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S.1 Motivating Discussion for Framework

In this section, I provide motivation for the framework developed in Section 3 by illustrating

what standard treatment effect tools can and cannot evaluate with respect to the effects of Head

Start access in the HSIS. For the purposes of this section, I introduce alternative notation to

that introduced in Section 3. Specifically, since the objective is to analyze the average “treatment”

effect of Head Start access, I introduce potential outcome notation where the “treatment” of interest

corresponds to the receipt of Head Start access. As we will observe below, this notation will help

show, using more familiar arguments without the concept of choice sets, how standard intention-to-

treat and instrumental variable estimands can evaluate only so-called local average effects of Head

Start access—see, for example, Imbens and Rubin (2015, Chapter 23) for a textbook exposition on

such notation. In addition, it will allow us to emphasize why not observing where access is received

corresponds to not observing the treatment of interest and, hence, complicates the application of

available tools to move beyond local effects. For simplicity, the setup and notation introduced

in this section does not account for the possible heterogeneity in the availability of alternative

preschool access.

For a given child, let C denote the treatment of interest corresponding to an indicator for

whether the parents received Head Start access or not, let D denote an indicator for whether the

the child was enrolled into Head Start or not, and let Y denote the child’s test score. Let D1 and

D0 respectively denote the parent’s potential indicator for whether they enroll their child into Head

Start with and without Head Start access, which are related to the realized indicator of Head Start

enrollment by

D = D1C +D0(1− C) . (S.1)

Analogously, let Y1 and Y0 respectively denote the child’s potential test scores with and without

Head Start access, which are related to the realized test score by

Y = Y1C + Y0(1− C) . (S.2)

Furthermore, let Z denote an indicator for whether the child was assigned to the treatment group

or not, and let C1 and C0 respectively denote the potential indicators for whether Head Start access

was received in the treatment and control group. The potential indicators for whether access was

received are related to the realized indicator by

C = C1Z + C0(1− Z) . (S.3)

The structure of setup and the experimental design introduce certain natural restrictions between

the above described variables. I formally state these restrictions in the following assumptions:

Assumption M1. D0 = 0 .
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Assumption M2. D0 = D1 =⇒ Y0 = Y1 .

Assumption M3. (Y0, Y1, D0, D1, C0, C1) ⊥ Z .

Assumption M4. C1 = 1 .

Assumption M1 states that if the child did not receive Head Start access then the parents cannot

enroll their child into Head Start. Assumption M2 states that receiving Head Start access can affect

test scores only if it affects the enrollment decisions, i.e. Head Start access does not directly affect

outcomes but only indirectly through affecting the enrollment decision. Assumption M3 states that

assignment to either the treatment or control group was random. Assumption M4 states that if

the child was assigned to the treatment group then they were provided Head Start access. Note

that Assumption M1 and Assumption M2 capture logical restrictions that naturally follow from

the structure of the setup, whereas Assumption M3 and Assumption M4 capture restrictions that

follow from the design of the experiment.

S.1.1 Interpreting the ITT and IV Estimands

In the above described setup, the effect of Head Start access on enrollment decisions and test scores

for a given child corresponds to

D1 −D0 and Y1 − Y0 ,

i.e. the difference in potential responses with and without Head Start access. I begin by illustrating

what the standard intention-to-treat (ITT) and instrumental variable (IV) estimands can evaluate

with respect to these effects. The ITT estimands on enrollment decisions and test scores is defined

by

ITTD = E[D|Z = 1]− E[D|Z = 0] , (S.4)

ITTY = E[Y |Z = 1]− E[Y |Z = 0] , (S.5)

i.e. the difference in mean responses between the treatment and control group, whereas the IV

estimand is defined by

IV =
ITTY

ITTD
, (S.6)

i.e. the ratio of the ITT estimand on test scores to that on enrollment. Using arguments from

Imbens and Angrist (1994) modified to the above setting, the following proposition rewrites the

ITT and IV estimands in terms of the underlying potential variables of the setup. The proof of

this proposition is presented in Section S.6.

Proposition S.1.1. Suppose that Assumptions M1-M4 hold. Then
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ITTD = E[D1 −D0|C1 = 1, C0 = 0] · Prob{C1 = 1, C0 = 0} ,

ITTY = E[Y1 − Y0|C1 = 1, C0 = 0] · Prob{C1 = 1, C0 = 0} ,

IV = E[Y1 − Y0|D1 = 1, C1 = 1, C0 = 0] .

The above proposition states that the ITT estimands on enrollment and test scores respectively

evaluate the average effect of Head Start access on enrollment and test scores conditional on the

compliers times the proportion of compliers, where compliers correspond to the subgroup of children

whose parents comply with their assigned status in the control group and do not receive Head Start

access from the outside the experiment. Similarly, the IV estimand evaluates the average effect of

Head Start access on test scores for those who would in fact enroll when access is received but again

conditional on the compliers.

In summary, the above proposition shows that the ITT and IV estimands can help evaluate the

conditional average effects of Head Start access which is conditional on the specific subgroup of

compliers. In some cases, this subgroup is indeed the one of interest. For example, if we wanted to

learn the average effect of providing Head Start access to children through the experiment then the

complier subgroup is the only one of interest as they are the only ones whose receipt of Head Start

access is affected by the experiment. However, in other cases, we may instead be interested in the

unconditional effect for all the children. For example, if we wanted to learn the average effect of

providing Head Start access to children more generally and not only through the experiment. In

such cases, the objective is then to learn about

E[D1 −D0] and E[Y1 − Y0] , (S.7)

i.e. the (unconditional) average effect of Head Start access on enrollment and test scores, and

E[Y1 − Y0|D1 = 1] , (S.8)

i.e. the (unconditional) average effect of Head Start access on test scores for those who in fact

enroll when access is received. But, unless every control parent complies with their assigned status

and in turn the complier subgroup coincided with the entire population, i.e.

Prob{C1 = 1, C0 = 0} = 1 ,

the ITT and IV estimands cannot evaluate the average effects of Head Start access on enrollment

and test scores unconditional of the complier subgroup. In the setting of the HSIS, it is indeed

the case that some control parents do not comply with their assigned status, which is indirectly

revealed by the fact that some parents enroll their child into Head Start even when assigned to the

control group as noted when presenting the summary statistics in Section S.2.1.
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S.1.2 Moving Beyond Local Effects

More generally, following the language of the treatment effect literature, we can observe that the

ITT and IV estimands allow us to only evaluate local average treatment effects (LATE) but not

average treatment effects (ATE) of providing Head Start access. In this literature, a number of

tools have been developed to move beyond the LATE and evaluate the ATE—see, for example,

Mogstad and Torgovitsky (2018, Section 6) for a recent overview of such tools. Nonetheless, due to

certain observational problems that arise in the setting of the HSIS, these tools generally cannot

be applied to evaluate the average effects of Head Start access in the above described setup. To be

specific, when applied to the above described setup, these tools typically require the distribution of

(Y,D,C,Z)

to be observed. However, in the setting of the HSIS, this is not the case. Specifically, while the

experiment collected data on the test score, the enrollment decision and the treatment assignment

status, it did not collect data on the receipt of program access. As a result, while we observe the

values of Y , D and Z for every child, we do not observe the value of C for any child. In other

words, we do not observe the value of the “treatment” of interest whose average effect on enrollment

decisions and test scores we want to evaluate.

The objective of the framework developed in Section 3 is to study what we can learn about the

average effects of Head Start access in such cases. In particular, it aims to show how we can exploit

only the distribution of

(Y,D,Z)

to learn about the average effects of Head Start access. The framework is based on the idea that

while the receipt of Head Start access is not directly observed, the structure of the model implies

partial information on where access is received. For example, in the above described model, the

relation in (S.1) and Assumption M1 imply that

D = 1 =⇒ C = 1 ,

i.e. the child’s enrollment in Head Start reveals that parents received access to Head Start. Simi-

larly, the relation in (S.3) and Assumption M4 imply that

Z = 1 =⇒ C = 1 ,

i.e assignment to the treatment group reveals that parents in this group received Head Start access.

The framework then aims to formally show how to exploit this partial information and learn about

the average effects of Head Start access.

As mentioned, note that the above described model did not account for the presence of alter-

native preschool access for simplicity. The model presented in the framework in Section 3 shows
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how to expand on the above described setup and notation, and introduce their presence to study

the average effects of Head Start access based on their availability. Indeed, as noted by Feller

et al. (2016) and Kline and Walters (2016) in a local analysis based on the IV estimand, it can

be potentially important to account for heterogeneity in the effects of Head Start access based on

the availability of alternative preschools as such preschools may provide services comparable to

Head Start. Similar to Head Start access, we do not directly observe whether parents received

alternative preschool access and instead only observe whether parents enrolled their child in an

alternative preschool. The developed framework shows how the structure of the extended model

can be similarly used to exploit this partial information and learn about the average effects of Head

Start access based on the availability of alternative preschool access.

While the above described treatment effect model was useful to motivate the problem behind

learning the average effects of Head Start access, note that the framework in Section 3 proposes

an alternative more convenient representation of the model. In particular, it begins with a distinct

set of care settings and the insight that receiving access to a given preschool can be framed as

receiving that preschool in the choice set of care settings from which enrollment decisions are

made. By exploiting this insight, it then shows how a selection model can be used to relate where

access was received to the observed treatment assignment status, enrollment decision and test score.

From Section 3.1, observe that in this model the relationship between the various variables such

as those in (S.1)-(S.3) and the logical restrictions from the setup such as Assumption M1 and

Assumption M2 are naturally captured through the structure of the model, and the restrictions

imposed by the experimental design such as Assumption M3 and Assumption M4 are captured in

terms of Assumption HSIS. In addition, from Section 3.2, observe that in this model the various

parameters evaluating the average effects of Head Start access such as those in (S.7) and (S.8) are

defined in terms of comparing choice sets with and without Head Start in them.

S.2 Additional Results and Details for Empirical Analysis

In this section, I provide additional empirical results and details for the empirical analysis presented

in Section 4.

S.2.1 Summary Statistics

Table S.1 reports the proportion of children enrolled in each care setting by the treatment and con-

trol group as measured by the enrollment decision variable for the two age cohorts. The enrollment

probabilities in Head Start in the control group reveal that at least a certain proportion of parents

did not comply with their assigned status and received Head Start access outside the experiment.

Similarly, the enrollment probabilities in alternative preschools in treatment and control groups also
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Table S.1: Proportion in each care setting by age and experimental group.

Care setting Age 3 Age 4

Treatment Control Treatment Control

Home care 8.88 58.32 9.83 49.16

Alternative preschool 5.58 26.12 11.41 38.80

Head Start 85.55 15.56 78.76 12.04

Sample size 1273 739 1017 598

Table S.2: Estimates and 95% confidence intervals for the ITT and IV estimands

Parameter Age 3 Age 4

Raw Discretized Raw Discretized

ITTD

0.700 0.700 0.667 0.667

[0.658,0.751] [0.658,0.751] [0.625,0.709] [0.625,0.709]

ITTY

0.166 0.171 0.131 0.140

[0.092,0.232] [0.086,0.246] [0.054,0.220] [0.057,0.240]

IV
0.237 0.244 0.197 0.209

[0.126,0.329] [0.120,0.350] [0.077,0.329] [0.082,0.358]

Notes: For each quantity, the upper panel corresponds to the estimate and the lower panel corresponds

to the confidence interval. The number of bootstrap draws is set to 200 and each draw is sampled at the

level of the Head Start preschool.

reveal that at least a certain proportion of parents in both groups received access to an alternative

preschool.

Table S.2 reports estimates of the ITT estimands on Head Start enrollment and test scores

and the IV estimand, defined in Section S.1 by (S.4)-(S.6), along with 95% confidence intervals,

constructed using the percentile bootstrap, for the two age cohorts. Since these results do not

require the test scores to be discrete, I also report them using the raw version of the test score. The

numerical results under both versions are relatively similar. As illustrated in Section S.1.1, the ITT

and IV estimands will generally only help evaluate the local average effects of Head Start access

for subgroup of compliers who comply with their assigned status in the control group. For parents

in this complier subgroup, the ITT and IV estimates imply that the provision of Head Start access

induces them to enroll their child into Head Start and also improves their child’s test scores on

average.

S.2.2 Confidence Intervals

The overall conclusions in Section 4 were based on estimated identified sets for the parameters that

use the empirical distribution of the data as a sample estimate for the population distribution. In
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Table S.3: 95% Confidence intervals

Parameter Age 3 Age 4

Specification (5) Specification (6) Specification (5) Specification (6)

PPnh|n
0.835 0.815 0.748 0.748

0.931 0.951 0.922 0.942

ATEnh|n
0.051 0.031 0.020 0.000

1.101 0.987 1.429 1.222

PPnah|na
0.145 0.165 0.214 0.214

0.875 0.895 0.828 0.848

ATEnah|na
-1.292 0.000 -0.980 0.000

0.526 0.506 0.448 0.448

Notes: For each confidence interval, the upper and lower panels correspond to the lower and upper

bounds, respectively. The number of bootstrap draws is set to 200 and each draw is sampled at the level

of the Head Start preschool.

this section, to account for the sampling uncertainty, I present confidence intervals that cover the

unknown parameter with a pre-specified probability. I construct these confidence intervals using

the bootstrap procedure developed in Deb et al. (2018). In Section S.3, I illustrate in detail how

this bootstrap procedure applies to the specific structure of the linear programming problems that

characterize the identified sets.1

Table S.3 reports 95% confidence intervals for the various parameters for both age cohorts under

the two most informative model specifications in Table 1, i.e. those that impose either Assumption

MTR or Assumption Roy along with Assumption UA on the baseline model. Since the bootstrap

procedure in Deb et al. (2018) applies to only linear parameters, I do not report confidence intervals

for ATOPnh|n and ATOPnah|na, which as noted in Section 3.3 are linear-fractional parameters.

For the parameters evaluating the effect on enrollment into Head Start, the confidence sets are

only slightly wider than the corresponding estimated identified sets. Under the most informative

model specification, the confidence intervals for PPnh|n imply that the provision of Head Start

access induces between 83.5% and 93.1% of parents to enroll their three-year-old child into Head

Start when access to an alternative preschool is absent. Similarly, the confidence intervals for

PPnah|na reveal that it induces between 14.5% and 87.5% of parents to enroll their child into Head

Start when access to an alternative preschool is present.

In contrast, for the parameters measuring the effect on test scores, the confidence intervals are

considerably wider than the corresponding estimated identified sets. Nonetheless, though possibly

smaller in magnitude, the confidence intervals continue to suggest towards the positive benefits of

Head Start access when access to an alternative preschool is absent. In particular, under the most

1In Section S.3, I also present how to test the null hypothesis that the model is correctly specified, i.e. Q 6= ∅,

using the bootstrap procedure developed in Kitamura and Stoye (2018).
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informative model specification, the confidence intervals for ATEnh|n imply that the provision of

Head Start access improves test scores on average between 0.051 and 1.101 standard deviations for

the age three cohort when access to an alternative preschool is absent.

S.2.3 Sensitivity Analysis

The conclusions obtained in Section 4 were based on the estimated identified sets when additional

assumptions were imposed on the baseline model. In particular, the second conclusion that Head

Start access improves tests scores on average in the absence of alternative preschool access followed

from the identified sets for ATEnh|n and ATOPnh|n when either Assumption MTR or Assumption

Roy was imposed on the baseline model. Recall that Assumption MTR and Assumption Roy require

every child in the population to satisfy certain restrictions on how their potential test scores are

related to each other and on how their parents preferences are related to their potential test scores,

respectively. In this section, I illustrate how we can weaken these assumptions such that only a

proportion of the population is required to satisfy their respective restrictions and in turn analyze

the sensitivity of the conclusion to different values of this proportion.

To this end, suppose that the population can be divided into two groups which are identical

except for the fact that only one group is required to satisfy the restrictions given by the imposed

assumption. More specifically, let the distribution of the summary random variable in (11) be a

mixture of two distributions, i.e.

Q(w) = λ ·H1(w) + (1− λ) ·H0(w) (S.9)

for each w ∈ W, where λ ∈ [0, 1] denotes the proportion of the group for which the restrictions

imposed by the assumption hold and H1 and H0 denote the probability mass functions of the

summary random variable for the groups for which the restrictions imposed by the assumption

hold and do not hold, respectively. In turn, whenever either Assumption MTR or Assumption Roy

is imposed, let H1, instead of Q, satisfy the restrictions in either (S.44) or (S.45) and let H0 remain

unrestricted. Furthermore, since the only difference between the two groups is the restrictions

imposed by the assumptions which are on the distribution of potential outcomes, let H1 and H0 be

identical in terms of the mass they allocate to the preferences types and choice sets, i.e.∑
(y(n),y(a),y(h))∈Y3

H0(w) =
∑

(y(n),y(a),y(h))∈Y3

H1(w)

for each (u, c(0), c(1)) ∈ U ×C ×C, where recall that w = (y(n), y(a), y(h), u, c(0), c(1)). Under this

setup, by estimating the identified sets for ATEnh|n and ATOPnh|n for various pre-specified values

of λ smaller than one, we can then analyze the sensitivity of the second conclusion noted above to

weaker versions of Assumption MTR and Assumption Roy. In addition, through such an analysis,

we can determine the weakest version of these assumptions required for the conclusion to hold, i.e.
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Table S.4: Estimated identified sets for different values of λ

Parameter Specification (5) Specification (6)

λ λ

0.875 0.9 0.925 0.95 1 0.875 0.9 0.925 0.95 1

Age 3

ATEnh|n
-0.014 0.019 0.057 0.095 0.171 -0.014 0.019 0.057 0.095 0.171

0.981 0.981 0.981 0.981 0.981 0.912 0.907 0.902 0.897 0.887

ATOPnh|n
-0.016 0.021 0.063 0.104 0.187 -0.016 0.021 0.063 0.104 0.187

1.076 1.076 1.076 1.076 1.076 1.000 0.996 0.992 0.988 0.981

Age 4

ATEnh|n
-0.071 -0.035 0.007 0.050 0.140 -0.071 -0.035 0.007 0.050 0.140

1.269 1.269 1.269 1.269 1.269 1.150 1.142 1.133 1.123 1.102

ATOPnh|n
-0.079 -0.039 0.008 0.055 0.155 -0.079 -0.039 0.008 0.055 0.155

1.408 1.408 1.408 1.408 1.408 1.275 1.268 1.260 1.254 1.241

Notes: For each estimated identified set, the upper and lower panels correspond to the lower and upper bounds,

respectively.

the so-called breakdown point as analyzed, for example, by Horowitz and Manski (1995), Kline and

Santos (2013) and Masten and Poirier (2017) in various other settings.

Table S.4 reports the results of this sensitivity analysis for λ ∈ {0.875, 0.9, 0.925, 0.95, 1} for

the two most informative specifications in Table 1, i.e. those that impose either Assumption MTR

or Assumption Roy for only λ proportion of the population along with Assumption UA on the

baseline model. As further illustrated in Section S.4, these estimated identified sets are obtained

by applying a modified version of the linear programming procedure from Proposition 3.1 to the

empirical distribution of the data. The estimated identified sets suggest the conclusion that Head

Start access improves tests scores on average in the absence of alternative preschool access continues

to hold under mild relaxations of either Assumption MTR or Assumption Roy for both age cohorts.

In particular, as long as we assume that approximately at least 92.5% of the children satisfy either

of these assumptions, the estimated identified sets for both age cohorts do not contain zero and in

turn imply that the provision of Head Start access positively impacts test scores on average when

access to an alternative preschool is absent.

S.2.4 Details on Discretizing Test Scores

In this section, I outline how I obtain the discrete test score outcome of interest used in the empirical

results presented in Section 4 as well as the previous sections. In addition, I assess the sensitivity

of the empirical findings to alternative choices of discretizations.

The choice of discretization aimed to use the empirical distribution of the observed undiscretized

test scores to ensure that the discretized test scores take values in (10). Specifically, for a pre-
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specified choice of M , I take each point in (10) to be given by

ym =
y∗m + y∗m−1

2

such that

y∗m = F ∗−1
(
m · 100

M

)
for m ∈M = {0, . . . ,M}, where F ∗ denotes the empirical distribution of the observed undiscretized

test score Y ∗, i.e. each point is determined by the midpoint of two specific adjacent quantiles of the

empirical distribution of the observed undiscretized test scores. Then, each observed undiscretized

test score Y ∗ is transformed as follows to its corresponding discretized version

Y =

ym if Y ∗ ∈
[
y∗m−1, y

∗
m

)
for m ∈ {1, . . . ,M − 1}

yM if Y ∗ ∈
[
y∗M−1, y

∗
M

] ,

which is the version of the test score used in the analysis. For the empirical results, I used ten

support points for the test scores, i.e. M = 10, which ensured that the computational problems

were generally tractable.

To assess the sensitivity of the empirical findings to this choice of discretization, Table S.5

reports estimated identified sets for the various parameters for the two most informative model

specifications from Table 1 under two alternative more finer choices of discretizations. In particular,

using the same discretization procedure described above, I consider both fifteen and twenty support

points for the test scores, i.e. M = 15 and M = 20.

The lower and upper bounds of the estimated identified sets for PPnh|n and PPnah|na are exactly

identical under each choice of discretization for a given model specification. This is due to the fact

that these parameters do not use any information on outcomes and hence are invariant to the

choice of the discretization. However, for the parameters that measure the effects of Head Start

access on test scores, the lower and upper bounds are not numerically identical. Nonetheless, the

numerical differences range in absolute value between 0.03 and 0.02, which suggest that the results

are relatively similar and not very sensitive to the choice of discretization.

The only important difference worth emphasizing is when the test scores are discretized to take

twenty support points, M = 20. In this case, the observed data is found to be not consistent

with the model specification that imposes either Assumption MTR or Assumption Roy along with

Assumption UA. More formally, this occurs due to the fact that estimated version of Q in (19)

is empty, i.e. there does not exist a distribution of the model that can simultaneously satisfy

the restrictions imposed on it by the empirical distribution of the data and by the additional

assumptions.

However, it might be the case that true version of Q is non-empty and only the estimated version

is empty due to sampling error. To this end, the final row of Table S.5 reports the p-values of a
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Table S.5: Estimated identified sets under alternative discretizations

Parameter Age 3 Age 4

Specification (5) Specification (6) Specification (5) Specification (6)

M = 15 M = 20 M = 15 M = 20 M = 15 M = 20 M = 15 M = 20

PPnh|n
0.855

∅
0.855

∅
0.788 0.788 0.788 0.788

0.911 0.911 0.902 0.902 0.902 0.902

ATEnh|n
0.174

∅
0.174

∅
0.144 0.129 0.144 0.129

1.035 0.934 1.316 1.345 1.142 1.165

ATOPnh|n
0.191

∅
0.191

∅
0.160 0.143 0.160 0.143

1.136 1.031 1.460 1.492 1.282 1.306

PPnah|na
0.205

∅
0.205

∅
0.274 0.274 0.274 0.274

0.855 0.855 0.788 0.788 0.788 0.788

ATEnah|na
-1.216

∅
0.000

∅
-0.877 -0.910 0.000 0.000

0.446 0.446 0.357 0.351 0.357 0.351

ATOPnah|na
-1.660

∅
0.000

∅
-1.285 -1.314 0.000 0.000

1.128 1.128 0.871 0.860 0.871 0.860

Specification
1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000

test p-value

Notes: For each estimated identified set, the upper and lower panels correspond to the lower and upper bounds,

respectively. For the specification test, the number of bootstrap draws is set to 200 and each draw is sampled at the

level of the Head Start preschool.

model specification test outlined in Section S.3.2. For the two model specifications that are found

to be inconsistent with the observed data, I find that their corresponding test statistics are very

small, a value of 6.93 × 10−5 for both specification (5) and (6), which suggest that the violations

that cause the model to be rejected are small. The p-values then imply that these violations are

also statistically small and that none of the model specifications can be statistically rejected.

S.2.5 Data and Variable Construction

The raw data used from the Head Start Impact Study (HSIS) in this paper is restricted, but access

can be acquired by submitting applications to Research Connections at

http://www.researchconnections.org/childcare/resources/19525 .

In this section, I briefly describe how the raw data was transformed to the final analysis sample

used for the empirical results in the paper, which closely followed the publicly available code used to

construct the final sample in Kline and Walters (2016). I organize this description in the following

steps which were taken separately for each age cohort:

Step 1: I merged all the various data files provided by Research Connections for the HSIS

and dropped observations with missing Head Start preschool IDs, where this preschool cor-
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responded to that from which the child was sampled. I then made edits to this raw sample

as described below.

Step 2: I classified the enrollment decision into the three categories used in the paper using

the focal care arrangement variable provided by the HSIS data set.

Step 3: All observations where any of the variables used in the analysis were missing were

dropped.

Step 4: Test score outcomes were then standardized using the test scores in the control group

of the final sample.

S.3 Statistical Inference

The identification analysis in Section 3 characterized the identified set assuming that the population

distribution of the observed data was known. The empirical results in Section 4 applied this analysis

to obtain an estimate of the identified set using the empirical distribution of the HSIS sample data.

Here, to be precise, the HSIS sample data is given by

X(N) = {X(N)
g : 1 ≤ g ≤ G} (S.10)

where N denotes the total sample size, and

X(N)
g = {Xig ≡ (Yig, Dig, Zig) : 1 ≤ i ≤ Ng}

denotes the cluster of observations for all the ith sampled children from the gth sampled Head Start

preschool from the experiment.

In this section, I discuss two relevant procedures that account for the sample uncertainty in the

estimates. The description aims to capture a sampling framework, where: (i) the random variables

Xig are identically distributed and uncorrelated across sampled preschools, i.e. across the index

g; and (ii) the number of sampled preschools is “large”, i.e. G → ∞, and the number individuals

per preschool is “small”, i.e. ng is fixed for each g. In Section S.3.1 below, I first describe how

to construct confidence intervals that cover the partially identified parameter with a pre-specified

probability using the bootstrap procedure developed in Deb et al. (2018). In Section S.3.2 below, I

then describe how to conduct a statistical test for whether the imposed model is correctly specified,

i.e. if there exists a distribution of the latent random variables that can simultaneously satisfy the

restrictions imposed by the assumptions on the model and the distribution of the observed data,

using the boostrap procedure developed in Kitamura and Stoye (2018).
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S.3.1 Confidence Intervals

Confidence intervals are constructed by test inversion. More specifically, I describe a test that

controls the null rejection probability at a pre-specified level α ∈ (0, 1) for the following null

hypothesis

H0 : θ(Q) ≡
∑
w∈W

anum(w) ·Q(w) = θ0 , (S.11)

i.e. the parameter of interest, which is a linear function of Q is equal to a given value. Confidence

interval with (1−α) coverage can then be obtained by collecting the set of all values of θ0 that are

not rejected at level α.

For the purposes of describing the test, it is more useful to write the null hypothesis in an

alternative manner. The null hypothesis states that there exists a Q ∈ Q such that θ(Q) = θ0.

More specifically, it means that there exists a Q that satisfies the restriction imposed on it as stated

in Section 3.3, i.e.

(i) 0 ≤ Q(w) ≤ 1 for every w ∈ W ,

(ii)
∑
w∈W

Q(w) = 1 ,

(iii)
∑

w∈Wx

Q(w) = Prob{Y = y,D = d|Z = z} for every x = (y, d, z) ∈ X ,

(iv)
∑

w∈Ws

Q(w) = 0 for every s ∈ S ,

such that this Q can result in the parameter being equal to θ0, i.e.∑
w∈W

anum(w) ·Q(w) = θ0 .

In order to state how this null hypothesis can then be equivalently restated, I first introduce some

additional notation. Denote by W† the set of all w ∈ W that is not restricted to have zero

probability by restriction (iv) above, i.e. Q(w) is not imposed to be zero by some s ∈ S. Further,

for shorthand notation, denote by

P (x) ≡ Prob{Y = y,D = d|Z = z}

for every x = (y, d, z) ∈ X . Using this notation, note that the restriction in (iii) above can be

restated as ∑
w∈W†

x

Q(w) = P (x)

13



for every x = (y, d, z) ∈ X , where W†x = W† ∩ Wx. Then, the null hypothesis in (S.11) can be

equivalently restated as

H0 : min
{Q(w):w∈W†}

∑
x∈X

P (x)−
∑
w∈W†

x

Q(w)

2

= 0 , (S.12)

where {Q(w) : w ∈ W†} satisfy the following restrictions:

(i) 0 ≤ Q(w) ≤ 1 for every w ∈ W† .

(ii)
∑

w∈W†
Q(w) = 1 .

(iii)
∑

w∈W†
anum(w) ·Q(w) = θ0 .

This equivalent restatement of the null hypothesis serves two purposes. First, the sample analogue

of the quantity in the restated null hypothesis provides an intuitive test statistic

TSN (θ0) = min
{Q(w):w∈W†}

G
∑
x∈X

P̂ (x)−
∑
w∈W†

x

Q(w)

2

such that {Q(w) : w ∈ W†} satisfies the above restrictions, and where P̂ (x) is the sample analogue

of P (x) for each x ∈ X ; and, second, the restated version shows that the null hypothesis of interest

translates into the one for which Deb et al. (2018) have recently proposed a bootstrap procedure

with several desirable theoretical properties.

For completeness, I outline the test procedure below. The procedure importantly uses a re-

stricted or so-called tightened version of the values that {Q(w) : w ∈ W†} can take over those

listed above. In order to introduced this restricted set, I need to first introduce some additional

notation. To this end, denote by

θ̄ = max
w∈W†

anum(w) and θ = min
w∈W†

anum(w) .

Further, denote by

H =
{
w ∈ W†

}
,

H̄ =
{
w ∈ W† : anum(w) = θ̄

}
,

H =
{
w ∈ W† : anum(w) = θ

}
,

H0 = H \
(
H̄ ∪ H

)
.
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Let τN be a tuning parameter such that τN → 0 and G ·τN →∞ as G→∞. For example, following

Deb et al. (2018), in the empirical results presented in Section S.2.2, I take2

τN =

√
logG

G
.

Using this notation, denote the tightened version by

TτN (θ0) =



{η(x)}x∈X :

∑
w∈W†

x

Q(w) = η(x)

∑
w∈W†

anum ·Q(w) = θ0

{Q(w) : w ∈ W†} ∈ VτN (θ0)

0 ≤ Q(w) ≤ 1 for w ∈ W†∑
w∈W†

Q(w) = 1



, (S.13)

where

VτN (θ0) =


{Q(w) : w ∈ W†} :

Q(w) ≥ θ̄ − θ0
θ̄ − θ

· τN
|H ∪ H0|

for w ∈ H ,

Q(w) ≥ θ0 − θ
θ̄ − θ

· τN
|H̄ ∪ H0|

for w ∈ H̄ ,

Q(w) ≥
[
1− θ̄ − θ0

θ̄ − θ
· τN
|H ∪ H0|

− θ0 − θ
θ̄ − θ

· τN
|H̄ ∪ H0|

]
· τN
|H0|

for w ∈ H0


.

Then, the procedure to obtain the bootstrap versions of the test statistic consists of the following

steps:

(i) Compute the τN -tightened restricted estimator of the empirical distribution of the data as

follows:

η̂τn = arg min
{η(x)}x∈X∈TτN (θ0)

G
∑
x∈X

(
P̂ (x)− η(x)

)2
.

(ii) Define the τN -tightened re-centered bootstrap estimators

P̂b,τn(x) = P̂b(x)− P̂ (x) + η̂τn(x)

for each x ∈ X and for b = 1, . . . , B, where P̂b(x) is the analog of P̂ (x) using the bootstrap

sample and B is the number of bootstrap iterations. In the empirical results, bootstrap sam-

ples are obtained by randomly drawing with replacement G clusters of Head Start preschools,

i.e. X
(N)
g , from (S.10).

2I find this choice of τN can sometimes imply that TτN (θ0) is empty. To this end, I take τN to be the largest

value smaller than this choice to ensure that this set is non-empty.
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(iii) For each b = 1, . . . , B, compute the value of the bootstrap test statistic as follows

TSb,N (θ0) = min
{η(x)}x∈X∈TτN (θ0)

G
∑
x∈X

(
P̂b,τn(x)− η(x)

)2
.

After performing the above procedure, the critical value ĉ(1−α, θ0) is given by the (1−α)-quantile

of the bootstrap distribution of the test statistics

LN (t, θ0) =
1

B

B∑
b=1

1{TSb,N (θ0) ≤ t} .

Then, the test for a given θ0 can be denoted by

φN (θ0) = 1{TSN (θ0) > ĉ(1− α, θ0)} .

Given the bootstrap test for a given θ0, the (1− α)-confidence interval can be computed by

CN = {θ0 ∈ R : φN (θ0) = 0} .

Note that though the optimization problems for computing the identified set were linear pro-

gramming problems, this is not case for the above described procedure. In particular, steps (i) and

(iii) of the procedure comprise of quadratic programming problems.

S.3.2 Specification Test

The null hypothesis for testing whether the model is correctly specified can be stated as

H0 : Q 6= ∅ , (S.14)

i.e. there exists a distribution that satisfies the restrictions imposed on it by the assumptions and

the distribution of the observed data. More specifically, it means that there exists a Q that satisfies

the restriction imposed on it as stated in Section 3.3, i.e.

(i) 0 ≤ Q(w) ≤ 1 for every w ∈ W ,

(ii)
∑
w∈W

Q(w) = 1 ,

(iii)
∑

w∈Wx

Q(w) = Prob{Y = y,D = d|Z = z} for every x = (y, d, z) ∈ X ,

(iv)
∑

w∈Ws

Q(w) = 0 for every s ∈ S .
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Note that upper bound in restriction (i), and restriction (ii) are implied by restriction (iii). Then,

analogous to the restatement of the null hypothesis in the previous section, the null hypothesis in

(S.14) can also be stated as follows

H0 : min
{Q(w):w∈W†}

∑
x∈X

P (x)−
∑
w∈W†

x

Q(w)

2

= 0 ,

where {Q(w) : w ∈ W†} satisfy Q(w) ≥ 0 for every w ∈ W† . Note that this null hypothesis

is exactly equivalent to that in (S.12) except for the additional constraint introduced such that a

linear projection of the distribution equals a given parameter value. The test statistic for this null

hypothesis can be similarly given by

TSN = min
{Q(w)≥0:w∈W†}

G
∑
x∈X

P̂ (x)−
∑
w∈W†

x

Q(w)

2

.

The restated version of the null hypthesis translates into the one for which Kitamura and Stoye

(2018) have recently proposed a bootstrap procedure. This procedure is similar to the one in Deb

et al. (2018), and, in particular, Deb et al. (2018) build on this procedure. More specifically, it

follows the exact same steps as that of the procedure described in the previous section except for

the fact that it uses an alternative tightened set to that in (S.13), which is given by

TτN =

{η(x)}x∈X :

∑
w∈W†

x

Q(w) = η(x) ,

Q(w) ≥ τN
|W|†

for w ∈ W† .

 ,

Give this alternative tightened set, the bootstrap versions of the test statistics can be computed

use the same three steps described in the previous section. Then, using the bootstrap distribution

of the test statistics, the p-value for the null hypothesis in (S.14) can be computed by

pvalue =
1

B

B∑
b=1

1{TSN,b ≥ TSN} .

S.4 Modified Linear Program for Sensitivity Analysis

In this section, I illustrate the modified version of the linear program from Proposition 3.1 which

is used in the sensitivity analysis presented in Section S.2.3. The arguments behind this modified

version are similar to those of Proposition 3.1 presented in Section 3.3 with few differences. Instead

of the unknown quantity being only the probability mass function Q, there are two additional

auxiliary unknown probability mass functions H0 and H1 with support similarly contained in W,
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i.e. H0 :W → [0, 1] and H1 :W → [0, 1] such that∑
w∈W

H0(w) = 1 and
∑
w∈W

H1(w) = 1 .

Given these additional unknown quantities, the sensitivity analysis then also introduces several

additional restrictions over them which then indirectly introduce restrictions on Q through their

relationship to it. To this end, from Section S.2.3, recall the following two types of restrictions that

the analysis introduces on the auxiliary probability mass function. First, it introduces restrictions

on how the two auxiliary probability mass functions are related as follows∑
(y(n),y(a),y(h))∈Y3

H0(w) =
∑

(y(n),y(a),y(h))∈Y3

H1(w) (S.15)

for each (u, c(0), c(1)) ∈ U × C × C, where note that w = (y(n), y(a), y(h), u, c(0), c(1)). Second, it

introduces certain restrictions only on H1 when additional assumptions such as Assumption MTR

and Assumption Roy are imposed on the baseline model. More specifically, let S1 denote the set

of restrictions imposed on the H1 such that for each restriction s ∈ S1 satisfies∑
w∈Ws

H1(w) = 0 , (S.16)

where Ws is a known subset of W. Given these restriction on the auxiliary probability mass func-

tions, the relationship between them and Q then captures how they indirectly impose restrictions on

Q. To this end, recall that the relationship between them and Q is captured through the following

restrictions

Q(w) = λ ·H1(w) + (1− λ) ·H0(w) (S.17)

for each w ∈ W, where λ ∈ [0, 1] is the pre-specified known sensitivity parameter. To summarize,

what we know about Q from these restrictions imposed through the auxiliary distributions can

then be captured by the following set

Qaux = {Q ∈ QW : Q satisfies (S.17), and H0, H1 ∈ QW satisfy (S.15), and (S.16) for each s ∈ S1} ,
(S.18)

where recall that QW is the set of all probability mass functions on the sample space W.

Using the notation from Section 3.3, the identified set for a pre-specified parameter θ(Q) and

for a pre-specified sensitivity parameter λ can then be written as follows

Θλ = {θ0 ∈ R : θ(Q) = θ0 for some Q ∈ Qλ} , (S.19)

where

Qλ = Q ∩Qaux (S.20)
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is the intersection of the set of feasible distributions determined by restrictions directly imposed on

Q by the data and assumptions as described in Section 3.3 and indirectly imposed on Q through

the restrictions imposed on the auxiliary distributions as described above.

Given the linear-fractional structure of the parameter and the linear structure of all the restric-

tions, the following proposition states the linear program that is used to compute the identified sets

for the sensitivity analysis. Indeed, given this structure, the same arguments used in the proof of

Proposition 3.1 can be used to formally show this result. Moreover, note that the only difference

between the linear program in this proposition and that in Proposition 3.1 is the introduction of

additional variables and additional linear restrictions on these variables.

Proposition S.4.1. Suppose that Qλ in (S.20) is non-empty and the parameter characterized by

(12) is such that ∑
w∈Wden

Q(w) > 0 (S.21)

holds for every Q ∈ Qλ. Then the identified set in (S.19) can be written as

Θλ = [θl, θu] , (S.22)

where the (sharp) lower and upper bounds of this interval are solutions to the following two linear

programming problems

θl = min
γ,{Q(w),H0(w),H1(w)}w∈W

θ̃(Q) and θu = max
γ,{Q(w),H0(w),H1(w)}w∈W

θ̃(Q) , (S.23)

subject to the following constraints:

(i) γ ≥ 0 .

(ii) 0 ≤ Q(w) ≤ γ for every w ∈ W .

(iii)
∑
w∈W

Q(w) = γ .

(iv)
∑

w∈Wx

Q(w) = γ · Prob{Y = y,D = d|Z = z} for every x = (y, d, z) ∈ X .

(v)
∑

w∈Ws

Q(w) = 0 for every s ∈ S .

(vi)
∑

w∈Wden

Q(w) = 1 .

(vii) 0 ≤ H0(w) ≤ γ for every w ∈ W .

(viii)
∑
w∈W

H0(w) = γ .

(ix) 0 ≤ H1(w) ≤ γ for every w ∈ W .
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(x)
∑
w∈W

H1(w) = γ .

(xi)
∑

w∈Ws

H1(w) = 0 for every s ∈ S1 .

(xii) Q(w) = λ ·H1(w) + (1− λ) ·H0(w) for every w ∈ W .

(xiii)
∑

(y(n),y(a),y(h))∈Y3

H0(y(n), y(a), y(h), u, c(0), c(1)) =
∑

(y(n),y(a),y(h))∈Y3

H1(y(n), y(a), y(h), u, c(0), c(1))

for every (u, c(0), c(1)) ∈ U × C × C .

S.5 Generalized Framework and Additional Experiments

In this section, I present the generalized version of the framework which was developed in the

context of the HSIS in Section 3 and show how it applies to examples of alternative experiments.

In particular, I consider the following two experiments: the Oregon Health Insurance Experiment

and a microfinance experiment studied in Angelucci et al. (2015).

S.5.1 Generalized Framework

The framework described below generalizes the one developed in Section 3 in two directions. First,

it does not restrict attention to solely three choice alternatives but allows for any finite set of

alternatives. Second, it does not restrict attention to the assumption that assignment to the

treatment group guaranteed access to a given alternative but allows for other assumptions that

may arise based on the experiment. Both these generalizations are specifically relevant to ensure

that the experiments described in the following two sections fit into this framework.

To this end, suppose that the various alternatives that an individual can choose from take values

in the following finite set

D = {d1, . . . , d|D|} , (S.24)

where |D| ≥ 2 to ensure that there are a non-trivial number of alternatives. For a given individual,

let the observed variables be denoted by

(Y,D,Z) , (S.25)

where Z denotes an indicator for whether the individual is assigned to the treatment group or not,

D denotes the alternative chosen by the individual, and Y denotes the outcome of interest for the

individual. Suppose that the outcome takes values in the following known discrete set

Y = {y1, . . . , yM} .
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The observed variables are assumed to be generated by several underlying latent variables. Similar

to the description of the HSIS setup in Section 3.1, it is convenient to describe these variables and

how they are related to the observed variables through various stages.

In Stage 1, the individual obtains their choice set of alternatives by receiving access to various

alternatives. Without loss of generality, let d1 denote the base alternative in D where access

is always received. Let C(1) and C(0) respectively denote the potential choice sets under the

treatment and control groups which take values in the following set

C = {c ⊆ D : d1 ∈ c} ,

i.e. the set of subsets of D containing d1. Let C denote the obtained choice set which is related to

the potential choice sets through the following relationship

C =

C(1) if Z = 1 ,

C(0) if Z = 0 .

In Stage 2, the individual chooses their preferred alternative from their obtained choice set. Suppose

that each individual has a strict preference relationship over the set of alternatives D. Let U denote

the individual’s preference type which takes values in U , i.e. the set of |D|! strict preference types.

The observed choice D is then related to the preference type and obtained choice set through the

following relationship

D =
∑

u∈U ,c∈C
d(u, c)1{U = u,C = c} , (S.26)

where d(u, c) denotes the known choice function that corresponds to what preference type u ∈ U
would choose under a non-empty set c ⊆ D. Finally, in Stage 3, the individual’s outcome is realized.

Let Y (d) denote the individual’s potential outcome had the individual chosen alternative d ∈ D.

The observed outcome Y is related to the potential outcomes through the following relationship

Y =
∑
d∈D

Y (d)I{D = d} . (S.27)

Let the above described underlying latent variables be summarized the following variable

W = (Y (d1), . . . , Y (d|D|), U, C(0), C(1)) , (S.28)

which takes values on the following discrete sample space W = Y |D| × U × C2. Let Q denote the

probability mass function of this summary variable and let Qz denote the probability mass function

conditional on Z = z ∈ Z ≡ {0, 1}.

The observed data along with the information that the treatment assignment status provides

through assumptions on the model restrict the possible values thatQ andQz can take. In particular,

the observed data imposes the following restrictions on Qz:∑
w∈Wx

Qz(w) = Prob{Y = y,D = d|Z = z} (S.29)
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for all x = (y, d, z) ∈ Y × D × Z ≡ X , where Wx is the set of all w in W such that c = c(1) if

z = 1 and c = c(0) if z = 0, d(u, c) = d and y = y(d). Moreover, the treatment assignment status is

assumed to be statistically independent of the underlying variables, which can formally be stated

as the following restriction on the probability mass functions:

Q(w) = Qz(w) (S.30)

for all w ∈ W and z ∈ Z. In turn, the restriction imposed by the data on Qz can then directly be

stated as a restriction on Q as follows:∑
w∈Wx

Q(w) = Prob{Y = y,D = d|Z = z} (S.31)

for all x = (y, d, z) ∈ X , where Wx is defined as before. The treatment assignment status also

provides some information on the potential choice sets, where this information depends on the

institutional details of the experiment. Furthermore, similar to the assumptions in Section 3.4,

additional information based on the setting can also be imposed on the model. In general, suppose

that all this information can be captured through a finite set of restrictions S on Q such that each

restriction s ∈ S satisfies ∑
w∈Ws

Q(w) = 0 , (S.32)

where Ws is a known subset of W. Given these restriction, the set of admissible probability mass

functions for the underlying latent variables is given by

Q = {Q ∈ QW : Q satisfies (S.31) and (S.32) for each s ∈ S} , (S.33)

where QW denotes the set of all probability mass functions on the sample space W.

In the context of the above described model, suppose that we are interested in learning about

a parameter θ(Q) that can written as follows

θ(Q) =

∑
w∈W

anum(w) ·Q(w)∑
w∈Wden

Q(w)
, (S.34)

where anum : W → R is known function and Wden is a known subset of W, i.e. the parameter is

a fraction of linear functions of Q. As described in Section 3.3 in the setting of the HSIS, several

parameters that evaluate the average effect of receiving access correspond to such functions. Given

that Q stated in (S.33) and θ(Q) stated in (S.34) are respectively equivalent to (19) and (12) stated

in terms of the HSIS, what we can learn about the parameter can then directly be characterized

using the linear programming procedure stated in Proposition 3.1.
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As noted, the framework developed in Section 3 corresponds to a special case of the above

described framework applied to the setting of the HSIS. In the following two sections, I illustrate

two alternative experiments that have different settings to the HSIS, but face conceptually similar

noncompliance and observational problems with respect to access. For each of these experiment, I

describe how their setting fits into the above described framework, which can then be applied to

evaluate the average effects of program access.

S.5.2 Oregon Health Insurance Experiment

As described in detail in Finkelstein et al. (2012), the Oregon Health Insurance Experiment (OHIE)

was a randomized evaluation of Oregon’s Medicaid program. In particular, the program consisted

of two parts: the Oregon Health Plan (OHP) Standard and the OHP Plus. The experiment was the

product of a lottery in 2008 that randomly selected individuals from a waiting list to potentially

gain access to Medicaid through OHP Standard. Similar to the description of the HSIS, to briefly

highlight the relevant features of this experiment, I organize the description of the OHIE into three

stages as follows:

Stage 1: The experiment randomly assigned individuals through the lottery to either a

treatment group where they received access to Medicaid through OHP Standard if they

satisfied the eligibility requirements at the time the lottery was conducted, or a control group

where they did not receive access to Medicaid through OHP Standard. In turn, the lottery

did not guarantee Medicaid access to every treated individual as some of them may not satisfy

the eligibility requirements for OHP Standard. Moreover, individuals in either group could

potentially receive access to Medicaid outside the lottery by being eligible for OHP Plus or

to alternative non-Medicaid insurance.

Stage 2: The experiment collect data on the type of insurance plan in which the individual

was enrolled.

Stage 3: The experiment collected data on a number of outcomes related to health and

health care utilization.

In Stage 1 of this experiment, similar to that of the HSIS, some control individuals were able to

receive Medicaid access from outside the experiment through OHP Plus. In addition, we generally

do not observe where individuals receive access as data is not collected on the insurance plans

for which an individual is eligible.3 However, unlike the HSIS, every treated individual was not

3The experiment, in fact, collected data on whether treated individuals applied to enroll into OHP Standard

and the outcome of their decision on whether they were considered eligible. This observed variable in turn provides

additional information on whether individuals had access to Medicaid, but falls outside the scope of the developed

framework. I leave the extension of the framework to accommodate for such additional information for future work.
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guaranteed Medicaid access as they may potentially not satisfy the eligibility requirements. Below,

I describe how these features can be accommodated into the generalized framework and in turn be

used to analyze the average effects of Medicaid access.

In this experiment, the set of alternatives in (S.24) corresponds to the set of insurance plan

alternatives, which can be aggregated such that

D = {n, a,m} ,

where m denotes Medicaid program insurance, a denotes alternative non-Medicaid insurance and

n denotes no insurance. Furthermore, the observed variables in (S.25) correspond to the treatment

assignment status in Stage 1, the insurance plan enrolled in Stage 2, and the outcome of interest in

Stage 3. Furthermore, these observed variables can be assumed to be generated by the choice and

outcome equations respectively defined in (S.26) and (S.27) using the corresponding underlying

variables in (S.28).

Given the assumed relationship between the observed and underlying variables, the information

provided by the data can be captured by restrictions in (S.31) based on the corresponding Q in

this setting. Moreover, the information that the treatment assignment status provides can also

be captured through restrictions in terms of those in (S.30) and (S.32). In particular, similar to

Assumption HSIS, the information that the treatment assignment status provides can be first stated

in terms of the following assumption on the underlying variables:

Assumption OHIE.

(i) (Y (n), Y (a), Y (m), U, C(0), C(1)) ⊥ Z .

(ii) m ∈ C(0) =⇒ m ∈ C(1) .

Assumption OHIE(i) states that the experiment randomly assigned individuals to the treatment

and control groups and in turn implies the restriction in (S.30). Assumption OHIE(ii) states that if

an individual receives Medicaid access in the control then that individual receives it in the treatment

group. In particular, it captures the following institutional detail. If an individual receives Medicaid

access in the control group then they received it through OHP Plus. In turn, they will also receive

Medicaid access in the treatment group through at least OHP Plus as the lottery does not affect

the eligibility for OHP Plus. Using similar arguments to the restatement of Assumption HSIS(ii)

in (16), it is straightforward to derive that Assumption OHIE(ii) can be restated as∑
w∈WOHIE

Q(w) = 0 ,

where WOHIE = {w ∈ W : m ∈ c(0) and m /∈ c(1)}, i.e. it can be restated as a restriction in terms

of (S.32).
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Given that the above described setting of the OHIE fits in the generalized model, we can

then use the linear programming procedure to learn about various parameters that evaluate the

average effects of Medicaid access as long as they can be re-written in terms of (S.34) given the

corresponding Q for this setup. In particular, similar to the parameters described in Section 3.2

for the HSIS, we can compare mean enrollment and outcome responses under choice sets of

{n, a,m} versus {n, a}

to analyze average effects of Medicaid access when access to alternative insurance is available, and

{n,m} versus {n}

to analyze average effects of Medicaid access when access to alternative insurance is absent. Similar

to derivations in Section 3.3 for the HSIS, we can show that these parameters can be re-written in

terms of (S.34).

S.5.3 Microfinance Experiment

Angelucci et al. (2015) implemented an experiment in 2009 to analyze the Crédito Mujer microloan

product provided to women by Compartamos Banco. Compartamos Banco is a large microfinance

program or institution in Mexico, and Crédito Mujer is its group loan product, i.e. where a group

of individuals is joint responsibly for the loans of their group. As described in detail in Angelucci

et al. (2015), the experiment was implemented by providing access to Crédito Mujer to randomly

selected geographic areas of north-central part of Sonora, a state in Mexico. Similar to the HSIS and

the OHIE, to briefly highlight the relevant features of this experiment, I organize the description

into three stages:

Stage 1: The experiment randomly assigned a given geographic area to either a treatment

group where access to Crédito Mujer was provided to individuals living in that area or a control

group where it was not. While the experiment verified addresses to ensure that individuals

living in control group areas did not receive access, they could potentially receive access to

Crédito Mujer from a treated area if, for example, they had a viable address they could use

in a treated area—see Angelucci et al. (2015, Footnote 18). Moreover, individuals living in

in both treated and control group areas could also potentially receive access to alternative

microloan products based on their availability in their respective areas.

Stage 2: The experiment collected data for a number of individuals in each area on where

they borrowed from.

Stage 3: The experiment also collected data on a number of outcomes such as, for example,

those related to income, labor supply and social well being.
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In Stage 1 of this experiment, similar to that of the HSIS, individuals in the treatment group

were provided access to Crédito Mujer through the experiment and some individuals in the control

group were able to receive access to it from outside the rules of the experiment. In addition, we

generally do not directly observe where individuals receive access as data is not collected on the

receipt of loan access for any individual, but can only indirectly learn something about it through

their treatment assignment statuses and their participation or borrowing decisions. However, unlike

the HSIS where individuals could participate in only a single care setting at a given time, individuals

in this experiment could be simultaneously borrowing from multiple loan programs at the same

time. Below, I describe how this feature can be accommodated into the generalized framework and

in turn be used to analyze the average effects of Crédito Mujer access.

In this experiment, the set of alternatives in (S.24) corresponds to the set of loan alternatives

that an individual can be borrowing from, which can be aggregated such that

D = {n, a,m,ma} ,

where m denotes the Crédito Mujer, a denotes alternative microloan products, ma denotes both

Crédito Mujer and alternative products, and n denotes no microloan product. Furthermore, the

observed variables in (S.25) correspond to the treatment assignment status in Stage 1, the borrowing

decision in Stage 2, and the outcome of interest in Stage 3. Furthermore, these observed variables

can be assumed to be generated by the choice and outcome equations respectively defined in (S.26)

and (S.27) using the corresponding underlying variables in (S.28).

Given the assumed relationship between the observed and underlying variables, the information

provided by the data can be captured by restrictions in (S.31) based on the corresponding Q in

this setting. Moreover, the information that the treatment assignment status provides can also

be captured through restrictions in terms of those in (S.30) and (S.32). In particular, similar to

Assumption HSIS, the information that the treatment assignment status provides can be first stated

in terms of the following assumption on the underlying variables:

Assumption MFE.

(i) (Y (n), Y (a), Y (m), Y (ma), U, C(0), C(1)) ⊥ Z .

(ii) m ∈ C(1) .

(iii) For z ∈ {0, 1}, ma ∈ C(z) ⇐⇒ m, a ∈ C(z) .

Assumption MFE(i) states that the experiment randomly assigned individuals to the treatment

and control groups and in turn implies the restriction in (S.30). Assumption MFE(ii) states that

if an individual lives in an area assigned to the treatment group then the individual receives access

to Crédito Mujer. Assumption MFE(iii) states that, for both in the treatment and control group,
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an individual receives access to both Crédito Mujer and alternative products if and only if the

individual also has access to each product individually. Note that while Assumption MFE(iii) is

not a feature of the treatment assignment status, it is a logical feature of the way the set of choice

alternatives is defined in this setting. Using similar arguments to the restatement of Assumption

HSIS(ii) in (16), it is straightforward to derive that Assumption MFE(ii) and Assumption MFE(iii)

can respectively be restated as ∑
w∈WMFEii

Q(w) = 0

and ∑
w∈WMFEiii

Q(w) = 0 ,

where WMFEii = {w ∈ W : m /∈ c(1)} and WMFEiii = {w ∈ W : ma ∈ c(0), m, a /∈ c(0)}∪ {w ∈ W :

m, a ∈ c(0), ma /∈ c(0)} ∪ {w ∈ W : ma ∈ c(1), m, a /∈ c(1)} ∪ {w ∈ W : m, a ∈ c(1), ma /∈ c(1)},
i.e. both of the assumptions can be restated as restrictions in terms of (S.32).

Given that the above described setting of the experiment fits in the generalized model, we can

then use the linear programming procedure to learn about various parameters that evaluate the

average effects of Crédito Mujer access as long as they can be re-written in terms of (S.34) given

the corresponding Q for this setup. In particular, similar to the parameters described in Section

3.2 for the HSIS, we can compare mean borrowing decisions and outcome responses under choice

sets of

{n, a,m,ma} versus {n, a}

to analyze average effects of Crédito Mujer access when access to alternative microloan products is

available, and

{n,m} versus {n}

to analyze average effects of Crédito Mujer access when access to alternative microloan products is

absent. Similar to derivations in Section 3.3 for the HSIS, we can show that these parameters can

be re-written in terms of (S.34).

S.6 Proof of Propositions and Additional Derivations

S.6.1 Proof of Proposition 3.1

To begin, note that QW is closed and convex. Further, note that Q is a set of distributions in QW

that is obtained by placing linear constraints imposed by the data in (15) and by assumptions in

(17) for each s ∈ S. This in turn implies that Q is a closed and convex set as well.

27



Next, it follows from (12) that θ(Q) is a linear-fractional function of Q where the denominator

is required to be positive, i.e. (20) holds, for every Q ∈ Q. Along with Q being a closed and convex

set, this in turn implies that θ(Q) is a closed and convex set in R. More specifically, it follows that

the identified set in (18) can be written as the closed interval in (21), where the lower bound and

upper bound are given by

θl = min
Q∈Q

θ(Q) and θu = max
Q∈Q

θ(Q) . (S.35)

In order to complete the proof, note that the optimization problems in (S.35) have linear-

fractional objectives due to the structure of the parameter in (12) and a finite number of linear con-

straints as guaranteed by the data restrictions in (15) and the structure of the imposed restrictions

in (17) for each s ∈ S. Such optimization problems are commonly referred to as linear-fractional

programs. For such programs, Charnes and Cooper (1962) show, among other results, that if

the feasible set of the program is non-empty and bounded, and if the denominator of the linear-

fractional objective is strictly positive for all values in the feasible set, then the linear-fractional

program can be transformed to an equivalent linear program—see Boyd and Vandenberghe (2004,

Section 4.3.2) for a textbook exposition of this result.

For the linear-fractional programs stated in (S.35), both these conditions are satisfied. Since

Q is non-empty and bounded, we have that the feasible sets of the programs given by Q are

indeed non-empty and bounded. Further, since (20) holds for all Q ∈ Q, we also have that the

denominator of the objectives are strictly positive for all values in the feasible set. In turn, the

result from Charnes and Cooper (1962) can be invoked to transform the linear-fractional programs

in (S.35) to equivalent linear programs which are given by those in (22). Specifically, the equivalent

linear programs are obtained by introducing the following so-called Charnes-Cooper transformation

Q̃(w) = γ ·Q(w) where γ =
1∑

w∈Wden

Q(w)
, (S.36)

which is well-defined given that (20) holds for every Q ∈ Q, and by introducing the additional

constraint that γ ≥ 0. Then, when the constraints and the objectives stated in terms of Q for the

linear-fractional programs in (S.35) and the relationship between Q and γ in (S.36) are rewritten

in terms of γ and Q̃, we obtain the constraints and the objective of the linear programs stated in

(22), which concludes the proof.

S.6.2 Proof of Proposition S.1.1

To begin, since C1 = 1 by Assumption M4, note that there are two groups of individuals as defined

by their potential choice sets in the treatment and control groups:

(i) C0 = 0 and C1 = 1 .
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(ii) C0 = 1 and C1 = 1 .

The first group complies with their assigned status in the control group and is hence called the

complier group. In contrast, the second group does not comply with their assigned status in the

control group and is hence, by analogy, called the noncomplier group. For convenience, let T denote

an indicator for whether the individual is a complier or not.

Next, note that we can rewrite the mean observed test scores of those in the treatment group

by

E[Y |Z = 1] = E[Y1 · C1 + Y0 · (1− C1)|Z = 1]

= E[Y1|Z = 1]

= E[Y1] ,

where the first equality follows from expanding Y using (S.2) and then expanding C using (S.3),

the second equality follows from Assumption M4, and the third equality follows from Assumption

M3. Using the law of total probability, we can then rewrite this quantity in terms of the complier

and noncomplier groups, i.e.

E[Y |Z = 1] = E[Y1|T = 1] · Prob{T = 1}+ E[Y1|T = 0] · Prob{T = 0} . (S.37)

Similarly, note that we can rewrite the mean observed test scores of those in the control group by

E[Y |Z = 0] = E[Y1 · C0 + Y0 · (1− C0)|Z = 0]

= E[Y1 · C0 + Y0 · (1− C0)] ,

where the first equality follows from expanding Y using (S.2) and then expanding C using (S.3),

and the second equality follows from Assumption M3. Using the law of total probability, we can

then again rewrite this quantity in terms of the complier and noncomplier groups, i.e.

E[Y |Z = 0] = E[Y1 · C0 + Y0 · (1− C0)|T = 1] · Prob{T = 1} +

E[Y1 · C0 + Y0 · (1− C0)|T = 0] · Prob{T = 0}

= E[Y0|T = 1] · Prob{T = 1}+ E[Y1|T = 0] · Prob{T = 0} , (S.38)

where the second equality follows from the fact that T = 1 is by construction equivalent to C0 = 0

and that T = 0 is equivalent to C0 = 1. By taking the difference of the quantities in (S.37) and

(S.38), we can then show that the ITT estimand on test scores corresponds to the following

ITTY = E[Y |Z = 1]− E[Y |Z = 0] = E[Y1 − Y0|T = 1] · Prob{T = 1} . (S.39)

In an analogous manner, by replacing the test score Y with the enrollment decision D, we can show

also that the ITT estimand on enrollment into Head Start corresponds to the following

ITTD = E[D|Z = 1]− E[D|Z = 0] = E[D1 −D0|T = 1] · Prob{T = 1} . (S.40)
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By recalling that 1{T = 1} ≡ 1{C0 = 0, C1 = 1}, we then obtain the expressions for ITTD and

ITTY stated in the proposition.

To obtain what the IV estimand corresponds to, note that we can rewrite ITTY in (S.39) using

the law of total probability by

ITTY = E[Y1 − Y0|T = 1, D1 = 1] · Prob{D1 = 1|T = 1} · Prob{T = 1} +

E[Y1 − Y0|T = 1, D1 = 0] · Prob{D1 = 0|T = 1} · Prob{T = 1}

= E[Y1 − Y0|T = 1, D1 = 1] · Prob{D1 = 1|T = 1} · Prob{T = 1} , (S.41)

where the second equality follows from Assumption M1 and Assumption M2 that together imply

that D1 = 0 =⇒ Y0 = Y1. Furthermore, since D0 = 0 by Assumption M1, it follows that ITTD in

(S.40) can be rewritten as

ITTD = Prob{D1 = 1|T = 1} · Prob{T = 1} . (S.42)

In turn, by taking the ratio of ITTY and ITTD as stated in (S.41) and (S.42), we can then show

that the IV estimand corresponds to the following

IV = E[Y1 − Y0|T = 1, D1 = 1] .

Again, by recalling that 1{T = 1} ≡ 1{C0 = 0, C1 = 1}, we then obtain the expression for IV

stated in the proposition, which concludes the proof.

S.6.3 Rewriting Assumptions in Section 3.4 in terms of (17)

Similar to Assumption HSIS, the identifying content that the assumptions in Section 3.4 provide

in terms of the parameters of interest can be characterized using Proposition 3.1 from Section 3.3.

As noted, this is due to the fact that each of these assumptions can be re-written as restrictions on

Q in the form of (17). In particular, similar to Assumption HSIS(ii), it is straightforward to see

that Assumption UA can be re-written in terms of Q as∑
w∈WUA

Q(w) = 0 , (S.43)

where WUA = {w ∈ W : a ∈ c(0), a /∈ c(1) or a /∈ c(0), a ∈ c(1)}, and also that Assumption MTR

can be re-written in terms of Q as ∑
w∈WMTR

Q(w) = 0 , (S.44)

where WMTR = {w ∈ W : y(n) > y(h) or y(n) > y(a)}. In order to see the restrictions imposed by

Assumption Roy, note first this assumption can be equivalently stated as

d(U, {d, d′}) = d =⇒ Y (d′) ≤ Y (d)
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for each d, d′ ∈ D. Then, it follows that Assumption Roy can also be re-written in terms of Q as∑
w∈WRoy,{d,d′}

Q(w) = 0 , (S.45)

for all d, d′ ∈ D, where WRoy,{d,d′} = {w ∈ W : y(d′) > y(d), u ∈ U{d,d′}} and U{d,d′} = {u ∈ U :

d(u, {d, d′}) = d}.
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