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Abstract

In the framework of Compositional Data Analysis, vectors carrying relative in-
formation, also called compositional vectors, can appear in regression models either
as dependent or as explanatory variables. In some situations, they can be on both
sides of the regression equation. Measuring the marginal impacts of covariates in
these types of models is not straightforward since a change in one component of a
closed composition automatically affects the rest of the composition.

J. Morais, C. Thomas-Agnan and M. Simioni [Austrian Journal of Statistics,
47(5), 1-25, 2018] have shown how to measure, compute and interpret these marginal
impacts in the case of linear regression models with compositions on both sides of
the equation. The resulting natural interpretation is in terms of an elasticity, a
quantity commonly used in econometrics and marketing applications. They also
demonstrate the link between these elasticities and simplicial derivatives.

The aim of this contribution is to extend these results to other situations, namely
when the compositional vector is on a single side of the regression equation. In these
cases, the marginal impact is related to a semi-elasticity and also linked to some
simplicial derivative. Moreover we consider the possibility that a total variable is
used as an explanatory variable, with several possible interpretations of this total
and we derive the elasticity formulas in that case.
Key Words:compositional regression model, marginal effects, simplicial derivative,
elasticity, semi-elasticity

1 Introduction and literature review

We consider regression models involving compositional vectors, i.e. vectors carrying
relative information. When relative information is the focus, meaningful functions
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are functions of ratios of the vector’s components therefore using traditional re-
gression models in such cases is not correct. Regression models that respect the
compositional nature of such data have been proposed in the literature, for example
those introduced by Aitchison (1986) based on log-ratio transformations. Theory
for inference in these models is developed for example in Pawlowsky-Glahn and Buc-
cianti (2011), Van Den Boogaart and Tolosana-Delgado (2013), Pawlowsky-Glahn
et al. (2015), and Filzmoser et al. (2018).

When the compositional vectors only appear as dependent variable, we will say
that the model is of the ‘Y-compositional’ type (see e.g. Egozcue et al. (2012)).
When they only appear as explanatory variables, we will say that the model is of
the ‘X-compositional’ type (see e.g. Hron et al. (2012)). Finally, when they appear
on both sides, we will say that the model is of the ‘YX-compositional’ type, see e.g.
Kynclova et al. (2015), Chen et al. (2017), Morais et al. (2018a) and Morais et al.
(2018b). A simplified version of the YX-compositional type is presented in Wang
et al. (2013) and Morais et al. (2018b) later show that this model is equivalent to
the so-called MCI (multiplicative competitive interaction) model introduced earlier
in the marketing literature (Nakanishi and Cooper (1982)). It may also be relevant
to include in the model the total of the different parts involved in the composition
and we will consider each of the above models for the case with or without a total
variable, see e.g. Coenders et al. (2017) and Coenders et al. (2015). Extensions with
compositional functional predictors are presented in Sun et al. (2018), Bui et al.
(2018) and Combettes and Muller (2019). Case studies using some of these models
are presented in Hron et al. (2012), Trinh et al. (2018) for the X-compositional type,
Morais et al. (2017) for the YX-compositional type’.

The focus of the present work is on the definition and interpretation of covariates
impacts in these models, question addressed by much fewer papers. Muller et al.
(2018) propose an interpretation for models of X-compositional or Y-compositional
types based on using a specific type of orthogonal coordinates (called pivot coor-
dinates, see e.g. Filzmoser et al. (2018)). Moreover they promote the replacement
of the natural logarithm by the base-2 logarithm for enhancing the interpretabil-
ity. The first drawback is that the resulting interpretation requires rerunning the
model once for each component in the Y-compositional case. Moreover changes in
log-ratios correspond to multiplicative increase (of the dependent or independent
variables) in terms of relative dominance, i.e. the ratio of one component to the
geometric mean of the others (while keaping all other log-ratios constant) which
is not a very intuitive notion. This point of view is extended in Coenders and
Pawlowsky-Glahn (2019) by considering changes in more general log-ratios leading
to changes in any subset of components by a common factor (while reducing the
remaining components accordingly).

Morais et al. (2018b) show that a natural interpretation tool in the YX-compositional
model is the notion of elasticity. Indeed elasticities are commonly computed for the
MCI model in the marketing literature (see Nakanishi and Cooper (1982)). Morais
et al. (2018b) relate it to the notion of simplicial derivatives introduced in Egozcue
et al. and Barcelo-Vidal et al. both in Pawlowsky-Glahn and Buccianti (2011).

With a different approach, Nguyen et al. (2018) bring a different light on the
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evaluation of these impacts by plotting the predicted components as a function of
the explanatory but this graphing tool is limited to compositional dependent or
explanatory variables with three components.

Finally, for the X-compositional model, Coenders and Pawlowsky-Glahn (2019)
consider the introduction of the total variable among the explanatory and adapt
the resulting interpretations, still in terms of log-ratio changes.

The objective of this paper is to extend Morais et al. (2018b) to the Y-compositional
and the X-compositional models and to allow inclusion of the total variable in the
models. In Section 2, we introduce notations and define the different specifications
of the considered models. In Section 3, we demonstrate the equations linking elas-
ticities or semi-elasticities (depending on considered model) with simplicial deriva-
tives. Section 4 establishes the formulas for the elasticities and semi-elasticities in
terms of model parameters in the simplex as well as in coordinate space. Finally,
Sections 5 provides examples of applications to the X-compositional and to the
Y-compositional models. We conclude in Section 6.

2 Compositional model specifications

Let us denote by X̌ = (X̌1, · · · , X̌DX
)′ ∈ RDX

+ a vector of DX positive components
corresponding to the components of a compositional vector expressed in original
units: we call these components volumes as opposed to shares. For example, in the
case studied in Morais et al. (2017), the volumes are numbers of cars sold during
a given month by the different brands of cars whereas the shares represent the
corresponding proportion of cars sold during that month by each brand relative
to the other brands in the study. The closure of the vector X̌ of volumes is the
corresponding vector of shares

X = C(X̌1, · · · , X̌DX
)′ =

(
X̌1∑DX
i=1 X̌i

, · · · , X̌DX∑DX
i=1 X̌i

)′
= (X1, · · · , XDX

)′

and belongs to the simplex space SDX of positive vectors in RDX with sum equal
to 1.

In some cases, it may be relevant to include in the regression model a vari-
able measuring a total (hence not scale-invariant) which may be T(X) or T(Y).
Pawlowsky-Glahn et al. (2015) argue that different formulas can be used for this
total, for example one of the following two:

• Arithmetic total: TA(Ž) =
∑D

i=1 Ži

• Geometric total: TG(Ž) = (
∏D

i=1 Ži)
1/
√
D

The general principle of simplicial regression is to use transformations to trans-
port the simplex space SD, equipped with the Aitchison geometry, into the Eu-
clidian space RD−1 thus eliminating the simplex constraints problem. It is gener-
ally agreed upon to use log-ratio orthonormal coordinates (Pawlowsky-Glahn et al.
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(2015)). We recall that to each D × (D − 1) contrast matrix V, constructed from
an orthonormal basis of SD, corresponds an isometric transformation tradition-
ally called ilrV. As advocated recently by Mart́ın-Fernández (2019), we will rather
use the name olr (orthogonal log ratio) for these transformations. We then have
z∗ = olrV(z) = V′ log(z), where the natural logarithm (denoted by log) is under-
stood componentwise and the inverse transformation in olr−1

V (z∗) = C(exp(Vz∗)).
Using the traditional notations for the simplex operations (see Pawlowsky-Glahn

et al. (2015)), the first row of Table 1 presents the formulation of the regression
models explaining a collection of n i.i.d. random variables (simplex valued or not)
by corresponding explanatory variables which may be simplex valued or not. The
observations are indexed by t, t = 1, · · ·n. Because marginal effects only involve one
explanatory at a time, if we had a model explaining a simplex valued variable by both
types of explanatories, we would use the first and last columns of this table. The
second row of Table 1 presents the corresponding model formulations in coordinate
space for a given choice of olr transformation olrV. Parameters a∗, b∗ or B∗ are
then estimated by maximum likelihood in coordinate space where the regression
is classical. Formulas to compute the corresponding parameter estimates in the
simplex a, b or B are available and it is known that these estimated parameters in
the simplex are independent of the particular choice of olrV, i.e. of the particular
choice of contrast matrix. In Table 1 the different formulations may involve a
total variable T(X) or T(Y) and it is printed in grey to indicate that it is an
option. Finally, we included in the formulations the particular case of the MCI
model obtained when DX = DY and the matrix B∗ is a multiple of the identity
resulting in B � X = b�X.

3 Semi-elasticities and simplicial partial deriva-

tives

A marginal impact in a linear regression model is usually understood as the change
in the expected value of the dependent variable Y induced by an additive increase
of the explanatory of interest X. In nonlinear models, it is rather understood as the
infinitesimal equivalent, i.e. the derivative of the expected value of Y with respect
to X and it may be non constant throughout the range of X. In some nonlinear
models, an elasticity or a semi-elasticity may be more natural. Indeed in a log-log
model, if E(log(Y )) depends linearly on log(X), then the parameter of log(X) is
equal to the above derivative and can be interpreted as the percent increase of E(Y )
induced by a one percent increase of X. Finally, if the model is a semi-log model, the
natural quantity is either the partial derivative of E(Y ) with respect to log(X) (if the
logarithm is on the right hand side of the regression equation) or symmetrically the
partial derivative of E(log(Y )) with respect to X in the other case (if the logarithm
is on the left hand side of the regression equation). This supports the idea that, in
a simplicial regression model, one should turn attention to simplicial derivatives to
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Table 1: Specifications of the compositional models and notations

Y-compositional model X-compositional model YX-compositional model

in SD Yt = a⊕ X̌t � b⊕ εt
⊕T (Y̌)t � c

Y̌t = a+ < b,Xt >A +εt
+cT (X̌)t

‘CODA’ model:

Yt = a⊕B � Xt ⊕ εt
⊕T (X̌)t � c

‘MCI’ model:

Yt = a⊕ b�Xt ⊕ εt
⊕T (X̌)t � c

in RD−1 Y∗t = a∗ + b∗X̌t + ε∗t
+c∗T (Y̌)t

Y̌t =
a+

∑DX−1
k=1 b∗kX

∗
t,k + εt

+cT (X̌)t

‘CODA’ model:

Y∗t = a∗ + B∗X∗t + ε∗t
+c∗T (X̌)t

‘MCI’ model:

Y∗t = a∗ + bX∗t + ε∗t
+c∗T (X̌)t

Notations Yt,a,b, εt ∈ SDY , X̌t ∈ R
Y∗

t ,a
∗,b∗, ε∗t ∈ RDY −1

Xt,b ∈ SDX , X̌t, a, εt ∈ R
X∗

t ,b
∗ ∈ RDX−1

B ∈ RDY ,DX , b ∈ R
B∗ ∈ RDY −1,DX−1

evaluate the impacts of explanatory variables. Adapting the definition of derivative
to the case where a function is simplex valued or is defined on the simplex stems
from the fact that a change in a vector of shares cannot be just reduced to a change
in one of the components since they are linked by their sum constraint: in other
words, it is due to the fact that one of the variables lies in a subspace of RD.

More precisely, the quantities of interest are

• ∂⊕E⊕Y
∂X in the case of the Y-compositional model

• ∂EY
∂⊕X

in the case of the X-compositional model,

• ∂⊕E⊕Y
∂⊕X

in the case of the YX-compositional model,

where E⊕ denotes the expectation of a simplex valued random variable (see Pawlowsky-
Glahn and Buccianti (2011)) and where the symbol ∂⊕ indicates that the derivative
should be understood in the simplicial derivative sense with respect to that variable
(see Barcelo-Vidal et al. and Egozcue et al. in Pawlowsky-Glahn and Buccianti
(2011)).
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For the Y-compositional and X-compositional models, we are first going to ex-
press the relevant simplicial derivatives in terms of semi-elasticities.

Indeed, for the case of the X-compositional model, let us consider an homoge-
neous function of degree zero f defined from RD

+ to R inducing a function f on SD
by f(x) = f(C(x̌)) = f(x̌).

Propositions (13.10) and (13.13) in Barcelo-Vidal et al. in Pawlowsky-Glahn
and Buccianti (2011), chapter 13, imply that the part-C derivatives of f , which we

denote here by
∂f(x)

∂⊕x
are given by:

∂f(x)

∂⊕x
=

∂f(x̌)

∂ log(x̌)
(1)

Therefore the derivative of a function f of a simplex valued variable x = C(x̌)
corresponds to the ordinary semi-log derivative of the corresponding homogeneous
function f of the volumes x̌. Applying this result to the function expressing EY as a
function of the share vector X, we obtain the link between the simplicial derivative
of this function and the semi-elasticity (or semi-log derivative) in the classical sense
of the corresponding function of the volume vector X̌.

Similarly, for the case of the Y-compositional model, for a simplex-valued func-
tion f of a real variable x ∈ R, Theorem 12.2.6 in Egozcue et al. in Pawlowsky-Glahn
and Buccianti (2011), chapter 12, implies that:

∂⊕f(x)

∂x
= C

(
exp

(
∂ log f(x)

∂x

))′
,

where ∂⊕f denotes the simplicial derivative of f at x. This result links the simplicial
derivatives of a simplex-valued function f to the semi-log derivatives (in the ordinary
sense) of this function. Applying this result to the function expressing E⊕Y as a
function of X, we obtain the link between the simplicial derivative of this function
and the semi-elasticity (or semi-log derivative) in the classical sense of E⊕Y as a
function of X.

For the the YX-compositional model, Morais et al. (2018a) linked simplicial
derivatives to elasticities in the case of a model without a total and in the particular
case where the number of components DY of the Y composition is the same as that
of the X composition (DX). The limitation DY = DX in Morais et al. (2018a)
was simply due to the particular application framework of this work but there
is no additional mathematical difficulty to extend the result to DY 6= DX . The
corresponding formulas are recalled in Table 2 for completeness.

Finally, considering models including a total, one would need to define infinitesi-
mal paths in the T -space. Instead we consider three types of infinitesimal variations
as described in Section 4.3.

For upcoming interpretations, it is interesting to consider first order Taylor ap-
proximations of such functions (of a simplex variable or simplex valued). For a
function f from SD to R, consider as in Barcelo-Vidal et al. (in Pawlowsky-Glahn
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Table 2: Simplicial derivative and (semi-)elasticities

Y-compositional model X-compositional model YX-compositional model

∂⊕E⊕Y
∂X

= C
(

exp
(

∂ logE⊕Y
∂X

))′ ∂EY
∂⊕X

= ∂EY
∂ log X̌

∂⊕E⊕Y
∂⊕X

= C
(

exp
(

∂ logE⊕Y
∂ log X̌

))′

and Buccianti (2011)) the orthonormal basis u1, · · · ,uD of SD defined by

uj =

(
D − 1

D

)
� Cµj

µj = C(1, · · · , 1, exp(1), 1, · · · , 1),

where exp(1) is at the jth position. From Barcelo-Vidal et al. (in Pawlowsky-Glahn
and Buccianti (2011)), the first order Taylor’s approximation is given by

f(x⊕ δ � uj) ∼ f(x) + δ
∂f(x̌)

∂ log(x̌j)
. (2)

This additive (in the simplex sense) increase of δ�uj corresponds to a multiplicative
increase of the jth component while holding constant all other ratios of remaining
components. It is also equivalent in coordinate space, for a proper choice of olr
transformation, to increase additively one olr component while keeping all others
constant. To summarize, note that the increment is given by the product of δ by
the classical semi-elasticity, i.e., a semi-log derivative in the ordinary sense of the
corresponding function of the volumes. As we will see in Section 5, δ is proportional
to the rate of change of x.

For a function f from R to SD, Egozcue et al. in Pawlowsky-Glahn and Buccianti
(2011) obtain the following first order Taylor approximation for a small additive
increase δ > 0 of x ∈ R

f(x+ δ) ∼ f(x)⊕ δ � ∂⊕f(x)

∂x

As in Morais (2017), let us go one step further in the approximation. Indeed,

f(x)⊕ δ � ∂⊕f(x)

∂x
= C(f(x)⊕ exp(δ

∂ log f(x)

∂x
)).

Combining with a first order approximation of the exponential in a neighborhood
of zero exp(δ ∂ log f(x)

∂x ) ∼ 1 + δ ∂ log f(x)
∂x , we get the following approximation for the

mth component of f(x+ δ)

fm(x+ δ) ∼ fm(x)(1 + δ
∂ log fm(x)

∂x
), (3)
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Taking the derivative of
∑D

m=1 fm(x) = 1, we get
∑D

m=1 fm(x)em = 0. Therefore
the RHS vector in equation (3) belongs to SD. To summarize, note that in this
case the percent increase of each component of f(x) is given by the classical semi-
elasticity, i.e., a semi-log derivative in the ordinary sense of the function.

Finally for a function f from SDX , to SDY , a similar approximation has been
obtained in Morais (2017) for the particular case DX = DY . Combining the above
two results, we obtain easily that the Taylor approximation of a function f from
SDX to SDY is given by

f
m

(x⊕ δ � uj) ∼ fm(x)

(
1 + δ

∂ log fm(x̌)

∂ log x̌j

)
. (4)

showing that a percent increase of the components of x, proportional to δ, induces
a percent increase of each component of f(x) given by the classical elasticity of the

corresponding component ∂ log fm(x̌)
∂ log x̌j

.

4 Elasticities and semi-elasticities in terms of

model parameters

The aim is now to relate the elasticities/semi-elasticities of the previous section
to the model parameters. The results of this section will be based on the follow-
ing two lemmas which establish the formulas for the semi-log derivatives of an olr
transformation and its inverse.

Lemma 4.1. If z is a D-composition which is the closure of the vector ž of RD
+ , and

if z∗ = olrV (z) = V′log(z) is the olr-transformed vector associated to the contrast
matrix V, then

∂olrV (z)

∂ log ž
= V′

This first lemma just results from the definition of the olr which is linear with
respect to log ž, and could be used for any other linear transformation.

Lemma 4.2. If z is a D-composition which is the closure of the vector ž of RD
+ , and

if z∗ = olrV (z) = V′log(z) is the olr-transformed vector associated to the contrast
matrix V, then

∂ log(olrV
−1(z∗))

∂z∗
= WzV,

where Wz is the D ×D matrix with (1 − zi) for the ith diagonal element and −zj
elsewhere on the jth column and where z = olr−1

V (z∗).
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To prove Lemma 4.2, using the formula for the inverse transformation of an olr,
we see that one representent of the share vector z is given by ž = exp(olrV

−1(z∗)).
It is easy to see that log(z) = log(ž) − log(S)n, where S = TA(ž) =

∑D
i=1 ži and

n is the simplex unit vector. The derivative of the first term yields V because
log(ž) = V z∗. S is linear in ž, and it is easy to see that its derivatives with respect
to z∗ are given by

∂S

∂z∗j
=

D∑
i=1

∂ log(ži)

∂z∗j
ži =

D∑
i=1

vij ži.

Then we have

∂ log(S)

∂z∗j
=

1

S

∂S

∂z∗j
=

D∑
i=1

vijzi

Combining first and second terms yields

∂ log(zi)

∂z∗j
= vij −

D∑
i=1

vijzi,

and it is then enough to check that this is the general term of the matrix WzV. If
we define W∗

z = WzV, note that W∗
zV
′ = Wz (will be used later on).

4.1 Semi-elasticities for Y-compositional models and X-
compositional models

In the case of Y-compositional and X-compositional models, the natural tool is
semi-elasticities. However the formulas differ in the two cases:

• X-compositional case: SE(Y, X̌) = ∂EY
∂ log X̌

• Y-compositional case: SE(Y, X̌) = ∂ logE⊕Y
∂X

Let us denote by V X , respectively V Y , the contrast matrices used for X, respec-
tively Y . The computation in the X-compositional case uses Lemma 4.1. Indeed,
for j = 1, · · · , DX

∂EY
∂ log X̌j

=

DX−1∑
k=1

∂EY
∂X∗k

∂X∗k
∂ log X̌j

=

DX−1∑
k=1

b∗kV
X
jk (5)

This result is presented in matrix form in Table 3. Note that this semi-elasticity is
constant throughout observations.

The computation in the Y-compositional case uses Lemma 4.2 since E⊕Y =
olr−1

V (EY∗). We have

∂ logE⊕Y

∂X̌
=
∂ logE⊕Y

∂EY∗
∂EY∗

∂X̌
= W∗

zb
∗ = W∗

zV
Y ′ log b = Wz log b,

where z = olrV
−1(E(olrV Y)) = E⊕Y. Note that in this case the result depends

upon the observation t through the dependence of Wz on zt = E⊕Yt.
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4.2 Elasticities for the YX-compositional model

For the YX-compositional model, Morais et al. (2018a) have obtained the expres-
sions of the elasticities when the dimension of the Y composition is the same as that
of the X composition. Let us extend this result to the case DX 6= DY using the
above two lemmas.

We can see the relationship between log X̌ and logE⊕Y as the composition of
three functions (listed from inside to outside)

• the function which maps log X̌ ∈ R+DX to X∗ ∈ SDX

• the function which maps X∗ ∈ SDX to EY∗ ∈ R+DY

• the function which maps EY∗ ∈ R+DY to logE⊕Y ∈ SDY

Using the generalized chain rule for functions of several variables which states that
the Jacobian matrix of the composite function is the product of the Jacobian ma-
trices of the composed functions evaluated at appropriate points, we get

∂ logE⊕Y

∂ log X̌
=
∂ logE⊕Y

∂EY∗
∂EY∗

∂X∗
∂X∗

∂ log X̌
(6)

The rightmost term on the right hand side of (6) is obtained using Lemma 4.1:

∂X∗

∂ log X̌
= VX′.

The central term yields the matrix B∗ of parameters in coordinate space since the
relationship between EY∗ and X∗ is linear. The leftmost term on the right hand
side is obtained using Lemma 4.2:

∂ logE⊕Y

∂EY∗
= W∗

zV
Y,

where z = E⊕Y. We finally get

∂ logE⊕Y

∂X̌
= W∗

zV
YB∗VX′ = W∗

zB. (7)

Note that the result is again observation dependent. Table 3 summarizes the
different formulas for semi-elasticities and elasticities for the three types of models
as a function of parameters estimates, in the simplex or in coordinate space.

4.3 Models including a total

The presence of the total variable has to be taken into account in the partial impact
measure computations. We consider including among the explanatory variables

• a total of Y in the Y-compositional model (model A)

• a total of X in the X-compositional model (model B)

• a total of X and/or a total of Y in the YX-compositional model (model C)
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Table 3: (Semi-)elasticities without total

Y-compositional model X-compositional model YX-compositional model

∂ logE⊕Y
∂X

= W∗
E⊕Yb∗

= WE⊕Y log b

∂E(Y̌ )

∂ log X̌
= VXb∗

= VXVX′ log b

‘CODA’ Model

∂ logE⊕Y
∂ log X̌

= W∗
E⊕YB∗VX′ =

WE⊕YB

‘MCI’ Model

∂ logE⊕Y
∂ log X̌

= WE⊕Yb

Notations W(DY ,DY ) is a matrix with (1− Yi) on the diagonal and −Yi elsewhere on the ith row.

The right hand side of model equations from Table 1 are modified as follows

• model A: add ⊕T (Yt)�c, where c is the parameter corresponding to the total
effect

• model B: add +dT (Xt), where c is the parameter corresponding to the total
effect

• model C: add ⊕T (Yt) � c ⊕ T (Xt) � d, where c and d are the parameters
corresponding to the two total effects.

In the presence of a total, as mentioned in Section 3, we need to distinguish
three types of infinitesimal variations for a compositional variable, let us call it Z
because it will be X or Y as the case may be. The three types are as follows

• Type 1: the total T (Z) remains constant and we look at infinitesimal variations
of the composition Z. Such variations correspond to considering derivatives
in the direction of one of the unitary vectors of an orthonormal basis of SDZ .
With a proper choice of basis and of contrast matrix as in Hron et al. (2012),
this corresponds to an infinitesimal change in one component, along a linear
path in the simplex, keeping all but the first ILR constant.

• Type 2: the composition Z remains constant while the total is subject to
an infinitesimal variation. Such variations correspond to considering ordinary
derivatives with respect to the total T (Z).

• Type 3: one of the components of Z varies together with the total T (Z).

Type 1 variations A type 1 variation of Y would have no meaning in model A
and in model C. In model B, the impact of a type 1 variation of X with fixed total
can be computed as in the X-compositional model in Table 3. The impact of a type
1 variation of X in model C can be computed as in the YX-compositional model in
Table 3.
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Type 2 variations Type 2 variations correspond to ordinary derivatives with
respect to the total. For models A and C, a type 2 variation for Y would have no
meaning.

For model B, a type 2 variation of X results in an ordinary derivative

∂EY
∂T

= c (8)

In model C, a type 2 variation of X can be computed as in a Y-compositional
model treating the total T (X) as an ordinary variable and computing the derivative
with respect to the total.

Type 3 variations First of all, type 3 variations only make sense for X. There-
fore we can’t consider type 3 variations in model A.

Moreover, evaluating the effect of the variation of X or of T (X) is equivalent
since they are linked together, therefore one of the two formulas is enough.

For type 3 variations of X, since both total and composition vary, the easiest
way out is to express the dependent as a function of the volumes and use ordinary
derivatives of the ensuing function of the volumes.

In model B, for computing the effect of a type 3 variation of X, we need to
adapt equation (5) adding an extra term taking into account the fact that the total
depends upon the volumes and we get

∂EY
∂ log X̌

= VXb∗ +
∂ logEY

∂T

∂T

∂ log X̌
= VXb∗ + d

∂T

∂ log X̌
(9)

This result shows that the derivatives of the total with respect to the volumes
play a role in the final expression of this semi-elasticity (hence we get a different
formula for an arithmetic or a geometric total).

In model C, for a type 3 variation of X, the derivative with respect to X of the
first term B � X is obtained as in the YX-compositional model without total and
and the derivative of the second term T (X)�d is obtained as in the X-compositional
model with a T (X) total (equation (7)) yielding overall

∂ logE⊕Y
∂ log X̌

= WE⊕Y(B + log(d)
∂T

∂ log X̌
) (10)

Once again, the result involves the the derivatives of the total with respect to the
volumes.

5 Illustration

Let us give two toy examples of interpretation to illustrate our approach. We focus
on the X-compositional and the Y-compositional models since the case of the YX-
compositional model was already illustrated in Morais et al. (2018a).
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Figure 1: Observed (in color) and predicted (in grey) segments shares along time

5.1 Economic context and automobile market segment
shares: Y-compositional model

In Morais J. (2020), the relationship between the socioeconomic context on the
demand of new cars by segments is investigated with a data set coming from the
French Renault company for market shares and from publicly available data bases.
The data coming from Renault has been blurred with a small noise for confidential-
ity reasons. The automobile market is divided into five segments, from the smallest
vehicles (A segment) to the largest vehicles (E segment). The available explana-
tory variables are consumption expenditure, an economic sentiment indicator, Gross
Fixed Capital Formation of household, Gross Domestic Product, diesel price and
short term interest rate. The data is recorded monthly from 2003 to 2015 (167
observations). The model explaining the market shares of each segment by the
above explanatory is therefore a Y-compositional model in our terminology. We use
the following sequential binary partition: B versus A, C versus A and B, D versus
A, B and C, and E versus A, B, C and D to construct an orthonormal basis of
the simplex and an associated olr transformation. Figure 5.1 displays the observed
and predicted segments shares along time and we can see that the compositional
model catches the general tendency, but not all the variance of this data. Table 5.1
contains the average semi-elasticities of segments shares with respect to GDP.

Let us interpret for example the effect of a small increase of GDP on the small
cars (A segment) market shares. From formula (3), a small additive increase δ = 1
billion euros (this amount representing 0.6% of the average monthly GDP) results
on average in a multiplicative increase of 0.0028 % of the A segment market share.
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Table 4: Average semi-elasticities of segments shares with respect to GDP

SE(St, GDPt)
A 2.88e-05
B -0.17e-05
C -0.96e-05
D 0.99e-05
E 1.18e-05

Instead of focusing on average elasticities, we could concentrate on a given point in
time and compute the impact on the whole share vector of such a small increase
in GDP. We could then check easily that the new shares vector is indeed in the
simplex.

5.2 French GDP and job market: X-compositional model

In this second illustration, we are interested in the impact on French GDP of the
structure (composition) and the volume (total) of the French job market in the three
main sectors of activity: Agriculture (primary), Industry (secondary), and Services
(tertiary). GDP is expressed in million euros (current price) and total employment
in thousands of people. The data is collected quarterly from 2004 to 2018 1 We use
the olr transformation corresponding to the sequential binary partition: Agriculture
versus Industry and Services, and Industry versus Services. We consider the model
explaining the GDP as a function of total employment and the two olr coordinates
associated to the above olr transformation. It is therefore an X-compositional model
including a total, in this case the simple arithmetic total employment. Table 5.2
reports the semi-elasticities of GDP with respect to the three sectors at the mean
value of composition corresponding to 788, 9196 and 19385 thousand employees for
respectively Agriculture, Industry and Services. To apply formula (2), we consider
a small δ > 0 and a variation of ⊕δ � uj of x, where uj is the unit vector in the
direction of the component Services. This variation of x is equivalent, when δ is
small, to a relative variation of

√
3/2δ (i.e. multiplying x by 1 +

√
3/2δ.) The

factor
√

3/2 is
√
DX/DX − 1 in the general case, corresponding to log(uj) in the

Taylor expansion in Barcelo-Vidal et al. in Pawlowsky-Glahn and Buccianti (2011)
. Taking δ = 0.01% results in an increase of around

√
3/2 ∗ 19385 ∗ 0.0001 = 2450

people of the Services employment while the ratio between Agriculture and Industry
employments remain constant, and the model predicts that the GDP should increase
by 84 million euros. The marginal effect of the size of the job market, assuming
that its composition stays the same is obtained by the parameter estimate of total
employment in the model, which is equal to 26.52. When total employment increases
by 1000 people, the GDP tends to increase by 26.5 millions. Note that using a base
2 logarithm as in Muller et al. (2015) is not usefull in our approach and would rather
introduce an unnecessary constant.

1https://data.oecd.org/emp/employment-by-activity.htm
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Table 5: Semi-elasticities of GDP with respect to employment sectors composition

SE(GDP, ˇEmplSect)
AGR -10157.26

INDU -51706.00
SERV 841030.75

6 Conclusion

This contribution highlights the fact that elasticities or semi-elasticities are well-
adapted to interpret the impacts of explanatories in all types of compositional re-
gression models. It also links these elasticities or semi-elasticities to the simplicial
derivatives of the expected response with respect to the considered explanatory
variable. The models may contain compositional variables on the right hand side
and/or on the left hand side of the regression equation, and may contain or not
total variables (relative to the dependent or the explanatory variables). Further
work should be done about confidence intervals for (semi-)elasticities which can be
computed by the Delta method, or simply using a bootstrap approach.

An alternative but more complex tool used in Wang et al. (2013) and in Morais
et al. (2018a) is the elasticity of a ratio of shares. In the framework of an MCI model,
it would directly correspond to a parameter of the model, which is attractive, but
relates to a change rate of a ratio of components and not of a single component and
therefore is more difficult to vulgarize.
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