
Identification and inference in discrete
choice models with imperfect information∗

Cristina Gualdani† Shruti Sinha‡

June 2020

Abstract

We study identification of preferences in a single-agent, static, discrete choice model where the
decision maker may be imperfectly informed about the utility generated by the available alternatives.
We impose no restrictions on the information frictions the decision maker may face and impose
weak assumptions on how the decision maker deals with the uncertainty induced by those frictions.
We leverage on the notion of one-player Bayes Correlated Equilibrium in Bergemann and Morris
(2016) to provide a tractable characterisation of the identified set and discuss inference. We use our
methodology and data on the 2017 UK general election to estimate a spatial model of voting under
weak assumptions on the information that voters have about the returns to voting. We find that
the assumptions on the information environment can drive the interpretation of voter preferences.
Counterfactual exercises quantify the consequences of imperfect information in politics.
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1 Introduction

When facing decision problems, agents may encounter frictions which prevent them from learn-
ing their payoffs from the available alternatives. These frictions (hereafter, information fric-
tions) stem from various sources, such as attentional and cognitive limits, financial constraints,
spatial and temporal boundaries, cultural biases, and personal inclinations. Ideally, one would
like to take into account information frictions in the empirical analysis of decision problems.
However, this is a challenging task because information frictions can be heterogenous across
agents and are typically unobserved by the researcher.

A large part of the applied literature on decision problems ignores information frictions
and imposes perfect information. A recent strand of the literature incorporates information
frictions by fully specifying the sources of information frictions and/or by fully specifying how
agents deal with the uncertainty induced by those frictions. This includes search models (for
example, Mehta, Rajiv, and Srinivasan, 2003; Honka and Chintagunta, 2016; Hébert and
Woodford, 2018; Ursu, 2018; Morris and Strack, 2019; Abaluck and Compiani, 2020), models
with rational inattention (for example, Caplin and Dean, 2015; Matĕjka and McKay, 2015;
Fosgerau, Melo, de Palma, and Shum, 2017; Csaba, 2018; Caplin, Dean, and Leahy, 2019b),
and models with preferences for risk (for a review, see Barseghyan, Molinari, O’Donoghue, and
Teitelbaum, 2018). In this paper, we study identification of agent preferences without imposing
any restrictions on the sources of information frictions agents may face and by imposing weak
assumptions on how agents deal with the uncertainty induced by those frictions.

More formally, we consider a static setting where the decision maker (hereafter, DM) has to
choose an alternative from a finite set. The utility generated by each alternative is determined
by the state of the world. The state of the world is defined by variables like attributes of the
available alternatives, attributes and tastes of the DM, and exogenous market shocks. The DM
chooses an alternative, possibly without being fully aware of the state of the world. However,
the DM has a prior on it. Moreover, the DM has the opportunity to refine such a prior
by processing additional information. Such additional information takes the form of a signal
randomly drawn from a certain distribution and is hereafter referred to as the information
structure of the DM. This information structure can range from full revelation of the state of
the world to no information whatsoever, depending on the information frictions encountered
by the DM in the learning process. In fact, if the information frictions are severe, then the
DM may decide not to investigate the state of the world up to the point where the payoffs
are known with certainty, at the risk of suffering ex-post regret. As the information frictions
are unobserved by the researcher, our analysis proceeds by leaving the information structure
processed by the DM completely unrestricted. The DM uses the acquired information structure
to update her prior and obtain a posterior through the Bayes rule. Finally, the DM chooses
an alternative maximising her expected utility, where the expectation is computed via the
posterior.
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Note that several discrete choice models studied in the literature, such as (Multinomial)
Logit/Probit model, Nested Logit model, Mixed Logit model, discrete choice models with risk
aversion, discrete choice models with rational inattention, and some discrete choice models
with search, can be obtained within the above framework under additional assumptions on the
information structure processed by the DM.

We assume that the researcher has data on choices made by many i.i.d. DMs facing the
above decision problem and, possibly, on some covariates which are part of (or coincide with)
the state of the world.1 DMs rely on a common family of priors, but are allowed to process
arbitrarily different information structures, on which we remain agnostic. In turn, DMs com-
pute their expected payoffs with any Bayes-consistent posteriors. Our objective is to study
identification and inference of the preference parameters in this context. In particular, the
preference parameters of interest are the parameters of the utility function and the common
family of priors. Such parameters are policy-relevant. In fact, they are sufficient to answer
some standard questions in the empirical literature on decision problems, for instance, finding
how the choice probabilities change in response to changes in the realisation of covariates, while
holding the information structures of DMs fixed. Further, they allow one to answer some new
questions, for instance, finding how the choice probabilities change in response to changes in
the availability of information about the state of the world.

Studying identification and inference of the preference parameters while remaining ag-
nostic about information structures is challenging because the model is incomplete in the
sense of Tamer (2003), thus raising the possibility of partially identified preference parameters.
Tractably characterising the sharp identified set is not an easy task. In fact, in order to deter-
mine whether a given parameter value belongs to the sharp identified set, we need to establish
whether the empirical choice probabilities belong to the collection of choice probabilities pre-
dicted by our model under a large range of possible information structures. The difficulty here
lies in the necessity of exploring such a range of possible information structures because these
can be infinite-dimensional objects.

We approach the above problem by revisiting our framework through the lens of one-player
Bayes Correlated Equilibrium (Bergemann and Morris, 2013; 2016). The concept of one-player
Bayes Correlated Equilibrium is based on a theoretical setting where an omniscient mediator
makes incentive-compatible recommendations to DMs as a function of the state of the world.
If DMs follow such recommendations, then the resulting distribution of choices is a one-player
Bayes Correlated Equilibrium. The concept of one-player Bayes Correlated Equilibrium is a
powerful tool because it provides behavioural predictions that do not depend on (and, thus, are
robust to) the specification of information structures. In particular, Theorem 1 in Bergemann
and Morris (2016) shows that the collection of choice probabilities predicted by our model

1Our methodology allows for the state of the world to be fully observed, partly observed, or fully unobserved
by the researcher. Further, we do not require the researcher to know more (or, less) than the DM about the
state of the world.
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under a large range of possible information structures is equivalent to the collection of choice
probabilities predicted by our model under the notion of one-player Bayes Correlated Equilib-
rium. Further, the latter collection is a convex set. Therefore, determining whether a given
parameter value belongs to the sharp (or, an outer) identified set can be rewritten as a linear
programming problem. In turn, constructing such identified set becomes a computationally
tractable exercise. Lastly, after having reformulated the identifying restrictions as moment
inequalities, we explain how inference can be conducted by using Andrews and Shi (2013)’s
generalised moment selection procedure.

We perform various simulations to test our methodology. We find that the shape of the
identified set and, in particular, its size are sensitive to the information structures processed by
DMs in the true data generating process. We also find that imposing misspecified assumptions
on these information structures can lead to recovering parameter values that are far apart from
the truth. This should warn analysts that the restrictions on the information environment are
key primitives and require deep caution at the modelling stage.

Our framework is applicable to several settings, such as health (when choosing a pharma-
ceutical product, DMs might be uncertain about the equivalence between generics and branded
prescription drugs), education (when choosing an educational career, DMs might be uncertain
about the returns to schooling), environment (when choosing a transport mode, DMs might
be uncertain about the associated carbon footprints), and political economy (when voting in
an election, DMs might be uncertain about the returns to voting for the various parties). In
our empirical application we focus on the latter setting.

More precisely, we consider the spatial model of voting, which is an important framework
in political economy to explain individual preferences for parties (Downs 1957; Black, 1958;
Davis, Hinich, and Ordeshook, 1970; Enelow and Hinich 1984; Hinich and Munger, 1994). This
model postulates that an agent has a most preferred policy and votes for the party whose posi-
tion is closest to her ideal (i.e., she votes “ideologically”). In empirical analysis, it is typically
implemented by estimating a classical parametric discrete choice model with perfect informa-
tion (Alvarez and Nagler, 1995; 1998; 2000; Alvarez, Nagler, and Bowler, 2000). However, in
reality, uncertainty pervades voting. That is, voters may be aware of their own and the parties’
attitudes towards some popular issues, but they might be less prepared on how they themselves
and the parties stand towards more technical or less debated topics, and on the traits of the
candidates other than those publicly advertised. Further, their competence on these matters
is likely to be arbitrarily different, depending, for example, on political sentiment, civic sense,
intellectual preparation, attentional limits, media exposure, and the transparency of candi-
dates. Our methodology allows one to incorporate such frictions in an empirical spatial voting
framework under weak assumptions on the latent, heterogeneous, and potentially endogenous
process followed by voters to gather and evaluate information.

In particular, we focus on a setting where the state of the world consists of distances between
the voters and the parties’ ideological positions on a few popular policy issues (for simplicity, the
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systematic component), and of voter-party-specific taste variables capturing evaluations of the
candidates’ qualities and of the parties’ opinions on more complicated and less media-covered
topics (for simplicity, the idiosyncratic component). We assume that each voter observes the
realisation of the systematic component, but may be uncertain about the realisation of the
idiosyncratic component, on which she has a prior possibly updated through some unobserved
information structure. We estimate such a model using data from the British Election Study,
2017: Face-to-Face Post-Election Survey (Fieldhouse, et al., 2018) on the UK general election
held on 8 June 2017. We compare our findings with the results one gets under the standard
assumption that all voters are fully informed about the idiosyncratic component, and under
the assumption that all voters are fully uninformed about the idiosyncratic component. Several
conclusions on the utility parameters that are achieved under those two information environ-
ments are not unambiguously corroborated when we remain agnostic about the information
structures of voters. Instead, the assumptions maintained on the information structures matter
substantially as they drive most of the results.

To better interpret our results, we perform two counterfactual exercises. In the first, we
focus on the standard question about how the vote shares change in response to changes in
the realisation of covariates, while holding the information structures of voters fixed. Again,
we find that the counterfactual results depend crucially on the specification of the information
environment.

In the second counterfactual exercise, we investigate to what extent voter uncertainty affects
vote shares. We do that by imagining an omniscient mediator who implements a policy that
gives voters perfect information about the state of the world. We simulate the counterfactual
vote shares and study how they change with respect to the factual scenario. This question
has been debated at length in the literature. Political scientists have often answered it by
arguing that a large population composed of possibly uninformed citizens act as if it was
perfectly informed (for a review, see Bartels, 1996). Carpini and Keeter (1996), Bartels (1996),
and Degan and Merlo (2011) use quantitative evidence to disconfirm such claims; the first
two by using auxiliary data on the level of information of the survey respondents as rated
by the interviewers or assessed by test items, and the latter by parametrically specifying the
probability that a voter is informed. We contribute to this thread of the literature by providing
a way to construct counterfactual vote shares under perfect information, which neither requires
the difficult task of measuring the level of knowledge of voters in the factual scenario, nor
imposes parametric assumptions on the probability that a voter is informed. Among the
various results, we quantify the value of information to voters in the sense of Blackwell and
Girshick (1954) as captured through reduction in abstentions. This reveals that informed voters
are more likely to express a vote preference. We also find that the “losers” from the increase
in voter awareness are the two historically dominating parties, i.e., the Conservative Party and
the Labour Party. The observed changes in vote shares suggest that policy initiatives in the
direction of perfect information (for example, transparency laws) can increase voter welfare by
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reducing ex-post regret.

Literature review Research questions similar to ours have been addressed in the literature
using different approaches. For instance, some studies fully specify what the information
frictions faced by agents are, or fully specify how agents deal with the uncertainty induced
by those frictions. Examples are search models, models with rational inattention, and models
with preferences for risk (for references, see above).

Caplin and Martin (2015) study a related problem by using data on choices for every possible
realisation of the state of the world. Instead, in our framework the state of the world can be
fully observed, partly observed, or fully unobserved by the researcher. Further, we incorporate
more degrees of observed and unobserved heterogeneity across agents.

This paper also relates to the econometric literature on discrete choice models when the sets
of alternatives actually considered by agents (hereafter, consideration sets) could be subsets
of the entire set of alternatives, heterogenous, arbitrarily correlated with the payoff-relevant
variables, and latent (for some recent contributions see, for example, Abaluck and Adams, 2018;
Barseghyan, Coughlin, Molinari, and Teitelbaum, 2019; Barseghyan, Molinari, and Thirkettle,
2019; Cattaneo, Ma, Masatlioglu, and Suleymanov, 2019). In fact, one implication of our
framework is that agents may process information structures inducing them to contemplate,
in equilibrium, only a subset of the available alternatives, ignoring all the others. Hence, in
our model, consideration sets can arise endogenously (Caplin, Dean, and Leahy, 2019b).2,3

Yet, there is an important difference between the literature on consideration sets and this
paper. The consideration set literature focuses on recovering consideration probabilities from
the empirical choice probabilities, but parameterises the expected utilities. Instead, in this
paper we allow the expected utilities to depend on any Bayes-consistent posteriors, but we do
not recover consideration probabilities. Thus, we can answer different types of questions.

This paper also relates to the literature concerned with evaluating the impact on choices
of sending agents information about the state of the world (for example, Hastings and Tejeda-
Ashton, 2008, studying retirement fund options in Mexico; Bettinger, et al., 2012, studying
application to colleges; Kling, et al., 2012, studying Medicare Part D prescription drug plans
in the United States). This literature typically exploits randomised field experiments. Our
methodology can offer complementary insights because, as highlighted above, it allows one to
obtain counterfactual choice probabilities when more information about the state of the world

2Recall that the DM’s information structure takes the form of a signal randomly drawn from a certain
distribution. Hence, an alternative belongs to the DM’s consideration set if the subset of the signal’s support
inducing the DM to choose that alternative has positive measure (Caplin, Dean, and Leahy, 2019b). More
details are in Section 2.

3Imperfect information on the utilities is not the only mechanism that can induce endogenous consideration
sets in decision problems. Consideration sets may arise also because of lack of awareness of some alternatives
in the feasible set (for example, Goeree, 2008), deliberately ignoring some alternatives in the feasible set (for
example, Wilson, 2008), incomplete product availability (for example, Conlon and Mortimer, 2014), being
offered the possibility of receiving program access from outside an experiment (for example, Kamat, 2019), and
absence of market clearing transfers in two-sided matching models (for example, He, Sinha, and Sun, 2019).
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is made available to agents.
More generally, this work relates to the literature concerned with relaxing assumptions

about expectation formation and about the amount of information on which agents condition
their expectations (see, for example, the seminal paper by Manski, 2004). In fact, by not
restricting information structures, we allow agents to compute expected utilities with any
Bayes-consistent posteriors.

More recently, results from Bergemann and Morris (2016) have been exploited to charac-
terise the identified set in an entry game (Magnolfi and Roncoroni, 2017) and in an auction
framework (Syrgkanis, Tamer, and Ziani, 2018). We rely on a similar technology, but consider
a multinomial choice setting and focus on different sources of uncertainty. In particular, in
our paper agents may be uncertain about their own utility, while in Magnolfi and Roncoroni
(2017) and Syrgkanis, Tamer, and Ziani (2018) agents may be uncertain about the strategies
adopted by the other players. We thus contribute to this thread of the literature by highlight-
ing the empirical usefulness of the notion of Bayes Correlated Equilibrium in a single-agent,
static, discrete choice model with information frictions. In our setting, the concept of Bayes
Correlated Equilibrium is further related to the Bayesian Persuasion problem introduced in
Kamenica and Gentzkow (2011). The Bayesian Persuasion problem consists of an information
design problem, where the regulator picks an information structure to send to the DM. This
is equivalent to selecting a one-player Bayes Correlated Equilibrium from the collection of ad-
missible one-player Bayes Correlated Equilibria. For a discussion see Bergemann and Morris
(2019).

This paper also contributes to the voting literature in political economy. There is a broad
literature on spatial voting models (see references above and in Section 5). Further, there
is a large body of work on uncertainty in voting (for example, Downs, 1957; Shepsle, 1972;
Aldrich and McKelvey, 1977; Weisberg and Fiorina, 1980; Hinich and Pollard, 1981; Enelow
and Hinich, 1981; Bartels, 1986; Baron, 1994; Alvarez and Nagler, 1995; Matsusaka 1995;
Carpini and Keeter, 1996; Grossman and Helpman, 1996; Alvarez, 1998; Lupia and McCubbins,
1998; Feddersen and Pesendorfer, 1999; Degan and Merlo, 2011; Matĕjka and Tabellini, 2019).
However, only a few empirical works have attempted to take into account voter sophistication
while estimating a spatial voting framework (for example, Aldrich and McKelvey, 1977; Bartels,
1986; Palfrey and Poole, 1987; Franklin, 1991; Alvarez, 1998; Degan and Merlo, 2011; Tiemann,
2019). This has been done by exogenously and parametrically modelling how information
frictions affect the perceptions of DMs about the returns to voting (for instance, via an additive,
exogenous, and parametrically distributed evaluation error in the payoffs), or by parametrically
specifying the probability of being informed versus uninformed when voting. Instead, our
methodology permits one to incorporate uncertainty under weak assumptions on the latent,
heterogeneous, and potentially endogenous process followed by voters to collect information.

The remainder of the paper is organised as follows. Section 2 describes the model. Section
3 discusses identification and some simulations. Section 4 outlines inference. Section 5 presents
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the empirical application. Section 6 concludes. Proofs and further details are in the Appendices.

Notation Capital letters are used for random variables/vectors/matrices and lower case let-
ters for their realisations. Calligraphic capital letters are used for sets. Given a set Z ⊆ RJ ,
∆(Z) represents the collection of all possible densities/mixed joint densities/probability mass
functions (depending on whether Z is finite or not) on Z. An element of ∆(Z) is denoted by
PZ . When the nature of Z is unspecified, we generically refer to and treat PZ as a density.

Consider two random variables, Z and X, with supports Z and X , respectively. Given
x ∈ X , we denote the density of Z conditional on X = x by PZ|X(·|x) ∈ ∆(Z). Further,
we denote the family of densities of Z conditional on every realisation x of X by PZ|X , i.e.,
PZ|X ≡ {PZ|X(·|x)}x∈X .

The K-dimensional positive real space is denoted by RK
+ . Given a set A, |A| denotes A’s

cardinality. Given two sets, A and R ⊆ A, A\R is the complement of R in A. 0L is the L× 1
vector of zeros.

B|Y| is the unit ball in R|Y|, i.e., B|Y| ≡ {b ∈ R|Y| : bT b ≤ 1}. “×” denotes the Cartesian
product operator or is used to indicate vector dimensions. “·” denotes the standard product
operator.

2 The model

In this section we describe a class of single-agent, static, discrete choice models, where DM i

may be partially aware of the utilities generated by the available alternatives. Therefore, DM
i forms some expectation on those utilities and chooses the alternative that maximises such
expectation. We now formally introduce the notation representing the information set of DM
i and then characterise her optimal strategy.

Let DM i face the decision problem of choosing an alternative from a finite set, Y , possibly
under imperfect information about the state of the world. The state of the world consists of
all the payoff-relevant variables. It can include, for example, attributes of the alternatives,
attributes and tastes of DM i, and exogenous market shocks. It is represented by a vector,
(xi, ei, vi). We describe each component of this vector in Assumption 1 below.

Assumption 1. (State of the world)

1. xi is a real vector (or, scalar) drawn at random from the density PX ∈ ∆(X ), where
X ⊆ RHX and HX is the dimension of xi. Hereafter, we denote by Xi the random vector
(or, variable) with support X and density PX . The realisation xi of Xi is observed by
DM i and the researcher.

2. ei is a real vector (or, scalar) drawn at random from the conditional density Pε|X(·|xi) ∈
∆(E), where E ⊆ RHε and Hε is the dimension of ei. Hereafter, we denote by εi the
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random vector (or, variable) with support E and family of conditional densities Pε|X ≡
{Pε|X(·|x)}x∈X , with each Pε|X(·|x) ∈ ∆(E). The realisation ei of εi is observed by DM i

but not by the researcher.

3. vi is a real vector (or, scalar) drawn at random from the conditional density PV |X,ε(·|xi, ei) ∈
∆(V), where V ⊆ RHV and HV is the dimension of vi. Hereafter, we denote by Vi

the random vector (or, variable) with support V and family of conditional densities
PV |X,ε ≡ {PV |X,ε(·|x, e)}(x,e)∈X×E , with each PV |X,ε(·|x, e) ∈ ∆(V). The realisation vi of
Vi is not observed by DM i. vi may or may not be observed by the researcher, depend-
ing on the specific setting at hand. Further, DM i has a prior on Vi conditional on
(Xi, εi) = (xi, ei), which is PV |X,ε(·|xi, ei).

�

Before making a choice, DM i has an opportunity to study better the state of the world
and, in turn, resolve some uncertainty about the utilities generated by the alternatives. More
precisely, DM i can refine her prior upon reception of a private signal which may or may not
be informative about Vi, as specified by Assumption 2 below.

Assumption 2. (Signal) Before choosing an alternative from Y , DM i receives a signal realisa-
tion, ti, drawn at random from the conditional density P i

T |X,ε,V (·|xi, ei, vi) ∈ ∆(Ti), where Ti ⊆
RHTi and HTi is the dimension of ti. Hereafter, we denote by Ti the random vector (or, variable)
with support Ti and family of conditional densities P iT |X,ε,V ≡ {P i

T |X,ε,V (·|x, e, v)}(x,e,v)∈X×E×V ,
with each P i

T |X,ε,V (·|x, e, v) ∈ ∆(Ti). The realisation ti of Ti is observed by DM i but not by
the researcher. However, DM i does not know which conditional density ti has been drawn
from because she does not observe vi. Instead, DM i is aware of the entire family of conditional
densities, {P i

T |X,ε,V (·|xi, ei, v)}v∈V . Hence, DM i uses ti and {P i
T |X,ε,V (·|xi, ei, v)}v∈V to update

PV |X,ε(·|xi, ei) via Bayes rule, and obtains the posterior, P i
V |X,ε,T (·|xi, ei, ti) ∈ ∆(V). �

Finally, DM i chooses alternative y ∈ Y maximising her expected utility computed under
the posterior, ∫

v∈V
u(y, xi, ei, v)P i

V |X,ε,T (v|xi, ei, ti)dv,

where u : Y × X × E × V → R is the utility function. If there is more than one maximising
alternative (i.e., if there are ties), then DM i applies some tie-breaking rule. We provide a
formal definition of the optimal strategy of DM i later in this section.

Before proceeding, we add a few remarks on our framework.

Remark 1. (Information frictions) The informativeness of signal Ti about Vi (in the Blackwell
sense) is inherently related to the frictions potentially encountered by DM i while investigating
the state of the world. These frictions can stem from various sources, such as attentional and
cognitive limits, financial constraints, spatial and temporal boundaries, cultural and personal
biases, or values taken by the known components of the state of the world. When these frictions
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are severe, DM i may decide not to inform herself better about the state of the world up to
the point where the payoffs are known with certainty.

For example, if DM i faces no information frictions, then she may process a signal revealing
the exact realisation of Vi. A possible representation of that when V is finite is

Ti ≡ V , P i
T |X,ε,V (v|xi, ei, v) = 1 ∀v ∈ V , (1)

for a given realisation (xi, ei) of (Xi, εi). Instead, if DM i experiences considerable informa-
tion frictions, then she may process a signal adding nothing to her prior on Vi. A possible
representation of that is

Ti ≡ {0}, P i
T |X,ε,V (0|xi, ei, v) = 1 ∀v ∈ V , (2)

for a given realisation (xi, ei) of (Xi, εi). Note that, under (2), the posterior of DM i is equal
to her prior. A signal whose informativeness is between such two extremes is plausible as well.
For instance, DM i may process a signal revealing whether vi is in [a, b] ⊂ V or not. A possible
representation of that is

Ti ≡ {0, 1}, P i
T |X,ε,V (1|xi, ei, v) = 1 ∀v ∈ [a, b],

P i
T |X,ε,V (0|xi, ei, v) = 1 ∀v ∈ V \ [a, b],

for a given realisation (xi, ei) of (Xi, εi).
In a typical empirical application, the information frictions possibly encountered by DM

i are not observed by the researcher. In turn, it is impossible to know which signal DM i

processes and, specifically, how the conditional density of Ti varies across the realisations of
(Xi, εi, Vi). Hence, our framework proceeds without assumptions on that in order to avoid
misspecifications. �

Remark 2. (Heterogeneity) Suppose we have data on a cross-section of DMs facing the above
decision problem (as Assumption 3 in Section 3 formally imposes). Our framework accom-
modates two layers of heterogeneity. The first layer concerns the realisations of the random
variables. In particular, the state of the world and the realisation of the signal can vary
across DMs, as indicated by subscript “i” in (xi, ei, vi, ti). This layer is important but stan-
dard in empirical work. The second layer concerns the densities from which such realisations
are randomly drawn. Our approach allows the prior and the family of conditional signal den-
sities to vary across DMs. Specifically, with regards to the prior, note that every agent i
has a common functional form, given by PV |X,ε(·|xi, ei). However, because the realisation of
(Xi, εi) can vary across every agent i, if agents i, j have (xi, ei) 6= (xj, ej) then it could be
that PV |X,ε(·|xi, ei) 6= PV |X,ε(·|xj, ej). With regards to the family of conditional signal den-
sities, we incorporate heterogeneity in a fully flexible way. In fact, even if agents i, j have
(xi, ei) = (xj, ej) ≡ (x, e), it could be that they use different families of conditional signal
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densities to compute their posteriors, i.e., {P i
T |X,ε,V (·|x, e, v)}v∈V 6= {P j

T |X,ε,V (·|x, e, v)}v∈V , as
highlighted by superscripts “i, j”.4 We believe that allowing for arbitrary heterogeneity in
conditional signal densities (and, thus, posteriors) is important to avoid misspecifications of
information frictions and, in turn, design a robust econometric analysis. This is because differ-
ent agents could encounter different information frictions and, consequently, process more or
less informative signals as emphasised in Remark 1. �

Remark 3. (Distinction among Xi, εi, Vi) We distinguish among Xi, εi, Vi in order to get a
flexible framework nesting various settings. However, the researcher can omit any of the vari-
ables among Xi, εi, Vi by simply assuming degenerate distributions. Further, the researcher has
the freedom to decide which components of the state of the world are observed by DM i be-
fore processing any signal (hereafter, “observed pre-signal”), i.e., which variables of the model
should fall into Xi, εi, Vi. In some scenarios, the researcher may prefer to be very cautious and
assume that none of the components of the state of the world are observed pre-signal by DM
i. In other scenarios, the researcher may feel confident imposing that some components of the
state of the world are observed pre-signal by DM i. This choice will have an impact on the
identifying power of the model. In this respect, our methodology can also be used to perform
a sensitivity analysis of the identifying power of the model to changes in the set of components
of the state of the world observed pre-signal by DM i. �

We now provide a more compact representation of our framework. Following the terminol-
ogy of Bergemann and Morris (2013; 2016), we define the baseline choice problem faced by DM
i as

G ≡ {Y ,X , E ,V , u,Pε|X ,PV |X,ε}.

G contains what DM i knows before processing any signal, together with the specific realisation
(xi, ei) of (Xi, εi) that DM i observes. We also define the information structure processed by
DM i as

Si ≡ {Ti,P iT |X,ε,V }.

Si represents the additional information gathered by DM i to learn about Vi, together with
the specific realisation ti of Ti that DM i observes. As discussed in Remark 1, we remain
agnostic about Si and, thus, allow Si to freely depend on the frictions possibly faced by DM i

while studying the payoffs. Hereafter, we refer to the information structure revealing the exact
realisation of Vi for each (x, e) ∈ X ×E as the complete information structure (for an example,
see (1) in Remark 1), and to the information structure adding no information whatsoever on
the realisation of Vi for each (x, e) ∈ X × E as the degenerate information structure (for an
example, see (2) in Remark 1). Further, we denote by S the set of all admissible information

4Put another way, agents i, j featuring (xi, ei) = (xj , ej) ≡ (x, e) (and, hence, having the same prior)
could end up with different posteriors because {P iT |X,ε,V (·|x, e, v)}v∈V = {P jT |X,ε,V (·|x, e, v)}v∈V but ti 6= tj , or
because ti = tj but {P iT |X,ε,V (·|x, e, v)}v∈V 6= {P jT |X,ε,V (·|x, e, v)}v∈V , or a combination of both.
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structures, ranging from the complete to the degenerate information structure. Lastly, the
pair {G,Si} constitutes the augmented choice problem faced by DM i. The augmented choice
problem {G,Si} summarises our framework, together with the specific realisation (xi, ei, ti) of
(Xi, ε, Ti) that DM i observes.

We now formally define the optimal strategy of DM i when she faces the augmented
choice problem {G,Si}. Let Yi be a random variable representing the choice of DM i. A
(mixed) strategy for DM i is a family of probability mass functions of Yi conditional on
(Xi, εi, Ti) = (x, e, t) across all possible (x, e, t) ∈ X × E × Ti.5 We denote it by P iY |X,ε,T ≡
{P i

Y |X,ε,T (·|x, e, t)}(x,e,t)∈X×E×Ti , with each P i
Y |X,ε,T (·|x, e, t) ∈ ∆(Y).6 This strategy is optimal

if, for every (x, e, t) ∈ X × E × Ti, DM i maximises her expected payoff by choosing any
alternative y ∈ Y such that P i

Y |X,ε,T (y|x, e, t) > 0.

Definition 1. (Optimal strategy of the augmented choice problem {G,Si}) The family of prob-
ability mass functions P iY |X,ε,T is an optimal strategy of the augmented choice problem {G,Si}
if, ∀(x, e, t) ∈ X × E × Ti,∫

v∈V
u(y, x, e, v)P iV |X,ε,T (v|x, e, t)dv ≥

∫
v∈V

u(ỹ, x, e, v)P iV |X,ε,T (v|x, e, t)dv,

∀ỹ ∈ Y \ {y}, and ∀y ∈ Y such that P i
Y |X,ε,T (y|x, e, t) > 0, where P i

V |X,ε,T (·|x, e, t) is the
posterior computed via Bayes rule as

P i
V |X,ε,T (v|x, e, t) =

P i
T |X,ε,V (t|x, e, v)PV |X,ε(v|x, e)∫

ṽ∈V P
i
T |X,ε,V (t|x, e, ṽ)PV |X,ε(ṽ|x, e)dṽ

∀v ∈ V .

�

In Appendix A we provide an equivalent definition of the optimal strategy of DM i. In the
same appendix we also give a definition of the consideration set of DM i which endogenously
arises from her optimal strategy.

By using the continuity of the expected utility with respect to Yi (in the discrete metric),
it is possible to show that an optimal strategy of the augmented choice problem {G,Si} exists
for any Si ∈ S, even though it may not be unique.

Lemma 1. (Existence of an optimal strategy of the augmented choice problem {G,Si}) The
augmented choice problem {G,Si} admits an optimal strategy, P iY |X,ε,T , ∀Si ∈ S. �

Before concluding, we emphasise that various discrete choice models that have been analysed
in the literature can be obtained within the above framework under additional assumptions on
Si. We provide some examples below.

5A mixed strategy will arise in the presence of ties.
6The superscript “i” in PiY |X,ε,T highlights that agents i, j could choose different alternatives because

(xi, ei, ti) 6= (xj , ej , tj), or because Si 6= Sj , or because they adopt different tie-breaking rules, or a combination
of all such scenarios.
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Example 1. (Nested Logit) As a first example, we consider the Nested Logit model with one
nest collecting all goods but the outside option. The payoff function, u, is

u(y, Zi, ξi, ηi) ≡

β
′Ziy + ξi + ληiy if y ∈ Y \ {0},

ηi0 if y = 0,
(3)

where 0 ∈ Y is the outside option, Y has cardinality L, Ziy is an M × 1 vector of covariates
of good y ∈ Y \ {0}, Zi ≡ (Zi1, ..., ZiL−1) is an M(L − 1) × 1 vector of the inside goods’
characteristics, ξi and ηi ≡ (ηi0, ..., ηiL−1) represent the tastes of DM i. The parameter λ ∈ (0, 1)
captures the correlation among the inside goods. The variables ξi, ηi0, ..., ηiL−1 are mutually
independent, and independent of Zi. The densities of ξi and ηiy are parameterised as in Cardell
(1997), so that ρiy ≡ ξi +ληiy has the standard Gumbel density and the CDF of (ρi1, ..., ρiL−1)
evaluated at (s1, ..., sL−1) is exp(−(∑L−1

y=1 exp(−sy/λ))λ).7 The researcher observes the choice
made by DM i and the realisation of Zi. Below we present two alternative scenarios that are
allowed in our framework and that, under additional assumptions on the information structures
processed by agents, collapse to the standard Nested Logit model.

First, suppose that DM i observes the realisation of (Zi, ξi) but might be uncertain about
the realisation of the other tastes, ηi. Hence, following our general notation, Xi ≡ Zi, εi ≡ ξi,
and Vi ≡ ηi. DM i has a prior on Vi conditional on (Xi, εi), which is assumed to obey the
Gumbel parameterisation above. Further, DM i processes an information structure, Si, to
update her prior. Note that this framework collapses to the Nested Logit model under the
additional assumption that each agent in the population processes the complete information
structure.

Second, for each y ∈ Y , let Z1
iy and Z−1

iy denote the first component and the residual
M − 1 components of the M × 1 vector Ziy, respectively. Further, let Z1

i ≡ (Z1
i1, ..., Z

1
iL−1)

and Z−1
i ≡ (Z−1

i1 , ..., Z
−1
iL−1). Suppose now that DM i observes the realisation of (Z−1

i , ξi, ηi)
but might be uncertain about the realisation of Z1

i . Hence, following our general notation,
Xi ≡ Z−1

i , εi ≡ (ξi, ηi), and Vi ≡ Z1
i . DM i has a prior on Vi conditional on (Xi, εi) which is

assumed equal to the empirical distribution of Z1
i conditional on Z−1

i . Further, DM i processes
an information structure, Si, to refine her prior. As earlier, note that this framework collapses
to the Nested Logit model under the additional assumption that each agent in the population
processes the complete information structure.

Similar considerations can be made for other discrete choice models, such as the (Multino-
mial) Logit/Probit model and the Mixed Logit model.

In the discussion above, we have interpreted the utility components unobserved by the re-
searcher, (ξi, ηi), as tastes of DM i. That is, (ξi, ηi) capture, in some aggregate ways, additional
latent determinants of the utility that DM i can get from the decision problem. Along the lines
of McFadden (1981), an alternative interpretation of (ξi, ηi) is as “errors in judgment” made

7See also Galichon (2019) regarding the random utility representation of the Nested Logit model.
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by DM i, which are due to the complexity of the choice problem and can lead to suboptimal
outcomes. The latter interpretation recognises the importance of information frictions but,
in contrast to our work, it treats their impact on the agent perception about the attainable
utilities as exogenous and random. In this paper, when referring to classical parametric dis-
crete choice models like the Nested Logit Model, we always interpret the utility components
unobserved by the researcher as tastes of DM i.

�

Example 2. (Risk aversion) As a second example, we consider a discrete choice model of
insurance plans. Specifically, DM i faces an underlying risk of a loss (for example, a car
accident) and can choose among L insurance plans. The loss event is denoted by Ci. Ci = 1
if the loss event occurs, and 0 otherwise. Each insurance plan y ∈ Y is characterised by a
deductible, Dy, and a premium, Piy. Further, DM i is endowed with some wealth (Wealthi).
The payoff function, u, belongs to the CARA family, i.e., for each y ∈ Y ,

u(y, Pi, D,Wealthi, ri, Ci) ≡



1−exp[−ri×(Wealthi−Piy−Dy)]
ri

if Ci = 1, ri 6= 0,
1−exp[−ri×(Wealthi−Piy)]

ri
if Ci = 0, ri 6= 0,

Wealthi − Piy −Dy if Ci = 1, ri = 0,

Wealthi − Piy if Ci = 0, ri = 0,

(4)

where Pi ≡ (Pi1, ..., PiL), D ≡ (D1, ..., DL), and ri is the coefficient of absolute risk aver-
sion. ri is often assumed distributed according to some parametric distribution such as the
Beta distribution. The researcher observes the choice made by DM i and the realisation of
(Pi, D,Wealthi). In some cases, the researcher also observes the realisation of Ci from ex-post
data on claims.

Before choosing an insurance plan, DM i is aware of the realisation of (Pi, D,Wealthi, ri).
However, DM i does not observe the realisation of Ci because it is realised after the insurance
plan choice has been made. Hence, following our general notation, Xi ≡ (Pi, D,Wealthi),
εi ≡ ri, and Vi ≡ Ci. DM i has a prior on Vi conditional on (Xi, εi),8 which can be assumed to
belong to some parametric family. For instance, one can use a simple Probit model or a more
sophisticated Poisson-Gamma model (for an example of the latter see Barseghyan, Molinari,
O’ Donoghue, and Teitelbaum, 2013; Barseghyan, Molinari, and Teitelbaum; 2016). Further,
DM i processes an information structure, Si, to update her prior. Si incorporates any extra
private information on the risky event at the disposal of DM i, other than her level of risk
aversion, and can arbitrarily depend on DM i’s risk aversion.

Under the additional restriction that each agent processes the degenerate information struc-
ture, note that this framework collapses to the standard risk aversion setting considered in the

8We can also condition the prior of DM i on a vector of individual-specific characteristics, Zi, such as
gender, age, insurance score, and rating territories, that are observed by the researcher. Zi can be treated as
fully observed by DM i and, hence, added to Xi.
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empirical literature, where individuals have no extra private information on the risky event.
�

Example 3. (Rational inattention) As a third example, we consider the rational inattention
framework by Caplin and Dean (2015) and Matĕjka and McKay (2015). In that setting, the
decision problem has two stages. In the first stage, DM i optimally chooses an information
structure to update her prior. Although DM i is free to choose any information structure,
attention is a scarce resource and there is a cost of processing information. As a result, more
informative signals are more costly. Such attentional costs are parameterised in various ways,
for example, the Shannon entropy (Sims, 2003) and the posterior-separable function (Caplin,
Dean, and Leahy, 2019a). Formally, in the first stage DM i observes the realisation (xi, ei) of
(Xi, εi) and chooses an information structure Si ∈ S such that

Si ∈argmaxS≡{T ,PT |X,ε,V }∈S∫
(v,t)∈V×T

[
max
y∈Y

ES,tu(y, xi, ei, Vi)
]
PT |X,ε,V (t|xi, ei, v)PV |X,ε(v|xi, ei)d(v, t)− C(S),

where ES,tu(y, xi, ei, Vi) is the expected payoff from choosing y ∈ Y under the posterior induced
by the information structure S and the signal realisation t, and C(S) represents the param-
eterised attentional costs associated with the information structure S. Then, in the second
stage, DM i observes a signal realisation, ti, randomly drawn according to Si. Lastly, DM i

chooses alternative y ∈ Y maximising ESi,tiu(y, xi, ei, Vi).
Note that this rational inattention framework can be obtained within our model under the

additional assumption that DM i processes an information structure chosen as prescribed by
the above first stage. Also, note that such an optimal information structure depends on the
way in which attentional costs are parameterised.

Lastly, Hébert and Woodford (2018) and Morris and Strack (2019) consider continuous-time
models of sequential evidence accumulation and show that the resulting choice probabilities are
identical to those of a static rational inattention model with posterior-separable attentional cost
functions. That is, there is an equivalence between the information that is ultimately acquired
in some search models and the information acquired in a static model of rational inattention,
under a particular parameterisation of the attentional costs. Therefore, our setting also nests
such search frameworks. �

3 Identification

In this section we discuss identification of the primitives u,Pε|X ,PV |X,ε from observing the
choices made by a cross-section of DMs facing the decision problem described in Section 2.
Before proceeding, we parameterise such primitives and index them by the vectors of parameters
θu ∈ Θu ⊆ RKu , θV ∈ ΘV ⊆ RKV , and θε ∈ Θε ⊆ RKε , respectively. Hereafter, we represent
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them as

u(·; θu),PθVV |X,ε ≡ {PV |X,ε(·|x, e; θV )}(x,e)∈X×E ,Pθεε|X ≡ {Pε|X(·|x; θε)}x∈X .

Further, we denote by θ the whole vector of parameters, i.e., θ ≡ (θu, θV , θε) ∈ Θ ≡ Θu×ΘV ×
Θε ⊆ RK , where K ≡ Ku + KV + Kε. θ0 ≡ (θ0

u, θ
0
V , θ

0
ε ) ∈ Θ is the true value of θ and is the

focus of our identification analysis.

3.1 Data generating process

We formally outline our restrictions on the data generating process (hereafter, DGP). The
relevant notation has been introduced in Section 2. Some objects have the superscript “0” in
order to distinguish their true value from other possible values.

Assumption 3. (DGP) The sets Y , X , E , and V are known by the researcher. Y and X
are finite. Nature repeats the following procedure for i = 1, ..., n, in a mutually independent
manner, with n large:

1. DM i is endowed with the realisation (xi, ei, vi) of (Xi, εi, Vi). The realisations xi, ei, and
vi are randomly drawn from P 0

X , Pε|X(·|xi; θ0
ε ), and PV |X,ε(·|xi, ei; θ0

V ), respectively. DM i

observes (xi, ei). DM i does not observe vi. However, DM i has a prior on Vi conditional
on (Xi, εi) = (xi, ei), that is PV |X,ε(·|xi, ei; θ0

V ). G0 ≡ {Y ,X , E ,V , u(·; θ0
u),P

θ0
ε

ε|X ,P
θ0
V

V |X,ε}
constitutes the baseline choice problem of DM i.

2. DM i processes an information structure, S0
i ≡ {T 0

i ,P
i,0
T |X,ε,V } ∈ S, to refine her prior.

DM i observes a signal realisation, ti, randomly drawn according to S0
i and computes the

posterior by applying the Bayes rule.

3. DM i chooses alternative yi from Y according to the notion of an optimal strategy of the
augmented choice problem {G0, S0

i } provided in Definition 1.

4. The researcher observes (xi, yi).

�

Assumption 3 summarises Assumptions 1 and 2 of Section 2 and adds further details. The
set X is assumed finite as standard in empirical work with partial identification in order to easily
transform identifying restrictions into unconditional moment inequalities. More details on this
are in Section 4. If X is not finite, then our identification analysis still goes through. However,
for inference, one has to implement a method dealing with conditional moment inequalities.

As anticipated in Section 2, Assumption 3 remains agnostic about the information structures
processed by DMs and, thus, allows these information structures to freely depend on the
underlying latent frictions possibly faced by DMs while learning about the state of the world.
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Further, these information structures can be arbitrarily different across DMs, ranging from
the complete to the degenerate information structure. Importantly, being agnostic about the
information structures processed by DMs means that DMs compute their expected utilities
with any Bayes-consistent posteriors.

Assumption 3 also allows the priors of DMs to be heterogeneous. In fact, agents i, j can have
PV |X,ε(·|xi, ei; θ0

V ) 6= PV |X,ε(·|xj, ej; θ0
V ) if and only if (xi, ei) 6= (xj, ej), as already highlighted

in Remark 2. Note that this can be restrictive when E is finite.
Assumption 3 does not impose any restriction on the tie-breaking rules adopted by DMs

and these can vary across the population.
Assumption 3 allows for correlation between εi and Vi. Further, it allows for correla-

tion between Xi and (εi, Vi) and conditional heteroskedasticity. For example, one can im-
pose that, conditional on Xi = x, (εi, Vi) are jointly distributed as a multivariate normal
with mean vector µ0(x) and variance-covariance matrix Σ0(x). In such a case, (θ0

ε , θ
0
V ) ≡

({µ0(x)}x∈X , {Σ0(x)}x∈X ).9

Lastly, the probability mass function of (Yi, Xi) which results from the decision problem is
denoted by P 0

Y,X ∈ ∆(X × Y). P 0
Y,X is nonparametrically identified by the sampling process

and, hence, treated as known in the identification analysis.
Remarks 4-6 conclude our discussion of Assumption 3.

Remark 4. (Parametric versus semi/nonparametric identification) Our approach allows non-
parametric identification of the functions u,Pε|X ,PV |X,ε when the sets X , E ,V are finite and
with relatively small cardinalities.10 In fact, in such a case, one can focus on the vector of pa-
rameters collecting the image values of those functions, without the need to introduce further
parameterisations. This vector is finite-dimensional because the domains of the those functions
are finite.

It is important to be flexible on the form of all the primitives entering the model more
generally. Here our main focus is to relax the assumptions on the information environment and
we view this as a first compelling step towards understanding identification in less restricted
decision problems. �

Remark 5. (When Vi is observed by the researcher) In certain settings, some or all the com-
ponents of the realisation, vi, of Vi are observed by the researcher, together with (xi, yi) for
i = 1, ..., n. For example, in models of insurance plans, the researcher often has data on the
ex-post claim experience of the agents in the sample. In those cases, θ0

V could be identified
directly from such additional data.11 In our general discussion below, we focus on the “worst-
case” scenario where vi is unobserved to the researcher for i = 1, ..., n. �

9If X is not finite, then it remains an open question whether one can incorporate correlation between Xi

and (εi, Vi), for instance, by extending insights from the parametric control function literature to our setting
(for example, Blundell and Smith, 1986; 1989).

10Recall that if the sets E and V are finite, then Pε|X and PV |X,ε are families of conditional probability mass
functions.

11For example, suppose that all the components of the realisation, vi, of Vi are observed by the researcher
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Remark 6. (Policy relevance of θ0) Our methodology does not attempt to recover the infor-
mation structures of DMs and, rather, focuses on (partially) identifying θ0. In fact, identifying
θ0 is sufficient to answer some standard questions in the empirical literature on decision prob-
lems. For instance, we can use the estimates of θ0 to find how the choice probabilities change
in response to changes in the realisation of Xi, while holding the information structures of DMs
fixed.

Further, identifying θ0 permits one to answer some new questions. For instance, we can use
the estimates of θ0 to find how the choice probabilities change when the researcher gives some
additional information to DMs that induce them to modify their information structures, while
holding the state of the world fixed. Such a change in choice probabilities quantifies the extent
to which uncertainty affects the final decisions.

More details are provided when discussing the empirical application in Section 5. �

3.2 A tractable characterisation of the identified set

Let us first introduce some useful notation. In what follows, given x ∈ X , we denote by
P 0
Y |X(·|x) ∈ ∆(Y) the probability mass functions of Yi conditional on Xi = x induced by
P 0
Y,X and P 0

X . We use the same notation without superscript “0” to indicate a generic prob-
ability mass function of Yi conditional on Xi = x. Lastly, given θ ∈ Θ, we denote by
Gθ ≡ {Y ,X , E ,V , u(·; θu),Pθεε|X ,P

θV
V |X,ε} the corresponding baseline choice problem.

We now discuss identification of θ0 under Assumption 3. Due to the absence of restrictions
on the information structures and tie-breaking rules of DMs, our model is incomplete in the
sense of Tamer (2003). This raises the possibility of partial identification of θ0 and, conse-
quently, the challenge of tractably characterising the set of θs exhausting all the implications
of the model and data, i.e., the sharp identified set for θ0.

Intuitively, the sharp identified set for θ0 is the set of θs for which the model predicts a
probability mass function of Yi conditional on Xi = xi that matches with P 0

Y |X(·|x), for each
x ∈ X . More formally, for every θ ∈ Θ and S ∈ S, let Rθ,S be the collection of optimal
strategies of the augmented choice problem {Gθ, S}.12 Further, for every θ ∈ Θ and x ∈ X ,
let R̄θ

Y |x be the collection of probability mass functions of Yi conditional on Xi = x that are
induced by the model’s optimal strategies under θ, while remaining agnostic about information

for i = 1, ..., n. Then, under the additional assumption that Vi is independent of εi conditional on Xi, we can
recover {PV |X(·|x)}x∈X without parameterising it, simply from its empirical distribution.

12Note that, if there are no ties, Rθ,S contains only one optimal strategy.
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structures. That is,

R̄θY |x ≡ Conv
{
PY |X(·|x) ∈ ∆(Y) :

PY |X(y|x) =
∫

(t,v,e)∈T ×V×E
PY |X,ε,T (y|x, e, t)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e; θV )Pε|X(e|x; θε)d(t, v, e) ∀y ∈ Y,

PY |X,ε,T ∈ Rθ,S ,

S ≡ {T ,PT |X,ε,V } ∈ S
}
,

(5)
where we have used the fact that Yi is independent of Vi conditional on (Xi, εi, Ti). Convexi-
fication (via the convex hull operator, Conv{·}) allows us to include in R̄θ

Y |x probability mass
functions of Yi conditional on Xi = x that are mixtures across information structures. Impor-
tantly, this ensures that the information structures can be arbitrarily different across DMs. It
follows that the sharp identified set for θ0 can be defined as

Θ∗ ≡ {θ ∈ Θ : P 0
Y |X(·|x) ∈ R̄θ

Y |x ∀x ∈ X}. (6)

Unfortunately, the definition of Θ∗ in (6) seems hardly useful in practice. This is because
constructing R̄θ

Y |x is infeasible due to the necessity of exploring the large class S which con-
tains infinite-dimensional objects. In what follows, we overcome such an issue by revisiting
our framework through the lens of one-player Bayes Correlated Equilibrium (Bergemann and
Morris, 2013; 2016). The concept of one-player Bayes Correlated Equilibrium is based on a
theoretical setting where an omniscient mediator makes incentive-compatible recommendations
to DMs as a function of the state of the world. If DMs follow such recommendations, then
the resulting distribution of choices is a one-player Bayes Correlated Equilibrium. The concept
of one-player Bayes Correlated Equilibrium is a powerful tool because it provides behavioural
predictions that do not depend on the specification of information structures. In particular,
Theorem 1 in Bergemann and Morris (2016) shows that the set of one-player Bayes correlated
equilibria for a given baseline choice problem equals the set of optimal strategies that could
arise when adding to that baseline choice problem any information structures. In turn, this
allows us to characterise Θ∗ in a more tractable way.

Before giving further details, it is worth highlighting that Bergemann and Morris (2013;
2016) introduce the concept of Bayes Correlated Equilibrium and related results for a general
n-player game, where n ≥ 1. Here such a framework is used for a one-player game. Hence, it
refers to the behaviour of a single agent in a decision problem and is inherently linked to the
notion of Bayesian Persuasion by Kamenica and Gentzkow (2011), as discussed in Section 1.

Our analysis proceeds in three steps. First, we give the definition of one-player Bayes
Correlated Equilibrium (hereafter, 1BCE) of the baseline choice problem Gθ. Further, we
highlight that the set of 1BCEs of the baseline choice problem Gθ is convex. Second, we
introduce Theorem 1 in Bergemann and Morris (2016) which claims that the set of 1BCEs
of the baseline choice problem Gθ is equivalent to the collection of optimal strategies of the
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augmented choice problem {Gθ, S} across every possible information structure S ∈ S. Third,
we combine the first and second steps to construct Θ∗ (or, an outer set of Θ∗) via a collection
of linear programming problems. Details on each step follow.

In order to give the definition of 1BCE of the baseline choice problem Gθ, let us consider a
family of densities of (Yi, Vi) conditional on (Xi, εi) = (x, e) across all possible (x, e) ∈ X × E .
We denote it by PY,V |X,ε ≡ {PY,V |X,ε(·|x, e)}(x,e)∈X×E , with each PY,V |X,ε(·|x, e) ∈ ∆(Y×V). Let
the marginal of PY,V |X,ε on V be equal to the prior of DM i. Further, imagine an omniscient
mediator using PY,V |X,ε to recommend DM i which alternative to choose in a way that is
incentive compatible. Then, PY,V |X,ε is a 1BCE of the baseline choice problem Gθ.

Definition 2. (1BCE of the baseline choice problem Gθ) Given θ ∈ Θ, the family of densities
PY,V |X,ε is a 1BCE of the baseline choice problem Gθ if:

1. It is consistent for the baseline choice problem Gθ, i.e., the marginal of PY,V |X,ε(·|x, e) on
V is equal to the prior, PV |X,ε(·|x, e; θV ), for every x ∈ X and e ∈ E . That is,

∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |X,ε(v|x, e; θV ) ∀x ∈ X ,∀e ∈ E ,∀v ∈ V .

2. It is obedient, i.e., an agent who is recommended alternative y ∈ Y by an omniscient
mediator has no incentive to deviate. That is,∫

v∈V
u(y, x, e, v; θu)PY,V |X,ε(y, v|x, e)dv ≥

∫
v∈V

u(y′, x, e, v; θu)PY,V |X,ε(y, v|x, e)dv,

∀y′ ∈ Y \ {y},∀y ∈ Y ,∀x ∈ X ,∀e ∈ E .

�

Note that, for each (x, e) ∈ X × E , the collection of conditional densities PY,V |X,ε(·|x, e)
satisfying the consistency and obedience requirements of Definition 2 is convex. This is because
the consistency and obedience requirements are linear in PY,V |X,ε(·|x, e).

We now illustrate Theorem 1 in Bergemann and Morris (2016). Such a theorem highlights
the robustness properties of 1BCE. Specifically, it shows that the set of 1BCEs of the base-
line choice problem Gθ equals the set of optimal strategies of the augmented choice problem
{Gθ, S} across every admissible information structure S ∈ S. Therefore, it allows us to com-
pactly characterise all possible optimal behaviours of an agent if she had access to any of the
information structures in S.

Theorem 1. (Bergemann and Morris, 2016) Given θ ∈ Θ, PY,V |X,ε is a 1BCE of the baseline
choice problem Gθ if and only if there exists an information structure, S ≡ {T ,PT |X,ε,V } ∈ S,
and an optimal strategy, PY |X,ε,T , of the augmented choice problem {Gθ, S}, such that PY,V |X,ε
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is induced by PY |X,ε,T .13 �

Note that Theorem 1 also implies that a 1BCE of the baseline choice problem Gθ exists.
Indeed, fix any information structure S ≡ {T ,PT |X,ε,V } ∈ S. Let PY |X,ε,T be an optimal
strategy of the augmented choice problem {Gθ, S}, which exists by Lemma 1. Let PY,V |X,ε be
the family of densities of (Yi, Vi) conditional on (Xi, εi) = (x, e) across all possible (x, e) ∈ X×E
induced by PY |X,ε,T . Then, by Theorem 1, PY,V |X,ε is a 1BCE of the baseline choice problem
Gθ. Therefore, the set of 1BCE of the baseline choice problem Gθ is non-empty. Furthermore,
the set of 1BCE of the baseline choice problem Gθ is typically non-singleton. In fact, if the
set of 1BCE was a singleton, then information would be essentially irrelevant, i.e., a certain
alternative would be optimal regardless of any extra information that agents might process.

We now exploit Theorem 1 to represent Θ∗ in a more useful way. For each θ ∈ Θ, let Qθ

be the convex set of 1BCEs of the baseline choice problem Gθ. Moreover, for each θ ∈ Θ and
x ∈ X , let Q̄θY |x be the collection of probability mass functions of Yi conditional on Xi = x

that are induced by the 1BCEs of the baseline choice problem Gθ. That is,

Q̄θY |x ≡
{
PY |X(·|x) ∈ ∆(Y) : PY |X(y|x) =

∫
(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x; θε)d(e, v) ∀y ∈ Y,

PY,V |X,ε(·|x, e) ∈ Qθ
}
.

(7)
Note that Q̄θY |x is convex and, hence, agents in the population can obey arbitrarily different
1BCEs.

Theorem 1 implies that R̄θ
Y |x = Q̄θY |x ∀x ∈ X and ∀θ ∈ Θ. Thus, one can rewrite Θ∗ by

using the notion of 1BCE, as formalised in Proposition 1.

Proposition 1. (Characterisation of Θ∗ through the notion of 1BCE) Let

Θ∗∗ ≡ {θ ∈ Θ : P 0
Y |X(·|x) ∈ Q̄θY |x ∀x ∈ X}.

Under Assumption 3, Θ∗ = Θ∗∗. �

We are now ready to outline a tractable procedure to construct Θ∗ by leveraging on the
convexity of Q̄θY |x for each x ∈ X and θ ∈ Θ. We distinguish two cases. The first case is when
the sets E and V are finite. Recall that in such a case, PθVV |X,ε, P

θε
ε|X , and PY,V |X,ε are families of

conditional probability mass functions. Further, by Proposition 1 and Definition 2, note that
θ ∈ Θ∗ if and only if the following linear programming problem has a solution with respect to
PY,V |X,ε:

13Suppose T is finite. Then, by “induced” we mean

PY,V |X,ε(y, v|x, e) =
∑
t∈T

PY |X,ε,T (y|x, e, t)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e; θV ),

∀y ∈ Y, ∀v ∈ V, ∀x ∈ X , and ∀e ∈ E .
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[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |ε,X(v|x, e; θV ) ∀v ∈ V,∀e ∈ E, ∀x ∈ X ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[u(y, x, e, v; θu)− u(y′, x, e, v; θu)] ≤ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y},∀e ∈ E, ∀x ∈ X ,

[1BCE-Data match]: P 0
Y |X(y|x) =

∑
(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x; θε) ∀y ∈ Y, ∀x ∈ X .

(8)

Therefore, one can construct Θ∗ by checking whether the linear programming problem (8)
has a solution with respect to PY,V |X,ε for every θ ∈ Θ. In practice, this is done by appropriately
selecting a finite subset of Θ (also called a grid) and solving the linear programming problem
(8) for each θ in such a grid. In the simulations of Section 3.3, we know θ0 and its dimension K
is small. Thus, we can design a grid of values around each component of θ0, take the Cartesian
product of theK grids obtained, and consider this as our final grid. In the empirical application
(where we do not know θ0), we obtain a grid by using the simulated annealing algorithm as
explained in Appendix E.

The second case is when the sets E and V are not finite. Recall that in such a case, Pθεε|X ,
PθVV |X,ε, and PY,V |X,ε are families of conditional densities or conditional mixed joint densities.
Hence, by Proposition 1 and Definition 2, θ ∈ Θ∗ if and only if the following system of equalities
and inequalities has a solution with respect to PY,V |X,ε:

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |ε,X(v|x, e; θV ) ∀v ∈ V, ∀e ∈ E, ∀x ∈ X ,

[1BCE-Obedience]: −
∫
v∈V

PY,V |X,ε(y, v|x, e)[u(y, x, e, v; θu)− u(y′, x, e, v; θu)]dv ≤ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y}, ∀e ∈ E,∀x ∈ X ,

[1BCE-Data match]: P 0
Y |X(y|x) =

∫
(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x; θε)d(e, v) ∀y ∈ Y,∀x ∈ X .

(9)

Note that (9) contains an uncountable number of constraints which cannot be feasibly imple-
mented as a linear programming problem. To operationalise (9), we suggest to discretise E and
V and approximate Pθεε|X and PθVV |X,ε by conditional probability mass functions. Specifically, we
appropriately select some finite subsets, Ediscr ⊂ E and Vdiscr ⊂ V . Then, for each x ∈ X , we
construct the conditional probability mass function P discr

ε|X (·|x; θε) as

P discr
ε|X (e|x; θε) ≡

Pε|X(e|x; θε)∑
e∈Ediscr Pε|X(e|x; θε)

∀e ∈ Ediscr.14 (10)

We proceed similarly to construct {P discr
V |X,ε(·|x, e; θV )}(x,e)∈X×Ediscr . In turn, we replace E , V ,

Pθεε|X , and P
θV
V |X,ε in (9) with such discretised objects and obtain:

14Note that here we approximate a continuous cumulative distribution function by a step function. There
are other ways to do so, in addition to (10). For an alternative discretisation see Magnolfi and Roncoroni
(2017). Many other methods can be found in Bracquemond and Gaudoin (2003), Lai (2013), and Chakraborty
(2015), together with a discussion on how each method preserves important properties of the continuous case.

22



[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = P discrV |ε,X(v|x, e; θV ) ∀v ∈ Vdiscr, ∀e ∈ Ediscr, ∀x ∈ X ,

[1BCE-Obedience]: −
∑

v∈Vdiscr

PY,V |X,ε(y, v|x, e)[u(y, x, e, v; θu)− u(y′, x, e, v; θu)] ≤ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y}, ∀e ∈ Ediscr, ∀x ∈ X ,

[1BCE-Data match]: P 0
Y |X(y|x) =

∑
(e,v)∈Ediscr×Vdiscr

PY,V |X,ε(y, v|x, e)P discrε|X (e|x; θε) ∀y ∈ Y, ∀x ∈ X .

(11)

Finally, one can approximate Θ∗ by checking whether the linear programming problem (11)
has a solution with respect to PY,V |X,ε for every θ ∈ Θ (in practice, for each θ in a grid, as
explained above). Note that such approximation constitutes an outer set of Θ∗ because it is
obtained by discretising a continuous DGP in order to achieve tractability. Further, different
discretisations of E and V may produce different outer sets. In our simulations and empirical
application we have tried a few different discretisations and obtained negligible differences
among the resulting outer sets, provided that Ediscr and Vdiscr contain the extreme values of E
and V , respectively.

In what follows, with some abuse of notation, we do not report the superscript “discr”
when discussing the practical implementation of (9) for the case where the sets E and V are
not finite, it being understood that all the necessary discretisations have been carried out.

Lastly, in Appendix C we describe a case where one can avoid doing a grid search over Θ
in order to construct the projection of Θ∗ along each of its dimensions.

3.3 Simulations

In this section we implement the developed procedure in some simulations. In particular, we
investigate the identifying power of two models. First, we study a Nested Logit framework
without the standard assumption that each agent is fully informed about payoffs (i.e., each
agent processes the complete information structure). Second, we study a risk aversion frame-
work without the standard assumption that each agent has no private information about the
risky event (i.e., each agent processes the degenerate information structure).

Nested Logit We consider the Nested Logit model introduced in Example 1 of Section 2,
when Xi ≡ Zi, εi ≡ ξi, and Vi ≡ ηi. We start by constructing the collection of choice probabili-
ties predicted by 1BCEs for a given value of covariates and parameters. This step serves to get
a preliminary understanding of the identifying power of the model when we remain agnostic
about the information structures of DMs. In particular, we want to exclude the possibility that
1BCE systematically rationalises every probability distribution in the unit simplex, because
this could imply that the model without restrictions on the information structures of DMs
has no identifying power. We set L = 3, β = 0,15 and λ = 0.5. Hereafter, we refer to this

15Since β = 0, in this exercise we compute unconditional choice probabilities.
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Figure 1: The figure represents Q̄θY (black region), R̄θ,com
Y (red point), and R̄θ,deg

Y (blue point)
under DGP1.

DGP as DGP1. Given θ ≡ (β, λ) = (0, 0.5), let R̄θ,com
Y be the collection of choice probabilities

induced by the model’s optimal strategies when the researcher assumes that all DMs process
the complete information structure. Let R̄θ,deg

Y be the collection of choice probabilities that are
induced by the model’s optimal strategies when the researcher assumes that all DMs process
the degenerate information structure. Finally, recall that Q̄θY is the collection of choice prob-
abilities that are induced by 1BCEs, as defined in (7). Figure 1 represents Q̄θY (black region),
R̄θ,com
Y (red point), and R̄θ,deg

Y (blue point).16 By Theorem 1, R̄θ,com
Y and R̄θ,deg

Y are subsets of
Q̄θY . Further, note that Q̄θY is a strict subset of the unit simplex, which suggests that the no-
tion of 1BCE has some empirical content in this setting. Lastly, observe that the assumptions
on information structures can lead to very different predicted probabilities, as shown by the
difference between the red and blue points.

We now move to simulate data from (3) and construct the identified set for the parameters
of interest as outlined in Section 3.2. We consider some DGPs slightly more complicated than
DGP1. In particular, we set L = 4,M = 1, β = 1.6, and λ = 0.5. We randomly draw covariates
from a probability mass function, which is constructed by taking a trivariate17 normal with
mean and variance covariance matrix,

µ ≡ (0.629, 0.812,−0.746)′, Σ ≡

3.913 0.455 0.531
0.455 3.547 0.558
0.531 0.558 3.971

,
respectively, and then discretising it to have support {−1, 0, 1}3. The empirical choice prob-
abilities are derived under three alternative scenarios: (i) 1

10 of the population processes the
16To construct Q̄θY by solving (9), we discretise E and V as {0.1, 1, 2, 3, ..., 50} and {−6,−4,−2, 0, 2, 4, 6}3,

respectively.
17We have one covariate for each alternative, excluding the outside option.
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complete information structure and 9
10 of the population processes the degenerate information

structure (hereafter, DGP2); (ii) 1
2 of the population processes the complete information struc-

ture and 1
2 of the population processes the degenerate information structure (hereafter, DGP3);

(iii) each agent processes the complete information structure (hereafter, DGP4). Lastly, in the
presence of ties, DMs select one of the maximisers uniformly at random.

Figure 2 represents the identified set (black region), the true value of the parameters (red
point), and the value of the parameters that is identified when all DMs are assumed to process
the complete information structure as standard in the Nested Logit framework (blue point);
under DGP2 (first picture from the left), DGP3 (second picture from the left), and DGP4 (last
picture from the left). For each of these DGPs, Table 1 reports the true value of the parameters
(second column), the value of the parameters that is identified when all DMs are assumed to
process the complete information structure (third column), and the projection of the identified
set along every dimension (fourth column).

Across the three scenarios considered, the model has the least identifying power under
DGP2, i.e., when the majority of DMs process the degenerate information structure. In par-
ticular, under DGP2, the projection for β of the identified set lies on the positive real line but
is unbounded. As soon as a significant proportion of DMs process the complete information
structure, the identifying power of the model improves significantly because more DMs take
their decisions based on the true payoffs, rather than on the expected payoffs, and hence the
empirical choices feature more variation. In fact, both under DGP3 and DGP4, the projection
for β is tight and bounded. The projection for λ is narrower under DGP3 and DGP4 than
under DGP2, but it seems less sensitive to the information environment. Further, assuming
that all DMs are fully informed leads to recovering one parameter value which is contained
in the identified set. When this assumption is misspecified, the recovered parameter value
can be different from the truth, as it is the case under DGP2 and DGP3, where the blue and
red points are quite close with regards to λ but relatively far apart with regards to β. Such
a result should warn analysts to be cautious about imposing restrictions on the information
environment because these can have consequences on the empirical conclusions, if incorrect.
Instead, under DGP4, the red and blue points coincide as expected, because the assumption
on the information structures of DMs is not misspecified.18

True Complete Identified set
DGP2 β = 1.6, λ = 0.5 β = 3.4242, λ = 0.4502 β ∈ [0.4,∞), λ ∈ [0.1, 0.6]
DGP3 β = 1.6, λ = 0.5 β = 2.2042, λ = 0.5045 β ∈ [0.5, 2.7], λ ∈ [0.2, 0.6]
DGP4 β = 1.6, λ = 0.5 β = 1.6, λ = 0.5 β ∈ [0, 2.2], λ ∈ [0.4, 0.6]

Table 1: Results under DGP2, DGP3, and DGP4.

18Note that the discretisations implemented on E and V imply that the black regions of Figure 2 are projec-
tions of an outer set of the sharp identified set. However, observe that the blue and red points belong to the
sharp identified set by construction. Hence, the distance between them suggests the minimal size of the sharp
identified set.
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Figure 2: From the left: the first figure is based on DGP2; the second figure is based on DGP3;
the last figure is based on DGP4. In each figure: the black region is the identified set; the red
point is the true value of the parameters; the blue point is the value of the parameters that is
identified when all DMs are assumed to process the complete information structure.

Risk aversion We consider the discrete choice model of insurance plans discussed in Exam-
ple 2 of Section 2, when Xi ≡ (Pi, D,Wealthi), εi ≡ ri, and Vi ≡ Ci. We start by constructing
the collection of choice probabilities predicted by 1BCEs for a given value of covariates and
parameters. As earlier, this step serves to get a preliminary understanding of the identifying
power of the model when we remain agnostic about the information structures of DMs. In
particular, we set L = 3 and (D1, D2, D3) = (100, 200, 500). For each insurance plan y ∈ Y , Piy
is assumed equal to P base × λy, where (λ1, λ2, λ3) ≡ (5/6, 7/10, 3/10) and P base = 100. Given
that the payoff function belongs to the CARA family, choices can be determined without ob-
serving Wealthi.19 ri is distributed as a Beta with parameters γ1 = 1, γ2 = 10, truncated to
have support [0, 0.02]. The prior of DM i on Ci = 1 is imposed equal to 1−Φ(0), where Φ is the
normal CDF with mean 0 and variance 2. Hereafter, we refer to this DGP as DGP5. As in the
previous example, given θ ≡ (γ1, γ2) = (1, 10), R̄θ,com

Y is the collection of choice probabilities
induced by the model’s optimal strategies when the researcher assumes that all DMs process
the complete information structure, R̄θ,deg

Y is the collection of choice probabilities induced by
the model’s optimal strategies when the researcher assumes that all DMs process the degener-
ate information structure, and Q̄θY is the collection of choice probabilities that are induced by
1BCEs. Figure 3 represents Q̄θY (black region), R̄θ,com

Y (red point), and R̄θ,deg
Y (blue point).20

As earlier, R̄θ,com
Y and R̄θ,deg

Y are subsets of Q̄θY . Further, note that Q̄θY is a strict subset of
the unit simplex, which suggests that the notion of 1BCE has some empirical content in this
setting. Lastly, in this example too, we see that the assumptions on information structures can
lead to very different predicted probabilities, as shown by the difference between the red and
blue points.

We now move to simulate data from (4) and construct the sharp identified set for the
19Omitting Wealthi preserves the ordinal ranking of the alternatives.
20To construct Q̄θY by solving (9), we discretise E ≡ [0, 0.02] into 20 equidistant points.
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Figure 3: The figure represents Q̄θY (black region), R̄θ,com
Y (red point), and R̄θ,deg

Y (blue point)
under DGP5.

parameters of interest as outlined in Section 3.2. We consider some DGPs slightly more com-
plicated than DGP5. In particular, we set L = 4, (D1, D2, D3, D4) = (100, 200, 500, 1000).
For each insurance plan y ∈ Y , Piy is assumed equal to P base

i × λy, where (λ1, λ2, λ3, λ4) ≡
(5/6, 7/10, 3/10, 1/10) and P base

i is uniformly distributed on {100, 200, 300}. ri is distributed
as a Beta with parameters γ1 = 1, γ2 = 10, truncated to have support [0, 0.02]. Ci is set equal
to 1 if Ziβ + ηi + τi ≥ 0 and zero otherwise, where β = 0.7, ηi, τi are independent standard
normals, and Zi is a scalar uniformly distributed on {−4,−3.5,−3,−2.5, ..., 4} representing
some demographic characteristics.21 Before processing any information structure, DM i does
not observe the realisations of Ci, ηi, τi. Hence, the prior of DM i on Ci = 1 is Φ(Ziβ), where Φ
is the normal CDF with mean 0 and variance 2. The empirical choice probabilities are derived
under two alternative scenarios: (i) 1

3 of the population processes the degenerate information
structure, 1

3 of the population process the complete information structure, and 1
3 of the popu-

lation discovers the realisation of ηi but not of τi (hereafter, DGP6); (ii) each agent processes
the degenerate information structure (hereafter, DGP7). Lastly, in the presence of ties, DMs
select one of the maximisers uniformly at random.

Figure 4 reports our results under DGP6. Each of the three sub-figures contains the pro-
jection of the identified set along a pair of dimensions (black region), the true value of the
parameters (red point), and the value of the parameters that is identified when all DMs are
assumed to process the degenerate information structure (blue point). Figure 5 does the same
under DGP7. For each of these DGPs, Table 2 reports the true value of the parameters (second
column), the value of the parameters that is identified when all DMs are assumed to process
the degenerate information structure (third column), and the projection of the identified set
along every dimension (fourth column).

In both scenarios considered, the model delivers narrow bounds for β, but it has almost
no identifying power with respect to γ1 and γ2. When the information structures of DMs are

21See Footnote 8, where we introduce Zi.
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Figure 4: All figures are based on DGP6. In each figure: the black region is the projection of
the identified set along a pair of dimension; the red point is the true value of the parameters;
the blue point is the value of the parameters that is identified when all DMs are assumed to
process the degenerate information structure.

Figure 5: All figures are based on DGP7. In each figure: the black region is the projection of
the identified set along a pair of dimension; the red point is the true value of the parameters.

homogenous as in DGP7, the identifying power of the model improves. In fact, the projection of
the identified set for β becomes tighter and the projection for γ1 becomes disconnected by now
excluding a continuum of points. However, the projection for γ2 does not seem to be sensitive
to the variation in the information environment, thus suggesting that the framework might
have little empirical content with regards to the scale of the risk aversion coefficient. Further,
assuming that all DMs have no private information on the risky event leads to recovering one
parameter value which is contained in the identified set. When this assumption is misspecified,
the recovered parameter value can be different from the truth, as it is the case under DGP6,
where the blue and red points are quite close with regards to (β, γ1) but considerably far apart
with regards to γ2. Instead, under DGP7, the red and blue points coincide as expected, because
the assumption on the information structures of DMs is not misspecified.22

22See Footnote 18.
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True Degenerate Identified set
DGP6 β = 0.7, γ1 = 1, γ2 = 10 β = 0.9974, γ1 = 0.7827, γ2 = 2.4063 β ∈ [0.2, 1.1], γ1 ∈ [0,∞), γ2 ∈ [0,∞)
DGP7 β = 0.7, γ1 = 1, γ2 = 10 β = 0.7, γ1 = 1, γ2 = 10 β ∈ [0.7, 0.9], γ1 ∈ [0.9, 5.8] ∪ [10,∞), γ2 ∈ [0,∞)

Table 2: Results under DGP6 and DGP7.

4 Inference

Identification of the true parameter vector, θ0, relies on the assumption that the true probability
mass function of the observables, P 0

Y,X , is known by the researcher. However, when doing an
empirical analysis, the researcher should replace P 0

Y,X with its sample analogue resulting from
having i.i.d. observations, {Yi, Xi}ni=1, and take into account the sampling variation. Given
α ∈ (0, 1), this section illustrates how to construct a uniformly asymptotically valid (1− α)%
confidence region, Cn,1−α, for any θ ∈ Θ∗. In particular, we suggest to reformulate our problem
using conditional moment inequalities and apply the generalised moment selection procedure by
Andrews and Shi (2013) (hereafter, AS), as detailed in Appendix B.1 of Beresteanu, Molchanov,
and Molinari (2011) (hereafter, BMM).23

Cn,1−α is obtained by running a test with null hypothesis H0 : θ0 = θ, for every θ ∈ Θ, and
then collecting all the values of θ which are not rejected. For a given θ, the test rejects H0 if
TSn(θ) > ĉn,1−α(θ), where TSn(θ) is a test statistic and ĉn,1−α(θ) is a corresponding critical
value. Thus,

Cn,1−α ≡ {θ ∈ Θ: TSn(θ) ≤ ĉn,1−α(θ)}. (12)

The remainder of the section explains how to compute TSn(θ) and ĉn,1−α(θ) for any given
θ ∈ Θ.

In order to define the test statistic, TSn(θ), let us first rewrite the linear programming (8)
as a collection of conditional moment inequalities. To do so, we label the elements of Y as
y1, ..., y|Y|−1, y|Y|. Also, recall from the notation paragraph in Section 1 that B|Y|−1 is the unit
ball in R|Y|−1.

Proposition 2. (Conditional moment inequalities) Under Assumption 3, for each θ ∈ Θ,
θ ∈ Θ∗ if and only if

E[m(Yi, Xi; b, θ)|Xi = x] ≤ 0 ∀b ∈ B|Y|−1,∀x ∈ X ,

where

m(Yi, x; b, θ) ≡ bT


1{Yi = y1}

...

1{Yi = y|Y|−1}

− max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

 .
�

23Note that the characterisation of Θ∗ in Proposition 1 is equivalent to the characterisation of Θ∗ in Theorem
2.1 of BMM. This is because the conditional Aumann expectation of the random closed set of conditional choice
probabilities under 1BCE is equal to Q̄θY |x, for each θ ∈ Θ and x ∈ X .
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Proposition 2 comes from the fact that, following BMM, one can express the condition
P 0
Y |X(·|x) ∈ Q̄θY |x as

bTP 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ R|Y|, (13)

where the map
b ∈ R|Y| 7→ sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x) ∈ R,

is the support function of Q̄θY |x. By exploiting the positive homogeneity of the support func-
tion and some algebraic manipulations, (13) is equal to the collection of conditional moment
inequalities stated in Proposition 2.

Second, we rewrite the conditional moment inequalities in Proposition 2 as unconditional
moment inequalities. Here, we use Lemma 2 in AS which shows that conditional moment
inequalities can be transformed into unconditional moment inequalities by choosing appropriate
instruments, h ∈ H, where H is a collection of instruments and h is a function of Xi. Thus,

θ ∈ Θ∗ ⇔ E[m(Yi, Xi; b, θ, h)] ≤ 0 ∀b ∈ B|Y|−1,∀h ∈ H a.s., (14)

where
m(Yi, Xi; b, θ, h) ≡ m(Yi, Xi; b, θ)× h(Xi).

Third, observe that E[m(Yi, Xi; b, θ, h)] evaluated at b ≡ 0|Y|−1 is 0. Therefore, (14) is equivalent
to

θ ∈ Θ∗ ⇔ max
b∈B|Y|−1

E[m(Yi, Xi; b, θ, h)] = 0 ∀h ∈ H a.s.

In light of the three steps above, following Appendix B.1 of BMM, we can use as test statistic

TSn(θ) ≡
∫
H

[√
n max
b∈B|Y|−1

m̄n(b, θ, h)
]2
dΓ(h),

where Γ is a probability measure on H as explained in Section 3.4 of AS, and

m̄n(b, θ, h) ≡ 1
n

n∑
i=1

m(Yi, Xi; b, θ, h).

Intuitively, TSn(θ) is built by imposing a penalty for each h such that the maximum of
E[m(Yi, Xi; b, θ, h)] across b ∈ B|Y|−1 is different from zero. Moreover, given that the sup-
port of Xi is finite, the analyst can replace Γ with the uniform probability measure on X as
suggested by Example 5 in Appendix B of AS. That is,

TSn(θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

m̄n(b, θ, x)
]2
, (15)
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where
m̄n(b, θ, x) ≡ 1

n

n∑
i=1

m(Yi, Xi; b, θ)1{Xi = x}.

Lastly, we compute the critical value, ĉn,1−α(θ), by following AS’s bootstrap method con-
sisting of the following steps. First, we draw Wn bootstrap samples using nonparametric i.i.d.
bootstrap. Second, for each w = 1, ...,Wn, we compute the recentered test statistic

TSwn (θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

(m̄w
n (b, θ, x)− m̄n(b, θ, x))

]2
, (16)

where m̄w
n (b, θ, x) is calculated just as m̄n(b, θ, x), but with the bootstrap sample in place of

the original sample. Third, ĉn,1−α(θ) is set equal to the (1−α) quantile of {TSwn (θ)}Wn
w=1. Once

TSn(θ) and ĉn,1−α(θ) are computed for each θ ∈ Θ (or, in practice, for each θ belonging to a
grid), the confidence region, Cn,1−α, defined in (12) can be constructed.

In Appendix D we provide more details on the computation of (15) and (16). In particular,
we show that computing (15) and (16) amounts to solving some quadratically constrained
linear programming problems.

We conclude by highlighting that, in addition to reporting a confidence region, it is often
useful to report an estimated set, so as to reveal how much of the volume of the confidence
region is due to randomness and how much is due to a large identified set. In this respect, AS
show that Cn,0.50 is an asymptotically half-median-unbiased estimated set.

5 Empirical application

In this section we use our methodology to study the determinants of voting behaviour during
the UK general election held on 8 June 2017 and perform some counterfactual exercises.

5.1 Setting and model specification

The spatial model of voting is a dominant framework in political economy to explain individual
preferences for parties and, in turn, how such preferences shape the policies implemented by
democratic societies (see Section 1 for references).24 This model posits that an agent has
a most preferred policy (also called “bliss point”) and casts her vote in favour of the party
whose position is closest to her ideal (i.e., she votes “ideologically”). In empirical analysis, it is
typically implemented by estimating a classical parametric discrete choice model with perfect
information (see Section 1 for references). That is, it is assumed that each DM i processes the

24See Merlo (2006) and Weingast and Wittman (2006) for some reviews and alternative models of voting.
See Persson and Tabellini (2000) for models on how parties strategically position themselves in the policy space
and voters choose among them. This framework is augmented in Matĕjka and Tabellini (2019) with rational
inattention.
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complete information structure and votes for party y ∈ Y maximising her utility,

u(y,Xi, ωi) ≡ β′Ziy + γ′yWi + ωiy, (17)

where Ziy ≡ |Zi−Zy| is an M × 1 vector observed by the researcher, representing the distance
between DM i’s opinion (Zi) and party y’s opinion (Zy) on M issues, as measured in some
common M -dimensional ideological metric space. Wi is a J × 1 vector of individual-specific
covariates observed by the researcher, such as gender, occupation, and socio-economic status.
Xi ≡ (Ziy ∀y ∈ Y ,Wi) collects the ideological distances and the individual-specific covariates.
ωiy is a scalar capturing the tastes of DM i for each party/candidate that are unknown to the
researcher, whose distribution belongs to a parametric family, thereby outlining a (Multinomial)
Logit model, Probit model, Nested Logit model, etc. If voters vote ideologically, then β is
expected to be negative so that DM i’s utility declines with increasing distance between Zi and
Zy.25

The above model is scientifically appealing because of its elegance and simplicity but has
limitations. Importantly, many papers highlight that uncertainty affects voting (see references
in Section 1). That is, voters may be unsure about their own and the parties’ ideological
positions and, more generally, about the qualities of the candidates. This is because of the
inevitable difficulty of making precise political judgments and understanding associated returns,
or because the parties deliberately obfuscate information in order to attract voters with different
preferences and expand electoral support. One of the most prominent early works states that:

The democratic citizen is expected to be well informed about political affairs. He is sup-
posed to know what the issues are, what their history is, what the relevant facts are, what
alternatives are proposed, what the party stands for, what the likely consequences are. By
such standards, the voter falls short. (Berelson, Lazarfeld, and McPhee, 1954, p.308).

More plausibly, in the wake of election campaigns, voters are conscious of their own and
the parties’ attitudes towards some popular issues, but might be uncertain about how they
themselves and the parties stand towards more technical or less debated topics, and about the
traits of the candidates other than those publicly advertised. Further, they may attempt to fill
such gaps in information with various degrees of success and in different ways, depending on a
priori inclination for certain parties, political sentiments, interest in specific issues, civic sense,
intellectual preparation, attentional limits, participation in seminars, candidates’ transparency,
opinion makers, and media exposure. In turn, some individuals might become much more
informed, others less, giving rise to heterogeneity in the public understanding of politics. In
fact, it has been observed that:

25See Degan and Merlo (2009) and Henry and Mourifié (2013) for a characterisation of conditions under which
the hypothesis that individuals vote ideologically is falsifiable. See Merlo and De Paula (2017) for nonparametric
identification and estimation of preferences from aggregate data when individuals vote ideologically.
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[...] in a world of imperfect information, a world in which there are costs associated with
gathering and evaluating new information, the voter, faced with a serious decision such
as deciding which candidate would make a better president, is forced to utilize a shortcut
method to arrive at his choice. (Enelow and Hinich, 1981, p.489).

Also,

[...] It is not reasonable to suppose that the voter who is exceedingly well informed about
politics and the one who is largely ignorant of it would enumerate potentially relevant
considerations with the same exhaustiveness; or frame alternative considerations with the
same precision; or foresee consequences of alternative choices with the same distinctness;
or coordinate calculations, both about alternative means and alternative ends, with the
same exactness. (Sniderman, Brody, and Tetlock, 1991, p.165-166).

Despite the acknowledgement of the central role played by the sophistication of voters in de-
termining voting patterns, only a few empirical works have attempted to take it into account
while estimating a spatial voting framework. This has been done, for instance, through an
additive, exogenous, and parametrically distributed error in the payoffs representing the eval-
uation mistakes made by voters, or a parametric specification of the variance of the perceived
party position across voters, or a parametric specification of the probability of being informed
versus uninformed when voting (for references, see Section 1). By contrast, our methodology
permits one to incorporate uncertainty under weak assumptions on the latent, heterogeneous,
and potentially endogenous process followed by voters to gather and evaluate information.

In particular, we focus on the following setting. We consider the payoff function (17)
and collect in Zi distances between the position of DM i and the positions of the parties
on highly debated policy issues. We can thus impose that DM i observes the realisation of
Xi ≡ (Ziy ∀y ∈ Y ,Wi) before voting. Further, we specify

ωiy ≡ εi + σViy, (18)

where σ > 0. We assume that DM i observes the realisation of her individual-specific tastes, εi,
before voting. We also assume that εi has a standard normal distribution independent of Xi.
However, DM i might be uncertain about the realisation of Vi ≡ (Viy ∀y ∈ Y) that captures,
in some aggregate way, evaluations of the candidates’ qualities (depending, for example, on
whether candidates disclose their assets, liabilities, and any conflict of interests) and of the
parties’ opinions on more complicated and less media-covered issues (including, for example,
public expenditure management, anti-terrorism strategies, reactions to pandemics and other
unforeseen shocks). DM i has a prior on Vi conditional on (Xi, εi), which belongs to some
parametric family. In particular, for the purpose of our empirical application, we model such
a prior as an L-variate standard normal, independent of (Xi, εi), where L is the cardinality of
Y . Moreover, DM i may acquire additional information to update her prior. Some individuals
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could discover the exact realisation of Vi (i.e., they process the complete information structure),
others could end up voting by simply following their priors (i.e., they process the degenerate
information structure), still others could process any information structures between those two
extremes (for example, they may only discover the realisation of some elements of Vi because
they have a priori inclination for a few parties). Our objective is conducting inference on
(β, γy ∀y ∈ Y , σ), while leaving the information structures of voters unspecified and arbitrarily
heterogeneous.

Before concluding this section, note that one may think of model specifications richer than
(17)-(18). For example, we could allow DM i to be uncertain also about certain components of
Xi; we could impose a more flexible parameterisation of DM i’s prior and of the density of εi by
introducing correlation between Vi and εi, correlation among the Vi’s components, correlation
between (εi, Vi) and Xi, and conditional heteroskedasticity; we could use random coefficients;
we could measure the distance between Ziy and Zy by the Euclidean distance instead of the
absolute value, which would bring interaction terms among the various policy issues inside
the utility function. However, here we forego these modelling choices and implement a lighter
framework in order to speed up computation.

5.2 Data

We estimate our model by using data on the UK general election held on 8 June 2017. We
believe that such data fit our framework. In fact, the parties were clearly deployed with regards
to the Brexit and focused their election campaign around issues such as public health and aus-
terity, while remained more silent on topics like climate change and education (Hutton, 2017;
Snowdon and Demianyk, 2017), thus possibly inducing uncertainty among voters. Specifically,
we use data from the British Election Study, 2017: Face-to-Face Post-Election Survey (Field-
house, et al., 2018). The survey took place immediately after the election. It asked questions
concerning key contemporary problems about political representation, accountability, and en-
gagement, and aims to explain changes in party support. The interviewees constituted an
address-based random probability sample of eligible voters living in 468 wards in 234 Parlia-
mentary Constituencies across England, Scotland, and Wales.

To limit the impact of Scottish and Welsh independentist fronts on our results, we focus
on the respondents who reside in England. In order for the assumption that voters vote ideo-
logically to be well suited for these data, we delete the individuals who have declared to have
voted tactically (2.16% of the respondents). We consider the answers of respondents on which
party they have voted for among the Conservative Party, Labour Party, Liberal Democrats,
United Kingdom Independence Party (UKIP), Green Party, and none.26 Further, we collect in

26The original questionnaire includes among the possible answers also the Scottish National Party (i.e,
the Scottish nationalist social-democratic party in Scotland), Plaid Cymru (i.e., the Welsh nationalist social-
democratic party in Wales), other unspecified minor parties, and “Refused to declare”. None of the respondents
who reside in England have voted for the Scottish National Party. Only one of the respondents who reside in
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Wi some demographic characteristics of respondents. In particular, we focus on gender, socio-
economic class, and total income before tax. Also, we consider the positions of respondents
on four dimensions: EU integration, taxation and social care, income inequality, and left-right
political orientation. EU integration, taxation and social care, and income inequality refer to
some of the most publicised policy issues on which the election has been contested. Although
the left-right political orientation is not a policy issue per se, it captures the traditional ide-
ological contrast between the left which seeks social justice through redistributive social and
economic policies, and the right which defends private property and capitalism. More precisely,
we select the answers of the respondents to the following questions (summarised with respect
to the original version, for brevity):

1. [EU integration]: On a scale from 0 to 10, do you think that Britain should do all it can
to unite fully with the European Union (0), or do all it can to protect its independence
from the European Union (10)?

2. [Taxation and social care]: On a scale from 0 to 10, do you think that government should
cut taxes a lot and spend much less on health and social services (0), or that government
should raise taxes a lot and spend much more on health and social services (10)?

3. [Income inequality]: On a scale from 0 to 10, do you think that government should make
much greater efforts to make people’s incomes more equal (0), or that government should
be much less concerned about how equal people’s incomes are (10)?

4. [Left-right political orientation] Where would you place yourself on a scale from 0 to 10
where 0 denotes left political attitudes and 10 denotes right political attitudes?

Along the notation of (17), Zi is a 4 × 1 vector listing the position of DM i on dimensions
1-4. The survey also asks respondents to state the positions of the parties on dimensions 1-4.
Following the literature (for example, Alvarez and Nagler, 1995; 1998; 2000; Alvarez, Nagler,
and Bowler, 2000), we set party y’s position on dimensions 1-4 equal to the median placement
of the party on each dimension across the sample.27 Hence, Zy is a 4 × 1 vector containing
such median values.

Recall that γy captures the impact of the demographic characteristics of DM i (Wi) on the
vote shares. We allow this impact to be heterogenous across the parties. To be parsimonious on
the number of parameters to estimate, we further parameterise γy by requiring that γy ≡ γZLR

y

for every party y, where ZLR
y is the position of party y with regards to left-right orientation.

In other words, we assume that the aforementioned heterogeneity is driven by the position of
each party in the left-right political spectrum. Lastly, we consider abstention as base category
and normalise its payoff to zero.
England has voted for Plaid Cymru. 4 respondents who reside in England have voted for other unspecified
minor parties. Lastly, 3.52% of the respondents who reside in England have refused to declare who they have
voted for. We have dropped all these observations.

27Voters in the sample substantially agree about the positions of the parties on dimensions 1-4.
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After omitting observations with missing data, our sample is made up of 1, 217 individuals.
Of these, 36.48% have voted for the Labour Party, 36.65% for the Conservative Party, 6.41%
for the Liberal Democrats, 1.73% for UKIP, 1.56% for the Green Party, and 17.17% did not
vote.28 Table 3 presents some descriptive statistics. The second column refers to the positions
of the respondents on dimensions 1-4 and reports the mean (rounded to the nearest integer),
median, and standard deviation across the sample. The remaining columns reports Zy for each
party y. As expected, the Conservative Party and UKIP are more right-wing, less concerned
with income inequality, more Eurosceptic, and stronger supporters of low taxes and a minimal
welfare state, than the Labour Party and the Green Party. The Liberal Democrats are more
centrist.

Self Conservative Labour Lib. Dem. UKIP Green
(Mean, Median, St.Dev.)

EU 5 5 3.355 7 4 3 10 3
Social care 7 7 2.051 5 7 6 4 6
Inequality 4 4 2.743 6 3 4 5 3
Left-right 5 5 2.059 8 2 5 9 3

Table 3: Descriptive statistics on the ideological positions.

The sample is gender balanced, with 48.97% of males and 51.03% of females. We assign
label 1 to females and 0 to males. In the original data, the socio-economic class is divided
into seven categories, following the Standard Occupation Classification 2010: professional oc-
cupations; managerial and technical occupations; skilled occupations - non-manual; skilled
occupations - manual; partly skilled occupations; unskilled occupations; armed forces. To
lessen the computational burden, we reorganise these categories into three groups. The first
group is assigned label 0 and collects professional occupations, managerial and technical oc-
cupations, skilled occupations - non-manual, and armed forces (68.04% of the sample). The
second group is assigned label 1 and collects skilled occupations - manual and partly skilled
occupations (29.42% of the sample). The third group is assigned label 2 and collects unskilled
occupations (2.54% of the sample). Similarly, in the original data, the total income before
tax is bracketed into 14 categories. We reorganise these categories into four groups, which we
construct by approximately following the UK income tax rates. The first group is for income
between £0 and £15, 599 (21.78% of the sample). The second group is for income between

28Before omitting observations with missing data, the percentages are: 34.74% for the Labour Party, 33.78%
for the Conservative Party, 5.39% for the Liberal Democrats, 1.91% for UKIP, 1.63% for the Green Party,
and 22.56% did not vote. The survey seems slightly skewed towards supporters of the Labour Party. The
actual vote shares in England were 41.9% for the Labour Party, 45.6% for the Conservative Party, 7.8%
for the Liberal Democrats, 2.1% for UKIP, 1.9% for the Green Party. The election results led to a hung
parliament and the Conservative Party formed a minority government supported by an agreement with the
Northern Ireland’s Democratic Unionist Party. The vote shares of each party (including minorities) can be ob-
tained, for example, here https://www.bbc.co.uk/news/election/2017/results/england. See also https:
//en.wikipedia.org/wiki/Opinion_polling_for_the_2017_United_Kingdom_general_election#2017 for
opinion polls organised by various organisations to gauge voting intentions.
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£15, 600 and £49, 999 (51.68% of the sample). The third group is for income between £50, 000
and £99, 999 (21.45% of the sample). The fourth group is for income above £100, 000 (5.09%
of the sample). To each of the four groups, we assign as value the logarithm of the median
income across the respondents belonging to that group (9.4727, 10.4282, 11.1199, and 12.6115,
respectively). We summarise these numbers in Table 4.

Gender Socio-economic class Income
Males (0): 48.97% First group (0): 68.04% First group (9.4727): 21.78%
Females (1): 51.03% Second group (1): 29.42% Second group (10.4282): 51.68%

Third group (2): 2.54% Third group (11.1199): 21.45%
Fourth group (12.6115): 5.09%

Table 4: Descriptive statistics on the demographic characteristics.

5.3 Implementation of the methodology and results

This section implements the procedure described in Section 4 to construct a 95% confidence
region, Cn,0.95, for each θ ≡ (β, γ, σ) ∈ Θ∗, and an asymptotically half-median-unbiased esti-
mated set, Cn,0.50, for Θ∗. Before discussing the results, let us make a few remarks. First, recall
that Cn,0.95 and Cn,0.50 are obtained by inverting a test with null hypothesis H0 : θ0 = θ, for
every θ ∈ Θ. We have done that by designing a grid of θ’s values via the simulated annealing
algorithm and inverting the test for each θ in the grid. Second, in order to compute the test
statistic and critical value for a given θ, one has to discretise the supports E ,V , as discussed at
the end of Section 3. This means that, in practice, we obtain a 95% confidence region and an
estimate for an outer set of Θ∗. We have experimented with a few different discretisations and
obtained negligible differences among the resulting confidence region and estimated set. Third,
as explained in Section 4 and Appendix D, calculating the test statistic and critical value for a
given θ requires us to solve some quadratically constrained linear maximisation problems. We
have done that by calling the solver MOSEK in Matlab. Further details are in Appendix E.

Table 5 presents the results. In particular, the second column reports the maximum like-
lihood estimates (hereafter, θ̂com) and standard errors under the traditional assumption that
all voters process the complete information structure. The third column reports the maxi-
mum likelihood estimates (hereafter, θ̂deg) and standard errors under the assumption that all
voters process the degenerate information structure;29 the fourth and last columns are based
on our methodology and report the projections of Cn,0.50 and Cn,0.95, respectively, along each
dimension. The same finding are graphically represented in Figure 6.

Under the assumption that voters are fully informed (second column), all the β coefficients,
except β2, are significantly different from zero at 5%. This suggests that DMs vote ideologically
on the EU, inequality, and left-right dimensions. That is, the smaller is the distance between

29We discuss in Appendix E how θ̂com and θ̂deg are computed.
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Complete Degenerate Our methodology Our methodology
θ̂com θ̂deg Cn,0.50 Cn,0.95

β1 (EU) −1.3269 −0.0137 [−1.5017, 0] [−20, 0]
(0.3204) (0.0018)

β2 (Social care) −0.1056 −0.0224 [−3.0802, 0] [−20, 0]
(0.2913) (0.0042)

β3 (Inequality) −0.6550 −0.0127 [−2.6685, 0] [−20, 0]
(0.2662) (0.0030)

β4 (Left-right) −2.6916 −0.0225 [−3.5286, 0] [−20, 0]
(0.5413) (0.0018)

γ1 (Gender) −0.1042 −0.0013 [−3.5512, 2.3588] [−20, 20]
(0.1489) (0.0018)

γ2 (Socio-economic class) −0.7551 −0.0065 [−2.2181, 2.4728] [−20, 20]
(0.1857) (0.0018)

γ3 (Gross income) 0.0788 0.0011 [−0.0396, 0.5197] [−20, 20]
(0.0160) (0.0001)

log(σ2) 5.6787 Not identified [4.4684, 6.0000] [−3, 6]
(0.4450)

Table 5: Inference results.

DM i and party y’s ideological positions on those dimensions, the more likely DM i votes for
party y, ceteris paribus. Further, β4 has the highest magnitude among the β coefficients. That
is, voters particularly dis-value casting their votes in favour of a party which is ideologically
distant on the left-right axis. More precisely, a one unit increase in the ideological distance on
the left-right axis produces a payoff decrease that is roughly 2, 25, and 4 times bigger than the
payoff decrease produced by a one unit increase in the ideological distance on the EU, social
care, and inequality dimensions, respectively, ceteris paribus.

Under the assumption that voters are fully uninformed (third column), all the β coefficients
are significantly different from zero at 5%, but they are much closer to zero and similar in
magnitude than in the complete information case. β4 has still the highest magnitude among
the β coefficients, but now a one unit increase in the ideological distance on the left-right axis
produces a payoff decrease that is only slightly bigger than the payoff decrease produced by a
one unit increase in the ideological distance on any one of the other three dimensions, ceteris
paribus.

When we remain agnostic about the level of voter sophistication (fourth and fifth columns),
all the projections for the β coefficients include zero. Therefore, differently from above, we
cannot reject the possibility that the ideological distances on the EU, social care, inequality,
and left-right dimensions are statistically insignificant. In fact, voters may actually ignore
theirs and the parties’ opinions on the most debated policy issues and, rather, take their
voting decisions based on some other latent factors. With regards to the magnitude of the β
coefficients, unfortunately the projections of the 95% confidence region (fifth column) are of
little help. We have constructed that region by performing a capillary grid search over the
hypercube [−20, 0]4× [−20, 20]3× [−3, 6] and we could exclude only a few points. Instead, the
projections of our estimated set (fourth column) are more interpretable. For instance, they

38



confirm that β4 can have the highest magnitude among the β coefficients, in agreement with
the results of the second and third columns. The fact that this finding on β4 is robust to
the restrictions on the information environment is in line with several post-election descriptive
studies run by political experts, which emphasise that the traditional left-right values, rather
than specific policy issues, have been the main driver of the British electoral behaviour in 2017.
For example:

[...] the 2017 election resulted in the resurgence of two-party politics based on contestation
along the classic economic left–right dimension [...] (Hobolt, 2018, p.1-2).

This should not be surprising given that post-war party competition in Britain, and in
most of Western Europe, has been organized around the economic left–right dimension.
Moreover, given the nature of the election campaign where the two parties took very dis-
tinct positions on these economic issues – after two decades of ideological convergence – it
is understandable economic left–right attitudes were also salient to voters. (Hobolt, 2018,
p.7).

Analysts highlight that the Brexit issue has played a critical role as well and, in fact, they
often refer to the 2017 election as the “Brexit election” (for example, Mellon, et al., 2018).
However, this fact does not come out clearly from our projection for β1, whose lower bound
is the smallest in absolute value among the β coefficients. The reason could be that the 2017
pre-election period saw a substantial increase in the relationship between EU referendum choice
and Labour versus Conservative vote choice, with a sort of alignment of the remain-leave axis
with the traditional left-right axis. The parties with the clearest positions against the Brexit
(the Liberal Democrats) and in favour of the Brexit (UKIP) lost many supporters. These
switched en masse to the Labour Party, offering a “soft Brexit” and the Conservative Party,
offering a “hard Brexit”, respectively (Mellon, et al., 2018; Heat and Goodwin, 2017). Such a
tendency might have obfuscated the role of β1 in determining the preferences of voters.

With regards to the γ coefficients,30 under the assumption that voters are fully informed
(second column), voting for a right-wing party when being a woman generates a lower payoff
than voting for a left-wing party, ceteris paribus. Further, the lower is the socio-economic
class, the lower is the payoff from voting a right-wing party than the payoff from voting a
left-wing party, ceteris paribus. Finally, the higher is the gross income, the higher is the payoff
from voting a right-wing party than the payoff from voting a left-wing party, ceteris paribus.
Similar findings are obtained under the assumption that voters are fully uninformed (third
column), even though the coefficients are much closer to zero than in the complete information
case. Instead, when we remain agnostic about the level of voter sophistication (fourth and fifth
columns), these facts are not validated, as the projections for γ1, γ2, and γ3 of our estimated

30Recall that, to interpret the γ coefficients, one has to interact them with the ideological position of each
party on the left-right ideological axis.
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set lie on the positive and negative real line. Only the negative sign of the gross income is
partially confirmed, as the projection for γ3 of our estimate set (fourth column) lies mostly on
the positive real line.

We also highlight that the projections for the β and γ coefficients in the fourth column
contain the estimates in the second and third columns. This is in line with our identification
results, according to which the sets of parameter values recovered under specific information
structures belong to Θ∗ when they are non-empty.

We conclude this section by emphasising that our empirical results confirm some of the
findings of the simulations presented in Section 3.3. In particular, they reveal that the as-
sumptions on the information environment are crucial primitives in decisions problems and
preference estimates can be extremely sensitive to them, thus requiring deep caution at the
modelling stage.

5.4 Policy experiments

To better interpret the magnitude of our results we perform two counterfactual experiments.
Various political experts sustain that, while at the beginning of the 2017 election campaign
the Conservative Party had a sizeable lead in the opinion polls over the Labour Party, as
the campaign progressed the Labour Party recovered ground because it strengthened its left
ideological position on social spending and nationalization of key public services (for example,
Heath and Goodwin, 2017; Mellon, at al., 2018). To evaluate this, we reset the Labour Party’s
placement on dimension 2 (social care) to be two points less (i.e., 5 instead of 7) and study
how the vote share of the Labour Party changes (hereafter, counterfactual 1).

A few steps should be implemented to operationalise this exercise. First, we introduce some
useful notation. For each x ∈ X , we denote by x̂ the corresponding transformed realisation.
Hereafter, computations done at x will be referred to as the factual scenario and computations
done at x̂ will be referred to as the fictional scenario. We collect all such |X | pairs, (x, x̂), in
X̄ . Hereafter, a generic element of X̄ is interchangeably indicated by x̄ or (x, x̂). We denote
by yLabour the element of Y referred to the Labour Party.

Second, we establish a way to summarise the impact of the counterfactual intervention
across the parameter values in Cn,0.50 and across the conditional choice probabilities induced
by 1BCEs. We proceed as follows. For each x̄ ∈ X̄ and θ ∈ Cn,0.50, we focus on the maximum
attainable vote shares of the Labour Party across those predicted by 1BCEs, as a best-case
scenario for the Labour Party. We denote such maximum attainable vote shares in the fictional
and factual scenarios by P̄ θ

Y |X(yLabour|x̂) and P̄ θ
Y |X(yLabour|x), respectively. We repeat the same,

now focusing on the minimum attainable vote shares of the Labour Party across those predicted
by 1BCEs, as a worst-case scenario for the Labour Party. We denote such minimum attain-
able vote shares in the fictional and factual scenarios by P θ

Y |X(yLabour|x̂) and P θ
Y |X(yLabour|x),

respectively. Then, we take the difference between P̄ θ
Y |X(yLabour|x̂) and P̄ θ

Y |X(yLabour|x), and
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Figure 6: The pictures report the projections of θ̂com (red), θ̂deg (blue), Cn,0.50 (black), and
Cn,0.95 (gray) along some relevant pairs of dimensions.
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between P θ
Y |X(yLabour|x̂) and P θ

Y |X(yLabour|x). We integrate out the covariates and report the
maxima and minima of the differences obtained across the parameter values in Cn,0.50. More
precisely, let

∆̄θ
Labour ≡

∑
x̄∈X̄

[P̄ θ
Y |X(yLabour|x)− P̄ θ

Y |X(yLabour|x̂)]P 0
X(x̄), (19)

and
∆θ

Labour ≡
∑
x̄∈X̄

[P θ
Y |X(yLabour|x)− P θ

Y |X(yLabour|x̂)]P 0
X(x̄). (20)

Note that ∆̄θ
Labour and ∆θ

Labour are the changes in the “best-case scenario” vote share and the
“worst-case scenario” vote share of the Labour Party, respectively. We report

ĪLabour ≡
[

min
θ∈Cn,0.50

∆̄θ
Labour, max

θ∈Cn,0.50
∆̄θ

Labour

]
,

which is the interval where the change in the “best-case scenario” vote share of the Labour
Party can lie, and

ILabour ≡
[

min
θ∈Cn,0.50

∆θ
Labour, max

θ∈Cn,0.50
∆θ

Labour

]
.

which is the interval where the change in the “worst-case scenario” vote share of the Labour
Party can lie.

Third, we explain how P̄ θ
Y |X(yLabour|x̂), P̄ θ

Y |X(yLabour|x), P θ
Y |X(yLabour|x̂), and P θ

Y |X(yLabour|x)
in (19) and (20) are computed. Let us start from P̄ θ

Y |X(yLabour|x̂). In order to calculate
P̄ θ
Y |X(yLabour|x̂), we should decide whether, in the fictional scenario, the information structures

of DMs stay fixed at their factual level or are allowed to vary. We proceed by assuming that the
information structures of DMs stay fixed. In fact, it is plausible that modifying the ideological
position of the Labour Party does not affect how voters learn about payoffs. We thus construct
P̄ θ
Y |X(yLabour|x̂) as outlined in Theorem 1 by Bergemann, Brooks, and Morris (2019), which es-

tablishes how to obtain the fictional choice probabilities while holding DMs’ information struc-
tures unchanged. We briefly summarise the procedure. Bergemann, Brooks, and Morris (2019)
suggest to consider the set of 1BCEs of the “double choice problem” where DM i chooses alter-
native y of the factual choice problem and alternative ŷ of the fictional choice problem in a way
that is consistent with the prior, obedient, and compatible with the empirical conditional choice
probabilities. They show that when marginalising the 1BCEs of the double choice problem on
the action space, Y , one gets the fictional choice probabilities under constant information struc-
tures. More formally, we define the double choice problem, Ḡθ ≡ {Ȳ , X̄ , E ,V , ū(·; θ), PV , Pε),
where Ȳ ≡ Y2 and ū(ȳ, x̄, e, v; θ) ≡ u(y, x, e, v; θ) + u(ŷ, x̂, e, v; θ) for each ȳ ≡ (y, ŷ) ∈ Y2,
x̄ ∈ X̄ , e ∈ E , and v ∈ V .31 By Theorem 1 in Bergemann, Brooks, and Morris (2019),

31Here we follow the notation of Sections 2 and 3. Also, recall that Section 5.1 imposes that εi is independent
of Xi and Vi is independent of (Xi, εi). Therefore, the families of conditional densities Pε|X and PV |X,ε can be
replaced by the unconditional densities of εi and Vi. The latter are denoted by Pε and PV , respectively, and
are known by assumption. Further, all the discretisations discussed at the end of Section 3 are assumed to be
implemented.
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P̄ θ
Y |X(yLabour|x̂) can be computed as

P̄ θY |X(yLabour|x̂) = max
PȲ ,V |X̄,ε(·|x̄,e)∈R|Ȳ|·|V|,∀e∈E

∑
y∈Y,v∈V,e∈E

PȲ ,V |X̄,ε(y, yLabour, v|x̄, e)Pε(e),

s.t.

[1BCE-Consistency]:
∑
ȳ∈Ȳ

PȲ ,V |X̄,ε(ȳ, v|x̄, e) = PV (v) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PȲ ,V |X̄,ε(ȳ, v|x̄, e)[ū(ȳ, x̄, e, v; θ)− ū(ȳ′, x̄, e, v; θ)] ≤ 0,

∀ȳ ∈ Ȳ,∀ȳ′ ∈ Ȳ \ {ȳ},∀e ∈ E ,

[1BCE-Data match]: P 0
Y |X(y|x) =

∑
ŷ∈Y,v∈V,e∈E

PȲ ,V |X̄,ε(y, ŷ, v|x̄, e)Pε(e) ∀y ∈ Y.

(21)
Moreover, we compute P̄ θ

Y |X(yLabour|x) by following the definition of 1BCE of the baseline choice
problem Gθ (Definition 2).32 That is,

P̄ θY |X(yLabour|x) = max
PY,V |X,ε(·|x,e)∈R|Y|·|V|,∀e∈E

∑
v∈V,e∈E

PY,V |X,ε(yLabour, v|x, e)Pε(e),

s.t.

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV (v) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[u(y, x, e, v; θ)− u(y′, x, e, v; θ)] ≤ 0,

∀y ∈ Y,∀y′ ∈ Y \ {y},∀e ∈ E .
(22)

Lastly, we compute P θ
Y |X(yLabour|x̂) and P θ

Y |X(yLabour|x) by solving (21) and (22), with min in
place of max.

We also calculate the difference between the fictional and factual choice probabilities un-
der the assumption that all voters process the complete information structure and under the
assumption that all voters process the degenerate information structure. Specifically, we report

Icom
Labour ≡

∑
x̄∈X̄

[P θ̂com
Y |X (yLabour|x)− P θ̂com

Y |X (yLabour|x̂)]P 0
X(x̄),

and
Ideg

Labour ≡
∑
x̄∈X̄

[P θ̂deg
Y |X (yLabour|x)− P θ̂deg

Y |X (yLabour|x̂)]P 0
X(x̄),

where all the probabilities entering Icom
Labour and Ideg

Labour are calculated following the standard
Multivariate Probit formulas.

Table 6 presents the results for counterfactual 1. Under the assumption that voters are fully
informed (first row), we find that holding a position equal to 7 on the social care dimension
leads to an almost unnoticeable increase in the vote share of the Labour Party with respect to

32Note that here we do not have to impose the data match condition as in (21) because it has been already
incorporated in the construction of Cn,0.50, as explained in Appendix D.

43



Icom
Labour 0.0008

Ideg
Labour 0.0339

ĪLabour [−0.3179, 0.0457]

ILabour [−0.1123, 0]

Table 6: Results of counterfactual 1.

holding a position equal to 5. Under the assumption that voters are fully uninformed (second
row), the increase is more pronounced. This supports the claim that, by strengthening its left
ideological position on the social care dimension, the Labour Party gained some votes during
the election campaign. However, such a result is not confirmed when we remain agnostic about
the level of voter sophistication. In fact, we find that holding a position equal to 7 on the
social care dimension might lead to a significant decrease in the vote share of the Labour Party
with respect to holding a position equal to 5. Again, our results highlight that imposing strong
assumptions on the information environment can drive the types of conclusions we reach.

We now implement a second counterfactual experiment (hereafter, counterfactual 2). The
uncertainty about the payoffs resulting from voting can occur due to deliberate strategies
of the candidates who “becloud” their characteristics and opinions “in a fog of ambiguity”
(Downs, 1957, p.136), in order to expand the electoral support by attracting groups of voters
with different political preferences (Campbell, 1983; Dahlberg, 2009; Tomz and van Houweling,
2009; Somer-Topcu, 2015). It remains unclear, however, to what extent such uncertainty affects
the vote shares and, in turn, influences the election results in democratic societies. A better
understanding of it is important for designing transparency laws that can improve citizens’
welfare. We investigate this question by imagining an omniscient mediator who implements a
policy that gives voters complete information. This can be achieved, for instance, by organising
a massive campaign in schools that develops democratic knowledge and political literacy skills,33

forcing candidates to publicly disclose their assets, liabilities, and criminal records, enforcing a
strict regulation regarding campaign spending and airtime, etc. We simulate the counterfactual
vote shares under complete information and study how they change with respect to the factual
scenario.

Before presenting our results, we emphasise that this question has been largely debated in
the literature. As explained by Bartels (1996), political scientists have often answered it by
arguing that a large population composed of possibly uninformed citizens act as if it was fully

33See, for example, Niemi and Junn (1998), Hooghe and Wilkenfeld (2007), and Pontes, Henn, and Griffiths
(2019) on the impact of civic education on political engagement.
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informed, either because each voter uses cues and information shortcuts helping her to figure out
what she needs to know about the political world; or because individual deviations from fully
informed voting cancel out in a large election, producing the same aggregate election outcome
as if voters were fully informed. Carpini and Keeter (1996) and Bartels (1996) are the first
studies to use quantitative evidence to disconfirm such claims. They simulate counterfactual
vote shares under complete information using data on the level of information of the survey
respondents as rated by the interviewers or assessed by test items. Several analysis along
similar lines have then followed, for example, Althaus (1998), Gilens (2001), and Sekhon (2004).
Degan and Merlo (2011) propose an alternative approach, which is closer to ours. As mentioned
above, they consider a spatial model of voting with latent uncertainty. Differently from us, they
estimate such a model by parametrically specifying the probability that a voter is informed.
They use their estimates to obtain counterfactual vote shares under complete information
and find that making citizens more informed about electoral candidates decreases abstention.
We contribute to this thread of the literature by providing a way to construct counterfactual
vote shares under complete information, which neither requires the difficult task of measuring
voters’ level of information in the factual scenario, nor imposes parametric assumptions on the
probability that a voter is informed.

More precisely, for each θ ∈ Cn,0.50, we simulate data from Pε, PV , and P 0
X . We let individ-

uals vote under complete information. We then compute the fictional vote shares and denote
them by P θ,com

Y |X (y|x) for each y ∈ Y and x ∈ X . We obtain the best-case and worst-case factual
vote shares, P̄ θ

Y |X(y|x) and P θ
Y |X(y|x), as outlined in (22) for each y ∈ Y and x ∈ X . We

calculate
∆̄θ
y ≡

∑
x∈X

[P θ,com
Y |X (y|x)− P̄ θ

Y |X(y|x)]P 0
X(x),

∆θ
y ≡

∑
x∈X

[P θ,com
Y |X (y|x)− P θ

Y |X(y|x)]P 0
X(x),

and
∆θ
y ≡

∑
x∈X

[P θ,com
Y |X (y|x)− P 0

Y |X(y|x)]P 0
X(x),

for each y ∈ Y . Here, ∆̄θ
y and ∆θ

y are the gain/loss in vote share under complete information
as compared to the best-case and the worst-case factual scenarios, respectively. Further, ∆θ

y is
the gain/loss in vote share under complete information as compared to the empirical factual
scenario. Finally, we report the intervals

Īy ≡
[

min
θ∈Cn,0.50

∆̄θ
y, max
θ∈Cn,0.50

∆̄θ
y

]
,

Iy ≡
[

min
θ∈Cn,0.50

∆θ
y, max
θ∈Cn,0.50

∆θ
y

]
,
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and
Iy ≡

[
min

θ∈Cn,0.50
∆θ
y, max
θ∈Cn,0.50

∆θ
y

]
,

for each y ∈ Y in Tables 7 and 8.

Īy (Best-case factual scenario) Iy (Worst-case factual scenario)

Abstention [−0.9598,−0.0334] [−0.2392, 0.0317]
Conservatives [−0.7968, 0.0050] [0.0950, 0.3006]

Labour [−0.7961, 0.0593] [0.0531, 0.2057]
Lib. Dem [−0.7970, 0.0142] [0.0674, 0.2006]
UKIP [−0.7962, 0.0293] [0.1138, 0.2450]
Green [−0.7968, 0.0396] [0.0838, 0.2032]

Table 7: Results of counterfactual 2.

Iy(Empirical factual scenario)

Abstention [−0.1669,−0.0392]
Conservatives [−0.1935,−0.0373]

Labour [−0.3118,−0.1591]
Lib. Dem [0.1144, 0.1721]
UKIP [0.1381, 0.3121]
Green [0.0681, 0.1875]

Table 8: Results of counterfactual 2.

We outline a few guidelines on how to read Table 7. First, each row has to be considered
separately because the best-case and worst-case factual vote shares for each y ∈ Y , P̄ θ

Y |X(y|x)
and P θ

Y |X(y|x), are achieved under 1BCEs that can differ across parties. For example, Table
7 reveals that, when electors are fully informed, the Conservative Party may lose votes with
respect to the best-case factual scenario (second column). However, we should not necessarily
expect such a negative effect to be counterbalanced by a positive effect in other rows of the
second column. That is, we should not necessarily expect some other parties to gain votes in
the second column. Second, note that, for each θ ∈ Cn,0.50 and y ∈ Y , it holds that ∆̄θ

y ≤ ∆θ
y.

In turn, the lower and upper bounds of Īy are smaller than the lower and upper bounds of Iy,
respectively, which is the case in Table 7.34

We now comment on the results in Table 7. An important finding is that, under complete
information, abstention drops with respect to the best-case factual scenario, as the interval in
the second column lies entirely on the negative part of [−1, 1]. Likewise, abstention is likely
to drop with respect to the worst-case factual scenario, as the interval in the third column lies

34As a minor remark, we also emphasise that ∆̄θ is not necessarily non-positive by construction at each
θ ∈ Cn,0.50. In fact, if there is a θ ∈ Cn,0.50 such that the complete information structure is supported by a
1BCE matching with the data, then ∆̄θ is non-positive at that specific θ, but not necessarily at other parameter
values in our estimated set. For similar reasons, ∆̄θ is not necessarily non-negative at each θ ∈ Cn,0.50.
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mostly on the negative part of [−1, 1]. Hence, informed citizens are less prone to abstain. This
confirms the empirical results in Degan and Merlo (2011), which also reveal that increasing the
awareness of voters decreases abstention. Moving to the parties’ vote shares, we see that, under
complete information, the parties are likely to lose votes with respect to the best-case factual
scenario, as the intervals in the second column lie mostly on the negative part of [−1, 1]. This
can be due to the fact that, when there is no uncertainty on any payoff-relevant information, the
parties are no longer able to obfuscate their weaknesses and hence lose support. The opposite
mechanism can explain the positive signs in the third column.

We now move to Table 8. As before, we outline a few guidelines on how to read Table
8. Differently from Table 7, each row has to be read together with the others because Iy is
computed using the same empirical factual vote shares for each party y ∈ Y . For example,
Table 8 reveals that, when electors are fully informed, the Conservative Party loses votes with
respect to the empirical factual case (second column). Here, such a negative effect should be
counterbalanced by a positive effect in other rows of the second column. That is, we should
expect some other parties to gain votes in the second column. Further, recall that Cn,0.50 has
been constructed by selecting all the values of θ such that the collection of conditional choice
probabilities predicted by the model under 1BCE contains the empirical conditional choice
probabilities. Hence, for each θ ∈ Cn,0.50 and y ∈ Y , we expect ∆̄θ

y ≤ ∆θ
y ≤ ∆θ

y. In turn, we
expect the lower bound of Iy to be between the lower bound of Īy and the lower bound of Iy,
and the upper bound of Iy to be between the upper bound of Īy and the upper bound of Iy.
This is not always the case when comparing Tables 7 and 8, but it does not indicate a mistake
in the procedure. In fact, we remind the reader that implementing our empirical strategy
involves several approximations and finite-sample issues which may induce small violations to
the above relations.

We now comment on the results in Table 8. Again, we find that, under complete infor-
mation, abstention drops with respect to the empirical factual scenario, as the interval in the
second column lies entirely on the negative real line. We also find that the “losers” from the
policy intervention are the two biggest parties, i.e., the Conservative Party and the Labour
Party. Conversely, the “winners” from the policy intervention are the other minor parties,
i.e., the Liberal Democrats, UKIP, and the Green Party. This suggests that there exists some
payoff-relevant information unobserved by voters, and the historically dominating parties in
the British political scene benefit the most from such uncertainty.

We conclude this section by emphasising that our second counterfactual exercise robustly
quantifies the consequences of incomplete information in politics. Even if it is not realistic to
achieve complete information, it suggests that policy initiatives in that direction can increase
citizens’ welfare by reducing ex-post regret.
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6 Conclusions

In this paper we consider a single-agent, static, discrete choice model in which decision makers
may be imperfectly informed about the utility generated by each of the available alterna-
tives. Instead of explicitly modelling the information constraints, which can be susceptible
to misspecification, we study identification and inference of the preference parameters while
remaining agnostic about the mechanism that determines the amount of information processed
by decision makers. We exploit Theorem 1 in Bergemann and Morris (2016) to provide a
tractable characterisation of the identified set and study inference. We use our methodology
to incorporate voter uncertainty in a spatial model of voting and we estimate it using data on
the 2017 UK general election. Finally, we perform some counterfactual experiments.

There are still many issues to investigate. For example, so far we have compared our
simulation and empirical findings with the results one gets under specific information structures
(in particular, the complete and degenerate information structures). Ideally, we would like also
to compare our findings with the results one obtains within a rational inattention framework
with parametric attentional cost functions. However, most of this literature is theoretical and
there is little empirical work outside of laboratory experiments, which makes it challenging
to establish comparisons. Also, our second counterfactual exercise leaves open some further
questions. For instance, one may wonder how the information effects that we have found
depend on the way the media portray politics or can be influenced/exploited by the parties,
thus connecting with the literature on the impact of the media on voting outcomes (for example,
Stromberg, 2001; Gentzkow, 2006; Enikolopov, Petrova, and Zhuravskaya, 2011; Gentzkow,
Shapiro, and Sinkinson, 2011), the literature on how media compete for providing political
information to Bayesian agents (for example, Perego and Yuksel, 2018), and the literature on
how parties strategically position themselves in the policy space given the uncertainty of voters
(for example, Baron, 1994; Grossman and Helpman, 1996; Matĕjka and Tabellini, 2019). We
leave such open questions to future research.
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A Some remarks on Definition 1

We add some remarks on Definition 1. First, note that we can equivalently define an optimal
strategy of the augmented choice problem {G,Si} as follows. Given (x, e, t) ∈ X × E × Ti, let
Y ix,e,t ⊆ Y be the set of alternatives maximising DM i’s expected payoff, i.e.,

Y ix,e,t ≡ argmaxy∈Y
∫
v∈V

u(y, x, e, v)P i
V |X,ε,T (v|x, e, t)dv.

Let P ix,e,t be the family of probability mass functions of Yi conditional on (Xi, εi, ti) = (x, e, t)
that are degenerate on each of element of Y ix,e,t. Let Conv(P ix,e,t) be the convex hull of
P ix,e,t. Then, P iY |X,ε,T is an optimal strategy of the augmented choice problem {G,Si} if
P i
Y |X,ε,T (·|x, e, t) ∈ Conv(P ix,e,t) ∀(x, e, t) ∈ X × E × Ti.
Second, note that Definition 1 allows to formally defines DM i’s consideration set. In fact,

following Caplin, Dean, and Leahy (2019b), DM i’s consideration set, Ci, arises endogenously
from her optimal strategy, P iY |X,ε,T . In particular, Ci collects every alternative such that the
subset of the signal’s support inducing DM i to choose that alternative has positive measure.
For example, when Ti and V are finite,

Ci ≡ {y ∈ Y :
∑
t∈Ti

P i
Y |X,ε,T (y|xi, ei, t)

∑
v∈V

P i
T |X,ε,V (t|xi, ei, v)PV |X,ε(v|xi, ei) > 0},

where (xi, ei) are the realisations of (Xi, εi) assigned by nature to DM i. Crucially, note that
considerations sets can be heterogenous across agents and arbitrarily dependent on (Xi, εi) as
we leave the conditional signal densities fully unrestricted.

B Proofs

Proof of Lemma 1 We proceed by construction. Take any Si ≡ {Ti,P iT |X,ε,V } ∈ S. First,
note that the set Y is finite and, hence, compact. Second, the map y ∈ Y 7→ u(y, x, e, v) ∈
R is continuous using the discrete metric for each (x, e, v) ∈ X × E × V . Hence, the map
y 7→

∫
v∈V u(y, x, e, v)P i

V |X,ε,T (v|x, e, t)dv is also continuous for each x ∈ X , e ∈ E , and t ∈ Ti.
Therefore, Weierstrass theorem ensures the existence of the minimum and maximum of such a
map. Given (x, e, t) ∈ X × E × Ti, let yix,e,t ∈ Y be one of the maximisers. Then, an optimal
strategy is P iY |X,ε,T such that for each (x, e, t) ∈ X × E × Ti,

P i
Y |X,ε,T (yix,e,t|x, e, t) = 1 and P i

Y |X,ε,T (ỹ|x, e, t) = 0 ∀ỹ ∈ Y \ {yix,e,t}.

Proof of Proposition 1 Take any θ ∈ Θ and x ∈ X . We show that if PY |X(·|x) ∈ Q̄θY |x, then
PY |X(·|x) ∈ R̄θ

Y |x. If PY |X(·|x) ∈ Q̄θY |x, then, by definition of Q̄θY |x, there exists PY,V |X,ε ∈ Qθ

inducing PY |X(·|x). By Theorem 1, it follows that there exists S ≡ {T ,PT |X,ε,V } ∈ S and
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PY |X,ε,T ∈ Rθ,S such that PY |X,ε,T induces PY,V |X,ε. Thus, PY |X,ε,T induces PY |X(·|x) by the
transitive property. Therefore, by definition of R̄θ

Y |x, PY |X(·|x) ∈ R̄θ
Y |x.

Conversely, we show that PY |X(·|x) ∈ R̄θ
Y |x, then PY |X(·|x) ∈ Q̄θY |x. First, let R̃θ

Y |x ⊆ R̄θ
Y |x

be the non-convexified collection of probability mass functions of Yi conditional Xi = x that are
induced by the model’s optimal strategies under θ, while remaining agnostic about information
structures. That is,

R̃θY |x ≡
{
PY |X(·|x) ∈ ∆(Y) :

PY |X(y|x) =
∫

(t,v,e)∈T ×V×E
PY |X,ε,T (y|x, e, t)PT |X,ε,V (t|x, e, v)PV |X,ε(v|x, e; θV )Pε|X(e|x; θε)d(t, v, e) ∀y ∈ Y,

PY |X,ε,T ∈ Rθ,S ,

S ≡ {T ,PT |X,ε,V } ∈ S
}
,

Take PY |X(·|x) ∈ R̃θ
Y |x. Then, by definition of R̃θ

Y |x, there exists S ≡ {T ,PT |X,ε,V } ∈ S and
PY |X,ε,T ∈ Rθ,S such that PY |X,ε,T induces PY |X(·|x). By Theorem 1, it follows that there
exists PY,V |X,ε ∈ Qθ inducing PY |X,ε,T . Thus, PY,V |X,ε induces PY |X(·|x) by the transitive
property. Hence, by definition of Q̄θY |x, PY |X(·|x) ∈ Q̄θY |x. Now, take any K elements from
R̃θ
Y |x, for any K. Denote such elements by P 1

Y |X(·|x) ∈ R̃θ
Y |x, ..., P

K
Y |X(·|x) ∈ R̃θ

Y |x. Given
the arguments above, it holds that P 1

Y |X(·|x) ∈ Q̄θY |X(·|x), ..., PK
Y |X(·|x) ∈ Q̄θY |x. Moreover,

any convex combination of P 1
Y |X(·|x), ..., PK

Y |X(·|x) belongs to Q̄θY |x because Q̄θY |x is convex.
Therefore, every PY |X(·|x) ∈ R̄θ

Y |x is also contained in Q̄θY |x.
We can conclude that R̄θ

Y |x = Q̄θY |x ∀θ ∈ Θ and ∀x ∈ X . This implies Θ∗ = Θ∗∗.

Proof of Proposition 2 Fix any θ ∈ Θ and x ∈ X . Observe that

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ R|Y|. (B.1)

By the positive homogeneity of the support function, ∀b ∈ R|Y|,

bTP 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bTPY |X(·|x) ≤ 0 ⇔ bT

||b||
P 0
Y |X(·|x)− sup

PY |X(·|x)∈Q̄θ
Y |x

bT

||b||
PY |X(·|x) ≤ 0.

(B.2)
By (B.2), (B.1) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bTP 0

Y |X(·|x)− sup
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ B|Y|. (B.3)

Moreover, given that Q̄θY |x is closed and bounded, (B.3) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bTP 0

Y |X(·|x)− max
PY |X(·|x)∈Q̄θ

Y |x

bTPY |X(·|x) ≤ 0 ∀b ∈ B|Y|. (B.4)
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Lastly, given that Q̄θY |x is a subset of the (|Y| − 1)-dimensional simplex, (B.4) is equivalent to

P 0
Y |X(·|x) ∈ Q̄θY |x ⇔ bT


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

− max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

 ≤ 0 ∀b ∈ B|Y|−1.

(B.5)
Therefore, by combining Proposition 1 with (B.5), we get that

θ ∈ Θ∗ ⇔ bT


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

− max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

 ≤ 0 ∀b ∈ B|Y|−1, (B.6)

which is equivalent to

θ ∈ Θ∗ ⇔ E[m(Yi, Xi; b, θ|Xi = x)] ≤ 0 ∀b ∈ B|Y|−1,

as claimed in Proposition 2, where

m(Yi, x; b, θ) ≡ bT


1{Yi = y1}

...

1{Yi = y|Y|−1}

− max
PY |X(·|x)∈Q̄θ

Y |x

bT


PY |X(y1|x)

...

PY |X(y|Y|−1|x)

 .

C A case where grid search can be avoided

Suppose that the sets X , E , and V are finite and with relatively small cardinalities, so that
one can focus on identifying the finite-dimensional vector of parameters, θ0, which collects
the image values of the true primitives u0,P0

V |X,ε,P0
ε|X , without the need to impose additional

parameterisations (see Remark 4). Further, suppose that the image values of the function u0

are known by the researcher, for example, when u0 belongs to the CARA family (see Example
2). Lastly, instead of separately identifying the conditional marginal distributions, P0

V |X,ε and
P0
ε|X , note that it is sufficient for our purposes to back out the joint distribution, P0

V,ε|X ≡
{P 0

V,ε|X(·|x)}∀x∈X , where P 0
V,ε|X(v, e|x) ≡ P 0

V |ε,X(v|e, x)P 0
ε|X(e|x) for every (x, e, v) ∈ X ×E ×V .

Let θ0 collect the image values of P0
V,ε|X , with dimension K. Then, one can construct the

sharp identified set for θ0 without performing a grid search.
To see why, note that, given a generic θ, finding if (8) admits a solution with respect to

PY,V |X,ε is equivalent to finding if the following linear programming problem admits a solution
with respect to PY,V,ε|X ≡ {PY,V,ε|X(·|x)}∀x∈X , where each PY,V,ε|X(·|x) ∈ ∆(Y × V × E) is a
probability mass function of (Yi, Vi, εi) conditional on Xi = xi:
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[1BCE-Consistency]:
∑
y∈Y

PY,V,ε|X(y, v, e|x) = PV,ε|X(v, e|x) ∀v ∈ V, ∀e ∈ E, ∀x ∈ X ,

[1BCE-Obedience]: −
∑
v∈V

PY,V,ε|X(y, v, e|x)[u(y, x, e, v)− u(y′, x, e, v)] ≤ 0 ∀y ∈ Y, ∀y′ ∈ Y \ {y}, ∀e ∈ E, ∀x ∈ X ,

[1BCE-Data match]: P 0
Y |X(y|x) =

∑
(e,v)∈E×V

PY,V,ε|X(y, v, e|x) ∀y ∈ Y, ∀x ∈ X .

(C.1)

Now, recall that u(y, x, e, v)− u(y′, x, e, v) entering the obedience constraint is known by the
researcher for every y ∈ Y , y′ ∈ Y \ {y}, x ∈ X , e ∈ E , and v ∈ V . Therefore, (C.1) is linear
with respect to θ. Hence, one can find the feasible region of (C.1) with respect to (θ,PY,V,ε|X)
by solving a unique linear programming problem and then take its projection for θ.

D Inference: some computational simplifications

We first discuss a way to simplify the computation of the test statistic, TSn(θ), as defined in
(15). Observe that

m̄n(b, θ, x) = P 0
X(x)bT

(
P̃ 0
Y |X(·|x)− max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)
, (D.1)

where P̃ 0
Y |X(·|x) ≡


P 0
Y |X(y1|x)

...
P 0
Y |X(y|Y|−1|x)

 and P̃Y |X(·|x) ≡


PY |X(y1|x)

...
PY |X(y|Y|−1|x)

, for each x ∈ X and

b ∈ B|Y|−1.
Therefore, (15) is equal to

TSn(θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

bT
(
P 0
X(x)P̃ 0

Y |X(·|x)− P 0
X(x) max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)]2

. (D.2)

To compute (D.2), the researcher should calculate, for each x ∈ X ,

max
b∈B|Y|−1

bT
(
P 0
X(x)P̃ 0

Y |X(·|x)− P 0
X(x) max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)
,

which is equivalent to

max
b∈B|Y|−1

min
PY |X(·|x)∈Q̄θ

Y |x

bT
(
P 0
X(x)P̃ 0

Y |X(·|x)− P 0
X(x)P̃Y |X(·|x)

)
. (D.3)

(D.3) is a max-min problem which can be simplified as follows. Note that the inner constrained
minimisation problem in (D.3) is linear in PY |X(·|x). Thus, it can be replaced by its dual,
which consists of a linear constrained maximisation problem. Moreover, the outer constrained
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maximisation problem in (D.3) has a quadratic constraint, bT b ≤ 1. Therefore, (D.3) can
be rewritten as a quadratically constrained linear maximisation problem which is a tractable
exercise. This is described in detail below.

By Definition 2, (D.3) is equivalent to

max
b∈R|Y|−1

min
PY |X(·|x) ∈ R|Y|+

PY,V |X,ε(·|x, e) ∈ R|Y|·|V|+ , ∀e ∈ E

bT [P 0
X(x)P̃ 0

Y |X(·|x)− P 0
X(x)P̃Y |X(·|x)],

s.t. [b ∈ B|Y|−1]: bT b ≤ 1,

[1BCE-Consistency]:
∑
y∈Y

PY,V |X,ε(y, v|x, e) = PV |ε,X(v|x, e; θV ) ∀v ∈ V,∀e ∈ E ,

[1BCE-Obedience]: −
∑
v∈V

PY,V |X,ε(y, v|x, e)[u(y, x, e, v; θu)− u(y′, x, e, v; θu)] ≤ 0 ∀y ∈ Y,∀y′ ∈ Y \ {y},∀e ∈ E ,

[1BCE-Choice prediction]: PY |X(y|x) =
∑

(e,v)∈E×V

PY,V |X,ε(y, v|x, e)Pε|X(e|x; θε) ∀y ∈ Y.

(D.4)
We simplify (D.4) by introducing new variables. Let W1 ≡ P 0

X(x)(P 0
Y |X(·|x) − PY |X(·|x)).

Note that W1 is a |Y| × 1 vector. Further, let W2 be the (|Y| · |V| · |E|) × 1 vector collecting
PY,V |X,ε(·|x, e) across every e ∈ E . Lastly, let W be the (|Y|+ |Y| · |V| · |E|)×1 vector collecting
W1 and W2. (D.4) can be rewritten as

max
b∈R|Y|−1

min
W1 ∈ R|Y|

W2 ∈ R|Y|·|V|·|E|+

[
bT 0T1+|Y|·|V|·|E|

]
W,

s.t. bT b ≤ 1,

Aeq W = Beq,

Aineq W ≤ 0dineq ,

(D.5)

where Aeq is the matrix of coefficients multiplying W in the equality constraints of (D.4) with
deq rows, Beq is the vector of constants appearing in the equality constraints of (D.4), and Aineq

is the matrix of coefficients multiplyingW in the inequality constraints of (D.4) with dineq rows.
Further, the inner constrained minimisation problem in (D.5) is linear. Hence, by strong

duality, it can be replaced with its dual. This allows us to solve one unique maximisation
problem. Precisely, the solution of (D.5) is equivalent to the solution of

max
b ∈ R|Y|−1

τeq ∈ Rdeq

τineq ∈ Rdineq
+

[
−BT

eq 0Tdineq

]
τ,

s.t. bT b ≤ 1,

[AT ]1:|Y|τ =
−b

0

 ,
− [AT ]|Y|+1:|Y|+|Y|·|V|·|E|τ ≤ 0|Y|·|V|·|E|,

(D.6)
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where τ is the (deq + dineq)× 1 vector collecting τeq and τineq, A is the (deq + dineq)× (|Y|+ |Y| ·
|V| · |E|) matrix obtained by stacking one on top of the other the matrices Aeq and Aineq, and
[A]i:j denotes the sub-matrix of A containing the rows i, i+ 1, ..., j of A.

Note that (D.6) is a quadratically constrained linear maximisation problem. In particular,
the first constraint in (D.6) is quadratic. The objective function and the remaining constraints
in (D.6) are linear. Close derivations are discussed in Magnolfi and Roncoroni (2017) for an
entry game setting.

We now discuss a way to simplify the computation of bootstrap test statistic, TSwn (θ), as
defined in (16). Similarly to (D.1), by rearranging terms it holds that

m̄w
n (b, θ, x) = P 0,w

X (x)bT
(
P̃ 0,w
Y |X(·|x)− max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)
,

where the superscript “w” distinguishes the probabilities within the bootstrap sample from the
original ones. Therefore,

m̄w
n (b, θ, x)− m̄n(b, θ, x)

= P 0,w
X (x)bT

(
P̃ 0,w
Y |X(·|x)− max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)
− P 0

X(x)bT
(
P̃ 0
Y |X(·|x)− max

PY |X(·|x)∈Q̄θ
Y |x

P̃Y |X(·|x)
)
,

= bT
[
P 0,w
X (x)P̃ 0,w

Y |X(·|x)− P 0
X(x)P̃ 0

Y |X(·|x)− (P 0,w
X (x)− P 0

X(x)) max
PY |X(·|x)∈Q̄θ

Y |x

P̃Y |X(·|x)
]
.

To simplify the notation, let us rename

Awx ≡ P 0,w
X (x)P̃ 0,w

Y |X(·|x)− P 0
X(x)P̃ 0

Y |X(·|x),

and
Cw
x ≡ P 0,w

X (x)− P 0
X(x).

Therefore, (16) is equal to

TSwn (θ) ≡ 1
|X |

∑
x∈X

[√
n max
b∈B|Y|−1

bT
(
Awx − Cw

x max
PY |X(·|x)∈Q̄θ

Y |x

P̃Y |X(·|x)
)]2

. (D.7)

To compute (D.7), the researcher should calculate, for each x ∈ X ,

max
b∈B|Y|−1

bT
(
Awx − Cw

x max
PY |X(·|x)∈Q̄θ

Y |x

P̃Y |X(·|x)
)
,

which is equivalent to

max
b∈B|Y|−1

min
PY |X(·|x)∈Q̄θ

Y |x

bT
(
Awx − Cw

x P̃Y |X(·|x)
)
. (D.8)
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(D.8) can be rewritten as a quadratically constrained linear maximisation problem as done for
(D.3). Once (D.8) is computed for each x ∈ X , the analyst easily obtains TSwn (θ).

E Empirical application: implementation details

We describe some steps implemented to obtain the results of Section 5.3.

Computation of θ̂com and θ̂deg Note that, under the assumption that all agents process
the complete information structure, our framework resembles a classical Multinomial Probit
model, where θ0 is point identified and can be estimated by running a maximum likelihood
procedure. Hence, we obtain θ̂com as

θ̂com = argminθ −
1
n

n∑
i=1

[ ∑
y∈Y\{∅}

1{yi = y} × logPr(β′Ziy + γ′ZLR
y Wi + εi + σViy ≥ β′Zik + γ′ZLR

k Wi + εi + σVik ∀k ∈ Y \ {∅, y},

β′Ziy + γ′ZLR
y Wi + εi + σViy ≥ 0|Xi = xi)

+ 1{yi = ∅} × logPr(0 ≥ β′Ziy + γ′ZLR
y Wi + εi + σViy ∀y ∈ Y \ {∅}|Xi = xi)

]
,

(E.1)
where the minimisation is done using the Matlab solver FMINUNC, n is the sample size,
∅ represents the baseline category (abstention), and the integrals inside the log function are
computed based on the fact that (εi, Vi) are jointly distributed as an L-variate standard normal,
independent of Xi. Similarly, we obtain θ̂deg as

θ̂deg ∈argminθ −
1
n

n∑
i=1

[ ∑
y∈Y\{∅}

1{yi = y} × logPr(β′Ziy + γ′ZLR
y Wi + εi ≥ β′Zik + γ′ZLR

k Wi + εi ∀k ∈ Y \ {∅, y},

β′Ziy + γ′ZLR
y Wi + εi ≥ 0|Xi = xi)

+ 1{yi = ∅} × logPr(0 ≥ β′Ziy + γ′ZLR
y Wi + εi ∀y ∈ Y \ {∅}|Xi = xi)

]
,

(E.2)
where β′Ziy + γ′ZLR

y Wi + εi is the expected payoff from choosing y ∈ Y \ {∅} under the prior
and the integrals inside the log function are computed using that εi is distributed as a standard
normal, independent of Xi. Note that in the latter case σ is not identified because, according
to the priors of voters, Vi has expected value 0 and hence has no impact on the expected
payoffs. Further, we use the symbol “∈” in (E.2) because the argmin may not be unique.
In our implementation, we have run the solver FMINUNC from several starting values and
obtained a unique argmin.
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Construction of the grid Section 4 explains how to construct a confidence region by in-
verting a test with null hypothesis H0 : θ0 = θ, for every θ ∈ Θ. In practice, we do that by
designing a grid of values for θ and inverting the test for each θ in the grid.

Recall that the test statistic, TSn(θ), is expected to be lower for values of θ in the identified
set because the moment inequalities should be approximatively satisfied. Hence, we design our
grid by exploring the parameter space around the global infimum of TSn(θ), for example, as
in Ciliberto and Tamer (2009). Specifically:

1. We consider the maximum likelihood estimates θ̂com and θ̂deg, obtained as discussed above.
Recall that θ̂com and θ̂deg are 1×K vectors and K = 8 in our empirical application.

2. We construct an Halton set of 106 points around θ̂com. We draw 100 points at random
from such a set. We construct an Halton set of 106 points around θ̂deg. We draw 100
points at random from such a set. We stack these points, together with θ̂com and θ̂deg,
into an 201×K matrix, A.

3. We minimise TSn(θ) with respect to θ by running the simulated annealing algorithm
from each row of A as starting point with various initial temperatures, for a maximum of
104 iterations. We save every parameter value encountered (say, R values) in the course
of the algorithm. We stack all the saved parameter values in an R × K matrix, G. G
constitutes our final grid.

Discretisation of the supports of εi and Vi In order to compute the test statistic and
critical value for a given θ as outlined in Section 4, one has to discretise the supports of εi
and Vi. We discretise the support of εi by collecting in Ediscr qε equally spaced quantiles of
the univariate standard normal CDF between 0.001 and 0.999. We discretise the support of Vi
by first collecting in Vdiscr

y qV equally spaced quantiles of the univariate standard normal CDF
between 0.001 and 0.999, and then taking the Cartesian product Vdiscr ≡ ×L−1

y=1Vdiscr
y .35

Parallelisation In order to compute the test statistics, recall that the quadratically con-
strained linear maximisation problem (D.6) has to be solved for each x ∈ X and for each θ in
our grid. We parallelise the computation across x by using parfor in Matlab. We parallelise the
computation across θ by running parallel array jobs in an HPC cluster. In order to compute
the critical values, recall that the quadratically constrained linear maximisation problem (D.8)
has to be solved for each x ∈ X , for each bootstrap sample, and for each θ in our grid. We
parallelise the computation across x by using parfor. We parallelise the computation across
bootstrap samples and θ by running parallel array jobs in an HPC cluster.

35Recall that we normalise the payoff of the baseline category (abstention) to zero.
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