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concepts (Section S.1). We compute expectile depth and expectile depth regions in several

multivariate examples (Section S.2). We state asymptotic results for the proposed expectile

depth (Section S.3). We illustrate on simulated data the proposed multiple-output expec-

tile regression methods and show that these dominate the corresponding quantile-based

methods in terms of crossings (Section S.4). We discuss the relation between multivariate

expectiles and risk measures, and we show that our expectiles satisfy the coherency ax-

ioms of multivariate risk measures (Section S.5). Finally, we prove all results of the paper

(Section S.6).

Below, (n) denotes Equation n from the main paper, whereas (S.n) refers to Equation n
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S.1 Competing expectile concepts

We define below some of the main concepts of multivariate expectiles available in the

literature, with a particular emphasis on the concepts we used in the paper for comparison

with the proposed multivariate expectiles.

Before proceeding, it is needed to introduce an alternative parametrization of the uni-

variate expectiles eα = eα(P ) from Section 2 (the dependence on P will play no role in

this section, hence will be dropped in the notation). This alternative parametrization

is eτ,u := e(1−τu)/2 and indexes univariate expectiles by an order τ ∈ [0, 1) and a direc-

tion u ∈ {−1, 1}, or equivalently by an order τu that belongs to the open unit “ball” (−1, 1)

of R. In this directional parametrization, the most central expectile corresponds to τ = 0

and the most extreme ones are obtained as τ → 1. In the d-dimensional case (d ≥ 2), where

there are no left nor right, it is natural to similarly index expectiles by an order τ ∈ [0, 1)

and a direction u ∈ Sd−1, or equivalently by a vectorial order τu belonging to the open

unit ball {z ∈ Rd : ‖z‖ < 1} of Rd, with the same idea that τ = 0 will yield the most

central expectile and that τu with τ → 1 will provide extreme expectiles in direction u. It

is then standard (see the references below) to consider contours generated by expectiles of

a fixed order τ . As in the body of the paper, these contours are the boundaries of “central-

ity regions” that provide a center-outward ordering of points in Rd. There are alternative

directional parametrizations for expectiles; typically, these involve an order α ∈ (0, 1) and

a direction u ∈ Sd−1, and are such that the expectile of order α in direction u is equal to

the expectile of order 1−α in direction −u. For such a parametrization, central expectiles

are associated with α = 1/2, whereas extreme ones are obtained as α→ 0 and α→ 1 (this

is the parametrization of multivariate expectiles that was used in the paper). In the rest of

this section, we discriminate between these two parametrizations by using the notation τ
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and α in a consistent way.

These general considerations allow us to review some of the main concepts of multi-

variate expectiles. The first concept can be found in Breckling and Chambers (1988), a

paper whose main contribution was to introduce the concept of univariate M-quantiles, that

generalize both univariate quantiles and expectiles. There, for any α ∈ (0, 1
2
], the order-α

M-quantile of P in direction u is defined as the “geometric” quantity

θθθρ,geom
α,u := arg min

θθθ∈Rd
E

[{
1− (1− 2α)

u′(Z− θθθ)
‖Z− θθθ‖

}
ρ(‖Z− θθθ‖)

]
(throughout this appendix, Z is a random d-vector with distribution P ), where ρ : R+ → R+

is a convex loss function such that ρ(0) = 0; the definition for α ∈ (1
2
, 1) results from

the identity θθθρ,geom
α,u = θθθρ,geom

1−α,−u. The term “geometric” above is justified by the fact that,

for ρ(t) = |t| and ρ(t) = t2, these M-quantiles reduce to the geometric quantiles

qgeom
α,u := arg min

θθθ∈Rd
E
[
‖Z− θθθ‖ − (1− 2α)u′(Z− θθθ)

]
(S.1)

and geometric expectiles

egeom
α,u := arg min

θθθ∈Rd
E
[
‖Z− θθθ‖{‖Z− θθθ‖ − (1− 2α)u′(Z− θθθ)}

]
(S.2)

from Chaudhuri (1996) and Herrmann et al. (2018), respectively; these papers, that actu-

ally rather rely on the (τ,u)-directional parametrization, would refer to (S.1) (resp., (S.2))

as quantiles (resp., expectiles) of order τ = 1−2α in direction −u. As recently showed the-

oretically in Girard and Stupfler (2017), geometric quantiles exhibit undesirable properties.

In particular, (a) the extreme quantile contours obtained as α→ 0 may extend far outside

the support of the distribution. Also, (b) such extreme quantile contours exhibit a structure

that is incompatible with the principal component structure of the underlying distribution:

more precisely, they will be furthest (resp., closest) to the center of the distribution in the
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last (resp., first) principal direction, which is orthogonal to what one would expect from

quantile contours. As we show empirically in Figure 1, these pathological features unfortu-

nately extend to geometric expectiles (the empirical version of (S.2) is simply obtained by

replacing the expectation with a sample average over the observations Z1, . . . ,Zn at hand).

As we mentioned in the paper, geometric quantiles and expectiles may extend far outside

the support of the distribution as α → 0. To improve on this, Breckling et al. (2001) and

Kokic et al. (2002) introduced alternative concepts of multivariate M-quantiles, actually

only for the case where ρ is a Huber loss function (which covers the loss functions providing

quantiles and expectiles as limiting cases). To define these quantiles, we need to introduce

the following notation: let S(t) := I[t > 0] − I[t < 0] be the sign function, ψc(t) :=

(t/c)I[‖t‖ < c] + (t/‖t‖)I[‖t‖ ≥ c] be a d-variate extension of Huber’s ψ-function, and

further write hα(t) := (1 − α)I[t < 0] + (1/2)I[t = 0] + αI[t > 0]. Then, the Kokic et al.

(2002) order-α M-quantile θθθδ,cα,u of P in direction u is the solution θθθ(∈ Rd) of

E

[{
(1− 2α)S(u′(Z− θθθ))

(
1− |u

′(Z− θθθ)|
‖Z− θθθ‖

)δ
+ 2hα(u′(Z− θθθ))

}
ψc(Z− θθθ)

]
= 0; (S.3)

here, c, δ > 0 are fixed. For d = 1, it is easy to check that θδ,cα,1, for any δ > 0, reduces to

the univariate quantile qα as c → 0 and to the univariate expectile eα as c → ∞, so that

the limit of θθθδ,cα,u, as c → 0 and as c → ∞, may be considered as a multivariate quantile

and as a multivariate expectile, respectively. The multivariate quantiles/expectiles from

Breckling et al. (2001) then simply correspond to the particular case obtained for δ = 1.

As explained in the paper, an important drawback of the aforementioned multivariate

expectiles (and of other multivariate expectiles, such as those from Koltchinski, 1997) is

their weak equivariance properties. More precisely, these expectiles are equivariant under

orthogonal transformations, but they fail to be equivariant under general affine trans-

formations. Actually, other recent proposals enjoy even weaker equivariance properties;
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for instance, the multivariate expectiles from Maume-Deschamps et al. (2017a,b) are not

equivariant under orthogonal transformations.

S.2 Multivariate examples for expectile depth

In this section, we compute expectile depth for several classical distributions over Rd,

with d > 1. Consider first the case where P (∈ Pd) is the distribution of Z = AY + µµµ,

where A is an invertible d× d matrix, µµµ is a d-vector and Y = (Y1, . . . , Yd)
′ is a spherically

symmetric random vector, meaning that the distribution of OY does not depend on the

d× d orthogonal matrix O. In other words, P is elliptical with mean vector µµµ and scatter

matrix ΣΣΣ = AA′. In the standard case where A = Id (the d-dimensional identity matrix)

and µµµ = 0, Theorem 8 provides

HED(z, P ) = min
u∈Sd−1

E[|Y1 − u′z|I[Y1 ≤ u′z]]

E[|Y1 − u′z|]
= −E[(Y1 + ‖z‖)I[Y1 ≤ −‖z‖]]

E[|Y1 + ‖z‖|]
=: g(‖z‖)

where we used the fact that the function G in (3) is a cumulative distribution function,

hence is non-decreasing. For arbitrary µµµ and ΣΣΣ, affine invariance entails that HED(z, P ) =

g(‖z‖µ,Σ), with ‖z‖2
µ,Σ := (z− µµµ)′ΣΣΣ−1(z− µµµ). Expectile depth regions are thus concentric

ellipsoids that, under absolute continuity of P , coincide with equidensity contours. The

function g depends on the distribution of Y: if Y is d-variate standard normal, then it is

easy to check that g(r) = {1 − 1/(2φ(r)/r + 2Φ(r) − 1)}/2, where φ and Φ denote the

probability density function and cumulative distribution function of the univariate standard

normal distribution, respectively. If Y is uniform over the unit ball Bd := {z ∈ Rd : ‖z‖ ≤

1} or on the unit sphere Sd−1, then one can show that

g(r) = ωd(r) :=

(
1

2
−

√
πr(1− r2)−(d+1)/2Γ(d+3

2
)

2Γ(d+2
2

)(1 + (d+ 1)r2
2F1(1, d+2

2
; 3

2
; r2))

)
I[r ≤ 1]
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and g(r) = ωd−2(r), respectively, where Γ is the Euler Gamma function and 2F1 is the hy-

pergeometric function. From affine invariance, these expressions agree with those obtained

for d = 1 in (4). In all cases considered, thus, the function g is continuous and monotone

strictly decreasing on its support, which illustrates the theoretical results of Section 4.2.

Our last multivariate example is a non-elliptical one. Consider the probability mea-

sure Pα(∈ Pd) having independent standard (symmetric) α-stable marginals, with 1 < α ≤

2. If Z = (Z1, . . . , Zd)
′ has distribution Pα, then u′Z is equal in distribution to ‖u‖αZ1,

where we let ‖x‖αα :=
∑d

j=1 |xj|α. Thus, Theorem 8 provides

HED(z, Pα) = min
v∈Sd−1

α

E[|Z1 − v′z|I[Z1 ≤ v′z]]

E[|Z1 − v′z|]
,

where Sd−1
α := {v ∈ Rd : ‖v‖α = 1} is the unit Lα-sphere. Since the function G in (3)

is non-decreasing, the minimum is achieved when v′z takes its minimal value −‖z‖β,

where β = α/(α − 1) is the conjugate exponent to α; see Lemma A.1 in Chen and Tyler

(2004). Denoting as fα the marginal density of Pα, this yields

HED(z, Pα) = −E[(Z1 + ‖z‖β)I[Z1 ≤ −‖z‖β]]

E[|Z1 + ‖z‖β|]
= −

∫ 0

−∞ xfα(x− ‖z‖β) dx∫∞
−∞ |x|fα(x− ‖z‖β) dx

,

which shows that expectile depth regions are concentric Lβ-balls. For α = 2, these results

agree with those obtained in the Gaussian case above.

S.3 Asymptotic results for expectile depth

We provide here consistency results for expectile depth and expectile depth regions, that

can be proved on the basis of Theorem 8 (proofs are provided in Section S.6). We start with

the following uniform consistency result, that is the expectile depth analog of the classical

halfspace depth result from Donoho and Gasko (1992), Section 6.
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Theorem S.1. Fix P ∈ Pd and let Pn be the empirical probability measure associated with

a random sample of size n from P . Then, for any compact subset K of Rd,

sup
z∈K
|HED(z, Pn)−HED(z, P )| → 0

almost surely as n→∞.

For halfspace depth, this uniform consistency property, jointly with a general result

on the consistency of M-estimators (such as Theorem 2.12 in Kosorok, 2008), allows one

to establish almost sure consistency of the sample deepest point. For our expectile depth,

however, asymptotic theory for the sample deepest point is trivial, since this deepest point is

simply the sample average X̄ = 1
n

∑n
i=1 Xi of the observations. In particular, the asymptotic

distribution of the sample expectile deepest point trivially follows from the central limit

theorem and can be used for inference on the population deepest point. In sharp contrast,

the asymptotic distribution of the sample halfspace deepest point is so complicated (see

Massé, 2002) that it is hopeless to perform inference based on it.

We turn to consistency of depth regions. This was first discussed in He and Wang

(1997), where the focus was mainly on elliptical distributions. While results under milder

conditions were obtained in Kim (2000) and Zuo and Serfling (2000), we will here exploit

the general results from Dyckerhoff (2016). We have the following result.

Theorem S.2. Fix P ∈ Pd and let Pn be the empirical probability measure associated with

a random sample of size n from P . Then, for any compact interval I in (0, 1
2
),

sup
α∈I

dH(Rα(Pn), Rα(P ))→ 0

almost surely as n→∞, where dH denotes the Hausdorff distance.

Remarkably, this consistency result holds without any assumption on P (beyond the fact

that P belongs to Pd). In comparison, the corresponding halfspace depth result requires
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that P is smooth (in the sense that it assigns probability mass zero to any hyperplane

of Rd) and that it has a connected support.

S.4 Multiple-output expectile regression on simulated

data

To illustrate on simulated data the multiple-output expectile regression methods described

in Section 5.2, we generated a random sample of size n = 100 from the multiple-output

heteroscedastic linear regression model(
Y1

Y2

)
= 4

(
X

X

)
+

√
X

3

(
ε1

ε2

)
, (S.4)

where the covariate X is uniform over [0, 1], ε1 + 1, ε2 + 1 are exponential with mean

one, and X, ε1, ε2 are mutually independent. For several orders α and several values of x,

we evaluated the conditional expectile regions R
(n)
α,x and their quantile analogs from the

nonparametric regression methods described in Section 5.2. For the sake of comparison, we

also provide the contours obtained from the corresponding linear regression methods. The

resulting contours are provided in Figure S.1. While both expectile and quantile methods

capture trend and heteroscedasticity, expectiles dominate quantiles in many respects: (i)

unlike quantiles, expectiles provide very similar linear and nonparametric regression fits,

which is desirable since the model is linear. (ii) Expectiles yield smoother contours than

quantiles. (iii) Inner expectile contours, that do not have the same location as their quantile

counterparts, are easier to interpret as they relate to conditional means of the marginal

responses (inner quantile contours refer to the Tukey median, which is not directly related

to marginal medians). (iv) Last but not least, unlike expectile contours, several quantile
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contours associated with a common value of x do cross (see the bottom right panel of

Figure S.1), which is incompatible with what occurs at the population level.

S.5 Multivariate expectile risks

The risk of a collection of financial assets is typically assessed by aggregating these assets,

using their monetary values, into a combined random univariate portfolio Z. It is then

sufficient to consider univariate risk measures %(Z); see Artzner et al. (1999) and Delbaen

(2002). More and more often, however, the focus is on the more realistic situation where

the risky portfolio is a random d-vector whose components relate to different security mar-

kets. In such a context, liquidity problems and/or transaction costs between the various

security markets typically prevent investors from aggregating their portfolio into a univari-

ate portfolio (Jouini et al., 2004). This calls for multivariate risk measures %(Z), where Z

is a random d-vector.

Extensions of the axiomatic foundation for coherent univariate risk measures to the

d-variate framework have been studied in Jouini et al. (2004) and Cascos and Molchanov

(2007). Such extensions usually involve set-valued risk measures, as in the following defini-

tion (we restrict here to bounded random vectors as in Jouini et al., 2004, but the extension

to the general case could be achieved as in Delbaen, 2002).

Definition S.1. Let L∞d be the set of (essentially) bounded random d-vectors and Bd be the

Borel sigma-algebra on Rd. Then a coherent d-variate risk measure is a function R : L∞d →

Bd satisfying the following properties: (i) (translation invariance:) R(Z + z) = R(Z) + z

for any Z ∈ L∞d and z ∈ Rd; (ii) (positive homogeneity:) R(λZ) = λR(Z) for any Z ∈ L∞d
and λ > 0; (iii) (monotonicity:) if X ≤ Y almost surely in the componentwise sense,

then R(Y) ⊂ R(X) ⊕ Rd
+ and R(X) ⊂ R(Y) ⊕ Rd

−, where ⊕ denotes the Minkowski
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Figure S.1: (Left:) conditional expectile contours ∂R
(n)
α,x, for α ∈ {.01, .03, .05, .10,

.15, . . . , .40} and for values of x that are the 10% (yellow), 30% (brown), 50% (orange),

70% (light green) and 90% (dark green) empirical quantiles of X1, . . . , Xn, obtained by ap-

plying a linear (top) or nonparametric (bottom) regression method to a random sample of

size n = 100 from the heteroscedastic linear regression model in (S.4). (Right:) conditional

quantile contours associated with the same values of α (but .01) and the same values of x.

Again, both linear regression (top) and nonparametric regression (bottom) are considered;

see Section S.4 for details. Bivariate responses (Yi1, Yi2), i = 1, . . . , n, are shown in black.10



sum and where we let Rd
± := {x ∈ Rd : ±x1 ≥ 0, . . . ,±xd ≥ 0}; (iv) (subadditivity:)

R(X + Y) ⊂ R(X)⊕ R(Y) for any X,Y ∈ L∞d ; (v) (connectedness/closedness:) R(X) is

connected and closed for any X ∈ L∞d .

In the univariate case, such coherent set-valued risk measures can be obtained as R(Z) =

[−%(Z),∞), where %(Z) is a real-valued coherent risk measure in the sense of Artzner et al.

(1999) and Delbaen (2002); see Remark 2.2 in Jouini et al. (2004). For the most classi-

cal risk measure, namely the Value at Risk, the resulting set is R(Z) = [−VaRα(Z),∞),

where −VaRα(Z) = qα(Z) is the standard α-quantile of Z. The sign convention in VaRα(Z)

corresponds to an implicit specification of the positive direction u = 1, which associates a

positive risk measure with the typically negative profit—that is, loss—qα(Z) obtained for

small values of α.

In this univariate setting, the M-quantiles from Breckling and Chambers (1988), which

encompass both quantiles and expectiles, have recently received a lot of attention since the

resulting risk measures share the important property of elicitability (which corresponds to

the existence of a natural backtesting methodology; Gneiting, 2011). In this framework,

expectiles play a special role as they are the only M-quantiles providing coherent risk

measures (Bellini et al., 2014). Actually, expectiles define the only coherent risk measure

that is also elicitable (Ziegel, 2016). In the d-variate case, a natural expectile set-valued

risk measure is given by our expectile halfspace Hα,u(Z) in Definition 1 (in this section,

Hα,u(Z), Rα(Z), . . . respectively stand for Hα,u(P ), Rα(P ), . . . , where P is the distribution

of Z). Using quantiles rather than expectiles, this set-valued risk measure, for d = 1 and

the positive direction u = 1, would reduce to the risk measure [−VaRα(Z),∞) above,

which, as already mentioned, also relies on the choice of a positive direction. For d > 1, it

is similarly natural to restrict to “positive” directions u, that is, to u ∈ Sd−1
+ := Sd−1∩Rd

+.

Now, already for d = 1, the VaR risk measure fails to be subadditive in general (Acerbi,
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2002). It is also often criticized for its insensitivity to extreme losses, since it depends

on the frequency of tail losses but not on their severity. Denoting as eα(Z) the order-α

expectile of Z, the expectile risk measure R(Z) = [eα(Z),∞), with α ∈ (0, 1
2
], improves

over VaR on both accounts since it is coherent (Bellini et al., 2014) and depends on the

severity of tail losses (Kuan et al., 2009). Our expectile d-variate risk measure, namely

the halfspace Hα,u(Z) extends this univariate expectile risk measure to the d-variate setup

and, quite nicely, turns out to be coherent for any α ∈ (0, 1
2
] and any direction u ∈ Sd−1

+ :

since connectedness/closedness holds trivially (Hα,u(Z) is a closed halfspace) and since

translation invariance and positive homogeneity directly follow from Theorem 1, we focus on

monotonicity and subadditivity (see Definition S.1) and further cover some other properties

from Dyckerhoff and Mosler (2011).

Theorem S.3. Let X,Y be random d-vectors with respective distributions P,Q in Pd.

Then, we have the following properties: (i) (monotonicity) if X ≤ Y almost surely in

a componentwise sense, then Hα,u(Y) ⊂ Hα,u(X) ⊕ Rd
+ and Hα,u(X) ⊂ Hα,u(Y) ⊕ Rd

−

for any α ∈ (0, 1) and u ∈ Sd−1
+ ; (ii) (subadditivity) for any α ∈ (0, 1

2
] and u ∈ Sd−1,

Hα,u(X+Y) ⊂ Hα,u(X)⊕Hα,u(Y); (iii) (superadditivity) for any α ∈ [1
2
, 1) and u ∈ Sd−1,

Hα,u(X)⊕Hα,u(Y) ⊂ Hα,u(X + Y); (iv) (nestedness:) for any u ∈ Sd−1, α 7→ Hα,u(X) is

non-increasing with respect to inclusion.

In order to illustrate these d-variate M-quantile risk measures, we briefly consider the

daily returns on the IBM and MSFT shares from 03-01-2007 to 27-09-2018. The data

were taken from Yahoo Finance using the quantmod package in R. Figure S.2 shows the

resulting n = 3,134 bivariate observations along with some of the corresponding expectile

risk measuresHα,u(Pn) (more precisely, the figure only displays their boundary hyperplanes)

and some HED regions Rα(Pn). We also provide there a few halfspace depth regions and

zonoid depth regions. For d = 1, the latter are related to expected shorftall, hence are

12



also connected to risk measures. However, while zonoid regions formally are coherent

risk measures (Cascos and Molchanov, 2007; Dyckerhoff and Mosler, 2011), a univariate

zonoid depth region is not an interval of the usual form [−%(Z),∞) but rather a compact

interval. Our expectile risk measures Hα,u(Pn), u ∈ Sd−1
+ , offer an intuitive interpretation

for the multivariate risk in the sense that the required capital reserve should cover any loss

associated with joint returns inside Hα,u(Pn), that is, above the hyperplane πα,u(Pn). Such

losses can easily be identified in an automatic way. For these risks, the choice of a suitable

security level α and direction u ∈ Sd−1
+ is a decision that should be made by risk managers

and regulators. Other d-variate set-valued risk measures that trim unfavorable returns only

yet do not require the choice of a direction u, are the upper envelopes ∩u∈Sd−1
+
Hα,u(Pn) of

our directional expectile risk measures, or the full expectile regions themselves: both losses

and profits associated with joint returns inside these regions can also be easily determined.

S.6 Proofs

This last section of the supplement presents the proofs of all results stated in the main

paper and in previous sections of the supplement. We start with the following result, that

extends the result from Jones (1994) (note that Jones’ result excludes the sample case) and

clarifies the link between both definitions of expectiles provided in Section 2.

Theorem S.4. Fix P ∈ P1 and α ∈ (0, 1). Let Z be a random variable with distribution P .

Then, (i) θ 7→ Oα(θ) = E[ρα(Z−θ)−ρα(Z)] is well-defined for any θ, and it is continuously

differentiable over R. (ii) The sign of its derivative at θ is the same as that of G(θ) − α,

where G was defined in (3); (iii) θ 7→ G(θ) is a continuous cumulative distribution function

over R. (iv) The order-α expectile of P

eα(P ) := min
{
θ ∈ R : G(θ) ≥ α

}
(S.5)
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Figure S.2: (Top left:) boundary hyperplanes of the expectile halfspaces Hα,u(Pn), for α =

.003 and u = (cos `π
8
, sin `π

8
)′ with ` = 0, 1, 2, 3, 4, along with the HED regions Rα(Pn) asso-

ciated with the extreme levels α = .000001, .0001, .0003, .0005, .001, .003. (Top right): the

boundary hyperplanes of the 500 expectile halfspaces that led to the construction of Rα(Pn)

with α = .003; hyperplanes associated with (positive) directions u ∈ S1
+ are drawn in red.

(Bottom left): halfspace depth regions of order α = .0003, .0005, .0007, .001, .003, .005.

(Bottom right:) zonoid depth regions of order α = .0003, .001, .002, .003, .01, .03.
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is well-defined and minimizes θ 7→ Oα(θ) over R, hence provides a unique representative of

the argmin in (2).

Proof of Theorem S.4. (i) Note that t 7→ ρα(t) = {(1 − α)I[t < 0] + αI[t > 0]}t2

is differentiable on R with derivative t 7→ 2{(1 − α)I[t < 0] + αI[t > 0]}t, so that the

mean-value theorem ensures that, for some λ ∈ (0, 1),∣∣ρα(z − θ)− ρα(z)
∣∣ ≤ 2|θ|max(α, 1− α)|z − λθ| ≤ 2|θ|(|z|+ |θ|).

Consequently, since P ∈ P1, we have

|Oα(θ)| ≤
∫ ∞
−∞
|ρα(z − θ)− ρα(z)| dP (z) ≤ 2|θ|(E[|Z|] + |θ|) <∞

for any θ. The mapping θ 7→ Oα(θ) is thus well-defined for any θ.

We turn to differentiability of θ 7→ Oα(θ). To do so, let

O′α(θ) := 2(1− α)

∫ ∞
−∞
|z − θ|I[z < θ] dP (z)− 2α

∫ ∞
−∞
|z − θ|I[z > θ] dP (z) (S.6)

and fix θ0 ∈ R. For any h ∈ [−1, 1] \ {0}, write then

Oα(θ0 + h)−Oα(θ0)

h
−O′α(θ0)

=

∫ ∞
−∞

{
ρα(z − θ0 − h)− ρα(z − θ0)

h
−O′α(θ0)

}
dP (z)

= (1− α)

∫ ∞
−∞

Lθ0(h, z) dP (z) + α

∫ ∞
−∞

Rθ0(h, z) dP (z), (S.7)

where we let

Lθ0(h, z) :=
(z − θ0 − h)2I[z < θ0 + h]− (z − θ0)2I[z < θ0]

h
− 2|z − θ0|I[z < θ0]

and

Rθ0(h, z) :=
(z − θ0 − h)2I[z > θ0 + h]− (z − θ0)2I[z > θ0]

h
+ 2|z − θ0|I[z > θ0].
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For any z, θ 7→ (z− θ)2I[z < θ] is differentiable at θ0, with derivative −2(z− θ0)I[z < θ0] =

2|z − θ0|I[z < θ0], so that, for any z, we have that Lθ0(h, z) → 0 as h converges to zero.

The mean-value theorem then implies that, for any h ∈ [−1, 1], there exists λ ∈ (0, 1) such

that

|Lθ0(h, z)| ≤ 2|z − θ0 − λh|I[z < θ0 + λh] + 2|z − θ0|I[z < θ0]

≤ 2(θ0 + λh− z) + 2(θ0 − z)

≤ 4|z|+ 4|θ0|+ 1.

Since this upper-bound, which does not depend on h, is a P -integrable function of z,

Lebesgue’s DCT entails that
∫∞
−∞ Lθ0(h, z) dP (z)→ 0 as h converges to zero. Using the fact

that, for any z, θ 7→ (z−θ)2I[z > θ] is differentiable at θ0, with derivative−2|z−θ0|I[z > θ0],

one can similarly show that
∫∞
−∞Rθ0(h, z) dP (z) → 0 as h converges to zero. From (S.7),

this establishes that θ 7→ Oα(θ) is differentiable, with derivative

O′α(θ) = 2(1− α)

∫ ∞
−∞
|z − θ|I[z < θ] dP (z)− 2α

∫ ∞
−∞
|z − θ|I[z > θ] dP (z)

= 2(1− α)

{
−
∫ ∞
−∞

(z − θ)I[z < θ] dP (z)

}
− 2α

∫ ∞
−∞

(z − θ)I[z > θ] dP (z)

=: 2(1− α)H2(θ)− 2αH1(θ). (S.8)

A trivial application of Lebesgue’s DCT shows that both H1 and H2 are continuous on R,

so that Oα is continuously differentiable.

(ii) The assumption that P [{θ}] < 1 for any θ ∈ R ensures that

H1(θ) +H2(θ) =

∫ ∞
−∞
|z − θ| dP (z) =

∫ ∞
−∞
|z − θ|I[z 6= θ] dP (z) > 0

for any θ ∈ R. Therefore, we may write

O′α(θ) = 2(1− α)H2(θ)− 2αH1(θ) = 2 (G(θ)− α) (H1(θ) +H2(θ)),
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where

G(θ) =
H2(θ)

H1(θ) +H2(θ)
, (S.9)

is the function defined in (3). It follows that O′α(θ) and G(θ)− α have the same sign.

(iii) Fix θb > θa. We have (z− θb)I[z > θb] ≤ (z− θa)I[z > θa], so that H1(θb) ≤ H1(θa).

Similarly, −(z − θb)I[z < θb] ≥ −(z − θa)I[z < θa], so that H2(θb) ≥ H2(θa). Therefore,

H1 and H2 are monotone non-increasing and non-decreasing, respectively. Note also that

both H1 and H2 take their values in R+. Since a direct computation shows that

{H1(θa) +H2(θa)}{H1(θb) +H2(θb)}{G(θb)−G(θa)}

= H1(θa){H2(θb)−H2(θa)} −H2(θa){H1(θb)−H1(θa)}, (S.10)

we thus conclude that G is monotone non-decreasing.

The Monotone Convergence Theorem implies that limθ→−∞H2(θ) = 0 and limθ→∞H1(θ) =

0. Since H1 is a monotone non-increasing function of θ, H1(θ) will stay away from zero for

large negative values of θ, which implies that

lim
θ→−∞

G(θ) = lim
θ→−∞

H2(θ)

H1(θ) +H2(θ)
= 0.

Similarly, since H2 is a monotone non-decreasing function of θ, H2(θ) will stay away from

zero for large positive values of θ, so that

lim
θ→∞

(1−G(θ)) = lim
θ→∞

H1(θ)

H1(θ) +H2(θ)
= 0.

Finally, in view of (S.9), the continuity of G trivially follows from that of H1 and H2.

(iv) Since G is a continuous cumulative distribution function, the set Sα := {θ ∈ R :

G(θ) ≥ α} is non-empty and is lower-bounded. Thus, Sα admits an infimum, which, from

continuity, is a minimum. This guarantees existence of eα(P ). We thus have G(eα(P )) ≥ α.
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If G(eα(P )) > α, then continuity of G will guarantee the existence of c < eα(P ) such

that G(c) ≥ α, which would contradict the definition of eα(P ). Therefore, G(eα(P )) = α.

Hence, monotonicity of G provides G(θ) ≥ α for any θ ≥ eα(P ), which implies that O′α(θ) ≥

0 for any θ ≥ eα(P ), hence that Oα(θ) ≥ Oα(eα(P )) for any θ ≥ eα(P ). Now, the definition

of eα(P ) ensures that G(θ) < α for any θ < eα(P ), which implies that O′α(θ) < 0 for any

such θ, hence that Oα(θ) > Oα(eα(P )) for any θ < eα(P ). We conclude that eα(P ) is a

minimizer of θ 7→ Oα(θ). �

Lemma S.1 below will be needed in subsequent proofs, but we present it here since its

proof uses the notation introduced in the proof of Theorem S.4 above.

Lemma S.1. Fix P ∈ P1. Let θ′ < θ′′ with θ′, θ′′ ∈ C(P ) = {θ ∈ R : min(P[Z ≤ θ],P[Z ≥

θ]) > 0}, where Z has distribution P . Then G is monotone strictly increasing over [θ′, θ′′].

Proof of Lemma S.1. Fix θa, θb with θ′ < θa < θb < θ′′. Then we have P[Z > θa] ≥

P[Z ≥ θ′′] > 0 and P[Z < θb] ≥ P[Z ≤ θ′] > 0, or (in terms of the cumulative distribution

function F of P :) 1− F (θa) > 0 and F (θb − 0) > 0. Now, (S.10) provides

{H1(θa) +H2(θa)}{H1(θb) +H2(θb)}{G(θb)−G(θa)} ≥ H1(θa){H2(θb)−H2(θa)}. (S.11)

Since 1− F (θa) > 0, we have

H1(θa) =

∫ ∞
−∞

(z − θa)I[z > θa] dP (z) > 0,

whereas, since F (θb − 0) > 0, we have

H2(θb)−H2(θa) =

∫ ∞
−∞

{
− (z − θb)I[z < θb] + (z − θa)I[z < θa]

}
dP (z)

=

∫ ∞
−∞

(θb − θa)I[z ≤ θa] dP (z) +

∫ ∞
−∞

(θb − z)I[θa < z < θb] dP (z)

=

∫ ∞
−∞

min(θb − θa, θb − z)I[z < θb] dP (z) > 0.
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Thus, it follows from (S.11) that G(θb) > G(θa). Consequently, G is monotone strictly

increasing over (θ′, θ′′), hence also over [θ′, θ′′]. �

In the rest of this supplement, θα(Z), Hα,u(Z), . . . , will respectively stand for θα(P ),

Hα,u(P ), . . . , where P is the distribution of Z or Z.

Proof of Theorem 1. Let Z be a random d-vector with distribution P . Denote

as Sα the set of real numbers φ such that

E[|u′Z− φ|I[u′Z− φ ≤ 0]]

E[|u′Z− φ|]
≥ α

and as Tα the set of real numbers θ such that

E[|u′A(AZ + b)− θ|I[u′A(AZ + b) ≤ θ]]

E[|u′A(AZ + b)− θ|]
≥ α.

Note that

E[|u′A(AZ + b)− θ|I[u′A(AZ + b) ≤ θ]]

E[|u′A(AZ + b)− θ|]

=
E[|u′Z− {‖(A−1)′u‖θ − u′A−1b}|I[u′Z− {‖(A−1)′u‖θ − u′A−1b} ≤ 0]]

E[|u′Z− {‖(A−1)′u‖θ − u′A−1b}|]
,

so that θ ∈ Tα if and only if ‖(A−1)′u‖θ−u′A−1b ∈ Sα. Thus, Sα = ‖(A−1)′u‖Tα−u′A−1b.

Since eα(u′Z) = minSα and eα(u′A(AZ+b)) = minTα by definition (see (S.5)), this implies

that eα(u′Z) = ‖(A−1)′u‖eα(u′A(AZ + b)) − u′A−1b. We conclude that Hα,uA
(AZ + b)

collects the d-vectors z satisfying

u′Az ≥ eα(u′Z)

‖(A−1)′u‖
+

u′A−1b

‖(A−1)′u‖
,

or equivalently, u′(A−1(z− b)) ≥ eα(u′Z). This establishes the result. �

Let Z be a random d-vector with distribution P ∈ Pd. In the subsequent proofs, we let

Gu(θ) = Ge
u(θ) :=

E[|u′Z− θ|I[u′Z− θ ≤ 0]]

E[|u′Z− θ|]
· (S.12)
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With this notation, eα(Pu) = eα(u′Z) is given by min{θ ∈ R : Gu(θ) ≥ α}.

Proof of Theorem 2. Fix α ∈ (0, 1). By definition, Rα(P ) is an intersection of closed

convex subsets of Rd, so that it is itself closed and convex. Since the affine-equivariance

relation Rα(PA,b) = ARα(P )+b is a direct corollary of Theorem 1, it only remains to show

that (i) Rα(P ) ⊂ C(P ) and that (ii) Rα(P ) is bounded. Let us start with (i). Fix z /∈ C(P )

and let Z be a random d-vector with distribution P . Then there exists u0 ∈ Sd−1 such

that P[u′0Z ≤ u′0z] = 0, so that Gu0(u
′
0z) = 0. Continuity of Gu0 (Theorem S.4(iii)) then

entails that u′0z < eα(u′0Z). This implies that z /∈ Hα,u0(P ), hence that z /∈ Rα(P ). (ii)

Fix z ∈ Rα(P ). For any j ∈ {1, . . . , d}, we must have z ∈ Hα,ej(P ) ∩Hα,−ej(P ), where ej

denotes the jth vector of the canonical basis of Rd. This implies that, for any j, we have

zj ≥ eα(Zj) and −zj ≥ eα(−Zj), that is zj ∈ [eα(Zj),−eα(−Zj)]. Since the definition in (3)

(or (S.5)) entails that eα(Y ) is finite for any random variable Y , it follows that Rα(P ) is a

subset of the bounded hyperrectangle×d

j=1
[eα(Zj),−eα(−Zj)], hence is itself bounded. �

Proof of Theorem 3. In this proof, we let R̃α(P ) := {y ∈ Rd : HED(y, P ) ≥ α}.

Assume first that z ∈ Rα(P ). Then HED(z, P ) = sup{β > 0 : z ∈ Rβ(P )} ≥ α, so

that z ∈ R̃α(P ). Now, assume that z /∈ Rα(P ). Then there exists u such that u′z <

eα(Pu). By definition of eα(Pu), we must have Gu(u′z) < α. Fix then α′ ∈ (Gu(u′z), α).

Since Gu is continuous, there exists δ ∈ (0, eα(Pu)− u′z) such that Gu(t) < α′ for any t ∈

[u′z,u′z + δ]. The monotonicity of Gu then implies that u′z < u′z + δ ≤ eα′(Pu), which

entails that z /∈ Rα′(P ). Recalling that the expectile regions Rβ(P ) are nested, this implies

that HED(z, P ) ≤ α′ < α, so that z /∈ R̃α(P ). �

In the main paper, our theorems were presented in an order that was fixed by peda-

gogical considerations. In this supplement, however, we will need to prove theorems in the

following order: Theorem 8, Theorem 5, Theorem 7, Theorem 6, Theorem 4, Theorem S.1,
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Theorem S.2, Theorem 9, and finally Theorem S.3. We start with Theorem 8 as it pro-

vides an alternative of the HED that is needed in many subsequent proofs. The proof of

Theorem 8 requires the following preliminary result.

Lemma S.2. Let Z be a random d-vector with distribution P ∈ Pd. Then, (i) (u, z) 7→

`−(u, z) := E[|u′(Z−z)|I[u′(Z−z) < 0]] and (u, z) 7→ `+(u, z) := E[|u′(Z−z)|I[u′(Z−z) >

0]] are continuous over Sd−1 × Rd, so that (ii)

(u, z) 7→ Gz(u) =
E[|u′(Z− z)|I[u′Z ≤ u′z]]

E[|u′(Z− z)|]

(see (5)) is continuous over Sd−1 × Rd.

Proof of Lemma S.2. (i) We only prove the result for `−, as the proof for `+ is

entirely similar. Fix (u0, z0) ∈ Sd−1×Rd and write Bz0(r) := {z ∈ Rd : ‖z− z0‖ ≤ r}. For

any y ∈ Rd, we have that (u, z) 7→ u′(y−z)I[u′y < u′z] is continuous at (u0, z0). Moreover,

for any (u, z) ∈ Sd−1 × Bz0(1), the function y 7→ u′(y − z)I[u′y < u′z] is upper-bounded

by the function y 7→ ‖z0‖ + 1 + ‖y‖ that is P -integrable and does not depend on (u, z).

The Lebesgue Dominated Convergence Theorem therefore yields the result. (ii) Since

Gz(u) =
`−(u, z)

`−(u, z) + `+(u, z)
, (S.13)

the result readily follows from Part (i) (note that the assumption that P ∈ Pd ensures

that `−(u, z) + `+(u, z) > 0). �

Proof of Theorem 8. Fix z ∈ Rd and let α := minu∈Sd−1 Gz(u) (existence of the

minimum follows from Lemma S.2(ii) and the compactness of Sd−1). Then, Gz(u) ≥ α

for any u ∈ Sd−1. By definition, we must then have u′z ≥ eα(u′Z) for any u, that is,

z ∈ Hα,u(P ) for any u. This implies that z ∈ Rα(P ), hence that HED(z, P ) ≥ α. By con-

tradiction, assume now that α′ := HED(z, P ) > α. Then z ∈ Rα′(P ), so that z ∈ Hα′,u(P )
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for any u, i.e., that u′z ≥ eα′(u
′Z) for any u. Since Gu is continuous and monotone

non-decreasing (in view of (S.12) and Theorem S.4(iii)), this entails that Gu(u′z) ≥

Gu(eα′(u
′Z)) = α′ for any u. Consequently, we must have α = minu∈Sd−1 Gu(u′z) ≥ α′, a

contradiction. �

Proof of Theorem 5. Let Y be a random variable with a distribution in P1. It

follows from Theorem S.4 and Lemma S.1 that the order-1/2 expectile of Y is E[Y ] and

that this expectile is the only value of θ such that E[|Y − θ|I[Y − θ ≤ 0]]/E[|Y − θ|] = 1/2.

Letting Z be a random d-vector with distribution P , we thus have that

E[|u′(Z− E[Z])|I[u′(Z− E[Z]) ≤ 0]]

E[|u′(Z− E[Z])|]
=

1

2

for any u ∈ Sd−1. Theorem 8 thus entails that HED(E[Z], P ) = 1/2.

Assume now that there exists z ∈ Rd such that HED(z, P ) = e > 1/2. Then, for an

arbitrarily fixed u ∈ Sd−1, Theorem 8 implies that

E[|u′(Z− z)|I[u′(Z− z) ≤ 0]]

E[|u′(Z− z)|]
≥ e (S.14)

and
E[| − u′(Z− z)|I[−u′(Z− z) ≤ 0]]

E[| − u′(Z− z)|]
≥ e. (S.15)

Adding up these two inequalities yields 1 ≥ 2e, a contradiction. We conclude that

HED(E[Z], P ) ≥ HED(z, P ) for any z ∈ Rd, and it only remains to show that E[Z] is the

only maximizer of HED. For that purpose, assume that z is such that HED(z, P ) = 1/2.

Then for any u ∈ Sd−1, the inequalities in (S.14)–(S.15) hold with e = 1/2 and are actually

equalities (indeed, would there be a direction u for which at least one of these inequal-

ities would be strict, then adding up both inequalities as above would provide 1 > 1, a

contradiction). Thus, for any u ∈ Sd−1, u′z is the order-1/2 expectile of u′Z, that is,
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u′z = E[u′Z] (see above). This means that u′(z−E[Z]) = 0 for any u ∈ Sd−1, which shows

that z = E[Z]. �

The proof of Theorem 7 still requires the following preliminary result.

Lemma S.3. Let Z be a random d-vector with distribution P ∈ Pd and consider the

functions (u, z) 7→ `−(u, z) and (u, z) 7→ `+(u, z) introduced in Lemma S.2. Then, (i) for

any u ∈ Sd−1, the functions z 7→ `±(u, z) admit, at any z ∈ Rd, directional derivatives

in any direction; (ii) if, moreover, P is smooth in a neighbourhood of z0 (in the sense

defined in Theorem 7), then, for any u ∈ Sd−1, the functions z 7→ `±(u, z) are continuously

differentiable in a neighbourhood of z0.

Proof of Lemma S.3. (i) We will show that

∂`−
∂v

(z0) = (u′v)P[u′Z < u′z0]I[u′v < 0] + (u′v)P[u′Z ≤ u′z0]I[u′v > 0]. (S.16)

To do so, note that, for any h > 0,

mz0,u,v(h,y)

:=
1

h

{
u′(z0 + hv − y)I[u′y < u′(z0 + hv)]− u′(z0 − y)I[u′y < u′z0]

}
−
{
u′vI[u′y < u′z0]I[u′v < 0] + u′vI[u′y ≤ u′z0]I[u′v > 0]

}
=

1

h

(
u′(z0 + hv)− u′y

)
S(u′v)I[u′y ∈ Iz0,u,v(h)],

where the sign function S was defined on page 4 and where Iz0,u,v(h) denotes the open

interval with endpoints u′z0 and u′(z0 +hv). This shows that, for any y ∈ Rd, mz0,u,v(h,y)

converges to zero as h goes to zero from above and that the function y 7→ |mz0,u,v(h,y)| is

upper-bounded by the function y 7→ |u′v| that is P -integrable and does not depend on h.
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Consequently, the Lebesgue Dominated Convergence Theorem entails that, as h goes to

zero from above,

`−(u, z0 + hv)− `−(u, z0)

h
−
{

(u′v)P[u′Z < u′z0]I[u′v < 0]

+(u′v)P[u′Z ≤ u′z0]I[u′v > 0]
}

=

∫
Rd
mz0,u,v(h,y) dP (y)→ 0,

which establishes (S.16). The exact same reasoning allows to show that

∂`+

∂v
(z0) = −(u′v)P[u′Z ≥ u′z0]I[u′v < 0]− (u′v)P[u′Z > u′z0]I[u′v > 0]. (S.17)

(ii) It trivially follows from the Lebesgue Dominated Convergence Theorem that, un-

der the smoothness assumption considered, the functions z 7→ ∂`±
∂v

(z) in (S.16)-(S.17) are

continuous in a neighborhood of z0. �

Proof of Theorem 7. Fix an arbitrary compact set K ⊂ Rd and ε > 0. Since

Lemma S.2(ii) implies that (u, z) 7→ Gz(u) is continuous over the compact set Sd−1×K, it

is also uniformly continuous on that set. Hence, there exists δ > 0 such that for any u1,u2 ∈

Sd−1 and z1, z2 ∈ K satisfying max(‖u1−u2‖, ‖z1−z2‖) < δ, we have |Gz1(u1)−Gz2(u2)| <

ε. For any z ∈ Rd, pick arbitrarily uz ∈ Sd−1 such that HED(z, P ) = Gz(uz); existence

follows from Theorem 8. Then, for any z1, z2 ∈ K with ‖z1 − z2‖ < δ, we have

HED(z1, P ) = Gz1(uz1) > Gz2(uz1)− ε ≥ HED(z2, P )− ε.

By symmetry, we also have HED(z2, P ) > HED(z1, P ) − ε, which yields |HED(z2, P )

−HED(z1, P )| < ε. Consequently, z 7→ HED(z, P ) is uniformly continuous over K.

We now show that uniform continuity extends to Rd. To do so, fix ε > 0 and pick C

large enough to have HED(z, P ) < ε/2 as soon as z /∈ B0(C) := {z ∈ Rd : ‖z‖ ≤ C}

(existence of C follows from the boundedness result in Theorem 2; we refer to the proof of
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Theorem 4(iv) for details). Since z 7→ HED(z, P ) is uniformly continuous over any B0(r),

there exists δ > 0 such that for any z1, z2 ∈ B0(C + 1) such that ‖z1 − z2‖ < δ, one

has |HED(z2, P )−HED(z1, P )| < ε. Letting δ̃ := min(δ, 1), it is then easy to check that for

any z1, z2 ∈ Rd such that ‖z1−z2‖ < δ̃, we must have |HED(z2, P )−HED(z1, P )| < ε (note

that as soon as one of such z1, z2 belongs to B0(C), then they both belong to B0(C + 1)).

(ii) Fix z0 ∈ Rd and u,v ∈ Sd−1. Lemma S.3(i) implies that z 7→ Gz(u) admits a

directional derivative at z0 in direction v. In dimension d = 1, there are finitely many u’s

that are to be considered in (5), so that the aforementioned differentiability readily entails

equidifferentiability in the sense of Milgrom and Segal (2002). The result then follows

from Theorem 3 of Milgrom and Segal (2002). (iii) By assumption, P is smooth over a

neighbourhood N of z0. Lemma S.3(ii) then yields that, for any u ∈ Sd−1, z 7→ Gz(u)

is continuously differentiable over N . The result then follows from Theorem 1 in Danskin

(1966) or Proposition 1 in Demyanov (2009). �

The proof of Theorem 6 requires the following strict quasi-concavity property.

Lemma S.4. Let P be a probability measure in Pd and denote as µµµ(P ) the corresponding

mean vector. Then,

HED((1− λ)µµµ(P ) + λz, P ) > HED(z, P ) (S.18)

for any λ ∈ [0, 1) and z(6= µµµ(P )) in the c-support C(P ) of P .

Proof of Lemma S.4. Fix zλ := (1− λ)µµµ(P ) + λz, with z( 6= µµµ(P )) ∈ C(P ) and λ ∈

(0, 1) (for λ = 0, the result directly follows from Theorem 5). Let A := {u ∈ Sd−1 :

u′(z− µµµ(P )) = 0}. First note that the proof of Theorem 5 entails that, for any u ∈ A,

Gu(u′zλ) = Gu(u′µµµ(P )) =
1

2
= HED(µµµ(P ), P ) > HED(zλ, P ),
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so that (5) yields

HED(zλ, P ) = min
u∈Sd−1\A

Gu(u′zλ). (S.19)

Fix then u ∈ Sd−1 \ A. Since both z and µµµ(P ) belong to C(P ), we have P[u′Z ≤

min(u′µµµ(P ),u′z)] > 0 and P[u′Z ≥ max(u′µµµ(P ),u′z)] > 0. Recalling that u /∈ A, we

have that u′zλ belongs to the open interval with endpoints u′µµµ(P ) and u′z. Lemma S.1

then yields

Gu(u′zλ) > Gu(min(u′µµµ(P ),u′z)) = min(Gu(u′µµµ(P )), Gu(u′z))

≥ min(HED(µµµ(P ), P ), HED(z, P )) = HED(z, P )

for any u ∈ Sd−1 \ A. The result thus follows from (S.19). �

Proof of Theorem 6. Fix 0 ≤ r1 < r2 < ru(P ). Then, µµµ(P ) + ru ∈ C(P ) for

any r ∈ [0, r2]. Lemma S.4 thus yields HED(µµµ(P ) + r1u, P ) > HED(µµµ(P ) + r2u, P ), so

that r 7→ HED(µµµ(P ) + ru, P ) is monotone strictly decreasing in [0, ru(P )). Now, fix r >

ru(P ). By definition of ru(P ), θθθ + ru /∈ C(P ). Theorem 2 then ensures that there is

no α ∈ (0, 1) for which θθθ+ ru ∈ Rα(P ). Thus, by definition, HED(θθθ+ ru, P ) = 0. Finally,

continuity of z 7→ HED(z, P ) (Theorem 7(i)) implies that HED(θθθ + ru(P )u, P ) = 0. �

Proof of Theorem 4. (i) The claim directly follows from the affine-equivariance

result in Theorem 2. (ii) if P (∈ Pd) is centrally symmetric about θθθ, then θθθ = µ(P ), the

mean vector of P , so that the result is a corollary of Theorem 5. (iii) This is a direct

consequence of Theorem 6. (iv) Fix ε > 0. In view of Theorem 2, there exists M > 0 such

that Rε(P ) is included in {z ∈ Rd : ‖z‖ ≤ M}. Consequently, Theorem 3 entails that, as

soon as ‖z‖ > M , one has HED(z, P ) < ε, as was to be shown. �

The proof of Theorem S.1 requires the following result.
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Lemma S.5. Let Z be a random d-vector with distribution P ∈ Pd. Then, (i) there

exist c > 0 and ε > 0 such that P[|u′(Z − z)| < c] ≤ 1 − ε for any u ∈ Sd−1 and z ∈ Rd;

(ii) inf(u,z)∈Sd−1×Rd E[|u′(Z− z)|] > 0.

Proof of Lemma S.5. (i) First pick r so large that P[‖Z‖ ≥ r/2] ≤ 1/2. For

any u ∈ Sd−1 and a > r, we then have

P[|u′Z− a| < r/2] ≤ P[‖Z‖ > r/2] ≤ 1/2. (S.20)

It is thus sufficient to show that there exist c > 0 and ε > 0 such that P[|u′Z−a| < c] ≤ 1−ε

for any u ∈ Sd−1 and a ∈ [0, r].

By contradiction, assume that for any c > 0 and ε > 0, there exist u ∈ Sd−1 and a ∈

[0, r] such that P[|u′Z − a| < c] > 1 − ε. We can thus construct a sequence ((un, an))

in K = Sd−1 × [0, r] such that

P[|u′nZ− an| < 1/n] > 1− (1/n).

Compactness of K entails that there exists a subsequence ((un` , an`)) that converges in K,

to (u0, a0) say. Clearly, we may assume that (u′n`u0) is a monotone non-decreasing sequence

and that (|an` − a0|) is a monotone non-increasing sequence (if that is not the case, one

can always extract a further subsequence meeting these monotonicity properties). Let

then I` := [a0 − |an` − a0|, a0 + |an` − a0|] and C` := {u ∈ Sd−1 : u′u0 ≥ u′n`u0}. Note that

the sequences of sets (I`) and (C`) are monotone non-increasing with respect to inclusion,

with ∩`I` = {a0} and ∩`C` = {u0}. Therefore,

lim
`→∞

s` := lim
`→∞

P[Z ∈ ∪a∈I` ∪u∈C` {y : |u′y − a| ≤ 1/n`}] = P[u′0Z− a0 = 0].

But, for any `, s` ≥ P[|u′n`Z− an` | ≤ 1/n`] ≥ 1− (1/n`), which implies that (s`) converges

to one as ` diverges to infinity. Therefore, P[u′0Z− a0 = 0] = 1, which, since P ∈ Pd, is a

contradiction.
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(ii) Fix c and ε > 0 as in Part (i) of the lemma, that is, such that, letting Au,z := {y ∈

Rd : |u′(y − z)| ≥ c}, we have P [Au,z] ≥ ε for any u ∈ Sd−1 and z ∈ Rd. Then,

E[|u′(Z− z)|] ≥
∫
Au,z

|u′(y − z)| dP (y) ≥ cε > 0

for any u ∈ Sd−1 and z ∈ Rd, which establishes the result. �

Proof of Theorem S.1. Let

mz,u(P ) = Gz(u) =
E[|u′(Z− z)|I[u′(Z− z) ≤ 0]]

E[|u′(Z− z)|]
·

For any Q ∈ Pd, let uz(Q) be such that HED(z, Q) = mz,uz(Q)(Q) (existence follows from

Theorem 8). Then,

|HED(z, Pn)−HED(z, P )| I[HED(z, Pn) ≥ HED(z, P )]

≤ (mz,uz(P )(Pn)−mz,uz(P )(P ))I[HED(z, Pn) ≥ HED(z, P )]

≤
(

sup
u
|mz,u(Pn)−mz,u(P )|

)
I[HED(z, Pn) ≥ HED(z, P )]

and

|HED(z, Pn)−HED(z, P )| I[HED(z, Pn) < HED(z, P )]

≤ (mz,uz(Pn)(P )−mz,uz(Pn)(Pn))I[HED(z, Pn) < HED(z, P )]

≤
(

sup
u
|mz,u(P )−mz,u(Pn)|

)
I[HED(z, Pn) < HED(z, P )]

(in this proof, all infima/suprema in u are over Sd−1, whereas those in z are over K).

Adding up these inequalities, we obtain

|HED(z, Pn)−HED(z, P )| ≤ sup
u
|mz,u(Pn)−mz,u(P )|,
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which provides

sup
z
|HED(z, Pn)−HED(z, P )| ≤ sup

z,u
|mz,u(Pn)−mz,u(P )|.

Now, writing q−z,u(P ) := E[|u′(Z−z)|I[u′(Z−z) < 0]], q+
z,u(P ) := E[|u′(Z−z)|I[u′(Z−z) >

0]] and qz,u(P ) := q−z,u(P ) + q+
z,u(P ) = E[|u′(Z− z)|], we have

|mz,u(Pn)−mz,u(P )| =
∣∣∣q−z,u(Pn)

qz,u(Pn)
−
q−z,u(P )

qz,u(P )

∣∣∣
≤
|q−z,u(Pn)− q−z,u(P )|

qz,u(Pn)
+ q−z,u(P )

∣∣∣ 1

qz,u(Pn)
− 1

qz,u(P )

∣∣∣
≤
|q−z,u(Pn)− q−z,u(P )|+ |qz,u(Pn)− qz,u(P )|

qz,u(Pn)

≤
2 supz,u |q−z,u(Pn)− q−z,u(P )|+ supz,u |q+

z,u(Pn)− q+
z,u(P )|

infz,u qz,u(P )− supz,u |qz,u(Pn)− qz,u(P )|

for any z ∈ K and u ∈ Sd−1. Since infz,u qz,u(P ) > 0 (Lemma S.5), it only remains to

prove that

sup
z,u
|q−z,u(Pn)− q−z,u(P )| a.s.→ 0 and sup

z,u
|q+

z,u(Pn)− q+
z,u(P )| a.s.→ 0 (S.21)

as n→∞. Let us focus on the first convergence in (S.21). Clearly, we are after a Glivenko-

Cantelli theorem for the classes of functions

G :=
{

y 7→ gz,u(y) := −(u′(y − z))I[u′(y − z) < 0] : z ∈ K,u ∈ Sd−1
}

(the restriction to a compact K for z ensures that this class posesses an integrable envelope).

The collectionH of all halfspaces in Rd+1 is a Vapnik-Chervonenkis class; see, e.g., Page 152
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of Van der Vaart and Wellner (1996). Consequently, defining the subgraph of a function f :

Rd → R as sf := {(y, t) ∈ Rd+1 : t < f(y)} and letting

F :=
{

y 7→ fz,u(y) := u′(y − z) : z ∈ K,u ∈ Sd−1
}
,

the collection of subgraphs {sf : f ∈ F}, as a subset of H, is a Vapnik-Chervonenkis class.

In other words, F is a VC-subgraph class (see, e.g., Section 2.6.2 of Van der Vaart and

Wellner, 1996). Now, since t 7→ −tI[t ≤ 0] is a monotone function, Lemma 2.6.18(viii)

of Van der Vaart and Wellner (1996) implies that G is itself a VC-subgraph class, hence is

Glivenko-Cantelli, which implies the first convergence in (S.21). Since the same reasoning

establishes the second convergence in (S.21), the result is proved. �

Proof of Theorem S.2. In view of Theorem S.1 and the result in Theorem 4.5 from

Dyckerhoff (2016) (more precisely, its corollary in a random sampling scheme as discussed

in page 13 of that paper), it is sufficient to prove that HED( · , P ) is strictly monotone, in

the sense that, for any α ∈ (0, α∗), with α∗ := maxy∈Rd HED(y, P ) = 1
2
, the region Rα(P )

is the closure R̄α,>(P ) of Rα,>(P ) := {z ∈ Rd : HED(z, P ) > α}.

Now, since Rα(P ) is closed and contains Rα,>(P ), we have that R̄α,>(P ) ⊂ Rα(P ).

To show that Rα(P ) ⊂ R̄α,>(P ), fix z ∈ Rα(P ). If HED(z, P ) > α, then z trivially

belongs to R̄α,>(P ), so that we may assume that HED(z, P ) = α. Consider then the line

segment associated with zλ := (1 − λ)µ(P ) + λz, λ ∈ (0, 1), from the mean vector µ(P )

of P (the deepest point of HED( · , P )) to z. Theorem 6 guarantees that (z1−(1/n)) is a

sequence in Rα,>(P ) that converges to z, so that z ∈ R̄α,>(P ). We conclude that we also

have Rα(P ) ⊂ R̄α,>(P ), hence that HED( · , P ) is strictly monotone. This establishes the

result. �

Proof of Theorem 9. From affine invariance, there is no loss of generality in as-

suming that z = 0, u0 = (0, . . . , 0, 1)′ ∈ Rd and that the path ut is of the form ut =
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(0, . . . , 0, cos(t+ π
2
), sin(t+ π

2
))′, t ∈ [0, π]. For any t ∈ [0, π], we have

γ(t) := e0(ut) =
−h<(t)

−h<(t) + h>(t)
=

h<(t)

h<(t)− h>(t)
,

with

h<(t) :=

∫
Rd

u′tyI[u′ty < 0] dP (y) and h>(t) :=

∫
Rd

u′tyI[u′ty > 0] dP (y).

Throughout the proof, we will use the notation µµµ = E[Z], µµµt,< := E[ZI[u′tZ < 0]], and

µµµt,> := E[ZI[u′tZ > 0]]. Note that under the assumptions of the theorem, we have µµµ =

µµµ0,> + µµµ0,<.

We start by considering differentiability of (a) h<(t) = u′tµµµt,< and (b) h>(t) = u′tµµµt,>.

(a) Since P [Π\{0}] = 0 for any hyperplane Π containing 0, the mapping t 7→ u′tyI[u′ty < 0]

is P -almost everywhere differentiable at any t ∈ [0, π], with derivative t 7→ u̇′tyI[u′ty < 0],

where we let u̇t := (0, . . . , 0,− sin(t+ π
2
), cos(t+ π

2
))′. Since the function (t,y) 7→ u̇′tyI[u′ty <

0] is upper-bounded by the t-independent P -integrable function y 7→ ‖y‖, the map-

ping t 7→ h<(t) is differentiable at any t ∈ [0, π], with derivative ḣ<(t) := u̇′tµµµt,<. (b)

Similarly, for any y ∈ Rd, the mapping t 7→ u′tyI[u′ty > 0] is P -almost everywhere

differentiable at any t ∈ [0, π], with derivative t 7→ u̇′tyI[u′ty > 0]. Since the func-

tion (t,y) 7→ u̇′tyI[u′ty > 0] is still upper-bounded by the t-independent P -integrable

function y 7→ ‖y‖, the mapping t 7→ h>(t) is differentiable at any t ∈ [0, π], with deriva-

tive ḣ>(t) := u̇′tµµµt,>.

We conclude that t 7→ γ(t) is differentiable at any t ∈ [0, π], with a derivative γ̇(t) that

satisfies

(h<(t)− h>(t))2γ̇(t) = ḣ<(t)(h<(t)− h>(t))− h<(t)(ḣ<(t)− ḣ>(t))

= h<(t)ḣ>(t)− h>(t)ḣ<(t) = (u′tµµµt,<)(u̇′tµµµt,>)− (u′tµµµt,>)(u̇′tµµµt,<).
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Let us introduce some further notation. For any t ∈ [0, π], write the projections

of µµµt,<, µµµt,>, and µµµ onto the plane spanned by the last two vectors of the canonical

basis of Rd as (0, . . . , 0, rt,< cosαt,<, rt,< sinαt,<)′, (0, . . . , 0, rt,> cosαt,>, rt,> sinαt,>)′, and

(0, . . . , 0, r cosα, r sinα)′, respectively, where all r’s are nonnegative and all α’s belong

to [0, 2π). Since it is assumed that HED(z, P ) > 0, we must have

rt,> > 0 and αt,> ∈ (t, t+ π) (S.22)

for any t ∈ [0, π] and

rt,< > 0 and αt,< ∈ [0, t) ∪ (t+ π, 2π) (S.23)

for any t ∈ [0, π]. Note that t 7→ αt,> is monotone non-decreasing over [0, π] and that t 7→

αt,< is monotone non-decreasing “modulo 2π” over the same range. Finally, note also that

e0(u0) =
E[|u′0Z|I[u′0Z ≤ 0]]

E[|u′0Z|]
≤ 1

2
(S.24)

(if not, then e0(uπ) = 1 − e0(u0) < e0(u0), which contradicts the definition of u0).

If e0(u0) = 1/2, then e0(ut) = 1/2 for any t ∈ [0, π] (if e0(u) > 1/2 for some u ∈ C,

then e0(−u) = 1 − e0(u) < 1/2 = e0(u0), a contradiction), so that the result holds

with ta = tb = π. We may thus assume that the inequality in (S.24) is strict, which

implies that u′0µµµ = E[u′0Z] > 0, hence that r > 0 and α ∈ [0, π].
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With the notation introduced above, we have

(h<(t)− h>(t))2γ̇(t) = (u′tµµµt,<)(u̇′tµµµt,>)− (u′tµµµt,>)(u̇′tµµµt,<)

= rt,<rt,>(cos(t+ π
2
) cosαt,< + sin(t+ π

2
) sinαt,<)

×(− sin(t+ π
2
) cosαt,> + cos(t+ π

2
) sinαt,>)

−rt,<rt,>(cos(t+ π
2
) cosαt,> + sin(t+ π

2
) sinαt,>)

×(− sin(t+ π
2
) cosαt,< + cos(t+ π

2
) sinαt,<)

= rt,<rt,> cos(αt,< − (t+ π
2
)) sin(αt,> − (t+ π

2
))

−rt,<rt,> cos(αt,> − (t+ π
2
)) sin(αt,< − (t+ π

2
))

= rt,<rt,> sin(αt,> − αt,<) =: `(t).

Now, since u0 is a minimizer of e0(·) on C, `(0) = −r0,<r0,> sin(α0,< − α0,>) = 0.

Since (S.22)-(S.23) entail that α0,< > α0,>, this yields α0,< = α0,> + π. By using the

identity µµµ = µµµ0,> + µµµ0,< and the fact that α ∈ [0, π], we conclude that α = α0,> ∈ (0, π).

Similarly, using the fact that uπ = −u0 is a maximizer of e0(·) on C (this follows from the

fact that e0(−u) = 1 − e0(u) for any u), we have `(π) = −rπ,<rπ,> sin(απ,< − απ,>) = 0,

which implies that απ,> = απ,<+π (recall that we cannot have απ,< = π, nor 0). Thus π <

απ,> < 2π. By using the identity µµµ = µµµπ,> +µµµπ,< and the fact that α ∈ (0, π), we conclude

that απ,< = α.

Now, fix t0 ∈ [0, π] with `(t0) = −rt0,<rt0,> sin(αt0,< − αt0,>) 6= 0 (if there is no such t0,

then the result holds with ta = tb = π). Monotonicity of t 7→ αt,> yields αt0,> ≥ α0,> = α.

Since αt0,> = α would lead to αt0,< = αt0,>+π (due to µ = µt0,>+µt0,<), hence to `(t0) = 0,

we must actually have αt0,> > α.
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Pick then an arbitrary t ∈ [t0, π). Monotonicity of t 7→ αt,> then yields αt,> ≥ αt0,> > α,

hence αt,> ∈ (α, t+π). Since µµµ = µµµt,>+µµµt,<, we must have αt,< ∈ (αt,>+π, t+2π] mod 2π,

that is, (a) αt,< ∈ (αt,>+π, 2π) or (b) αt,< ∈ [0, t). In case (a), we have αt,<−αt,> ∈ (π, 2π),

so that `(t) = −rt,<rt,> sin(αt,< − αt,>) > 0. In case (b), in view of the monotonicity

(modulo 2π) of t 7→ αt,<, we have αt,< ∈ [0, απ,< = α]. Therefore, the identityµµµ = µµµt,>+µµµt,<

implies that αt,< < t < αt,> ≤ αt,< + π. Therefore, `(t) = rt,<rt,> sin(αt,> − αt,<) ≥ 0.

Assume that `(t) = 0. As shown above, we must thus be in case (b). Then αt,> =

αt,< +π, so that (still due to µµµ = µµµt,> +µµµt,<) we must have αt,< = α = απ,<. Monotonicity

then implies that for any t′ ∈ [t, π), we have αt′,< = α, which, in view of µµµ = µµµt′,> + µµµt′,<

yields αt′,> = α + π. Consequently, we have `(t′) = 0, which establishes the result. �

Proof of Theorem S.3. (i) First note that since u ∈ Rd
+, we have u′X ≤ u′Y

almost surely, so that the monotonicity of (univariate) expectiles entails that eα(u′X) ≤

eα(u′Y). It trivially follows that Hα,u(Y) ⊂ Hα,u(X) ⊂ Hα,u(X) ⊕ Rd
+. To establish the

other inclusion, fix z ∈ Hα,u(X). We may assume that z /∈ Hα,u(Y) (if z ∈ Hα,u(Y),

then z = z + 0 ∈ Hα,u(Y)⊕ Rd
−). We then have

z = (eα(u′Y)u + (Id − uu′)z) + (u′z− eα(u′Y))u =: z0 + z1.

Since u′z0 = eα(u′Y), we have that z0 ∈ Hα,u(Y). Since u′z−eα(u′Y) < 0 (recall that z /∈

Hα,u(Y)) and u ∈ Rd
+, we also have z1 ∈ Rd

−. This shows that Hα,u(X) ⊂ Hα,u(Y)⊕ Rd
−.

(ii) Let z ∈ Hα,u(X + Y) and decompose it into z = (eα(u′X)u + (Id − uu′)z) + (u′z −

eα(u′X))u =: z0 +z1. Obviously, z0 ∈ Hα,u(X). As for z1, the superadditivity of univariate

expectiles for α ∈ (0, 1
2
] implies that u′z1 = u′z − eα(u′X) ≥ eα(u′(X + Y)) − eα(u′X) ≥

eα(u′Y), which shows that z1 ∈ Hα,u(Y). (iii) If z0 ∈ Hα,u(X) and z1 ∈ Hα,u(Y), then the

subadditivity of univariate expectiles for α ∈ [1
2
, 1) readily yields u′(z0 + z1) ≥ eα(u′X) +

eα(u′Y) ≥ eα(u′(X+Y)), which shows that z0+z1 ∈ Hα,u(X+Y). (iv) The result trivially
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follows from the monotonicity of univariate expectiles with respect to their order α. �
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