two issues. The
first issue is the computation of spatial impacts in coordinate space and the second
one the evaluation of semi-elasticities in the simplex.
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For the first issue, indeed parameters in a simultaneous spatial autoregressive model
cannot be interpreted as in ordinary linear models due to the non-linear filter matrix
in the expected value of the dependent variable (see [LeSage and Pace, 2009]). We
obtain the impacts in coordinate space thanks to the reduced form of the model (6).
For a given explanatory variable X and a given component <, the impact on Y∗

8<

of changing X at location 9 is defined by mEY∗
8<

mG 9
. If 08<: 9< (W) denote the generic

element of �(W), for location 8, 9 , component <, we have

mEY∗
8<

mG 9
= VVV∗<08<: 9<. (19)

If a variable X does not appear in the equation of coordinate <, then set the corre-
sponding parameter to zero (this will not happen in our application). The estimated
impacts are then obtained by substituting the parameters by their estimates.
For the second issue, the formulas in [Morais and Thomas-Agnan, 2020] cannot be
applied directly due to the fact that the UniSEM and MultiLAG models involve
this non-linear filter. Extensions of [Morais and Thomas-Agnan, 2020] adapted to
the presence of a spatial filter can be found in [Thomas-Agnan et al., 2020]. In the
present work, we propose an approximation of these semi-elasticities as follows.
[Morais and Thomas-Agnan, 2020] show that the effect of increasing a classical
explanatory variable X by an additive amount X on unit 9 has a multiplicative impact
on the components of the dependent vector (Y81 . . .Y8�) (for statistical unit 8):

EY8< (G 9 + X) ∼ EY8<(G 9 )
(
1 + se8 9;<

)
, (20)

where
se8 9;< =

m lnEY8<
mG 9

(G 9 )

is classically called semi-elasticity of the <th component Y8< (< = 1, . . . , � and
8, 9 = 1, . . . , =) with respect to X. [Morais and Thomas-Agnan, 2020] show that in
the non spatial model these semi-elasticities depend on the share vector at the point
of interest but not on the location at which we increase the explanatory variable.
Formula (20) yields a way to estimate these approximate semi-elasticities using a
finite difference approach for a small value of X and using fitted shares Ŷ8< (G 9 + X).
For each data point we obtain a full structure of size =2 (�−1) of semi-elasticities. To
summarize the spatial impacts, [LeSage and Pace, 2009] propose summarymeasures
called the direct, indirect and total impacts. Here, one first needs to re-arrange the
semi-elasticities vectors thus computed at the individual level into � matrices of
size = × = (one matrix of semi-elasticities per component). For each component <,
the average of the diagonal terms will represent the average direct impact (acronym
ADI) ADI< =

∑=
8=1 se88;</=. The average indirect impact (acronym AII) should be

the average of the sum of the extra-diagonal terms. In order to alleviate its evaluation,
we propose to restrict the sum to neighboring points as follows:
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AII< =
1
=

=∑
8=1

∑
9≠8

se8 9;< ∼
1
=

=∑
8=1

∑
9≠8, 9∈# (8)

se8 9;<, (21)

where # (8) is the set of first order neighbors of a given location 8. Because this
averaging will hide some variability, we propose to introduce the local contributions
to the direct impact and indirect impact respectively as se88;< and

∑
9≠8, 9∈# (8) se8 9;<

(see Section 4 for their illustration).

4 Data and results

4.1 Land use data

The dataset and descriptive statistics of the variables used in this study are pre-
sented in Table 1. More detail can be found in the supplementary material available
online (seehttp://www.thibault.laurent.free.fr/code/land_use_spat_
coda/). Land use data are collected from the Corine Land Cover (CLC) databases
for France at the scale of 100m × 100m (1 ha) for the year 2000 (except for the Paris
area). Land uses are grouped into four categories: “agriculture”, “forest”, “urban”
and “other” where “agriculture” is aggregated from crops and pastures. We calculate
the land use shares for each grid cell of 8 km × 8 km. Land use shares are expressed
as the sum of the land use classes in hectares divided by the surface of the grid cell.
We using the simple zero replacement strategy suggested by [Aitchison, 1986] and
fully described in [Martín-Fernández et al., 2003]. We choose to use a weight matrix
W based on first order queen contiguity: i.e. two polygons are neighbors if they share
a common side or a common vertex.

According to the economic literature, standard drivers of land use allocation,
consistent with the von Thünen and Ricardian conceptual models, are the measures
of the net return to each use and biophysical suitability. However, net returns are
not easily observable for all land uses and one solution is to use proxies. For ex-
ample, due to data limitations, a measure of the average net return to urban land
is difficult to construct. An alternative is to use a variable that proxies for these
returns. One measure frequently used in land use share models is population density,
which indicates the pressures for urbanization. [Chakir and Lungarska, 2017] com-
pared three possible proxies of agricultural land rent: agricultural land price, farm
income and the land shadow price. These comparisons are made based on various
criteria including: consistency with the theoretical hypothesis, prediction quality
and specification tests. They conclude that shadow price proxy provides stable and
intuitive results. In this paper, we consider the same explanatory variables as in
[Lungarska and Chakir, 2018] but we replace the spatial Durbin error model by the
spatial error model because the lagged explanatory variables of the spatial Durbin
error model resulted in collinearity issues with the S2SLS method.
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Following [Pawlowsky-Glahn and Egozcue, 2011], to guide our choice of ilr
transformation (contrast matrix), we look at the biplot associated with the first
two principal components (see the supplementary material available online).

The first two principal axes explain 94% of the variability in the data. On the first
one, the land use “other” is opposed to the rest of the land uses while on the second
one, the land use “forest” is opposed to “urban”. We thus propose the following
contrast matrix: the first ilr coordinate opposes the land use “other” to the geometric
mean of the other land uses while the second opposes “agricultural” to the geometric
mean of “forest” and “urban” and the third “forest” to the “urban” land use.

Description mean St.dev. min q.25% q.50% q.75% max
Land use
shares
agriculture Share of crops and pastures 0.60 0.29 0 0.39 0.67 0.85 1.00
forest Share of forest 0.26 0.22 0 0.07 0.20 0.41 1.00
other Share of other uses 0.09 0.17 0 0.00 0.01 0.07 1.00
urban Share of urban 0.05 0.09 0 0.01 0.02 0.05 0.99
Explanatory
variables
Shadow Price Agricultural land shadow price 0.55 0.22 0.00 0.40 0.48 0.68 1.11

(AROPAj, spatialized) (ke/ha)
Forest revenue Forest revenues 137.68 66.51 28.93 85.72 127.75 187.99 308.04

(FFSM++, regional) (e/ha)
Pop. Income Population revenues 12.31 3.24 0.00 10.38 11.97 13.98 41.80

(INSEE, commune)
(ke/year/household)

Pop. density Population density 5.43 2.27 2.75 4.48 4.90 5.58 58.72
(INSEE, "carottage")
(household/ha)

slope Terrain average slope 4.33 6.15 0.00 1.14 2.10 4.23 47.72
(GTOPO30) (%)

Texture Soil’s texture classes 1 2 3 4
Number of cells 1242 4820 3120 579

Table 1: Descriptive statistics for land use shares and for the explanatory variables.

4.2 Model results

In this section, we fit the UniSEMmodel and theMultiLAGmodel, but also consider
two other models based on the same variables introduced in Section 2.4: the ordinary
linear model (OLM) and the UniLAG model which can both be fit separately for
each equation by maximum likelihood.

Table 2 shows the results of the OLM and the MultiLAG regression models, the
most simple and the most complex of our models. Results for the other models can
be found in the supplementary material. Most explanatory variables are significant
for the three ilr coordinates. The Moran test (see for instance [Cliff and Ord, 1981])
on the OLM residuals is highly significant motivating the need for a spatial model.
Most of the spatial autocorrelation parameters of R∗ are significant too. However
it is not possible to directly compare the parameters of the OLM with those of the
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MultiLAG due to the spatial filter (see [LeSage and Pace, 2009]) and the parameters
of the MultiLAG with those of the UniSEM due to the fact that they use different
coordinate spaces. Hence the need to go back to the simplex.

Table 2: Results of the OLM vs. MultiLAG

OLM in the ILR space MultiLAG in the ILR space
ilr1 ilr2 ilr3 ilr1 ilr2 ilr3

Intercept -0.369∗ 3.582∗∗∗ -6.353∗∗∗ 1.498∗∗∗ 2.499∗∗∗ -4.657∗∗∗
(0.168) (0.089) (0.13) (0.318) (0.18) (0.271)

shadow price 0.137 0.515∗∗∗ 0.755∗∗∗ -0.117 0.09 0.214∗
(0.138) (0.073) (0.107) (0.121) (0.069) (0.103)

forest revenues -0.008∗∗∗ 0 0.001∗∗∗ -0.001∗∗ 0 0.001∗∗∗
(0) (0) (0) (0) (0) (0)

population density 0.121∗∗∗ -0.138∗∗∗ 0.279∗∗∗ 0.018 -0.119∗∗∗ 0.223∗∗∗
(0.013) (0.007) (0.01) (0.013) (0.007) (0.011)

population income -0.137∗∗∗ -0.117∗∗∗ 0.191∗∗∗ -0.096∗∗∗ -0.074∗∗∗ 0.158∗∗∗
(0.009) (0.005) (0.007) (0.013) (0.007) (0.011)

slope 0.203∗∗∗ -0.097∗∗∗ -0.124∗∗∗ 0.072∗∗∗ -0.029∗∗∗ -0.081∗∗∗
(0.005) (0.003) (0.004) (0.008) (0.005) (0.007)

texture 2 -0.737∗∗∗ 0.815∗∗∗ 0.743∗∗∗ -0.442∗∗∗ 0.242∗∗∗ 0.344∗∗∗
(0.086) (0.045) (0.066) (0.085) (0.048) (0.073)

texture 3 -1.562∗∗∗ 0.944∗∗∗ 0.691∗∗∗ -0.71∗∗∗ 0.347∗∗∗ 0.369∗∗∗
(0.092) (0.049) (0.071) (0.092) (0.052) (0.078)

texture 4 -1.81∗∗∗ 1.324∗∗∗ 0.405∗∗∗ -0.846∗∗∗ 0.666∗∗∗ 0.122
(0.136) (0.072) (0.105) (0.123) (0.07) (0.105)

R∗1. - - - 0.784∗∗∗ 0.052∗ 0.14∗∗∗
(0.037) (0.021) (0.032)

R∗2. - - - -0.031 0.677∗∗∗ 0.275∗∗∗
(0.066) (0.037) (0.056)

R∗3. - - - 0.229∗∗∗ 0.178∗∗∗ 0.44∗∗∗
(0.044) (0.025) (0.038)

ΣΣΣ∗1. 7.216 -0.233 -0.544 4.461 0.158 -0.668
ΣΣΣ∗2. -0.233 2.002 -0.075 0.158 1.434 -0.481
ΣΣΣ∗3. -0.544 -0.075 4.312 -0.668 -0.481 3.238
Nb. Obs. 9760 9760 9760 9760 9760 9760
Moran’s � test 76.02∗∗∗ 64.29∗∗∗ 70.14∗∗∗ - - -
LMlag 5834∗∗∗ 4008∗∗∗ 4448∗∗∗ - - -

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Following [Glahn et al., 2012], we propose to compare the fit of these models
using a mean square error measure built with the Aitchison geometry (norm denoted
by ‖ . ‖�):

MSE =
1
=

=∑
8=1
‖ Ŷ8 	 Y8 ‖2�=

1
=

=∑
8=1
‖ ilr+ (Ŷ8) − ilr+ (Y8) ‖2, (22)
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for any contrast matrix V. Note that since the goal is to evaluate a prediction ability
of the model, instead of using a fitted value understood as an estimate of E(Y8), we
rather use a prediction of Y8 . There are several ways to compute predicted values in
spatial models, therefore we indicate which formula we use among best prediction
(BP), trend signal (TS) and trend corrected (TC) (see [Goulard et al., 2017] for
detail). We use univariate predictors due to the lack of code to evaluate multivariate
versions. For the MultiLAG model, because the ilr is isometric with respect to the
Aitchison geometry, it is enough to compute the MSE in coordinate space. For the
UniSEMmodel, this is not true anymore since the alr is not isometric. For this reason,
we first compute the fitted response in the simplex and then compute the MSE in
an ilr coordinate space (and it does not depend upon which particular one). Table
3 summarizes the MSE of all considered models. The MSE of UniSEM, UniLAG
(using TS prediction) and UniLAG (using BP prediction) are very close to each
other. The UniSEM model reaches the smallest MSE for the second and third ilr.
Results also show that the total MSE of the UniLAG with the BP prediction method
(see [Goulard et al., 2017]) is the smallest among all models.

Table 3: MSE for all models

Coordinates Univariate Multivariate
OLM SEM LAG(TS) LAG(TC) LAG(BP) LAG(TC) LAG(TS)

ilr1 7.21 4.52 4.49 6.99 4.36 9.13 4.55
ilr2 2.00 1.38 1.43 1.99 1.43 2.58 1.53
ilr3 4.31 2.91 3.01 4.40 2.97 4.49 3.57
Sum 13.52 8.81 8.93 13.38 8.76 16.20 9.65

4.3 Interpretation

In this section, we try to better understand the impact of population density changes
on land use using the techniques proposed in Section 3.2. We first interpret the
fitted shares and the semi-elasticities thanks to very simple but informative scatter-
plots. Then we illustrate the interpretation of the direct and indirect impacts in the
MultiLAG model using maps.

4.3.1 Fitted shares and semi-elasticities

We first select four particular grid cells, shown on Figure 1a, based on the fact that
they are typical of a dominant share (more than 80%) of each particular land use
("D for “urban”, "0 for “agriculture”, " 5 for “forest” and "> for “other”). We then
draw the fitted shares scatterplot presented in Section 3.2 for a a sequence of 100
equally spaced values from 2.75 (minimum) to 58.72 (maximum) of the variable
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population density while the other variables are fixed at the observed values for the
four selected points. Figure 1b shows the fitted values obtained with the OLMmodel.

Each selected location is represented by a different dash type for the fitted shares
and a different symbol for the observed shares. Population density shows a positive
impact on “urban” use and a negative impact on both “agriculture” and “forest” uses.
The effect on “other” use is first increasing and then decreasing. One can emphasize
the variability of these curves according to the selected locations: “urban” use is
gaining ground rapidly at the expense of “agriculture” for "D and "0. For " 5 and
">, it seems that the decline of the “forest” use is first beneficial to the “other” use
before switching to the “urban” use.
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Fig. 1: Selected points with a dominant land usetext and their fitted shares curves according to
population density for the OLM model.

Figure 2a shows the average fitted shares according to population density for the
OLM, UniSEM, UniLAG and MultiLAG models. At the exception of the UniLAG
model, we see that the three other models, OLM, UniSEM and MultiLAG, give rela-
tively comparable results for the fitted “urban” and “agricultural” uses: in particular
these two curves intersect around the point where density is equal to 20 household per
hectare whereas the intersection occurs at 10 for the UniLAG. Only the MultiLAG
model shows a less flat shape of “other” uses. Generally, an increase in population
density results in an increase of “urban” areas at the expense of “agricultural” land.
This phenomenon has been observed in France since many years in rural peri-urban
areas with the sprawl of cities and road infrastructure [Chakir and Madignier, 2006].

Figure 2b present the average semi-elasticities with respect to population density
for the four models. They are computed with a value of X = 10−10 for the approx-
imation (20). The average semi-elasticities have the same shape for the UniSEM
and MultiLAG models. The semi-elasticities are always positive for “urban” land
use and negative for “forest” and “other” land uses. This means that an increase
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in population density results in an increase of the “urban” and “other” use at the
expense of “forest” and “agricultural” uses. The semi-elasticity of “other” land use
remains positive until a population density around 20 households per hectare and
becomes negative after that value. This indicates that in areas with low urban den-
sity, increasing population density would increase “urban” areas and “other” land
uses at the expense of agriculture and forestry. For example, taking the selected
point represented by a circle (agriculture dominant area) with a fitted share vector
equal to (0.006, 0.899, 0.092, 0.003) (in the order “urban”, “agriculture”, “forest”
and “other”) with the MultiLAG model and a vector of semi-elasticities equal to
(0.305, 0.001,−0.029, 0.131), an increase of one household per hectare, all other
variables remaining constant, results approximately in an increase of the “urban”
share by 30% and a decrease of forestry by 3% leaving the other two shares almost
constant. In areas with high urban density (above 20 households per hectare), “ur-
ban” use would gain ground on all other uses including “other” land use. Note that
the “other” land use may correspond to a temporary land use awaiting conversion to
“urban” use either from “forest” or “agricultural” lands.
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Fig. 2: Fitted shares and average semi-elasticities for population density

4.3.2 Direct and indirect impacts

Figure 3 is an illustration of the local contributions to the direct and indirect impacts
caused by an increase of one unit of population density at the cell "D for the
MultiLAG model. "D is part of the city of Marseille, the second largest city in
France. Its neighborhood contains mainly cells with a dominance of “urban” or
“other” uses (see Figure 3a). Figures 3b (resp. 3c) represent the change of “urban”
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(resp. “other”) use on "D and its neighborhood. The local direct impact corresponds
to the changes observed at "D itself whereas the local indirect impact correspond
to the changes observed at all other cells. We observe that an increase of one unit of
population density has a positive direct impact on the “urban” use at the expense of
“other” use. On the contrary, we observe a positive indirect impact on the “other”
use whereas the indirect impact on the “urban” use is almost zero. Moreover, the
indirect impact is all the more strong as the location is closer to the point of interest
(see Fig. (3c)) .
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Fig. 3: Region of Marseille: (a) Dominant land uses; (b) Local impact on “urban” share; (c) Local
impact on “other” share

The maps in Figure 4 summarize direct and indirect impacts of population den-
sity on “urban” and “agricultural” land use shares. They show that an increase in
population density has a larger increase impact on “urban” land in already urbanized
areas and it happens at the expense of “agricultural” land located in peri-urban areas.

The maps in Figure 5 show direct and indirect impacts of population density on
“forest” and “other” land use shares. These maps show that an increase in population
density results in an increase of “other” land uses at the expense of “forest” mainly in
less urbanized areas. This confirms the fact that “other” land use could be a transition
use from “forest” to “urban” land use when the population density increases.



19

Impact

]−.13;−.05]
]−.05;−.02]
]−.02;−.01]
]−.01;0]
]0;.01]
].01;.02]
].02;.05]
].05;.13]

(a) Direct impact on “urban” (b) Direct impact on “agriculture”

(c) Indirect impact on “urban” (d) Indirect impact on “agriculture”

Fig. 4: Direct and Indirect impact of population density on “urban” and “agricultural” shares

5 Conclusion

Through this application to land use, we have explored the differences between
two families of models which we call the UniSEM and the MultiLAG. We have
proved that a choice of coordinate representation does not have any impact on the
parameters in the simplex as long as we do not impose further restrictions. Indeed
we have seen that a restriction like the matrix of spatial autocorrelation parameters
in coordinate space being diagonal is not a simplex assumption: it is dependent on
a particular choice of coordinate space. Therefore a multivariate approach without
any restrictions on the parameters is preferable. Finally we could have considered a
MultiSEM model but did not do so due to the lack of code to fit such a multivariate
model and this can be considered as a perspective for future work.

We have demonstrated that approximations of the semi-elasticities can be easily
computed and interpreted in the simplex. The application results yield interesting
insights for understanding the drivers of land use. Several directions of improve-
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Fig. 5: Direct and indirect impact of population density on “forest” and “other” shares

ments could be pursued. First of all, one could derive formulas for the statistical
significance of the semi-elasticities. The prediction formulas which have been used
in the MSE evaluation are univariate: using multivariate counterparts (which haven’t
been derived yet for these models to our knowledge) would be preferable.
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6 Appendix

6.1 Matrix product expression using alr transformation

Let us consider the alr� transformation alr� (u) = F� ln(u) for a vector u ∈ S� and
with F� = [I�−1 − j�−1]. The result can be generalized to any alr< transformation.

alr� (B � u) = F� ln (B � u) = F� ln
(
ilr−1
+

(
B∗+ ilr+ (u)

) )
where VB∗

+
= BV. Since VV) = I� − j�j)

�
/� and F�j� = 0� , we have

alr� (B � u) = F� ln
(
C

(
exp(VB∗+ ilr+ (u)

) )
= F�VB∗+ ilr+ (u) = F�B ln(u).

6.2 Writing the model in reduced form in coordinate space

Recognizing that the matrix form of the term
∑
<∈(WY∗

;
R∗
<;

WY∗.< is WY∗R∗ , we
get easily that the matrix formulation of the model can be written

Y∗ = WY∗R∗ +
[
X(X

1
VVV∗
(X

1
. . . X(X

�−1
VVV∗
(X
�−1

]
+ nnn∗,

We are going to use the following property: if we have three matrices A, B and C
such that the number of columns of A is equal to the number of rows of B and the
number of columns of B is equal to the number of rows of C, then

vec2 (ABC) = (C) ⊗ A)vec2 (B). (23)

Using (23), we get

vec2 (WY∗R∗) =
(
(R∗)) ⊗W

)
vec2 (Y∗).

Therefore the c-vectorization of the whole model is

vec2Y∗ =
(
(R∗)) ⊗W

)
vec2 (Y∗) +


XS1VVV

∗
1

.

XSD−1VVV
∗
�−1

 + vec2nnn∗
and the reduced form of the model in vectorized form is

vec2Y∗ = (I=(�−1) − ((R∗)) ⊗W))−1


XS1VVV
∗
1

.

XSD−1VVV
∗
�−1

 + vec2nnn∗.
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6.3 Lemma used in the proof of Theorem 0.1

Lemma 0.1 Let j� (resp. 000�) denote the �-dimensional column vector of ones

(resp. zeros) and I� be the � × � identity matrix. Let K =

[
I�−1 − j�−1j)

�−1/�
−j)
�−1/�

]
a � × (� − 1) matrix and F = [I�−1 − j�−1] a (� − 1) × � matrix. Let B be a
� × � matrix such that Bj� = 000� and B) j� = 000� and B∗ be a (� − 1) × (� − 1)
matrix. We have that FB = B∗F is equivalent to B = KB∗F.

We have

K =



1 − 1
�
− 1
�
− 1
�

. . . − 1
�

− 1
�

1 − 1
�
− 1
�

. . . − 1
�

− 1
�
− 1
�

1 − 1
�
. . . − 1

�
...

...
...

. . .
...

− 1
�
− 1
�

1
�

. . . 1 − 1
�

− 1
�
− 1
�
− 1
�

. . . − 1
�


and F =



1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
0 0 1 . . . 0 −1
...
...

. . . 0 −1
0 0 0 1 −1


Let B be a � × � matrix such that Bj� = 000� and B) j� = 000� and B∗ be a

(� − 1) × (� − 1) matrix. First, let us prove that if B = KB∗F then FB = B∗F. It is
easy to show that FK = I�−1. Thus, if B = KB∗F,

FB = FKB∗F = I�−1B∗F = B∗F.

Let us now prove the converse. We have Bj� = B) j� = 000� and we assume
FB = B∗F. We write B in blocks as follows:

B =

[
B1 b2
b)3 14

]
where B1 is a � − 1 × � − 1 matrix, b2 and b)3 ∈ R�−1 and b4 ∈ R. Using the fact
that Bj� = B) j� = 000� , we get

b2 = −B1j�−1

b3 = −B)1 j�−1

b4 = j)
�−1B1j�−1

. (24)

To find B, we only need to find B1. Using (24), we write the (� − 1) × � matrix FB
as a function of B1:

FB = [(I�−1 + j�−1j)�−1)B1 − (I�−1 + j�−1j)�−1)B1j�−1] .

Furthermore, B∗F = [B∗ − B∗j�−1]. So, FB = B∗F implies(
I�−1 + j�−1j)�−1

)
B1 = B∗
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The inverse matrix of
(
I�−1 + j�−1j)

�−1
)
is

(
I�−1 + j�−1j)

�−1/�
)
. Thus,

B1 = (I�−1 + j�−1j)�−1/�)B
∗. (25)

Using (24) and (25), it is now easy to check that B = KB∗F.
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