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Abstract. We show that experience good sellers facing myopic buyers can solve the in-
herent moral hazard problem by communicating their observation of quality before trade,
provided that communication is part of their public track record. Such cheap-talk commu-
nication, if trusted, allows market prices to reflect the actual value created, thus providing
an immediate reward for the seller’s effort which complements the conventional, repu-
tational incentives. Pre-trade communication achieves maximal efficiency when truthful
and the full efficiency as the noise in the seller’s observation vanishes. We fully charac-
terize the conditions for communication to improve efficiency and the extent to which it
does so.(JEL Codes: C73, D83, L14)
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1 Introduction

Solving moral hazard amounts to finding a way to reward the agent for exerting the

socially efficient effort. In long-run market environments, forward-looking sellers may be

incentivized by backloaded compensation schemes that price their goods in line with the

quality they delivered in the past, exploiting ex-post monitoring of effort via delivered

quality (Klein and Leffler, 1981; Shapiro, 1983).1 However, such incentive schemes are

impaired and fall short of achieving efficiency when buyers are short-lived and seller’s effort
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(grant ANR-17-EURE-0010), ANITI funded under “Investing for the Future PIA3” program (ANR-19-
PI3A-0004), and the National Research Foundation of Korea Grant funded by the Korean Government
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1See MacLeod (2007) for a review of the related literature.
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is imperfectly monitored, no matter how patient the seller is.2 We redress this deficiency

by establishing that the market pricing mechanism can restore efficiency in such situations

if, in addition to the past quality supplied by a seller, her pre-trade communication on

current quality is also properly reflected in pricing and in the trust level bestowed on

the seller. To the best of our knowledge, this is the first result showing that cheap-talk

communication can help solve moral hazard by rewarding hidden action without delay.

The importance of pre-trade communication in customer relationships is well docu-

mented in the marketing literature (Agnihotri et al., 2009; Palmatier et al., 2006). But,

such soft communication by sellers on their good (e.g., online sellers describing the condi-

tion of their items and salesmen providing guidance to potential buyers) has largely been

overlooked in the context of incentivizing sellers to exert the socially efficient effort.

The core insight of our paper stems from the simple observation that whatever sellers

may know about the quality, provided that it is truthfully communicated, can help the

market price their product closer to the actual quality. This would allow immediate com-

pensation for the seller’s effort in line with the social value created, which may complement

the conventional, reputational incentives for effort. As such, truthful communication of a

seller’s observation of quality creates an immediate “efficiency rent” for the seller, easing

the incentive constraint for her to exert the efficient effort.

However, truthful communication is at odds with the short-term incentive of claiming

a better quality to get a higher price, thus it must be induced via long-term incentives.

This is an extra condition, in addition to inducing efficient effort via reputational motives,

that further constrains the ways in which long-term incentives may be devised if truthful

communication were to be accommodated. Hence, it is unclear a priori whether seller’s

pre-trade communication may enhance efficiency and welfare.

We characterize precisely when and how much of such welfare improvement is possible.

Broadly speaking, pre-trade communication enhances efficiency and welfare so long as

the effort cost is neither too small nor too big, reaching full efficiency across the entire

range of effort cost as the seller’s observation of quality becomes fully accurate. Two

key observations buttress such positive effects of communication. First, for the seller to

preserve her efficiency rent, she must sustain buyers’ trust in her communication. Second,

truthful communication and efficient effort are strategic complements in the sense that the

former is valuable only if the latter is intended in the future. Consequently, trustworthy

behavior of the seller and the market’s trust reinforce each other to uphold efficiency.

These findings lend implications on how the current feedback systems widely used in

2Note that the Folk Theorem of Fudenberg, Levine, and Maskin (1994) does not apply when buyers
do not engage in a long-run relationship with a particular seller (see Fudenberg, Kreps and Levine, 1990).
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online platforms could be improved by suitably incorporating seller’s pre-sale description

of items. Online marketplaces have become a ubiquitous trading channel in less than two

decades after Amazon and eBay opened in 1995, notwithstanding inherently weak trust

between online traders due to their anonymity. Key innovations to tackle this trust issue

have been reputation and feedback mechanisms that allow traders to leave evaluations on

their counterparts for prospective future traders (Dellarocas, 2003).3 Another prominent

feature of online platforms is that prospective buyers rely on the soft information provided

by the seller on attributes and quality of her products. Our findings underscore the impor-

tance of properly designing communication channels and rewarding faithful communication

through reputation systems.4

Specifically, we analyze the effect of pre-trade communication by a seller who repeatedly

produces an experience good of random binary quality subject to moral hazard, observes

a noisy signal on the produced quality and may communicate about it by cheap talk

before selling the good in a market of short-lived buyers. The seller’s track record of

past communication and delivered quality is assumed available for potential buyers, which

typically is the case (or feasible) in online markets.

We represent equilibrium value as a “self-generated” value in the sense developed by

Abreu, Pearce and Stacchetti (1990) and Fudenberg and Levine (1994); then we maxi-

mize the self-generated value subject to suitable incentive compatibility conditions. We

characterize fully the solution of this problem which turns out to be a tractable linear

program.

As a result we can clarify how the maximum achievable efficiency level varies depending

on the severity of moral hazard, the cost of efficient effort, and how noisy the seller’s signal

is. Without communication, the maximum achievable efficiency falls short of the full

efficiency level uniformly by an amount proportional to the cost of efficient effort, regardless

of seller’s patience. By contrast, with communication full efficiency is achieved when the

noise on the seller’s signal gets small, provided that she is patient enough. Therefore,

pre-trade communication enhances welfare if the seller’s signal is precise enough. It is also

shown that the maximum efficiency with meaningful communication is achieved when the

seller communicates truthfully.

As the seller’s signal gets noisier, two countervailing forces contend: on the one hand,

lying is more attractive as it is more likely to go undetected; on the other hand, it is less

3Cabral and Hortasçu (2010) and Klein, Lambertz and Stahl (2016) find evidence in eBay data that
feedback systems alleviate moral hazard.

4As an illustration, we note that two of the four options under eBay’s rating system are related to
communication: ‘Item as described’ and ‘Communication’. Amazon has a codification of the state of used
goods (from ‘like new’ to ‘acceptable’) and a dedicated section for “Customer questions & answers.”
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attractive because the price differential reflecting the seller’s signal, which is the short-

term gain from lying, dwindles. The former effect dominates except for an intermediate

range of noise levels. Thus, as the seller’s signal deteriorates from being perfect, the

maximum efficiency achievable with truthful communication changes non-monotonically:

it declines initially since truthful communication becomes harder to induce, then improves

temporarily before declining again eventually.

Turning to the cost of exerting the efficient effort, almost full efficiency is achiev-

able without communication if the cost is very low, but not with truthful communication

unless the signal is perfect. This is because imperfect monitoring of communication neces-

sitates triggering punishment with a non-negligible probability to prevent lying, causing

a non-negligible departure from the full efficiency. Hence, given any positive noise level,

communication improves efficiency only if the effort cost is not too small, more precisely,

when it is in an interior interval bounded away from zero.

In situations of severe moral hazard,5 it can happen that this interval vanishes when

the noise level in the seller’s signal is in some intermediate range but reappears both when

it is lower and higher (but not too high) owing to the non-monotonic effect of noise on

efficiency mentioned above. Thus, an interesting, counter-intuitive implication ensues:

efficiency may be enhanced by lowering the precision of the seller’s observation of quality.

We also provide a tight upper bound of the noise level below which communication can

be beneficial, which is not very demanding generally.

We conduct our analysis presuming that the seller communicates about the observed

signal, but she could also try to communicate about the effort level exerted. However,

the latter communication fails to raise the maximum seller payoff because it is redundant

when the effort level is correctly anticipated. In contrast, communication on signal conveys

new, interim information (not embedded in the equilibrium strategy) that can be used to

compensate the hidden action on the spot and thereby, boost incentives. The underlying

idea could be more general: falsifiable communication of interim information correlated

with the chosen effort may enhance efficiency.

This observation points to a link with the standard insight from the relational contract

literature (MacLeod and Malcomson, 1989; Baker, Gibbons and Murphy, 2002; Levin,

2003), namely, that incentives could be provided for the seller by delaying reward until

after the quality is realized, through ex-post bonuses paid by a buyer voluntarily either

directly or via higher future prices. Such a scheme however is not viable with short-lived

buyers who would renege on any promised bonus. Our analysis suggests that pre-trade

5In the sense (to be made precise later) that the efficient effort is not easy to monitor via delivered
quality, hence difficult to induce.
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communication may allow substituting ex-post bonuses with instant bonuses based on the

information revealed by the seller.

Related literature

The current paper contributes to the literature on trust and reputation. There are

broadly two modelling approaches to seller reputation as a mechanism to incentivize their

productive action. The first approach, elaborated by Klein and Leffler (1981) and Shapiro

(1983) among others, rests on the idea that sellers are motivated to build a good track

record in order to earn the trust of future buyers and thereby, a higher future income

stream. If the seller’s action is perfectly monitored ex-post via delivered quality, essentially

a Folk Theorem obtains and full efficiency is sustained in equilibrium. We build upon this

approach for the case that the seller’s action is imperfectly monitored, and characterize

the maximum efficiency achievable both with and without pre-trade communication.

The other one is the adverse selection-based approach pioneered by Kreps and Wilson

(1982) and Milgrom and Roberts (1982). Adapted to our context, a patient seller obtains

a payoff arbitrarily close to the efficient level by appearing as a “committed” type who

is believed to always take the socially efficient action (cf. Fudenberg and Levine, 1992),

but in equilibrium she mixes between efficient and inefficient actions and her reputation

declines gradually. Positing instead an “inept” type from which a seller desires to be distin-

guished, Mailath and Samuelson (2001) show, inter alia, that full efficiency is sustainable

if a seller’s type is subject to change at any time so that the problem of dwindling repu-

tational motive at very high reputation levels is precluded. In contrast, we show that full

efficiency is achievable even without hidden seller types, by utilizing the seller’s pre-trade

announcement to align her income stream more closely with the value she creates.6

More broadly, we contribute to the literature on repeated games of imperfect monitor-

ing, shaped by such influential papers as Green and Porter (1984), Fudenberg, Levine and

Maskin (1994), and Abreu, Pearce and Stacchetti (1986, 1990). Compte (1998) and Kan-

dori and Matsushima (1998) provide folk theorems for games with communication under

private monitoring and long-lived players. We focus on an environment where the power

of the Folk Theorem is impaired due to myopia of short-run players, as in Fudenberg and

Levine (1994), and we show that efficiency can be improved via cheap-talk communication

on endogenous private information.

We build upon the insight from Sobel (1986) and Morris (2001) that truthful commu-

nication may be motivated by the desire to preserve future credibility of communication.

Recently, Best and Quigley (2017) study how the concern for future may enhance credi-

6Jullien and Park (2014) show that pre-trade communication permits prices to reflect quality better in
pure adverse-selection settings as well.
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bility of a sender who sequentially persuade short-lived receivers in the sense of Kamenica

and Gentzkow (2011) but without commitment capability. Our mechanism differs criti-

cally because moral hazard is key to sustaining credibility. In our model communication

doesn’t steer the receiver into taking a better action for the sender—given the seller’s

effort choice, trade always occurs and the expected price is the same with and without

communication—yet helps the seller self-discipline in providing quality. As such, without

moral hazard at the production level, there is no room for communication. Thus, our

contribution lies in uncovering the dynamic complementarity between two forms of moral

hazard: the effort in delivering quality and the credibility in communication.

Moving to the related IO literature, Athey and Bagwell (2004) and Athey, Bagwell

and Sanchirico (2004) show that ex-ante communication under adverse selection improves

coordination in a collusive agreement. Awaya and Krishna (2016) show that ex-post com-

munication improves private monitoring and helps sustain higher collusive prices. Our

work differs in that we focus on interim communication under imperfect public monitoring

without adverse selection. Also related is Rhodes and Wilson (2016) on false advertising as

seller’s announcement can be interpreted as advertising. They assume exogenous penalties

for lying and exogenous quality, and focus on allocative inefficiency. Inderst and Ottaviani

(2009) analyze firm’s internal agency problem of incentivizing sellers to advise consumers

through adequate compensation, under exogenous penalties for misselling. In comparison,

we focus on improving productive efficiency via endogenous penalties for lying that arise

as a result of failing trust.

The paper is organized as follows. Section 2 sets up the baseline model and characterizes

the equilibrium without pre-trade communication. Section 3 contains the main analysis of

the equilibrium with pre-trade communication, followed by the characterization of when

such communication is welfare-enhancing in Section 4. Section 5 concludes and Appendix

contains deferred proofs.

2 Equilibrium without pre-trade communication

We start with an infinitely repeated version of a standard moral hazard model with two

effort levels and two outcomes. To disentangle the effect of pure information sharing from

the standard reputation effect, we abstract from adverse selection on the agent’s type.

2.1 Baseline model

In each period t ∈ N, a long-run seller privately exerts either high effort h at cost c > 0 or

low effort ` at zero cost, to produce one unit of good for sale. The quality of the produced
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item, denoted by qt, is a random variable, independent across periods, that assumes a

“good” value (i.e., qt = g) with a high probability h if high effort was exerted in that

period but with a lower probability ` otherwise where 0 < ` < h < 1, and assumes a “bad”

value (i.e., qt = b) with the complementary probability. We assume that qt is unverifiable,

albeit ex-post observable, so no warranty contract is feasible on the realized quality. Note

that h and ` are used to denote both the effort levels and the associated probabilities of

good quality being produced.

Multiple short-run, risk neutral buyers arrive afresh at the beginning of each period

and leave at the end of the period. Buyers have identical consumption values of the item,

which we normalize as 1 for a good quality item and 0 for a bad quality item, that is,

g = 1 and b = 0. Buyers do not observe the realized quality of the item prior to purchase.

We assume that exerting effort is socially efficient, that is,

c < h− `. (1)

As is standard in related literature (Tadelis, 1999, Mailath and Samuelson, 2002, Bar-

Isaac, 2003, and Board and Meyer-ter-Vehn, 2013), we assume that in each period, due to

competition between buyers, the item is sold to one of the buyers at a price pt that is equal

to its expected quality based on the information shared by the buyers. One interpretation

is that the good is sold through an auction (say, second-price auction), which is common

practice on trading platforms. In an online appendix, we discuss implications of alternative

selling mechanisms, in particular, those of posted prices.

At the end of each period, the purchaser observes the item’s true quality, qt, and

publicly reports it truthfully.7 Hence, a price and quality pair (pt, qt) ∈ [0, 1] × {g, b}
will be observed publicly after every period t ∈ N.8 To facilitate application of the self-

generation idea of Abreu, Pearce and Stacchetti (1986), we allow for public randomization

devices between periods; however, our results hold without such randomization devices as

shown in Appendix (end of the proof of Proposition 1).

Let Ht denote the (public) history at the beginning of period t ∈ N, with H1 = ∅
denoting the null history. Denote by H the set of histories. A strategy of the seller is a

mapping e : H → [0, 1] that specifies for each history a probability e(Ht) with which the

7This captures consumer feedback systems prevalent in online markets and is standard in related
studies, e.g., Tadelis (1999), Mailath and Samuelson (2001) and Bar-Isaac (2003).

8The seller is also informed of the effort she has exerted, but this private history has no effect on the
set of equilibrium payoffs. Indeed, after some public history, the seller’s effort differs depending on her
effort exerted in the past. Upon reaching this history, the seller’s past effort is payoff-irrelevant for the
continuation game. For the agent to be willing to exert h after some private history of effort and ` after
another private history, she has to be indifferent between the two after the given public history. Thus, it
constitutes an equilibrium that she exerts high effort with the average equilibrium probability regardless
of private history for this public history.
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seller exerts high effort in the period following that history.

Given a seller’s strategy e, let p(Ht |e) = e(Ht)(h− `) + ` denote the expected quality

of the item produced after each history Ht. Then, the seller’s normalized expected payoff

from an arbitrary strategy ẽ when consumers expect strategy e from the seller is

v(ẽ|e) = (1− δ) · E

[
∞∑
t=1

δt−1
(
p(Ht|e)− ẽ(Ht)c

) ∣∣∣ ẽ].
A strategy e is a perfect public equilibrium (equilibrium, for short) of the baseline model

described above if

v(e |e) ≥ v(ẽ |e) for every strategy ẽ of the seller. (2)

2.2 Characterization of equilibrium payoffs

For an arbitrary equilibrium, the seller’s payoff/value9 is

v = (1− δ)(p1 − e1c) + δ
[
Prob(q = g|e1) · vg + Prob(q = b|e1) · vb

]
(3)

where e1 is the equilibrium probability with which the seller exerts h in the first period,

p1 = e1(h − `) + ` is the equilibrium price in the first period, and vq is the continuation

value after the realized first period quality is q ∈ {g, b}. As all equilibrium prices are no

lower than `, every equilibrium value satisfies

v ≥ v := `.

In fact, ` is the minimum equilibrium value obtained in the “trivial equilibrium” in which

the seller exerts ` in every period regardless of history.

Suppose there is a maximum equilibrium value of the seller, denoted by v∗. Then, the

continuation values vq in (3) may be replicated by a public randomization across extreme

continuation equilibria (cf. Abreu, Pearce and Stacchetti, 1990, and Fudenberg and Levine,

1994): if the realized quality is q ∈ {g, b} in the first period, the “maximum equilibrium”

with the value v∗ ensues as the continuation equilibrium with probability ρq while the

trivial equilibrium with value v is triggered with probability 1−ρq, where ρg and ρb satisfy

vg = ρgv
∗ + (1− ρg)v and vb = ρbv

∗ + (1− ρb)v . (4)

With this representation, v∗ is the maximum self-generated value in the following sense:

a value v is self-generated by a tuple (e1, ρg, ρb) ∈ [0, 1]3 if, assuming that the first period

price is p1 = e1(h − `) + ` and the continuation values are given by (4) with v∗ replaced

9As consumers have zero surplus, the value of the game and the seller’s payoff coincide.
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by v, e1 is optimal for the seller in the first period and v is her value. Any self-generated

value is clearly an equilibrium value (with public randomization).

Every self-generated value v is at most its first period payoff by (3), because the

continuation value is no higher than v itself. Indeed, v = ` is a value self-generated

by a tuple with e1 = 0 so that the period payoff is always `. Moreover, any v > v self-

generated by a tuple, say (e1, ρg, ρb), must satisfy e1 > 0 which implies that the seller

obtains the value v by exerting h in the first period, that is,

v = (1− δ)(p1 − c) + δ
[
h(ρgv + (1− ρg)v) + (1− h)(ρbv + (1− ρb)v)

]
.

By rearranging, we express the self-generated value v > v as a function of p1, ρg and ρb as

v(p1, ρg, ρb) :=
(1− δ)(p1 − `− c)

1− δ(hρg + (1− h)ρb)
+ v. (5)

For any (p1, ρg, ρb) ∈ (`, h]×[0, 1]2, the value v(p1, ρg, ρb) is self-generated if it is optimal

for the seller to exert high effort (as well as low effort if p1 < h) in the first period:

δ(h− `)(ρg − ρb)
(
v(p1, ρg, ρb)− v

)
≥ (1− δ)c with equality if p1 < h, (ICh)

that is, the future gain from exerting h rather than ` exceeds the current cost c (and is

equal to c if the seller mixes h and `). Conversely, any v > v is a self-generated value if

v = v(p1, ρg, ρb) for some (p1, ρg, ρb) ∈ (`, h]× [0, 1]2 and satisfies (ICh).

Consequently, a maximum self-generated value v∗ exceeds v if and only if the following

linear program has a solution, in which case v∗ is its value:

max
(p1,ρg ,ρb)∈(`,h]×[0,1]2

v(p1, ρg, ρb) subject to (ICh). (P*)

As v(p1, ρg, ρb) increases in all its arguments while the LHS (left-hand side) of the inequality

(ICh) decreases in ρb, the solution (if it exists) is p1 = h (hence the seller exerts high effort

for sure), ρg = 1, and the largest ρb subject to (ICh). This solution and the optimized

value, v∗, are calculated as:

v∗ = h− c(1− `)
h− `

< h− c, ρ∗g = 1 and ρ∗b =
δ(h− `)2 − c(1− δ`)
δ(h− `)2 − cδ(1− `)

. (6)

It is straightforward to check that 0 ≤ ρ∗b ≤ 1 if and only if

c < c∗ :=
(h− `)2

1− `
and δ ≥ δ∗(c) :=

c

(h− `)2 + c`
, (7)

If (7) holds, therefore, the solution value to (P*) is indeed the maximum self-generated

value v∗ > v. If (7) fails, then the incentive compatibility (ICh) cannot hold for a legitimate

tuple (p1, ρg, ρb) with p1 > `, hence v∗ = v. We summarize these findings in the next

proposition where we also establish that equilibrium values constitute a convex set.
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Proposition 1 In the baseline model, the set of seller’s equilibrium values is the interval

[v, v∗] if c < c∗ and δ ∈ [δ∗(c), 1), and is a singleton {v∗} = {v} otherwise.

Proof. In Appendix.

Proposition 1 establishes that the seller can be disciplined by appropriate rewards for

good performances with higher continuation values, so long as she is patient enough and

effort is not too costly. However, note from (6) that the maximum value v∗ falls short of

the socially efficient level, h − c, uniformly by c(1−h)
h−` . Hence, efficiency can be improved

only to a limited extent. The inevitable level of inefficiency, c(1−h)
h−` , is higher for a higher c

and also for a higher ` or a lower h. This ensues because, as the two effort levels get closer

in terms of the quality distributions implied, the moral hazard problem intensifies in the

sense that the effort choice becomes harder to monitor ex-post by the delivered quality.

3 When pre-trade communication is possible

We now modify the baseline model by assuming that in each period t, the seller observes

an imperfect signal st ∈ {g,b} regarding the realized quality of that period (g for good

and b for bad), which is incorrect with probability λ < 1/2.10 After observing st, the

seller publicly announces a message mt from a finite set M of cheap-talk messages. Then,

the item is sold to one of the buyers at a price, pt, that is equal to its expected quality

based on the information shared by the buyers, including mt. As before, the purchaser

observes the item’s true quality, qt, and publicly reports it truthfully. The game modified

with communication as such is referred to as the “communication model.”

Clearly, the maximum value v∗ obtained in the previous section can be replicated in the

communication model when the seller’s messages are ignored as they carry no meaning (i.e.,

via the so-called “babbling” announcement). We delineate the extent to which meaningful

communication can be sustained and improve social welfare by enhancing the market’s

ability to reward effort.

In the communication model, a history Ht is defined as before except that it now

includes the record of all past messages along with prices and qualities. A strategy of the

seller is a pair (e, a) of mappings where the effort strategy e maps histories to probabilities

of exerting high effort as before and the announcement strategy, a : H×{h, `}×{g,b} →
∆(M), specifies a distribution over messages conditional on the effort exerted and the

signal observed, as well as history. The expected payoff of the seller is defined analogously

10That is, st = g (resp. b) with probability 1− λ conditional on the realized quality qt = g (resp. b).
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to the baseline model of no communication, accounting for the information transmitted

by messages. We analyze perfect public equilibria.

Given that the seller’s message will affect the future course of play in conjunction with

the quality to be delivered, the optimal message to send depends on her posterior belief

that the realized quality is good at that point (i.e., conditional on the signal observed and

the effort exerted). We let πs denote this probability conditional on observing a signal

s ∈ {g,b} after exerting h:

πg =
h(1− λ)

h(1− λ) + (1− h)λ
and πb =

hλ

hλ+ (1− h)(1− λ)
< πg.

Similarly, let π′s denote that after exerting `:

π′g =
`(1− λ)

`(1− λ) + (1− `)λ
< πg and π′b =

`λ

`λ+ (1− `)(1− λ)
< πb.

It will become clear shortly that the analysis depends on whether the seller’s signal is

precise enough so that a good signal (s = g) indicates a higher average quality than a bad

signal (s = b) irrespective of the effort exerted, which is the case if and only if

πb < π′g ⇐⇒ λ < λ̃ :=

√
(1− h)`√

(1− h)`+
√
h(1− `)

. (8)

3.1 Faithfully self-generated values (FSGV)

Clearly, v= ` is the minimum equilibrium value in the modified game as well. We are in-

terested in characterizing the maximum equilibrium value obtainable by a patient seller

when communication is available, denoted by v.

For any equilibrium with the maximum value v, the continuation value after message

m ∈M and realized quality q ∈ {g, b} of period 1, denoted by vmq, can be replicated by a

public randomization probability xmq ∈ [0, 1] such that11

vmq = xmqv + (1− xmq)v. (9)

Thus, v is “self-generated” in the sense described earlier: a seller’s value v is self-generated

by a period strategy (e1, a1) and randomization probabilities (xmq)m∈M,q∈{g,b} if, assuming

that the first period price is p1(m) = E(q1|e1, a1,m) and the continuation values are given

by (9) with v replacing v, the strategy (e1, a1) is optimal for the seller in the first period

and v is her value. By definition, any equilibrium value is self-generated if the continuation

11This has the flavor of tailoring the punishment to the crime (Mailath, Nocke and White, 2017) as the
continuation payoff for low quality is affected by messages.
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values are no higher than itself.

As noted already, every v ∈ [v, v∗] continues to be a self-generated value with a trivial,

babbling announcement (so that the price does not depend on the message). Characteriz-

ing v, therefore, boils down to finding the maximum self-generated value obtainable with

a non-babbling announcement strategy and comparing with v∗.

A key step in this analysis is to observe that if communication is necessary to obtain any

value, then a weakly higher value can be self-generated by a specific period strategy, called

the “faithful” strategy, described as follows: the seller exerts high effort (i.e., e1 = 1) and

reports the observed signal truthfully, that is, report m = G upon observing a good signal

s = g and m = B upon observing a bad signal s = b.12 We refer to a value self-generated

by the faithful strategy (and some randomization probabilities) as a faithfully self-generated

value (FSGV). To facilitate exposition, we state this result now and prove it later (in the

proof of Proposition 3 in Appendix) because the proof utilizes characterizations of FSGV

derived in due course.

Property 1. If δ is large enough, then for every self-generated value v > v∗, there is a

FSGV vF ≥ v.

In light of this property, we characterize v̄ by scrutinizing the maximum FSGV below.

For any FSGV vF , so long as the seller follows the faithful strategy, the two messages

G and B induce prices equal to the expected qualities given the respective signals, that is,

pG = πg > h and pB = πb < h. (10)

Let us denote by a vector x = (xBg, xGg, xBb, xGb) ∈ [0, 1]4 the probabilities that the seller

continues with the faithful strategy (i.e., the trivial equilibrium is not triggered) after

sending a message m ∈ {B,G} and delivering quality q ∈ {g, b}. Then, the probability

that her continuation value will be vF itself after delivering quality q ∈ {g, b}, denoted by

ρq as before, is

ρg := (1− λ)xGg + λxBg and ρb := (1− λ)xBb + λxGb. (11)

Thus, vF satisfies the recursive equation:

vF = (1− δ)
[
pB + (h(1− λ) + (1− h)λ)(pG− pB)− c

]
+ δ
[
(hρg + (1− h)ρb)(vF − v) + v

]
.

Given that the expected price in the first period is h (the expected quality from high

effort), this equation is rearranged to express vF in terms of x, in particular ρg and ρb, as

vF (x) :=
(1− δ)(h− `− c)

1− δ(hρg + (1− h)ρb)
+ v. (12)

12Truthful reporting means that the sets of messages sent after signals g and b in equilibrium are
disjoint. Hence, we may restrict the message space to {G,B} without loss of generality.
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This is the same form as the objective function in the program (P*) without communi-

cation when p1 = h. Hence, communication raises the maximum self-generated value only

if it can motivate the seller to exert high effort with a lower probability of triggering the

trivial equilibrium.

We spell out the incentive compatibility conditions for vF (x) to be supported as an

FSGV in the next section; then characterize the maximum FSGV in the subsequent section.

3.2 Incentive compatibility conditions

For vF (x) to be supported as a FSGV, the seller must find both exerting h and truthful

reporting of the signal optimal until the trivial equilibrium is triggered according to x.

For an easy comparison of the optimality conditions with the case of no communication,

we first write out the condition that the seller finds it unprofitable to deviate by exerting

` but following a truthful announcement strategy:

δ(h− `)(ρg − ρb)(vF (x)− v) ≥ (1− δ)
[
c− (h− `)(1− 2λ)(pG − pB)

]
(IChGB)

where the LHS is the expected long-term benefit and the RHS is the net short-run cost of

exerting h rather than `. Note that exerting h entails two effects: first, a good quality is

more likely, enhancing the continuation values (the LHS); second, a good signal is more

likely, boosting the current price (the second term of the RHS).

Condition (IChGB) is the counterpart of the optimality condition (ICh) for exerting h

with no communication. Comparing the RHS of the two conditions reveals that commu-

nication reduces the net short-run cost of exerting h by (h− `)(1− 2λ)(pG − pB). This is

the expected gain in current price from exerting h (as opposed to `), which arises because

the price, now reflecting the interim information on quality communicated by the seller, is

more aligned with the actual value created. This gain increases as the seller’s information

becomes more precise, asymptotically reaching the full contribution of high effort, h − `.
As such, pre-trade communication creates a differential in the expected current revenue

between exerting high and low effort. Such short-term incentives complement the conven-

tional long-term incentives provided via continuation value differentials and thereby, relax

the constraint for inducing high effort from (ICh) to (IChGB).13

However, such a gain from communication comes at a cost in the form of extra con-

straints. First, truthful announcement must be induced after exerting high effort. Second,

13For such easing of constraint, it is essential that the seller’s interim information on quality is from
over and above her knowledge of the exerted effort. While the seller possesses information about the
effort she exerted, communication of this information is redundant at any FSGV, because the effort level
is correctly anticipated and fully reflected in the equilibrium price. In contrast, communication on signal
conveys new information, lending additional scope for the market to provide incentives.
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communication opens up multiple ways for the seller to deviate.

We start with the condition for truthful announcement: a seller who follows the faithful

strategy and has exerted effort h (an h-seller, for short) must prefer to send the message

B (resp. G) upon observing a bad signal (resp. a good signal). This truth-telling condition

for an h-seller after s = b is

(1− δ)pB + δ
(
[πbxBg + (1− πb)xBb](vF (x)− v) + v

)
≥ (1− δ)pG + δ

(
[πbxGg + (1− πb)xGb](vF (x)− v) + v

)
,

which can be rewritten as

δ (πb∆g + (1− πb)∆b) (vF (x)− v) ≥ (1− δ)(pG − pB) (ICB)

where ∆q := xBq − xGq for q ∈ {b, g}.

An interpretation is that announcing G rather than B allows the seller to sell for

a higher price but increases the likelihood of triggering the trivial equilibrium by ∆q

depending on the actual quality. When the signal is bad, this risk must be large enough

for an h-seller not to mislead the market for a higher price, which is captured by (ICB).

When the signal is good (i.e., s = g), this risk must be small enough for an h-seller to

opt to announce G and get the high price pG, which is the case if

(1− δ)(pG − pB) ≥ δ (πg∆g + (1− πg)∆b) (vF (x)− v). (ICG)

Intuitively, announcing G should pose a greater risk of triggering the trivial equilibrium

when the quality turns out to be bad than when it turns out to be good. Indeed, the two

conditions (ICB) and (ICG) imply that

∆b ≥ ∆g. (D)

Now, we return to the optimality condition for exerting h. Note that the optimal an-

nouncement of a seller who has deviated by exerting ` (an `-seller, for short) is determined

by comparing continuation values from announcing G and B, conditional on the signal.

These are given by the same formulae as (ICB) and (ICG) but with πs replaced by π′s.

Thus, (ICB) and (D) imply that an `-seller should truthfully announce B after s = b

because π′b < πb; but she may or may not announce s = g truthfully depending on how

large π′g is. Hence the condition for h to be the optimal effort requires, in addition to the

earlier condition (IChGB) that an `-seller would not be better-off by announcing truthfully,

that she would not better-off by announcing B after both signals, either. That is,

(1− δ(`xBg + (1− `)xBb))(vF (x)− v) ≥ (1− δ)(pB − `) (IChBB)
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where the LHS is the loss of continuation value and the RHS is the current period payoff

gain if the seller deviated by exerting ` and announcing B after both signals.

To recap, the value vF (x) defined in (12) is a FSGV if and only if the four incentive

compatibility conditions hold, namely, (ICB), (ICG), (IChGB) and (IChBB). In this case,

we say that the FSGV is “supported by” the configuration x.

Typically, not all four constraints bind at the maximum FSGV. Intuition suggests that

it is more costly to induce truthful announcement of a bad signal than that of a good signal

because the former requires compensating the seller for a low current price. In addition,

truth-telling is more likely to be optimal after exerting ` as the signal becomes more precise

because then the signal is the predominant source of information for the future. The next

lemma, formalizing these intuitions, is useful in characterizing the maximum FSGV as it

narrows down the set of randomization probabilities that may support it.

Lemma 1 If a maximum FSGV exists14, denoted by vF , then it is the solution value to

the relaxed linear program:

vF = max
x∈[0,1]4

vF (x) subject to (IChGB), (IChBB), (ICB) and (D). (P )

Moreover, vF is supported by a configuration x ∈ [0, 1]4 that binds (ICB), but leaves

(IChBB) slack if λ < λ̃ and leaves (IChGB) slack if λ > λ̃.

Proof. In Appendix.

As in standard pure adverse selection problems, a sorting condition holds for announce-

ment that allows us to support the maximum FSGV by a configuration that binds (ICB).

Then, provided that the monotonicity condition (D) holds, it is optimal to announce

m = G (B) if the posterior belief that quality is good exceeds (falls short of) πb, the

level at which the seller finds the two messages equivalent. With (ICB) binding, therefore,

truthful announcement is optimal for an h-seller; and uniquely so for an `-seller if π′g > πb

(in which case (IChBB) is redundant). Likewise, announcing B regardless of the observed

signal is uniquely optimal for an `-seller if π′g < πb (in which case (IChGB) is redundant).

One difference from standard pure adverse selection problems, however, is that achiev-

ing the maximum surplus may but need not require binding the incentive constraints for

truthful announcement. This is because the reputational rent needed for inducing high

effort may be already sufficient for inducing truthful announcement, as elaborated in due

course.

14Existence ensues if the set of constraints is non-empty by compactness of the feasible set and continuity
of the value.
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3.3 Maximum FSGV and efficiency

We now characterize when the maximum FSGV exists, what its nature is, and how it can be

obtained, by exploring further the implications of Lemma 1 on equilibrium configuration.

Since the “punishment” payoff v is independent of the cost of effort c while the value

vF (x) decreases in c, the higher c is the harder it is to sustain the faithful strategy. This

is reflected in the conditions (ICB), (IChGB) and (IChBB) becoming harder to satisfy as

c increases. This means that a FSGV exists for all c below a threshold level. We show in

Appendix that this threshold converges, as δ tends to 1, to (recall that prices pG and pB

are functions of λ)

c (λ) :=

{
min

{
c∗ + (1−2λ)(h−`)(1−h)(pG−pB)

1−` , h− `− λ(1−h)(pG−pB)
1−pB

}
if λ ≤ λ̃,

h− `− λ(1−h)(pG−pB)
1−pB

− (1−h)(pB−`)
1−` if λ ≥ λ̃.

(13)

Thus, a FSGV exists for large enough δ if and only if c < c(λ). The threshold c(λ) is

continuous but not monotone in λ, with end values of

c(0) = h− ` and c(1/2) = c∗

because pG − pB = 1 at λ = 0 and pG = pB = h at λ = 1/2.

To characterize the maximum FSGV for large enough δ, it proves useful to know which

other constraints bind at the solution x to (P ) that binds (ICB). Observe from (ICB) that

vF − v exceeds a minimal rent (1− δ)(pG − pB) independently of the effort cost c. When

c is small enough, this minimal rent should be sufficient to incentivize the seller to exert

high effort and consequently, the maximum FSGV should be achieved without binding the

incentive compatibility conditions for inducing high effort, (IChGB) or (IChBB). We show

in Appendix that this is indeed the case for large δ if c < ĉ (λ) where

ĉ (λ) :=

{
(h− `)(pG − pB)

(
1− 2λ+ λ

1−pB

)
if λ ≤ λ̃,

h− pB − λ(1−h)(pG−pB)
1−pB

if λ ≥ λ̃,
(14)

which is a continuous function with end values of

ĉ(0) = h− ` and ĉ(1/2) = 0.

Observe that ĉ(λ) < c(λ) for λ > λ̃ but not necessarily for λ < λ̃ . Depending on

whether λ is below or above λ̃, the details differ on how the maximum efficiency may be

achieved. Yet, a similar general insight prevails that the most effective way is to reward

good quality and truthful announcement of bad signal, as stated below.
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Proposition 2 A FSGV exists for large enough δ if and only if c ∈ (0, c̄(λ)). In this case,

the maximum FSGV, vF , is supported by a configuration x̄ = (x̄Bg, x̄Gg, x̄Bb, x̄Gb) ∈ [0, 1]4

such that

(i) x̄Bg = x̄Gg = 1 (i.e., ρ̄g = 1) and moreover,

(ii) x̄Bb = 1 and x̄Gb < 1 that binds the truth-telling constraint (ICB) if c ≤ ĉ(λ), in

which case

vF = h− c− (1− h)hλ(1− 2λ)

(1− λ)(λ+ h(1− 2λ))
, and (15)

(ii′) x̄Bb < 1 and x̄Gb < 1 that bind both (ICB) and the relevant constraint for inducing

h, namely, (IChGB) for λ ≤ λ̃ and (IChBB) for λ > λ̃, if c > ĉ(λ).15

Furthermore, vF → h− c as λ→ 0.

Proof. In Appendix.

Hence, unless the cost c is too large the seller can be incentivized to exert high effort and

truthfully disclose the interim information on quality prior to trade for an indefinite length

of time. This is achieved via rewarding the seller by never triggering the trivial equilibrium

provided that the delivered quality is good, and also provided that bad quality is disclosed

when c ≤ ĉ(λ). In this case, as the maximum surplus of h − c accrues until the trivial

equilibrium is triggered with a probability no higher than (1− h)λ in each period, a lower

bound for the maximum FSGV, vF , is obtained as

vF ≥
(1− δ) (h− c)

1− δ(1− (1− h)λ)
→ h− c as λ→ 0.

Since ĉ(λ)→ h− ` as λ→ 0, this means that full efficiency is achieved for all c < h− ` via

pre-trade communication as the observation error λ vanishes, which is also evident from

(15). This is the case for all large enough δ (rather than asymptotically as δ → 1).

However, vF is not monotone in λ as can be seen easily from vF in (15) being convex

in λ with a minimum at λ = λ̆ :=
√
h

1+2
√
h
< 1/3. This reflects the dual effect of noisier

signal on the truth-telling incentives: it discourages truth-telling because lying is more

likely to go undetected but also encourages it by reducing the price differential to be

exploited by lying. The latter dominates for low λ while the former may take over for

higher λ. Consequently, the maximum efficiency changes non-monotonically as the signal

gets noisier. The non-monotonic effects of λ on the incentives of truth-telling continue to

hold for c > ĉ(λ).

It may be worth noting that the solution needs not be unique. In particular, when the

signal is precise enough (λ < λ̃) and the incentive compatibility for effort is binding (c >

15The formulae of v̄F are lengthier and less intuitive to interpret for (ii′), hence are provided in Appendix.
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ĉ(λ)), there exist other solutions where (ICB) is not binding and/or truthful announcement

of bad signal is not penalized (xBb = 1).

Having pinned down the maximum FSGV vF in Proposition 2, we are now ready to

characterize the set of equilibrium values in the communication model. Clearly, there are

self-generated values associated with seller’s strategies other than the faithful strategy. In

particular, those obtained in Proposition 1 (i.e., without communication) can be replicated

via babbling as mentioned earlier. As we show in Appendix, however, vF is the upper

bound of all self-generated values obtained with non-babbling strategies if δ is large enough

(Property 1). Thus, the higher value of vF and v∗ is the maximum self-generated value

when pre-trade communication is possible and moreover, any value between v and this

maximum constitutes an equilibrium value by the same logic used for the case without

communication.

Proposition 3 In the communication model, for large enough δ, the set of equilibrium

values is the interval [v,max{v∗, vF}] if c < c̄(λ) and [v, v∗] otherwise.

Proof. In Appendix.

Lemma 1 established that if efficiency can be improved by allowing for pre-trade com-

munication, this is done at a maximum extent via a faithful strategy. As a consequence the

maximum value is achieved with either faithful or no communication. Communication can

help by relaxing the incentive compatibility condition for exerting high effort, thus stretch-

ing the extent to which high effort may be induced or rendering it possible to induce high

effort (where it was not possible without communication). In the next section, we fully

characterize the environments in which communication enhances welfare in either way.

We close this section with an illustration of the two thresholds c(λ) and ĉ(λ), in Figure

1-(a) for the case that h− ` is relatively large with (h, `) = (0.75, 0.25) and in Figure 1-(b)

(a) c(λ) and ĉ(λ) for large gap h− ` (b) c(λ) and ĉ(λ) for small gap h− `
Figure 1
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for the case that it is relatively small with (h, `) = (0.5, 0.4). In both diagrams, the solid

curve represents c(λ) and the dotted curve represents ĉ(λ). Both curves are continuous

with a kink at λ = λ̃. In Figure 1-(b), c(λ) has another kink below λ̃. For low c, a FSGV

exists for all λ < 1/2. In this case, the price differential is small when the signal is very

noisy as noted above, but so is the risk differential ∆b upon delivering a bad quality.

4 When is communication beneficial?

According to Proposition 2, pre-trade communication enhances welfare to the fully efficient

level as λ→ 0 if the seller is patient enough, but impairs it as c→ 0 because v∗ converges

to h while vF stays bounded away from h. In this section, we clarify how widespread is the

welfare-enhancing effect of communication by delineating the parameter values for which

a patient seller can achieve a higher value with pre-trade communication than without.

We proceed by comparing vF with v∗.

When c ≥ c∗ so that high effort cannot be induced at all without communication,

communication is clearly beneficial so long as a FSGV exists, which is the case if c < c̄(λ)

by Proposition 2. We will elaborate later how large c̄(λ) is.

Consider the case that c < c∗ so that v∗ > v, meaning that high effort can be sus-

tained without communication to some extent, in particular, with probabilities ρ∗g = 1 and

ρ∗b < 1 after the seller delivered quality q ∈ {g, b}. In this case, communication enhances

efficiency if high effort can be induced with a larger ρb, or equivalently, with a lower prob-

ability of triggering punishment after delivery of bad quality. This is feasible in principle

because truthful communication eases the incentive constraint for inducing high effort from

(ICh) to (IChGB) by aligning the price with the realized quality. But, inducing truthful

communication adds two extra constraints (ICB) and (IChBB) as explained earlier. Each

constraint turns out to be a potential barrier that limits the benefits of communication in

certain environments.

To derive some intuition on when the optimal configuration x̄ in Proposition 2 generates

vF that exceeds v∗, let us set xGg = xBg = 1 (so that ρg = 1) and look for the maximum

vF (x) subject only to (ICB) and (D). Since the LHS of (ICB) increases in xBb and decreases

in xGb, this maximum value is vF (x̂) where the configuration x̂ = (1, 1, 1, x̂Gb) binds (ICB).

For vF > v∗, therefore, it is necessary that vF (x̂) > v∗. This holds if 1−λ+λx̂Gb > ρ∗b for

all large enough δ, which is verified to be the case if and only if

c > c(λ) := λ(h− `)
(pG − pB

1− pB

)
. (16)

To understand what goes on when c < c(λ), recall that inducing truthful reporting
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requires a minimal rent be given to the seller. More precisely, overstating the signal

(announcing G upon observing s = b) is discouraged by the spread ∆b = xBb − xGb in

continuation probabilities after truthful reporting of bad quality and after overstatement.

In particular, (ICB) requires that ∆b be bounded away from 0 because the future loss from

overstating a bad signal must overshadow the gain in current price, pG−pB. When c is very

small, the probability ρ∗b is very close to 1, leaving little scope to push xBb above ρ∗b to have

enough spread ∆b. Thus, truth-telling must be induced by decreasing xGb significantly,

sacrificing efficiency. This is the barrier stemming from the truth-telling constraint (ICB).

Therefore, for communication to enhance efficiency it is necessary that ρ∗b is not too

large, which is implied by (16). In fact, provided that a FSGV exists, (16) is also sufficient

for communication to be beneficial if

either λ < λ̃, or λ > λ̃ and c ≤ ĉ(λ). (17)

To see this, consider the configuration x∗ = (1, 1, 1, x∗Gb) where 1 − λ + λx∗Gb = ρ∗b so

that vF (x∗) = v∗. Condition (16) implies that (ICB), as well as (D), is slack at x∗. Thus,

vF > v∗ ensues if the incentive constraint for inducing h is also slack at x∗. This is indeed

the case if λ < λ̃ because the relevant constraint is relaxed from (ICh) to (IChGB). If

λ > λ̃ so that the relevant constraint is (IChBB), then vF > v∗ obtains so long as c ≤ ĉ(λ)

because in that case vF is supported by the configuration x̂ according to Proposition 2.

In the remaining case that λ > λ̃ and c > ĉ(λ), the second barrier comes into play.

Specifically, at the solution configuration x̄ described in Proposition 2 where ρg = 1, the

truth-telling constraint (ICB) reduces to

∆b ≥
pG − pB

(1− pB)(h− `− c)

(
1

δ
− h− (1− h) ρb

)
, (18)

whereas the relevant incentive constraint for inducing h, (IChBB), can be rewritten as

(using xBb = ρb + λ∆b)

λ∆b ≤
(
h− pB − c

1− `

)
1− δ

δ (h− `− c)
+

(
1−

(pB − `
1− `

)( 1− h
h− `− c

))
(1− ρb) . (19)

Note that this condition prevents ρb from getting too close to 1 for large λ, because pB → h

as λ→ 1/2 so that the first term on the RHS of (19) is negative. As a result, we identify

in Appendix an upper bound of λ,

λ :=
(1− h) (3h− `)

2 (2h− 1) (h− `)

(√
1 +

4 (2h− 1) (h− `)h
(3h− `)2 (1− h)

− 1

)
> λ̃, 16

16If h = 1
2 , then λ = 1

3−2` > λ̃,

20



above which communication cannot be beneficial because ρb > ρ∗b cannot be accommodated

jointly by (18) and (19). This is the barrier to beneficial communication stemming from

the extra condition (IChBB).

It is verified straightforwardly that c(λ) decreases in λ > λ̃ and hits c∗ at λ. It can be

further verified that c(λ) < ĉ(λ) < c(λ) for λ ∈ (λ̃, λ), leading to the following result on

the potential for communication to improve efficiency:

Proposition 4 vF > v∗ for large enough δ if and only if

λ < λ and c(λ) < c < c(λ).

Proof. In Appendix.

The result pertains to both when c̄(λ) ≤ c∗ and when c∗ < c̄(λ) because the latter case

implies c(λ) < c∗ as shown in Appendix.

According to Proposition 4 communication does not help if the signal is too unreliable

(λ ≥ λ) or effort cost is either too small or too large. Finally, we elaborate on these

boundaries at which communication ceases to be beneficial.

To get more insight about the upper bound of the observation error that allows bene-

ficial communication, we derive the following comparative statics on λ :

Lemma 2 λ increases in `, decreases in h, and converges to 1/2 as `→ h.

Proof. In Appendix.

A higher ` and/or a lower h aggravates the moral hazard problem as it degrades ex-post

monitoring of effort by the delivered quality. Such changes in the environment permit less

precise communication to enhance efficiency, pushing up the upper bound λ. Note that λ

tends to be quite large, in particular, exceeding 0.3 for h < 0.7 even as ` → 0 where λ is

lowest.

For a given value λ < λ, the lower bound of effort cost c for beneficial communication

is c(λ) > 0. Note that c(0) = c(0.5) = 0 and c(λ) is single-peaked at λ = λ̆, the point at

which vF in (15) bottoms out. Such non-monotonic changes reflect the fundamental trade-

off we highlighted earlier, namely, that noisier signals reduce not only the price differential,

which is the short-run gain from overstating a bad signal, but also the long-run loss by

reducing the risk of getting detected.

We have shown that the range of c for which communication may improve efficiency,

(c(λ), c(λ)), converges to the full range (0, h − `) as λ → 0. Therefore, communication
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can be beneficial for the entire range of effort cost c when λ→ 0; the range of c gradually

shrinks as λ increases from 0 but may expand temporarily as λ increases further before it

reaches the upper bound λ at which the range ceases to exist.

However, if ` is sufficiently close to h, it may happen that (c(λ), c(λ)) is empty for some

intermediate values of λ ∈ (0, λ̃) because c(λ) falls below c∗ and c(λ) rises above c∗ at the

same time. Hence, the range may disappear for some intermediate values of λ < λ̃ and

reappear for higher values of λ. This observation leads to a counter-intuitive measure to

address moral hazard in sellers: if the seller’s observation of quality is not very precise and

cannot be improved easily, then making it noisier may facilitate truthful communication

by rendering overstatement less attractive and thereby, enhance efficiency.

In line with the discussions in this section, the grey area in Figure 3-(a) illustrates the

parameter values (c, λ) for which pre-trade communication is beneficial when ` is not too

close to h with the case (h, `) = (0.75, 0.25): it is below the red curve c(λ) and above the

black curve c(λ) for λ lower than λ at which c(λ) intersects the horizontal dashed line at the

level c∗. Figure 3-(b) illustrates the corresponding area when ` is closer to h with (h, `) =

(0.5, 0.4). Notice an intermediate range of λ where c(λ) ≤ c∗ ≤ c(λ), for which com-

munication cannot be beneficial for any level of the effort cost c. Consequently, there are

two disconnected regions of parameter values on which communication improves efficiency.

(a) Large gap h− ` (b) Small gap h− `
Figure 3

5 Conclusion

In this paper we have examined how and when cheap-talk communication by a seller can

help discipline herself and thereby, enhance efficiency and her equilibrium payoff. Gen-
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erally speaking, this is possible when the moral hazard problem is neither too mild nor

too acute and the seller’s information is not too noisy. In this case, the incentives for

effort and for truthful communication are interwoven within the same reputation mech-

anism that determines continuation equilibria based on the seller’s past performance, in

such a way that truthful communication complements the conventional reputational in-

centives by permitting immediate reward for effort via more accurate prices. This raises

the value of reputation for being trustworthy, which in turn provides credibility to seller’s

communication.

We have developed our analysis in a setting of experience good sellers, but the insight

should be more broadly applicable to situations that involve interim communication by ac-

tors who are subject to moral hazard and reputation. For instance, managers report about

likely performance, academic scholars communicate about intermediate research findings,

and doctors update the progress of treatments. As already mentioned, communication

could be used to move forward some reward in relational contracts.

In our model where actions, outcomes and signals are binary, the maximum equilib-

rium value is characterized by a well-defined linear program. This allowed us to study

systematically the impacts of signal precision on the incentives for truthful communica-

tion and consequently, to characterize fully the optimal communication and effort strategy

as well as the environments in which communication enhances welfare. It is an interesting

agenda, which we leave for future work, to investigate whether our findings are driven by

the discrete nature of our model, or they extend to richer environments that accommodate

more flexible communication and actions.17

17If the seller’s signal is perfect, however, our logic extends straightforwardly to the case of continua of
effort/quality levels and the full efficiency is achieved.
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Appendix

A. Proof of Proposition 1

We have shown in the main text that the maximum self-generated value is v∗ in (6) if

(7) holds, while v is the unique self-generated value if (7) fails. Thus, it remains to verify

that every v ∈ (v, v∗) is an equilibrium value if (7) holds.

Recall that v∗ in (6) is obtained with p1 = h, ρg = 1, and ρb = ρ∗b which is the

largest value compatible with (ICh). As (ρg − ρb)(v(p1, ρg, ρb) − v) decreases in ρb, the

value v(h, 1, ρb) constitutes a self-generated value for all ρb ∈ [0, ρ∗b ] as (ICh) is satisfied.

Thus, any value between v(h, 1, 0) and v(h, 1, ρ∗b) is self-generated. Analogously, fixing

p1 = h and ρg < 1, any value between v(h, ρg, 0) and v(h, ρg, ρ̂b(ρg)) is self-generated,

where ρ̂b(ρg) is the largest non-negative value compatible with (ICh) given p1 = h and ρg,

when it exists. Note that ρ̂b(ρg) increases in ρg because (ρg−ρb)(v(p1, ρg, ρb)−v) increases

in ρg. Thus, there is unique ρg(h) ∈ (0, 1) such that ρ̂b(ρg(h)) = 0. By continuity, the set

of self-generated values associated with p1 = h is the interval [v(h, ρg(h), 0), v(h, 1, ρ∗b)].

Similarly, for each p1 ∈ (`, h) the set of self-generated values is a closed interval18

with the minimum value of v(p1, ρg(p1), 0) so long as ρg(p1) ≤ 1. As ρg(p1) solves (ICh) as

equality when ρb = 0, i.e., ρg(p1) = c
δ(c`+(h−`)(p1−`)) , we have ρg(p1) = 1 when p1 = c(1−δ`)

δ(h−`) +`

for which v(p1, 1, 0) = ṽ := (1−δ)c
δ(h−`) + v. Therefore, the set of all self-generated values is the

interval [ṽ, v∗].

Observe from (1− δ)c = δ(h− `)(ṽ − v) that the seller is indifferent between exerting

h and ` if the continuation payoff in period two is ṽ if q1 = g and is v if q1 = b. Given

such continuation payoffs, it is optimal for the seller to exert h with any probability

e1 ∈ [0, 1], generating the seller’s value of (1− δ)p1 + δ(e1h+ (1− e1)`)(ṽ − v) + δv where

p1 = e1(h−`)+`. These values range from v(1) = (1−δ)`+δ(`(ṽ−v)+v) = v+δ`(ṽ−v) < ṽ

to (1 − δ)h + δ(h(ṽ − v) + v) > ṽ. We refer to the values in the interval [v(1), ṽ] as self-

generated with one lag. These are clearly equilibrium values.

Next, consider the seller’s value from exerting ` for the first t ≥ 1 periods, after which

the continuation value is vg ∈ [v(1), ṽ] if all qualities have been good up to then but is v

otherwise. As the prices are ` in the first t periods, the set of seller’s values obtained as

such is

{v + δt`t(vg − v)|v(1) ≤ vg ≤ ṽ]} = [v + δt+1`t+1(ṽ − v), v + δt`t(ṽ − v)]

which we call self-generated values with t+ 1 lags. For each such value v, the initial effort

choice of ` is optimal given that the continuation value is v if q1 = b and is a self-generated

18To be precise, it is {v(p1, ρg, ρb) |(ICh) binds for some (ρg, ρb) ∈ [0, 1]2}.
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value v′(< ṽ) with t lags if q1 = g such that v + δ`(v′ − v) = v. As such, every value

v ∈ (v, v(1)) is self-generated with t lags for some t ≥ 2, which clearly is an equilibrium

value.

Lastly, we show that every value v ∈ [v, v∗] is an equilibrium value even without public

randomization. As shown above, any such value v is either self-generated or self-generated

with lags, with an associated first period strategy e1 and a continuation value vq ∈ [v, v∗]

conditional on the first period quality q ∈ {g, b}. As each vq is self-generated or self-

generated with lags, conditional on the first period quality q ∈ {g, b}, the associated second

period strategy and subsequent continuation values are specified accordingly. Proceeding

recursively, one can determine a strategy e by specifying e(Ht) for every possible history.

By construction, e(Ht) is optimal conditional on the history relative to the price schedule

defined by e and v is the associated value, completing the proof.

B. Proof of Lemma 1

A FSGV is supported by a configuration x ∈ [0, 1]4 that satisfies (ICB), (ICG), (IChGB)

and (IChBB). Since (ICB) and (ICG) imply (D), it follows that the solution value to (P ),

denoted by ¯̄vF , is no lower than the maximum FSGV vF presuming that it exists.

Consider a solution to (P ) which is a configuration x that satisfies (IChGB), (IChBB),

(ICB) and (D), so that ∆b = xBb−xGb > 0. If both (ICB) and (D) are slack at x, one can

reduces xBb while increasing xGb to keep ρb = (1−λ)xBb+λxGb constant until either (ICB)

or (D) binds. Since this keeps vF (x) and thus (IChGB) intact while loosening (IChBB), the

modified configuration also supports ¯̄vF . Hence, we may assume that (D) or (ICB) binds

at the solution x to (P ).

If only (D) binds at x, then xBq > 0 and xGq < 1. If xBg < xBb, raise xBg and xGg by

the same amount while reducing xBb and xGb by the same amount to keep hρg + (1− h)ρb
intact. Since this keeps (ICB) and (D) intact and loosens (IChGB) and (IChBB), we may

assume that xBg ≥ xBb at the solution x to (P ) that binds (D) but not (ICB). Then,

xGg and xGb may be raised by the same amount until (ICB) binds, which clearly keeps

(D) intact and loosens (IChBB); it also loosens (IChGB) because the direction of change

in (ρg − ρb)(vF − v) is captured by

∂

∂xGg

( ρg − ρb
1− δ(hρg + (1− h)ρb)

∣∣∣
xGb=xBb−∆g

)
=

1− δxBb + λ(δ(xBg + xBb)− 2)

(1− δ(hρg + (1− h)ρb))
2

which is positive since it is linear in λ and positive at both λ = 0 and 1/2.

Consequently, there is a solution x to (P ) that binds (ICB). Then, (D) implies that

(ICG) holds at x, further implying that x supports a FSGV which is at most vF . Since
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vF ≤ ¯̄vF as asserted earlier, we have established the equivalence of the maximum FSGV

vF and the solution value to (P ).

Finally, at a solution x to (P ) that binds (ICB), the seller is indifferent between

announcing G and B when her posterior is πb. Hence, upon observing s = g, an `-

seller would find it uniquely optimal to announce G (resp. B) if πb < π′g ⇔ λ < λ̃

(resp. πb > π′g ⇔ λ > λ̃) by (8). This implies that (IChBB) is slack at x if λ < λ̃ while

(IChGB) is slack if λ > λ̃.

C. Proof of Proposition 2

Since ∆q and vF (x) increase in xBq for each q ∈ {g, b}, so does the LHS of (ICB).

Moreover, with xBg = xBb = 1, the LHS of (ICB) increases in xGg and decreases in xGb for

large enough δ because the respective derivative of the LHS divided by (1− δ) converges,

as δ → 1, to

h(1− h)(h− `− c)(1− xGb)(1− 2λ)

(1− λ− h(1− 2λ))X2
> 0 and

h(1− h)(h− `− c)(xGg − 1)(1− 2λ)

(1− λ− h(1− 2λ))X2
< 0

where X = λ(1− xGb) + h(1− (1− λ)xGg − (2− xGb)λ). Hence, for (ICB) to be satisfied

by some configuration, it must be satisfied by x = (xBg, xGg, xBb, xGb) = (1, 1, 1, 0), which

is the case if and only if

c ≤ h− `− pG − pB
1− pB

(
1

δ
− h− (1− h)(1− λ)

)
−→ cICB := h− `− λ(1− h)

pG − pB
1− pB

as δ → 1 where the convergence is from below. Therefore,

[C1] (ICB) holds for some configuration x for large enough δ if and only if c < cICB,

and in this case it holds at x = (1, 1, 1, 0).

Moreover, in this case the value vF (x) is maximized subject to (ICB) at x̂ = (1, 1, 1, x̂Gb)

where x̂Gb < 1 is the unique value at which (ICB) binds. We further establish the following.

[C2] If vF is supported by a configuration x that leaves (IChGB) and (IChBB) slack

and xGb > 0, then x = x̂.

To prove this, consider a configuration x = (xBg, xGg, xBb, xGb) that supports vF as such.

We now prove [C2] in four steps.

Step 1. xBg = 1: If xBg < 1, increase xBg and xGg slightly keeping ∆g intact, which

would increase vF (x) without violating any constraint of the program (P ). As this would

contradict x supporting vF , we deduce that xBg = 1 must hold.

Step 2. xGg = 1 or xBb = 1: If xGg < 1 and xBb < 1, one can increase xGg and xBb by

the same amount, i.e., dxGg = dxBb = dx > 0. If πb < 1 − πb, this raises vF (x) while
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relaxing (ICB) and (D), a contradiction to x supporting vF . If πb > 1 − πb, in addition

to increasing xGg and xBb as above, one may reduce xGb so that (πb∆g + (1 − πb)∆b) is

constant, i.e., (1− 2πb)dx = (1− πb)dxGb. This increases vF (x) because

d(hρg + (1− h)ρb) =

(
1− λ+ (1− h)λ

1− 2πb

1− πb

)
dx > (1− 2λh) dx

where the inequality follows from 1−2h
1−h < 1−2πb

1−πb
< 0, thus relaxing (ICB) as well as (D),

again a contradiction.

Step 3. xGg = xBb = 1: If xGg = 1 > xBb, increase xBb. If xGg < 1 = xBb, increase xGg

and decrease xGb in such a way that πb∆g+(1−πb)∆b is intact, i.e., πbdxGg+(1−πb)dxGb =

0 and thus

d(hρg + (1− h)ρb) = h(1− λ)dxGg + (1− h)λdxGb > (1− λ)[hdxGg + (1− h)dxGb] > 0.

Either case, vF (x) increases while maintaining (ICB) and (D), a contradiction to x sup-

porting vF .

Step 4. x̂ supports vF : By Steps 1–3, vF is supported by a configuration x = (1, 1, 1, xGb)

at which (IChGB) and (IChBB) are slack, as well as (D). Therefore, (ICB) must bind be-

cause otherwise xGb may be increased without violating any constraint. This proves [C2].

When [C2] applies, the solution is x̂ where

x̂Gb =
δ(1− pB) (h− `− c)− (pG − pB)(1− δ + δ(1− h)λ)

δ[(1− pB) (h− `− c)− (pG − pB) (1− h)λ]
(20)

and vF (x̂) is routinely calculated as the formula in (15).

The proof now proceeds differently between the two cases λ ≤ λ̃ and λ > λ̃.

C.1 Case where λ ≤ λ̃

In this case we focus on (IChGB), (ICB) and (D) because the three conditions, with

(ICB) binding, imply (IChBB). As vF (x) increases in ρg, for (IChGB) to hold at any x it

must holds at ρg = 1 which is written as

δ (1− ρb) (1− h)

(1− δh− δ (1− h) ρb)
≥ (c− (h− `) (1− 2λ) (pG − pB)) (1− h)

(h− `) (h− `− c)
. (21)

The LHS decreases in ρb, and it is less than 1 and converges to 1 as δ → 1 for all ρb < 1.

Hence, (IChGB) may hold at some x for large enough δ if and only if the RHS is strictly

less than 1, which is calculated to be the case if and only if

c < cICh := c∗ + (1− 2λ)
(h− `)(1− h)

1− `
(pG − pB).
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Note that, in this case, (IChGB) holds at every x = (1, 1, xBb, xGb) 6= (1, 1, 1, 1) for

δ large enough because the LHS of (21) converges to 1 as δ → 1. Together with [C1],

therefore, both (IChGB) and (ICB) hold at some x when δ is large enough if and only if

c < min{cICh, cICB} = c(λ). Since in this case they both hold at x = (1, 1, 1, 0) which also

satisfies (D), a FSGV exists for large enough δ if and only if c ∈ (0, c(λ)), thus so does

the maximum FSGV, vF , by the Maximum theorem (as the objective function of (P ) is

continuous subject to a compact constraint set).

Suppose c < c(λ), so that vF exists. Since x = (1, 1, 1, 0) satisfies (IChGB), (ICB)

and (D) strictly in this case, we have vF > vF (1, 1, 1, 0). Thus, any configuration x =

(xBg, xGg, xBb, xGb) supporting vF must have xGb > 0.

Hence, if vF is supported by a configuration at which (IChGB) is slack, it must be x̂ =

(1, 1, 1, x̂Gb) by [C2], and thus, (IChGB) must be slack at x̂. Given xGg = xBg = xBb = 1,

it is routinely verified that the LHS of (IChGB) decreases in xGb, hence it binds at a unique

x′Gb < 1 and hold at all lower xGb. It is straightforward to verify (by Mathematica) that

x̂Gb ≤ x′Gb for large enough δ if and only if

c ≤ (h− `)(pG − pB)
(

1− 2λ+
λ

1− pB

)
= ĉ(λ).

This verifies that vF is supported by x = (1, 1, 1, x̂Gb) for large enough δ if c ≤ ĉ(λ),

establishing Proposition 2 for λ ≤ λ̃ when c ≤ ĉ(λ).

If c > ĉ(λ), on the other hand, vF cannot be supported by a configuration at which

(IChGB) is slack by [C2], thus it is supported by x = (xBg, xGg, xBb, xGb) that binds

(IChGB). Note that x′ = (1, 1, 1, x′Gb) binds (IChGB) and satisfies (ICB) and (D) loosely.

If vF (x) > vF (x′), then ρb must be higher at x than x′, but then the LHS of (IChGB)

is lower at x than x′ because the LHS of (IChGB) increases in ρg and decreases in ρb, a

contradiction to x supporting vF . Therefore, vF is supported by x′, and vF (x′) is calculated

(by Mathematica) as

vF (x′) = −c(1− `)
h− `

+
1− h(1− 2λ)2 − 3λ(1− λ)

h(1− 2λ)2(1− h) + λ(1− λ)
h.

However, since (ICB) is slack at x′, there is flexibility in choosing xBb and xGb because

only ρb matters for vF (x) and (IChGB). Thus we can also obtain vF with (ICB) binding,

by reducing xBb from 1 and increasing xGb from x′Gb keeping ρb intact until (ICB) binds.

Note that (D) holds because ∆g = 0.

This establishes Proposition 2 for λ ≤ λ̃.

Discussion of the thresholds

In fact, the thresholds are related as follows:
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cICh − ĉ(λ) = (h− `)A(λ) and cICB − ĉ(λ) = (1− `)A(λ)

where

A(λ) := (1− `)
[
h− `
1− `

(1− (pG − pB)(1− 2λ))− λ(pG − pB)

1− pB

]

=
λh
[

h−`
h(1−`)(1− λ)2 − (1− 2λ)(hλ+ (1− h)(1− λ))

]
(1− λ)(h(1− λ) + (1− h)λ)(hλ+ (1− h)(1− λ)

. (22)

Hence either ĉ(λ) < c(λ) = cICh < cICB or c(λ) = cICB < cICh < ĉ(λ). The latter case

occurs when (IChGB) is easier to satisfy than (ICB) so that the truth-telling rent, the RHS

of (ICB), is sufficient to induce h. In the former case (IChGB) becomes more stringent than

(ICB) when the effort cost c is large enough.

Observe that ĉ(λ) < c(λ) when A(λ) > 0 and ĉ(λ) > c(λ) when A(λ) < 0. Note that

r := h−`
h(1−`) decreases from 1 to 0 as ` increases from 0 to h. Given any λ, in particular,

c(λ) < ĉ(λ) if ` is close enough to h.

To check the sign of A(λ) by that of the term in the bracket of (22), we note that

B(λ) = r
(1− λ)2

(1− 2λ)
− (hλ+ (1− h)(1− λ))

is convex and B(0) = r+h− 1 and B′(0) < 0. Since λ̃ = r−1+
√

1−r
r

from h(1−r)
1−rh = `, we get

B(λ̃) =
r(1−

√
1− r)2

(2− r − 2
√

1− r)
− (h(r − 1 +

√
1− r) + (1− h)(1−

√
1− r))

≥
(

r(1−
√

1− r)
2− r − 2

√
1− r

− 1

)
(1−

√
1− r) > 0

Therefore,

• If B(0) ≤ 0⇔ r+h ≤ 1, then we have ĉ(λ) < c(λ) = cICh for λ above some threshold

while c(λ) = cICB < ĉ(λ) below the threshold.

• If r+ h > 1 and r is not too large, then ĉ(λ) < c̄(λ) = cICh for λ small or close to λ̃,

but c(λ) = cICB < ĉ(λ) holds in some interior interval.

• Finally, when r + h > 1 and r is large (` is small) so that (1−λ)2

(1−2λ)
> 1, then ĉ(λ) <

c(λ) = cICh for all λ.

C.2 Case λ > λ̃

In this case we focus on (IChBB), (ICB) and (D) because the three conditions, with

(ICB) binding, imply (IChGB). Recall that (ICB) holds for some x for large enough δ if
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and only if c < cICB, in which case x̂ = (1, 1, 1, x̂Gb) maximizes vF (x) subject to (ICB),

and binds (ICB). It is straightforward to verify that (IChBB) holds at x̂ if and only if

c ≤ ĉ(λ) = h−pB−λ(1−h)
pG − pB
1− pB

=
(1− 2λ)2(1− h)h2

(1− λ)(h+ λ(1− 2h))(1− h− λ(1− 2h))
. (23)

Since ĉ(λ) < cICB and x̂ satisfies (D), it follows that vF = vF (x̂) if c ≤ ĉ(λ), establishing

Proposition 2 for λ > λ̃ and c ≤ ĉ(λ).

Next, for the remaining case that c > ĉ(λ) so that (IChBB) fails at x̂, consider a

configuration x = (xBg, xGg, xBb, xGb) that supports vF , presuming it exists. First we

show that

xGg = 1 or xGb = 0 (24)

must hold. To verify this, suppose to the contrary that xGg < 1 and xGb > 0. Then, one can

increase xGg and decrease xGb, while increasing hρg+(1−h)ρb, i.e. πgdxGg+(1−πg)dxGb >

0, and increasing πb∆g + (1−πb)∆b, i.e. πbdxGg + (1−πb)dxGb < 0. This would increase

vF while relaxing (ICB), (D) and (IChBB), a contradiction. Hence, (24) must hold.

Also, we verify that

∆b = ∆g or xBg = 1. (25)

Suppose otherwise, i.e., ∆b > ∆g and xBg < 1. Then, since ∆b > 0 by (ICB), one can

reduce xBb and increase xBg while keeping hρg + (1−h)ρb constant, so that hλdxBg + (1−
h)(1 − λ)dxBb = 0 ⇔ πbdxBg + (1 − πb)dxBb = 0 and `dxBg + (1 − `)dxBb < 0 because

` < πb for λ > λ̃. This would keep vF (x) constant while relaxing (IChBB) and (ICB)

because dxBg = d∆g and dxBb = d∆b. As (D) remains slack, vF (x) can be increased above

vF , a contradiction. Thus, (25) must hold.

Given (24) and (25), there are three possibilities in which x may support vF : (i) xBg =

xGg = 1, (ii) xGb = 0 and xBg = 1, (iii) xGb = 0, ∆b = ∆g and xBg < 1. We examine

these possibilities below.

We start with possibility (i) xBg = xGg = 1, so that ρg = 1. Solve binding (IChBB)

and (ICB) simultaneously to get the solution:

x̆Bb =
(1− δ`) [(1− pB)(h− `− c)− (pG − pB) (1− h)λ]− (1− δh) (1− pB) (pB − `)
δ(1− `) [(1− pB)(h− `− c)− (pG − pB) (1− h)λ]− δ (1− h) (1− pB) (pB − `)

x̆Gb = x̆Bb −
(pG − pB) (1− δh− δ (1− h) x̆Bb)

δ [(1− pB)(h− `− c)− (pG − pB) (1− h)λ]
.

Note that x̆Bb can be rewritten as

x̆Bb =
(1− δ`)(c(λ, δ)− c)

(1− δ`)(c(λ, δ)− c) + (1− δ)(c− ĉ(λ))

where c(λ, δ) = h− `− (1− δh)(pB − `)
(1− δ`)

− λ(1− h)
pG − pB
1− pB

> ĉ(λ).
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Hence, x̆Bb ∈ (0, 1) if and only if ĉ(λ) < c < c(λ, δ). In this case, the initial formula of x̆Bb

implies (1− pB)(h− `− c)− (pG− pB)(1−h)λ > 0 and thus, x̆Gb < x̆Bb and both x̆Bb and

x̆Gb converge to 1 from below as δ → 1. This implies that x̆ = (1, 1, x̆Bb, x̆Gb) supports a

FSGV that dominates any FSGV with xGb = 0 required by possibility (ii) and (iii).

For c ∈ (ĉ(λ), c(λ)) and large enough δ, therefore, vF must be supported by a configu-

ration x with xGb > 0 and moreover, (IChBB) binds at x by [C2] because x̂ fails (IChBB) in

the current case. Since we may assume that (ICB) binds at a configuration that supports

vF by Lemma 1, we deduce that x̆ = (1, 1, x̆Bb, x̆Gb) supports vF for large enough δ, which

is calculated (by Mathematica) as

vF (x̆) = −c(1− `)
h− `

−

[ `(1− λ)λ2 + h2(1− 2λ)(λ2 − λ+ (1− `)(1− 2λ))
−h(1− 4λ+ 5λ2 − λ3 − `(1− 3λ+ λ2 + 2λ3))

]
(h− `)(1− λ)[h(1− 2λ)2(1− h) + λ(1− λ)]

h.

This establishes Proposition 2 for λ > λ̃ and ĉ(λ) < c < c(λ).

It remains to consider c > c(λ) for λ > λ̃. If vF is supported by x that conforms to

possibility (i) but xGb > 0 (hence, neither (ii) and (iii)), then x must bind (IChBB) by

[C2] because x̂ fails (IChBB), and x may also bind (ICB) by Lemma 1 but no such x exists

as shown above.

Hence, it suffices to consider only (ii) and (iii). We may assume that (ICB) binds by

Lemma 1. If (IChBB) is slack, xBb = 1 must hold because otherwise raising xBb would

increase vF (x) maintaining (ICB) and (D), a contradiction; but xBb = 1 is inconsistent

with (ii) because binding (ICB) would imply vF (x) − v → 0 as δ → 1, contradicting

(IChBB), nor is it with (iii) because it would imply ∆b = 1 > ∆g.

Therefore, vF should be supported by a configuration that binds both (ICB) and

(IChBB), but we show this is impossible for large enough δ below, thus completing the

proof of Proposition 2.

Possibility (ii): Suppose xGb = 0 and xBg = 1. Solving the simultaneous equation sys-

tem consisting of the binding constraints (IChBB) and (ICB), and evaluating the solution

value of xGg at the limit δ = 1 gives

(h− `− c)(1− `)− (pG − pB)(1− `)[h+ λ− 2hλ]− (pB − `)[1− hλ− pB(h+ λ− 2hλ)]

(h− `− c)pB(1− `)− (pG − pB)(1− `)h(1− λ)− (pB − `)[h− hλ+ pB(1− 2h− λ+ 2hλ)]

which obtains a value of 1 at c = c(λ). Moreover, its derivative w.r.t. c is

(1− `)[pB(λ+ h(1− 2λ))− h(1− λ)][p2
B − 2`pB + pG(`− 1) + `](

(h− `− c)pB(1− `)− (pG − pB)(1− `)h(1− λ)− (pB − `)[h(1− λ) + pB(1− 2h− λ+ 2hλ)]
)2
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which is positive because i) pB(λ + h(1− 2λ))− h(1− λ) < 0 given pB < h if λ > λ̃ and

ii) p2
B − 2`pB + pG(` − 1) + ` < p2

B − 2`pB + h(` − 1) + ` < 0 for ` < pB < h. Thus, we

have shown that the unique solution value of xGg to binding (IChBB) and (ICB) exceeds

1 for c > c(λ) and large enough δ, hence no legitimate solution exists in the current case.

Possibility (iii): Suppose xGb = 0, ∆b = ∆g and xBg < 1. Solving the simultaneous

equation system consisting of the binding constraints (IChBB) and (ICB), and evaluating

the solution value of xBg at the limit δ = 1 gives

xBg|δ=1 =
c+ pB + (pG − pB)(λ− `+ 2h(1− λ))− h

c`+ `(`− 2h− (pG − pB)(1− λ− h+ 2hλ)) + hpG
. (26)

The derivative of this w.r.t. c is

∂xBg|δ=1

∂c
=

(h− `)(pG(1− `) + pB`− `)
[c`+ `(`− 2h− (pG − pB)(1− λ− h+ 2hλ)) + hpG]2

which is positive because pG(1 − `) + pB` − ` exceeds its value at pG = h and pB = `,

namely (h− `)(1− `), given λ > λ̃.

Moreover, we calculate that (26) has a value of 1 at

c =
`(`− 2h)− (pG − pB)(2h+ (1− `)(1− 2h)λ− `h) + h(1 + pG)− pB

1− `
.

Since subtracting this from c(λ) gives

(h(1− pB)− λ(pB(1− 2h) + h))(pG − pB)

1− pB
=

(1− 2λ)(1− h)h(pG − pB)

(1− h− λ(1− 2h))(1− pB)
> 0,

(26) obtains a value of 1 at some c < c(λ) and thus exceeds 1 for c ≥ c(λ). Hence, no

legitimate solution exists for c > c(λ) and large enough δ.

D. Proof of Proposition 3
Consider a non-trivial self-generated value, SGV for short, for which the seller may

mix h and ` and/or report less than fully truthfully. We allow an arbitrary finite number

of messages to encompass noisy communication of the signal as well as of the effort.

For any message m used in the period strategy supporting the SGV, associated are

continuation values denoted by vmq for each q ∈ {g, b}. The “(continuation) spread” of

message m refers to vmg − vmb. Each vmq is between the SGV itself and v, which we

describe as being “feasible.”

By an “agent e-s” we refer to a seller who exerted e ∈ {h, `} and observed s ∈ {g,b}.
Let πes = πs if e = h and πes = π′s if e = `. For each message m used for a SGV, the seller’s

payoff from sending m is linear in πes with a slope equal to the spread×δ:

U(m,πes) := (1− δ)pm + δ[πes(vmg − vmb) + vmb].
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Imagine the upper envelope of all the graphs of U(m,π) for all m on π ∈ [π′b, πg]. The

optimal message(s) for each agent e-s are those whose graphs constitute the upper envelope

at π = πes. We may disregard any message whose graph is disjoint from the upper envelope.

From the above, we have the following observations [i]–[v] on the seller behavior supporting

a SGV, that hold for all λ ∈ (0, 1/2).

[i] If agents e-s and e’-s’ find it optimal to send m and m′, respectively, then the spread

of m is weakly larger than that of m′ if πes ≥ πe
′

s′ from the discussion above, or

equivalently, because

(1− δ)pm + δ[πesvmg + (1− πes)vmb] ≥ (1− δ)pm′ + δ[πesvm′g + (1− πes)vm′b]
(1− δ)pm + δ[πe

′

s′vmg + (1− πe′s′)vmb] ≤ (1− δ)pm′ + δ[πe
′

s′vm′g + (1− πe′s′)vm′b]
=⇒ πes[(vmg − vmb)− (vm′g − vm′b)] ≥ πe

′

s′ [(vmg − vmb)− (vm′g − vm′b)].

[ii] Each used message is optimal for an “adjacent” set of agents, i.e., all agents with πes
in a certain interval. Multiple messages optimal for multiple agents must have the

same graph, hence same spread, vmg − vmb, and same intercept, (1− δ)pm + δvmb.

[iii] Any two messages m and m′ optimal for all agents in a given set of agents can be

replaced, without affecting optimality conditions, by a new message obtained by the

convex combination of m and m′ with weights equal to their respective probabilities

relative to total probability. Hence, one may assume at most one message that

is optimal for and only for all agents in any given “adjacent” subset of agents.19

Moreover, if such a message exists for an adjacent set of agents, then it is the unique

message commonly optimal for any non-singleton subset of those agents.

[iv] If h is exerted with positive probability, the spread of any message optimal for the

agent h-g is positive: otherwise, the spread of every used message would be non-

positive and thus, the upper envelope of the graphs of all messages is non-positively

sloped. This would mean that the optimal expected payoff is no lower for an `-seller

than for an h-seller so that exerting h is suboptimal considering the cost c > 0,

contrary to h being exerted.

[v] Consider two used messagesm andm′ with associated prices pm and pm′ , respectively,

such that pm < pm′ and the spread of m′ is larger than that of m which is positive.

Consider a third message m′′ with pm < pm′′ < pm′ followed by continuation values

vm′′q = vmq − (1 − δ)(pm′′ − pm)/δ for q ∈ {g, b}. Then, the expected payoff from

19Note that this doesn’t prevent that several messages be optimal for any given agent.
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sendingm andm′′ are identical for all agents and vm′′q is feasible. It is feasible because

the agent who uses m must weakly prefer sending m′′ to m′, which implies, together

with both the price and the spread being larger for m′ than m′′, that vm′′q ≥ vm′b.

With these observations at hand, we now show that there is no SGV larger than

max{v∗, vF} in Step 1 and Step 2 below. Then, we show that all values in [v,max{v∗, vF}]
can be achieved as equilibrium values in Step 3.

STEP 1: Mixing h and ` does not increase the seller’s value.

We will show that for any SGV for which h and ` are mixed, there is a weakly higher

SGV supported by a period strategy where effort is not mixed, if δ < 1 is large enough.

Lemma 3 Consider a SGV v′ > v for which h and ` are mixed.

(a) If a message G′ is used by agent h-g with pG′ ≤ πg and B′ 6= G′ is used by agent h-b

with pB′ ≤ πb, then there is a weakly higher SGV for which effort is not mixed.

(b) If a message G′ is used by agent `-g and B′ 6= G′ is used by agent `-b, then either

pG′ > π′g or pB′ > π′b.

Proof. Part (a). Consider a SGV v′ > v as above. We build a weakly higher SGV

supported by a period strategy in which h is exerted for sure, and alternative messages G′′

and B′′ with prices pG′′ ≤ πg and pB′′ = πb, together with suitably modified continuation

values. Recall that payoff from sending message m depends only on (1− δ)pm + δvmb and

the spread vmg − vmb (observation [i]).

If pG′ = πg and pB′ = πb, then v′ can be supported by the seller exerting h for sure

and sending G′ (B′) after good (bad) signal, i.e., without mixing h and `. Hence, suppose

pG′ < πg or pB′ < πb, and consider hypothetical messages denoted by G′d and B′d with

associated prices higher than pG′ and pB′ , respectively, by the same amount d > 0, keeping

the continuation values unchanged. Increase d until either pB′d hits πb or pG′d hits πg.

Case 1. πg − pG′ ≥ πb − pB′ : In this case, pB′d hits πb, say at d = d1, before pG′d hits πg.

At this point, given the two messages B′d1 and G′d1 , the seller finds it optimal to exert h and

report B′d1 after s = b and G′d1 after s = g (because the payoff from exerting h increased

by πb − pB′ and that from ` increased by no more). This generates a value strictly larger

than v′ and all continuation values are clearly “feasible” since they did not change. Note

also that pG′d1
> pG′ > πb because G′ is sent by no agent e-s with πes < πb to self-generate

v′ initially (observation [iii]).

Now, increase pG′d until either it reaches πg or agent h-b becomes indifferent between

B′d1 and G′d. At that point, exerting h is optimal conditional on M = {G′d, B′d1} (because

an `-seller benefits less from increased pG′d given that it announces B′d1 if s = b and thus

34



announces G′d less often than an h -seller) and h-seller’s value is v′′ > v′. In the case that

pG′d reaches πg first, v′′ is the value of an equilibrium in which the seller exerts h for sure

and sends B′d1 after s = b and G′d after s = g. In the alternative case that pG′d < πg reaches

a point at which agent h-b becomes indifferent between B′d1 and G′d, v
′′ is an equilibrium

value where agent h-b mixes between B′d1 and G′d appropriately so that pG′d is the price for

the message G′d obtained by Bayes rule. In either case, by Property 1 (p.12), v′′ is SGV

supported by a period strategy in which h is exerted for sure as desired.

Case 2. πg − pG′ < πb − pB′ : Next, consider the case that pG′d hits πg first at d = d1.

If the spread of B′ is positive, then use observation [v] to replace message B′d1 by an

equivalent message B′′ with price pB′′ = πb (use m = G′d1 , m
′ = B′d1 and pm′′ = πb in [v]).

Then the SGV v′ can be supported with effort h only and messages G′′ = G′d1 and B′′.

If the spread of B′ is negative, consider a modified message B′d by increasing pB′d toward

πb while decreasing δvB′dg/(1 − δ) and δvB′db/(1 − δ) by the same amount to keep B′d to

be “equivalent” with B′d1 for every agent. If pB′d reaches πb before vB′dg hits v, a higher

equilibrium value is supported by a seller exerting h for sure and reporting B′d when s = b

and and G′d1 when s = g (because the payoff should have increased weakly more for h-seller

than for `-seller), which is also a SGV by Property 1.

In the alternative case that vB′dg hits v before pB′d reaches πb, say at d = d2. Continue

to increase pB′d to πb while decreasing vB′db to keep the payoff of agent h-b from sending

B′d, i.e. (1 − δ)pB′d + δπb(v − vB′db) + δvB′db, constant. Note that pB′d reaches πb, say at

d = d3 > d2, before vB′db hits v, because otherwise the payoff of agent h-b from sending B′d
would be less than (1− δ)πb + δv which is strictly less than that from sending G′. During

the process from d2 to d3, the payoff from sending B′d decreases for π < πb and increases

for π > πb.

At d = d3, the payoff of exerting h (and announcing B′d3 after s = b and G′d1 after s = g)

remains unchanged since d = d1. On the other hand, the maximum payoff from exerting

` decreased if λ ≥ λ̃, because then given π`b < π`g ≤ πb sending B′d is optimal for both `-g

and `-b and the payoff from it remained the same for d ∈ (d1, d2) but decreased after d = d2

as noted above. Even when λ < λ̃ so that π`b < πb < π`g, if `-seller’s payoff increased after

d = d2, then B′d should be optimal at d = d3 for agent `-g as well as `-b, implying that the

payoff from sending B′d regardless of the signal, (1− δ)pB′d + δ`(v− vB′db) + δvB′db, increased

for d ∈ (d2, d3). For this, since (1− δ)pB′d + δ(1−πb)vB′db remains constant for d ∈ (d2, d3),

we would need δ(πb − `)vB′db increase, implying that πb < `. But, then `-seller’s payoff

from sending B′d at d = d3, denoted by v, would have to satisfy

v ≤ (1− δ)`+ δ`(v − v) + δv ≤ (1− δ)`+ δv =⇒ v ≤ ` = v,
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contradicting v ≥ v′ > v.

Hence, at d = d3 withM = {G′d1 , B
′
d3
} and continuation values specified above, exerting

h must be optimal, followed by B′d3 after s = b and G′d1 after s = g. As this constitutes

an equilibrium with a value v′′ > v′ and continuation values lower than v′′, by Property 1

v′′ is a FSGV as desired.

Part (b). If pG′ ≤ π′g and pB′ ≤ π′b, the value v′ from optimally exerting ` and sending

messages G′ and B′ after respective signals is at most

(1− δ)
[
(`(1− λ) + (1− `)λ)π′g + (`λ+ (1− `)(1− λ))π′b

]
+ δv′ ≤ (1− δ)`+ δv′,

leading to v′ ≤ ` = v, a contradiction.

Consider an arbitrary SGV v′ > v for which h and ` are mixed. Suppose there is a

message, say H, used by both agents h-g and h-b in the period strategy supporting v′ such

that pH ≤ h. When H is modified by increasing the price to h with the same continuation

values, it remains optimal for the seller to exert h and send the message H regardless of

signal, which constitutes an equilibrium with a higher value. By Property 1, therefore, a

higher SGV exists for which effort is not mixed.

Hence, suppose that pH > h for any message H used by both agents h-g and h-b (in

the period strategy supporting v′). Clearly, pG′ ≤ πg for any message G′ used by agent

h-g. If there is a message used by agent h-b, say B′, such that pB′ ≤ πb , there is a SGV

v′′ ≥ v′ for which effort is not mixed by Lemma 3 (a).

Hence, suppose that pB′ > πb for any message B′ used by h-b, so that it must be

shared by an agent with a higher posterior on the item’s quality. If all such messages are

shared by agent h-g but not by `-g, which must the case if λ ≥ λ̃ so that π′g ≤ πb < πg,

then not all of them may carry prices exceeding h since the mean of those prices cannot

exceed h, contrary to the supposition above.

Thus, assume λ < λ̃ (so that πb < π′g < πg) and thus, all messages used by h-b are

shared by `-g. Suppose any of them, say H, is also shared by h-g, whence agent `-g uses

H for sure by [iii].20 If agent h-b also uses H for sure, we would have pH ≤ max{π′g, h},
necessitating h < π′g for pH > h. Then, agent `-b should use H for sure as well due to

Lemma 3 (b), contradicting pH > h. If agent h-b uses a message different from H, on the

other hand, the associated price is no higher than πb as it is not shared by `-g or h-g, and

a higher SGV exists for which effort is not mixed by Lemma 3 (a).

In the remaining case that h-b shares every message with `-g but not with h-g, the

associated price is at most π′g and thus, by Lemma 3 (b) agent `-b must share all messages

20As no other message than H can be shared with types h-g and h-b, any other message used by `-g
would be preferred to H by type h-g or type h-b.
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with agents h-b and `-g. For any such message (unique by [iii]), say L, we have pL ≤
max{`, πb}. Recall that we assumed πb < pL for a message played by type h-b which

implies that pL ≤ ` . Then, since exerting ` is optimal in the period strategy, we would

have v′ ≤ (1− δ)pL + δv′ ≤ (1− δ)`+ δv′ so that v′ ≤ `, contradicting v′ > v.

STEP 2: Not fully truthful announcements do not increase the seller’s value

We now consider SGV’s for which effort is not mixed in the period strategy. If the

effort exerted is `, the associated SGV is clearly ` = v. We show below that any SGV

vh (> v) for which the seller exerts h for sure but does not report the signal fully truthfully,

is no higher than max{v∗, vF} if c < h− ` and δ is large enough.

By observation [iii], we may consider only up to three used messages with at most one

of them being sent by both agent h-g and agent h-b. Hence, there are three possibilities

to consider as below.

Possibility 1: Suppose that an h-seller always announces a message G after s = g, but

after s = b she announces G and B with probability θ ∈ (0, 1) and 1− θ, respectively. We

call the associated SGV a semi-faithfully SGV. Then, the price remains at pB after m = B

but changes to

pθG := pG −
κ(θ)

h(1− λ) + (1− h)λ
> h > pB > `

after m = G where

κ(θ) :=
h(1− h)(1− 2λ)θ

h(1− λ) + (1− h)λ+ (hλ+ (1− h)(1− λ))θ
< h(1− h)

and the value (computed from truthful reporting out of indifference) is

vh(x) =
(1− δ)(h− `− c− κ(θ))

1− δ
(
hρg + (1− h)ρb

) + v

We assume h− `− c− κ(θ) > 0 because vh(x) > v.

The maximum semi-faithfully SGV, which we denote by vh if exists, is the solution

value to the program

vh = max
x∈[0,1]4

vh(x) (27)

subject to (IChGB), (IChBB), (ICB) and (D) with pG replaced by pθG and vF (x) by vh(x),

and the additional restriction that (ICB) binds at x.

In the proof of Lemma 1, to prove that vF is supported by a configuration that binds

(ICB), the actual value of pG was not used but only the fact that pG ∈ (h, 1). Therefore,

Lemma 1 extends to establish that the maximum semi-faithfully SGV, vh, is also the
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solution value to the program (27) without requiring that (ICB) bind at x, which is how

we treat (27) from now on. Then, various results on vF extend to vh as described below.

We start with the observation that vh is dominated by vF for large enough δ if the

latter also exists:

Lemma 4 If c < c̄(λ) then vh ≤ vF for large enough δ if vh exists.

Proof. Consider a maximum semi-faithfully SGV vh supported by a configuration x

such that xGb → 1 as δ → 1 (because otherwise vh < vF for large enough δ by Proposition

2). By observations [i]–[v] above, the payoff from sending m = B is U(B, π) = (1− δ)pB +

δ[π(vBg − vBb) + vBb] and that from sending m = G is U(G, π) = (1 − δ)pθG + δ[π(vGg −
vGb) + vGb] such that U(B, πb) = U(G, πb) and vGg − vGb > max{0, vBg − vBb}. Since

xGb → 1 ⇔ vGb → vh as δ → 1, one can find v′Gb ∈ (v, vGb) such that

(1− δ)(πg − pθG) = δ(1− πg)(vGb − v′Gb)

so that (1 − δ)πg + δ[π(vGg − v′Gb) + v′Gb] is equal to U(G, π) at π = πg but lower than

U(G, π) at π < πg. Hence, when pθG is replaced by pG = πg and vGb by v′Gb, the seller

would find the faithful strategy optimal and thus, vh can be generated as a FSGV.

By the same reasoning as in [C1] of the proof of Proposition 2, (ICB) must hold at

(1, 1, 1, 0) for any x to bind (ICB), which is the case for large δ only if

c < cθICB := h− `− κ(θ)− λ(1− h)
pθG − pB
1− pB

< cICB

where the latter inequality follows from

−κ(θ) +
λ(1− h)κ(θ)

(1− pB)(h(1− λ) + (1− h)λ)
< 0 (28)

because λ(1−h)
(1−pB)(h(1−λ)+(1−h)λ)

< λ(1−h)
(1−pB)(h(1−λ)+(1−h)λ)

∣∣
pB=h

< 1. In addition, for λ ≤ λ̃,

analogously to the first paragraph of Case C.1 in the proof of Proposition 2, (IChGB) may

hold for some x only if

c < c∗ + (1− 2λ)
(h− `)(1− h)

1− `
(pθG − pB)− κ(θ)

h− `
1− `

< cICh.

Hence, for λ ≤ λ̃, if a semi-faithfully SGV exists then c < c(λ) and thus, vh ≤ vF by

Lemma 4.

Next, consider the case that λ > λ̃. Assume c < cθICB so that (ICB) is satisfied at

some x, thus at x = (1, 1, 1, 0). Again, the arguments for the Case C.2 in the proof of
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Proposition 2 extend to the current case with pB replaced by pθB and vF (x) by vh(x). In

particular, (ICB) holding at x = (1, 1, 1, 0) implies that vh(x) is maximized subject to

(ICB) and (D) at x̂θ = (1, 1, 1, x̂θGb) that binds (ICB). Since (IChBB) is satisfied at x̂θ if

and only if

c ≤ ĉθ(λ) = h− pB − κ(θ)− λ(1− h)
pθG − pB
1− pB

< ĉ(λ)

where the latter inequality is due to (28), it follows that v̄h = vh(x̂
θ) if c ≤ ĉθ(λ), in which

case vh ≤ vF by Lemma 4 because ĉ(λ) < c(λ) for λ > λ̃.

In addition, for c > ĉθ(λ), the arguments in Case C.2 establish that (24) and (25) must

hold at the solution x to (27), leaving three cases to consider: (i) xBg = xGg = 1, (ii)

xGb = 0 and xBg = 1, (iii) xGb = 0, ∆b = ∆g and xBg < 1. The analyses for these cases

also extend straightforwardly with suitable modifications as summarized below. Used in

this process is the claim [C2] which is straightforwardly verified to hold for vh as well.

For the case (i) xBg = xGg = 1, the solution values x̆Bb and x̆Gb that bind both (ICB)

and (IChBB) are of the same formulae as before with c replaced by c+κ(θ) and pG by pθG,

thus a legitimate solution exists only if

c < cθ(λ) = h− `− κ(θ)− (1− δh)(pB − `)
(1− δ`)

− λ(1− h)
pθG − pB
1− pB

< c(λ)

where the inequality follows from (28). In this case, (IChBB) must bind at a configuration

supporting vh by [C2], where (ICB) also binds by Lemma 1. Thus, (1, 1, x̆Bb, x̆Gb) supports

vh if c ∈ (ĉθ(λ), cθ(λ)), whence vh ≤ vF by Lemma 4.

For the remaining case that λ > λ̃ and c ≥ cθ(λ), we may focus on possibilities (ii) and

(iii) and (IChBB) should bind at the configuration that supports vh for the same reasoning

as in Case C.2 of proof of Proposition 2, where we may assume (ICB) also binds by Lemma

1. But, such a configuration does not exist for large enough δ as asserted below.

For the possibility (ii) xGb = 0 and xBg = 1, the solution value xGg|δ=1 obtains a value

of 1 at c = cθ(λ)|δ=1 < c(λ) and increases in c because its derivative w.r.t. c is of the same

formula as in C.2 with c replaced by c+ κ(θ) and pG by pθG. Hence, no legitimate solution

exists. For (iii) xGb = 0, ∆b = ∆g and xBg < 1, again the suitably modified solution

value of xBg increases in c and exceeds 1 at c = cθ(λ) by the same reasoning, precluding

any legitimate solution.

Possibility 2: Suppose that a SGV vh is supported by an h-seller who always announces

a message B after s = b, but announces G and B with probability θ ∈ (0, 1) and 1 − θ,
respectively, after s = g. Then, the price remains at pG after m = G while it is pθB ∈ (pB, h)

after m = B.
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As exerting h and reporting B is optimal for the seller, her value is

vh = (1− δ)(pθB − c) + δ(hxBg + (1− h)xBb)(vh − v) + δv

=⇒ vh =
(1− δ)(pθB − `− c)

1− δ(hxBg + (1− h)xBb)
+ v

so that, in particular, we need pθB > ` for vh > v. As an `-seller could always report B,

optimality of exerting h requires

δ(h− `)(xBg − xBb)(vh − v) ≥ (1− δ)c

subject to which vh is maximized at xBg = 1 and xBb that binds the inequality.

Notice from (ICh), however, that this is the condition for (e1, ρg, ρb) to constitute a

self-generated value without communication where e1 satisfies pθB = e1(h − `) + ` and

(ρg, ρb) = (xBg, xBb). As shown in Section 2, therefore, vh ≤ v∗ if c < c∗ and vh = v if

c ∈ [c∗, h− `).

Possibility 3: The remaining possibility is that an h-seller sends G and a third message

m after s = g, and B and m after s = b for a SGV. Then, pB < pm < pG and we must

have

(1− δ)pB + δ[πbvBg + (1− πb)vBb] = (1− δ)pm + δ[πbvmg + (1− πb)vmb]

≥ (1− δ)pG + δ[πbvGg + (1− πb)vGb]

and (1− δ)pG + δ[πgvGg + (1− πg)vGb] = (1− δ)pm + δ[πgvmg + (1− πg)vmb]

≤ (1− δ)pB + δ[πgvBg + (1− πg)vBb].

Therefore, if both G and B are sent with positive probability, the same value is generated

by h-seller who sends G and B with certainty after s = g and s = b, respectively, i.e.,

through a faithful strategy, with the same continuation values. Note that the seller cannot

benefit by exerting ` instead of h with message m removed, because the expected payoffs

from sending G and B remain the same for `-seller. If both G and B are unused, on the

other hand, it amounts to babbling and SGV’s of this kind have been covered in Section

2. The case that only G or only B is unused amounts to Possibility 1 and Possibility 2

above, respectively.

STEP 3: every value in [v,max{v∗, vF}] is an equilibrium value

In STEPs 1-2 above, we have shown that max{v∗, vF} is the tight upper bound of all

SGV for large enough δ < 1. When v∗ = max{v∗, vF}, the claim has been shown already

in Proposition 1.
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Hence, consider the alternative case, i.e., vF > v∗, implying that c < c(λ). From the

proof of Proposition 2, there exists v0 < vF such that a continuum [v0, vF ] of FSGV’s

exists for large enough δ.

Consider the following strategy: exert ` in the first t periods, followed by a continuation

value v ∈ [v0, vF ], generating a value of `(1 − δt) + δtv = `(1 − δt) + δt(v − v) + δtv =

v+δt(v−v). Given the price of ` in the first t periods followed by such a continuation value

v, it is optimal to exert ` in the first t periods. The set of values that can be generated with

t lags as such is [v+δt(v0−v), v+δt(vF −v)] . Note that v+δt+1(vF −v)−v−δt(v0−v) =

δt(δvF − v0 + v− δv) > 0 where the inequality holds if δ is large enough. Therefore, every

value in (v, v0) is a FSGV with t lags for some t if δ is large enough. Consequently, every

value in (v, vF ] is either a FSGV or a FSGV with t lags for some t if δ is large enough, all

of which constitute equilibrium values (with public randomization).

This proves Step 3, thus completing the proof of Proposition 3.

E. Proof of Proposition 4

From Proposition 2 (ii′), the most efficient equilibrium is achieved at x̄ that binds both

constraints (18) and (19). Hence, communication is beneficial if ρ̄b = (1−λ)x̄Bb+λx̄Gb > ρ∗b
at this solution. To facilitate comparison, we rearrange ρ∗b in (6) as

1− ρ∗b =
c

(h− `)2 − c(1− `)

(1− δ
δ

)
=

c

c∗ − c
× 1− δ
δ(1− `)

for c < c∗.

Similarly, we solve for x̄Bb and x̄Gb from (18) and (19) and express ρ̄b as

1− ρ̄b =
Λ(λ) + c

Λ(λ)h−1
1−` + c∗ − c

× 1− δ
δ(1− `)

for λ > λ̃ and ĉ(λ) < c < c(λ)

where

Λ(λ) := λ
(pG − pB

1− pB

)
(1− `)− h+ pB =

c∗ − c(λ)

1− h
. (29)

Note that 1 − ρ̄b is an increasing function of Λ(λ) and is equal to 1 − ρ∗b when Λ(λ) = 0.

Thus, whether ρ̄b exceeds ρ∗b or not is independent of c in the current case. Specifically,

for λ > λ̃ and c ∈ (0, c∗) ∩ (ĉ(λ), c(λ)), we have

ρ̄b > ρ∗b ⇐⇒ Λ(λ) < 0 ⇐⇒ c∗ < c(λ) ⇐⇒ c(λ) < ĉ(λ) (30)

where the last equivalence follows from c(λ) − c∗ = (1 − h)(ĉ(λ) − c(λ)). It is verified

straightforwardly that c(λ) decreases in λ > λ̃ and hits c∗ at

λ = λ :=
(1− h) (3h− `)

2 (2h− 1) (h− `)

(√
1 +

4 (2h− 1) (h− `)h
(3h− `)2 (1− h)

− 1

)
> λ̃.21

21If h = 1
2 , then λ = 1

3−2` > λ̃.
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Consequently, together with an earlier assertion that ĉ(λ) < c(λ) for λ > λ̃, we deduce

that {
λ ∈ (λ̃, λ) =⇒ (ĉ(λ), c∗) ⊂ (c(λ), c(λ)) and ρ̄b > ρ∗b on c ∈ (ĉ(λ), c∗)

λ ≥ λ =⇒ (c(λ), c(λ)) ⊂ (ĉ(λ), c∗) and ρ̄b ≤ ρ∗b on c ∈ (ĉ(λ), c(λ)).
(31)

We now combine (31) with the condition (16) for beneficial communication when (17)

holds. First, (16) implies communication is beneficial when c(λ) < c < ĉ(λ) if λ ∈ (λ̃, λ),

but is vacuous if λ ≥ λ because ĉ(λ) < c(λ) by (30). For λ < λ̃, (16) implies beneficial

communication for c ∈ (c(λ), c(λ)) ∩ (0, c∗). Finally, when c ≥ c∗, communication is

beneficial whenever a FSGV exists, i.e., c ≤ c(λ).

We deduce that vF > v∗ for large enough δ if and only if λ < λ and min{c(λ), c∗} <
c < c̄(λ). To conclude the proof it suffices to show that

{c|min{c(λ), c∗} < c < c(λ)} = {c |c(λ) < c < c(λ)}. (32)

For λ ≤ λ̃, this follows from c∗ < c(λ)⇔ c(λ) < c∗ because

c (λ) = h− `− λ(1− h)
pG − pB
1− pB

< c∗ =
(h− `)2

1− `

is equivalent to

(h− `) (1− h)

1− `
< λ(1− h)

pG − pB
1− pB

⇔ (h− `)2

1− `
< λ(1− h)

pG − pB
1− pB

= c (λ) .

For λ > λ̃, we verify (32) by showing c(λ) < c∗ below. First, observe that

c′(λ) =
h(h− `)(h(1− 2λ)2 − λ2)

(1− λ)2(λ+ h− 2λh)2

is positive for λ < λ̆ and negative for λ > λ̆, hence c(λ) is single-peaked at λ̆ =
√
h

1+2
√
h
∈

(0, 1/3) with a maximum c(λ̆) = h(h−`)
(1+
√
h)2

.

From c(λ̃) = h(h− `)
√
h(1−h)(1−`)`−(1−h)`

(1−h)
√
h(1−h)(1−`)`+h2(1−`)

, we have

c∗ − c(λ̃)

h− `
=

(h2 + `− 2h`)
[√

h(1− h)(1− `)`− (1− `)h
]

(`− 1)
[
(1− h)

√
h(1− h)(1− `)`+ h2(1− `)

] > 0

where the inequality follows from
√
h(1− h)(1− `)` < (1 − `)h. Hence, c(λ) < c∗ is

verified for λ > λ̃ if λ̆ ≤ λ̃.
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Finally, λ̆ > λ̃ if and only if ` < h2

1+2(1−h)
√
h
. Moreover, c∗−c(λ̆)

h−` = h−`
1−` −

h
(1+
√
h)2

is decreasing in ` and assumes a positive value of 2
√
h3/(1 +

√
h)2 at ` = h2

1+2(1−h)
√
h
.

Therefore, c(λ) < c∗ obtains for λ > λ̃ when λ̆ > λ̃ as well.

F. Proof of Lemma 2

Observe that

λ =

√
1 + 2Y − 1

(3− β)Y
where Y =

2 (2h− 1) (1− β)

(1− h) (3− β)2 and β = `/h.

Note that λ → 1/2 as β → 1 because Y |β=1 = 0 and
√

1+2Y−1
Y

= 2√
1+2Y+1

→ 1 as Y → 0.

In addition,

∂λ

∂β
=

1

(1− β)(3− β)2
√

1 + 2Y
(3−β)

[
2

1 + 2Y −
√

1 + 2Y

Y
− 1− β

]
.

Note that the fraction in the bracket is positive and increasing in Y > −0.5, and that

Y > Y |h=0 = −2(1−β)
(3−β)2

> −0.5 since Y increases in h. Thus, the expression in the bracket

is minimal at h = 0 for any given β, which is calculated as

2
1 + 2Y |h=0 −

√
1 + 2Y |h=0

Y |h=0

− 1− β = (3− β)

√
5− 2β + β2 − 2

1− β
> 0

where the inequality follows because 5− 2β + β2 > 4. This proves that ∂λ/∂β > 0.

This proves that λ increases in `. Also, as λ decreases in h for given β and λ increases

in β which decreases in h, λ decreases in h.
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