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Abstract

A classical problem in stochastic ergodic control consists of studying the limit behavior
of the optimal value of a discounted integral in infinite horizon (the so called Abel mean of
an integral cost) as the discount factor λ tends to zero or the value defined with a Cesaro
mean of an integral cost when the horizon T tends to +∞. We investigate the possible
limits in the norm of uniform convergence topology of values defined through Abel mean
or Cesaro means when λ → 0+ and T → +∞, respectively. Here we give two types of
new representation formulas for the accumulation points of the values when the averaging
parameter converges. We show that there is only one possible accumulation point which
is the same for Abel means or Cesàro means. The first type of representation formula is
based on probability measures on the product of the state space and the control state space,
which are limits of occupational measures. The second type of representation formulas is
based on measures which are the projection of invariant measure on the space of relaxed
controls. We also give a result comparing the both sets of measures involved in the both
classes of representation formulas. An important consequence of the representation formulas
is the existence of the limit value when one has the equicontinuity property of Abel or Cesàro
mean values. This is the case, for example, for nonexpansive stochastic control systems. In
the end some insightful examples are given which make to better understand the results.
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1 Introduction

Let us consider a stochastic control system described by the following stochastic differential
equation living in a compact subset Y of Rn

(1)

{
dXs = b(Xs, αs)ds+ σ(Xs, αs)dWs,
X0 = x ∈ Y,

where A is a compact metric space, b : Rn ×A→ Rn, σ : Rn ×A→ Rn×d are continuous func-
tions satisfying suitable assumptions and the admissible control α is an A-valued F-progressively
measurable processes. Let A be the set of all A-valued F-progressively measurable processes α.
We denote by t 7→ Xx,α

t the solution of (1) (whose existence and uniqueness is ensured by
classical assumptions stated later on) and we suppose the invariance of Y with respect to (1).

Associated with λ > 0 and T > 0, we define the following value functions

(2) Vλ(x) = inf
α(·)∈A

E[λ

∫ ∞

0
e−λsℓ(Xx,α

s , αs)ds], x ∈ Rn, (Abel mean)

and

(3) UT (x) = inf
α(·)∈A

E[
1

T

∫ T

0
ℓ(Xx,α

s , αs)ds], x ∈ Rn, (Cesàro mean)

where ℓ : RN ×A 7→ R is a bounded function.
The existence of the limit of Vλ as λ → 0+ and UT as T → +∞ has been studied widely

in the literature by several different methods. We refer the reader to Alvarez and Bardi [1],
Arisawa and P.L. Lions [2], Buckdahn, Goreac and Quincampoix [7], Buckdahn, Quincampoix
and Renault [10], Goreac [20], Li, Quincampoix and Renault [23], Quincampoix and Renault
[27] (and also Renault [28] for an analogous problem in discrete time).

A large number of works concern the so called ergodic case. It consists of studying the case
where the above limits exist and are independent of the initial condition x. This has been done
by PDE techniques by imposing coercivity assumptions on the Hamiltonian (c.f., Alvarez and
Bardi [1], Arisawa and P.L. Lions [2], P.L. Lions, Papanicolaou and Varadhan [25] and references
therein); indeed, the value functions UT and Vλ satisfy the suitable Hamilton-Jacobi-Bellman
equation (in viscosity sense) for which one can hope to pass directly to the limit as λ → 0+ or
UT as T → +∞. The ergodic deterministic case has also been studied through direct methods
by assuming suitable controllability assumptions in Artstein and Gaitsgory [3], Fathi [15], and
so on.

There are several very basic examples in which the limit value exists but it depends on the
initial condition. Indeed, if one considers the following two dimensional deterministic control
system

(4)

{
dX1

t = α(t)(1−X1
t )dt

dX2
t = α(t)2(1−X1

t )dt
,X0 = (X1

0 , X
2
0 ) = x ∈ R2;

with A := [0, 1] and the integral cost ℓ(x) = 1 − x1(1 − x2), one can show directly that Y :=
{x = (x1, x2) ∈ [0, 1]2 : x1 ≥ x2} is invariant for the above control system. Moreover, UT and
Vλ converge, as T → +∞ and λ → 0+, respectively, to V̂ (x1, x2) := x2 uniformly on Y (see,
e.g., [27]).
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The nonergodic case has been studied in Cannarsa and Quincampoix [12], Quincampoix and
Renault [27] for deterministic control problems and in Buckdahn, Goreac and Quincampoix [7],
Goreac and Serea [19], Goreac [20], Li and Zhao [24] for the stochastic control problems by
imposing a suitable non-expansivity condition on the dynamics.

Here our approach is different: we divide the problem of the existence of the uniform limit
limλ→0+ Vλ in two distinct questions: First is to show that (Vλ)λ≥0 has at most one accumulation
point (in the uniform convergence topology), second is to obtain the equicontinuity of the family
(Vλ)λ≥0. Obviously, Arzelà-Ascoli Theorem implies that if both above questions have a positive
answer then the uniform limit limλ→0+ Vλ does exist. The present paper mainly focuses on the
first question: we obtain that the unique accumulation point, if it exists, has a precise form
which we give an explicit description. This is the main novelty of our work. The first type of
representation formula is based on measures on the state space Y × A which are the limit of
occupational measures. The second type of representation formula is based on the projection
of invariant measures on the path space (the product of the set of trajectories C([0,+∞), Y )
and the set of admissible controls). We also show that the same argument can be applied to
limT→+∞ UT .

For the first type of representation formula, we use and extend several results already ob-
tained for limits of occupational measures in Bhatt and Borkar [5], Buckdahn, Goreac and Quin-
campoix [6], Borkar and Gaitsgory [11], Gaitsgory [16], Gaitsgory and Quincampoix [17, 18] for
the deterministic case. For the second type of representation formula we use a formulation
of stochastic optimal control problems in terms of relaxed control in El Karoui, Nguyen and
Jeanblanc-Picqué [14], and Kushner [22]. This enables us to define suitable invariant proba-
bility measures on the path space, as well as their projection. The first type of representation
formula can be regarded as a non-trivial extension of results obtained in [10] for deterministic
case. It is worth pointing out that our present second type of representation formula is new not
only for the stochastic control case, but also new for the deterministic case, which can be inter-
preted as a particular case of the stochastic one (with σ ≡ 0) in (1). Indeed, our result can cope
with a rather general integral cost ℓ (while the results of [10] are only valid for an integral cost
ℓ(x, a) = ℓ(x) independent of the control). Both representation formulas suppose the existence
of an invariant compact set Y for (1). The invariance of such Y can be characterized through
several equivalent conditions (c.f., for instance, Buckdahn, Peng, Quincampoix and Rainer [9]).

Our representation formulas have important consequences. Since the representation formula
for accumulation points of (Vλ)λ>0 and of (UT )T>0 are the same, we deduce that if limλ→0+ Vλ(·)
and limT→+∞ UT (·) exist in the topology of uniform convergence, then they necessarily coincide
(compare this with the Abelian-Tauberian Theorems in Gaitsgory [16], Oliu-Barton and Vigeral
[26]). We will also discuss some conditions insuring the equicontinuity of the families (Vλ)λ>0

and of (UT )T>0, from which the existence of the limit value is deduced with the help of our
representation formulas.

Our theoretical studies are completed with illustrating examples presented in the last sec-
tion. The first example is very instructive. Indeed, although the standard assumptions of the
coefficients of the dynamics and the running cost are satisfied, (Vλ(.))λ>0 and (UT (.))T>0 do
not have any accumulation point in the topology of uniform converge, as λ↘ 0 and T → +∞,
respectively, but they converge pointwise to some limit functions V0(.) and U∞(.), and these
pointwise limits differ. Later Example 3.6 of [7] (in [7] studied under the non-expansivity condi-
tion) is revisited. It is in particular shown that it reduces to an ergodic problem. By modifying
this Example 3.6 we obtain a non-ergodic one.

Let us now describe how our paper is organized. After a preliminary section devoted to
notations and basic facts, the second section introduces occupational measures and derives our
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first type of representation formula. We also discuss examples and the non-expansive condition.
In the third section, after recalling several notions and results for relaxed control, we state and
prove the second type of representation formula. Section 5 concerns the comparison between
both types of representation formulas. Finally, Section 6 is devoted to the illustrating examples
mentioned above, and in the Appendix (Section 7) the proof of Lemma 4.5 is given.

2 Preliminaries

For any metric space D, the set of Borel sets is denoted by B(D), while the notation ∆(D)
stands for the associated set of Borel probability measures over D. The set of all continuous
real-valued functions on D is denoted by C(D). Finally, |x| is the usual Euclidean norm of
x ∈ Rn (n ≥ 1).

Let us consider the Brownian motion W = (W (s), s ≥ 0) as the d-dimensional coordinate
process on the classical Wiener space (Ω,F , P ), where Ω is the set of continuous functions from
R+ to Rd starting from 0 (i.e., Ω = C0([0,+∞);Rd)) endowed with the topology of uniform
convergence on compacts, F is the completed Borel σ-algebra over Ω, P is the Wiener measure
on (Ω,F) : Ws(ω) = ωs, s ≥ 0, ω ∈ Ω. By F = {Fs, s ≥ 0} we denote the natural filtration
generated by {Ws}s≥0 and augmented by all P -null sets, i.e.,

Fs = σ{Wr, r ≤ s} ∨ NP , s ≥ 0,

where NP is the set of all P -null subsets on Ω.
For our functions b : Rn 7→ Rn, σ : Rn × A 7→ Rn×d we suppose the following standard

conditions:

(H1) b and σ are uniformly continuous in (x, a);

(H2) |σ(x, a)− σ(x′, a)| ≤ c|x− x′| for all x, x′ ∈ Rn, for all a ∈ A;

(H3) |b(x, a)− b(x′, a)| ≤ c|x− x′| for all x, x′ ∈ Rn, for all a ∈ A,

where c > 0 is a given constant.

With above assumptions, for every x ∈ Rn and all admissible control α ∈ A, there exists a
unique continuous F-adapted solution t 7→ Xx,α

t defined on [0,+∞). Furthermore, we consider
a running cost function ℓ : Rn ×A 7→ R satisfying

(H4) ℓ is continuous in (x, a) and there exists some c > 0 such that
0 ≤ ℓ(x, a) ≤ 1, |ℓ(x, a)− ℓ(x′, a)| ≤ c|x− x′|, for all x, x′ ∈ Rn, and a ∈ A.

Then it is also standard that, for any T > 0 and any λ > 0, the value functions UT (·) and
Vλ(·) are continuous and bounded. Here we have supposed that 0 ≤ ℓ ≤ 1 only for the sake of
simplicity; of course our approach remains valid for any bounded continuous function ℓ which is
Lipschitz in x, uniformly with respect to a.

Now we suppose the following condition on the stochastic control system:

(H5) there exists a compact Y ⊂ Rn which is invariant for (1).

It is equivalent to say that, for all x ∈ Y and any α ∈ A , Xx,α
s ∈ Y , P -a.s., for all s ≥ 0. This

condition can be characterized through an equivalent condition on b, σ and Y (c.f., e.g., [9]).
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To end with our preliminaries, we recall the definition of the second order differential operator
L associated with (1). It is given by

(Lϕ)(x, a) = ⟨b(x, a),∇ϕ(x)⟩+ 1

2
tr(
(
D2ϕσσ∗

)
(x, a)), x ∈ Rn, a ∈ A,

where ϕ ∈ C2(Rn).

3 First type of representation formulas

The representation formula we will state later involves limits of discounted occupational measures
which we want to introduce now.

3.1 Discounted occupational measures

For any x0 ∈ Y , λ > 0 and any α ∈ A the associated discounted occupational measure γx0,α
λ is

defined as follows:

(5)

∫
Y×A

φdγx0,α
λ = λE[

∫ ∞

0
e−λsφ(Xx0,α

s , αs)ds], for any φ ∈ C(Y ×A).

We observe that γx0,α
λ ∈ ∆(Y ×A) is a probability measure on Y ×A. The set of occupational

measures is denoted by
Γλ(x0) := {γx0,α

λ , α ∈ A}.

Now we recall some basic facts on occupational measures [5, 6, 11, 17] which will be used
frequently in the following.

First note that, for all γx0,α
λ ∈ Γλ(x0) and φ ∈ C2(Y ),

(6)

∫
Y×A

((Lφ)(x, a) + λ(φ(x0)− φ(x))) dγx0,α
λ (x, a) = 0.

Indeed, by applying Itô’s formula to e−λsφ(Xx0,α
s ) on the interval [0, T ], we get

E[φ(Xx0,α
T )e−λT − φ(x0) +

∫ T

0
{λe−λsφ(Xx0,α

s )− e−λs(Lφ)(Xx0,α
s , αs)}ds] = 0.

Then by taking the limit as T → ∞, from the Lebesgue convergence theorem and (5) we get
(6). This means that

Γλ(x0) ⊂Wλ(x0),

where
Wλ(x0) := {ν ∈ ∆(Y ×A) :∫

Y×A
((Lφ)(x, a) + λ(φ(x0)− φ(x))) dν = 0, for all φ ∈ C2(Y )}.

Since the set Wλ(x0) is defined by linear equalities, it is convex. Moreover, by Prohorov’s
Theorem it is compact. Consequently, co(Γλ(x0)) ⊂Wλ(x0), where co denotes the closed convex
hull. One can also prove that co(Γλ(x0)) =Wλ(x0) (c.f., [6] and also Kurtz, Stockbridge [21]).

Now, if ν ∈ ∆(Y × A) is such that there exists sequences λn → 0+ and νn ∈ Wλn(x0) with
νn ⇀ ν (i.e., νn converges weakly to ν), then, obviously, ν belongs to the set

(7) W := {ν ∈ ∆(Y ×A) :

∫
Y×A

(Lφ)(x, a)dν(x, a) = 0, for all φ ∈ C2(Y )}.
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Thus,

lim sup
λ→0+

co(Γλ(x0)) ⊂ W,

where lim supλ→0+ co(Γλ(x0)) denotes the set of accumulation points1 of all sequences νn ∈
co(Γλn(x0)). The above inclusion has a kind of converse precisely stated in the following.

Lemma 3.1. (Proposition 2 in [6]) We have

(8) lim
λ→0+

dH(co(Γλ(Y )),W) = 0,

where dH is the Hausdorff distance2 associated with any distance d which is consistent with the
weak convergence of measures in ∆(Y ×A), and Γλ(Y ) :=

∪
x0∈Y Γλ(x0).

Now we are ready to state our first main result in which the set W defined by (7) is involved.

3.2 Representation formula for Abel means

We first give the following definition.

Definition 3.2. For all x0 in Y we set

u∗(x0) := sup{w(x0), w ∈ K}

where K denotes the set of all functions w : Y → [0, 1] which are continuous and satisfy the
following conditions:

i) E[w(Xx0,α
t )|Fs] ≥ w(Xx0,α

s ), P-a.s., for all α ∈ A, 0 ≤ s ≤ t, (i.e., (w(Xx0,α
t ))t≥0 is an

(F, P )-submartingale, for all α ∈ A, x0 ∈ Y ).

ii)

∫
Y×A

w(x)dµ(x, a) ≤
∫
Y×A

ℓ(x, a)dµ(x, a), for all µ ∈ W .

The above definition enables us to give the following representation formula for accumulation
points of Abel mean value functions.

Theorem 3.3. We suppose that the assumptions (H1)-(H5) hold true. Then any accumulation
point - in the uniform convergence topology - of (Vλ(·))λ>0 as λ→ 0+, is equal to u∗(·).

Before proving the theorem we state a useful auxiliary statement. It turns out to be crucial
for our extension of the deterministic case of Theorem 3.4 in [10] to the stochastic one (Theorem
3.3). More precisely, we need to prove the following result.

Proposition 3.4. We suppose that the assumptions (H1)-(H5) hold true. Then for all λ > 0
and y ∈ Y we have

(9) Vλ(y) = essinfα∈AE[λ

∫ ∞

s
e−λ(t−s)ℓ(Xs,y,α

t , αt)dt|Fs], s ≥ 0,

1The set lim supλ→0+ co(Γλ(x0)) is the upper Kuratowski limit of co(Γλ(x0)) (c.f., for instance, Aubin and
Frankowska [4]).

2Recall that the Hausdorff distance dH between two sets M1 and M2 is given by

dH(M1,M2) = max{ sup
µ∈M1

d(µ,M2), sup
µ∈M2

d(µ,M1)},

where d(µ,Mi) := inf{d(µ, ν), ν ∈ Mi }.
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where

(10) Xs,y,α
t = y +

∫ t

s
b(Xs,y,α

r , αr)dr +

∫ t

s
σ(Xs,y,α

r , αr)dWr, t ≥ s(≥ 0), y ∈ Y.

We denote Xy,α := X0,y,α.

Proof. Let us fix λ > 0, y ∈ Y and s ≥ 0. We denote by V̂λ(y) the right-hand side of equality
(9). We will prove the theorem by the following three steps.

Step 1: The function V̂λ(y) is deterministic.

Indeed, let H denote the Cameron-Martin space of all absolutely continuous elements h ∈ Ω
whose Radon-Nikodym derivative ḣ belongs to L2([0,∞),Rd). For any h ∈ H, we define the
mapping τhω := ω + h, ω ∈ Ω. Obviously, τh : Ω → Ω is a bijection. Let (s, x) ∈ [0, T ]×Rn be
arbitrarily fixed, and put Hs = {h ∈ H|h(·) = h(· ∧ s)}. For h ∈ Hs, the law of τh is given by

P ◦[τh]−1 = exp{
∫ s

0
ḣrdWr−

1

2

∫ s

0
|ḣr|2dr}P. Using the fact that P ◦[τh]−1 and P are equivalent,

with the same arguments as in Buckdahn and Li [8] we get V̂λ(y)(τh) = V̂λ(y), P -a.s., for any
h ∈ Hs.

On the other hand, as V̂λ(y) is Fs-measurable (a direct consequence of the definition of
the essential infimum over a family of Fs-measurable random variable, see, e.g., Dunford and
Schwartz [13]), this equality extends to all h ∈ H, i.e.

V̂λ(y)(τh) = V̂λ(y), P -a.s., for any h ∈ H.

Consequently, from Lemma 3.4 in [8], we know that V̂λ(y) is deterministic. Therefore, adapting
the argument of [8] we also get

(11) V̂λ(y) = inf
α∈A

E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xs,y,α

t , αt)dt], s ≥ 0.

Step 2: Vλ(y) ≥ V̂λ(y).
Let us consider ϑs(ω) :=W.+s(ω)−Ws(ω), s ≥ 0, ω ∈ Ω, i.e., ϑs = ϑs(ω) is the translation

operator associated with the Brownian motion W . Given α ∈ A and an arbitrary element a0 of
A, let us define

(12) αt :=

{
a0, t ∈ [0, s),
αt−s(ϑs) = αt−s(W.+s −Ws), t ≥ s.

Here we have used that α ∈ A can be identified in the dtdP -a.e. sense with a progressively
measurable function α : R+ × C([0,+∞)) 7→ A (recall that (Ω,F , P ) is the classical Wiener
space).

Then, we have α ∈ A and

(13) Xy,α
t (ϑs) = Xs,y,α

s+t , t ≥ 0, P -a.s.

Indeed, applying the operator ϑs to our equation (10) (with s = 0 ) yields

Xy,α
t (ϑs) = y +

∫ t

0
b(Xy,α

r (ϑs), αr(ϑs))dr +

∫ t

0
σ(Xy,α

r (ϑs), αr(ϑs))dWr(ϑs)

= y +

∫ t

0
b(Xy,α

r (ϑs), αr+s)dr +

∫ t

0
σ(Xy,α

r (ϑs), αr+s)dWr+s, t ≥ 0.
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That is, Xy,α
t (ϑs) = y +

∫ s+t

s
b(Xy,α

r−s(ϑs), αr)dr +

∫ s+t

s
σ(Xy,α

r−s(ϑs), αr)dWr, t ≥ 0, and from

the uniqueness of the solution, we get (13).
On the other hand, from the definition of Vλ(y) we know that, for any ϵ > 0, there exists

α ∈ A such that

ϵ+ Vλ(y) ≥ E[λ

∫ ∞

0
e−λtℓ(Xy,α

t , αt)dt]

= E[λ

∫ ∞

s
e−λ(r−s)ℓ(Xy,α

r−s, αr−s)dr]

= E[λ

(∫ ∞

s
e−λ(r−s)ℓ(Xy,α

r−s, αr−s)dr

)
(ϑs)]

= E[λ

∫ ∞

s
e−λ(r−s)ℓ(Xs,y,α

r , αr)dr] ≥ V̂λ(y).

Here we have used that P ◦ [ϑs]−1 = P , (11) and (13). Since ϵ is arbitrary we get our desired
relation Vλ(y) ≥ V̂λ(y).

Step 3: Vλ(y) ≤ V̂λ(y).
Let α ∈ A, and identify α with a progressively measurable functional α of ω such that

αt = αt(W ), dtdP-a.e. We define

αω̃
t := αt+s(ω̃.∧s +W(.−s)+), ω̃ ∈ C0([0, s]), t ≥ 0.

Notice that αω̃ ∈ A and has the following properties:

(i) αω̃
t (ϑs) = αs+t(ω̃.∧s + (W.∨s −Ws));

(ii) αω̃
t (ϑs)|ω̃=W.∧s

= αs+t(W.∧s + (W.∨s −Ws)) = αs+t(W ) = αs+t, t ≥ 0;

(ii) Xy,αω̃

r (ϑs)|ω̃=W.∧s
= Xs,y,α

s+r , r ≥ 0.

Hence, from the definitions of Vλ(y) and V̂λ(y) we have

E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xs,y,α

t , αt)dt|Fs]

= E[λ

∫ ∞

0
e−λrℓ(Xs,y,α

s+r , αs+r)dr|Fs]

= E[λ

∫ ∞

0
e−λrℓ(Xy,αω̃

r (ϑs), α
ω̃
r (ϑs))dr|Fs]|ω̃=W.∧s

= E[λ

(∫ ∞

0
e−λrℓ(Xy,αω̃

r , αω̃
r )dr

)
(ϑs)]|ω̃=W.∧s

(because Xy,αω̃

r (ϑs), α
ω̃
r (ϑs) are independent of Fs)

= E[λ

∫ ∞

0
e−λrℓ(Xy,αω̃

r , αω̃
r )dr]|ω̃=W.∧s

≥ Vλ(y),

and, from the arbitrariness of α, we get V̂λ(y) ≥ Vλ(y). The proof is complete.

Proof. (of Theorem 3.3) Let us consider any accumulation point u of (Vλ(·))λ>0. Then, along a
subsequence, Vλ converges uniformly to u as λ → 0+. In order to simplify the notations, let us
suppose that Vλ → u, as λ→ 0+.

Step 1: u∗(x0) ≥ u(x0).
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For proving this result, it suffices to show that u ∈ K. Now we begin to prove it.
i) From Proposition 3.4 and the continuity of Vλ we deduce by a standard argument that,

for all λ > 0 and α ∈ A

(14)
Vλ(X

x0,α
s ) = essinfα̃∈AE[λ

∫ ∞

s
e−λ(t−s)ℓ(Xs,X

x0,α
s ,α̃

t , α̃t)dt|Fs]

= essinfα̃∈AE[λ

∫ ∞

s
e−λ(t−s)ℓ(Xx0,α⊕α̃

t , α̃t)dt|Fs], P -a.s.,

where

(α⊕ α̃)t =

{
αt, t ∈ [0, s)
α̃t, t ≥ s.

∈ A.

Furthermore, it is standard to prove that (see, for example, the proof of (3.22) in [8]), for any
ϵ > 0 there exists α̃ϵ ∈ A with α̃ϵ

r = αr, drdP -a.e. on [0, s]× Ω, such that

Vλ(X
x0,α
s ) ≥ E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xx0,α̃ϵ

t , α̃ϵ
t)dt|Fs]− ϵ.

Therefore, for any 0 ≤ r ≤ s,

E[Vλ(X
x0,α
s )|Fr] ≥ E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xx0,α̃ϵ

t , α̃ϵ
t)dt|Fr]− ϵ

= E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xr,y,α̃ϵ

t , α̃ϵ
t)dt|Fr]|y=X

x0,α
r

− ϵ

≥ E[λ

∫ ∞

r
e−λ(t−r)ℓ(Xr,y,α̃ϵ

t , α̃ϵ
t)dt|Fr]|y=X

x0,α
r

− λ

∫ s

r
e−λ(t−s)dt− ϵ

≥ Vλ(X
x0,α
r )− (1− e−λ(r−s))− ϵ, P -a.s.

Then taking ϵ→ 0 and λ→ 0, we get

E[u(Xx0,α
s )|Fr] ≥ u(Xx0,α

r ), P -a.s., for any α ∈ A, s ≥ r ≥ 0.

That is, u satisfies (i) of K.
ii) Now we continue with proving that u satisfies ii) of the definition of K. Let us consider

any 0 < λ′ < λ and the discounted occupational measure γx0,α
λ′ ∈ ∆(Y × A) associated with

(x0, α) ∈ Y ×A and λ′ > 0. Taking into account that

Vλ(X
x0,α
s ) ≤ E[λ

∫ ∞

s
e−λ(t−s)ℓ(Xs,X

x0,α
s ,α

t , αt)dt|Fs],

a forward computation combined with Fubini’s theorem and a change of variables yields∫
Y×A

Vλdγ
x0,α
λ′ = λ′E[

∫ ∞

0
e−λ′sVλ(X

x0,α
s )ds]

≤ λ′E[

∫ ∞

0
e−λ′sλ

∫ ∞

s
e−λ(t−s)ℓ(Xs,X

x0,α
s ,α

t , αt)dtds]

= λ′λE[

∫ ∞

0
e−λt

∫ t

0
e−(λ′−λ)sdsℓ(Xx0,α

t , αt)dt]

= λ′λE[

∫ ∞

0
e−λt 1

λ− λ′
(e−(λ′−λ)t − 1)ℓ(Xx0,α

t , αt)dt]

=
λ′λ

λ− λ′
E[

∫ ∞

0
(e−λ′t − e−λt)ℓ(Xx0,α

t , αt)dt]

≤ λ′λ

λ− λ′
E[

∫ ∞

0
e−λ′tℓ(Xx0,α

t , αt)dt]

= E[λ′
∫ ∞

0
e−λ′tℓ(Xx0,α

t , αt)dt] +
λ′

λ− λ′
E[λ′

∫ ∞

0
e−λ′tℓ(Xx0,α

t , αt)dt]

≤
∫
Y×A

ℓdγx0,α
λ′ +

λ′

λ− λ′
.
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Notice that the set Γλ′(Y ) introduced in Lemma 3.1 is just the set of all discounted occupational
measures γx0,α

λ′ ∈ ∆(Y ×A) with (x0, α) ∈ Y ×A. Consequently,∫
Y×A

Vλdγ ≤
∫
Y×A

ℓdγ +
λ′

λ− λ′
, for all γ ∈ Γλ′(Y ).

Then, using Lemma 3.1 for ∈ W defined in (7), we see that taking the limit as λ′ → 0+ yields∫
Y×A

Vλdγ ≤
∫
Y×A

ℓdγ, for all γ ∈ W .

Finally, using our assumption of the beginning of the proof that Vλ converges uniformly to u as
λ→ 0+, we obtain ∫

Y×A
udγ ≤

∫
Y×A

ℓdγ, for all γ ∈ W ,

and this is just condition ii) in the definition of K.

Step 2: u∗(x0) ≤ u(x0).

Let us fix any w ∈ K and prove that w(x0) ≤ u(x0).
For an arbitrarily given but fixed ε > 0 there exists an ε-optimal control αε ∈ A such that

(15) Vλ(x0) ≤
∫
Y×A

ℓdγx0,αε

λ = E[λ

∫ ∞

0
e−λsℓ(Xx0,αε

s , αϵ
s)ds] ≤ Vλ(x0) + ϵ.

By Prokohov’s Theorem, as λ → 0+, γx0,αε

λ converges weakly along a subsequence to some

measure γ ∈ ∆(Y × A). Once again we suppose for simplicity of notation that γx0,αε

λ ⇀ γ. By
taking the limit λ→ 0+, we deduce from (15) that

(16)

∫
Y×A

ℓdγ ≤ u(x0) + ε.

Moreover, since γx0,αε

λ ∈ Γλ(x0) ⊂ coΓλ(Y ), Lemma 3.1 implies that γ ∈ W. Consequently,
from condition ii) of Definition 3.2 we have

(17)

∫
Y×A

wdγ ≤
∫
Y×A

ℓdγ.

On the other hand, since w satisfies condition i) of Definition 3.2, we also have

w(x0) = λ

∫ ∞

0
e−λsw(x0)ds ≤ λ

∫ ∞

0
e−λsE[w(Xx0,αϵ

s )]ds =

∫
Y×A

wdγx0,αϵ

λ .

Hence, letting λ tend to 0+, this gives

(18) w(x0) ≤
∫
Y×A

wdγ.

Finally, combining (16), (17) and (18), we obtain

w(x0) ≤ ε+ u(x0),

which is just the wished conclusion, recalling that ε > 0 has been chosen arbitrarily.

Notice that our method allows also to treat the limit value for Cesàro means.
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3.3 Representation formula for Cesàro means

Theorem 3.5. We suppose that the assumptions (H1)-(H5) hold true. Then any accumulation
point - in the uniform convergence topology - of (UT (·))T>0 as T → +∞, is equal to u∗(·).

The proof is similar to that of Theorem 3.3, so we omit it. We just emphasize that instead
of using Lemma 3.1 we need the following result.

Lemma 3.6. (c.f., [11]) Recalling the notations introduced for Lemma 3.1, we have

(19) lim
T→+∞

dH(co(NT (Y )), W) = 0,

where
NT (Y ) = { νx0,α

T : x0 ∈ Y, α ∈ A }
and for any x0 ∈ Y and any α ∈ A the occupational measure νx0,α

T ∈ ∆(Y × A) is defined as
follows:

(20)

∫
Y×A

φdνx0,α
T =

1

T
E[

∫ T

0
φ(Xx0,α

s , αs)ds], for any φ ∈ C(Y ×A).

3.4 Non-expansivity condition

Let us introduce the following nonexpansivity condition:

(NE)


There exists a constant c ∈ R+ such that, for any x, x̃ ∈ Y, a ∈ A, ∃ ã ∈ A with:
(i) ∇N2(x− x̃)(b(x, a)− b(x̃, ã))+

1
2Tr[(σ(x, a)− σ(x̃, ã))′[∇2(N2)(x− x̃)](σ(x, a)− σ(x̃, ã))] ≤ 0;

(ii) |ℓ(x, a)− ℓ(x̃, ã)| ≤ c|x− x̃|;

where N is a norm on Rn such that x 7→ N2(x) is of class C2. Observe that when ℓ is Lipschitz
and independent of the a variable, the second condition is automatically satisfied.

Proposition 3.7. We suppose that the assumptions (H1)-(H5) and nonexpansivity condition
(NE) hold true. Then

lim
λ→0+

Vλ = u∗ = lim
T→∞

UT

in the sense of the topology of uniform convergence in C(Y ).

Proof. We only give the proof for the Cesàro mean. Because N and the usual Euclidean norm
are equivalent, there exists some η > 0 with N(·) ≤ η| · |. Take T > 0, ϵ > 0, x, x̃ ∈ Y and
α ∈ A. From the same arguments as those in the proof for Lemma 3 in [7] one can derive from
condition (NE) that there exists α̃ ∈ A such that

E[N(Xx,α
t −X x̃,α̃

t )] ≤ N(x− x̃) + ε ≤ η|x− x̃|+ ε, for any t ∈ [0, T ],

| 1
T
E

∫ T

0
(ℓ(Xx,α

t , αt)− ℓ(X x̃,α̃
t , α̃t))dt| ≤ cη|x− x̃|+ ε.

From above one can deduce that

|UT (x)− UT (x̃)| ≤ cη|x− x̃|, for any x, x̃ ∈ Y.

On the other hand, as 0 ≤ ℓ ≤ 1, we also have 0 ≤ UT ≤ 1. So (UT )T>0 is equicontinuous and
equibounded. By Arzelà-Ascoli Theorem, for any subsequence of UT as T → +∞, there is an
accumulation point, and so using Theorem 3.5, we see that UT converges uniformly to u∗, as
T → +∞.
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Observe that Example (4) satisfies the above nonexpansivity condition with the usual Eu-
clidean norm.

We consider the following elementary deterministic two dimensional example (δ > 0 is fixed
and ℓ(x, a) := ℓ(x) is assumed to be Lipschitz){

y′1(t) = y2(t),
y′2(t) = −δy1(t) + α(t), α(t) ∈ A := [0, 1].

One can observe that the above non-expansivity condition fails for the usual Euclidean norm.
Nevertheless, it holds true (by taking ã = a) for the norm

N(x1, x2) :=

√
x21 +

1

δ
x22.

Hence by using Proposition 3.7 for this example one can deduce the existence of a limit value.
We refer the reader to Section 3.6 in [7], for a nontrivial example in the stochastic case where

the nonexpansivity condition holds true.

4 Second type of representation formulas

The second type of representation formulas involves suitably defined invariant measures of the
dynamical system (1) and the notion of relaxed controls. We recall some basic facts.

4.1 Relaxed control

We now recall some necessary results concerning relaxed controls. This part is mainly taken
from [14]. Recall that C := C(R+;Y ) endowed with the norm ||x(.)|| := supt∈R+

(
e−Mt|x(t)|

)
,

x(.) ∈ C (M > 0 arbitrary but fixed), is a complete normed space. We introduce the space V of
generalized actions, i.e., the set of all positive Radon measures q on R+ × A whose projection
on R+ is the Lebesgue measure: q(dsda) = dsq(s, da), where q(s, da) is a measurable Markov
kernel: q(s, .) ∈ ∆(A), s ≥ 0 and s 7→ q(s,B) is Borel measurable for all B ∈ B(A).

It is worth pointing out that any Borel function α : R+ → A can be embedded in V:
q(dsda) = dsδαs(da). It is well-known that V equipped with the weak ∗ topology3 is a compact
metrizable space.

Definition 4.1. (c.f., [14]) The probability measure Q ∈ ∆(C×V) is a relaxed control (we write
Q ∈ R(C × V)), if and only if there exists

• A filtered probability space (Ω′,F ′,F′(= (F ′
t)t≥0), P

′);

• A continuous Y -valued F′-adapted process X = (Xt)t≥0 defined over Ω′;

• A V-valued random variable q whose restriction I(0,t]q is F ′
t-measurable, for all t ≥ 0,

such that

i) Ct(f,X, q) := f(Xt) − f(X0)−
∫ t

0

∫
A
Lf(Xr, a)q(drda), t ≥ 0, is an (F′, P ′)-martingale, for

3In this topology, qm ⇀ q iff
∫
R+×A

fdqm →
∫
R+×A

fdq, for all f : R+ × A → R bounded, Borel measurable

and with compact support, such that f(t, .) is continuous, for all t ∈ R+.
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all f ∈ C2
b (R

n)4;
ii) The probability Q is the law of (X, q) with respect to P ′: Q = P ′

(X,q).

For any x ∈ X we also define Rx(C × V) as the subset of all Q ∈ R(C × V) with Q({ζ0 =
x}) = 1 (Recall that (ζ(.), θ) is the coordinate process on the canonical space C × V).

Remark 4.2. (1) Let us consider the canonical space Ω̂ = C × V, F̂ = B(C × V); and the
coordinates ζt(x(·)) := x(t), x ∈ C, t ≥ 0, θ(q) := q, q ∈ V. We take the canonical filtration
F̂t := σ{ζs, I(0,s]θ, s ∈ [0, t]}, t ≥ 0. Then: Q ∈ ∆(C × V) belongs to R(C × V) if and only if for

all f ∈ C2
b (R

n), Ct(f, ζ, θ), t ≥ 0, is an (F̂, Q)-martingale.
(2) R(C × V) is a convex, compact metrizable space (c.f., Proposition 3.4 in [14]).

The following result says that classical optimal control problems can be equivalently formu-
lated using relaxed controls.

Proposition 4.3. (c.f., Theorem 4.11 in [14], also see [22]) Consider H ∈ C(Y ), ϕ ∈ C(Y ×A)
and T > 0. Then

inf
α∈A

E

[
H(Xx,α

T ) +

∫ T

0
ϕ(Xx,α

s , αs)ds

]
= inf

Q∈Rx(C×V)

∫
C×V

(
H(x(T )) +

∫ T

0

∫
A
ϕ(x(s), a)q(dsda)

)
Q(dx(·)dq).

4.2 Projected invariant measures

Following [10], we define now a suitable notion of invariant probability measure on the space of
trajectories and controls.

Definition 4.4. We define the three following notions

• We say that a relaxed control Q ∈ R(C × V) is invariant (for the canonical path process
(ζ(x(·)) = x(·), θ(q) = q), (x(·), q) ∈ C × V) if and only if for all t ≥ 0, φ ∈ C(C × V),∫

C×V
φ(x(t+ .), q(t+ .))Q(dx(·)dq) =

∫
C×V

φ(x(.), q)Q(dx(·)dq),

where q(t+ .) = (dsq(t+ s, da)) ∈ V.
We denote Rinv(C × V) be the set of invariant relaxed controls.

• Let an invariant relaxed control Q ∈ Rinv(C × V) be given. The “projected measure” µQ
is the probability measure in ∆(Y ×A) such that for all φ ∈ C(Y ×A),

(21)

∫
Y×A

φ(x, a)µQ(dxda) =

∫
C×V

( ∫ 1

0

∫
A
φ(x(s), a)q(s, da)ds

)
Q(dx(.)dq).

• We denote by M the set of probability measures which are the projection of an invariant
relaxed control:

M :=
{
µQ ∈ ∆(Y ×A), Q ∈ Rinv(C × V)

}
.

4C2
b (R

n) denotes the space of all twice continuously differentiable functions f : Rn → R with bounded first
and second order derivatives.
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Observe that for defining the projected measure µQ we have taken in the right-hand side of
(21) the average of the time interval [0, 1]. In fact, the definition does not change if we define
µQ by an averaging on any other time interval [0, T ]. This is due to the following lemma. Its
proof is postponed to an appendix to maintain the flow of the paper.

Lemma 4.5. Let Q ∈ Rinv(C × V). Then, for all g ∈ C(Y ×A), f ∈ C(Y ), T > 0, we have

i)

∫
C×V

( 1
T

∫ T

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(.)dq) =

∫
Y×A

gdµQ,

ii)

∫
C×V

f(x(0))Q(dx(.)dq) =

∫
Y×A

f(x)µQ(dxda).

Now we are ready to state our second main result.

4.3 Second representation formula for Cesàro means

To give the representation formula we need the following definition.

Definition 4.6. For every x ∈ Y we set

û(x) := sup
h∈H

h(x)

where H denotes the set of all functions h ∈ C(Y, [0, 1]) which satisfy

i)

∫
C×V

h(x(T ))Q(dx(·)dq) ≥ h(x), for all T ≥ 0, x ∈ Y, Q ∈ Rx(C × V);

ii)

∫
Y×A

h(x)µ(dxda) ≤
∫
Y×A

ℓ(x, a)µ(dxda), for all µ ∈ M.

The following theorem, our main result in this section, can be considered as the continuous-
time analogue to Theorem 2.10 in Renault and Venel [29].

Theorem 4.7. We suppose that assumptions (H1)-(H5) hold true. Then any accumulation
point - in the uniform convergence topology - of (UT )T>0, as T → +∞, is equal to û.

Remark 4.8. In view of the result of Section 3 we have also that û = u∗.

Proof. Let u ∈ C(Y ) be any accumulation point of (UT )T , as T ↗ +∞, i.e., UT → u in C(Y )
along some subsequence of T ↗ +∞. To simplify the notation we suppose UT → u . Fix x ∈ Y .

Step 1: û(x) ≥ u(x).

Obviously, for proving this, it suffices to show that u ∈ H. We first show that u satisfies i)
in the definition of H.

Let t > 0 and α ∈ A. Analogously to Proposition 3.4 one has for all y ∈ Y ,

UT (y) = essinfα′∈AE

[
1

T

∫ T+t

t
ℓ(Xt,y,α′

s , α′
s)ds

∣∣Ft

]
, P -a.s.

Thus, using the continuity of UT (.), we can substitute y = Xx,α
t ,

UT (X
x,α
t ) = essinfα′∈AE

[
1

T

∫ T+t

t
ℓ(X

t,Xx,α
t ,α′

s , α′
s)ds

∣∣Ft

]
= essinfα′∈AE

[
1

T

∫ T+t

t
ℓ(Xx,α⊕α′

s , (α⊕ α′)s)ds
∣∣Ft

]
,
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where (α ⊕ α′) := αI[0,t] + α′I(t,+∞) ∈ A. Since, for all ε > 0 we can construct an ε-optimal
control αε ∈ A with αε

s = αs, dsdP -a.e. on [0, t]× Ω, such that

UT (X
x,α
t ) ≥ E

[
1

T

∫ T+t

t
ℓ(Xx,αε

s , αε
s)ds

∣∣Ft

]
− ε, P -a.s.,

we can conclude that

E [UT (X
x,α
t )] = inf

α′∈A
E

[
1

T

∫ T+t

t
ℓ(Xx,α⊕α′

s , (α⊕ α′)s)ds

]
.

Consequently, recalling that 0 ≤ ℓ ≤ 1,

E [UT (X
x,α
t )] = inf

α′∈A
E

[
1

T

∫ T+t

t
ℓ(Xx,α⊕α′

s , (α⊕ α′)s)ds

]
≥ inf

α′∈A
E

[
1

T

∫ T

0
ℓ(Xx,α⊕α′

s , (α⊕ α′)s)ds

]
− t

T
≥ UT (x)−

t

T
.

Passing to the limit as T ↗ +∞ we get E [u(Xx,α
t )] ≥ u(x), and from the arbitrariness of α ∈ A

combined with Proposition 4.3 it follows that

inf
Q∈Rx(C×V)

∫
C×V

u(x(T ))Q(dx(·)dq) = inf
α∈A

E [u(Xx,α
t )] ≥ u(x).

Now we will prove that u satisfies ii) of H.
Let Q ∈ Rinv(C × V). We disintegrate as follows

(22) Q =

∫
Y
µ1Q(dx)Qx

where µ1Q = µQ(· × A) is the first margin of the projected measure µQ of the invariant relaxed
control Q and Qx := Q{ · | ζ0 = x}, x ∈ Y , is the regular conditional probability of Q knowing
ζ0. Observe that such regular conditional measure exists, because C ×V is a separable complete
metrizable space (C is known to be separable and so is V, see Theorem 2.3 in [14]).

We also note that with Q ∈ R(C × V) also Qx ∈ Rx(C × V), x ∈ Y.
Indeed, as Q ∈ Rinv(C × V) ⊂ R(C × V), following the proof of Theorem 2.5 in [14] we

construct a uniformly continuous matrix γ = γ(x,m), (x,m) ∈ Y ×∆(A) which vanishes when
m is a Dirac measure, as well as an (F′, P ′)-Brownian motion (W ′, B′) on a suitable filtered
probability space (Ω′,F ′,F′ = (F ′

t)t≥0, P
′) such that

i) Q = P ′
(X,q), where (X, q) is F′-adapted and obeys the equation;

ii) dXt = b(Xt, qt)dt+ σ(Xt, qt)dW
′
t + γ(Xt, qt)dB

′
t, t ≥ 0, where for any m ∈ ∆(A),

b(x,m) :=

∫
A
b(x, a)m(da), σ(x,m) :=

∫
A
σ(x, a)m(da);

γγ∗(x,m) :=

∫
A
σσ∗(x, a)m(da)−

( ∫
A
σ(x, a)m(da)

)( ∫
A
σ(x, a)m(da)

)∗
.

Under P ′{ · |X0 = x} the above stochastic differential equation ii) has the initial condition
X0 = x, and as (W ′, B′) is an (F′, P ′)-Brownian motion independent of X0, we see also that
Qx = P ′{(X, q) ∈ · |X0 = x} ∈ Rx(C × V ).
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Then, as Qx ∈ Rx(C × V ), x ∈ Y , from Proposition 4.3

UT (x) ≤
∫
C×V

(
1

T

∫ T

0

∫
A
ℓ(x(s), a)q(s, da)ds

)
Qx(dx(·)dq), x ∈ Y.

Thus, by integrating with respect to µ1Q and using the invariance property of Q =
∫
Y µ

1
Q(dx)Qx

we obtain ∫
Y×A

UT (x)µ(dxda) =

∫
Y
UT (x)µ

1
Q(dx)

≤
∫
C×V

(
1

T

∫ T

0

∫
A
ℓ(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

=

∫
C×V

(∫ 1

0

∫
A
ℓ(x(s), a)q(s, da)ds

)
Q(dx(·)dq) =

∫
Y×A

ℓ(x, a)µ(dxda).

(Recall also Lemma 4.5).
Passing to the limit as T ↗ +∞ we get∫

Y×A
u(x)µ(dxda) ≤

∫
Y×A

ℓ(x, a)µ(dxda),

i.e., u satisfies ii) of H.
We have proved that u ∈ H, consequently u ≤ û.

Step 2: û(x) ≤ u(x).

By the very definition of û it suffices to show that u(x) ≥ h(x), x ∈ Y, for all h ∈ H. Let
h ∈ H and ε > 0 be fixed.

Due to Proposition 4.3 for all T > 0, there is some QT ∈ Rx(C × V) such that

UT (x) + ε ≥
∫
C×V

(
1

T

∫ T

0

∫
A
ℓ(x(s), a)q(s, da)ds

)
QT (dx(·)dq).

Let t ≥ 0. Given any Q ∈ Rx(C ×V), we define the shifted probability measure Q[t] ∈ ∆(C ×V)
as follows

(23)

∫
C×V

φ(x(·), q)Q[t](dx(·)dq) =
∫
C×V

φ(x(t+ ·), q(t+ ·))Q(dx(·)dq), φ ∈ C(C × V),

where q(t+ ·) := (dsq(t+ s, ·)).
We claim that Q[t] ∈ R(C × V).
Indeed, using the canonical space

(
Ω̂ = C × V , F̂ = B(C × V )

)
we have

i) ζt(s) := ζ(t+ s), θt(q) := (dsq(t+ s, ·)), q ∈ V : the time shifted coordinates on (Ω̂, F̂ , Q);
ii) F̂ t

s := F̂t+s, s ≥ 0: the associated time-shifted filtration;
iii) Cs(f, ζ

t, θt): the time-shift of the process Cs(f, ζ, θ), s ≥ 0.
Then Cs(f, ζ

t, θt), s ≥ 0, is an (F̂t, Q)-martingale, i.e., Q[t] ∈ R(C × V), which proves our
claim.

We now introduce the occupation measure RT ∈ ∆(C × V) by setting, for all φ ∈ C(C × V),
(24) ∫

C×V
φ(x(·), q)RT (dx(·)dq) =

∫
C×V

(
1

T

∫ T

0
φ(x(t+ ·), q(t+ ·))dt

)
QT (dx(·)dq) =

1

T

∫ T

0

(∫
C×V

φ(x(·), q)QT [t](dx(·)dq)
)
dt =

∫
C×V

φ(x(·), q)
(
1

T

∫ T

0
QT [t]dt

)
dx(·)dq.
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Since QT [t] belongs to the compact and convex set R(C × V ), we deduce that RT ∈ R(C × V )
and that RT converges - up to a subsequence - to some R ∈ R(C × V ).

We claim that R ∈ Rinv(C × V).
Indeed, for any fixed φ ∈ C(C × V), t ≥ 0, we have∣∣ ∫

C×V
φ(x(t+ ·), q(t+ ·))RT (dx(·)dq)−

∫
C×V

φ(x(·), q)RT (dx(·)dq)
∣∣

=
∣∣ ∫

C×V

(( 1
T

∫ T

0
φ(x(t+ s+ ·), q(t+ s+ ·))ds

)
−
( 1
T

∫ T

0
φ(x(s+ ·), q(s+ ·))ds

))
QT (dx(·)dq)

∣∣
+
∣∣ ∫

C×V

( 1
T

∫ T+t

t
φ(x(s+ ·), q(s+ ·))ds

)
QT (dx(·)dq)

−
∫
C×V

( 1
T

∫ T

0
φ(x(s+ ·), q(s+ ·))ds

)
QT (dx(·)dq)

∣∣
≤ 2t

T
sup

(x(·),q)∈C×V
|φ(x(·), q)| −→ 0, as T → ∞.

Consequently, ∫
C×V

φ(x(t+ ·), q(t+ ·))R(dx(·)dq) =
∫
C×V

φ(x(·), q)R(dx(·)dq).

This proves our claim R ∈ Rinv(C × V).
Now we consider the projected measure µR ∈ ∆(Y × A) of R. Since R ∈ Rinv(C × V), it

holds µR ∈ M, and, thus, as h ∈ H,∫
Y×A

h(x)µR(dxda) ≤
∫
Y×A

ℓ(x, a)µR(dxda).

But h also satisfies i) of the definition of H: As QT ∈ Rx(C × V),∫
C×V

h(x(s))QT (dx(·)dq) ≥ h(x), s ≥ 0.

Thus,

h(x) ≤ 1

T

∫ T

0

(∫
C×V

h(x(s))QT (dx(·)dq)
)
ds

=

∫
C×V

(
1

T

∫ T

0
h(x(s))ds

)
QT (dx(·)dq) =

∫
C×V

h(x(0))RT (dx(·)dq).

Hence, as h ◦ ζ0 ∈ C(C × V), passing to the limit in the above inequality yields

(25) h(x) ≤
∫
C×V

(h ◦ ζ0)(x(·))R(dx(·)dq) =
∫
Y×A

h(x)µR(dxda) ≤
∫
Y×A

ℓ(x, a)µR(dxda),

where the later inequality has used again that h ∈ H.
On the other hand, as 0 ≤ ℓ ≤ 1, we have

UT (x) + ε ≥
∫
C×V

(
1

T

∫ T

0

∫
A
ℓ(x(t), a)q(t, da)dt

)
QT (dx(·)dq)

≥
∫
C×V

1

T

∫ 1

0

∫ T+s

s

∫
A
ℓ(x(t), a)q(t, da)dtdsQT (dx(·)dq)− 1

T

=

∫
C×V

1

T

∫ 1

0

∫ T

0

∫
A
ℓ(x(t+ s), a)q(t+ s, da)dtdsQT (dx(·)dq)− 1

T
.
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Thus, from Fubini’s Theorem, and with the notation

ψ(x(·), q) :=
∫ 1

0

∫
A
ℓ(x(s), a)q(s, da)ds, (x(·), q) ∈ C × V,

(observe that ψ ∈ C(C × V)) we have

UT (x) + ε

≥
∫
C×V

1

T

∫ 1

0

∫ T

0

∫
A
ℓ(x(t+ s), a)q(t+ s, da)dtdsQT (dx(·)dq)− 1

T

=

∫
C×V

1

T

∫ T

0

(∫ 1

0

∫
A
ℓ(x(t+ s), a)q(t+ s, da)ds

)
dtQT (dx(·)dq)− 1

T

=

∫
C×V

1

T

∫ T

0
ψ(x(t+ ·), q(t+ ·))dtQT (dx(·)dq)− 1

T

=

∫
C×V

ψ(x(·), q)RT (dx(·)dq)− 1

T
.

Passing to the limit RT ⇀ R, UT → u as T ↗ ∞ , we get

u(x) + ε ≥
∫
C×V

ψ(x(·), q)R(dx(·)dq)

=

∫
C×V

(∫ 1

0

∫
A
ℓ(x(s), a)q(s, da)ds

)
R(dx(·)dq) =

∫
Y×A

ℓ(x, a)µR(dxda).

In view of (25), the above inequality implies that u(x) ≥ h(x), since ε > 0 was chosen arbitrarily.
The proof is complete.

4.4 Second Representation formula for Abel means

Using similar techniques for the proof one obtain the following result.

Theorem 4.9. We suppose that assumptions (H1)-(H5) hold true. Then any accumulation
point - in the uniform convergence topology - of (Vλ)λ>0, as λ→ 0+, is equal to û.

Of course one can also use the second type of representation formulas to obtain the existence
of a limit value as in Proposition 3.7.

5 Comparison between both types of representation formulas

For the both representations formulas of the Sections 3 and 4 two different sets of measures M
and W are used.

Theorem 5.1. We suppose that the assumptions (H1)-(H5) hold true. Then

M = W.

Proof. We will first prove that M ⊂ W. Fix µ ∈ M and let g ∈ C2(Y ). There exists Q ∈
Rinv(C × V) such that µ is the projected invariant measure of Q, namely µ = µQ. As in (22)
we disintegrate Q

Q =

∫
Y
µ1Q(dx)Qx.
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In view of Lemma 4.5, applying Proposition 4.3 to H := 0 and ϕ := Lg(x, a) yields∫
Y×A

Lg(x, a)µ(dxda) =
∫
C×V

( ∫ 1

0

∫
A
Lg(x(s), a)q(s, da)ds

)
Q(dx(.)dq)

=

∫
Y

∫
C×V

( ∫ 1

0

∫
A
Lg(x(s), a)q(s, da)ds

)
Qx(dx(.)dq)µ

1
Q(dx)

≥ inf
α∈A

1

T

∫
Y
E[

∫ T

0
Lg(Xx,α

s , αs)ds]µ
1
Q(dx) = inf

α∈A

1

T

∫
Y
E[g(Xx,α

T )− g(x)]µ1Q(dx),

where the latter relation follows from the Itô Formula. As g is bounded, the above term vanishes
as T → ∞.

Thus,

∫
Y×A

Lg(x, a)µ(dxda) ≥ 0, and using again Proposition 4.3 but now H := 0 and

ϕ := −Lg(x, a), we deduce ∫
Y×A

Lg(x, a)µ(dxda) = 0.

Since the above equality is valid for all g ∈ C2(Y ) we obtain µ ∈ W, which is our wished
conclusion.

Let us prove now M ⊃ W. Fix µ ∈ W. By Lemma 3.6, there exists sequences Nn, Tn → +∞
and xin ∈ Y , αi

n ∈ A, πin ∈ [0, 1], i = 1, 2 . . . Nn with
∑Nn

i=1 π
n
i = 1 such that

∑Nn
i=1 π

n
i ν

xn,αn

Tn

converges weakly to µ. Fix ε > 0 and φ ∈ C(Y × A) . By Proposition 4.3 there exists
QTn ∈ Rxn(C × V) such that

(26)
1

Tn

(∫ Tn

0

∫
A
φ(x(s), a)q(dsda)

)
QTn(dx(·)dq) ≤ inf

α∈A

1

Tn
E

[∫ Tn

0
φ(Xxn,α

s , αs)ds

]
+ ε.

For any t > 0 one can associate to QTn a probability measure QTn [t] defined by (23) and an
occupational measure RTn defined by (24). From Prohorov’s Theorem, RTn converges weakly to
some R along a a subsequence. By the same arguments as those used in the proof of Theorem
4.7, we know that R ∈ Rinv(C × V). So (26) yields∫

Y×A
φdν

xi
n,α

i
n

Tn
+ ε ≥

∫
C×V

φ(x(·), q)RTn(dx(·)dq) =
∫
Y×A

φdµRTn , i = 1, 2 . . . Nn.

Up to a subsequence µRTn weakly converge to some µ̂ ∈ M because M is compact. Thus taking
the convex combination

∑Nn
i=1 π

n
i and passing to the limit in the above inequality we have∫
Y×A

φdµ+ ε ≥
∫
Y×A

φdµ̂.

Replacing φ by −φ and taking into account that ε is arbitrary we get∫
Y×A

φdµ =

∫
Y×A

φdµ̂, ∀φ ∈ C(Y ×A)

and so µ̂ = µ ∈ M our wished conclusion. The proof is complete.
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6 Illustrating Examples

We begin with discussing an example in which the assumptions (H1)-(H5) are satisfied but not
the nonexpansive condition, and we will show for that this example neither the Cesàro nor the
Abel means UT (T → +∞) and Vλ (λ ↘ 0), respectively, have an accumulation point (and,
hence, there is no limit) in the topology of uniform convergence. However, we will see that UT

and Vλ converge pointwise as T → +∞ and λ↘ 0, but their limits differ.

Example A: An example without accumulation point

Let us consider the following deterministic example with the dynamics

(27)

{
X ′

1(t) = X2(t)min{1, 4−X1(t)}, X1(0) ∈ R+,
X ′

2(t) = α(t) min{1, 4−X1(t)}, X2(0) ∈ R+.

Here the control α ∈ A lives in A := [0, 1]. As 0 ≤ X1(0) ≤ 4, X2(0) ≥ 0, it can be easily
checked that both X ′

1(t) ≥ 0 and X ′
2(t) ≥ 0, t ≥ 0. Moreover, X2(t)X

′
2(t) = X ′

1(t)α(t) ≤ X ′
1(t)

for all t ≥ 0, i.e., 1
2X

2
2 (t) ≤ 1

2X
2
2 (0) −X1(0) +X1(t), t ≥ 0. This proves that the compact set

Y = {x = (x1, x2) ∈ R2
+ : x1 ≤ 4, x2 ≤

√
2x1} is invariant. Thus, as the conditions (H1)− (H5)

are satisfied by our example, Theorem 5.1 allows to conclude that W = M. But, however, for
our example we have:

Proposition 6.1. Neither the Abel mean Vλ(.) nor the Cesàro mean UT (.) have an accumulation
point in the topology of the uniform convergence as λ↘ 0 and T → +∞, respectively.

Proof. Let us denote by MY = {µY , µ ∈ M} ⊂ ∆(Y ) the set of first marginals of projected
invariant relaxed controls. Notice that if X1(t) < 3, we have X ′′

1 (t) = X ′
2(t) = α(t), i.e., α(t)

and X2(t) represent the acceleration and the speed of X1(t), respectively.
We introduce now the potential q(x) = x2

2 − 3x1, x = (x1, x2) ∈ R2
+. As 2X2(t)X

′
2(t) −

3X ′
1(t) = 2X ′

1(t)α(t) − 3X ′
1(t) ≤ −X ′

1(t), t ≥ 0, q(X(t)) is non-increasing in t. Hence, if the
probability law µ of X(0) on Y belongs to M, we must have q(X(t)) = q(X(0)), t ≥ 0, but
this is equivalent with X(t) = X(0), t ≥ 0. As a consequence we see that a probability µ on Y
belongs to MY if and only if its support is included in the set of possible rest points of Y :

Z := ([0, 4]× {0}) ∪ ({4} × [0, 2
√
2]).

Let us consider a cost function ℓ which only depends on the first coordinate of the state
process. For x = (x1, x2) ∈ R2

+ we put:

ℓ(x, α) = ℓ(x) = ℓ(x1) =


1− x1 if x1 ∈ [0, 1]

0 if x1 ∈ [1, 2]
x1 − 2 if x1 ∈ [2, 3]

1 if x1 ∈ [3, 4]

Recall the definition of u∗ (Definition 3.2) and that of û (Definition 4.6). We have here
û(x0) = u∗(x0) = sup{w(x0), w ∈ K}, where K is the set of continuous functions w : Y → [0, 1]
such that, for all admissible control, (w(X(t))), t ≥ 0, is a submartingale (or, as there is no
stochastic integral in the dynamics, for all deterministic admissible control, (w(X(t))), t ≥ 0,
is non decreasing) and which satisfy: w(x) ≤ ℓ(x) for each x ∈ Z. So u∗(x1, 0) ≤ l(x1), for
x1 ∈ [0, 4].

Let w ∈ K. Then, from the definition of ℓ, w(x1, 0) = 0 for x1 ∈ [1, 2]. Let us consider
as initial condition X(0) = (x1, 0), for x1 ∈ [0, 1]. Then, by choosing the constant control
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α(t) = ε with ε > 0 small, we arrive at t =
√

2/ε at the position X(t) = (x1 + 1,
√
2ε), so by

continuity and monotonicity of w we obtain that w(x1, 0) = 0 for x1 in [0, 1]. Thus, thanks to
the arbitrariness of w ∈ K, we see that u∗(x1, 0) = 0, for all x1 in [0, 2].

Let us consider now δ > 0. The function w, defined by w(x1, x2) = min{1, x2/δ}, (x1, x2) ∈
Y, belongs to K. As w ≤ u∗ ≤ 1, it follows from the arbitrariness of δ > 0 that u∗(x1, x2) = 1
if x2 > 0. Finally considering w such that w(x1, x2) = 0 if x1 ≤ 2 and w(x1, x2) = l(x1)
if x1 ∈ [2, 4] defines a function in K and gives that u∗(x1, 0) = l(x1) for x1 ≥ 2. Indeed,
(x1, 0) ∈ Z, and on Z it holds w ≤ u∗ ≤ ℓ.

Resuming our above computation, we have u∗(x) = 1 if x2 > 0, u∗(x1, 0) = 0 if x1 ≤ 2, and
u∗(x1, 0) = l(x1) for x1 ≥ 2. This shows in particular that the function u∗ is discontinuous, and
so it cannot be a uniform limit of a subsequence of Abel means (Vλ) (λ ↘ 0). Consequently,
from the Theorems 3.3, 3.5, 4.7 and 4.9 we obtain that the value functions (Vλ) and (UT )T do
not have any accumulation point in the topology of the uniform convergence, as λ ↘ 0 and
T → +∞. The proof is complete.

As we do not have any accumulation point for the Cesàro and the Abel means for our
example, the question raises, if these means have pointwise limits. Indeed, we have the following
result:

Proposition 6.2. The Abel and the Cesàro means (Vλ(.))λ>0 and (UT (.))T>0 have pointwise
limits V0(.) and U∞(.) as λ ↘ 0 and T → +∞, respectively. Moreover, these pointwise limits
are discontinuous, they do not coincide and they are different from u∗(x0) = sup{w(x0), w ∈ K}.
In particular, we have

UT (0, 0) −−−−→
T→∞

β :=
√
5− 2 ≃ 0.236,

Vλ(0, 0) −−−→
λ→0

β∗ := min{1− 1
γ (1− e−γ − e−2γ + e−3γ), γ > 0} ≃ 0.449.

Proof. 1) If one starts from a position X(0) = x = (x1, x2) with x2 > 0, we have X1(t) ≥ t x2
as long as X1(t) ≤ 3. Thus, l(X1(t)) = 1 for t ≥ 3/x2, and it follows that V0(x) = U∞(x) = 1.
On the contrary, if we start from a position X(0) = x = (x1, 0) with x1 ∈ [1, 2], the optimal
control for the Abel and the Cesàro mean cost functional is α(t) = 0, t ≥ 0, and we get
that V0(x) = U∞(x) = 0. In particular we see that the pointwise limits V0(.) and U∞(.) are
discontinuous.

It remains to show the existence of the pointwise limits of Vλ(x) and UT (x) for x = (x1, 0)
with x1 ∈ [0, 1). The argument is essentially the same as that in the case x = (0, 0), and so we
restrict the proof to the latter case:

2) We first show that UT (0, 0) ≥ β, for all T > 0. It is enough to restrict attention to
trajectories which are not constant and such that α = 0 as soon as X1(.) ≥ 1. We consider
any such trajectory X = (X(t)) starting from (0, 0). Let us define T1 (respectively, T2, T3)
as the time such that X1(T1) = 1 (respectively, X1(T2) = 2, X1(T3) = 3). For all t ≥ T1
we have X1(t) = 1 + (t − T1)X2(T1). Recall that t → ℓ(X(t)) = 1 − X1(t) is first decreasing
on the time interval [0, T1], then identically equal to 0 on [T1, T2], and increasing on [T2, T3]:
ℓ(X(t)) = X1(t) − 2, and it is identically equal to 1 on [T3,+∞). Hence, defining c > 0 and
S > 0 by setting

c = min
T>0

1

T

∫ T

0
ℓ(x(t))dt =

1

S

∫ S

0
ℓ(x(t))dt,

we deduce from the above described behaviour of the graph of ℓ(X(.)) that S ∈ (T2, T3), and by
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minimality, ℓ(X(S)) = c ∈ (0, 1). Consequently, X1(S) = 2 + c, and from

2 = X1(T2) = 1 + (T2 − T1)X2(T1),
2 + c = X1(S) = 1 + (S − T1)X2(T1),

we deduce that
S − T2
S − T1

=
c

1 + c
.

Directly from the definition of c and S we have

S × c =

∫ T1

0
l(x(t))dt+

∫ T2

T1

l(x(t))dt+

∫ S

T2

l(x(t))dt.

Moreover, from the definition of the Ti’s and that of ℓ it follows that

∫ T2

T1

l(x(t))dt = 0, and since

the speed ofX(.) is constant on [T2, S],

∫ S

T2

l(x(t))dt = (S−T2)
c

2
. Moreover,

∫ T1

0
l(X(t))dt ≥ T1

2

since the speed X ′
1(t) = X2(t) is increasing on [0, T1]. This yields Sc ≥ 1

2T1 +
c2

2(1+c)(S − T1).

Finally, as the speed X ′
1(t) = X2(t) is increasing also on the larger interval [0, S], we have

T1
S ≥ X1(T1)

X1(S)
= 1

2+c . Combining this latter relation with the preceding estimate for Sc gives:

c ≥ c2 + 1

2(2 + c)
≥ β,

where β =
√
5 − 2 is just the minimum of the function f(v) = (v2 + 1)/(2(2 + v)), v > 0. Now

we observe that

infT>0 UT (0, 0) = inf
T>0

inf
α

1

T

∫ T

0
ℓ(Xα

1 (t))dt

= inf
α

(
inf
T>0

1

T

∫ T

0
ℓ(Xα

1 (t))dt
)
,

where the infinmum is taken over all deterministic admissible controls α, and Xα(.) denotes the
dynamics controlled by α. Given any ε > 0, the control α with which we have worked in the
above computations can be chosen ε-optimal, and then we have

inf
T>0

UT (0, 0) + ε ≥ inf
T>0

1

T

∫ T

0
ℓ(X1(t))dt = c ≥ β.

Considering the arbitrariness of ε > 0, this is just what we had to prove in this step.

3) Let us show now that lim supT→+∞ UT (0, 0) ≤ β. We fix T >
√
2
√
5 and consider the

trajectory (X(t)) starting at (0, 0) and with the control α(t) = 1 for 0 ≤ t ≤ s, and α(t) = 0 for

t ≥ s, where s > 0 is chosen so that X1(T ) = 2 + β, i.e., s = T −
√
T 2 − 2

√
5 (< 1) (obviously,

the choice of the control α depends on T ). Then using the definition of ℓ, we get∫ T

0
ℓ(X(t))dt =

∫ s

0
(1− t2/2)dt+

∫ 1/s+s/2

s
(1− st− s2/2)dt+

∫ T

2/s+s/2
(st− s2/2− 2)dt

(indeed, as X1(s) = 1
2s

2 < 1
2 < 1, 0 < s < T1 < T2 < T < T3, and a straight-forward

computation shows that X1(t) = 1
2 t

2, t ∈ [0, s]; X1(t) = st − 1
2s

2, t ≥ s; and T1 = 1
2s +

1
s

and T2 = 1
2s +

2
s ), and since s ↘ 0 while 1/(sT ) → 1/

√
5, as T → +∞, we obtain that

UT (0, 0) ≤
1

T

∫ T

0
l(x(t))dt −−−−→

T→∞
β.
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4) It remains to make the proof for the limit behaviour of Vλ(0, 0) as λ ↘ 0. We first show
that Vλ(0, 0) ≥ β∗, for all λ > 0. By approximation we can consider without loss of generality
a trajectory X(.) starting from X(0) = (0, 0) and governed by a non constant control α such
that α = 0 as soon as X1(t) ≥ 1. We define T1 such that X1(T1) = 1, and we put x2 := x2(T1).
Observe that x2 ∈ (0,

√
2]. The λ-discounted cost associated with this α is:

γλ =

∫ ∞

0
λe−λtℓ(X1(t))dt = (1− e−λT1)wλ + e−λT1Vλ(1, x2),

where
wλ =

1

1− e−λT1

∫ T1

0
λe−λt(1− x1(t))dt.

Indeed, observe that for the starting point (1, x2) the control identically equal to zero is optimal.
We consider now the trajectory X̂(.) starting at (0, x2) with constant control α̂(t) = 0, t ≥ 0,
so that it reaches the state (1, x2) at time 1/x2. Its λ-discounted cost is:

γ̂λ =

∫ ∞

0
λe−λtℓ(X̂1(t))dt = (1− e−λ/x2)ŵλ + e−λ/x2Vλ(1, x2),

with
ŵλ =

1

1− e−λ/x2

∫ 1/x2

t=0
λe−λt(1− tx2)dt.

We notice that X1(t) =
∫ t
0 X2(s)ds ≤ x2t, t ∈ [0, T1], i.e., 1/x2(= X1(T1)/x2) ≤ T1 and 1 −

x1(t) ≥ 1− tx2, t ∈ [0, T1]. As, moreover, 1− tx2 is decreasing in t, we can compare the averages
wλ and ŵλ, and we obtain wλ ≥ ŵλ. Let us put γ = λ/x2 > 0. Then, as the function
φ(r) = e−γ + 1

2γ(1 + e−γ) − 1, r ≥ 0, is increasing in r and takes in r = 0 the value 0, we get
φ(γ) ≥ 0. Thus,

ŵλ =
γ − 1 + e−γ

γ(1− e−γ)
≥ 1

2
.

Furthermore, we have

Vλ(1, x2) =
1

γ
e−γ(1− e−γ) and γ̂λ = 1− 1

γ
(1− e−γ − e−2γ + e−3γ).

Both formulas are the result of a direct computation; that for Vλ(1, x2) is obtained by the fact
that for the starting point (1, x2) the control ᾱ = 0 is optimal, and for the associated state
process X̄(.) it holds Vλ(1, x2) =

∫ +∞
0 λe−λtℓ(X̄1(t))dt. The explicit computation of the latter

expression yields the above formula.
Now, if ŵλ ≥ Vλ(1, x2), we obtain γλ ≥ (1−e−λT1)ŵλ+e

−λT1Vλ(1, x2) ≥ γ̂λ ≥ β∗ (Recall that
by definition β∗ is just the minimum of the latter expression taken over γ > 0). On the other
hand, if ŵλ < Vλ(1, x2), we see easily that γλ ≥ (1− e−λT1)ŵλ + e−λT1Vλ(1, x2) ≥ ŵλ ≥ 1

2 ≥ β∗.
From the arbitrariness of the above control process α which allows to approximate Vλ(0, 0)

we can conclude that also Vλ(0, 0) ≥ β∗.
5) Finally, we shall still show that lim supλ→∞ Vλ(0, 0) ≤ β∗.
For this we introduce γ∗ achieving the minimum in the definition of β∗ (numerically γ∗ ≃

0.87), and given any λ ∈ (0,
√
6γ∗), we consider the state process X(.) starting at X(0) = (0, 0)

with control α(t) = 1 for t ≤ x∗2 := λ
γ∗ , and with the control α(t) = 0 for t ≥ x∗2. Then,

X1(t) = 1
2 t

2, t ∈ [0, x∗2]; X1(t) = x∗2t − 1
2(x

∗
2)

2, t ≥ x∗2, and Ti = 1
2x

∗
2 + i/x∗2, i = 1, 2, 3.

Consequently, the induced cost is:

Vλ(0, 0) ≤
∫ +∞

0
λe−λtℓ(X1(t))dt =

∫ x2

0
λe−λt(1− 1

2
t2)dt+

∫ 1
x2

+
x2
2

x2

λe−λt(1− tx2 +
1

2
x22)dt

+

∫ 3
x2

+
x2
2

2
x2

+
x2
2

λe−λt(tx2 −
1

2
x22 − 2)dt+

∫ +∞

3
x2

+
x2
2

λe−λtdt,
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and a straight-forward computation shows that the right-hand side converges to 1− 1
γ∗ (1−e−γ∗−

e−2γ∗
+ e−3γ∗

) = β∗ when λ tends to 0. This proves that lim supλ→∞ Vλ(0, 0) ≤ β∗.

Example B: A simple stochastic control example
We revisit Example 3.6 in [7]. Let the control state space be A = [0, 1]. With an admissible

control process α ∈ A (taking its values in A) we associate the state process Xα(t) = X(t) =
(X1(t), X2(t)), t ≥ 0, with the dynamics

(28)

{
dXs = b(Xs, αs)ds+ σ(Xs, αs)dWs,
X0 = x ∈ R2,

where

b(x, α) =

(
−α2

2 x1 + αx2
−αx1 − α2

2 x2

)
, σ(x, α) =

(
αx2
−αx1

)
, x = (x1, x2) ∈ R2.

Here the solution of the dynamics is explicitly given by, for t ≥ 0:

Xα
t =

(
cosAα

t sinAα
t

− sinAα
t cosAα

t

)
· x, where Aα

t =

∫ t

0
αs(ds+ dWs), t ≥ 0.

As with respect to the Euclidean norm |Xα
t | = |x|, t ≥ 0, the compact set Y = {y ∈ R2, |y| = |x|}

is invariant. We consider a Lipschitz cost function ℓ : Y → [0, 1]. The hypotheses (H1)–(H5) are
satisfied and also the non expansivity condition (NE) holds true. Hence by Proposition 3.7 and
Theorem 4.7, UT and Vλ uniformly converge to u∗ = û, as T → +∞ and λ↘ 0, respectively.

The functions u∗ = sup{w,w ∈ K} and û = sup{w,w ∈ H} are defined in Definitions 3.2
and 4.6, respectively, where K and H are subsets of C(Y, [0, 1]). Choosing α = 0 shows that any
point in Y is a rest point of the dynamics, so condition ii) of Definition 3.2 (and Definition 4.6,
respectively) is equivalent to w(y) ≤ ℓ(y), y ∈ Y . The problem is ergodic here, and condition i)
in the both definitions is equivalent to w being constant. Consequently, we obtain that the limit
of the uniform convergence of UT (T → +∞) and of Vλ (λ↘ 0) is the constant: miny∈Y ℓ(y).

Example C: A non-ergodic example
Let us now modify Example B by removing the integral with respect to the Brownian motion

W . Keeping A = [0, 1] and the drift coefficient from Example B,

b(x, α) = −α2

2

(
x1
x2

)
+ α

(
x2
−x1

)
, x = (x1, x2) ∈ R2,

we associate with any admissible control α ∈ A the state process Xα(.) = X(.) = (X1(.), X2(.))
with the dynamics

(29)

{
dXs = b(Xs, αs)ds, s ≥ 0,
X0 = x ∈ R2.

Denoting again by |.| the Euclidean norm and by ⟨., .⟩ the canonical scalar product in R2, we
have for all y, z in R2, α ∈ A = [0, 1]: 2⟨y − z, b(y, α)− b(z, α)⟩ = −α2|y − z|2 ≤ 0.

Hence, the non expansivity condition (NE) holds true, and as d(|Xα(t)|2) = −α(t)2|Xα(t)|2 ≤
0, t ≥ 0, α ∈ A, we have the invariance of Y = {y ∈ R2, |y| ≤ |x|}. Remark that unlike Example
B, there is no non-empty compact strict subset of Y which is invariant with respect to the control
dynamics, and in particular the set {y ∈ R2, |y| = |x|} is not invariant here. As in Example B
we consider a Lipschitz running cost ℓ : Y → [0, 1]. As the hypotheses (H1)–(H5) are satisfied,
the functions UT and Vλ converge uniformly on Y as T → +∞ and λ↘ 0, respectively, and the
limit function is Y ∋ y → u∗(y) = û(y) = sup{w(y), w ∈ K} = sup{w(y), w ∈ H}. It can be
checked easily that here K = H is the set of all continuous functions w : Y → [0, 1] such that
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i) w(y) = w(|y|) only depends on the norm of y, and ii), as any y ∈ Y is a rest point for the
control α = 0, w(y) ≤ ℓ(y). Hence u∗(x) = û(x) = min{ℓ(y), |y| = |x|}, x ∈ Y.

Assume for instance that the cost function is given by ℓ(y) = 1
2(1+y1), so that the limit value

satisfies u∗(x) = 1
2(1− |x|). Fix the initial state as x = (1, 0). Then u∗(x) = 0 = l((−1, 0)). The

controller wants to go from (1, 0) as close as possible with trajectory to (−1, 0), in order to stay
then there forever. But the unique trajectory starting at (1, 0) and remaining in the set of states
{y ∈ Y : u∗(y) = 0} is constant: X(t) = (1, 0), for all t ≥ 0, and it bears the highest possible
cost. Thus, a good control α necessarily makes that Xα(.) enters the set {y ∈ Y : u∗(y) > 0}.
From the properties of u∗ as limit we have that, for any ε strictly positive, there is a control
αε ∈ A such that the associated trajectory Xαε

(.) with Xαε
(0) = (1, 0) has the property that

limt→∞ ℓ(Xε(t)) ≤ ε.

7 Appendix

Proof. (of Lemma 4.5) Let Q ∈ Rinv(C × V). We start by proving the part i) of the lemma.
Fix T > 0 and g ∈ C(Y × A). Let m ≥ 1 be an arbitrary integer. Then there exists an integer
km > 0 such that km

m ≤ T < km+1
m . Thus,∫

Y×A
g µQ(dxda) =

∫
C×V

(∫ 1

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

=

m−1∑
j=0

∫
C×V

(∫ (j+1)/m

j/m

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

=
m−1∑
j=0

∫
C×V

(∫ 1/m

0

∫
A
g(x(s+

j

m
), a)q(s+

j

m
, da)ds

)
Q(dx(·)dq)

= m

∫
C×V

(∫ 1/m

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq).

With an obvious analogous argument,∫
C×V

(∫ 1

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

= m

∫
C×V

(∫ 1/m

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

=
m

km

∫
C×V

(∫ km/m

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq)

−→ 1

T

∫
C×V

(∫ T

0

∫
A
g(x(s), a)q(s, da)ds

)
Q(dx(·)dq),

as m→ +∞, by the bounded convergence theorem.
ii) Let f ∈ C(Y ). From i), for all t > 0,∫

X×A
f(x)µQ(dxda) =

∫
C×V

(∫ 1

0

∫
A
f(x(s))q(s, da)ds

)
Q(dx(·)dq)

=

∫
C×V

(
1

t

∫ t

0

∫
A
f(x(s))q(s, da)ds

)
Q(dx(·)dq) =

∫
C×V

(
1

t

∫ t

0
f(x(s))ds

)
Q(dx(·)dq)

−→
∫
C×V

f(x(0))Q(dx(·)dq),
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as t↘ 0. Also here we have used the bounded convergence theorem. The proof is complete.
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