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Abstract

Suppose that the conditional distributions of x̃ (resp. ỹ) can be ranked according to
the m-th (resp. n-th) risk order. Increasing their statistical concordance increases the
(m,n) degree riskiness of (x̃, ỹ), i.e., it reduces expected utility for all bivariate utility
functions whose sign of the (m,n) cross-derivative is (−1)m+n+1. This means in particular
that this increase in concordance of risks induces a m + n degree risk increase in x̃ + ỹ.
On the basis of these general results, I provide different recursive methods to generate
high degrees of univariate and bivariate risk increases. In the reverse-or-translate (resp.
reverse-or-spread) univariate procedure, a m degree risk increase is either reversed or
translated downward (resp. spread) with equal probabilities to generate a m + 1 (resp.
m + 2) degree risk increase. These results are useful for example in asset pricing theory
when the trend and the volatility of consumption growth are stochastic or statistically
linked.
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1 Introduction

The theory of stochastic dominance has been developed almost five decades ago initially to
determine the conditions under which all (risk-averse) individuals dislike a specific change
in risk.1 Rothschild and Stiglitz (1970) have characterized the second-degree risk increase
through either an integral condition and a more intuitive approach using the concept of mean-
preserving spreads. For any interger m, Ekern (1980) has more generally defined the m-th
degree risk increase as any change in risk that is disliked by any von Neumann-Morgenstern
individual whose m-th derivative has the same sign as (−1)m+1. For m = 3 and m = 4,
this corresponds to the notions of prudence and temperance, respectively. Ekern charac-
terizes the m-th degree riskiness through an integral condition, but he failed to provide an
intuitive approach associated to it. For a long time, economists knew little about the m-th
degree risk increase beyond its integral condition. A breakthrough came when citeeeck-
houdtschlesinger2006 and Eeckhoudt et al. (2009) found a way to decompose a higher-degree
risk increase into lower-degree risk increases through a process known as risk apportion-
ment. The risk apportionment approach facilitates intuitive understanding of m-th degree
risk increases in terms of the well-understood first-degree risk increases (leftward shifts in
the probability mass) and/or second-degree risk increases (mean-preserving spreads). To il-
lustrate, suppose that x̃(2) is a m-th degree risk increase of x̃(1), and ỹ(2) is a n-th degree
risk increase of ỹ(1), then the 50-50 percent lottery [x̃(1) + ỹ(1), x̃(2) + ỹ(2)] is a (m+ n)-th
degree risk increase of the 50-50 percent lottery [x̃(1) + ỹ(2), x̃(2) + ỹ(1)]. In short, when
two versions of x̃ and ỹ must be combined in two equally likely states, it is always safer to
apportion the riskier version of these two lotteries in different states, thereby compounding
more risk with less risk. This simple concept of risk apportionment provides an intuitive
approach to high orders of risk increases, as did the concept of mean-preserving spreads for
second-degree risk increases.

My Theorem 2 in this paper generalizes this result in several directions. It uses the
concept of increasing concordance introduced by Tchen (1980). An increase in concordance
between two random variables is a change in their joint probability distribution that increases
their correlation without changing their marginal distributions. Suppose that them-th degree
riskiness of x̃ and the n-th degree riskiness of ỹ are uncertain. This is modeled by assuming
that x̃ is parametrized by θ, and that an increase in θ implies a m-th degree risk increase
of x̃(θ), which denotes the random variable that is distributed as x̃ conditional on θ̃ = θ.
Similarly, assume that ỹ is parametrized by η, and that an increase in η implies a n-th degree
risk increase of ỹ(η). The uncertainty affecting the riskiness of these two random variables is
represented by a joint distribution function for (θ̃, η̃). Our Theorem 2 states that increasing
the concordance of this pair of random variables raises the (m + n)-th degree riskiness of
x̃+ ỹ.

The basic idea conveyed in the recent literature on risk apportionment is that making
different harms more statistically concordant deteriorates welfare ex ante. But the result
by Eeckhoudt et al. (2009) is a special case of this idea because it is limited to two states
for (θ̃, η̃), equal state probabilities and perfect (negative or positive) correlations. In this

1See for example Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and Stiglitz (1970),
Menezes et al. (1980) and Whitmore (1989).
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paper, I remove these appendages of the existing theory of risk apportionment to empower
the initial idea that increasing the concordance in riskiness (rather than harms) deteriorate
welfare. This generates more powerful and general results, as shown in my theorems 1 and
2, and in the various applications developed in this paper. I also go one step further in
the generalization of the theory by extending it to non-monetary outcomes, in the spirit of
Richard (1975), Tchen (1980), Epstein and Tanny (1980), Eeckhoudt et al. (2007) and Meyer
and Strulovici (2013).2

Generalizing a theory has costs and benefits. The main cost is to make the result more
complex and therefore potentially less intuitive. The impressive success of Eeckhoudt and
Schlesinger (2006) comes precisely from the simplicity and elegance of their analysis, that is
yet strong enough to yield the expected utility equivalence result. I preserve this elegance by
exhibiting different recursive methods to build high order risk increases. However, one must
recognize at the same time that the restrictive assumptions mentioned in this introduction
have limited their applicability to other fields. More than ten years after the first publications
of this new theory, researchers in finance and macroeconomics still fail to take notice of it.
This paper offers an attempt to break this standoff.

The asset pricing literature on long run risks pioneered by Bansal and Yaron (2004)
provides an interesting field of applications for the decision-theoretic results presented in
this paper. For example, as is well-known, the persistence to the shocks affecting the trend
of consumption growth magnifies the long run risk, and is an illustration of the fact that
increasing the concordance between two first degree risks raises the second degree risk of their
sum. A less well understood phenomenon emerges when persistent shocks to the volatility
of growth are introduced, which helps solving the equity premium puzzle. In fact, this is
an illustration of the result that introducing positive concordance to two second degree risks
increases the fourth degree riskiness of their sum. As already shown by Gollier (2018), a
positive serial correlation in volatility raises the equity premium only if the representative
agent is temperant, i.e., has a utility function whose fourth derivative is negative. Following
Tinang (2017), we can also examine the case of introducing a negative concordance between
the trend and the volatility of consumption growth, which can be shown to yield third degree
risk increase of future consumption.3 In another direction, this new literature on high degree
risk orders has been useful to determine the impact of a change in risk on optimal decisions
such as saving, portfolio, insurance and self-protection choices.4

These results provide a simple iterative procedure to test for the sign of any derivative
of the utility function. For example, a (m+ 1)-th degree risk increase can be obtained from
a m-th degree risk increase though a simple "reverse-or-translate" randomized actions: with
probability 0.5, one reverses it, and with probability 0.5, one translates it to smaller wealth
levels. This is an application of Theorem 2 with n = 1, where the first degree risk increase
on ỹ takes the form of a sure reduction of wealth. For example, as shown by Chiu (2005)

2See also Atkinson and Bourguignon (1982) and Moyes (2012) for a definition of concordance in social
choice theory. As is well-known, there is an equivalence between the concepts of stochastic dominance and of
inequality measures when the social welfare function is utilitarian, so that our results can easily be translated
into that field of applications.

3There are a few papers which build a bridge between high degrees of risk increase and asset prices. For
example, Jokung (2013) gives sufficient conditions for a m-th degree risk increase in aggregate consumption
to reduce the price of equity at equilibrium in a Lucas economy.

4See for example Denuit et al. (2011), Jouini et al. (2013), Denuit et al. (2013), Liu (2014) and Nocetti
(2016).
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in case m = 1, a simple mean-preserving spread can be obtained by a "reverse-or-translate"
procedure that randomizes a simple first-degree risk reduction at some wealth level (i.e. an
upward transfer of probability mass) with the symmetric first-degree risk increase at some
lower wealth level. Using this second-degree risk increase as the new basic ingredient, a
third-degree risk increase can be obtained from a new "reverse-or-translate" randomization
of its reversal at some wealth level and of its implementation at some lower level. This
recursive method is not new, but it has been obscured in the literature by a misleading
terminology. In Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009) for example,
the qualifier "good" or "bad" was used to describe the m-th change in risk, a terminology
that requires knowing the sign of the m-th derivative of the utility function. This means that
the recursive method required knowing the sign of all derivatives up to m+ 1 to generate a
meaningful result. In reality, Theorem 2 shows that one should replace the qualifier "good
or "bad" by "safer" or "riskier" in the sense of the i-th order, a solution that abstains us
from restricting the sign of the successive derivatives of the utility function to perform the
recursive method described here. In short, high orders of risk aversion are about a preference
for the disaggregation of risks, not about the disaggregation of bads.5

Theorem 2 can also be applied recursively with n = 2, thereby allowing to generate
all odd (starting with m = 1) and even (starting with m = 2) orders of risk. It uses a
randomization procedure that I call "reverse-or-spread" that randomizes between a reversal
of a risk increase and its spread. For example, a fourth-degree risk increase can be obtained
from a second-degree risk increase through a "reverse-or-spread" procedure that randomizes
between its reversal at some wealth level and its spread around that wealth. We illustrate
the randomized reverse-or-spread procedure in Table 1, starting from the bottom with a
mean-preserving spread that transfers a probability mass p from outcome 0 to outcome -1
and +1 in a symmetric way. I build a fourth degree risk increase by combining a reversal and
a spread of this second degree risk increase. With probability 1/2, this spread is reversed,
which leads to a transfer of probability mass described in row "reverse" of m = 4. With
probability 1/2, the initial mean-preserving spread is spread, with a probability 1/2 to be
translated by 1 to the left, and with probability 1/2 to be translated by 1 to the right.
This leads to a transfer of probability mass described in row "spread" of m = 4. The net
transfer of probability mass is described in row "total", which describes a fourth degree
risk increase. The iteration to m = 6 is also described in this table. As an illustration,
this implies that lottery (−3, 1/32;−1, 15/32; +1, 15/32; +3, 1/32) is sixth-degree riskier than
lottery (−2, 3/16; 0, 10/16; +2, 3/16).

5For a discussion, see Crainich et al. (2013), Ebert (2013) and Ebert et al. (2019).
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outcome -3 -2 -1 0 +1 +2 +3
total p/32 -3p/16 15p/32 -10p/16 15p/32 -3p/16 p/32

m=6 spread p/32 -p/8 3p/16+p/32 -p/8-p/8 p/32+3p/16 -p/8 p/32
reversal -p/16 p/4 -3p/8 p/4 -p/16
total p/8 -p/2 3p/4 -p/2 p/8

m=4 spread p/8 -p/4 p/8+p/8 -p/4 p/8
reversal -p/4 p/2 -p/4

m=2 total p/2 -p p/2

Table 1: Example of m-th degree risk increases for m ∈ {2, 4, 6} using the randomized
reverse-or-spread procedure.

In Section 2, I summarize the basic concepts and properties of m-th degree risk orders and
of comparative concordance. Section 3 is devoted to the derivation of the basic results of the
paper. In Section 4, I describe some new applications of Theorem 2 in the Gaussian world.
Based on these results, sections 5 and 6 are devoted to the development of recursive procedures
to construct high orders of risk increases, respectively in the univariate and bivariate cases.

2 Preliminaries

In this paper, we combine two classical tools from stochastic dominance theory: m-th degree
increases in risk, and statistical concordance. Let us first define a m-th degree risk increase.
Consider a pair (x̃1, x̃2) of random variables characterized by cumulative distribution func-
tions (F1, F2) whose support is in [a, b]. To any cdf Fi, we can associate a family of functions
(F 1

i , F
2
i , F

3
i , ...) that are defined recursively as follows: F 1

i ≡ Fi and ∀x ∈ [a, b], ∀k ∈ N0:

F k+1
i (x) =

∫ x

a
F ki (t)dt. (1)

The following proposition, in which v(m) denotes the m-th order derivative of v, is due to
Ekern (1980).

Proposition 1. (Ekern (1980)) Consider any integer m ∈ N0. The following statements are
two equivalent definitions of x̃2 being m-th degree riskier than x̃1, i.e., x̃2 �m x̃1:

• The cdfs of x̃1 and x̃2 satisfy the following integral conditions:

F k2 (b) = F k1 (b) for k = 1, 2, ...,m, (2)
Fm2 (x) ≥ Fm1 (x) ∀x ∈ [a, b]. (3)

• For any real-valued function v such that the sign of v(m) is (−1)m+1, we have that
Ev(x̃2) is smaller than Ev(x̃1).

Equation (2) means that the firstm−1 moments of x̃1 and x̃2 are equal, whereas equation
(3) implies that the m-th moment of x̃2 is larger (smaller) than the m-th moment of x̃1 if
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m is even (odd). In fact, the change in the expectation of v is obtained by m successive
integrations by parts which yields the following property, assuming (2):

Ev(x̃2)− Ev(x̃1) =
∫ b

a
(−1)mv(m)(t) [Fm2 (t)− Fm1 (t)] dt. (4)

The equivalence proposition above is the direct consequence of property (4). We say that
the individual is m-th degree risk-averse if the m-th derivative of her utility function has
the same sign as (−1)m+1. Under this terminology, second, third and fourth degrees risk
aversion correspond respectively to risk aversion, prudence and temperance. Therefore, the
above proposition states that any m-th degree increase in risk is disliked by all m-th degree
risk-averters.

We now turn to the analysis of stochastic dominance in the bivariate case. Suppose that
the decision-maker extracts utility u : R2 → R from the consumption of two goods. Ex ante,
her expected utility is measured by Eu(x̃, ỹ), where (x̃, ỹ) is the pair of random variables
measuring the consumption level of the two goods ex post. By extension of the definition of
the univariate notion of m-th degree risk increase, we define the bivariate notion of (m,n)
degree risk increase as follows.6

Definition 1. Consider a pair (m,n) ∈ N2 \ {(0, 0)}. A change in the joint distribution
of (x̃, ỹ) is said to be a (m,n) degree risk increase if and only if it reduces the expectation
of u(x̃, ỹ) for any function u : R2 → R whose (m,n) cross-derivative has the same sign as
(−1)m+n+1.

Obviously, by the law of iterated expectations, the bivariate (m, 0) degree risk increase is
obtained when, for all y, x̃ | y undergoes a univariate m-th degree risk increase characterized
by Proposition 1.

A well-known family of bivariate risk increases introduced in economics by de Finetti
(1952), Epstein and Tanny (1980), Tchen (1980) and Atkinson and Bourguignon (1982) cor-
responds to (1, 1) degree risk increases. For a reason that will be apparent in the next section,
let us examine the impact of the change in the joint distribution of (θ̃, η̃) on Eg(θ̃, η̃), where
g is a bivariate real-valued function. Let H1 and H2 represent respectively the initial and
final joint probability distribution of (θ̃, η̃). The following proposition has been independently
demonstrated by Tchen (1980), Epstein and Tanny (1980) and Atkinson and Bourguignon
(1982). It characterizes the (1, 1) degree risk increase through an integral condition that is
similar in spirit to what has been presented in Proposition 1 for (m, 0) degree risk increases.

Proposition 2. (Tchen (1980), Epstein and Tanny (1980)) Let Hi denote a joint cdf for
the pair of random variables (θ̃i, η̃i), i = 1, 2. We have that (θ̃2, η̃2) is (1, 1) degree riskier,
i.e., is "more concordant", than (θ̃1, η̃1) if and only if H1 and H2 have the same marginal
distributions and H2(θ, η) is larger than H1(θ, η) for all (θ, η) ∈ R2.

From Definition 1, if the two consumption goods θ and η are substitutes in the sense that
the cross-derivative of the utility function g(θ, η) is negative, then consumers dislike any (1,1)

6We use the standard terminology in which the (m, 0) cross-derivative of a function is just the m-th partial
derivative of this function with respect to its first argument, with a symmetric terminology for its second
argument.

6



Figure 1: A simple increase in concordance between θ̃ and η̃ expressed as two symmetric
transfers of probability mass in the support of this pair of random variables.

risk increase of (θ̃, η̃). Proposition 2 is a direct consequence of the following property that
holds when H1 and H2 exhibit the same marginal distributions:

Eg(θ̃2, η̃2)− Eg(θ̃1, η̃1) =
∫∫

∂2g

∂θ∂η
(θ, η) [H2(θ, η)−H1(θ, η)] dθdη. (5)

Because it will play a critical role in this paper, we will follow the terminology of Tchen
(1980) to refer to a (1, 1) degree risk increase as "more concordance". This terminology is
based on the following observation made by Tchen (1980) and Epstein and Tanny (1980):
Any increase in concordance between θ̃ and η̃ can be constructed by a sequence of elementary
marginal-preserving transfers of probability masses described in Figure 1. Such a change in
risk combines a first degree risk reduction of θ̃ | η for some η, and the reversed first degree
risk increase of θ̃ | η′ at a larger η′. It undoubtedly raises the statistical correlation of the
pair of random variables. Moreover, we see that such an elementary change in the joint risk
distribution reduces the expectation of g(θ̃, η̃) only if

θ′ > θ and η′ > η ⇒ g(θ′, η′)− g(θ′, η) ≤ g(θ, η′)− g(θ, η). (6)

This condition holds if and only if g is submodular, i.e., iff its cross-derivative is non-positive.
This confirms that such a change in the bivariate distribution is an example of (1, 1) de-
gree risk increase. By definition if two random variables are independent, their degree of
concordance is normalized to zero. Two random variables exhibit positive (negative) concor-
dance when they are more (less) concordant than between the equivalent pair of independent
random variables with the same marginals.

3 The main result

Consider an individual whose welfare ex ante is represented by a von Neumann-Morgenstern
utility function u : [a, b]2 ⊂ R2 → R with two goods whose quantity consumed ex post is
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measured by x and y, respectively. Ex ante, the uncertainty is quantified by a pair (x̃, ỹ)
of random variables. They are statistically related in the following sense. Suppose that x̃ is
related to random variable θ̃ whose support is in Sθ ⊂ R. Suppose also that x̃(θ) = x̃ | θ can
be ranked according to the m-th risk order. More precisely, suppose that for all (θ, θ′) ∈ S2

θ ,

θ′ > θ ⇒ x̃(θ′) �m x̃(θ). (7)

A larger θ implies a m-th degree risk increase in x̃ | θ. Symmetrically, we assume that ỹ is
related to random variable η̃ whose support is in Sη ⊂ R. Suppose also that ỹ(η) = ỹ | η can
be ranked according to the n-th risk order: For all (η, η′) ∈ S2

η ,

η′ > η ⇒ ỹ(η′) �n ỹ(η). (8)

A larger η implies a n-th degree risk increase in ỹ | η. Conditional to (θ, η), the expected
utility is equal to

G(θ, η) = Eu(x̃(θ), ỹ(η)). (9)

In parallel to the existing literature on risk apportionment, I assume that the statistical
dependence in (x̃, ỹ) exists only through the dependence in (θ̃, η̃). Technically, this means
that x̃(θ) and ỹ(η) are independent for all (θ, η) in Sθ × Sη.7 We are interested in determin-
ing the impact of the concordance in (θ̃, η̃) on the unconditional expected utility Eu(x̃, ỹ).
This is a generalization of the risk apportionment problem initially raised by Eeckhoudt and
Schlesinger (2006) in its simplest representation. They intuited that individuals should prefer
to apportion relatively good risks with relatively bad risks rather than to apportion them in
the opposite way. Eeckhoudt et al. (2009) examined a special case of our framework in which
there are only two states that are equally likely, where (θ̃, η̃) are either perfectly positively
or negatively correlated, and where u is additive.

Suppose that (θ̃2, η̃2) has more concordance than (θ̃1, η̃1). Observe that this increase in
concordance in (θ̃, η̃) has no effect on their marginal distribution, and therefore no effect
on the marginal distributions of x̃ and ỹ. Let us measure the increase in expected utility
generated by this increase in concordance by ∆U :

∆U = Eu(x̃(θ̃2), ỹ(η̃2))− Eu(x̃(θ̃1), ỹ(η̃1))
= EG(θ̃2, η̃2)− EG(θ̃1, η̃1). (10)

By definition 1 or Tchen (1980), we know that any increase in concordance yields a negative
∆U if and only if G is submodular, i.e., if and only if condition (6) holds for all (θ, η) and
(θ′, η′) belonging to Sθ×Sη. Now, remember that ỹ(η′) is n-th degree riskier than ỹ(η). This
implies that we can apply property (4) to both sides of inequality (6) to rewrite it as follows:∫ b

a
(−1)n

{
E

[
∂n

∂yn
u(x̃(θ′), y)

]
− E

[
∂n

∂yn
u(x̃(θ), y)

]} [
Fny,η′(y)− Fny,η(y)

]
dy ≤ 0, (11)

7In other words, for any (θ, η), x̃ and ỹ conditional to (θ, η) are statistically independent. The simplest
example (with m = n = 1) is a pair x̃(θ) = θ + x̃ and ỹ(η) = η + ỹ in which x̃ and ỹ are independent. Our
modeling provides the most general formulation that allows to define the notion of increasing concordance in
the degrees of riskiness of two random variables.
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where Fy,η is the cdf of random variable ỹ(η). But remember also that x̃(θ′) is m-th degree
riskier than x̃(θ). Using property (4) again, the above inequality can be rewritten as∫∫

[a,b]2
(−1)m+n ∂m+n

∂xm∂yn
u(x, y)

[
Fmx,θ′(x)− Fmx,θ(x)

] [
Fny,η′(y)− Fny,η(y)

]
dxdy ≤ 0. (12)

Observe that both bracketed terms in the integrand of the above inequality are uniformly
non-negative. This implies that the above condition is satisfied if and only if the sign of the
(m,n) cross-derivative of u is (−1)m+n+1. To sum up, ∆U is negative if and only if G is
submodular, which is in turn true if and only if the sign of the (m,n) cross-derivative of u is
(−1)m+n+1. This result is summarized in the following theorem.

Theorem 1. Suppose that θ is an index of m-th degree riskiness of x̃(θ), and that η is an
index of n-th degree riskiness of ỹ(η). The following two statements are equivalent:

1. (x̃(θ̃2), ỹ(η̃2)) is (m,n) degree riskier than (x̃(θ̃1), ỹ(η̃1));

2. (θ̃2, η̃2) is more concordant than (θ̃1, η̃1).

In other words, increasing the concordance between the m-th degree riskiness of x̃ and
the n-th degree riskiness of ỹ reduces the expectation of u(x̃, ỹ) if and only if the (m,n)
cross-derivative of u has the same sign as (−1)m+n+1. This new result lies at the intersection
between the recent developments on risk apportionment and the older literature on statistical
concordance. In fact, if we take x̃(θ) and ỹ(η) to be degenerated at respectively θ and η for
all (θ, η) in [a, b]2, our Theorem 1 is equivalent to the result by Richard (1975), Tchen (1980),
Epstein and Tanny (1980) and Atkinson and Bourguignon (1982) that is summarized in
Proposition 2 above.

In the special case Cobb-Douglas utility functions, this theorem demonstrates that these
changes in risk have an unambiguous impact on the co-moments of (x̃, ỹ). Another important
special case corresponds to the context in which u(x, y) is a function U of x+y. In that case,
the (m,n) cross-derivative of u is just the (m+ n)-th derivative of U . The following theorem
is then a direct consequence of Proposition 1 and Theorem 1.

Theorem 2. Increasing the concordance between the m-th degree riskiness of x̃ and the n-th
degree riskiness of ỹ increases the (m+ n)-th degree riskiness of x̃+ ỹ.

Therefore, increasing the concordance between the m-th degree riskiness of x̃ and the n-th
degree riskiness of ỹ does not affect the moments of x̃ + ỹ up to the m + n − 1 moment. It
raises (reduces) the m + n moment if m + n is even (odd). In the remainder of this paper,
we first examine the application of this univariate case.

4 Illustrations in the Gaussian world
Let us illustrate Theorem 2 by three examples in which x̃ and ỹ are conditionally normal. Sup-
pose first that x̃(θ) is N(θ, σ2

x) and ỹ(η) is N(η, σ2
y). This implies that the set {x̃(θ)|θ ∈ Sθ}

can be ranked under FSD, and the same property also holds for ỹ. Suppose also that (θ̃, η̃) is
jointly normally distributed with mean 0, with V ar(θ̃) = V ar(η̃) = σ2

θ , and with a correlation
coefficient ρ. As is well-known, an increase in ρ yields an increase in concordance between θ̃

9



Figure 2: An example of the impact on the distribution of x̃+ ỹ of an increase in concordance
between the first degree riskiness of x̃ and the second degree riskiness of ỹ. I assume that
x̃(θ) = −θ with θ̃ ∼ N(0, 1), whereas ỹ(η) ∼ N(0, η) with log(η̃) ∼ N(0, 1). The right-skewed
function is the density of x̃+ ỹ by assuming η = exp(−θ) (negative concordance), whereas the
left-skewed density function corresponds to the case with η = exp(θ) (positive concordance).

and η̃. This implies that we are in a context in which Theorem 2 can be applied in the case
m = n = 1: An increase in ρ implies a second degree risk increase in x̃ + ỹ. This is indeed
the case since x̃+ ỹ is normally distributed with mean 0 and variance σ2

x + σ2
y + 2(1 + ρ)σ2

θ .
Let us now illustrate the case m = 1 and n = 2. Suppose that x̃(θ) = −θ and that

ỹ(η) ∼ N(0, η). It is clear that an increase in θ or η yields respectively a first degree risk
increase in x̃(θ) or a second degree risk increase in ỹ(η). Observe that conditional to (θ, η),
the distribution of x̃+ ỹ is N(−θ, η). Suppose now that θ and log(η) are N(0, 1). We consider
two structures of correlation between the conditional mean −θ̃ and the conditional variance
η̃ of x̃ + ỹ. In one case, we have that η = exp(θ), an extreme form of positive concordance.
In the other case, we have that η = exp(−θ), an extreme form of negative concordance. I
draw in Figure 2 the density functions of x̃+ ỹ in these two cases. It is obtained numerically
since there is no analytical solution to conjugate the conditional distribution N(−θ, exp(±θ))
with a normal prior for θ̃. This example illustrates the fact that increasing the concordance
between the first degree risk of x̃ and the second degree risk of ỹ raises the third degree risk
of x̃ + ỹ, i.e., it raises its downside riskiness. In particular, it reduces its skewness. This
is considered as undesirable by prudent (downside-risk-averse) individuals (Menezes et al.
(1980)). In relation to these results, Tinang (2017) examines an asset pricing model with
long run risks and a negative correlation between shocks to the expected growth rate of
consumption and shocks to its volatility. If the representative agent is prudent, this helps
solving the equity premium puzzle since the increased downside risk of a claim on aggregate
consumption makes it less attractive.

Finally, I hereafter describe an example for m = n = 2. Suppose that x̃(θ) and ỹ(η) are
both normally distributed with mean 0 and variance θ and η, respectively. These variances
are uncertain. Suppose that log(θ̃) and log(η̃) are both N(0, 1). I examine an extreme
version of increasing concordance between the two second degree risk measures θ̃ and η̃ of x̃
and ỹ respectively. Namely, I assume that the initial relation between the two parameters is
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Figure 3: An example of the impact on the distribution of x̃+ ỹ of an increase in concordance
in the second degree riskiness of x̃ and ỹ. I assume that x̃(θ) ∼ N(0, θ) with log(θ̃) ∼ N(0, 1),
whereas ỹ(η) ∼ N(0, η) with log(η̃) ∼ N(0, 1). The fat-tailed curve is the density of x̃ + ỹ
by assuming η = θ (positive concordance), whereas the other density function corresponds
to the case with η = 1/θ (negative concordance).

such that log(θ) = − log(η) (negative concordance), which is then shifted to log(θ) = log(η)
(positive concordance). The initial and final unconditional densities for x̃ + ỹ are drawn in
Figure 3, which have been computed numerically in the absence of an analytical solution.
They have the same first three moments, but the positive concordance yields a larger kurtosis.
In fact, it is a consequence of Theorem 2 that it generates an increase in the fourth degree
riskiness of x̃ + ỹ. This is disliked by all temperant individuals. An example of positive
concordance in second degree riskiness can be found in Bansal and Yaron (2004) in which
it is assumed that shocks to the variance of the per-period change in log consumption are
persistent.8 This positive concordance in the variance implies a fourth degree risk increase
in the two-period change in log consumption. Because temperance is embedded in the model
through the assumption of a power utility function, this can explain the equity premium
puzzle. This means that a main driving force of the long run risk literature – namely,
stochastic volatility – is based on an application of Theorem 2, which requires signing the
fourth derivative of the utility function.

8In this literature on long run risks, it is assumed that the conditional variance is normally distributed,
which is incompatible with the definition of the variance. I escape this difficulty in this numerical example by
assuming a lognormal distribution for the conditional variance.
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5 Recursive procedures to build simple m-th degree risk in-
creases

Consider any pair (m,n) ∈ N2
0 and any quadruple (x̃m(1), x̃m(2), ỹn(1), ỹn(2)) of independent

random variables. We then define a new pair (x̃m+n(1), x̃m+n(2)) as follows:9

x̃m+n(1) = [x̃m(1) + ỹn(2), x̃m(2) + ỹn(1)] (13)

x̃m+n(2) = [x̃m(2) + ỹn(2), x̃m(1) + ỹn(1)]. (14)

Theorem 2 implies the following result:

x̃m(2) �m x̃m(1)
ỹn(2) �n ỹn(1)

}
⇒ x̃m+n(2) �m+n x̃m+n(1) (15)

This result by Eeckhoudt et al. (2009) is a special case of this theorem because it is specific
to the comparison of perfect positive/negative concordance in the degrees of riskiness, in a
context with only two states of nature of equal probabilities, as in the existing literature.10

Property (15) provides different recursive procedures to construct pairs of random variables
that are comparable under the m-th degree of riskiness, for any m ∈ N0, as we show now.
Deck and Schlesinger (2014, 2018) bring it to the lab in order to test for the sign of the first
few derivatives of the utility function.

5.1 Case n = 1: Reverse-or-translate procedure

Consider an initial pair (x̃1(1), x̃1(2)) and a sequence {(ỹm1 (1), ỹm1 (2)) | m = 1, 2, ...} such
that in all these pairs, the second random variable is riskier than the first in the sense of the
first-degree risk order. These ingredients can be used recursively in the above procedure to
build a sequence of pairs of random variables (x̃m+1(1), x̃m+1(2)) such that:

x̃m+1(1) = [x̃m(1) + ỹm1 (2), x̃m(2) + ỹm1 (1)] (16)

x̃m+1(2) = [x̃m(2) + ỹm1 (2), x̃m(1) + ỹm1 (1)]. (17)

Using property (15) recursively, we obtain that, for all integers m, x̃m(2) is riskier than x̃m(1)
in the sense of the m-th degree risk order. To illustrate, suppose that x̃1(1) and x̃1(2) are
degenerated random variables at respectively w and w − k0 < w. Suppose also that ỹm1 (1)
and ỹm1 (2) are equal respectively to 0 and −km < 0 with certainty. The first stage of this
recursive procedure applied in this case yields11

x̃2(2) ∼ [w − k0 − k1, w] �2 [w − k1, w − k0] ∼ x̃2(1). (18)

Obviously, lottery x̃2(2) is a mean-preserving spread of x̃2(1).
9In this section, we use notation [a, b] to refer to a lottery with two equally likely outcomes a and b.

10Chiu et al. (2012) explored the dual case of multiplicative risks with n = 1.
11In this section, we use notation [a, b] to refer to a lottery with two equally likely outcomes a and b.
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We can now move to applying procedure (13)-(14) to m = 2. Using properties (15) and
(18) yields

x̃3(2) ∼ [x̃2(2)− k3, x̃2(1)] �3 [x̃2(1)− k3, x̃2(2)] ∼ x̃3(1). (19)

We can similarly proceed to any higher order by following this recursive procedure. In Table
2, I use this procedure to produce pairs of lotteries that can be ranked by the m-th degree
risk order, for m = 1, 2, 3, 4. A graphical representation of the same procedure is proposed in
Figure 4, in which the distribution x̃1(2) is obtained from x̃1(1) by a transfer of probability
mass ε from outcome w to outcome w − k0.

outcome w − 4k w − 3k w − 2k w − k w

x̃4(2) 1/8 3/4 1/8
x̃4(1) 1/2 1/2
x̃3(2) 1/4 3/4
x̃3(1) 3/4 1/4
x̃2(2) 1/2 1/2
x̃2(1) 1
x̃1(2) 1
x̃1(1) 1

Table 2: Example of m-th degree risk increases for m ∈ {1, 2, 3, 4} using procedure (24)-(25)
with x̃1(1) = w with certainty, k0 = k1 = k2 = k3. Each row represents the probability
distribution of x̃m(θ), with the property that x̃m(2) is riskier than x̃m(1) in the sense of the
m-th degree risk order.

Figure 4: Reverse-or-translate procedure (16)-(17) with k0 = k1 = k2 = k3. The probabil-
ity mass transferred is indicated above each arrowed segment. The change in distribution
represented on row m is a m-th degree risk increase.

Various authors explored special cases of this recursive procedure by assuming that the
successive derivatives of the utility function u alternate in sign. From Theorem 2, this
assumption implies that all m-th degree risk increases are "bad", independent of the value of
m. Procedure (16)-(17) raises the concordance of the "worse" conditional risk in x̃m with the
worse conditional risk in ỹm. The (m + 1)-th degree risk aversion (risk aversion, prudence,
temperance, edginess,...) describes a preference for the disaggregation ofm-th degree harmful
changes in risk on x̃ and the first-degree risk of ỹ. Notice however that this story of aggregation
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of good and bad risks requires conditions stronger than in Theorem 2. Indeed, it requires
that all successive derivatives of u up to m alternate in sign, whereas Theorem 2 just requires
knowing the sign of its m-th derivative. In fact, the right terminology is that the (m+ 1)-th
degree risk aversion describes a preference for the disaggregation of m-th degree risk increases
in x̃ with first degree risk increases in ỹ. Whether m-degree risk increases are perceived as
good or bad is irrelevant for defining the (m+1)-degree risk aversion. For example, a prudent
person (u′′′ > 0) will always dislike increasing the concordance between the second degree
riskiness of x̃ and the first degree riskiness of ỹ, independent of whether this person likes or
dislikes first and second degree increases in risk. See Crainich et al. (2013), Ebert (2013) and
Ebert et al. (2019) for an in-depth analysis of this point.

There exists an alternative way to analyze the change in risk generated by switching from
x̃m+1(1) to x̃m+1(2) under procedure (16)-(17). By construction, it compounds am-th degree
risk reduction from x̃m(2) to x̃m(1) with a perfectly symmetric m-th degree risk increase at
a lower wealth level by km, thus from x̃m(1) − km to x̃m(2) − km. In short, it compounds
a reversal of m-th degree risk increase and its translation at a lower wealth level. This
"reverse-or-translate" procedure yields a (m + 1)-th degree risk increase. By construction,
the impact of such a reverse-or-translate operation on expected utility depends upon the
relative intensity of the EU-impact of a given m-th degree risk increase applied at different
wealth levels. The aversion to these second degree risk increases is the consequence of the
decreasing sensitiveness to first-degree risk increases. Chiu (2005) made the same point. This
mechanism can be applied recursively. An elementary third-degree risk increase combines an
elementary mean-preserving spread at a low wealth level with the symmetric mean-preserving
contraction at a larger wealth level. Eeckhoudt et al. (1995), Chiu (2005) and Eeckhoudt
and Schlesinger (2006) also made that point.

5.2 Case n = 2: Reverse-or-spread procedure

Let us alternatively consider a sequence {(ỹm2 (1), ỹm2 (2)) | m = 1, 2, ...} such that ỹm2 (2) is
riskier than ỹm2 (1) in the sense of the second-degree risk order. These pairs are used as inputs
in the following iterative procedure:

x̃m+2(1) = [x̃m(1) + ỹm2 (2), x̃m(2) + ỹm2 (1)] (20)

x̃m+2(2) = [x̃m(2) + ỹm2 (2), x̃m(1) + ỹm2 (1)]. (21)

If this procedure starts from m = 1 with x̃1(2)− x̃1(1) being an elementary first degree risk
increase as earlier in this section, one obtains elementary risk increases of odd degrees. For
example, suppose that x̃1(1) and x̃1(2) are respectively equal to w and w−k0 with certainty,
and that ỹm2 (1) equals 0 with certainty whereas ỹm2 (2) is a zero-mean risk ε̃m. Then property
(15) applied for m = 1 and n = 2 implies the following property:

x̃3(2) ∼ [w − k0 + ε̃1, w] �3 [w + ε̃1, w − k0] ∼ x̃3(1). (22)

This is already in Eeckhoudt and Schlesinger (2006), who showed that prudence can be
defined as a preference for reducing the concordance between a sure loss and a zero-mean
risk.
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If one starts the procedure from m = 2 with x̃2(1) = w with certainty and x̃2(2) = w+ ε̃0,
one obtains elementary risk increases of even degrees. For example, the first step of the
procedure yields the following result:

x̃4(2) ∼ [w + ε̃0 + ε̃2, w] �4 [w + ε̃0, w + ε̃2] ∼ x̃4(1). (23)

This is also in Eeckhoudt and Schlesinger (2006) who showed that temperance (u′′′′ < 0)
is a preference for reducing the concordance between two zero-mean risks. This recursive
procedure generalizes their method to any risk order. Under this alternative procedure, the
(m+2)-th degree risk increase is obtained from them-th degree risk increase by compounding
two changes in distribution: With probability 1/2, this m-th degree risk increase is reversed.
And with probability 1/2, this m-th degree risk increase is either shifted to the right or to
the left by km with equal probabilities. This is why I refer to this recursive method as the
"reverse-or-spread" procedure. Table 1 presented in the introduction illustrates this procedure
in the even case.

These two iterative procedures are related to Gollier (2019) in which I define variance
stochastic orders. In that paper, I suppose that one is unsure about the number ṽ of i.i.d.
risks ε̃m in final wealth w+

∑ṽ
m=1 ε̃m, with Eε̃m = 0 and V ar(ε̃m) = 1. This means that the

variance of final wealth is uncertain. I showed in that paper that if this variance ṽ undergoes
a n-th degree risk increase, then final wealth becomes riskier in the sense of the 2n-th risk
order. A special case of this result is presented in property (23) for n = 2. In Gollier (2019), I
also examine the case in which w is random. I show that an increase in concordance between
w̃ and the n-th degree riskiness of ṽ reduces (resp. increases) the riskiness of final wealth in
the sense of the (2n+ 1)-th degree risk order if n is a even (resp. odd) number. For example
(case n = 1), reducing the concordance between the conditional mean and the conditional
variance raises the third degree riskiness.12 In particular, it reduces the skewness of final
wealth. An illustration of this result is presented in equation (22).

6 Recursive procedures to build simple (m, n) degree risk in-
creases

It is now easy to generalize this recursive procedure to bivariate stochastic dominance (and
by extension, to multivariate stochastic dominance). In order to construct an elementary
(m,n) degree risk increase, we compound with increasing concordance an elementary m-th
degree risk increase in x̃ and an elementary n-th degree risk increase in ỹ. More precisely,
suppose that x̃m(2) is m-th degree riskier than x̃m(1), and that ỹn(2) is n-th degree riskier
than ỹn(1). Then, consider the following two pairs of random variables:

(X̃m(1), Ỹn(1)) =
{

(x̃m(2), ỹn(1)) with prob. 1/2;
(x̃m(1), ỹn(2)) with prob. 1/2,

(24)

12Notice that a first-degree risk increase in ṽ corresponds to a lower v in the degenerate case. Thus, in the
degenerate case examined here, an reduction in the concordance between w̃ and ṽ implies an increase in the
concordance between w̃ and the first degree riskiness of ṽ.
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and

(X̃m(2), Ỹn(2)) =
{

(x̃m(1), ỹn(1)) with prob. 1/2;
(x̃m(2), ỹn(2)) with prob. 1/2.

(25)

By construction, shifting from (X̃m(1), Ỹn(1)) to (X̃m(2), Ỹn(2)) raises the concordance be-
tween the m-th degree riskiness of X̃ and the n-th degree riskiness of Ỹ . We can thus conclude
from Theorem 1 that (X̃m(2), Ỹn(2)) is (m,n) degree riskier than (X̃m(1), Ỹn(1)).

This procedure is illustrated in Figure 5 for (m,n) ∈ {0, 1, 2, 3}2. Consider for example
the case n = 1, where ỹ1(2) is obtained from ỹ1(1) by shifting some probability mass from
outcome y to outcome y − k < y. In that case, the elementary (m, 1) degree risk increase
described by rules (24)-(25) combines two equally likely transformations: A reversal of the
m-th degree risk increase of x̃ conditional to ỹ = y, and a downward translation of this m-th
degree risk increase by k. Consider alternatively the case n = 2 in which ỹ2(2) is obtained
from ỹ2(1) by transferring some probability mass from outcome y to be split equally and
transferred at y − k and y + k. In that case, the elementary (m, 2) degree risk increase
combine two equally likely transformations: A reversal of the m-th degree risk increase of x̃
conditional to ỹ = y, and a mean-preserving spread of the original m-th increase in risk of x̃
at y − k and y + k, respectively.

The special case of (2, 2) degree risk increase is particularly interesting. As shown in
Figure 5, it is obtained by shifting the same probability masses from the middle of each
side of a square, half of them going to the center of the square, and the remaining half
going to its corners. As for the "first degree" concordance of Tchen (1980) corresponding
to cell (1, 1), the marginal distributions of x̃ and ỹ are unaffected by this change in the
joint distribution. It generates a mean-preserving spread in the probability-weighted index of
second degree riskiness (from 0-2-0 to 1-0-1) in both dimensions. The aversion towards such
"second degree" concordance corresponds to the condition that the (2, 2) cross derivative of
u is negative. An example of third degree concordance is described in the upper right cell of
Figure 5.

Rule (24)-(25) is not fully recursive since it jumps from the m-th and n-th degree risk
increases of x̃ and ỹ directly to the (m,n) degree risk increase of (x̃, ỹ). It would be useful to
obtain a (m,n+1) or (m+1, n) degree risk increase directly from a (m,n) degree risk increase.
Suppose that Z(2) = (x̃m(2), ỹn(2)) is (m,n) degree riskier than Z(1) = (x̃m(1), ỹn(1)).
From this pair of bivariate risk contexts and a positive scalar h, let us define a new pair
(Zh(1), Zh(2)) by using the following "horizontal reverse-or-translate" procedure:

Zh(1) =
{

(x̃m(2), ỹn(2)) with prob. 1/2;
(x̃m(1)− h, ỹn(1)) with prob. 1/2.

(26)

and

Zh(2) =
{

(x̃m(1), ỹn(1)) with prob. 1/2;
(x̃m(2)− h, ỹn(2)) with prob. 1/2.

(27)

Zh(2) is obtained from Zh(1) by compounding two equally likely changes in risk based on the
initial (m,n) degree risk increase from Z(1) to Z(2): Its reversal, and its leftward translation
by h. To determine the attitude towards this horizontal reverse-or-translate change in risk,
suppose that one is initially confronted to two equally likely states of nature, one yielding
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Figure 5: A method to construct bivariate (m,n) degree risk increases, (m,n) in {0, 1, 2, 3}2.
Each rectangle represents a specific elementary (m,n) degree risk increase. In each of these
rectangle, circles and disks are located where probability masses are respectively taken away
and transferred, whereas their surfaces are proportional to these probability masses. These
elementary bivariate risk increases are obtained by combining univariate m and n degree risk
increases described in the lower row and left column.
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Z(1), and the other yielding the (m,n) degree riskier Z(2). Suppose now that one must bear
a sure reduction of x by h in one of these two states. Does one prefer to bear this loss in
the low risk state 1, or in the riskier state 2? It is easy to show that the new change in risk
belongs to the class of (m + 1, n) degree risk increases and should therefore be disliked by
any individual whose utility function has a sign of its (m+1, n) derivative equaling (−1)m+n.
In Figure 5, any cell describing a (m + 1, n) degree risk increase can be obtained from the
cell to its left by compounding its reversal and its leftward translation by h. The symmetric
vertical reverse-or-translate procedure yields the symmetric property in the y dimension. It
is also easy to extend this analysis by substituting the sure loss by a zero-mean risk, in x or
in y. These horizontal or vertical reverse-or-spread procedures generate jumps from one cell
in Figure 5 to two cells to the right, or to two cells to the top.

Theorem 1 is linked to a growing literature on the apportionment of bi-dimensional risks
with bivariate utility. Eeckhoudt et al. (2007) have examined the bi-dimensional version
of compounding sure losses and zero-mean risks discussed in Eeckhoudt and Schlesinger
(2006). It is linked to what is presented here in the context of two equally likely states with
perfect positive/negative concordance. Tsetlin and Winkler (2009) improved this approach
by offering a full-fledged recursive methodology corresponding to the reverse-and-translate
procedure (26)-(27), and by expanding it to more than two dimensions. They also pushed
the argument to infinity to show that the systematic preference for compounding "good" with
"bad" requires the multivariate utility function to be a mixture of exponential functions of
weighted sums of the attributes. In this paper, I remove the unnecessary jargon of "good"
and "bad" to replace it by "less risky" or "more risky" in the sense of some specific risk order, a
move that allows me to focus on a specific cross-derivative of the utility function rather than
on all cross-derivatives up to a specific integer. My Theorem 1 also expands the recursive
methodology in other directions, such as more than two states for (θ̃, η̃), marginal increases
in concordance, marginal first-degree shifts in the distribution of ỹ, or higher risk orders for
the change in ỹ.

Moyes (2012) examined some low degree bivariate risk increases such as the (1, 2) order
in the context of the distribution of wealth and health. Denuit and Eeckhoudt (2010) had
the idea to use the concept of increasing concordance to express the concept of apportioning
losses. They also used a bi-dimensional version of the precedence relationship introduced by
Chiu (2005) to build what I call the reverse-or-translate procedure (26)-(27). Because they
combine the reversal and the translation whereas I compound them with equal probabilities,
these two procedures do not generate the same elementary bi-dimensional risk increases.
Compared to this work, as to all other existing papers in the literature, my results explore
the crucial idea of increasing the concordance in the degrees of riskiness of the two risks. My
work also clarifies the recursive nature of the Denuit-Eeckhoudt methodology, and it shows
how it can be used with higher-order transformation such as the reverse-or spread procedure.

7 Conclusion

The objective of this paper is to combine the two independent ideas of statistical concordance
(Epstein and Tanny (1980)) and m-th degree riskiness (Ekern (1980)) to produce a general
theory of the aversion to increasing the concordance in different degree risks. When an
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individual bears two additive risks, she dislikes any increase in the statistical concordance of
the two outcomes. This is due to risk aversion. More generally, I showed that risk aversion
implies that any increase in concordance in the first degree riskiness of the two risks is always
disliked. But suppose alternatively that the expected value of one risk is statistically related
to the variance of the other risk. Then, increasing the concordance between the expectation
of the first risk and the variance of the other risk tends to reduce the skewness of their sum.
More generally, I showed that increasing the concordance of the first degree riskiness of the
first risk and the second degree riskiness of the second risk raises the third degree riskiness of
their sum, which is disliked by prudent individuals. And increasing the concordance between
the m-th degree riskiness of the first risk and the n-th degree riskiness of the second risk
raises the (m+n)-th degree riskiness of their sum.

Over the last two decades, some complex stochastic relationships among various macroe-
conomic variables emerged as a key ingredient to solve the classical puzzles that exist in
asset pricing theory. For example, in the literature about long run risks, serial correlations
to the trend of growth and to its volatility tend to distort high-order moments of the dis-
tribution of future consumption. This paper provides a new decision-theoretic framework
to discuss the relations that prevail between sophisticated probabilistic concordances among
different random variables, the riskiness of their functional combination, and their impact on
preferences.
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