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Abstract

I investigate high school tracking policies using a dynamic discrete choice

model of study programs and unobserved effort. I estimate the model using

data from Flanders (Belgium) and perform an ex-ante evaluation of a policy

that encourages underperforming students to switch to less academically ori-

ented programs. This reduces grade retention by a third and dropout by 11%.

Although it decreases college enrollment, the decrease in college graduation is

small and insignificant. I also show that modeling effort is important, otherwise

we would predict smaller decreases in grade retention and dropout and larger

decreases in college enrollment and graduation.
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1 Introduction

Secondary education either prepares students for higher education (academic cur-

ricula) or the job market (vocational curricula). The European 2020 target of 40%

college-educated people induces many countries to place students in an academic

track. In the US, there is a similar trend toward more academic course taking, espe-

cially in STEM (Science, Technology, Engineering, Math)-fields (Nord et al., 2011).

While such courses could help to prepare for college (Guyon et al., 2012; Joensen and

Nielsen, 2009), it is unclear whether it is desirable to promote such courses to a large

group of students. Many students could experience difficulties in completing them

successfully, thereby risking low grades, grade retention and dropout.

I study the heterogeneous impact of an academic track in Flanders, the largest

region of Belgium. While many countries offer a variety of courses to cater to stu-

dents with diverse interests and abilities, this context takes it a step further by in-

stitutionalizing the process through a transparent tracking system. This facilitates a

straightforward examination of the trade-offs that students encounter. At the age of

12, students enter high school and choose a study program: a bundle of one of four

tracks and a few elective courses. Tracking occurs early, but gradually, as many stu-

dents later switch to a program of lower academic level, also known as “downgrading”.

While it is often a choice, it can also be imposed on them. At the end of the year,

students obtain a certificate based on their performance which defines their choice set

the year after. The best outcome is an A-certificate, keeping all options open. Bad

performance leads to a C-certificate, requiring them to repeat the grade. Of particu-

lar interest is the intermediate performance outcome: a B-certificate. These students

did not perform well on important courses of the program, but they are allowed to

transition to the next grade if they downgrade. To stay in the same program, they

have to repeat the grade. 35% of students receive this certificate at some point during

secondary education.

To analyze this trade-off, I first estimate a model of students’ decisions and out-
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comes during high school and higher education. I then use the estimates to simulate

changes to the B-certificate policy. First, I show the importance of allowing students

to downgrade by simulating a context in which underperformance inevitably leads to

grade retention. Next, I perform an ex-ante analysis of a new policy in Flanders by

no longer allowing students to repeat the grade if they could downgrade instead. The

results are in favor of such a policy, showing that the total costs of grade repetition

outweigh the benefits of a better track.

The main part of the model rationalizes two yearly decisions of forward-looking

high school students. First, they make a discrete choice between study programs.

Second, they make a continuous choice on the level of effort to exert. Since I do not

observe measures of study effort, I allow students to choose effective study effort in

the form of the odds of avoiding a bad performance outcome. This effort variable

determines end-of-year performance up to an unanticipated shock. Flow utility de-

pends on a fixed cost and a variable cost of effort, with constant marginal costs. To

identify marginal costs, I exploit an Euler equation for effort that arises naturally in

dynamic models. Fixed costs then rationalize the program decisions. Given fixed and

marginal costs, students can re-optimize both program choices and effort levels in

counterfactual simulations. Utilities and state transitions of a model without effort

choice (i.e. a pure discrete choice model as in Rust (1987); Magnac and Thesmar

(2002)) serve as inputs for the identification of marginal and fixed costs. Therefore,

it is straightforward to apply standard approaches to identify a model with persistent

unobserved heterogeneity (Hu and Shum, 2012; Kasahara and Shimotsu, 2009) and

estimate it without solving it using Conditional Choice Probability (CCP) estimation

and finite dependence (Arcidiacono and Miller, 2011; Hotz and Miller, 1993).

The model also includes higher education enrollment and graduation such that

I can estimate how they are influenced by high school study programs and grade

retention. I control for gender, socio-economic status (SES), two continuous measures

of cognitive ability at the start of high school and two unobserved types. These
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controls also affect fixed and marginal costs during high school, thereby allowing for

general forms of non-random selection in programs and grade retention. Unobserved

heterogeneity can be identified nonparametrically by exploiting rich panel data (Hu

and Shum, 2012) and by using travel time to high school programs as an exclusion

restriction (Heckman and Navarro, 2007).

The estimates reveal the channels that will drive the counterfactual results and

are important to consider when designing an optimal policy. First, policies should

not ignore how much has been determined before. Students’ initial conditions at age

12 strongly influence the costs and benefits during high school. For example, a 10%

of a standard deviation increase in language ability lowers the marginal cost of effort

in the vocational track by 6% and in the academic track by 9%. It also decreases

the fixed costs of attending a more acadamically oriented program and increases the

expected utility from attending college. We see qualitatively similar effects for math

ability, female and high SES, as well as strong differences between unobserved types.

Second, there are large fixed costs of both repeating grades and switching tracks.

While marginal costs decrease in academically oriented programs during a repeated

year, accumulated study delay leads to higher costs later on. Finally, graduating

from an academically oriented program increases the likelihood of obtaining a higher

education degree while repeating a grade decreases this.

The counterfactual simulations show that the benefits of an academically oriented

program are insufficient to make up for the harm of grade retention. The policy

that forces students to “repeat” the grade if they obtain a B-certificate increases the

number of retained students, causing a one-third increase in high school dropouts,

and a 4% decrease in the number of college graduates. The ex-ante evaluation of

the policy that would force these students to “downgrade” instead decreases retained

students by a third and dropouts by 11%. While it also decreases higher education

enrollment by 2.4%, the impact on the number of college graduates is smaller than

1% and not statistically significant. Note that both policies incentivize students to
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exert more effort to avoid bad performance outcomes, particularly those at risk. One

of the results is that the number of students directly affected by the policy change

decreases. The share of students who obtained at least one B-certificate decreases

by 10.2 % points in the “repeat” policy and by 3.5 % points in the “downgrade”

policy. I compare my findings to those of a pure discrete choice model in the spirit

of Rust (1987). In this model, students still choose a study program but observed

performance is modeled as a policy-invariant function of observable characteristics

and unobserved types, i.e. this ignores counterfactual changes in effort. Here we see

much smaller decreases in the number of B-certificates (respectively 6.3 % points and

0.9 % points). Moreover, there are larger increases in grade retention and drop out

in the “repeat” policy and smaller decreases in the “downgrade” policy. Importantly,

without effort in the model, we do predict a statistically significant decrease in the

number of college graduates in the “downgrade” policy of 2.5%.

A welfare analysis shows that the “downgrade” policy leads to a small loss for

students. This can be explained by the reduction of their choice set. However, this

loss is largely offset by the taxpayers’ gains through reduced spending on education

and increased tax returns. The big impact of initial conditions on effort costs suggests

investing these gains in early childhood education. Students with higher ability at

the start of secondary education are more able to invest in an academically oriented

program. These dynamic complementarities avoid the trade-off that arises from the

status quo remedial strategy during high school where underperforming students need

to repeat a grade to continue in the academic program. While the effects of the

downgrade policy are not very different across groups, such a shift of resources is

also expected to reduce the influence of SES on long-run outcomes. A decomposition

exercise shows that nearly half of the SES gap in college can be mitigated by bringing

math and language ability at age 12 to the same level. Additional gains are possible

if it also improves unobserved measures of ability.
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Related literature This paper contributes to three strands of literature.

First, it contributes to the literature on the returns to educational investments.

Altonji et al. (2012) review the literature on the effects of high school curriculum

on educational attainment and wages, initiated by Altonji (1995). The literature

has found positive effects of intensive math courses (Aughinbaugh, 2012; Goodman,

2019; Joensen and Nielsen, 2009; Rose and Betts, 2004), and stressed the importance

of comparative advantages when comparing returns to academic and vocational cur-

ricula (Kreisman and Stange, 2020; Meer, 2007). Selection into a beneficial program is

not random, explaining why investing in early childhood education is effective because

it induces students to opt for a better program later through dynamic complemen-

tarities (Cunha and Heckman, 2009; Cunha et al., 2010; Heckman and Mosso, 2014).

A separate literature looks at the causal impact for a student of being retained in

school (Cockx et al., 2019; Fruehwirth et al., 2016; Gary-Bobo et al., 2016; Jacob and

Lefgren, 2009; Manacorda, 2012). I contribute to this literature by jointly analyzing

high school program choice and grade retention within a structural model. This ap-

proach has several benefits: (1) I can simulate a policy that goes beyond interpreting

treatment effects, as I can take into account how the threat of grade retention af-

fects students’ effort decisions, (2) dynamic complementarities are illustrated through

counterfactual policies, by comparing remedial strategies in high school to the effects

of initial conditions, (3) I identify new parameters that quantify the cost of grade

retention and the differences in effort costs between students with different initial

conditions.

Second, it contributes to the literature on educational tracking policies. Cummins

(2017); Duflo et al. (2011); Fu and Mehta (2018); Hanushek and Woessmann (2006);

Pekkarinen et al. (2009) and Roller and Steinberg (2020) look at the impact of tracking

students at an early age. Dustmann et al. (2017) and Guyon et al. (2012) investigate

the long-run impact of the academic track for specific groups. Cockx et al. (2019)

estimate average treatment effects within high school for students that are forced
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to repeat grades or switch tracks. Recent evidence suggests that switching tracks

can reduce the negative impact of early track choice (De Groote and Declercq, 2021;

Dustmann et al., 2017). I contribute by investigating the impact of flexibility in

tracking policies during secondary education.

Finally, this paper contributes to the estimation of dynamic discrete choice models

of educational decision-making. Dynamic models in the spirit of Rust (1987) typically

involve discrete choices and stochastic state transitions, where the choice-specific

utility functions and the distribution of state transitions are considered to be policy-

invariant. Since Keane and Wolpin (1997), dynamic discrete choice models have often

been used to model student behavior, many of which include performance measures

as an exogeneous stochastic process: course grades (Arcidiacono, 2004; Arcidiacono

et al., 2023; Eckstein and Wolpin, 1999), course credits (Declercq and Verboven, 2018;

Joensen and Mattana, 2021), college admission probabilities (Arcidiacono, 2005) or

length of study (Beffy et al., 2012). Without access to effort data, a policy-invariant

distribution of performance excludes changes in effort in counterfactual simulations.

This is inconsistent with evidence from theory (Costrell, 1994), field experiments

(Dubois et al., 2012), and natural experiments (Garibaldi et al., 2012). Others have

used observable measures of study effort in the model (Ahn et al., 2022; Fu and Mehta,

2018; Todd and Wolpin, 2018). I show that data on program choices and performance

outcomes are sufficient to identify policy-invariant cost parameters that allow for effort

changes in counterfactuals. As in Hu and Xin (2022), I include an unobserved choice

variable that influences state transitions. However, I do not impose an exclusion

restriction in the state transition rule but make use of a first-order condition coming

from the dynamics in the model. This is similar to modeling optimal job-finding

rates (Cockx et al., 2018; Paserman, 2008; van den Berg and van der Klaauw, 2019)

or unobserved consumption-savings decisions (Gayle et al., 2015; Gayle and Miller,

2015; Margiotta and Miller, 2000). I apply this idea in the dynamic discrete choice

framework of Rust (1987), Hotz and Miller (1993) and Arcidiacono and Miller (2011):
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I formulate general identification and estimation strategies, including extensions to

allow for multiple unobserved choice variables and effects beyond the next period

state variable.

The rest of the paper is structured as follows. Section 2 describes the method-

ological contribution of the paper using a two-period binary choice model. Section 3

describes the institutional context, the data, and policy issues, and section 4 applies

the model to the data. I discuss the estimation results in section 5 and I simulate

tracking policies in section 6. Finally, I conclude in section 7.

2 The cost of effort

I describe a model of discrete study program decisions and continuous effort decisions

and how it can be estimated using only data on program choices and performance

outcomes. I discuss the simplest case by letting students choose whether they want to

continue in school or drop out, both in period 1 (high school) and period 2 (college).

Performance enters as a dummy equal to one when a student obtains a high school

degree, which is required to access college.

The main text demonstrates the identification of fixed and marginal costs of effort

using the CCPs of program decisions and the observed state transitions of perfor-

mance outcomes. In Appendix A, a more comprehensive proof is presented, which is

summarized at the end of this section. Importantly, if CCPs and state transitions can

be identified for different unobserved types (as in Hu and Shum (2012) and Kasahara

and Shimotsu (2009)), then fixed and marginal costs in high school, as well as the

expected utility of enrolling in college can depend on these types as well. This is

essential to generate effort choices that vary by unobserved ability.
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2.1 Model

Consider a student i before entering the final year of high school in period t = 1. The

student can finish high school (j = 1) or drop out (j = 0). If i stays in school, flow

utility is

ui + εij1 = u(xi, yi) + εij1 (1)

with u(xi, yi) = −C0(xi)− c(xi)yi

xi is a vector of time-invariant state variables, known to the econometrician and the

student (such as observed measures of ability or SES). yi ∈ (0,+∞) is the effective

study effort, a choice variable that influences the performance distribution. εijt is an

extreme value type 1 taste shock, unobserved by the econometrician but observed by

the student. In the spirit of Keane and Wolpin (1997), I call − (u(xi, yi) + εij1) the

effort cost of schooling. It consists of a fixed cost (C0(xi)), and a variable cost, rising

in the level of effort at marginal cost c(xi) > 0.

After t = 1, i can obtain a high school degree: a dummy state variable that is

only available in t = 2: gi. I allow for uncertainty and assume students expect to

obtain a degree with probability

ϕ(yi) =
yi

1 + yi
.

This explains why we call yi effective study effort. It is a tool to choose the

distribution of performance.1 yi can be interpreted as the odds of obtaining a high

school degree (yi = ϕ(yi)
1−ϕ(yi)

) and c(xi) as the marginal cost to increase them by one

unit. The marginal costs depend on how well students are prepared, how much they
1Alternativally, we could write yi = Yi(ei) with ei a vector of all measures of effort that matter for

performance and Yi(.) a production function. Students with high marginal costs experience higher
costs of increasing yi. This could be explained by a worse technology Yi(.) (less help from parents,
lower ability...) or a stronger distaste to increase ei (motivation). For counterfactuals choices and
welfare we only require yi, avoiding the need to disentangle both.
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(dis)like studying and the constraints they face in performing well. It implies a cost

function that is increasing and convex in the probability to obtain a good performance

outcome.2 The fixed cost captures a distaste to go to school, regardless of expected

performance (such as travel costs or social norms).

Students who drop out (j = 0) in t = 1 never return to school and receive a

lifetime utility of dropping out. In t = 2, students with a high school degree can stay

in school (j = 1) by going to college, or drop out. The lifetime utility after leaving

high school is specified as Ψj(xi) + εij2. I do not distinguish between channels of

utility in t = 2 and consider Ψ0(.) and Ψ1(.) to be policy-invariant functions of xi.

To keep this model simple, I make several (strong) assumptions that will be relaxed

in the application. I do not allow for grade retention by assuming that students who

failed have to drop out, and I assume Ψ0(xi, gi) ≡ Ψ0(xi). This implies that a high

school degree only has value when it is used to get into college. As only differences in

utility are identified, we need to treat Ψ0(xi) as known (Magnac and Thesmar, 2002).

I set Ψ0(xi) = 0 and interpret Ψ1(xi) as the difference in expected lifetime utility.

2.2 Solution

In t = 2, i has a choice only after obtaining a high school degree (gi = 1). Since t = 2

is the final period, this is equivalent to a static model. The student goes to college if

Ψ1(xi) + εi12 > εi02. Let dit be the chosen option by i at time t. The probability to

go to school for students with a high school degree is:

Pr(di2 = 1|xi, gi = 1) =
exp(Ψ1(xi))

1 + exp(Ψ1(xi))
. (2)

In period 1, the problem is dynamic. Students do not know if they will be suc-

cessful, but they know the distribution of gi. There is also uncertainty about future

2Let ḡi = ϕ(yi), then du(xi,yi)
dḡi

= ∂ui

∂yi

dϕ−1(ḡi)
dḡi

< 0 with ∂ui

∂yi
= −c(xi) < 0 and dϕ−1(ḡi)

dḡi
= 1

(1−ḡi)
2 >

0, d2u(xi,yi)
dḡ2

i
= −c(xi)

2
(1−ḡi)

3 < 0.
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taste shocks. The lifetime utility of drop out is given by Ψ0(xi) + εi01 = εi01. The

lifetime utility of choosing the high school option is represented by the conditional

value function (added with taste shock εi11):

v(xi, yi) = u(xi, yi) + βγ + βϕ(yi) ln (1 + expΨ1(xi, gi = 1)) (3)

with γ the Euler constant, β ∈ (0, 1) the one-period discount factor and ln (1 + expΨ1(xi, gi = 1))

the logsum expression, net of γ.

To find the optimal yi, we maximize v, giving the following first-order condition

(FOC):

dv(xi, yi)

dyi
=

∂u(xi, yi)

∂yi
+ β

(
∂ϕ(yi)

∂yi
ln (1 + expΨ1(xi))

)
= 0 if yi = y∗i (4)

with y∗i the optimal choice of yi, ∂u(xi,yi)
∂yi

= −c(xi) and ∂ϕ(yi)
∂yi

= (1 + yi)
−2. This

FOC is an Euler equation that equalizes today’s marginal cost of effort to its dis-

counted marginal benefit in the next period such that

y∗i =

√
β ln (1 + expΨ1(xi))

c(xi)
− 1. (5)

The optimal level of effort increases in the discounted surplus of being able to enter

college (β ln (1 + expΨ1(xi))) and decreases in its marginal cost c(xi). Requiring an

interior solution for yi puts an upper bound on the latter.

2.3 Identification of fixed and marginal costs

I first discuss the comparison of this model to a “pure” dynamic discrete choice model

and show that its utilities and state transitions are equivalent to the equilibrium

outcomes in the proposed model on effort. I then discuss how they can be used to

identify fixed and marginal costs. Finally, I discuss intuition in a more general setting
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and refer to Appendix A for the proof.

2.3.1 The pure discrete choice model

Define a “pure” dynamic discrete choice model in line with Rust (1987). I.e. there

is a discrete choice (schooling), and a stochastic state (performance) that evolves

exogenously as a function of xi which can be estimated from the data: Pr(gi|xi).

This model is observationally equivalent. To see this, note that equation (5)

implied that the optimal level of effort is common for students with the same xi. The

definition of yi implies a closed-form solution: y∗(xi) =
Pr(gi|xi)

1−Pr(gi|xi)
. We can therefore

also write the flow utilities in the pure discrete choice model as u∗(xi) = u(xi, y
∗(xi)).

Identification of y∗(xi) and u∗(xi) follows from the pure discrete case in Magnac and

Thesmar (2002). This requires fixing β, normalizing the utility of one option and

specifying the taste shock distribution.

Fixing y∗(xi) and u∗(xi) in counterfactuals implies no changes in effort. If iden-

tified, we could fix c(xi) and C0(xi) instead. Appendix A.6 further discusses the

differences in assumptions and implications of both models and section 6 quantifies

the differences for the current application.

2.3.2 Simplified effort model

With the identified objects from the pure discrete model (Ψ1(xi), u∗(xi), and y∗(xi)),

we can proceed to the identification of fixed and marginal costs of effort. The FOC

identifies marginal costs from the marginal benefits at the optimal level of effort.

Rearrange (4) and evaluate at yi = y∗(xi) such that marginal costs can be written as

a function of the identified objects:

c(xi) = β

(
ln (1 + expΨ1(xi))

(1 + y∗(xi))2

)
. (6)

To identify fixed costs, substitute y∗i = y∗(xi) into the utility function of high
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school (1):

C0(xi) = −u∗(xi)− c(xi)y
∗(xi). (7)

Intuitively, we are exploiting data on performance outcomes in a more structural

sense than in a pure discrete choice model. If two students have the same future value

Ψ1(xi) but different state transitions (i.e. different y∗(xi)), it has to be rationalized

by differences in marginal costs. Students who make different choices in period 1 and

have the same future values and state transitions provide the variation to identify the

fixed costs.

The crucial assumption is that utility is linear in yi (see (1)). This assures that

fixed and marginal costs are policy-invariant functions of the state variables. Note

that this holds for the specific definition imposed on yi, i.e. about how the perfor-

mance outcome depends on a choice variable that linearly enters the utility function.3

The linear structure defines the transformations of utility that lead to policy-invariant

functions. In this context, yi is chosen to be the odds of obtaining a degree. This

means that the linearity assumption should be interpreted as an assumption that the

marginal cost of improving the odds for a given realization of the state variables does

not change in counterfactuals.

2.3.3 General effort model

Since the degree of under-identification is the same as in a pure dynamic discrete

choice model, it is straightforward to generalize the model to multiple periods t and

alternatives j, as well as unobserved types νi. A pure discrete choice model would then

identify flow utilities u∗
j(xit, νi) and a transformation of performance data y∗j (xit, νi)

(Hu and Shum, 2012; Kasahara and Shimotsu, 2009; Magnac and Thesmar, 2002). As
3This is different from a pure discrete (or a discrete/continuous) model that would include an

observable measure of effort ei in the model as ei is data and cannot be specified by the researcher.
Note also that by having the researcher specify yi, xi does not enter the probability to obtain a high
school degree as we can always define a new y

′

i such that ϕ(y′i) ≡ ϕ(xi, yi).
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I show in Appendix A, I can again exploit Euler equations to identify marginal costs

cj(xit, νi) and use the remaining variation in program choices to identify fixed costs

C0
j (xit, νi). I also provide extensions beyond the application of this paper by allowing

yi to be a vector, or to have direct effects beyond the next period state variables.

We can account for both unobserved ability and effort choice because we do not

attempt to separately identify ability from a measure of effort we could observe in

some datasets (such as hours of study). The choice variable here is effective effort. By

construction, this merges the impact that ability, hours of study, or any other variable

known to the agent would have on performance. Performance outcomes in the data

can still deviate from a prediction based on effort, but only through an unexpected

shock. This is why we could derive effort from the observed data by integrating over

the shocks when unobserved ability did not enter the model (see (5)). To allow for

unobserved ability, we first need to identify how performance depends on it, which is

typically done in a pure discrete choice model too.

3 Institutional background and data

This section describes the institutional context in Flanders (Belgium) and introduces

the data. I make use of the LOSO dataset in which I follow a sample of 5, 158

students that started secondary education in 1990.4 Students were followed during

high school and therefore the data contains many individual characteristics, choices,

performance outcomes, and test scores. Afterward, they responded to surveys that

reveal information about their higher education career. Details about the data and

the context are discussed in Appendix B.
4The LOSO data were collected by Jan Van Damme (KU Leuven) and financed by the Flemish

Ministry of Education and Training, on the initiative of the Flemish Minister of Education. Note
that throughout the paper I discuss the data for this sample of 5,158 students, which covers 80% of
the original sample. In Appendix B I discuss why some observations were dropped.
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3.1 Study programs and observed characteristics

After finishing six grades in elementary school, students enroll in the high school of

their choice in grade 7, the calendar year most of them become 12 years old. After

obtaining a high school degree, they can enroll in higher education.

In full-time education, they choose between different high school programs, grouped

into tracks that differ in their academic level. The curriculum of the academic track

provides general education and prepares for higher education. The middle track pre-

pares students for different outcomes. I follow Cockx et al. (2019) and distinguish

between a track preparing mainly for higher education (middle-theoretical), and a

track that prepares for the labor market (middle-practical). Students can also choose

the vocational track, preparing them for occupations that do not require a college de-

gree. Within tracks, I aggregate the variety of study programs in line with the most

important differences in enrollment and success in higher education (Declercq and

Verboven, 2015). The academic track includes classical languages, intensive math,

intensive math + classical languages, and other. The middle-theoretical track has

intensive math and other.

A student graduates from high school after a successful year in grade 12, except for

the vocational track where completing a 13th grade is required.5 Compulsory educa-

tion laws require students to pursue education until June 30th of the year they reach

the age of 18. From the age of 15, they can also decide to leave full-time education

and start a part-time program in which work and schooling can be combined.

Table 1 provides an overview of the different programs students graduate from and

how it differs by observable characteristics. The academic track is the most popular

(38%), followed by the vocational track (19%), middle-theoretical track (16%) and

the middle-practical track (12%). The remaining 15% dropped out. These groups are

very different in terms of initial characteristics. I include cognitive ability (language
5Leaving in the vocational track after grade 12 is not considered dropout as students still obtain

a certificate that is valued by employers.
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and math), gender, and socioeconomic status (SES). The latter is defined as a dummy

equal to one if at least one of the parents has completed higher education. Both SES

and ability follow the track hierarchy. Female students are more likely to attend the

academic track and less likely to drop out. There is also substantial variation in

travel times to different programs and over time (Appendix Table J1), and students

are more likely to attend a high school nearby (Appendix Table J2) or a college nearby

(Appendix Table J5).

Table 1: Student background by high school program

Number of students Average characteristics

Male Language Math High
Count (%) ability ability SES

All 5158 (100.0) 0.50 0.00 0.00 0.28

By final study program
Academic track 1974 (38.3) 0.40 0.71 0.64 0.49

clas+math 261 (5.1) 0.46 1.15 1.05 0.63
clas 315 (6.1) 0.37 0.94 0.68 0.58
math 683 (13.2) 0.49 0.74 0.75 0.51
other 715 (13.9) 0.32 0.41 0.36 0.38

Middle-Theoretical track 818 (15.9) 0.53 0.11 0.19 0.22
math 125 (2.4) 0.70 0.32 0.47 0.30
other 693 (13.4) 0.50 0.07 0.14 0.21

Middle-Practical track 611 (11.8) 0.51 -0.06 -0.02 0.22

Vocational track 1002 (19.4) 0.51 -0.76 -0.75 0.10

Dropout 753 (14.6) 0.67 -0.92 -0.86 0.07
NOTE.– Ability measured using IRT score on tests at the start of secondary education. Score
normalized to be mean zero and standard deviation 1. High SES= at least one parent has higher
education degree. Clas= classical languages included. Math= intensive math. 39.2% of students
in the vocational track completed a thirteenth grade, 57.2% of students that dropped out chose
part-time drop out first.

Similar to Declercq and Verboven (2015, 2018), I categorize higher education

in Flanders into three levels: professional college, academic college, and university.
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Additionally, I differentiate between the five university campuses and aggregate ma-

jors, distinguishing between STEM and non-STEM. Importantly, tracks do not re-

strict higher education options because colleges accept all students with a high school

diploma with almost no restrictions on their major (Declercq and Verboven, 2018).

Nevertheless, tracks of higher academic level strongly predict enrollment and gradu-

ation from them (Appendix Table J3 and J4).

3.2 Performance and the tracking policy

Students frequently finish in a different program than the one they entered. Initially,

all programs are available, but moving up to a more academically oriented track is

uncommon (see section 4.1 for details about the choice set). Consequently, many

students begin with a more demanding program. While 63% of students start in an

academic track, only 38% graduate from it (Appendix Figure J1).

Moves between programs are not always voluntary. Teachers uphold quality stan-

dards for each program by issuing a certificate based on the student’s performance.

An A-certificate is the best outcome, allowing students to advance to the next grade.

However, if a student fails important courses, teachers may award a B- or C-certificate

instead. A C-certificate indicates a failure in too many critical courses, requiring the

student to repeat the grade. A B-certificate means that the student has failed some

important courses and can only advance to the next grade in certain programs or

repeat the grade. Typically, a B-certificate prevents a student from going to the

next grade in their current track, although it may also exclude elective courses (see

Appendix Table J7).6

While the yearly occurrence of B- and C-certificates is low (7.1% and 6.6% respec-
6Track switching and grade repetition are often handled differently in early tracking systems,

yet similar trade-offs arise. The French-speaking Community of Belgium uses a similar system of
certificates. In the Netherlands, schools have their own policies regarding track transitions and grade
repetition, often in the form of grade requirements, combined with the judgment by teachers. In
Germany and Austria, track revisions are less gradual, with mainly switches between middle and
high school, and also more upward mobility (Dustmann et al., 2017; Schneeweis and Zweimüller,
2014).
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tively), many students receive at least one of them during high school: 35% receive

a B-certificate and 30% a C-certificate. If students don’t leave full-time education, a

C-certificate necessitates grade retention, and one in four students with a B-certificate

repeats a grade, resulting in substantial grade retention. 32% of students leave high

school with at least one year of study delay. These students are 22 % points less likely

to enroll and 24 % points less likely to graduate from higher education compared to

students who were not retained. This disparity is partly due to higher dropout rates

in high school.7

4 Application of the model

This section extends the model of section 2 to the policy context discussed in section

3. i still refers to a student, t is a school year, j = 1, ..., J are mutually exclusive

study programs and j = 0 is an outside option: not attending school. Students make

two yearly decisions: their study program (dit) and their effort (yit).

4.1 Choice set

Students enter high school the calendar year in which they become of age age0i and

choose a study program di1 = j. Each study program belongs to one of four tracks:

academic (acad), middle-theoretical (midt), middle-practical (midp), and vocational

(voc). Within the academic track, they can choose to have intensive math courses

(math), and/or classical languages (clas). A math option is also available in midt.

Tracks are available throughout secondary education, i.e. grades 7 to 12 (13 in voc),

denoted gradeit. The clas option is available from the start and the math options

start in grade 9. A part-time vocational program (part) is available from the age of

15 and does not have a grade structure.
7Appendix Table J6 provides on overview of certificates by track and grade. Appendix Table J8

summarizes the number of students that obtain a B- or C-certificate or accumulate study delay. It
then compares their educational outcomes with that of the average student.
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The choice set of students (Φit) is restricted. First, students can never upgrade

tracks according to the following hierarchy: acad > midt > midp > voc > part,

except for the first two grades in which mobility between acad, midt and midp is

allowed. Second, math and clas need to be chosen from the first year they are

available. Finally, after grade 11, students must stay in the same program. Students

progress by obtaining a certificate at the end of the year. The flexibility of a B-

certificate affects the choice set differently. Consequently, I create new variables to

capture which programs students are allowed to enter. After each year t, students

obtain a vector of performance outcomes git+1 ∈ G, with git+1 = (gtrackit+1 , g
math
it+1 , g

clas
it+1).

The main performance outcome is gtrackit+1 ∈ {0, 1, 2, 3, 4}. The lowest value (0) does

not allow any track in the next grade. Each increase corresponds to a track of higher

academic level being available. gmath
it+1 ∈ {0, 1, 2} indicates if a student can go to math,

with gmath
it+1 = 1 when math is allowed in track midt (gmath

it+1 = 1), gmath
it+1 = 2 if it is

allowed in both midt and acad. gclasit+1 ∈ {0, 1} indicates if a student can go to clas. In

the last grade, the highest performance outcome of the track denotes graduation. A

program-specific degree is obtained, denoted by a dummy degreejit, summarized in a

vector degreeit = (degree1it, ..., degree
J
it). Students graduate after grade 13 in voc and

grade 12 in other tracks. As finishing the 12th grade in voc is valued by employers,

I also include a dummy: degreevoc12it . I assume students can no longer continue high

school in t = 10, thereby allowing for up to three years of study delay.8

High school graduates can decide to enroll in different higher education options

or leave school. I classify higher education into three levels (professional college,

academic college, and university), and differentiate between STEM and non-STEM
8There are a few exceptions to these rules. First, it is allowed to switch from acad without

extra math to midt with extra math in a later grade. Second, students can enroll in grade 8 of the
vocational track without having succeeded grade 7. Therefore, the lowest performance outcome is a
B-certificate and the effort costs of students in grade 7 of the vocational track is captured by a fixed
component only. Note that the rules described in this section are not always legally binding, yet
school often advertise them as binding. Cockx et al. (2019) apply a similar set of rules. In Appendix
B I discuss more details and show that only a small number of observations have to be dropped
because they are inconsistent with this description.
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majors, as well as location. Once students turn 18, they can choose to leave school

without a degree, and I assume this decision is permanent. As in section 2, I close

the model at the college entrance, but I also predict college graduation as a function

of individual characteristics and (endogenous) high school outcomes to evaluate the

impact of counterfactuals in high school.9

4.2 State space

Each year t, students use three types of information to make their decisions. First,

there is the information the student and econometrician share:

xit = (dit−1, git, age
0
i , gradeit−1, t, delayit, degreeit, Si).

To construct the choice set, we need information on dit−1, git, age
0
i , gradeit−1 and t.

Additionally, dit−1 allows us to take into account switching costs and git reveals if grade

repetition is required for each program in the choice set. They also take into account

past grade retention through study delay: delayit =
∑

τ<t I(gradeiτ = gradeiτ−1),

with I() the indicator function. delayit, as well as the type of high school degree

(degreeit) will be used to link high school outcomes with college enrollment and

graduation. Finally, Si is the vector of observed student characteristics.

Second, students have information about their type, unobserved to the econome-

trician: νi, a vector of dummy variables for each type.

Finally, there are idiosyncratic taste shocks for different programs: εit = (εi1t, ..., εiJt).

This captures the unobservables students learn about at the start of period t.

4.3 End-of-year performance

Track restrictions
9As in Declercq and Verboven (2018), I define a degree as three successful years of higher education

in a time span of six years.
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The performance measure gtrackit+1 is the result of effort yit and a logistically dis-

tributed shock ηtrackit+1 :

gtrackit+1 = g̃ if η̄g̃jr < ln yit + ηtrackit+1 ≤ η̄g̃+1
jr (8)

where η̄g̃it denotes the threshold to obtain at least g̃. It is allowed to differ through

the program and grade a student is attending at time t. At time t, students know

yit, but not gtrackit+1 because of the shock ηtrackit+1 . They know the probabilities in a given

program (dit = j) and grade (gradeit = r):

Pr(gtrackit+1 = g̃|yit, dit = j, gradeit = r) = F (ln yit − η̄g̃jr)− F (ln yit − η̄g̃+1
jr ) (9)

with F (a) = exp(a)
1+exp(a)

the cumulative distribution function of the performance out-

come. I set η̄0jr = −∞ and η̄5jr = +∞ such that the probabilities add up to 1, and I

normalize η̄1jr = 0.

Effort can be interpreted here as the odds of avoiding the lowest outcome (= no

track allowed in the next grade):

yit =
1− Pr(gtrackit+1 = 0|yit, dit, gradeit)
Pr(gtrackit+1 = 0|yit, dit, gradeit)

. (10)

This is a natural extension of the binary case we discussed in section 2. By

choosing these odds, students can change the probability of each realization. If yit is

close to zero, they are likely to obtain the worse outcome, while high values yield the

best outcome. Several thresholds are not estimated but determined by the restrictions

discussed in subsection 4.1.

Course restrictions

Course restrictions are also modeled as an ordered logit (conditional on gtrackit+1 ) to
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predict gmath
it+1 and gclasit+1. I specify course-specific indexes:

αmath
y ln yit + S ′

iα
math
S + ν ′

iα
math
ν + ηmath

it+1 , (11)

αclas
y ln yit + S ′

iα
clas
S + ν ′

iα
clas
ν + ηclasit+1.

with ηmath
it+1 and ηclasit+1 logistically distributed shocks and αmath

y and αclas
y measuring how

much of the effort matters for each elective course. The logit shocks ηmath
it+1 and ηclasit+1

are assumed to be independent of ηtrackit+1 but dependence between outcomes is captured

by taking into account the outcome gtrackit+1 to influence individual-specific threshold

levels.10 I also allow for comparative advantages by estimating the effect of student

characteristics that can be observed (Si) or unobserved (νi). In counterfactuals, I will

treat the parameters of this equation as policy-invariant.11

I define ϕḡ
ijt(yit) as the joint probability of ḡ = {ḡtrack, ḡclas, ḡmath} which is the

product of the three ordered logit probabilities, with dependence on i and t going

entirely through (xit, νi).

4.4 Study program

Students choose the program j and effort yit that gives the highest expected lifetime

utility. For a given program, it can be written as:

vj(xit, νi, yit) + εijt (12)

= uj(xit, νi, yit) + β
∑
ḡ∈G

ϕḡ
ijt(yit)V̄ (xit+1(ḡ), νi) + εijt for j ∈ se

with vj(xit, νi, yit) the conditional value function of choosing program j and effort yit

at time t.12 εijt is an extreme value type 1 taste shock.

10If gtrackit+1 < 3, then gmath
it+1 = gclasit+1 = 0. If git+1 = 3, then gmath

it+1 ∈ {0, 1} and gclasit+1 = 0.
11As shown in Appendix A.3, yit could instead be treated as a vector at the cost of increasing the

computational burden in counterfactuals.
12I do not let the state vector of other students affect the value functions of student i. This implies

that program-specific costs and benefits do not change in counterfactuals. The model then generates
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The first term is the flow utility of schooling, uj(xit, νi, yit). The second term is

the expected value of the future, discounted by β ∈ (0, 1). This depends on the ex-

ante value functions V̄ (xit+1, νi), i.e. the value functions integrated over the future iid

shocks. As in Rust (1987), this implies that students do not know future realizations

of taste shocks, but they know the distribution. The performance vector g is the

only stochastic element in x. Integrating over future states is therefore equivalent to

writing a weighted sum over potential outcomes in the set G, with the joint probability

of the performance outcome as a weight.

As explained in section 2, I do not use estimates of uj(xit, νi, yit) as a function of

(xit, νi) in counterfactual simulations as it would ignore potential changes in effort.

Instead, I estimate effort costs: fixed cost C0
j (xit, νi), and marginal costs cj(xit, νi)

with

uj(xit, νi, yit) = −C0
j (xit, νi)− cj(xit, νi)yit. (13)

The linearity assumption implies that the marginal costs of increasing the odds to

avoid the lowest performance outcome do not change in counterfactuals. Note that

effort (yit) only affects the future indirectly through its impact on performance. In

Appendix F, I show that this is of little concern in the current context by analyzing

test score data during high school.

4.5 Closing and solving the model

I assume that leaving secondary education is a terminal action. They either leave the

education system or (if they obtained a high school degree) enter higher education. I

close the model at the enrollment stage of higher education to avoid making assump-

tions about how students expect wages and college performance to evolve. Let the

the partial equilibrium effects of a policy, which are appropriate for simulations that mainly affect
how students are tracked in the current system, without large changes in the average composition
of each program.
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conditional value functions for options after high school take the following form:

vj(xit, νi, yit) = degree′itµ
degree +ΨHEE

j (xit, νi) if t = T SE
i + 1 (14)

with T SE
i the last period student i spends in high school, µdegree a vector of pa-

rameters and ΨHEE
j (.) a function of the state variables. With a high school degree, j

can be a higher education option (see subsection 4.1). All students have access to an

outside option (j = 0) with ΨHEE
0 = 0. This normalization implies that costs in high

school should be interpreted as the one-period difference from the expected lifetime

value of leaving high school without a degree. As this includes their wages, effort

costs in the model also include these opportunity costs.13

By modeling higher education choices, we can account for the varying returns of

different high school programs. For instance, a math-intensive program may prove

beneficial in higher education, particularly for STEM majors, which will be reflected in

a different value of ΨHEE
j (xit, νi). Moreover, I incorporated heterogeneity in the costs

of high school programs (C0
j (xit, νi) and cj(xit, νi)). Allowing for such rich observed

and unobserved heterogeneity is important to evaluate policy changes because the

returns of affected students often differ from those of the average student (Carneiro

et al., 2011).

Unlike a static model, normalizing the entire utility of the outside option in every

state is not innocuous (Kalouptsidi et al., 2021). In this case, it would assume that

students exert effort in school solely to have the chance to pursue higher education and

not for other benefits resulting from a high school degree. Therefore, I also estimate

that value such that vi0t = degree′itµ
degree. As in Eckstein and Wolpin (1999), this

can be identified from schooling choices in secondary education as students closer

to graduation (higher expected performance or attending a higher grade) are less
13The outside option may not be available due to compulsory schooling laws, but this is not a

problem for identification as we include a sufficient number of students in the sample that are old
enough. It does imply that utility cannot vary completely by age, but we do consider variation by
grade.
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likely to drop out. Because such differences could also be explained by a flexible

specification of fixed costs, I restrict the latter to only change linearly by grade and

I exclude distance to college options.

As in section 2, the model can be solved backwards. Appendix C describes the

full solution.

4.6 Graduation in higher education

I simultaneously estimate the parameters of a conditional logit model with ΨHED
j (xit, νi)

the estimated index that predicts graduation in each campus-level-major combi-

nation, conditional on student characteristics, high school program, study delay,

and the higher education enrollment decision. This reduced-form approach is suf-

ficient because the counterfactual simulations will only modify the high school sys-

tem, not the higher education system. As a result, it will affect elements of xit:

degreeit and delayit, but not the mapping between high school and higher education

outcomes: ΨHEE
j (.) and ΨHED

j (.). This approach is similar to that used in dynamic

treatment effect models (Heckman et al., 2016).

4.7 Identification, ability bias and unobserved types

A first requirement to identify the model is to recover CCPs and state transitions

as functions of the observed state variable xit and the unobserved type νi. If νi

would be observed, we could use the observed choices and outcomes for each realiza-

tion of (xit, νi). Magnac and Thesmar (2002) then show that we need to normalize

the utility of a reference alternative, specify the discount factor β and the distri-

bution of εijt to identify the flow utility in the current policy context (u∗
j(xit, νi) ≡

uj(xit, νi, y
∗
j (xit, νi))). The identification of the indexes that predict higher education

enrollment and graduation is simpler because we do not need to separately identify

flow utility from the entire impact of (xit, νi) (French and Taber, 2011). In section

2 and Appendix A I show that once we recover flow utility and state transitions, we
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can identify fixed costs C0
j (xit, νi) and marginal costs cj(xit, νi) by imposing a FOC.

I set β = 0.9 and show robustness in Appendix F.

Since unobserved heterogeneity affects choices and outcomes in high school and

afterwards, it creates a classic ability bias problem to assess the impact of high school

outcomes (study delay and study program) in higher education. Exclusion restrictions

identify this without needing the full structure of the model (Heckman and Navarro,

2007). In particular, I assume that travel time to high school (varying by program and

grade) influences decisions and outcomes during high school but has no direct effect

afterwards. Note that this variation also helps to identify the effects of study delay

because students who enter higher education might have obtained a B-certificate in

the past, giving them the choice to accumulate study delay.14

In the model, I capture unobserved heterogeneity by allowing for two types (as

in Arcidiacono (2005); Declercq and Verboven (2018)). Any (causal) claim we make

depends on our ability to approximate the heterogeneity in the population by the

observable characteristics, the two unobserved types and the functional form assump-

tions we make (see next subsection), but this choice has several benefits. It allows

for the use of the CCP estimator, which yields large computational advantages (Ar-

cidiacono and Miller, 2011). Moreover, it allows for a flexible correlation structure

of unobserved heterogeneity in utilities and outcomes. Hu and Shum (2012) prove

the identification of a non-stationary first-order Markovian model for CCPs and state

transitions at time t using data from t + 1, t, t− 1, t− 2, and t− 3. They allow for

a single unobserved trait (potentially transitioning over time). Because high school

takes six years to complete and we add two stages after high school, this shows that no
14As we argue in De Groote and Declercq (2021), this context lends itself to the use of this

instrument as students have many school options available to them and parents are therefore not
expected to take this into account in their location decisions. Importantly, free school choice is
protected by the Belgian constitution and prevents schools from cream-skimming or prioritizing
students of the same neighborhood. Note that Heckman and Navarro (2007) do not require an
exclusion restriction. One can for example also use an identification at infinity strategy (Abbring,
2010; Heckman et al., 2016). In Appendix F I show that the main results are robust to adding
measures of travel time to high school to the equations that predict higher education outcomes.
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further structure is needed to identify CCPs and state transitions at the end of high

school and the enrollment stage of higher education. Furthermore, the dependence

on unobserved heterogeneity of CCPs and state transitions only goes through a single

unobserved factor: their type. This restriction allows for the identification of a broad

set of distributional treatment effects (Carneiro et al., 2003; Heckman et al., 2016),

which is important for the channels that drive the counterfactuals: the causal impact

of tracks and grade retention. Adding noisy measures of unobservables outside the

model is not necessary (Freyberger, 2018), but can help identification. I do this in

Appendix F to show the robustness of results.

To investigate the impact of observing measures of ability and adding unobserved

types, I provide a sensitivity analysis in Appendix F. This yields three main con-

clusions. First, including the two unobserved types or the rich measures of ability

decreases the negative impact on college graduation from the downgrade policy and

increases the negative impact of the repeat policy. Second, the total impact is mainly

driven by observed ability for the repeat policy, but by unobserved types for the

downgrade policy. Finally, adding a third unobserved type changes little to the main

results.

4.8 Estimation

I summarize the estimation algorithm and parametric assumptions in the main text

and discuss it in detail in Appendix D. It is an application of the two-stage CCP

estimator of Arcidiacono and Miller (2011):

Stage 1: estimate type distribution and reduced forms

Step 1: initial types

Assume there are two unobserved types, assign each student a random probability

and use it as weights in what follows.
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Step 2: higher education estimates

Impose functional forms for ΨHEE
j (.) and ΨHED

j (.) and estimate them as parame-

ters of a conditional logit, using maximum likelihood. Importantly, I include charac-

teristics of students (observed Si and unobserved νi) as well as the high school track

at graduation (degreeit) and the years of study delay (delayit).

Step 3: reduced forms of high school data

Recover the optimal levels of effort and the performance thresholds by estimating

an ordered logit model with index ln y∗j (xit, νi). The index is specified as a flexible

function of (xit, νi). I allow for effects of student characteristics Si and νi, that differ

by track and elective course. The track effect can change linearly with the grade.

I estimate the impact of travel time and the past track and elective course through

dit−1. Grade retention is captured by a stock variable (delayit) and a flow variable (a

dummy for repeating a grade) and I include the distances to different higher education

options.

I also estimate an ordered logit to recover the parameters of the performance out-

comes on elective courses in equation (11) and I follow Arcidiacono et al. (2023) in

obtaining predicted values of CCPs by estimating a flexible conditional logit using a

similar index as I used to model performance.

Step 4: update types

Use the likelihood contributions of CCPs, performance and higher education out-

comes by type to update the individual-level type probabilities using Bayes rule.

Repeat this until convergence of the joint likelihood.

Stage 2: estimate cost parameters

Use the logit probabilities with the CCP representation of the conditional value

27



functions to estimate the value of a degree µdegree and fixed costs C0
j (.) using maximum

likelihood, with type probabilities as weights. I assume fixed costs include a program-

specific constant, travel time, and switching costs between tracks and specializations

through elective courses. They also differ because of individual characteristics Si and

νi through an effect that is allowed to change linearly in the level of the track and by

elective course. Finally, grade retention enters through accumulated study delay and

a dummy for repeating the grade. These effects are also allowed to change linearly

with the academic level.

Finally, marginal costs cj(.) can be recovered from the FOC at the optimal levels

of effort (y∗j (xit, νi)), without imposing additional structure:

cj(xit, νi) = β
∑
ḡ

∂ϕḡ
ijt(yit)

∂yit
V̄ (xit+1(ḡ), νi) if yit = y∗j (xit, νi). (15)

Note that y∗j (xit, νi) was identified in stage 1, step 3. ∂ϕḡ
ijt(yit)

∂yit
can be calcu-

lated using the ordered logit probabilities. The CCP representation is used to write

V̄ (xit+1(ḡ), νi).

Standard errors are obtained using a bootstrap procedure.15

5 Estimation results

This section discusses the effort cost estimates and the estimates of higher education

outcomes. The model fit and details about the simulations are explained in Appendix

E.
15I sample students with replacement from the observed distribution of the data and use 150

replications. Since the EM algorithm takes some time to converge, I do not correct for estimation
error in the probabilities to belong to each type.
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5.1 Effort costs

Table 2 shows the impact of student characteristics on effort costs, while Table 3 dis-

plays the impact of study delay and program switches. Appendix Table J11 presents

the estimates of travel time, grade and track intercepts. Table J12 the interactions

of student characteristics with elective courses and Table J16 the intrinsic value of a

high school degree.

Table 2: Costs of schooling: student characteristics and academic level

Fixed costs Log of marginal costs

Baseline × academic Baseline × academic
effect level effect level

Language ability 7.5 (5.5) -36.3 (5.1) -0.64 (0.08) -0.10 (0.09)
Math ability 1.1 (5.1) -23.2 (4.5) -0.22 (0.06) -0.37 (0.05)
High SES -19.2 (15.6) -18.8 (5.8) -0.68 (0.22) 0.02 (0.10)
Male -19.2 (9.7) 17.7 (4.4) 0.74 (0.11) 0.10 (0.06)
Type 2 -41.8 (16.4) 85.6 (11.6) 3.27 (0.37) -0.37 (0.16)

NOTE. – Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale =
minutes of daily travel time. The marginal costs in the model are a flexible function of state
variables, this table summarizes them by regressing their logarithmic transformation on the
same variables that enter the fixed costs. Ability measured in standard deviations. High SES=
at least one parent has higher education degree. Type 2 = dummy equal to one if the student
belongs to unobserved type 2 instead of 1. Academic level = academic level of high school track
(0: vocational, 1: middle-practical, 2: middle-theoretical, 3: academic). Bootstrap standard
errors in parentheses.

Regarding fixed costs, the functional form assumptions are consistent with the

tables provided and the parameters are scaled in daily minutes of travel time.16 The

marginal costs are a function of probabilities in the data and other parameters of the

model (see Appendix D). For interpretational purposes, I perform an OLS regression

on the logarithmic transformation of the estimated marginal costs, using the same
16I do this by dividing by the travel time parameter in utility, which is precisely estimated:

−0.00597, with standard error 0.00054. This can be used to obtain the static elasticity (i.e. keeping
future utility fixed) of choosing an alternative with respect to its travel time (Train, 2009, pp59):
−0.00597 × timeijt × (1 − ˜pijt), with ˜pijt the predicted choice probabilities. In period 1 (when
everyone has the same choice set), this is on average −0.17.
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structure as for fixed costs.17

Cognitive ability has large effects. The fixed costs of the benchmark vocational

program is not affected in a statistically significant way, but there are large differences

between tracks. Specifically, a one standard deviation increase in language ability

leads to a decrease in fixed costs equivalent to an additional 36 minutes of travel time

to school for each unit increase in the academic level. Such an increase in math ability

decreases this cost by 23 minutes. Marginal costs are affected too. An increase of 1%

of a standard deviation in language ability leads to a decrease of 0.6% in marginal

costs in the vocational track (level=0), and 0.9% in the academic track (level=3). For

math ability we find a 0.2% decrease in marginal costs in the vocational track, but a

much larger 1.3% decrease in the academic track.18

Conditional on cognitive ability, high SES students are still more favorable towards

programs of higher academic level, decreasing fixed costs by 19 minutes for each step

increase in the level of the track. This could reflect intrinsic preferences for being in

a higher track or parents encouraging their children to choose tracks that are more in

line with their own education. This group also has substantially lower marginal costs.

In all tracks, a high SES student pays only half (exp(−0.68)) the cost of a low SES

student for the same increase in effort. This reflects a different study environment or

differences in the intrinsic motivation to study. Male students have a 19-minute lower

fixed cost to attend the vocational program, but the gender effect reverses for the

most academic programs. The marginal cost estimates suggest that they face greater

difficulty achieving good performance outcomes.

Observable characteristics do not fully explain the persistent heterogeneity in the

data. Appendix Table J13 reveals that 30% of students belong to type 1 and 70% to
17The main policy simulations in this paper (“downgrade” and “repeat”), as well as a simulation

where I adjust the age at which education is no longer compulsory, do not make use of this ap-
proximation. In other simulations I do use this approximation because it is more convenient and
transparent to adjust them for the counterfactual.

18I also estimated a model where academic level is proxied by the hours of academic courses (which
varies over both tracks and grades) and obtain similar results.
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Table 3: Costs of schooling: repeating and switching

Fixed costs Log of marginal costs

Baseline × academic Baseline × academic
effect level effect level

Repeat 274.7 (33.2) 79.9 (13.1) 0.24 (0.19) -0.46 (0.12)
Study delay -9.9 (6.9) 10.0 (4.9) 0.64 (0.10) 0.11 (0.06)

Downgrade 169.1 (21.9) 0.17 (0.09)
Upgrade 325.7 (41.6) 0.26 (0.18)
Stay in clas -16.1 (14.7) 0.16 (0.43)
Stay in math -203.5 (26.1) 0.65 (0.28)

NOTE. – Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale
= minutes of daily travel time. The marginal costs in the model are a flexible function of
state variables, this table summarizes them by regressing their logarithmic transformation on
the same variables that enter the fixed costs. Academic level = academic level of high school
track (0: vocational, 1: middle-practical, 2: middle-theoretical, 3: academic). Downgrade:
switch to a lower academic level. Upgrade: switch to a higher academic level. Clas= classical
languages included. Math= intensive math. Bootstrap standard errors in parentheses.

type 2. Type 1 students excel in high academic tracks and face much lower fixed costs,

equivalent to 86 minutes of daily travel time for each step increase. They also have

much lower marginal costs, paying only 4% to 12% of the costs of type 2 students.19

Table 3 shows how track choices and grade retention impact costs during high

school.

Study delay, i.e. past grade retention, increases marginal costs, potentially due

to demotivation. Repeating a grade in programs of high academic level decreases

marginal costs, possibly due to familiarity with course material. However, the fixed

cost estimates suggest that students strongly dislike repeating a grade.

Finally, students do not like to switch programs. Both down- and upgrading is

associated with much higher fixed costs. Note that upward mobility is only allowed in

the first two high school grades, but also here we see larger costs than for downward

switching. This could reflect the difference in the way schools advertise this possibility
19In the benchmark (=vocational) track this is exp(−3.27) = 4%, in the academic track it is

exp(−3.27 + 3× 0.37) = 12%.
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as downward mobility is common, while upward mobility rarely happens.20 Both

types of mobility increase marginal costs, but the estimates are not precise. Note

that this does not imply that a switch cannot reduce costs as it could lead to a better

match between ability and track.

5.2 Higher education

Estimates for higher education can be found in Appendix Tables J17, J18, and J19.

Distance and student characteristics, including the unobserved types, impact college

enrollment and graduation. To facilitate the interpretation of the effect of high school

study programs, I calculate the Average Treatment effects on the Treated (ATT) and

compare this to the difference in means in the data in Table 4.

This number is calculated as a "ceteris paribus" effect, i.e. keeping all other

variables that were realized before or at the time of leaving secondary education fixed

(see Appendix D.6). Similarly, I calculate the effect of one year of study delay by

comparing outcomes for retained students in the counterfactual scenario where they

would not have accumulated study delay.

Most estimates point in the same direction as a comparison of means, but to a

much smaller extent. Graduating from the academic track (without classical lan-

guages or intensive math) increases college graduation by 20 % points compared to

the middle-practical track. This shrinks to 9.5% points when compared to the middle-

theoretical track. Elective courses mainly matter for the type of higher education but

we also see increased graduation rates for students who had classical languages or

intensive math.

Study delay decreases higher education enrollment by 5 % points and graduation

by 12 % points.
20In Appendix E I show predictions of a model that encourages upward mobility.

32



Table 4: Higher education and high school outcomes: difference in means and ATTs

Enrollment Degree

Mean diff ATT Mean diff ATT

Study program
Academic

clas+math 5.1 (1.1) 1.7 (0.3) 20.1 (2.3) 8.2 (1.9)
clas 5.2 (0.9) 1.2 (0.2) 16.4 (2.6) 5.4 (2.1)
math 3.7 (1.0) 2.6 (0.3) 14.0 (2.2) 9.6 (1.8)
other benchmark benchmark

Middle-Theoretical
math 5.1 (1.1) 4.0 (1.5) -1.3 (4.2) 5.8 (3.9)
other -15.2 (1.8) -5.9 (2.1) -26.2 (2.6) -9.5 (2.8)

Middle-Practical -39.3 (2.2) -26.4 (2.8) -46.6 (2.6) -20.1 (3.2)

Vocational -80.7 (1.7) -64.6 (3.3) -71.5 (1.9) -37.2 (3.4)

One year of study delay -26.0 (1.7) -4.9 (1.1) -33.9 (1.4) -12.3 (1.3)

Data 58.2 44.0
NOTE. – Effects on enrollment and degree completion after graduating from different high
school programs, compared to graduating from the academic track without clas or math option,
and the effects of one year of study delay, compared to 0. Average treatment effects on the
treated (ATT) make use of the estimates of enrollment and graduation equations. ATTs are
calculated using indexes, specified in Appendix D, for each individual at the realization of other
variables. Effects on obtaining higher education degree are total effects, i.e. they also take into
account effects through enrollment. Clas= classical languages included. Math= intensive math.
Bootstrap standard errors in parentheses.

6 Counterfactual tracking policies

As explained in section 3, teachers determine if a student has the skills to move to

the next grade in their program. 35% of students receive a B-certificate at some

point during their secondary education, meaning their performance is insufficient to

transition to the next grade unless they decide to switch to a different program. The

status quo scenario presents these students with two options: repeat or downgrade.

I compare this to two counterfactual scenarios that force each option:
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Counterfactual 1: Repeat

Students have to repeat a grade when they obtain a B-certificate. It makes

the system less flexible and allows us to quantify the importance of the current

flexibility.

Counterfactual 2: Downgrade

Students have to switch to a different program when they obtain a B-

certificate, without repeating the grade. It resembles a new policy in Flanders

to reduce grade retention and allows us to quantify the importance of offering

students the possibility to ignore the advice of teachers.

I first discuss the predicted effect of each policy.21 I then discuss the role of

parental background and other sources of heterogeneity in the current and alternative

tracking contexts and I conclude with a discussion on optimal policy. Details about

the calculation of welfare effects, as well as alternative policy simulations, can be

found in Appendix E.

6.1 Policy impact

I first discuss the results in the model of effort choice and then show the difference if

we would have used a pure discrete choice model instead.

6.1.1 Model with effort choice

Table 5 compares the outcomes of the two counterfactuals to the status quo scenario.

The "repeat" policy leads to worse outcomes, as it fails to significantly increase

graduation rates from the academic track and increases dropout rates by 4% points,
21The downgrade policy is part of a reform in secondary education and is applied on cohorts

that entered high school from September 2019 on. In the implementation of the policy, it is still
possible in some cases to repeat the grade but only if students get their teachers’ explicit permission
(source: answer by the Flemish minister in parliament at 4 October 2018 on question 2410 in period
2017-2018).
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a 28% increase in the total number. Moreover, the share of students with grade

retention increases substantially (9 % points), causing enrollment and graduation

rates in higher education to drop by 2 % points. The SES gap in college remains

unaffected. Assuming an opportunity cost of $10/hour, I find that student welfare

decreases on average by $2, 140, mainly driven by the increase in fixed costs resulting

from repeating grades. The increase in dropout rates also reduces the expected payoff

after leaving high school, as these students are unable to enroll in college. The increase

in grade retention and the decrease in college graduates are also expected to have large

negative externalities that are not considered in this exercise.

The “downgrade” policy results in a decrease in grade retention rates by 10 %

points and dropout rates by 1.6 % points. This comes with a cost in the short run.

Students switch to programs of lower academic level, which decreases enrollment rates

in higher education by 1.4 % points. Graduation rates only decrease by an insignif-

icant 0.3 % points (or less than 1% of the total number), which can be explained

by the negative effect of study delay on graduation. Again, the SES gap in college

remains unaffected. The policy restricts the choice set of students, leading to an

average welfare loss of $1, 020, despite a reduction in the fixed costs of $480 and an

increase in their expected payoff after high school of $320.22 The loss is explained by

an increase in effort (variable costs increase by $210), but also a loss of $1, 610 in taste

shocks. The latter captures unobserved, time-varying preferences such as preferences

for certain teachers or classmates.
22Since we close the model after high school, the utility of enrolling in college is the students’

expected lifetime utility at the time they leave high school. These expectations can be biased. By
simultaneously predicting higher education graduation, we can see that the negative impact of study
delay is much larger for graduation than for enrollment (see Table 4). Similarly, the counterfactual
impacts the college enrollment rate but it does not have a significant impact on the number of college
graduates. If students ultimately care about graduation, rather than enrollment, it suggests that
they might underestimate the negative consequences of study delay in the long run. It is therefore
possible that the increase in the expected payoff is substantially smaller than the increase in the
actual payoff.
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6.1.2 Difference with the pure discrete choice model

To demonstrate the importance of allowing effort to be a choice variable, Table 6

compares the counterfactual predictions with those from a pure discrete choice model.

Note that stage 1 of the estimator identifies the type distribution, the reduced forms

of high school and the higher education estimates. These are the same in the pure

discrete choice model. The only difference is that in stage 2 “fixed” costs now cap-

ture the entire flow utility and are therefore also re-estimated (i.e. there is no term

cj(xit, νi)yit in the utility function (13) anymore).

A model without effort choice leads to worse results in both counterfactuals. For

example, the increase in study delay in the “repeat” policy is 11.6 % points instead of

9.5. The decrease in the “downgrade” policy is 9.2 % points instead of 9.8. For higher

education, we would conclude that there is an important negative impact on higher

education graduation from the “downgrade” policy (−1.1 % points), while the model

with effort choice only estimates an insignificant and small effect of −0.3.

The difference in results can be attributed to the impact of the policy on study

effort. Both counterfactuals decrease the value of a B-certificate. In a dynamic model

with program choices, students can avoid this by choosing programs with higher

success rates. With effort in the model, they could instead improve their success rate.

Particularly students who are likely to receive a B-certificate and who dislike the new

policy are expected to pay this cost.

In Appendix G I show that the new policies increase effort at the beginning of

secondary education. The impact is most clear for the predicted number of bad

performance outcomes in Table 6, and especially B-certificates. In the “repeat” policy,

the decrease in the number of B-certificates is only 62% of the decrease in a model

where students can adjust their study effort. In the “downgrade” policy it is only 25%.

This has important implications. First, there is a smaller increase in study delay in

the “repeat” policy and a stronger decrease in the “downgrade” policy. Second, more

students are staying in academic programs. This increase in study effort is what
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explains the impact on variable costs in models with effort choice, but the impact

on total student welfare is the same. The more favorable higher education outcomes

compared to a pure discrete choice model are a result of the decrease in dropout, the

increase in students graduating from academic programs, and the decrease in study

delay.

6.2 Parental background and other initial conditions

Early tracking of students can worsen the impact of initial conditions, especially

parental background, on educational choices. To understand this impact in the status

quo and the two counterfactual scenarios, I run regressions on the main outcomes of

interest from all the simulated data. This summarizes the ceteris paribus impact

of each initial condition in the status quo and counterfactual scenarios. I then run

additional simulations to decompose the effects of parental background on the most

important outcomes.

The regression results can be found in the Appendix Table J20. I find that the

impact of the “repeat” or “downgrade” policy does not vary much with student char-

acteristics. However, the direct impact of initial conditions on outcomes is large. A

decrease in language ability by 10% of a standard deviation makes a student 0.7 %

points less likely to obtain study delay, 0.7 % points less likely to drop out, 1.5 %

points more likely to graduate from college and derive $1, 627 more from the high

school system. The impact of math ability is similar but less important for study

delay. The impact of high SES and being female is identical in sign and similar in

magnitude to a standard deviation increase in ability, while the differences between

the two unobserved types are about twice this size.

The results of giving low SES students some of the high SES parameters or initial

conditions can be found in Appendix H. They can be summarized as follows: (1)

the main reason behind the SES gap in college is coming from ability before high

school entry, (2) encouraging low SES students to opt for more academic programs
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by providing them with the fixed costs of high SES students reduces the SES gap

but increases study delay. The latter can be avoided by bringing their marginal costs

also down to the level of high SES students (e.g. due to a potentially better study

environment).

6.3 Conclusions for optimal policy

We can derive two main conclusions to inform optimal policy.

First, it’s better to encourage underperforming students to switch to lower tracks

instead of repeating a grade. The lack of a downgrade option in the “repeat” policy

does not help them to succeed in a more academic track and comes at a high cost in

terms of welfare. However, this does not mean that the status quo policy of allowing

students to choose is optimal. The “downgrade” policy shows that reducing study

delay and dropout is possible without negative consequences on higher education

graduation by forcing them to downgrade. While such a reduction in the choice set

inevitably leads to a decrease in estimated welfare, it can be argued that the “down-

grade” policy is still beneficial for society.23 First, OECD (2012; 2013) estimates show

that the per capita loss of students ($1, 020) is close to the government saving by fi-

nancing fewer years of schooling ($950). Moreover, gains from a year in taxes yield an

additional $1, 960. The decrease in dropout and the improved efficiency of higher ed-

ucation (which is 90% government-funded) would generate even larger returns. There

are also reasons to believe that students gain directly from the “downgrade” policy in

a way we did not account for in the model. Assuming students can be represented

by rational agents rules out ex-ante mistakes. The increasing evidence in the con-

text of educational decisions shows that regulating choices could also improve student
23I also investigated alternative policies that do not restrict students’ choice set: the impact of

lowering the age of compulsory education, and allowing for upward mobility, the results can be found
in Appendix E. Lowering the age of compulsory education reduces grade retention because it gives
underperforming students an alternative way out. However, it also increases drop out substantially.
Unrestricted upward mobility reduces graduation from the vocational track, but it also shifts many
students into programs in which they underperform, leading to negative outcomes resulting from
the increase in study delay.
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welfare (Bhargava and Loewenstein, 2015; Koch et al., 2015; Lavecchia et al., 2016).

In Appendix I, I discuss that counterfactual choice probabilities are likely robust to

common sources of mistakes, but that welfare estimates can be biased, implying that

students would be better off with the “downgrade” policy than predicted.

Second, the initial conditions of students when they enter high school have a big

impact on outcomes in all tracking policies considered here. Parental background

matters, mostly (but not only) because it is correlated with ability before entering

high school.

In summary, high schools should focus on efficiently fostering skills that students

have already acquired and avoid having them repeat grades in pursuit of an aca-

demic curriculum, which is both ineffective and costly. This is consistent with the

research on the benefits of early childhood education and its dynamic complemen-

tarities (Cunha and Heckman, 2009; Cunha et al., 2010; Heckman and Mosso, 2014).

The cost savings resulting from reducing study delay could be invested in improving

initial conditions and thereby improving student outcomes. Appendix E.4 provides

back-of-the-envelope calculations of the expected effects.
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Table 5: Counterfactual tracking policies: implications B-certificate

Status quo Changes after Changes after
prediction repeat policy downgrade policy

Educational outcomes (%):
Final high school track

Academic 40.02 0.17 (0.30) -1.13 (0.32)
Middle-theoretical 16.10 -0.96 (0.29) -1.52 (0.26)
Middle-practical 8.14 -1.13 (0.24) -0.77 (0.26)
Vocational 21.57 -2.01 (0.32) 5.03 (0.29)
Dropout 14.17 3.94 (0.33) -1.61 (0.25)

At least 1 B-certificate 37.53 -10.23 (0.71) -3.49 (0.34)
At least 1 C-certificate 30.69 -0.23 (0.33) -2.15 (0.24)
At least 1 year of study delay 33.22 9.48 (0.57) -9.82 (0.55)

Higher education
Enrollment 58.15 -1.76 (0.24) -1.40 (0.21)
Graduation 44.25 -1.70 (0.22) -0.30 (0.18)
SES gap at graduation 39.73 0.06 (0.33) 0.11 (0.25)

Student welfare ($1000):
Fixed costs (-) 0.85 (0.12) -0.48 (0.10)
Variable costs (-) 0.49 (0.08) 0.21 (0.03)
Expected payoff after high school (+) -0.65 (0.10) 0.32 (0.07)
Taste shocks (+) -0.15 (0.10) -1.61 (0.19)

Total -2.14 (0.26) -1.02 (0.14)
NOTE. – Predictions from the dynamic effort model. C-certificate: repeat grade. B-certificate =
students acquired skills to proceed to next grade but only if they downgrade, i.e. switch to track
of lower academic level or drop an elective course. Status quo = students can choose to downgrade
or repeat grade after obtaining a B-certificate, Repeat = students must repeat grade after obtaining
a B-certificate, Downgrade = students must downgrade and not repeat grade after obtaining a B-
certificate. SES gap at graduation: difference in percentage college graduates between high and low
SES. Opportunity cost of time: $10/h. Bootstrap standard errors in parentheses.
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Table 6: Counterfactual tracking policies: differences with the pure discrete choice
model

Changes after Changes after
repeat policy downgrade policy

Effort as a choice variable Yes No Difference Yes No Difference

Educational outcomes (%):
Final high school track

Academic 0.17 -0.61 -0.78 (0.19) -1.13 -1.88 -0.75 (0.18)
Middle-theoretical -0.96 -1.32 -0.35 (0.19) -1.52 -1.88 -0.36 (0.17)
Middle-practical track -1.13 -1.73 -0.60 (0.17) -0.77 -1.00 -0.23 (0.16)
Vocational track -2.01 -1.04 0.96 (0.24) 5.03 6.21 1.19 (0.20)
Dropout 3.94 4.70 0.77 (0.20) -1.61 -1.46 0.15 (0.12)

At least 1 B-certificate -10.23 -6.32 3.91 (0.44) -3.49 -0.86 2.63 (0.29)
At least 1 C-certificate -0.23 0.22 0.44 (0.20) -2.15 -1.69 0.45 (0.15)
At least 1 year of study delay 9.48 11.61 2.13 (0.36) -9.82 -9.19 0.63 (0.27)

Higher education
Enrollment -1.76 -3.02 -1.27 (0.17) -1.40 -2.27 -0.87 (0.11)
Graduation -1.70 -2.69 -0.99 (0.15) -0.30 -1.12 -0.81 (0.09)
SES gap at graduation 0.06 0.06 0.00 (0.21) 0.11 -0.15 0.26 (0.17)

Student welfare ($1000):
Fixed costs (-) 0.85 1.26 0.41 (0.12) -0.48 -0.63 -0.14 (0.05)
Variable costs (-) 0.49 0.00 -0.49 (0.08) 0.21 0.00 -0.21 (0.03)
Expected payoff (+) -0.65 -0.95 -0.30 (0.06) 0.32 0.14 -0.17 (0.04)
Taste shocks (+) -0.15 -0.02 0.12 (0.06) -1.61 -1.76 -0.14 (0.07)

Total -2.14 -2.23 -0.09 (0.09) -1.02 -0.99 0.03 (0.05)
NOTE. – Predictions of two dynamic models. In a pure discrete choice model, students cannot adjust
study effort. In the proposed model they can because they choose the distribution of performance through
their choice of effort. Changes are with respect to the status quo prediction of each model. C-certificate:
repeat grade. B-certificate = students acquired skills to proceed to next grade but only if they downgrade,
i.e. switch to track of lower academic level or drop an elective course. Status quo = students can choose
to downgrade or repeat grade after obtaining a B-certificate, Repeat = students must repeat grade after
obtaining a B-certificate, Downgrade = students must downgrade and not repeat grade after obtaining a
B-certificate. SES gap at graduation: difference in percentage college graduates between high and low SES.
Expected payoff = Expected payoff after high school. Opportunity cost of time: $10/h. Bootstrap standard
errors in parentheses.
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7 Conclusion

I estimated a dynamic model of effort choice in secondary education in which students

choose the academic level of the study program, as well as the distribution of their

performance. I find that policies that encourage underperforming students to choose

programs of lower academic level do not reduce the number of higher education grad-

uates. Moreover, they decrease grade retention and high school dropout which creates

large savings for society that can be reinvested in early childhood education.

Future research could combine this approach with recent extensions of the pure dis-

crete choice model along other dimensions, introducing additional uncertainty about

the performance distribution due to imperfect information of students about their

ability (Arcidiacono et al., 2023) and endogenous quality of schools or programs due

to the quality of peers and effort choices of teachers (Fu and Mehta, 2018). This would

allow for counterfactuals that change the educational system more substantially, such

as deferring the age of tracking.

From a methodological perspective, I show that it is possible to allow students

to exert different amounts of effort in counterfactual simulations by exploiting only

commonly available data on program choices and performance outcomes. Further

research can apply this strategy in other contexts where agents are expected to have

some, but imperfect, control over state transitions. It would also be interesting to

test the performance of both models by using exclusion restrictions (as discussed in

Appendix A.6).
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A Identification

A.1 Identified objects in pure discrete choice models

Consider the standard setup of a dynamic discrete choice model. Each period t,

agent i chooses an option j. The decision is based on observed characteristics xit,

an unobserved type νi and unobserved iid taste shocks εit = {εi1t, εi2t, ...}. The time

horizon can be infinite or (if xit includes t) finite. Each period agent i derives some

flow utility

uj(xit, νi) + εijt

and states transition according to a process that satisfies conditional independence

(Rust, 1987):

fj(xit+1|xit, νi) = fj(xit+1|xit, νi, εijt).

Agents maximize expected lifetime utility by choosing the option with the highest

conditional value function:

vj(xit, νi) + εijt = uj(xit, νi) + β

∫
V̄ (xit+1, νi)fj(xit+1|xit, νi)dxit+1 + εijt

with V̄ (xit+1, νi) the expected value of behaving optimally after integrating over

the taste shocks.

In the case where there is no unobserved type, Magnac and Thesmar (2002) show

that data on xit and the chosen option, identify uj(xit) after specifying the utility

of a reference alternative, the discount factor β and the distribution of εijt. State

transitions fj(xit+1|xit) are nonparametrically identified. We could then use uj(.) and

fj(.) for counterfactual simulations by assuming they are invariant to policy changes.

As the iid assumption on unobserved heterogeneity is restrictive, many applica-

tions would add an unobserved state νi to capture persistent unobserved heterogene-

ity and identify uj(xit, νi) and fj(xit+1|xit, νi). I will allow for this in the rest of this
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section.24

A.2 Identification of policy-invariant functions

To relax the assumption of policy-invariance, assume instead that the functions uj(.)

and fj(.) depend on choice behavior and what we identify are therefore the endoge-

nously determined objects u∗
j(xit, νi) and f ∗

j (xit+1|xit, νi). The goal is to derive other

transformations of the data that are more likely to be policy-invariant.

Assume agents can choose the distribution of state transitions through a single

index yit such that ϕj,x̃,x̃′(yit) is the probability for i in state (xit, νi) = x̃ to transition

to state (xit+1, νi) = x̃′ after choosing j. The optimal choice of yit in a given program

j and state (xit, νi) is then given by y∗j (xit, νi) = ϕ−1
j,x̃,x̃′(f ∗

j (xit+1|xit, νi)).25 We now let

this index linearly enter the utility function:

uj(xit, νi, yit) = u0
j(xit, νi) + uy

j (xit, νi)yit (16)

with u0
j(xit, νi) a component that is independent of the choice of the index and

uy
j (xit, νi) ≡ duj(xit,νi,yit)

dyit
the marginal flow utility from changing yit.

To connect what we observe in the data with the current model, we make the

following assumption:

Assumption: In the data, agents in option j choose yit to maximize expected

lifetime utility and obtain an interior solution y∗j (xit, νi) = ϕ−1
j,x̃,x̃′(f ∗

j (xit+1|xit, νi)) with

ϕj,x̃,x̃′ a known function that is invertible and differentiable in yit.

24There are several approaches to identify type-specific uj(xit, νi) and fj(xit+1|xit, νi), see for
example Magnac and Thesmar (2002); Kasahara and Shimotsu (2009); Hu and Shum (2012), and
the discussion on identification of the application in this paper.

25For a simple case, assume xit = (xi0, git) with initial observed characteristic xi0 and a dummy
for obtaining a degree git. Assume students choose the exponential of the index of a logit on
obtaining a degree when they are in an option j that gives this possibility. We can then write
ϕj,(xi0,0),νi,(xi0,1)(ỹ) =

ỹ
1+ỹ and ϕj,(xi0,0),νi,(xi0,0)(ỹ) = 1− ỹ

1+ỹ .
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In contrast, the pure discrete choice model recovers f ∗
j (xit+1|xit, νi) while remain-

ing agnostic about how it was determined. However, when proceeding to counterfac-

tual simulations, it is not updated, i.e. it is implicitly assumed that agents cannot

affect it.

As in the pure discrete choice model, we still assume that agents choose the option

j that generates the highest expected lifetime utility. Conditional value functions now

depend on yit:

vj(xit, νi, yit) + εijt = uj(xit, νi, yit) + β

∫
V̄ (xit+1, νi)ϕj,x̃,x̃′(yit)dxit+1 + εijt.

Solving this for the optimal yit, the following FOC has to be satisfied:

uy
j (xit, νi) = −β

∫
V̄ (xit+1, νi)

∂ϕj,x̃,x̃′(yit)

∂yit
dxit+1 for yit = y∗j (xit, νi) (17)

with the left-hand side equal to the marginal flow utility i receives today from

increasing yit, and the right-hand side the expected decrease in future utility. Since

ϕj,x̃,x̃′ is invertible and differentiable, we can identify the optimal value of yit in the

data (y∗j (xit, νi)) and calculate the derivative at this point. Identification of all flow

utilities with optimal choices also implies the identification of V̄ (xit+1, νi). β is taken

as given. Therefore, we can identify uy
j (xit, νi) using this FOC. With uy

j (xit, νi),

y∗j (xit, νi) and u∗
j(xit, νi) identified, we can use (16) to identify u0

j(xit, νi).

We have now identified two new functions of state variables in the model: the

marginal utility of a change in the index of state transitions uy
j (xit, νi), and a compo-

nent in the utility function that is independent of the distribution of state transitions

u0
j(xit, νi). We can do this for different choices of ϕj,x̃,x̃′(yit), giving some flexibility to

researchers to choose what remains fixed in counterfactual simulations. Two aspects

are important for this choice. First, by choosing ϕj,x̃,x̃′ , the researcher effectively

chooses for which transformation of state transitions the linearity assumption holds,
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i.e. for which transformation the marginal impact on flow utility can be considered

policy-invariant. Second, the choice of ϕj,x̃,x̃′ should be consistent with a high-level

assumption that the FOC (17) is satisfied in the data (as an interior solution is re-

quired). If not, the FOC cannot provide the identifying power we need. Note that

we only need this for identification. In counterfactual simulations, we can allow for

corner solutions.

A.3 Extension: a vector of choice variables

With multiple stochastic variables, ϕj,x̃,x̃′(yit) is a joint probability that depends on

a scalar yit. Alternatively, we could also invert each of them separately and obtain

a vector of choice variables y′it = (y1it, y
2
it, ..., y

Gy

it ), with Gy, the number of stochas-

tic variables of which the distribution is chosen by i. We can extend the linearity

assumption in the utility function to each element of yit. This yields the same equa-

tion (16) but with yit a vector. We can then identify a vector for the parameters

uy
j (xit, νi) = (uy1

j (xit, νi), u
y2

j (xit, νi), ...) by using the following first-order system of

equations:

uy1

j (xit, νi) = −β

∫
V̄ (xit+1, νi)

∂ϕj,x̃,x̃′(yit)

∂y1it
dxit+1 (18)

uy2

j (xit, νi) = −β

∫
V̄ (xit+1, νi)

∂ϕj,x̃,x̃′(yit)

∂y2it
dxit+1

... (19)

for yit = y∗j (xit, νi) (20)

Note that in most cases (also when yit is a scalar) it will not be possible to obtain

closed-form solutions for y∗it. While the status quo optimum can be recovered from

the data (y∗j (xit, νi)), counterfactual simulations will still require computationally-

intensive methods (e.g. a grid search) which becomes more intensive when yit is a

vector. This is why in the application we use a singleton yit by integrating it out
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of the distribution of track restrictions. We then estimate how other performance

outcomes depend on it and we allow for a (policy-invariant) comparative advantage.

A.4 Extension: long-lasting effects of yit

In certain cases we can allow for a direct impact of yit beyond t+1. This is for example

useful when performance only proxies the accumulated human capital and misses an

investment that would only realize in future outcomes. Consider a utility function

which depends on the past level of yit in a flexible way (a similar approach can be

applied to allow for further lags, or to take into account some (weighted) average of

past levels of yit):

uj(xit, νi, yit, yit−1) = u0
j(xit, νi, yit−1) + uy

j (xit, νi, yit−1)yit (21)

This leads to the following conditional value function:

vj(xit, νi, yit, yit−1)+εijt = uj(xit, νi, yit, yit−1)+β

∫
V̄ (xit+1, νi, yit)ϕj,x̃,x̃′(yit)dxit+1+εijt.

In period t, i solves the following FOC, given the optimal value that was chosen

in t− 1:

uy
j (xit, νi, y

∗
it−1) = −β

∫ (
∂̄V (xit+1, νi, yit)

∂yit
ϕj,x̃,x̃′(yit) + V̄ (xit+1, νi, yit)

∂ϕj,x̃,x̃′(yit)

∂yit

)
dxit+1

for yit = y∗j (xit, νi, y
∗
it−1) .

A first difference is that we now need to identify y∗it = y∗j (xit, νi, y
∗
it−1), rather

than y∗it = y∗j (xit, νi) from the data. Assuming we observe the first period in which

effort can be exerted, we can first identify y∗j1 = y∗j (xi1, νi) and use it as a predictor

for y∗j2 = y∗j (xi2, νi, y
∗
i1). Note that y∗j2 will only be different if y∗i1 depends on other

variables than (xi2, νi), i.e. if xi1 ̸= xi2. However, we only need to know the predicted
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value y∗j2, implying that we do not need time-varying state variables here as we do

not need to distinguish the effect of y∗i1 from the effect of xi2.

A second difference is that we need to calculate the derivative of the ex-ante value

function with respect to yit:
∂̄V (xit+1,νi,yit)

∂yit
. This follows from the fact that future

values, and not only state transitions, are influenced by the current level of yit. Here

we do need to distinguish between the effect of yit and xit+1, and therefore require

xit ̸= xit+1. In certain applications, this derivative can be easy to find. In the example

of section 2, we used extreme value type 1 error terms which result in a simple closed-

form expression for the ex-ante value function. Moreover, we explained that if finite

dependence (one period ahead) holds, we can write it is as a function of the CCPs

only. We now need the CCPs to be predicted by (xit+1, νi, y
∗
it), and differences arise

when xit ̸= xit+1. Moreover, we need to know ∂ ln Pr(dit+1=0|xit+1,νi,yit)
∂yit

|yit=y∗it
, which

illustrates the need to separately identify the effect of y∗it from xit+1.

Similar as before, we identify u0
j(xit, νi, y

∗
it−1) by rewriting (21) at the optimal level

y∗it. We identified all y∗it and uy
j (xit, νi, y

∗
it−1) in the previous paragraph. uj(xit, νi, y

∗
it, y

∗
it−1)

is what is identified using the standard Magnac and Thesmar (2002) conditions, pro-

vided we now also include the state variables that predict y∗it−1.

Note that identification and estimation can be achieved here without having to

solve the full model, however, this is needed for counterfactuals. This is made sub-

stantially more complicated by introducing a dependence on past values of yit. If

we solve the model by backward induction, we need to know the optimal choices in

t + 1, conditional on each value of yit, instead of only keeping track of the state it

changes in t + 1 (in the application: the choice set restrictions or the high school

degree). This is the main reason to not pursue this in the application of the paper.

A concern there is that higher education outcomes might be directly affected by the

effort exerted all through high school, while we only capture it in the way it influences

their high school programs and the years of study delay. Appendix F shows that this

is likely not the case here. To do this, I exploit additional test score data to show that
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past values of effort are unlikely to have an important impact on higher education

outcomes, beyond what we do allow for in the model.

A.5 Example with continuous outcome

The toy model in section 2 shows an example of a two-period model with a binary

outcome, while the application allows for a vector of discrete outcomes and multi-

ple periods and alternatives. To clarify the generality of the approach, this section

discusses the case of a continuous outcome variable. This specification is similar to

Ahn et al. (2022), but without using a proxy for effort. Moreover, the model in Ahn

et al. (2022) is static, while I use the dynamics here to identify the benefit of a higher

grade.

In this example I make two changes to the model of section 2: first, assume

the outcome variable is a continuous test score gi. We normalize the test score by

subtracting the mean and dividing it by its standard deviation. From the perspective

of a student, we assume this score follows a normal distribution with mean ln(yi) and

standard deviation σ: N(ln(yi), σ
2). yi ∈ (0,+∞) is the effective study effort and

allows students to set the expected value of grades. σ is a parameter to be estimated,

assumed to be policy-invariant. As the optimal value is the same for students with

the same state variable in the initial period we can write y∗i = y∗(xi). σ captures the

predictability of test scores.

Second, as gi no longer captures degree completion, we assume anyone can enroll in

higher education after attending high school, removing the dependence of the choice

set on gi. Instead, we allow the utility of enrolling in college to be a function of grades:

Ψ1(xi, gi), with ∂Ψ1(xi,gi)
∂gi

> 0. This could capture a higher chance to be accepted in

college, or a higher utility when better prepared. It can be estimated using choice

data for students that obtained different grades.
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yi is chosen optimally in the conditional value function of j = 1:

v(xi, yi) = −C0(xi)−c(xi)yi+βγ+β

∫
(ln (1 + expΨ1(xi, gi)))ϕg(ln(yi), σ

2)dg (22)

with ϕg(ln(yi), σ
2) the density of the grade distribution. As in the discrete context,

I specified the distribution of performance to capture that it is generally harder to

improve an outcome if it is already high. I assume a constant marginal cost for a

unit increase in yi, which is the exponential transformation of the expected grade.

At the mean of the overall grade distribution, c(xi) is the marginal cost to improve

the grade. However, at higher values, paying c(xi) leads to smaller increases in the

grade.26

A solution for yi has to satisfy the following FOC:

c(xi) = β

∫
(ln (1 + expΨ1(xi, gi)))

∂ϕg(ln(yi), σ
2)

∂ ln(yi)

1

yi
dg if yi=y∗i

The right-hand side captures the marginal benefits and can be found using the

density function of a normal distribution: ∂ϕg(ln yi,σ
2)

∂ ln yi
= (g−ln yi) exp(−0.5(ln yi−g)2/σ2)

σ3
√
2π

. As

in the discrete case, ruling out yi = 0, implies an upper bound on the marginal

cost estimates. We also need to rule out infinitely large yi. Costs grow expo-

nentially in the expected grade. Also, when yi grows, ∂Ψ1(xi,gi)
∂gi

> 0 ensures that

ln (1 + expΨ1(xi, gi)) → Ψ1(xi, gi). A sufficient condition to rule out infinite yi is

therefore to impose weakly decreasing returns (∂
2Ψ1(xi,gi)

∂g2i
≤ 0), e.g. a constant return

to gi.27

While continuous state variables are often used in dynamic discrete choice models,
26Note that ∂gi

∂yi
= 1

yi
and the mean of the grade distribution (0) is obtained by setting yi = 1.

27Alternativally, we can choose a truncated normal distribution for the grades, with a truncation
by the minimum and maximum possible test score. In this case, yi is more difficult to interpret
as ln(yi) is no longer the mean of that distribution. However, it is still the mode if it does not
cross the boundaries of the distribution. A benefit from this distribution is that we do not need
to assume decreasing returns to test scores. As in the discrete case, benefits are bounded by the
maximum grade, while yit remains unbounded, meaning that marginal benefits and marginal costs
will intersect as long as ∂Ψ1(xi,gi)

∂gi
> 0.
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they usually require discretization or interpolation to be solved (Aguirregabiria and

Mira, 2010). Moreover, identification results make use of discrete state variables

(Magnac and Thesmar, 2002). It is therefore useful to write the model by discretizing

the grade distribution in K bins. The conditional value functions are then:

v(xi, yi) = −C0(xi)− c(xi)yi + βγ

+ β
K∑
k=1

((F (gk)− F (gk−1)) (ln (1 + expΨ1(xi, gi = gk))))

with F (gk) the cdf of the grade distribution evaluated at gk, with F (g0) = 0 and

F (gK) = 1. Similarly, the FOC can be derived:

c(xi) = β
1

yi

K∑
k=1

(
dF (gk)

d ln yi
− dF (gk−1)

d ln yi

)
(ln (1 + expΨ1(xi, gi = gk)))

if yi=y∗i .

with dF (gk)
d ln yi

= − 1
σ
ϕ̃(gk−ln yi

σ
) and ϕ̃ the pdf of a standard normal distribution.

Note that the optimal level of effort y∗i is identical for students in the same state:

y∗i = y∗(xi). With grades distributed N(ln(yi), σ²), y∗(xi) can be obtained from

an OLS regression of grades on a flexible function of xi. The estimated mean is

then ln y∗(xi), while the variance of the error term provides an estimate of σ2. In a

counterfactual, we keep σ2 fixed but look for new values of y∗i .

Finally, an alternative model can be proposed that implies discretization from the

very start. The ordered logit structure that is used in the application in this paper

can also be used for grades that take many values. The main difference is the way

the linearity assumption in the utility function is implemented. The current model

implies a constant marginal cost in the exponential transformation of the expected

value of grades. The ordered logit structure instead assumes a constant marginal cost

to increase the odds of avoiding the lowest outcome.
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A.6 The difference with a pure discrete choice model

A pure discrete choice model (in the simple context discussed in section 2) will assume

that u∗(xi) and y∗(xi) are policy-invariant functions. In this paper we treat them as

endogenous outcomes, with two alternative model components assumed to be policy-

invariant: fixed costs C0(xi) and marginal costs c(xi).

The importance of this change is easy to see when we consider a counterfactual

simulation that raises the value of college (Ψ1(xi)). In both models, this would have

a direct impact on college enrollment among high school graduates through (2). In

a dynamic model, it also impacts the school choice in t = 1 because students know

a high school degree is required to enter college (see (3)). However, only the effort

model allows the probability to obtain a degree ϕ(yi) to be affected too. Figure

A1 shows the difference between models graphically for a given value of xi, which I

omit in the discussion. The marginal benefit of increasing y is b = β
(

ln(1+expΨ1)
(1+y)2

)
.

Figure A1: Equilibrium effort in status quo and counterfactual

Note: Marginal costs (c) and benefits (b) of different levels of effort (y) for a given value of individual
characteristics. The upward shift in marginal benefits simulates a counterfactual increase in the value
of better performance through the value of college. Stars denote optimal values. Pure denotes the
counterfactual optimum in the pure discrete choice model, eff denotes the counterfactual optimum in
the effort model.

A10



We can identify y∗ from the data, which chooses a point on the marginal benefit

curve: b∗. Now consider a counterfactual increase in the college value: Ψ′
1 > Ψ1.

This shifts the marginal benefit curve upwards: b′ > b. The effort model assumes

a policy-invariant marginal cost that should equal the marginal benefits: b
′∗
eff = b∗.

Therefore, effort increases: y′∗
eff > y∗. Instead, a pure discrete choice models assumes

a policy-invariant effort level: y
′∗
pure = y∗. Note that this implies b

′∗
pure > b∗. If there

is such policy variation in the data, we could test which of the two sets of conditions

holds. Similarly, exclusion restrictions could be used. Let zi be a variable affecting

future values (here the college value), but not marginal costs. This will cause a shift

of the marginal benefits curve. The effect of zi could be non-monotonic, especially

in more complex models, thereby making it difficult to learn from inequalities. Still,

a sufficient condition to reject the pure discrete choice model would be y∗(xi, zi) ̸=

y∗(xi). This test is straightforward because obtaining estimates of y∗(xi, zi) is a first

step in estimating either model. Therefore, we can look at the statistical significance

of zi. To reject the effort model, a sufficient condition would be b∗(xi, zi) ̸= b∗(xi).

Alternativally, the analysis shows we need to choose between two sets of assump-

tions: a pure discrete choice model that assumes performance is exogenous to policy

changes, or a dynamic model of effort decisions that assumes students optimally

choose the probability to perform well at a marginal cost that is policy-invariant.28

The former is best suited in a context where performance outcomes mainly serve to

measure a level of ability or knowledge. For high-stakes exams, assuming students

optimize the probability to do well is more reasonable. We can also take a conserva-

tive stance and consider that both models put reasonable bounds on counterfactual

predictions. As can be seen in Figure A1, the pure discrete choice model can also be
28As in Keane and Wolpin (1997), one could also avoid modeling performance and ignore a year

of schooling that is not successfully completed, i.e. di1 = 1 only if we also observe gi = 1. This
way, we do not need to take stance on the process of gi. A counterfactual change in di1 now also
captures the students that were already in school but needed this extra incentive to get a degree.
The problem with this approach is that we do not observe how the probability to obtain a degree
changes because of the policy and we cannot run counterfactuals that change the implications of
that.
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interpreted as an effort model with a perfectly inelastic marginal cost curve, instead

of a perfectly elastic one. A marginal cost curve that increases with the level of effort

would result in a counterfactual level in between the two equilibria. However, since

effort was defined as the odds of success, it is unclear if we should expect increasing

marginal costs as this choice of functional form was already motivated by the fact

that increasing the probability of success is likely harder when it is already high.

Because there is no policy variation in the data, I cannot test that the model

of effort choice performs better in this dataset. However, there is a variable that is

reasonable to exclude from marginal costs and could shift effort: distance to college.

As explained in section 4.8, I estimate levels of effort in the data as the exponential

transformation of the index of an ordered logit model. The result of this ordered logit

model is given in Table J10. Several measures of distance to higher education are

indeed statistically significant. However, I do not make strong claims in the context

of these data as distance to college is not a strong predictor of effort because all

students live close to a college. I also cannot exclude they affect the marginal benefits

in the data. Note that this is difficult here as the marginal benefits are the estimated

marginal costs of the effort model, which are recovered from (15). This depends on

flexible, but parametric, approximations of both CCPs and effort which both depend

on distance to college. It is therefore unlikely the approximation is sufficiently good

to exactly cancel out the effect on effort by the effect on the CCPs.

In other contexts, it has been shown that performance responds to policy changes

because of changes in study effort (Costrell, 1994; Dubois et al., 2012; Garibaldi

et al., 2012). Consider for example Dubois et al. (2012) who study the impact of a

cash transfer experiment on a dummy performance outcome, required to transfer to

the next grade. For the treatment group, transfers increased with school grade and

stopped after graduation. The authors show in a theoretical model of effort choice

that this created a dynamic incentive to perform well in early grades, as the increase

in value creates incentives similar to our example of increasing college value. In later
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grades there is an opposite effect as the transfer stops after graduation, giving an

incentive to repeat grades to stay in school. The theoretical results are confirmed in

the experimental data.
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B Data appendix

B.1 The LOSO dataset

The dataset used for this paper is the LOSO dataset.29 The first part of the data con-

tains rich information about students and their parents, and choices and performance

measures during high school in the region of Flanders (Belgium). We can follow a

cohort of students starting high school in 1990. I also include results from follow-up

research, called “LOSO-annex”, which looked into the education and labor market

career in the first three years after leaving high school (academic years starting in

1996 until 1998 for most students, but later for those with study delay). This data

was later enriched by sending questionnaires during 2003-2005 to students that were

still in the educational system in the questionnaire before.

The students are not randomly selected over Flanders. Instead, two large subre-

gions of Flanders were defined that are considered to be representative of the entire

region.30 In these regions, almost all schools are included, and within each school,

every student is included. The first subregion is in the east part of Flanders and in-

cludes the municipalities Hasselt, Genk, Beringen, Leopoldsburg, Herk-de-Stad, and

Diest. The second subregion is more to the west and contains the schools in Dender-

monde, Hamme, and Zele. Data was collected from students, parents, teachers, and

schools, and they were actively contacted by researchers on multiple occasions. This

is why the data is of high quality and there is very little attrition. Even if a student

decides to leave his school for a school that was not initially part of the project, it

was still possible to collect the necessary information.
29See also https://ppw.kuleuven.be/onderwijskunde/projecten/longitudinaal-onderzoek-

schoolloopbananonderzoek/losodatabank.
30To test the representativeness of the data, I compared higher education enrollment number (58%)

to population data. For Belgium as a whole, I find an almost identical number around the same time
period: 56% in 1996 and 57% in 1999 (UNESCO Institute for Statistics, indicator SE.TER.ENRR).
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B.2 Sample selection

I only keep the 6,439 students in the dataset that are known as ’proefgroepleerlingen’.

These are students that are tracked from the start of high school, even if they move

to another school. The dataset also contains a large number of observations of inflow

in schools over time but these are not used in this study. From these students, I

eventually keep 5,158 students to estimate the model.

The model in this paper captures the main aspects of the education system but

also makes some simplifications, implying that it cannot explain every observation

in the data. Moreover, some data on the choices or outcomes that are needed for

the estimation are missing. Table B1 summarizes the attrition. More details on why

observations had to be dropped follow next.

B.3 Data interpretation

Some information in the data is not straightforward to use in the model. Therefore,

I create or adjust some of the information to capture the spirit of the educational

system with the model, without overly complicating it to capture all anomalies in the

data. In particular, I perform the following manipulations.

First, students who are successful in the first grade of the vocational track can go

to the first grade of another track. I do not allow for this possibility in the model. In-

stead, I make these students look as if they entered the non-vocational track after an

additional year of study delay in elementary school. Second, B-certificates often ex-

clude specific programs like technical education-science, or accountancy-informatics,

and not always entire study programs as defined in the model. In many cases, only

“unrealistic” alternatives remain within the same study program that I include in the

model (e.g. a program that is not available in any school in the neighborhood). To

avoid modeling every single study program, as well as school choice, I instead use a

model with aggregated study programs and interpret the certificate data in a specific

way.
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Certificates that exclude an entire track are straightforward to implement. This

already contains 67% of the data on B-certificates. In other cases, I proceed as follows.

I always assume a hierarchy: if a low track is excluded, the higher ones are excluded

too.31 I also use a slightly different definition of a B-certificate that is more consistent

over the different grades. I ignore the officially called “C-certificates” in grade 7 as

they do not restrict entry into grade 8 of the vocational track, and change them to

B-certificates that allow the vocational track in the next grade (or A-certificate if the

student is already in the vocational track). In other cases in the academic and middle-

theoretical track, I use the following procedure. This procedure was established to

be in line as much as possible with the spirit of the educational system, as well as to

minimize the number of choices in the data that would not be possible to be explained

by the model. I make groups of aggregated study programs that are less aggregated

than the ones used in the model, but more aggregated than how they appear in the

data. This aggregates over very small differences within programs between which a

B-certificate is not expected to ever make a distinction, except when teachers (and

probably students) are not aware of the existence of the program. A B-certificate then

excludes all classical language options if all the aggregated programs with classical

languages appear in the list of restrictions. It excludes math options and the entire

track if there is an exclusion within all the major aggregated options of these study

programs. For exclusion of the middle-practical track, one occurrence of a program

in the track in the list of restrictions restricts the entire track, unless choice behavior

and the corresponding grade are not consistent with that.

At this point, we went from explaining 67% of the B-certificate data to explaining

95%. The remaining 5% is assumed to be imposing irrelevant restrictions on the

students in the model and are replaced by A-certificates. An important part of this

5% also contains exclusions within the vocational track which are unrelated to the
31The following example shows that this is reasonable to assume: out of 199 B-certificates that

exclude all programs in the middle tracks for students currently in an academic track, 197 certificates
also exclude the academic track.
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academic level of the program and are therefore outside the scope of this paper.

B.4 Details about study programs

The official distinction between tracks differs slightly from the one proposed in the

paper. The official track names are “ASO”, “TSO”, “KSO”, “BSO”, and “BUSO” and

the distinction for most tracks is made from the third year on (i.e. grade 9). ASO

corresponds to the academic track, BSO and BUSO to the vocational track and both

TSO and KSO are middle tracks (that differ in their focus on respectively technical

education and artistic education). I then split up this middle track according to

programs that prepare primarily for higher education (middle-theoretical) and the

labor market (middle-practical), which is a common distinction made, e.g. in Cockx

et al. (2019), but also by the researchers that collected the data.32

Although this official distinction does not exist in the first two grades of high

school, there is a distinction between programs preparing for the different tracks.

First of all, there is the distinction between a B-stream, preparing for the vocational

track only, and an A-stream, preparing for the other tracks. Within the A-stream one

can also distinguish between more or less theoretical programs, based on the hours

per week each school can decide what to teach (5 in grade 7 and up to 10 in grade 8).

This distinction was made by the LOSO researchers, although not directly linked to

the specific track they prepare for. Therefore, I looked at the most common transition

patterns to assign them to a track. In a few cases, the distinction within the A-stream

was not made, I then assumed students were in the same track as the year after.

As mentioned in Cockx et al. (2019), upward mobility is theoretically possible

but practically infeasible which is why it rarely occurs in the data. Nevertheless, I

do allow for this flexibility in non-vocational tracks in the first two grades as I do
32The supply of programs differs between schools in Flanders. Some schools specialize and offer

programs in only one track while other schools do not specialize and offer programs in all tracks. In
the model I do not distinguish between different schools as they are all regulated in the same way
and the restrictions implied by certificates also hold for other schools.
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see some upward mobility when the official track structure is not yet established.

Note that any mobility between grade 11 and grade 12 is forbidden, except for a

switch between some programs from a middle track to the vocational track. I do not

allow for that in the model and drop the students that do this. I also exclude the

following uncommon choices in the model: dropping out of (full time) high school

and returning, and repeating the grade in a track of higher academic level or with

an elective course that was not chosen before. Furthermore, sometimes rules are not

strictly followed. Some cases can be illegal, but in other cases, parents could have

asked for special permission from teachers, the ministry of education, or as a result

of a court order. These special cases are dropped.

For the higher education options, the distinction between different levels (pro-

fessional college, academic college, university) is also used in official statistics on

Flemish education and corresponds to respectively “Hoger onderwijs van het korte

type”, “Hoger onderwijs van het lange type” and “Universiteit”. Today, the distinction

between “Hoger onderwijs van het lange type” and “Universiteit” is no longer made

but the study programs within them are still similar. To define STEM majors, I use a

characterization by the Flemish government (https://www.onderwijskiezer.be/). The

different types of (higher) education are associated with large differences in labor mar-

ket outcomes. To demonstrate this, I use data of the "Vacature Salarisenquête", a

large survey of workers in Flanders in 2006, and compare the median wages of 30-

39-year-olds (sample size of 20,534 workers). High school dropouts earned a gross

monthly wage of 2,039 EUR, high school graduates without a higher education de-

gree earned 2,250 EUR, professional college graduates 2,600 EUR, academic college

graduates 3,281 EUR and university graduates 3,490 EUR. Students that graduated

in a STEM major earned 3,264 EUR, while students that graduated in a non-STEM

major earned 2,800 EUR.
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B.5 Distance and travel time data

I use the address data of students and schools to obtain coordinates using the Stata

command “geocode3”. For the schools, I updated this manually when geocode re-

turned an error or was not very precise. I did this for schools with at least 10

student-time observations using Google maps. I then use the “osrmtime” command

to calculate travel time by bike to the closest school that offers the study program.33

Note that all schools attended by students in the sample are used, which includes

also schools outside of the ones assigned by the researchers (because students can

switch to other schools). I dropped students living more than 50km from any school

as they are more likely to be influenced by schools that I do not observe or are outliers

because of measurement error when geocoding.

At the higher education level, I look at the distance to the closest school for

each option (level and major) if it is not a university and I distinguish between

the five Flemish campuses for universities (Leuven, Ghent, Brussels, Antwerp, and

Diepenbeek). This is similar to Declercq and Verboven (2018). If students attend

a university abroad or in Wallonia, I assign them randomly to one of the Flemish

campuses, using a probability distribution that corresponds to the distribution of

students going to Flemish universities.

B.6 Policy relevance

Although similar issues arise in other educational systems, they are particularly im-

portant in the current context. Belgium spends 2.8% of its GDP on secondary edu-

cation, the highest number among OECD countries. Therefore, it is crucial to study

the effectiveness of the system in helping students to achieve their future goals in a

cost-efficient way. Since 96% of the cost is paid by society, it is also important to see if
33A bike is the most popular mode of transportation. According to government

agency VSV, 36% of students use a bike, 30% the bus and 15% a car (source:
http://www.vsv.be/sites/default/files/20120903_schoolstart_duurzaam.pdf). Since distance to
school is small, travel time by bike is also a good proxy for other modes of transportation.
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students have the right incentives within the system to optimize total welfare (OECD,

2017). Belgium has a very high rate of grade retention in secondary education which

comes at a large cost. The total cost of a year of study delay in Belgium amounts to

at least $48,918/student or 11% of total expenditures on compulsory education, the

highest rate in the OECD (OECD, 2013).
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C Solution of the model

I assume it is no longer possible to go to secondary education in Tmax = 10 such that

the model can be solved backward. Because of the extreme value assumption on the

taste shocks εijt, I can write the expected value of lifetime utility in the period where

secondary education is no longer allowed, using the logsum formula:

V̄ (xit+1, νi) = γ + ln
∑

j∈Φ(xit+1)

exp(Degree′it+1µ
degree +ΨHEE

j (xit+1, νi)) if t+ 1 = Tmax

with γ ≈ 0.577 the Euler constant and Φit+1 = Φ(xit+1) the choice set. V̄ is used as

an input in t (see (12)). First, students look for the optimal value of effort in every

possible option in secondary education: y∗ijt. As explained in section 2, an interior

solution in the data is required and the following FOC should then be satisfied:

cj(xit, νi) = β
∑
ḡ

∂ϕḡ
ijt(yit)

∂yit
V̄ (xit+1(ḡ), νi) if yit = y∗ijt. (23)

As in the simple model of section 2, a sufficient condition to obtain an interior

solution is to assume that students always believe there is a positive probability

to avoid the worse performance outcome in any program. This avoids that y∗ijt =

0. Furthermore, a positive marginal cost makes sure that it is never optimal to

exert an infinite level of study effort. The FOC condition equalizes marginal costs

and (expected) marginal benefits. As this does not depend on taste shocks ε or

performance shocks η, it implies that students with the same state vector (xit, νi)

will choose the same effort levels in a given program: y∗ijt = y∗j (xit, νi). In contrast to

the simple model in section 2, I do not obtain a closed-form solution for y∗j (xit, νi).

However, I can still estimate the optimal levels in the data (see section D for details

about estimation). In counterfactual simulations, I run a grid search to find the new

optimum (see section E for details about the simulations).

When students know the optimal levels of effort in each program, they can choose
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the program with the highest value of vj(xit, νi, y
∗
j (xit, νi)) + εijt. This results in the

following logit choice probabilities:

Pr(dit = j|xit, νi) =
exp(vj(xit, νi, y

∗
j (xit, νi)))∑

j′∈Φ(xit)
exp(vj′(xit, νi, y∗j′(xit, νi)))

(24)

with vijt given by (12) for options in secondary education and (14) for options after

secondary education. V̄ (xit, νi) can also be calculated using:

V̄ (xit, νi) = γ + ln
∑

j∈Φ(xit)

exp(vj(xit, νi, y
∗
j (xit, νi))).

These steps can be repeated until the first period to solve the entire model.
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D Estimation details

I first explain the estimation of the model when the econometrician knows the type

νi of every student and then allows this to be unobserved.

D.1 Higher education

I propose the following functional forms for higher education enrollment parameters

(ΨHEE
j (.)) and graduation parameters (ΨHED

j (.)) and estimate them as parameters

of a conditional logit, using maximum likelihood:

ΨHEE
j (xit, νi) = φHEE,0

j

+ S ′
i(φ

HEE,S,0 + φHEE,S,levellevel_HEj + φHEE,S,STEMSTEMj)

+ ν ′
i(φ

HEE,ν,0 + φHEE,ν,levellevel_HEj + φHEE,ν,STEMSTEMj)

+ φHEE,distdistance_HEij

+ d̃′iTSE
i

φHEE,SE

+ delayiTSE
i

(φHEE,delay,0 + φHEE,delay,levellevel_HEj + φHEE,delay,STEMSTEMj)

+ φHEE,levelxdelaylevel_SEiTSE
i

×delay
iTSE

i

+X ′
ijφ

HEE,interact

Level_HEj is the level of the higher education program. I follow Arcidiacono (2005)

and define the level for each type of higher education by the average math ability

of the enrolling students. I use professional college as a benchmark (0.20) and cal-

culate differences with academic college (0.59) and university (0.79). Distance_HEij

is the distance in kilometers from the student’s home to the chosen option. d̃iTSE
i

is

a vector of dummy variables for each possible program a student can graduate from

in high school and delayiTSE
i

the years of accumulated study delay. Since there are

few students in the academic track that do not enroll in higher education, I do not
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distinguish between elective courses and estimate a common effect of each track on en-

rollment in the benchmark professional college. I also include a vector of interactions

Xij that includes all interactions between characteristics of the high school program

the student graduated in (academic level, intensive math, classical languages) and

the characteristics of the higher education program (level and STEM major).

I impose a similar model for graduation from higher education. I use a similar

functional form for ΨHED
j (.) as I did for ΨHEE

j (.), but I also add more interaction

effects in Xij to take into account the higher education enrollment decision.34 In

particular, I include dummy variables for choosing the same level, upgrading a level,

and choosing the same major. I add a shock that is distributed extreme value type 1

such that I obtain logit probabilities. Since these shocks are iid, it is important to take

into account the enrollment decision to capture the correlation between enrollment

decisions and the final degree a student obtains.

D.2 Reduced forms of high school data

In section 2, I explained how a measure of performance can be used to back out the

optimal level of effort. This is still possible in the current model and follows from the

FOC (23). A first implication of this is that students with the same state vector will

choose the same effort levels within each program. Let y∗ijt be the optimal choice of

yit, conditional on program choice j. We can now substitute this in the definition of

yit (10):

y∗ijt =
1− Pr(gtrackit+1 = 0|dit = j, xit, νi)

Pr(gtrackit+1 = 0|dit = j, xit, νi)

with the current grade deterministic in dit and xit and y∗ijt = y∗j (xit, νi). Note

that both xit and νi are observed here, therefore y∗ijt is easily obtained from the ob-

served probability to obtain the lowest performance outcome in each j when students
34In contrast to college enrollment rates, there is sufficient variation in graduation rates within

programs of the same track. Therefore, I do not need to restrict the common parameters of the
effect of study programs to be the same.
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behave optimally in the data. However, the finite number of observations and the

large state space do not allow me to do this. Therefore, I recover the optimal levels

and the performance thresholds by estimating an ordered logit model for the track

performance outcome with index ln y∗j (xit, νi) and cut points η̄trackjr . The functional

form of the index is similar to what is imposed for the fixed cost parameters (see

below, equation (26)), but I allow for more flexibility by letting each initial observed

and unobserved characteristic be track-specific and change (linearly) over different

grades. I also allow distance to higher education options to affect performance and I

add an effect of the lagged study program (academic level and dummy variables for

intensive math and classical languages). Note that some of the thresholds are not

identified from the data but from the institutional context that imposes restrictions

on mobility (i.e. some thresholds can be ∞). I allow the thresholds to differ not only

by different programs but also by the grade a student is in. Because there is little

variation in the data, I restrict the program-specific part through three parameters

that capture differences in the increase in thresholds for obtaining a higher outcome

in each track. This is then assumed to be constant over grades and tracks (see Table

J14). The ordered logit model also generates the probabilities for each performance

outcome. For elective courses, I use the predicted values of ln y∗j (xit, νi) and esti-

mate the specification in equation (11). Both can then be used to construct the joint

probabilities ϕḡ
ijt(y

∗
j (xit, νi)).

As in Arcidiacono et al. (2023), I also obtain predicted values of Pr(dit|xit, νi)

(the CCPs) by estimating a flexible conditional logit with an index, similar to the

index I used to predict effort. I assume a functional form that is linear in observed

and unobserved characteristics for each student characteristic, and I allow for more

flexibility than in fixed costs by letting them be track-specific and change linearly over

different grades. I also allow distance to higher education options to affect choices,

while they are excluded from fixed costs. As explained further, the CCPs will be used

to avoid solving the model during estimation and to back out the unobserved types
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in a first stage.

D.3 Cost estimates

The FOC (23) allows us to write the conditional value functions without an unknown
marginal cost function. Substituting the utility function (13) in the conditional value
function (12), after substituting marginal costs by (23) gives:

vj(xit, νi, y
∗
j (xit, νi)) (25)

= −C0
j (xit, νi)

+ β
∑
ḡ∈G

V̄ (xit+1(ḡ), νi)

ϕḡ
ijt(y

∗
j (xit, νi))−

∂ϕḡ
ijt(yit)

∂yit

∣∣∣∣∣
yit=y∗

j (xit,νi)

y∗j (xit, νi)

 .

We already recovered y∗j (xit, νi) and ϕḡ
ijt(y

∗
j (xit, νi)) from the data. ∂ϕḡ

ijt(yit)

∂yit
can be de-

rived from the distributional assumptions on the performance measure. As explained

in the text, it is the product of three ordered logit probabilities. We can apply the

chain rule, knowing that for each ordered logit model we can find the derivative with

respect to yit recursively:

∂ Pr(gait = 0|dit, xit, νi, yit)

∂yit
= −αa

y

1

yit
Pr(gait = 0|dit, xit, νi, yit)(1− Pr(gait = 0|dit, xit, νi, yit))

∂ Pr(gait = ḡ|dit, xit, νi, yit)

∂yit
= −αa

y

1

yit
(Pr(gait ≤ ḡ|dit, xit, νi, yit) Pr(g

a
it > ḡ|dit, xit, νi, yit))

−
∑
g̃<ḡ

∂ Pr(gait = g̃|dit, xit, νi, yit)

∂yit
for ḡ > 0

with (a = track, clas,math) and αtrack
y = 1.

After solving the model for V̄ (xit+1(ḡ), νi), we can use the logit probabilities (24)

with these conditional value functions to estimate the value of a degree µdegree and a

specification for fixed costs C0
j (.) by using maximum likelihood. I assume the following
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functional form:35

C0
j (xit, νi) = µ0

j + µgrade
j gradeijt (26)

+ S ′
i(µ

S,0
j + µS,levellevel_SEijt + µS,mathmathijt + µS,clasclasijt)

+ ν ′
i(µ

ν,0
j + µν,levellevel_SEijt + µν,mathmathijt + µν,clasclasijt)

+ µtimetimeijt

+ retention′
ijt(µ

ret,0 + µret,levellevel_SEijt)

+ µupupgradeijt + µdowndowngradeijt

+ µstaymathmathijt × mathit−1 + µstayclasclasijt × clasit−1.

µ is a vector of parameters to estimate. Si is a vector of time-invariant observed

student characteristics, νi is a vector of dummy variables that indicate to which type

the student belongs, timeijt is the daily commuting time to the closest school that

offers the study program in the current grade and gradeijt is the grade a student is

in (set such that 1 is the first year of high school). Level_SEijt is the academic level

of the track a student is in with 0 the vocational track, 1 the middle-practical track,

2 the middle-theoretical track, and 3 the academic track and math and clas refer to

respectively programs with intensive math and with classical languages. Grade reten-

tion is captured by the 2x1 vector: retentionijt. This vector contains a flow variable:

a dummy equal to one if the student is currently in the same grade as the year before

(“Repeat”) and a stock variable that captures the years of study delay accumulated in

previous years (“Study delay”). Finally, upgradeijt and downgradeijt are dummy vari-

ables indicating if a student is currently in a track with at a higher or lower academic

level than the year before and µstaymath and µstayclas capture preferences to stay in a

program with the same elective courses.

Note that in section 4, the scale of the utility function was implicitly normalized
35Note that the part-time track does not have a grade structure. Therefore, I only model its fixed

cost. Due to a lack of variation, I only estimate a choice-specific constant, which implies that student
background should have the same effect on part-time and full-time dropout.
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to unity. Therefore, all parameters µ are identified. However, to directly interpret

the cost estimates, I rescale the parameters by dividing them by µtime. This way, the

cost estimates can be measured in daily commuting time.

Finally, marginal costs cj(.) can be recovered from the FOC (23) without imposing

additional structure.

D.4 CCP estimation

Hotz and Miller (1993) introduced the CCP method as an alternative to solving

dynamic models, which is particularly useful if there is a terminal action (Arcidiacono

and Ellickson, 2011). Hotz and Miller (1993) show that the future value term can

be written as the conditional value function of an arbitrary choice and a nonnegative

correction term that depends on its probability in the data:

V̄ (xit+1, νi) = γ + vd∗(xit+1, νi, y
∗
j (xit, νi))− ln Pr(d∗it+1|xit+1, νi) (27)

with γ ≈ 0.577 the Euler constant, d∗it+1 an arbitrary option j = d∗ and vd∗(.) the

conditional value function of this option.

Case 1: j = 0 available in t+ 1

If it is possible to leave secondary education in t+ 1, we can choose j = 0 as the

arbitrary choice and substitute its value function (14) in (27), with ΨHEE
0 (.) = 0:

V (xit+1, νi) = γ + Degree′itµ
degree − ln Pr(d0it+1 = 1|xit+1, νi). (28)
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We can now substitute (28) in (25), such that for all j ∈ se:

vj(xit, νi, y
∗
j (xit, νi)) (29)

= −C0
j (xit, νi) + βγ

+ β
∑
ḡ∈G


(
Degree′it(ḡ)µdegree − ln Pr(dit+1 = 0|xit+1(ḡ), νi)

)(
ϕḡ
ijt(y

∗
j (xit, νi))−

∂ϕḡ
ijt(yit)

∂yit

∣∣∣∣
yit=y∗

j (xit,νi)

y∗j (xit, νi)

)  .

The benefit of using the outside option j = 0 as the arbitrary choice is that this

removes the future value terms in the current period conditional value functions.

This is because the terminal nature of j = 0 allows us to write its conditional value

function directly as a function of observables and parameters (see section 4.5). As

in Hotz and Miller (1993), a nonparametric estimate of Pr(dit+1 = 0|xit+1, νi) can be

recovered from the data before estimating the model.

These conditional value functions can now be used as inputs in logit probabilities

to recover the fixed cost parameters without having to solve the model.

Case 2: j = 0 available in t+ ρit

For most students, we start modeling choices from the age of 12. At t + 1, they

are age 13 and do not have that option because of compulsory schooling laws. They

will get the outside option j = 0 at t + 6. I write ρit to be the number of years it

takes before the CCP correction term with the outside option can be applied: ρit =

max{1, 18−Ageit}. We now need to repeat the CCP method in future values until the

outside option is available. This is an application of finite dependence, introduced in

Arcidiacono and Miller (2011). In contrast to their application on problems that have

a renewal action in the future, I apply it to the terminal action of choosing to leave

secondary education in the outside option (no higher education). The exposition in

this section is similar to Arcidiacono and Miller (2011) and Arcidiacono and Ellickson

(2011).

The choice probabilities (24) at the optimal levels of the effort can be written by
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using differenced value functions. Let v∗j (xit, νi) ≡ vj(xit, νi, y
∗
j (xit, νi)) be the condi-

tional value function at the optimal level of effort and u∗
j(xit, νi) ≡ uj(xit, νi, y

∗
j (xit, νi))

the flow utility at this level:

Pr(dit = j|xit, νi) =
exp

(
v∗j (xit, νi)− v∗j′(xit, νi)

)
1 +

∑
j◦∈Φ(xit)

exp
(
v∗
j◦
(xit, νi)− v∗j′(xit, νi)

)

with v∗j (xit, νi)− v∗j′(xit, νi) (30)

= u∗
j(xit, νi) + β

∑
ḡ∈G

ϕḡ
ijt(y

∗
ijt)V̄ (xit+1(ḡ))

− u∗
j′(xit, νi)− β

∑
ḡ∈G

ϕḡ
ij′t(y

∗
ij′t)V̄ (xit+1(ḡ)),

for any j
′ ∈ Φ(xit). Substitute the CCP representation of the future value as a

function of the CCP of an arbitrary choice and its conditional value function (27) in

(30):

v∗j (xit, νi)− v∗j′(xit, νi) (31)

= u∗
j(xit, νi) + β

∑
ḡ∈G

ϕḡ
ijt(y

∗
ijt)
(
γ + v∗d∗(xit+1(ḡ), νi)− ln Pr(d∗it+1|xit+1(ḡ), νi)

)
− u∗

j′(xit, νi)− β
∑
ḡ∈G

ϕḡ
ij′t(y

∗
ij′t)

(
γ + v∗d∗(xit+1(ḡ), νi)− ln Pr(d∗it+1|xit+1(ḡ), νi)

)
.

Define the cumulative probability of being in a particular state given the current state

variable and choice, and a particular decision sequence d∗i = (dit, d
∗
it+1, d

∗
it+2, ...d

∗
it+ρit

):

κ∗
τ (giτ+1 = ḡ|xit, νi) = ϕḡ

id∗τ (y
∗
d∗(xiτ , νi)) if τ = t

κ∗
τ (giτ+1 = ḡ|xit, νi) =

∑
ḡτ∈G

ϕḡ
id∗τ (y

∗
d∗(xiτ , νi))κ

∗
τ−1(giτ = ḡτ |xit, νi) if τ > t
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with ϕḡ
id∗τ (y

∗
d∗(xiτ , νi)) the probability of receiving performance outcome ḡ at time

t = τ + 1, in the program a student will be at t = τ according to the decision

sequence d∗i . Similarly, define κ
′
τ to be the transitions in a sequence where the choice

in t is different: d′
i = (d′it, d

∗
it+1, d

∗
it+2, ...d

∗
it+ρit

).36 We can then repeat the CCP method

in each of the future periods and rewrite (31) as the sum of future flow utilities and

CCPs until the outside option becomes available at t+ ρit:

v∗j (xit, νi)− v∗j′(xit, νi)

= u∗
j(xit, νi)− u∗

j′(xit, νi)

+

t+ρit−1∑
τ=t+1

βτ−t
∑
ḡ∈G

[u∗
d∗(xiτ (ḡ), νi)− ln Pr(d∗iτ |xiτ (ḡ), νi)]κ

∗
τ−1(ḡ|xit, νi)

−
t+ρit−1∑
τ=t+1

βτ−t
∑
ḡ∈G

[u∗
d∗(xiτ (ḡ), νi)− ln Pr(d∗iτ |xiτ (ḡ), νi)]κ

′
τ−1(ḡ|xit, νi)

+ βρit
∑
ḡ∈G

V (xt+ρit(ḡ), νi)κ
∗
t+ρit−1(ḡ|xit, νi)

− βρit
∑
ḡ∈G

V (xt+ρit(ḡ), νi)κ
′

t+ρit−1(ḡ|xit, νi).

V (xt+ρit , νi), the value of behaving optimally when the outside option is avail-

able and can be written as in (28). The calculation of the value function is now

possible after choosing the arbitrary options in each period, the prediction of their

CCPs, and the predictions of optimal effort in the study program. However, further

simplifications follow from a good choice of “arbitrary” options.

Since upward mobility from the lowest track is never allowed, I argue that the

arbitrary choices should always be the lowest track available in each period: the

vocational track if a student is not 15 years old yet, and the part-time track if the

student is older. This choice significantly removes the number of CCPs and future

utility terms we need. From the moment students choose the vocational track, they
36We can also allow a more general alternative sequence in which the choice in each period is

different but here it is sufficient to only let the first choice be different.
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can no longer make choices until the part-time track becomes available. Similarly,

once students opt for the part-time track, they can no longer make other choices until

the outside option is available. Therefore, we only need a CCP at the time a student is

switching tracks in the sequence. Moreover, since the part-time track does not follow

a grade structure, and students can never return to the standard grade structure,

the state variables will not evolve anymore in a way that depends on choices made.

Arcidiacono and Ellickson (2011) explain that in this case, the future utility terms

after choosing that option can be ignored in estimation as they will cancel out in the

differenced value functions.

The same procedure is applied within u∗
j(xit, νi) = −C0

j (xit, νi)−cj(xit, νi)y
∗
j (xit, νi).

By replacing the marginal cost of effort with the marginal benefit of effort in the data,

future value terms also enter directly into u∗
j(xit, νi) (see (25)). Because

∑
ḡ∈G

∂ϕḡ
ijt(yit)

∂yit
=

0, all terms that do not depend on performance drop out such that the same simpli-

fications arise because of finite dependence.

D.5 Unobserved heterogeneity

To allow for types to remain unobserved to the econometrician, I follow the two-stage

estimator of Arcidiacono and Miller (2011). I assume there are M = 2 unobserved

types m in the population, with an estimated probability to occur πm. For inter-

pretability, I model the types as independent from observed student background. A

dummy for belonging to type 2 then enters each part of the model as if it were an

observed student characteristic. To avoid an initial conditions problem, I condition

the type distribution on the age the student starts secondary education: age0i . This

is because students who accumulated study delay before secondary education will

be faced with different opportunities in the model because they will be able to drop

out more quickly. Since starting age depends on past grade retention, it is likely

correlated with unobserved ability, creating a bias in the estimates. By conditioning
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the unobserved types on age0i , we can allow for this correlation.37 The loglikelihood

function is

lnLi = ln
M∑

m=1

πm|age0iL
m
i

with

Lm
i =

TSE
i∏
t=1

Lprogram,m
it × Lperformance,m

it+1 × Lccp,m
it × LHEE,m

i × LHED,m
i

with Lprogram,m
it and LHEE,m

i given by logit choice probabilities (24), with con-

ditional value functions (29) and (14). LHED,m
i is given by the conditional logit

probabilities on the different possibilities for higher education graduation outcomes.

The likelihood contribution of the performance outcome in secondary education is

given by ordered logit probabilities Lperformance,m
it+1 and Lccp,m

it are the CCP predictors.

Note that the inclusion of unobserved types makes the function no longer additively

separable such that sequential estimation is not possible.

Arcidiacono and Miller (2011) show that additive separability can be restored. The

estimation procedure is an adaptation of the EM algorithm. It starts from a random

probability of each observation to belong to each type. The entire model can then be

estimated as explained above but weighs each observation-type combination by the

probability that the student belongs to the type. Afterward, the joint likelihood of

the data conditional on each type is used to update the individual type probabilities,

conditional on the data, using Bayes rule. This is repeated until convergence of

the likelihood function. I use the two-stage estimator of Arcidiacono and Miller

(2011) which implies that in the calculation of the joint likelihood, reduced form

estimates of the CCPs are used for Lprogram,m
it , instead of the choice probabilities from

the structural model. This means that the fixed cost parameters and the common
37This is similar to Keane and Wolpin (1997), who start their model at age 16 and condition the

types on the educational attainment at that age.
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component of the value of a degree are recovered in the second stage. Finally, the

FOC (23) is used to recover the marginal costs.

Standard errors are obtained using a bootstrap procedure. I sample students with

replacement from the observed distribution of the data and use 150 replications. Since

the EM algorithm takes some time to converge, I do not correct for estimation error

in the probabilities to belong to each type.

D.6 Calculation of ATT

The ATTs are calculated as follows:

ATT j′ = Ex,ν

[
PHE
j (xitHE (j

′), νi)− PHE
j (xitHE (j

0), νi)|diTSE
i

= j′
]

for HE = {HEE,HED}

with Ex,ν an expectations operator over the empirical distribution of the observ-

ables x and the estimated distribution of the unobserved types ν. PHE
j is the prob-

ability of the higher education outcome (enrollment or graduation) as a function of

the state variables. xitHE
(j′) is the observed state vector of student i in the data at

the time the outcome is realized t = tHE and xitHE
(j0) is the same vector but with

the graduation track replaced by an arbitrary benchmark program j0. The ATT then

calculates the average effect on HE of graduating high school in j′ instead of j0 for

the group of students who graduated from j′ in the data.
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E Simulation details

All predicted values are calculated as follows. I first categorize students by their

demographic characteristics: gender, language ability, math ability, SES, and the age

they start high school. I discretize the observed ability distribution by creating four

equally sized groups for each measure. Every student then belongs to one group which

is a unique combination of these variables. Within each group, I use the average travel

times and distances. Each group is then used to calculate the value functions for each

unobserved type. To limit the number of calculations, I drop groups with less than

10 students and verify that this has a negligible effect on the distribution of student

characteristics.

E.1 High school

After obtaining the value functions, I proceed to simulation during high school. For

each type, I draw 10,000 students using the empirical distribution of the observable

characteristics. I also take draws of taste shocks for every option in every period,

as well as performance shocks in every period for every performance outcome. The

average statistics are then calculated on a total of 20,000 draws. Given the simulated

outcomes of high school, I use the closed-form expressions for higher education to

calculate enrollment and graduation.

This procedure allows for a substantial total number of draws while needing only

a limited number of students to use for a grid search to find the optimal effort level

within each possible program. The grid search for effort levels starts at the optimal

value of the scalar yit in each program j in the data: y∗j (xit, νi) and looks for better

levels using five sequential loops and an additional step to check for a corner solution.

The first loop looks at changes in the log of effort by 1 unit with a minimum of -5

and a maximum of +5. The second loop divides steps and thresholds by five, the

third by 25, the fourth by 125, and the fifth by 625, such that the final precision
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is 0.0016 (which is about 0.16% for effort y). Finally, I check if a corner solution is

optimal by setting y = 0 and changing the performance distribution to predict the

worse outcome with probability 1.

Standard errors are obtained by using the different estimates of each bootstrap

sample and by repeating the entire procedure for each of them.

E.2 Higher education

To evaluate the impact of counterfactuals that affect students during secondary edu-

cation, a structural model for the decision in high school is needed as the same cost

parameters and values of degree, will have new implications for optimal program and

effort choices. To predict the policy impact after secondary education, we only need to

know how they are influenced by high school outcomes, after controlling for observed

and unobserved student characteristics. Therefore, I model a reduced form function

only. This is similar to the approach in the dynamic treatment effect literature (Heck-

man et al., 2016), but I only apply it to choices after leaving high school to be able

to do counterfactual simulations during secondary education in which students are

forward-looking.

The estimated functions of both enrollment and graduation can be used to look at

the impact of counterfactual policies in secondary education. Let xitHE
(Policy = 0) be

the realized state vector of i at time tHE in the status quo scenario, and xitHE
(Policy =

p′) the state vector in the counterfactual scenario. The expected impact on the

proportion of students with long-run outcome HE of policy p′ is then given by:

Ex,ν

[
PHE
j (xitHE

(Policy = p′), νi)− PHE
j (xitHE

(Policy = 0), νi)
]

for HE = {HEE,HED}

with Ex,ν an expectations operator over the empirical distribution of the observ-

ables x and the estimated distribution of the unobserved types ν. PHE
j is the prob-

ability of the enrollment decision or higher education degree outcome of each college
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option as a function of the state variables.

E.3 Fit of the model

Table E1 shows the ability of the model to replicate the actual data. The model

does a good job of predicting the patterns in the data such that it can be used for

counterfactual simulations. We see that graduation rates in different track and higher

education outcomes are predicted very precisely. There is a slight overprediction in

the number of students with a B-certificate leading to a small overprediction in the

number of students with study delay.
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Table E1: Predictions of the model

Data Predictions

High school (% of students)
Academic 38.27 40.02 (2.07)

clas+math 5.06 5.03 (0.65)
clas 6.11 3.18 (0.42)

math 13.24 14.59 (1.27)
other 13.86 17.22 (1.29)

Middle-Theoretical 15.86 16.10 (1.24)
math 2.42 3.11 (0.46)
other 13.44 12.99 (0.97)

Middle-Practical 11.85 8.14 (1.19)

Vocational 19.43 21.57 (0.89)

Dropout 14.60 14.17 (0.67)

Students with at least 1 B-certificate 35.40 37.53 (0.81)
Students with at least 1 C-certificate 30.01 30.69 (0.77)
Students with at least 1 year of study delay 31.62 33.22 (0.91)

Higher education (% of students)
Enrollment 58.18 58.15 (0.75)
Graduation 44.01 44.25 (0.75)
SES gap at graduation 38.49 39.73 (1.13)

University degree 12.43 11.22 (0.55)
Academic college degree 6.05 6.26 (0.38)
Professional college degree 25.53 26.77 (0.69)

Degree in STEM major 17.76 18.01 (0.65)
Note: Clas= classical languages included. Math= intensive math. Observed
outcomes in the data and predictions from the dynamic effort model. SES gap
at graduation: difference in percentage college graduates between high and low
SES. Bootstrap standard errors of predicted values in parentheses.
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E.4 Welfare

Opportunity cost

I assume an opportunity cost of $10/hour. This is chosen to approximate the

opportunity cost of students in high school and is consistent with Kapor et al. (2020).

Students are not allowed to work until they are 15 years old and the wage often de-

pends on their age. In 2012 the minimum wage ranged between ¤6.8 and ¤9.7/hour.38

Only a small amount of taxes is paid on this if they work a limited amount of hours.

To compare to OECD estimates, I use the PPP-adjusted exchange rate of dollars

(0.82), which results in wages between $8 and $12. Note that the model is in years

while the estimates are scaled in minutes/day. Therefore, I multiply them by the

wage per minute ($10/60) and the 177 school days there are in a year.

Gains from reducing grade retention

The direct cost and the total foregone earnings can be found in Table IV.1.6 in

OECD (2013). The direct cost of a student who repeats a grade is $9, 713. The

downgrade policy decreases grade retention rates by 9.82 % points and therefore

generates a government saving of $950 per student. To only capture the externality

in foregone earnings, I subtract the net income (49%). This number was calculated by

dividing column (7) by column (1) in Table A10.2 in OECD (2012). The externality

in the downgrade policy then amounts to $1, 960 per student.

Reinvestment of gains

Estimates in the literature for the effect of a one-time “helicopter drop” increase

of $1,000 on the ability distribution are around 1% to 2% of a standard deviation

(Gigliotti and Sorensen, 2018; Lafortune et al., 2018). This implies that reinvesting

the efficiency gains of the “Downgrade” policy could result in substantial gains for

students. Using the estimates in Table J20 and the savings from avoiding grade

retention ($2, 910), a 1.5% effect per $1,000 on each of the observed ability measures in
38https://www.jobat.be/nl/artikels/wat-is-het-minimumloon-voor-een-jobstudent/ (consulted

March 2018).
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the downgrade policy would bring back $1, 200 in student welfare, increase graduation

rates in higher education by 1.3 % points, reduce study delay by 0.4 % points and

dropout by 0.6 % points. This in turn also creates additional savings that could be

reinvested.

The estimates should be interpreted with caution. First, gender, socioeconomic

status, and the unobserved type might all be capturing initial skills that are not

captured by the language and math ability measures. Therefore, a policy that changes

skills might have a bigger effect than estimated now. On the other hand, ability

measures could also capture other things that might not respond to increased funding,

e.g. parental characteristics that are not captured by the SES dummy.

E.5 Alternative policy changes

As student welfare decreases, I also investigate alternative policies that are guaranteed

to increase student welfare. First, I consider the impact of lowering the compulsory

schooling age from 18 to 15 years old. The reason is that underperforming students

might prefer to leave school rather than accumulate study delay. While high school

dropout is costly for society, if these students would leave anyway, it could result

in a situation where everyone is better off. Second, I allow more flexible switching

between tracks. Students can currently only switch downward, except for the first two

grades in which they can also switch upwards between academic and middle tracks

(although at a high estimated cost). The reasoning behind this is that they would be

suboptimally prepared if they move upwards. I simulate the impact of allowing them

to upgrade.39

The results can be found in Table E2. While the repeat and downgrade policies

increase the control of teachers (or the school system) on the students’ path, these
39I make it possible to obtain the certificates that make them qualify for higher tracks, remove

the impact on marginal costs of switching track and reducing the fixed cost of upward mobility to
the level of the fixed cost of downward mobility (as some persistence is likely to still occur, e.g. to
stay in the same class as their friends).
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policies rather give more flexibility to students (or their parents). By construction,

this generates more student welfare. Lowering the age of compulsory schooling in-

creases average welfare by $ 880, allowing upward mobility increases it by $ 1, 710.

However, the risk of more flexibility is that it amplifies negative externalities coming

from an undervaluation of the cost of grade retention, dropout and incompletion of

higher education. While lowering the age of compulsory schooling decreases study

delay, it not only affects those that would drop out anyway. Dropout increases by

a substantial 12 % points. Allowing for upward mobility decreases graduation from

the vocational track, but the switch is not to other tracks, instead we see an increase

in dropout of 5.0 % points, as well as an increase in study delay of 8.4 % points.

The surprising result can be explained when we look at the decomposition of the

welfare effects, as well as the impact on certificates. Most of the welfare is generated

from students gaining from idiosyncratic taste shocks on period utility. I.e. several

students in a lower track are drawn by a temporary reason to attend a higher track.

Once there, they perform poorly. The main issue is that this is not only reflected in

B-certificates (which would still allow them to transition to lower tracks later on), but

we also see an 11 %point increase in C-certificates, which requires repeating grades

or dropping out. The reason they perform more poorly can be seen in the marginal

cost estimates (Table 2). As explained in section 5, low-ability students face higher

marginal costs, especially when they attend higher-level tracks. This means that

attending a high track to obtain a certificate that allows a lower track is relatively

more difficult for lower ability students than performing well in that low track. This

reflects a mismatch between the ability of the student and the academic level of the

program.

It is important to note that this is not suggesting upward mobility should not

be applied. It is successful in Germany (Dustmann et al., 2017), partly through the

creation of specialized high schools for upgrading students. The simulations rather

show that upward mobility should be accompanied by other measures to be a success.
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For example, it can be restricted to students with reasonable chances of success, or

their success can be directly influenced to reduce the increase in marginal costs many

upgraders experience.
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Table E2: Alternative policy changes

Status quo Policy change B-certificate
Comp. schooling until 15 Facilitate upgrading

Panel A: educational outcomes % Change in % points
High school
Academic track 40.02 -0.25 (0.07) 0.67 (0.34)
Middle-theoretical track 16.10 -0.90 (0.13) -0.13 (0.25)
Middle-practical track 8.14 -1.36 (0.22) 0.71 (0.28)
Vocational track 21.57 -9.87 (0.61) -6.27 (0.51)
Dropout 14.17 12.38 (0.82) 5.02 (0.46)

At least 1 B-certificate 37.53 0.25 (0.15) 11.41 (0.64)
At least 1 C-certificate 30.69 -2.15 (0.33) 10.77 (0.96)
At least 1 year of study delay 33.22 -4.91 (0.43) 8.37 (0.87)

Higher education
Enrollment 58.15 -2.12 (0.23) -0.17 (0.19)
Graduation 44.25 -0.79 (0.10) -0.69 (0.15)
SES gap at graduation 39.73 0.49 (0.80) -0.19 (0.18)

Panel B: student welfare Change in $1000
Total student welfare 0.88 (0.14) 1.71 (0.25)

Fixed costs (-) -1.73 (0.29) 1.81 (0.26)
Variable costs (-) -0.71 (0.09) -0.15 (0.04)

Expected payoff after high school (+) -0.56 (0.13) -0.68 (0.11)
Taste shocks (+) -0.99 (0.16) 4.05 (0.54)

Note: Predictions from the dynamic effort model. C-certificate: repeat grade. B-certificate = students acquired
skills to proceed to next grade but only if they downgrade, i.e. switch to track of lower academic level or drop an
elective course. Status quo = students can choose to downgrade or repeat grade after obtaining a B-certificate,
Comp. schooling until 15: full time drop out option available in the year in which the student turns 15 instead of
18. Facilitate upgrading: the student can obtain certificates that make them qualify for higher tracks, remove the
impact on marginal costs of switching track and reduce fixed cost of upward mobility to the level of the fixed cost
of downward mobility. SES gap at graduation: difference in percentage college graduates between high and low
SES. Opportunity cost of time: $10/h. Bootstrap standard errors in parentheses.
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F Sensitivity analysis

This Appendix discusses the sensitivity checks. First, we show evidence that the high

school outcomes we include in the model capture well the human capital accumulated

in high school. Second, we look at the impact of changes to the model on the main

results from the counterfactual simulations.

F.1 Relevance high school outcomes

The model implies that changes in effort affect the future through their impact on

observable states: it affects study delay and the choice set over programs in the

next grade. Because higher education outcomes depend on the graduation track

and study delay, it gives students an incentive to exert effort. This implies that our

measure of effort cannot capture an increase in human capital, above what is captured

by the graduation track and the years of study delay. To check the sensitivity to

this assumption, we make use of test score data obtained at the end of grade 10

and the end of grade 12, but excluded from the model. There are several reasons

to exclude this from the model. The first is to keep the state space small, which

facilitates estimating and solving the model. This is especially a concern because of

the continuity of the test score data. A second reason to exclude it is due to attrition.

This is caused by drop out, more than one year of study delay, or students moving to

schools where the tests did not take place. Finally, the expected impact of the test

score in this context is expected to be limited. While any test score could capture

human capital improvements, they do not have any signaling value here. First, there

are no admission restrictions in college. Therefore, a higher test score does not help to

enter a program. Second, Flanders does not do standardized testing. The measures

we have, are obtained for the sole purpose of research on this sample of students.

To investigate the impact of human capital accumulation beyond what we include

in the model, we re-estimate higher education enrollment and graduation with the
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additional test score variables. Note that we are not interested in their effect, or the

effect of high school background, conditional on these measures. An important part

of the effect of tracks and study delay is coming from its impact on human capital,

likely captured by these additional test scores. This creates a “bad control” problem

when directly interpreting them (Angrist and Pischke, 2009). What we are interested

in, is the change in predicted probabilities by including these measures. If there

are large changes, it tells us that we are ignoring an important dimension of human

capital accumulation in the model, casting doubts on the model being able to capture

changes in effort.

We start by including only the tests for math and language skills taken at the

end of grade 10. This reduces the sample from 5158 to 4180 students. We do the

same for the end of grade 12, but this creates a much more selected sample of 2600

students. We keep the individual-level type probabilities fixed and re-estimate high

school enrollment and graduation. We then summarize the difference in predicted

probabilities with and without including the test scores. The results can be found

in Table F1. We see that adding the test score data hardly increases the standard

deviation of predictions. Also at the individual levels, we see very little changes. The

most extreme 10% of changes are still only between 1 and 3 % points. This suggests

that there is little to gain from including test scores in the model, meaning that effort

beyond what we include in the model is likely of little importance.

To show that this is not simply explained by the importance of initial conditions

(i.e. characteristics of students before they enter high school), I also show the impact

of removing the high school background (accumulated study delay and the type of high

school degree). Indeed, this has a much bigger impact on the predicted probabilities,

especially if we look at the tails of the distribution where we see differences of up to

15 % points.
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Table F1: Sensitivity analysis: adding test scores

Predictions Difference with baseline
Mean SD Mean SD p10 Median p90

Sample with test scores of grade 10 (N=4180)
Enrollment higher education
Baseline 0.64 0.40
Add recent test scores 0.64 0.40 0.00 0.03 -0.02 0.00 0.02
Remove impact high school 0.64 0.37 0.00 0.14 -0.15 0.00 0.15

Graduation higher education
Baseline 0.50 0.41
Add recent test scores 0.50 0.41 0.00 0.02 -0.01 0.00 0.01
Remove impact high school 0.50 0.40 0.00 0.09 -0.09 0.00 0.08

Sample with test scores of grade 12 (N=2600)
Enrollment higher education
Baseline 0.89 0.17
Add recent test scores 0.89 0.17 0.00 0.02 -0.02 0.00 0.02
Remove impact high school 0.89 0.15 0.00 0.08 -0.12 0.00 0.08

Graduation higher education
Baseline 0.71 0.31
Add recent test scores 0.71 0.31 0.00 0.04 -0.03 0.00 0.03
Remove impact high school 0.71 0.29 0.00 0.09 -0.11 0.00 0.09

Note: Predictions, conditional on the observed situation in the period before and using the estimated,
individual-level type-probabilities. “Baseline” uses the same equations as in the paper. “Remove impact
high school” removes the effects of study delay and type of high school degree (i.e. final study program).
“Recent test scores” adds the test score data of grade 10 or 12 in the index that predicts higher education
outcomes: an impact on higher education, and an interaction with the level and major. The sample size
in the paper is 5158 but is restricted here because of attrition when using more recent test score data.

F.2 Model specifications

This subsection discusses the impact of alternative model specifications on the coun-

terfactual simulations of this paper.

Table F2 looks at the impact of allowing for observed and unobserved ability.

Compared to the baseline, we see important differences after allowing for heterogene-

ity by ability, especially on predicted higher education graduation. In the “Repeat”

policy we see an underestimation of the decrease in graduating from higher education

(-0.61 instead of -1.70 % points), while in the “Downgrade” policy we see an over-

estimation of the decrease (-0.84 instead of -0.30 % points). These results can be
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explained by a failure to take into account the ability bias on the estimated effect

of tracks. When isolated, both observable ability measures and unobserved types

move the estimate closer to the baseline results. However, for the “Repeat” policy

it is mainly coming from the inclusion of observable measures of ability, while for

the downgrade policy the types help more. Note however that the ability bias was

also smaller in the downgrade policy. These results can be explained by the nature

of the data. The availability of rich, continuous measures of ability helps a lot to

capture the main source of ability bias. This leaves room for unobserved types to

capture more subtle differences between students. Therefore, the limiting structure

of having a finite number of types becomes a smaller concern with rich data. This is

also confirmed by adding a third unobserved type to the model, which changes little

to the main results.

Table F3 compares the baseline estimation method with two approaches that use

different identifying assumptions. As discussed in section 4.7, travel time to high

school programs is excluded from equations that predict higher education enrollment

and graduation but exclusion is not required for identification (Heckman and Navarro,

2007). I therefore also estimate a specification in which I add measures of travel time

to several programs in the final grade of high school. I add time to the vocational

track, and differences in travel time for moving up a track for every other track. I also

add the difference in travel time between options with and without intensive math

and with and without classical languages. These travel times are interacted in the

same way as other observable student characteristics. The resulting simulations are

almost identical to the baseline results.

In a final specification, I follow Carneiro et al. (2003), Heckman et al. (2016), and

Lin (2020) and use additional measurement data to identify unobserved heterogeneity.

To do this, I add (ordered) logit models to the likelihood function of stage 1 of the

estimation approach to predict the variables listed in Table F4. I use a discretized

measure of students’ IQ when they enter high school, as well as answers by their last
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Table F2: Sensitivity analysis: observed and unobserved ability

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
Obs ability: NO, types: NO 31.29 (1.41) 11.43 (1.37) 50.87 (3.75)

Obs ability: YES, types: NO 33.93 (0.98) 15.24 (0.76) 43.78 (1.37)
Obs ability: NO, types: YES 31.11 (1.11) 14.62 (0.64) 46.70 (1.76)

Baseline + third type 33.33 (1.48) 13.48 (0.58) 44.62 (0.96)

Change in % points Change in $1000
Repeat policy

Baseline 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)
Obs ability: NO, types: NO 10.64 (0.70) 4.67 (0.55) -0.61 (0.57) -2.30 (0.27)

Obs ability: YES, types: NO 10.42 (0.59) 4.44 (0.37) -1.80 (0.33) -2.14 (0.24)
Obs ability: NO, types: YES 9.89 (0.61) 4.20 (0.38) -0.72 (0.41) -2.22 (0.26)

Baseline + third type 9.21 (0.50) 3.43 (0.30) -1.65 (0.21) -2.00 (0.19)

Downgrade policy
Baseline -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

Obs ability: NO, types: NO -9.16 (0.70) -1.13 (0.38) -0.84 (0.32) -0.69 (0.11)
Obs ability: YES, types: NO -10.35 (0.78) -1.46 (0.34) -0.57 (0.24) -0.96 (0.14)
Obs ability: NO, types: YES -9.22 (0.65) -1.83 (0.24) -0.26 (0.19) -0.72 (0.11)

Baseline + third type -10.31 (0.64) -1.67 (0.23) -0.16 (0.18) -0.98 (0.12)
Note: Predictions from the dynamic model under alternative specifications. Obs ability refers to the
variables on initial math and language ability. If types = YES, it means that two unobserved types
are allowed for in the estimation. Baseline has both observed ability and types. Status quo = students
can choose to downgrade or repeat grade after obtaining a B-certificate, Repeat = students must repeat
grade after obtaining a B-certificate, Downgrade = students must downgrade and not repeat grade after
obtaining a B-certificate. Bootstrap standard errors in parentheses.

teacher in elementary school to questions that indicate levels of conscientiousness,

extraversion, and agreeableness.40 Furthermore, I add parental reports of their income

category and work situation around the same time. Table F3 shows that adding

these measures does not have an important impact on the counterfactual simulations.

Furthermore, they give more insights into the nature of unobserved heterogeneity (see

Table F5 and Table F6).41 I find that unobserved types are important in capturing

non-cognitive skills. The impact on IQ, parental income, and work situation has
40I use the same questions as in Shure (2021).
41Note that the model was re-estimated and therefore the types can change identity. Indeed, type

2 is now the high ability type while that was type 1 in the baseline specification.
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Table F3: Sensitivity analysis: identification unobserved ability

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
High school travel time not excluded 33.30 (0.93) 14.32 (0.64) 44.23 (0.81)

+ Measurements added 34.72 (0.95) 14.53 (0.70) 43.72 (1.23)

Change in % points Change in $1000
Repeat policy

Baseline 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)
High school travel time not excluded 9.73 (0.45) 3.81 (0.33) -1.75 (0.21) -2.06 (0.25)

+ Measurements added 10.21 (0.49) 3.89 (0.37) -1.84 (0.27) -1.99 (0.21)

Downgrade policy
Baseline -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

High school travel time not excluded -10.85 (0.63) -1.80 (0.23) -0.39 (0.17) -1.03 (0.15)
+ Measurements added -11.04 (0.69) -1.88 (0.28) -0.54 (0.21) -0.95 (0.14)

Note: Predictions from the dynamic model under alternative specifications. Travel times to high school
programs added in equations that predict higher education enrollment and graduation in both alternative
specifications. The final specification also adds measurements, summarized in Table F4, to the first stage
of the estimation procedure. Bootstrap standard errors in parentheses.

the same sign but it is much smaller (and not statistically significant for the work

condition). This can be explained by the inclusion of controls for cognitive ability

and SES.42

Finally, Table F7 shows that results are robust for using two commonly used

discount factors in the literature.

42A potential downside of adding measurements is that it requires the finite number of types to
explain measures that are not of direct importance to the model. I therefore do not use them in the
main specification. I also do not use the measures as control variables as they are likely measured
with error, not available for everyone and they would make the state-space larger, making it more
difficult to obtain good estimates of the CCPs and state transitions in stage 1 of the estimator.
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Table F4: Measurements: summary statistics

Obs Mean SD Min Max

Variable Description
Question asked to teacher elementary school (scale of 1 to 5 with 1 the lowest)

CONS1 Could pay attention in class; 3,938 3.64 1.29 1 5
has sufficient intellectual capabilities to follow;
is smart

CONS2 Was motivated for school work; 3,938 3.73 1.24 1 5
wanted to do it really well;
worked without reluctance

CONS3 Could tell a coherent story; 3,936 3.67 1.19 1 5
explore a topic;
stay on the subject

AGREE1 Did not disturb class intensionally; 3,917 4.26 1.11 1 5
did not aim to boycott learning

AGREE2 Held herself to the class rules; 3,935 4.09 1.12 1 5
waited for her turn;
it was not necessary to constantly call her to order

AGREE3 Was averse to hostilities; 3,934 3.99 1.10 1 5
was friendly and kind to others;
experienced no pleasure in teasing and bullying of others

EXTRA1 Was open to the teacher; 3,935 3.85 1.15 1 5
was spontaneous;
not defensive

EXTRA2 Made an energetic and vital impression; 3,933 3.90 1.06 1 5
looked happy

EXTRA3 Made contact with fellow students; 3,924 3.99 1.02 1 5
was open and approachable

Definition
IQ IQ score, discretized using cutoffs 80, 90, 100, 110 and 120 5,084 3.65 1.36 1 6
Income Monthly household income in BEF after taxes (1 EUR ≈40 BEF), 5,158 2.47 1.35 1 5

discretized using cutoffs 40k, 60k, 80k, 100k
Work At least one parent is active in the labor market. 4,749 0.86 0.35 0 1

Note: description and summary statistics of measurements of initial traits used in sensitivity checks.

Table F5: Measurements: part 1 of 2

CONS1 CONS2 CONS3 AGREE1 AGREE2 AGREE3

Male 0.07 (0.06) -0.67 (0.07) -0.23 (0.06) -1.05 (0.08) -1.02 (0.07) -0.82 (0.06)
Language ability 1.62 (0.09) 1.06 (0.07) 1.30 (0.07) 0.37 (0.05) 0.36 (0.05) 0.29 (0.05)
Math ability 0.79 (0.08) 0.58 (0.06) 0.44 (0.06) 0.25 (0.05) 0.29 (0.05) 0.19 (0.05)
High SES 0.48 (0.07) 0.42 (0.08) 0.45 (0.08) 0.08 (0.09) -0.03 (0.09) 0.03 (0.08)
Type 2 2.24 (0.07) 3.00 (0.08) 2.50 (0.07) 1.90 (0.07) 2.10 (0.07) 2.07 (0.07)

Cut point outcome 2 -3.23 (0.09) -3.16 (0.09) -3.33 (0.09) -3.48 (0.11) -3.57 (0.10) -3.58 (0.12)
Cut point outcome 3 -1.01 (0.06) -1.31 (0.07) -1.22 (0.06) -2.26 (0.08) -2.00 (0.07) -1.84 (0.07)
Cut point outcome 4 0.62 (0.06) 0.31 (0.06) 0.47 (0.06) -1.43 (0.07) -1.05 (0.07) -0.59 (0.06)
Cut point outcome 5 2.55 (0.07) 2.29 (0.07) 2.65 (0.07) -0.10 (0.06) 0.59 (0.06) 0.99 (0.06)

Note: Estimates of ordered logit model on measurements used in sensitivity checks. Definition outcome variables: see Table
F4. Bootstrap standard errors in parentheses.
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Table F6: Measurements: part 2 of 2

EXTRA1 EXTRA2 EXTRA3 IQ Income Work

Male -0.55 (0.06) -0.14 (0.06) -0.23 (0.06) 0.56 (0.06) -0.12 (0.05) 0.17 (0.10)
Language ability 0.26 (0.05) 0.31 (0.05) 0.22 (0.05) 1.62 (0.06) 0.14 (0.04) 0.79 (0.08)
Math ability 0.26 (0.05) 0.34 (0.05) 0.21 (0.04) 1.40 (0.08) 0.15 (0.04) 0.09 (0.06)
High SES 0.14 (0.07) 0.32 (0.07) 0.22 (0.07) 0.20 (0.07) 1.66 (0.08) 1.79 (0.25)
Type 2 2.48 (0.07) 2.27 (0.07) 2.02 (0.07) 0.50 (0.06) 0.14 (0.05) 0.16 (0.10)

Cut point outcome 2 -3.10 (0.10) -3.47 (0.12) -3.78 (0.14) -4.02 (0.10) -0.47 (0.04)
Cut point outcome 3 -1.35 (0.06) -1.46 (0.06) -1.73 (0.07) -1.98 (0.06) 0.56 (0.04)
Cut point outcome 4 -0.08 (0.06) 0.06 (0.06) -0.30 (0.06) 0.14 (0.05) 1.70 (0.05)
Cut point outcome 5 1.70 (0.06) 1.92 (0.07) 1.49 (0.06) 2.52 (0.06) 2.87 (0.06)
Cut point outcome 6 5.00 (0.09)
Constant 1.69 (0.09)

Note: Estimates of (ordered) logit model used in sensitivity checks. Definition outcome variables: see Table F4.
Bootstrap standard errors in parentheses.

Table F7: Sensitivity analysis: discount factor

Study delay High school Higher education Student
dropout graduation welfare

Predicted value in %
Status quo

Baseline (β = 0.9) 33.22 (0.91) 14.17 (0.67) 44.25 (0.75)
Alternative (β = 0.95) 32.95 (0.11) 13.98 (0.68) 44.56 (0.87)

Change in % points Change in $1000
Repeat policy

Baseline (β = 0.9) 9.48 (0.57) 3.94 (0.33) -1.70 (0.22) -2.14 (0.26)
Alternative (β = 0.95) 9.45 (0.53) 3.50 (0.35) -1.99 (0.21) -2.53 (0.28)

Downgrade policy
Baseline (β = 0.9) -9.82 (0.55) -1.61 (0.25) -0.30 (0.18) -1.02 (0.14)

Alternative (β = 0.95) -10.19 (0.76) -1.81 (0.28) -0.26 (0.18) -1.13 (0.17)

Note: Status quo = students can choose to downgrade
or repeat grade after obtaining a B-certificate, Repeat =
students must repeat grade after obtaining a B-certificate,
Downgrade = students must downgrade and not repeat
grade after obtaining a B-certificate. Bootstrap standard
errors in parentheses.

G Changes in effort

Figures G1, G2 and G3 show the distribution of the log of effort (ln(y∗it)) in the coun-

terfactual scenarios. We see a shift to the right in both counterfactuals, especially in

early periods. Note however that ln(y∗it) is difficult to compare as students can be in
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different programs and different grades in the counterfactual scenario, which implies

different costs and benefits for the same level of effort. To isolate the incentive effect

caused by letting students choose effort, I also show the distribution of the new opti-

mal levels of y∗it, but in the status quo program choices (see Figures G4, G5 and G6).

This shows a clearer picture. Without effort choice, we would not see any changes.

However, here we clearly see that the new policy gives extra incentives to perform bet-

ter at the beginning of secondary education, as students are still navigating towards

their final track, while there is no impact in later periods.

Figure G1: Changes in effort: period 1 - 3

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat, gray
= status quo.
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Figure G2: Changes in effort: period 4 - 6

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat, gray
= status quo.
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Figure G3: Changes in effort: period 7 - 9

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat,
gray = status quo. Counterfactual optimal effort levels, but using the status quo predictions of
programs and past performance.
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Figure G4: Changes in effort for given programs and past performance: period 1 - 3

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat,
gray = status quo. Counterfactual optimal effort levels, but using the status quo predictions of
programs and past performance.
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Figure G5: Changes in effort for given programs and past performance: period 4 - 6

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat,
gray = status quo. Counterfactual optimal effort levels, but using the status quo predictions of
programs and past performance.
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Figure G6: Changes in effort for given programs and past performance: period 7 - 9

Note: density of the log of effort (ln y∗it) in three scenarios: left = downgrade, right = repeat,
gray = status quo. Counterfactual optimal effort levels, but using the status quo predictions of
programs and past performance.
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H SES decomposition

The simulation results of giving low SES students some of the high SES parameters or

initial conditions can be found in Table H1. Note that high SES students have higher

Table H1: SES decomposition: differences when low SES have high SES aspects

Parameters Characteristics

HE MC + FC FC MC Observed ability

Change in % points

SES gap -7.53 (0.95) -4.99 (0.60) -2.46 (0.47) -2.57 (0.62) -18.78 (0.68)
Study delay -0.18 (0.09) -0.98 (1.06) 2.32 (0.82) -3.27 (0.64) -3.34 (0.63)
High school dropout -0.54 (0.14) -7.08 (1.26) -1.36 (1.17) -5.70 (1.33) -8.49 (0.52)
HE graduation 5.51 (0.69) 3.65 (0.44) 1.80 (0.34) 1.88 (0.45) 13.65 (0.44)

Change in $1000

Student welfare 0.94 (0.16) 9.06 (1.86) 6.39 (1.76) 2.48 (0.44) 4.69 (1.32)
Note: Predictions from the dynamic effort model. Approximated marginal costs are used, based on the specification also
used to describe the results in section 5. Decomposition: impact of giving low SES students parameters or variables of
high SES students. HE: Higher education enrollment and graduation parameters, MC: marginal cost parameters, FC:
fixed cost parameters, observed ability: math and language ability draws from the empirical distribution of high SES.
SES gap at graduation: difference in percentage college graduates between high and low SES. Opportunity cost of time:
$10/h. Bootstrap standard errors in parentheses.

observed ability. Conditional on this (and other characteristics), they have lower

marginal and fixed costs of attending more academic tracks, and are more likely to

enroll in and graduate from higher education. In a first simulation, I give low SES

students the high SES parameters in higher education. This reflects differences in

preferences for obtaining a higher education degree, differences in expected returns

to college or differences in support to graduate from it. While college graduation

increases, it is still far from high SES students, reducing the gap from 40% to 32%.

In a second set of simulations, low SES students receive the marginal and/or

fixed cost parameters of high SES students. The resulting decrease in marginal costs

reflects improved circumstances to study. The change in fixed costs reflects different

preferences for programs or the influence of parents in the program decision. A

combined effect strongly decreases high school dropout and increases higher education

H1



graduation by almost 4 percentage points. Note that if only fixed costs decrease,

better graduation rates come at the cost of an increase in study delay. This could be

a reflection of high SES parents pushing their children into more difficult tracks. If

not accompanied by a decrease in marginal cost (i.e. help with studying), it can lead

to worse performance.

Finally, we give low SES students the cognitive ability of high SES students. This

has the largest impact on outcomes, with an increase in higher education graduation

rates of almost 14 % points and reducing the SES gap by almost half.
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I Internalities

When students make mistakes, the costs of schooling and the taste shocks cannot

be interpreted as utility, but (partly) as optimization mistakes. Consider first the

optimal level of effort. If students only cared about utility after high school, they

should exert maximum effort to obtain the best performance outcome and graduate

without any risk of study delay in the program they want. Marginal costs prevent this.

They can be interpreted as a way to make the effort level deviate from what would

be optimal if students only cared about the future. Similarly, fixed costs and taste

shocks can be interpreted as deviations from the path of program choices students

would choose if they only cared about outcomes after leaving high school.

This is easy to see in the simplified model of section 2: students choose to go to high

school if v(xi, yi)+ϵi11 > ϵi01, with v(xi, yi) = u(xi, yi)+βγ+βϕ(yi) ln (1 + expΨ1(xi, gi = 1)).

If students do not derive any additional (dis)utility from going to school and only care

about the future impact of their high school choice, we would have u(xi, yi) = 0 and

ϵi11 = ϵi01 = 0. Note that u(xi, yi) ≡ −C0(xi) − c(xi)yi. c(xi) = 0 would lead to

maximum performance. However, it is estimated to match the probability of good

performance (and therefore yi) to what we observe in the data (equation 4). With

c(xi) = 0, C0(xi) = 0 would then mean students do not derive (dis)utility from

schooling. However, we need C0(xi) ̸= 0 to match the program choices in the data.43

Finally, taste shocks (ϵi11, ϵi01) allow for further deviations that cannot be explained

by xi (or, if included, time-invariant types νi). What is key for the robustness of

counterfactual choice probabilities is that these deviations remain the same in the

policies we simulate.

Lavecchia et al. (2016) list four reasons why students make sub-optimal educa-

tional decisions: students (1) focus too much on the present, (2) rely too much on

routine, (3) care too much about (negative) identities and (4) have too little infor-

mation about their options. These deviations change our interpretation of estimates
43As we do in the application, both marginal and fixed costs can depend on unobserved types too.
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but are unlikely to substantially change in the counterfactual policies we consider.44

Welfare could be substantially different but is expected to be more favorable. First,

the main loss in student welfare is coming from taste shocks during high school. If

they partly capture mistakes, we should not take them fully into account for the wel-

fare analysis. Second, the expected payoff after leaving high school increases. This is

a component that should be weighted more heavily against the other components if

students focus too much on the present.45 Finally, the perceived cost of downgrading,

as well as differences between tracks, are likely overvalued by students due to the

heavy focus on routine and identity.

44More specifically: (1) will make the estimated utility during high school relatively more impor-
tant than the the payoff after leaving high school. (2) likely causes a high fixed cost of downgrading
as it introduces students to a track they are less familiar with. (3) could explain some of the het-
erogeneity we find in the marginal costs estimates as good/bad performance might be inconsistent
with their identity. Similarly identity is likely related to preferences (and therefore the fixed cost
estimates) of different tracks. (4) is expected to make high SES students unaware of the higher
education options in which they have a good chance to be succesful after leaving from a low track,
while low SES students could have the opposite problem. This influences mainly the fixed costs
differences between tracks, but also the incentive to perform well and therefore marginal costs.

45Since college enrollment goes down but college graduation does not, there can be even further
gains for students if we would consider that entering college without graduation is a mistake.
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Table J2: High school program and travel time

Difference in daily travel time to closest school
Study program Graduates Others

Academic track 5.1 5.3
clas+math* 9.5 14.8

clas* 11.4 13.9
math 7.6 7.4
other 5.3 5.2

Middle-Theoretical track* 4.9 6.4
math* 6.5 8.0
other* 6.2 8.0

Middle-Practical track 6.1 6.4

Vocational track 2.3 2.2
Note: travel time in minutes per day. Comparing graduates of the different study programs
to other students. * denotes significant difference of means at 5% level. Travel times of
grade 12 used.
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Table J3: High school program and higher education outcomes: summary statistics

Higher education

Enrollment Degree
Study program

All 58.2 44.0

Academic track 96.9 84.2
clas+math 99.2 94.3

clas 99.4 90.5
math 97.8 88.1
other 94.1 74.1

Middle-Theoretical track 82.0 51.7
math 99.2 72.8
other 78.9 47.9

Middle-Practical track 54.8 27.5

Vocational track (13th grade) 13.5 2.6

Dropout 0 0
Note: Percentage of all students (including
dropouts), conditional on high school program.
Clas= classical languages included. Math= intensive
math. Students in vocational track only obtain full
high school degree after an additional 13th grade.
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Table J4: High school program and level and major college degree: summary statistics

Academic level higher education Major

University Academic Professional STEM
college college

Study program

All 12.4 6.0 25.5 17.8

Academic
clas+math 67.0 14.2 13.0 54.0

clas 48.6 10.5 31.4 22.2
math 33.7 18.3 36.2 47.0
other 9.5 6.9 57.8 16.2

Middle-Theoretical
math 7.2 20.8 44.8 56.0
other 0.7 3.3 43.9 17.5

Middle-Practical 0.2 2.9 24.4 12.3

Vocational (13th grade) 0 0.2 2.5 0.3
Note: Percentage of all students (including dropouts), conditional on high school program. Three
types of higher education options in decreasing order of academic level: university, academic college,
professional college. Graduation rates add up to the total rate of 44.0%. Each level has different
programs that could be STEM. Graduation from STEM programs is reported. Clas= classical
languages included. Math= intensive math.
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Table J5: Higher education program and distance

Distance: difference with closest HE program
Enroll No enroll

HE program Mean St.dev Mean St.dev

University 8.7 (5.8) 8.5 (5.7)
Antwerp* 41.4 (21.6) 51.7 (21.1)
Brussels 52.6 (18.5) 51.6 (19.7)
Ghent* 32.2 (35.5) 86.1 (37.1)
Hasselt* 8.0 (10.0) 25.0 (32.1)
Leuven 38.2 (12.8) 37.3 (11.1)

Academic college 4.6 (6.0) 4.1 (5.9)
STEM 7.1 (7.3) 7.3 (7.4)
No STEM* 6.2 (6.6) 4.7 (6.3)

Professional college 1.4 (2.9) 1.5 (3.0)
STEM 3.3 (4.7) 3.5 (4.8)
No STEM 1.5 (2.9) 1.5 (2.9)

Note: distance in kilometers. HE=higher education. Comparing students that enroll in a
campus (for universities) or major (for academic and professional colleges) to students that
do not enroll there. * denote significant difference of means at 5% level.
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Table J6: Certificates in each track and grade

Grade
Track 7 8 9 10 11 12 13

Academic track
A 0.91 0.86 0.92 0.87 0.91 0.97
B 0.09 0.12 0.04 0.09 0 0
C 0.00 0.02 0.04 0.04 0.09 0.03

Middle-theoretical track
A 0.72 0.67 0.85 0.82 0.85 0.93
B 0.28 0.30 0.09 0.11 0.00 0.00
C 0.00 0.03 0.06 0.06 0.15 0.07

Middle-practical track
A 0.61 0.56 0.79 0.77 0.81 0.90
B 0.39 0.38 0.12 0.14 0.00 0.00
C 0.00 0.06 0.09 0.10 0.19 0.10

Vocational track
A 1.00 0.89 0.85 0.88 0.85 0.90 0.85
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C 0.00 0.11 0.15 0.12 0.15 0.11 0.15

Note: Proportion of students with A-, B- and C-certificates in each track and grade. C-certificate: repeat
grade, i.e. all tracks excluded, B-certificate can exclude entire tracks or only elective courses. Note that
C-certificates in grade 7 are corrected to be B-certificates that allow the vocational track in grade 8 as this
does not require successful completion of the first grade.
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Table J8: Impact performance during secondary education

Students High school Higher education
Dropout Enrollment Degree

All 100 14.6 58.2 44.0

At least 1 B-certificate 35.4 21.0 36.6 19.9
At least 1 C-certificate 30.0 38.6 28.9 14.7
At least 1 year of study delay 31.6 26.7 37.7 18.8

Note: First column: share of students for each performance outcome during high school. Column
2-4: share of students for each outcome, conditional on obtaining a bad performance outcome in
high school. A-certificate: proceed to next grade, C-certificate: repeat grade, B-certificate: repeat
or downgrade.
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Table J10: Reduced form prediction ln y∗j (xit, νi)

Effort in data

Individual characteristics (baseline = vocational track)
Male -0.324 (0.130)

High SES 0.592 (0.237)
Language ability 0.827 (0.112)

Math ability 0.403 (0.104)
Type 2 -2.074 (0.323)

Lagged choices
Lagged clas 0.205 (0.102)

Lagged math 0.132 (0.122)
Lagged track level 0.024 (0.086)

Downgrade -0.061 (0.134)
Upgrade 0.031 (0.155)

Study delay -0.292 (0.168)
x track level -0.044 (0.037)

Repeat 0.568 (0.231)
x track level 0.276 (0.070)

Travel time high school 0.001 (0.001)

Distance to college
Distance to prof college, no STEM 0.014 (0.010)

Distance to prof college, STEM -0.022 (0.012)
Distance to acad college, no STEM 0.030 (0.014)

Distance to acad college, STEM -0.005 (0.007)
Distance to university -0.005 (0.019)

Track level x distance to prof college, no STEM -0.001 (0.005)
Track level x distance to prof college, STEM 0.003 (0.006)

Track level x distance to acad college, no STEM -0.024 (0.007)
Track level x distance to acad college, STEM 0.004 (0.004)

Track level x distance to university 0.015 (0.009)

Constants: program (=track + elective)
Interactions with grade: track, elective
Interactions with individual characteristics: track, elective, grade

Note: Estimates of a sample of 5,158 students or 33,239 student-year observations. Grade variable
starts counting in high school. Track level = academic level of high school track (0: vocational, 1:
middle-practical, 2: middle-theoretical, 3: academic). Bootstrap standard errors in parentheses.
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Table J11: Costs of schooling: time, grade and track

Fixed costs Log of marginal costs

Time 1 (.) -0.00 (0.00)
Grade 9.0 (7.8) 0.28 (0.06)

Academic track
clas+math 76.9 (53.5) -4.85 (0.84)

clas -141.8 (47.7) -3.32 (0.44)
math -12.6 (49.8) -3.27 (0.37)
other -225.3 (49.5) -1.96 (0.28)

x grade -22.4 (7.1) 0.07 (0.09)
Middle-theoretical track

math 102.1 (51.0) -3.40 (0.47)
other -181.5 (44.3) -1.92 (0.25)

x grade -7.7 (5.0) -0.12 (0.08)
Middle-practical track -25.4 (43.9) -1.65 (0.34)

x grade -21.5 (4.9) -0.22 (0.08)
Vocational track 112.6 (46.3) -4.25 (0.53)
Part-time 270.6 (31.7)

Note: Estimates of a sample of 5,158 students or 33,239 student-year obser-
vations. Scale = minutes of daily travel time. Grade variable starts counting
in high school. The marginal costs in the model are a nonparametric function
of state variables, this table summarizes them by regressing their logarithmic
transformation on the same variables that enter the fixed costs. Bootstrap
standard errors in parentheses.

Table J12: Costs of schooling: student characteristics and elective courses

Fixed costs Log of marginal costs

Interaction with Interaction with Interaction with Interaction with
classical languages intensive math classical languages intensive math

Male -4.1 (8.3) -50.8 (11.7) 0.53 (0.36) 0.87 (0.27)
Language ability -57.1 (11.1) 29.6 (13.2) -1.11 (0.41) -0.82 (0.34)
Math ability -21.8 (9.1) -71.0 (14.9) -0.48 (0.40) 0.54 (0.32)
High SES -36.2 (9.5) -25.4 (11.3) -0.48 (0.39) 0.26 (0.30)
Type 2 83.5 (12.5) 35.5 (11.8) -0.19 (0.43) -0.02 (0.33)

Note: Estimates of a sample of 5,158 students or 33,239 student-year observations. Scale = minutes of
daily travel time. The marginal costs in the model are a flexible function of state variables, this table
summarizes them by regressing their logarithmic transformation on the same variables that enter the
fixed costs. Ability measured in standard deviations. Type 2 = dummy equal to one if student belongs
to unobserved type 2 instead of 1. High SES= at least one parent has higher education degree. Clas=
classical languages included. Math= intensive math. Bootstrap standard errors in parentheses.
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Table J13: Type probabilities in %

Type probabilities
Type 1 Type 2

Overall 29.55 70.45
Age 12 33.07 66.93
Age 13 9.86 90.14
Age 14 10.67 89.33

Note: Estimates of unobserved types in the
student population by age they start high
school.

Table J14: Performance thresholds track

Threshold

Increase to obtain outcome 3 0.871 (0.036)
Increase to obtain outcome 4 1.102 (0.043)
Increase to obtain outcome 5 1.744 (0.054)
Note: Optimal y is specific for each grade-track and
thresholds for avoiding lowest outcome in them are
normalized to 0. These differences are estimated but
constrained to be the same over grades and tracks.
Constraints on thresholds are used to avoid impossi-
ble outcomes because of institutional context. Grade
7-10 allow more than two realizations of main perfor-
mance outcome. Bootstrap standard errors in paren-
theses.
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Table J15: Performance elective courses

Performance

Log effort (ln y)
x clas 0.902 (0.339)

x math 0.124 (0.102)

Male
x clas 0.931 (0.469)

x math 0.058 (0.205)
Language ability

x clas -0.251 (0.524)
x math 0.053 (0.171)

Math ability
x clas -0.785 (0.532)

x math 0.488 (0.196)
SES

x clas -0.424 (0.352)
x math 0.027 (0.193)

Type 2
x clas 0.332 (0.517)

x math 0.392 (0.223)

Cut points clas
x grade -0.096 (0.138)

x constant 2.222 (2.062)
Cut points math

x grade 2, outcome 2 -4.679 (0.624)
x grade 2, outcome 3 -3.540 (0.556)
x grade 3, outcome 2 -5.222 (1.313)
x grade 3, outcome 3 -3.177 (0.574)
x grade 4, outcome 2 -5.676 (3.625)
x grade 4, outcome 3 -1.603 (0.528)

Note: Bootstrap standard errors in parentheses.
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Table J16: Value of obtaining degree

Degree values

High school degree 512.2 (101.3)
x level 108.1 (60.7)
x vocational -146.8 (99.3)

12th grade certificate vocational track 529.8 (65.5)
Note: Estimates of µdegree. Scale = minutes of daily travel time. Level
= academic level of high school track (0: vocational, 1: middle-practical,
2: middle-theoretical, 3: academic). Bootstrap standard errors in paren-
theses.

Table J17: Estimation results higher education (1)

Higher education
Enrollment Degree

Male -1.013 (0.108) -0.840 (0.129)
x HE level 0.302 (0.206) 0.529 (0.246)

x STEM 0.827 (0.067) 0.598 (0.142)
Language ability 0.340 (0.126) 0.262 (0.144)

x HE level 2.130 (0.230) 0.641 (0.255)
x STEM -0.186 (0.088) -0.172 (0.136)

Math ability 0.111 (0.109) 0.611 (0.137)
x HE level 1.433 (0.229) 0.149 (0.335)

x STEM 0.472 (0.098) -0.154 (0.147)
SES 0.563 (0.126) 0.633 (0.136)

x HE level 1.875 (0.191) 0.643 (0.245)
x STEM 0.084 (0.084) -0.078 (0.129)

Type 2 -0.613 (0.157) -1.830 (0.174)
x HE level -4.741 (0.248) 0.901 (0.310)

x STEM -0.639 (0.090) 1.006 (0.165)
Note: Estimates of higher education outcomes as specified in Ap-
pendix D. HE Level = level of higher education (average ability).
Bootstrap standard errors in parentheses.
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Table J18: Estimation results higher education (2)

Higher education
Enrollment Degree

Academic degree 4.227 (0.266)
+ clas + math -0.330 (0.385)
+ clas -0.009 (0.278)
+ math 0.501 (0.198)
other benchmark

Middle-theoretical degree 3.426 (0.205)
+ math -0.195 (0.277)
other -0.442 (0.160)

Middle-practical degree 2.050 (0.161) -0.721 (0.233)
Vocational degree benchmark -2.030 (0.332)
Study delay 0.182 (0.150) -0.580 (0.271)
High school level x study delay -0.326 (0.077) -0.150 (0.121)
HE level

x high school level 0.163 (0.186) -0.227 (0.266)
x clas 3.031 (0.296) 1.618 (0.283)
x math 2.596 (0.222) 1.313 (0.258)
x study delay -0.312 (0.225) 0.034 (0.368)

STEM
x high school level -0.455 (0.062) -0.108 (0.114)
x clas -0.271 (0.123) 0.480 (0.193)
x math 1.335 (0.086) 0.389 (0.158)
x study delay -0.234 (0.083) 0.165 (0.148)

Note: Estimates of higher education outcomes as specified in Appendix D.
Clas= classical languages included. Math= intensive math. High school level
= academic level of high school track (0: vocational, 1: middle-practical, 2:
middle-theoretical, 3: academic). HE Level = level of higher education (average
ability). Bootstrap standard errors in parentheses.
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Table J19: Estimation results higher education (3)

Higher education

Enrollment Degree
Distance (km) -0.018 (0.001) -0.003 (0.001)
Same HE level as enrollment 1.715 (0.112)
Same major as enrollment 2.411 (0.088)
Upgrade HE level -1.653 (0.283)
University -3.957 (0.398) -4.604 (0.447)
Academic college -2.842 (0.339) -2.971 (0.317)
Professional college -1.287 (0.274) -1.338 (0.177)
STEM 0.289 (0.171) -1.059 (0.298)

Note: Estimates of higher education outcomes as specified in Appendix D. HE
Level = level of higher education (average ability). Bootstrap standard errors
in parentheses.

J17



Table J20: OLS regressions on initial conditions and counterfactuals

Study delay High school Higher education Student
dropout graduation welfare

(%) (%) (%) ($1000)

Male 5.53 (1.41) 8.31 (1.02) -12.40 (1.01) -6.13 (1.67)
Language ability -6.76 (1.24) -7.49 (0.93) 15.38 (1.52) 16.27 (2.29)
Math ability -1.83 (1.22) -6.97 (0.86) 14.98 (1.25) 11.58 (1.65)
High SES -6.46 (1.56) -4.56 (0.74) 16.60 (1.36) 17.95 (3.02)
Type 2 11.82 (1.44) 14.36 (0.89) -32.63 (1.32) -38.20 (5.21)
Constant 24.01 (1.35) 1.34 (0.59) 68.53 (1.33) 70.42 (8.71)

Repeat policy 8.78 (0.73) 1.88 (0.35) -2.04 (0.27) -1.76 (0.25)
x male 0.85 (0.69) 1.63 (0.44) 0.05 (0.20) -0.37 (0.12)

x language ability -0.37 (0.63) -1.75 (0.44) -0.07 (0.18) 0.42 (0.17)
x math ability -1.38 (0.69) -0.28 (0.48) -0.05 (0.20) 0.35 (0.16)

x high SES -0.72 (0.74) -1.53 (0.42) 0.16 (0.27) 0.42 (0.17)
x Type 2 0.69 (0.75) 2.38 (0.46) 0.39 (0.22) -0.45 (0.16)

Downgrade policy -11.91 (1.02) -0.20 (0.22) -0.67 (0.30) -1.47 (0.23)
x male -0.91 (0.70) -1.41 (0.31) 0.30 (0.17) -0.08 (0.12)

x language ability -0.05 (0.68) 0.01 (0.29) 0.22 (0.13) -0.07 (0.11)
x math ability -0.26 (0.80) 0.95 (0.32) -0.23 (0.14) -0.15 (0.12)

x high SES 1.85 (0.88) 0.29 (0.32) 0.13 (0.23) 0.22 (0.17)
x Type 2 2.91 (0.97) -1.14 (0.30) 0.26 (0.20) 0.62 (0.18)

Note: OLS regression of predictions from the dynamic model. B-certificate = students acquired skills to proceed to next grade
but only if they downgrade, i.e. switch to track of lower academic level or drop an elective course. Status quo = students can
choose to downgrade or repeat grade after obtaining B-certificate, Repeat = students must repeat grade after obtaining B-certificate,
Downgrade = students must downgrade and not repeat grade after obtaining B-certificate. Ability measured in standard deviations.
Type 2 = dummy equal to one if student belongs to unobserved type 2 instead of 1. High SES= at least one parent has higher
education degree. Opportunity cost of time: $10/h. Bootstrap standard errors in parentheses.
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Figure J1: Transitions in the educational system

Note: Left: program chosen at the start of secondary education, middle: option in which student
graduated or drop out, right: highest educational outcome. Size of the flows proportional to
number of students transitioning. See Appendix Table J9 for the corresponding data. Students
in the vocational track can attend a 13th grade but are considered graduates in this figure after
successfully completing grade 12. As in Declercq and Verboven (2018), I define a higher education
degree as three successful years of higher education in a time span of six years. Figure created
using Google Charts.
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