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Abstract

In this paper, we use mollification to regularize the deconvolution problem. This

new regularization method offers a unifying and generalizing framework in order to

compare the benefits of various different filter-type techniques like deconvolution ker-

nels, Tikhonov or spectral cut-off method. In particular, the mollifier approach allows

to relax some restrictive assumptions required for the deconvolution kernels, and has

better stabilizing properties compared to spectral cutoff or Tikhonov. We prove the

asymptotic convergence of our estimator and provide simulations to compare the finite

sample properties of our estimator with respect to the well-known methods.

Keywords: nonparametric estimation; inverse problems; regularization, mollifica-

tion.

1 Introduction

Deconvolution is a classical issue in statistics and econometrics and is well-known to

be an ill-posed problem. Various regularization methods have been proposed, among

which we find the deconvolution kernels (see Stefanski and Carroll [18], Fan [12],

Carroll and Hall [6], Devroye [10] among others), the Tikhonov regularization (as

in Carrasco and Florens [5]), and the spectral cutoff (see Mair and Ruymgaart [14]

and Johannes [13]). There exists also streams of the literature in deconvolution using
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projection-based methods (as in Comte et al. [7–9], or in Van Rooij and Ruymgaart [20],

Efromovich [11], Pensky and Vidakovic [17], Butucea and Matias [3], Meister [16]

among others).

In this paper, we propose a different method to regularize the deconvolution prob-

lem, which uses a regularization principle introduced in the deterministic setting, and

has been applied in several fields signal and image processing (deconvolution of images

in astronomy, computerized tomography as in Maréchal et al. [15]). To the best of our

knowledge, this regularization principle has never been applied in the stochastic set-

ting. We refer to it as the regularization by mollification, or merely as the mollification.

As we shall see, this regularization approach shares features with the aforementioned

methodologies, but it offers definite advantages, notably in terms of flexibility, and also

in terms of the usual tradeoff between stability and fidelity to the model.

In order to compare the benefits of our new regularization method with various

approaches, we consider the class of filter-type techniques, which provides us with a

unifying framework and encompasses the deconvolution kernels, the spectral cutoff,

Tikhonov regularization and mollification. In this paper, we shall:

1. introduce the mollification method for the deconvolution of random variables;

2. show that mollification allows to relax some restrictive assumptions required by

the deconvolution kernels, while having better stabilizing properties than the

Tikhonov regularization, and better morphological properties than the spectral

cutoff;

3. prove the asymptotic convergence of the corresponding estimator;

4. provide simulations to compare the finite sample properties of our estimator with

respect to the well-known methods.

The paper is organized as follows. In Section 2, we review the analysis of the

deconvolution problem and we give an overview of some well-known methodologies.

In Section 3, we present the mollification approach to the deconvolution problem. In

Section 4, we propose a unifying framework, which will provide us with criteria for

the comparison of various methodologies. In Section 5, we consider numerical aspects

of both the reconstruction and the estimation of its stability, and we illustrate our

approach by means of simulations. We finally conclude in Section 6 and provide as an

appendix basic results on inverse problems and Fourier analysis.

2 Setting

In this section, we present the deconvolution problem in L2(R) and recall the reasons

for its illposedness. We also recall some standard regularization methods for deconvolu-

tion: the deconvolution kernels approach, the Tikhonov regularization and the spectral
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cutoff. All these methods share with mollification that they can be interpreted in terms

of filtering.

2.1 Model and ill-posedness

Consider the equation

Y = X + ε, (1)

in which Y is the observed random variable, X is the latent random variable, and ε is

a random noise. Throughout, we make the following assumptions:

(A1) the random variables X and ε are independent;

(A2) all random variables Y , X and ε have densities with respect to the Lebesgue

measure, denoted respectively by g◦, f◦ and γ;

(A3) both f◦ and g◦ belong to L1(R) ∩ L2(R), and γ ∈ L1(R).

We are mostly interested here in the case where γ is known, either from modeling

or from empirical observations. In this case, the density of X satisfies the equation

Tγf = g◦, (2)

in which Tγ is the convolution operator

Tγ : L2(R) −→ L2(R)

f 7−→ Tγf := f ∗ γ.

The density g◦ is usually not known, but estimated from the statistical sample Y1, ..., Yn.

The unknown density g◦ is then replaced by a nonparametric estimator gn using, for

example, a kernel approach.

We denote by U the Fourier-Plancherel operator on L2(R), and the Fourier trans-

form of a function f(x) is denoted by either Uf(ξ) or f̂(ξ) (see Appendix 6). Under

the mild assumption that the set {ξ ∈ R | γ̂(ξ) = 0} has Lebesgue measure zero, the

operator Tγ is injective. As a matter of fact,

Tγf = 0⇔ f ∗ γ = 0⇔ f̂ · γ̂ = 0⇔ f̂ = 0⇔ f = 0,

where equality in L2(R) (that is, almost everywhere) is meant.

Remark 1. The assumption that {ξ ∈ R | γ̂(ξ) = 0} has Lebesgue measure zero is

much less stringent that imposing that |γ̂(ξ)| > 0 for all ξ in R, as it is assumed in

Stefanski and Carroll [18] or Johannes [13]. For example, a uniform density function γ

is now permitted: its Fourier transform is equal to the sinc function, which vanishes at

infinitely many points, but still satisfies our condition. This assumption also generalizes

the condition required by Carrasco and Florens [4] that γ̂ may have isolated zeros.
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The dark side of things is that the pseudoinverse T †γ of Tγ is unbounded, which

makes the problem ill-posed, as a consequence of Proposition 11 in Appendix 6. As a

matter of fact, we have:

inf
‖f‖2=1

‖Tγf‖2 = inf
‖Uf‖2=1

‖Uγ · Uf‖2 = 0.

Here, the first equality follows by the Plancherel theorem. As for the second equality, it

is easily obtained from the Riemann-Lebesgue lemma, which says that Uγ is continuous

and vanishes at infinity, by observing that, for every α ∈ R,

U
(
e2iπαxf(x)

)
(ξ) = Uf(ξ − α).

Remark 2. Further insight is provided by spectral analysis. It can be shown that

the spectrum σ(Tγ) of Tγ is the closure of the set of values taken by γ̂, and that its

point spectrum σp(Tγ) is empty. Since γ̂ is continuous and vanishes at infinity by the

Riemann-Lebesgue lemma, σ(Tγ) must contain zero. For example, if γ is Gaussian,

then σ(Tγ) = [0, 1].

Remark 3. In the case where it is a priori known that the unknown density f◦ is

supported in some compact interval I, we may also consider the convolution operator

on L2(I):

Tγ : L2(I) −→ L2(R)

f 7−→ Tγf := f ∗ γ.

This operator is, of course, the restriction of the previous one to the closed subspace

L2(I) of L2(R), and there is no need to denote this restriction differently. Again, Tγ is

injective if and only if the set {ξ ∈ R | γ̂(ξ) = 0} has Lebesgue measure zero. Moreover,

it is worth observing that, under the extra assumption that γ is square integrable, the

above operator is Hilbert-Schmidt. This places us in the familiar framework of operator

equations with compact operators. On denoting by T ∗ the adjoint of T , we then have:

(1) T ∗γTγ is diagonalizable in a Hilbert basis (fk)k∈N∗ (the fk are the eigenfunctions

of T ∗γTγ);

(2) σ(T ∗γTγ) = σp(T
∗
γTγ) is the set of values taken by a sequence λ1 ≥ λ2 ≥ · · · > 0

which converges to zero (the λk are the eigenvalues of T ∗γTγ);

(3) ranTγ is not closed and T †γ : (ranTγ) + (ranTγ)⊥ → L2(I) is unbounded.

We will show that, in the general setting described above, the mollification solution

is consistent, and therefore it extends the frameworks considered in Stefanski and

Carroll [18], Johannes [13] or Carrasco and Florens [4].
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2.2 Overview of filter-type regularization methods

Recall that U is unitary, that is, that U−1 = U∗ where U∗ is the adjoint of U . The

operator Tγ can then be written as Tγ = U∗ [γ̂]U , in which [γ̂] denotes the operator

of multiplication by γ̂. More precisely, consider the function ϕ ∈ L∞(R) and let

[ϕ] : L2(R)→ L2(R) be the multiplication operator defined by

([ϕ] f)(ξ) = ϕ(ξ) · f(ξ), ξ ∈ R.

Then, the inverse of Tγ : L2(R)→ ranTγ is given by

T−1γ = U−1
[

1

γ̂

]
U. (3)

As mentioned previously, the unboundedness of 1/γ̂ yields that of T−1γ (and T †γ ). We

call filter-type method any regularization methods which acts explicitly in the Fourier

domain in order to bound the multiplication operation. The corresponding regularized

solution fREG is defined by

fREG = U−1 [Φ]Ug,

or, equivalently, by

f̂REG = Φ · ĝ,

in which the filter Φ depends on regularization parameters. To this class of methods

pertain the well-known deconvolution kernels, the spectral cutoff, but also the Tikhonov

regularization. We now briefly review these approaches and connect these well known

methods to the filter Φ. We will later on introduce the mollification approach, which

also belongs to the class of filter-type methods and which shares features with both

the deconvolution kernels and the Tikhonov regularization.

Deconvolution kernels

The deconvolution kernels were introduced by Stefanski and Carroll [18] in the late

eighties. In essence, the deconvolution kernel estimator stabilizes the reconstruction

by bounding the function 1/γ̂. More precisely, using our notation system, and ignoring

(temporarily) the discrete aspects carried by the estimation process, the reconstructed

density can be written as

fDK = U−1
[
ϕ̂h
γ̂

]
Ug (4)

or, equivalently, by

f̂DK(ξ) =
ϕ̂(hξ)

γ̂(ξ)
ĝ(ξ) =

ϕ̂h(ξ)

γ̂(ξ)
ĝ(ξ), (5)

where ϕh is defined as

ϕh(x) :=
1

h
ϕ
(x
h

)
with h > 0.
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Here, ϕ is the deconvolution kernel (denoted by K in the original paper by Stefanski

and Carroll [18] and in the subsequent literature) and h is the regularization parameter.

Therefore, the filter Φ is here defined by: Φ(ξ) = ϕ̂h(ξ)/γ̂(ξ).

We see right away that, for the solution to be well-defined and stable, it is necessary

that

(a) the function γ̂ does not vanish, and

(b) for every h > 0, the function ξ 7−→ ϕ̂(hξ)/γ̂(ξ) is bounded.

Notice that, whenever γ is symmetric, γ̂ is real, hence Condition (a) entails strict

positivity of γ̂. As a matter of fact, the Riemann-Lebesgue lemma tells us that γ̂ is

continuous and vanishes at infinity (and of course γ̂(0) = 1).

At all events, the above assumptions are somewhat restrictive, obvioulsy, and con-

stitute a serious limitation of the methodology. We will see later on that an interesting

property of mollification is to allow for relaxation of these assumptions and allow for

any combinations of densities γ and ϕ.

Remark 4. In the original paper by Stefanski and Carroll [18], it was also requested

that, for every h > 0, ∫ ∣∣∣∣ ϕ̂h(ξ)

γ̂(ξ)

∣∣∣∣ dξ <∞.

This assumption ensures that the function
(
ϕ̂h(ξ)/γ̂(ξ)

)
ĝ(ξ) in Equation (5) is in-

tegrable, allowing for application of the inverse Fourier integral transform. But the

latter function is square integrable anyways, allowing for the application of the inverse

Fourier-Plancherel operator. This is why we do not need the above assumption.

Remark 5. In Stefanski and Carroll [18], the estimation formula reads

fDK,n = U−1
ϕ̂h
γ̂
ĝn with ĝn(ξ) =

1

n

n∑
j=1

e−2πiξYj .

The function ĝn is the Fourier transform, in the sense of distributions, of the empirical

distribution n−1
∑

j δYj . We stress that this goes beyond the functional framework

under consideration.

Spectral cutoff

In the spectral cutoff method (see e.g. Johannes [13]), the Fourier transform of the

reconstructed density is merely truncated whenever γ̂(ξ) falls below a threshold a > 0,

which plays the role of the regularization parameter. The spectral cutoff may be

regarded as a special case of the deconvolution kernels: the solution is defined as

fSC = U−1
[

1|γ̂|2≥a

γ̂

]
Ug
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or, equivalently, as

f̂SC(ξ) =
1{|γ̂|2≥a}(ξ)

γ̂(ξ)
ĝ(ξ),

which is understood as zero whenever γ̂(ξ) < a. Here, 1S denotes the indicator function

of the set S, that is, the function which takes the value 1 if the argument belong to S

and zero otherwise. Therefore, the spectral cutoff is also a filter-type regularization

method, with

Φ(ξ) =


1{|γ̂|2≥a}(ξ)

γ̂(ξ)
if γ̂(ξ) ≥ a,

0 otherwise.

We can also remark that the inverse Fourier transform of 1{|γ̂|2≥a} is not a density

function and that its behavior is similar to the well-known sinc function. We will

see in Section 5 that this specific choice introduces additional perturbations in the

reconstruction, known as Gibbs phenomena.

Tikhonov regularization

The Tikhonov regularization (see Tikhonov and Arsenin [19]) has been applied and

studied in the context of econometrics in Carrasco et al. [5] and in Carrasco and

Florens [4]. The Tikhonov solution is defined by fTK =
(
T ∗γTγ + αI

)−1
T ∗γ g or, equiv-

alently, by

fTK = U−1
[ ¯̂γ

|γ̂|2 + α

]
Ug.

Expressed in the Fourier domain, we get:

f̂TK(ξ) =
γ̂(ξ)

|γ̂(ξ)|2 + α
ĝ(ξ).

The solution is well-defined for every positive value of the regularization parameter α.

Therefore, the Tikhonov method can be regarded as a filter-type technique (for decon-

volution), with

Φ(ξ) =
γ̂(ξ)

|γ̂(ξ)|2 + α
.

Note that Carrasco and Florens [4] define their solution in weighted L2-spaces in order

to recover the compactness of the operator Tγ , which we do not need in our context.

Remark 6. The Tikhonov approach is usually introduced in variational form: fTK is

solution to the optimization problem

Min FTK :=
1

2
‖g − Tγf‖2 +

α

2
‖f‖2 .
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3 Mollification

In this section, we present the mollification approach and show its consistency. Its

main interest will appear in Section 4, via comparison to the other methods.

3.1 Definition

Given an integrable function ϕ, we consider the family (ϕβ)β>0 defined by

ϕβ(x) =
1

β
ϕ

(
x

β

)
, x ∈ R.

Such a family is named an approximation of unity (see Section 6 in the appendix). We

then define the mollification solution to our deconvolution problem by

fMO = U−1

[
γ̂ϕ̂β

|γ̂|2 + |1− ϕ̂β|2

]
Ug

or, equivalently, by

f̂MO(ξ) =
γ̂(ξ)ϕ̂β(ξ)

|γ̂(ξ)|2 + |1− ϕ̂β(ξ)|2
ĝ(ξ). (6)

We observe right away that, as in the Tikhonov solution, the solution is well-defined

for every positive value of the regularization parameter β. As a matter of fact, the

Riemann-Lebesgue lemma (see Theorem 15 in Appendix 6) implies that both functions

γ̂ and ϕ̂β are continuous and vanish at infinity, so that the denominator in (6) can’t

vanish (recall that γ̂(0) = 1 = ϕ̂β(0)).

Another feature that is shared with the Tikhonov solution is that its form actually

derives from a variational formulation. It is readily seen in Alibaud et al. [1] and

Bonnefond and Maréchal [2] that fMO is the solution to the optimization problem

Min
1

2
‖Cβg − Tγf‖2 +

α

2
‖(I − Cβ)f‖2

in which Cβ denotes the operator of convolution with ϕβ. Clearly, fMO depends con-

tinuously on g. As a matter of fact, the Fourier-Plancherel operator is an isometry and

the multiplication operator by the bounded filter function

Φ(ξ) :=
γ̂(ξ)ϕ̂β(ξ)

|γ̂(ξ)|2 + |1− ϕ̂β(ξ)|2

has norm equal to the L∞-norm of Φ (see the theorems 19 and 21 in Appendix 6). In

the next paragraph, we shall prove the consistency of the corresponding estimator.

8



3.2 Consistency

For the sake of clarity, we shall denote the solution fMO by fβ instead, emphasizing the

dependence on the regularization parameter β. The following result establishes that

the estimator which we have obtained is consistent.

Theorem 7. Assume gn is a consistent nonparametric estimator of g, that is, that

E ‖gn − g‖ goes to zero as n goes to infinity. Let fn,β denote the mollified solution

corresponding to data gn. There then exist a sequence βn ↓ 0 such that

E ‖fn,βn − f◦‖ −→ 0 as n→∞.

The proof of the theorem relies on the following simple lemma:

Lemma 8. Let c : (0, 1]→ R+ be any function and let (αn) be any sequence of positive

numbers which converges to zero. Then, there exists a sequence (βn) such that

(1) βn ↓ 0 as n→∞;

(2) c(βn)αn → 0 as n→∞.

Proof. Let (β(k)) ∈ (0, 1]N
∗

be strictly decreasing, converging to zero. Since (αn)

converges to zero, for every k ∈ N∗, there exists nk ∈ N∗ such that c(β(k))αn ≤ β(k) for

all n ≥ nk. Clearly, we can choose (nk) to be strictly increasing. Define (βn) ∈ (0, 1]N
∗

by βn = 1 if n < n1 and, for k ≥ 1, βn = β(k) if nk ≤ n < nk+1. Then (βn) has the

desired properties.

Proof of the theorem. By the triangle inequality, we have:

E ‖fn,β − f◦‖ ≤ E ‖fn,β − fβ‖+ ‖fβ − f◦‖ .

Let us first control the size of the deterministic part. By Parseval’s theorem,

‖fβ − f◦‖2 =
∥∥∥(T ∗γTγ + (I − Cβ)∗(I − Cβ)

)−1
T ∗γCβTγf◦ − f◦

∥∥∥2
=

∥∥∥∥∥
(

|γ̂|2 ϕ̂β
|γ̂|2 + |1− ϕ̂β|2

− 1

)
f̂◦

∥∥∥∥∥
2

=

∫ ∣∣∣∣∣ |γ̂|2 ϕ̂β
|γ̂|2 + |1− ϕ̂β|2

− 1

∣∣∣∣∣
2 ∣∣∣f̂◦∣∣∣2 dξ

Since the integrand is dominated by the integrable function ξ 7→ |f̂◦|2, and since it

converges pointwise to zero as β ↓ 0 (recall that ϕ̂β(ξ) = ϕ̂(βξ)), Lebesgue’s dominated

convergence theorem shows that

‖fβ − f◦‖2 −→ 0 as β → 0.
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Let us now deal with the stochastic term. Using again Parseval’s theorem, we have:

E ‖fn,β − fβ‖2 = E
∥∥∥(T ∗γTγ + (I − Cβ)∗(I − Cβ)

)−1
T ∗γCβ(gn − g)

∥∥∥2
= E

∥∥∥∥∥
(

¯̂γϕ̂β

|γ̂|2 + |1− ϕ̂β|2

)
(ĝn − ĝ)

∥∥∥∥∥
2

≤ c(β)E ‖gn − g‖2 ,

in which

c(β) := sup
ξ

(
¯̂γ(ξ)ϕ̂β(ξ)

|γ̂(ξ)|2 + |1− ϕ̂β(ξ)|2

)2

=

( ¯̂γ(ξ)ϕ̂(βξ)

|γ̂(ξ)|2 + |1− ϕ̂(βξ)|2

)2

.

Using the Riemann-Lebesgue lemma, it is easy to see that, for every fixed β > 0, the

function inside the supremum takes the value 1 at ξ = 0, vanishes at infinity, and is

continuous. Consequently, the supremum is always finite (and greater than or equal

to 1). Now, applying Lemma 8 with αn = E ‖gn − g‖2 yields the desired result.

4 A framework for comparison

The purpose of this section is to put the various approaches in the same framework

and, by doing so, to derive theoretical and numerical tools for their comparison.

4.1 Unifying framework

The mollification method shares with the Tikhonov regularization that it is primarily

variational, and with kernel type methods that filtering is in force. In fact, kernel-type

methods may also be regarded as variational methods.

For simplicity of the notation, Tγ is now denoted by T . We already observed that

all deconvolution methods under consideration are of filtering type. Let

F (f) :=
1

2
‖Pg − Tf‖2 +

α

2
‖Hf‖2 , (7)

and let us retrieve the aforementioned methods as the minimization of particular in-

stances of it (by specifying the operators P and H and the parameter α). From the

basic theory of least squares, the unique minimizer of F is

f̄ =
(
T ∗T + αH∗H

)−1
T ∗Pg. (8)

Since T = U−1 [γ̂]U , it is readily seen that T ∗ = U−1
[
γ̂
]
U and T ∗T = U−1

[
|γ̂|2
]
U .

Therefore,

(1) letting H = P = I obviously yields the Tikhonov functional;
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(2) the choice H = I − Cβ, P = Cβ = U−1 [ϕ̂β]U and α = 1 yields the Mollification

functional;

(3) letting α = 0 and P = Ch (where Ch denotes the operator of convolution with

ϕh) yields the functional F (f) = ‖Chg − Tf‖2 /2, whose unique minimizer is

T †Chg = (T ∗T )−1T ∗Chg = U−1
[
ϕ̂h
γ̂

]
Ug,

which turns out to be the deconvolution kernel solution fDK.

(4) letting α = 0 and P be the convolution by U−11|γ̂|2≥a yields the spectral cutoff

solution fSC.

Notice first that the convolution kernels corresponding to the above three filters

need not be real (if γ is not symmetric) or even positive, if they are real. Notice

also that, in the Tikhonov case, Φ(0) = (1 + α)−1 6= 1, which implies the additional

drawback that the integral of the reconstructed function will not be equal to one, as

one should expect from a density. We may then consider the modified Tikhonov filter

Φ(ξ) =
(1 + α)γ̂(ξ)

|γ̂(ξ)|2 + α
.

In this modified version, we merely let P = [1 + α] instead of P = I = [1]. As for

the mollification approach, it would also make sense to consider a version with P = I,

letting the regularization be operated by H = I −Cβ only. The corresponding filter is

easily shown to be

Φ(ξ) =
γ̂(ξ)

|γ̂(ξ)|2 + |1− ϕ̂β(ξ)|2
,

and we shall refer to the corresponding method as the modified mollification. Finally,

notice that the particular kernel corresponding to the spectral cutoff method is the

inverse Fourier transform of the function 1{|γ̂|2≥a}/γ̂, and that the regularization pa-

rameter is now a > 0. Table 1 gives an overview of the functionals and filters associated

with each regularization method.

4.2 Comparisons

Deconvolution kernels versus mollification

We emphasize that, obviously, the regularization parameters h and β have the same

interpretation.

The first obvious limitation of the deconvolution kernels is the restriction imposed

by the decrease of γ̂ and its strict positivity. For example, if γ is Gaussian, the decrease

of ϕ̂ at infinity should be faster, which discards many deconvolution kernels. An even
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Functional F Filter Φ

TK
1

2
‖g − γ ∗ f‖2 +

α

2
‖f‖2

γ̂

|γ̂|2 + α

MT
1

2
‖(1 + α)g − γ ∗ f‖2 +

α

2
‖f‖2

(1 + α)γ̂

|γ̂|2 + α

MO

1

2
‖ϕβ ∗ g − γ ∗ f‖2 +

1

2
‖f − ϕβ ∗ f‖2

γ̂ϕ̂β

|γ̂|2 + |1− ϕ̂β|2

MM
1

2
‖g − γ ∗ f‖2 +

1

2
‖f − ϕβ ∗ f‖2

γ̂

|γ̂|2 + |1− ϕ̂β|2

DK
1

2
‖ϕh ∗ g − γ ∗ f‖2

ϕ̂h
γ̂

SC
1

2

∥∥∥1̌{|γ̂|2≥a} ∗ g − γ ∗ f∥∥∥2 1{|γ̂|2≥a}

γ̂

Table 1: Overview of regularization methods for the deconvolution problem: TK stands for

Tikhonov, MT for modified Tikhonov, MO for mollification, MM for modified mollification,

DK for the deconvolution kernels and SC for the spectral cutoff.

more extreme example is provided by the convolution kernel γ(x) = sinc2(πx). Its

Fourier transform is the triangle function

γ̂(ξ) =


ξ + 1 if x ∈ [−1, 0),

−ξ + 1 if x ∈ [0, 1),

0 elsewhere.

Here, the convolution operator Tγ fails to be injective, as a consequence of the fact that

the support of γ̂ is the interval [−1, 1], and the deconvolution kernel solution cannot be

defined. By contrast, the mollification solution is defined for any mollifier ϕ ∈ L1(R)

and any positive value of β.

Moreover, in the variational formulation of the deconvolution kernels, the regular-

ization appears only in the fit term, so that the optimization problem remains ill-posed.

This may be an obstacle to the introduction of additional constraints, such as the pos-

itivity of the reconstruction, since such a constraint can be introduced only in the

variational form. On the contrary, the variational form of the mollification approach is

stable, thanks to the regularization term, and such constraint may therefore be safely

introduced. The only price to be paid would then be a different numerical strategy
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(based on optimization).

We emphasize here that deconvolution kernels and mollification both aim at re-

constructing an explicit object, namely ϕβ ∗ f◦. The latter may be referred to as the

target object. In addition, as it will be illustrated in Section 5, when the deconvolution

kernels regularization is well-defined, the performance of the mollification approach is

similar.

Spectral cutoff versus mollification

Unlike the case of deconvolution kernels, the spectral cutoff solution remains defined

when γ̂ vanishes. The target object, in the sense defined above, is ψa ∗ f◦, with

ψa = U−11{|γ̂|2≥a}.

The function ψa can be regarded as a target impulse response of the reconstruction.

Its definition relies not only on the regularization parameter a, but also on the shape

of γ̂. We stress here that, as the inverse Fourier transform of some indicator func-

tion, this impulse response may have poor morphological properties, and may result in

oscillations (like in the Gibbs phenomenon) of the reconstructed density. These oscilla-

tions may incidentally produce significant negative parts, which is a serious drawback

for probability densities. By contrast, the mollification approach enables to choose an

apodized target impulse response, by avoiding sharp edges in the Fourier domain. This

will be illustrated in Section 5.

Notice at last that, as in the case of the deconvolution kernels, the variational form

of the spectral cutoff has no regularization term. Again, this may be an obstacle to

the introduction of additional constraints, such as the positivity of the reconstruction

(see the discussion in the previous paragraph).

Tikhonov versus mollification

Unlike deconvolution kernels, spectral cutoff and mollification, Tikhonov regularization

does not appeal to any target object, which is a conceptual drawback. The regulariza-

tion is uniformly exercised in the Fourier domain, as can be seen from the variational

formulation. As a matter of fact, using the well-known fact that the Fourier-Plancherel

operator is an isometry, the Tikhonov solution is readily seen to be the minimizer of

FTK(f) =
1

2

∥∥∥ĝ − γ̂ · f̂∥∥∥2 +
α

2

∥∥∥f̂∥∥∥2 .
The penalty term attracts f̂ towards zero everywhere. This contradicts the action of

the fit term in the low frequency domain, where both ĝ and γ̂ are not expected to be

close to zero. This opposition between the fit and regularization terms may induce

an unfavorable tradeoff between stability and fidelity to the model. The mollification

13



approach avoids this pitfall by introducing a smooth disjunction of the realms of ac-

tion of the fit and regularization terms, as can be seen from the transposition of the

mollification functional in the Fourier domain:

FMO(f) =
1

2

∥∥∥ϕ̂β · ĝ − γ̂ · f̂∥∥∥2 +
1

2

∥∥∥(1− ϕ̂β)f̂
∥∥∥2 .

The resulting improvement in the tradeoff between stability and fidelity to the initial

model equation will be illustrated by means of simulations in Section 5.

A nice aspect of Tikhonov, that is shared with mollification, is that, unlike the

deconvolution kernels and the spectral cutoff, the variational formulation is stabilized,

which opens the way to the introduction of the positivity constraint.

5 Numerical aspects and simulations

Having derived, in the previous sections, a common framework for all reconstruction

methods under consideration, we now proceed to develop tools for their assessment

and comparison, in terms of the tradeoff between stability and fidelity. In all cases,

fREG = U−1 [Φ]Ug◦, in which the filter Φ depends on regularization parameters. If g◦

is replaced by its estimated value gn, the corresponding reconstruction is denoted by

fREG,n. Otherwise expressed, fREG,n := U−1 [Φ]Ugn.

5.1 Assessment of the various regularization methods

We now define the quantities to be use for the assessment of the various regularization

methods.

Concerning the fidelity, a significant quantity is the reconstruction error

fREG,n − f◦ =
(
fREG,n − fREG

)
+
(
fREG − f◦

)
= U−1 [Φ]U(gn − g◦) +

(
fREG − f◦

)
. (9)

In the right hand side, the first and second terms will be respectively called the

statistical error and regularization error. The L2-norm of the reconstruction error,

referred to as the reconstruction-rise (Root Integrated Square Error), will be one im-

portant indicator to compare the performances of the main four regularization methods:

Deconvolution Kernels, Spectral cutoff, Tikhonov and Mollification.

Obviously the reconstruction-rise depends on the value of the regularization pa-

rameter of the considered regularization method (either a, α, h, or β) and their range

of variations as well as their impact on the solution (through the chosen regulariza-

tion method) may not be easily comparable. That is why we have also introduced a

common object to evaluate the stability of the reconstruction, that we define below.

14



In our setting, the reconstructed density depends linearly on the data g, and the

error on the data gn − g◦ is potentially amplified by the action of the reconstruction

operator U−1 [Φ]U by a factor equal to its operator norm (see Equation (9) as an

illustration). Since U is unitary, the operator norm of the reconstruction operator

U−1 [Φ]U is equal to the L∞-norm of Φ (see Appendix 6). The stability of the re-

construction can then be estimated via the computation of ‖Φ‖∞ as a function of the

regularization parameters. We may refer to ‖Φ‖∞ as an instability index.

Therefore, in the next graphs, we compare the performance of the various regular-

ization methods by comparing the variation of the reconstruction-rise with respect to

the instability index, whose level can be arbitrarily fixed for all regularization methods.

To any fixed level of the instability index corresponds a fixed value of the regularization

parameter.

Notice that the reconstruction error depend on the true value f◦, unobserved in

practice. The residual

gn − TγfREG,n

may then serve the purpose of evaluating the fidelity to the original model. Some

additional plots to evaluate the performance of the regularization methods are provided

using the residual rise with respect to the instability index.

5.2 Two examples with a simulated sample

We first illustrate the comparison between the different approaches in two examples

denoted Case I and Case II. In the two examples, the signal f is a Beta(3, 2) density

function, rescaled for having the support [−2, 2], note that its standard deviation is

σf = 0.8 . In both cases, n = 500. In Case I, the noise γ is a Cauchy(0, σ) where

σ is the scale, i.e. Cauchy(0, σ) = σt(1) where t(1) is a student-t with one degree of

freedom. In Case II, the noise γ is a N(0, σ2) where σ = 0.5 ∗ σf = 0.40. For Case

I, the standard deviation does not exist, we choose the scale σ = 0.20 such that this

Cauchy has an IQR equal to 0.40.

5.2.1 Case I

For Case I, we choose for the Mollification (MOL) and the Deconvolution Kernel (DK)

techniques a normal density with regularization parameter β and h respectively. So, in

this case, the four approaches described above can be used, we expect a quite similar

behavior between the MOL and the DK approaches. Figure 1 shows how the instability

index vary with the regularization parameter in the four methods. In all the cases, as

it should, the methods are more stable when increasing the regularization parameter.

Figure 2 shows in our particular sample of size n = 500 the components of the error

in the reconstruction of the signal f as defined in Equation (9). As expected in the
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Figure 1: Case I: The instability index as a function of the regularization parameters.

4 cases, the regularization error increases with the regularization parameter but the

opposite is true for the statistical error. By combining the two we have the dashed-

dot line of the Root Integrated Squared Errors (rise) of the total error which has a

minimum for an ’optimal’ value of the parameters. Direct and precise calculations gives

the values shown in Table 2. We observe that for this particular sample of size n = 500

the best performance is achieved by the Mollification approach. We will see in the

Monte-Carlo experiments below if this is confirmed when many samples are considered

and also for sample sizes n = 100 and 1000.

Method Parameter Rec-rise

MOL β = 0.30346 0.042010

TIK α = 0.12912 0.109681

KER h = 0.37571 0.043268

CUT a = 0.36546 0.077186

Table 2: Case I: Reconstruction-rise for the 4 methods and values of optimal regularization

parameter.

One way to compare the performances of the four approaches is to plot the various
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Figure 2: Case I: The Root-Integrated Squared Errors (rise) and its components in the

4 approaches. ’Rec’ is related to the reconstruction error (the total error), ’Reg’ is for its

regularization part and ’Stat’ is for the statistical part of the error (see equation (9)).

components of the rise and the residual rise versus the reached instability index. The

results are shown in Figure 3. Note that the top-left panel allows to find for each

method the optimal instability index minimizing the reconstruction rise and is only

available in a simulated data framework (the true f is known) whereas, the bottom-

right panel with the residuals is available in a real data framework and could be used

to find the optimal method for a given level of the instability index.

Finally, for this particular sample of size n = 500 it is interesting to show how the

signal f can be reconstructed in the various approaches (here the optimal values of

the regularization parameters have been used). This is shown in Figure 4 where the

various estimates are displayed along with the true value of the density f . We see how

irregular is the estimate in the Tikhonov approach and the Gibbs effect of the cutoff

approach for values of |x| greater than 2. Again, we see that the Mollification and the

Kernel Deconvolution approaches give very similar and good results.
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Figure 3: Case I: Various components of the rise and the corresponding values of the residual

rise as a function of the instability index.

5.2.2 Case II

For Case II, where we have a Gaussian noise, we illustrate the flexibility of the Mollifi-

cation approach by choosing for the mollifying density ϕβ(x) a uniform on the interval

[−β/2,+β/2]. Note that here this density cannot be used as regularization density for

the Deconvolution Kernel method (the filter is unbounded). So we only have here the

3 methods MOL, TIK and CUT to be compared. Figure 5 displays how the instability

index vary as a function of the regularization parameter in this setup.

Figure 6 shows in our particular sample of size n = 500 the components of the error

in the reconstruction of the signal f . We have a similar behavior for the 3 approaches as

we observed in Case I above: the regularization error increases with the regularization

parameter but the opposite is true for the statistical error. By combining the two we

have the U -shape curve of reconstruction rise. The optimal value of the regularization

parameters are provided in Table 3, indicating again for this particular sample a better

behavior of the Mollification, in term of the total rise.

As for Case I above the 3 approaches can be compared on the same picture by
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Figure 4: Case I: Different estimates of the signal f and its true value.
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Figure 5: Case II: The instability index as a function of the regularization parameters.

representing the components of the rise and the residual rise as a function of the

instability index. The results are displayed in Figure 7. In this case we see for the

total-rise and the residual rise a better behavior of the Mollification approach.

The final estimates of the signal f obtained by the reconstruction, in this particular

sample of size n = 500 are displayed in Figure 8. We used the optimal values of the

regularization parameters given in Table 3. Again we see the nice behavior of the

Mollification estimate, the irregularities of the Tikhonov one and the Gibbs effect for
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Method Parameter Rec-rise

MOL β = 0.75895 0.042248

TIK α = 0.05462 0.066442

CUT a = 0.17218 0.053963

Table 3: Case II: Reconstruction-rise for the 3 methods and values of optimal regularization

parameter.
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Figure 6: Case II: The Root-Integrated Squared Errors (rise) and its components in the

3 approaches. ’Rec’ is related to the reconstruction error (the total error), ’Reg’ is for its

regularization part and ’Stat’ is for the statistical part of the error.

the cutoff approach.

5.3 Monte-Carlo Experiments

Now, for the two cases illustrated in the preceding section, we perform a Monte-Carlo

experiment by simulating a large number of times, say M , a sample of size n and

20



1 2 3 4 5 6

Instability index

0

0.05

0.1

0.15

0.2

R
IS

E

Reconstruction RISE

MOL
TIK
CUT

1 2 3 4 5 6

Instability index

0

0.05

0.1

0.15

0.2

R
IS

E

Regularization RISE

1 2 3 4 5 6

Instability index

0

0.05

0.1

0.15

0.2

R
IS

E

Statistical RISE

0 1 2 3 4 5

Instability index

0.14

0.15

0.16

0.17

0.18

0.19

0.2

R
IS

E

Residuals RISE

Figure 7: Case II: Various components of the rise and the corresponding values of the

residual rise as a function of the instability index.

compare the performance of the different approaches by recording the achieved mini-

mal reconstruction rise for each approach, and then averaging over the M simulated

samples. The results are displayed in Table 5. For each case the Table provide the

Monte-Carlo estimator of the average optimal rise for the reconstruction error of the

signal f , defined in (9), computed over M = 1000 simulated samples, i.e.

arise =
1

M

M∑
m=1

‖fREG,n,m − f◦‖ ,

where fREG,n,m is the reconstruction obtained with the sample m of size n computed

with the optimal regularization parameter obtained by minimizing the reconstruction

rise. To appreciate if the differences are significant we also provide the Monte-Carlo
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Figure 8: Case I: Different estimates of the signal f and its true value.

standard deviation of this estimator, i.e.

Stdarise =

√√√√ 1

M(M − 1)

M∑
m=1

(
‖fREG,n,m − f◦‖ − arise

)2
,

The Table also gives for each case the average of the M optimal values of the regular-

ization parameters.

Looking to the table we see than in both Cases I and II, for each method, as ex-

pected, the rise decreases when the sample size increases. In all the cases in the

Table, the MOL approach provides better results than the other regularization tech-

niques, and the difference is significant (compared with the respective standard errors).

The cutoff method seems to be better than the Deconvolution kernel (when available)

and than the Tikhonov which appears to be the less reliable method. Of course these

general comments apply only for the two chosen scenarios, but added with the theo-

retical comparisons made above, this Monte-Carlo exercise seems to advocate for using

Mollification techniques in deconvolution problems.

6 Conclusion and perspectives

We have introduced the mollification approach to the deconvolution of probability

densities. We have established the consistency of the corresponding estimator. By

placing mollification in the framework of filter-type methods, we have compared it,

both theoretically and numerically, with various other methods, namely the deconvo-

lution kernels, the spectral cutoff and the Tikhonov regularization. This comparison
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CASE I:

Method: MOL TIK KER CUT

n = 100

arise 0.100038 0.209369 0.106937 0.105383

Stdarise 0.000941 0.000898 0.000952 0.000813

〈RegPar〉 0.358822 0.238026 0.460649 0.373794

n = 500

arise 0.064398 0.134029 0.070904 0.068135

Stdarise 0.000470 0.000543 0.000481 0.000450

〈RegPar〉 0.257730 0.124067 0.344160 0.272226

n = 1000

arise 0.052165 0.108078 0.058255 0.055289

Stdarise 0.000355 0.000426 0.000366 0.000359

〈RegPar〉 0.221208 0.094325 0.303763 0.225243

Table 4: Case I: Monte-Carlo (MC) performances of the 4 methods over M = 1000 repli-

cations of samples of size n = 100, 500 and 1000, respectively. The quantity arise is the

Monte-Carlo average of the reached optimal reconstruction rise, Stdarise is its Monte-

Carlo standard deviation, and 〈RegPar〉 is the mean of the respective optimal values of the

regularization parameters.

reveals notably that the mollification enables to substantially extend the domain of

applicability of the deconvolution kernels, while providing better performances than

all methods under consideration in terms of the tradeoff between fidelity and stability

of the reconstruction. Mollification inherits from advantages of both the deconvolution

kernels (in particular a target object is clearly defined) and the Tikhonov regularization

(in particular the flexibility brought by the variational formulation).

We have focused the present work on important practical issues regarding the re-

construction. Although of central interest in the theory of inverse problems, we have

not addressed here the question of convergence rates, whose study is deferred to a

forthcoming publication. From this practical viewpoint, the assessment of the relative

performances of mollification and other methods, it appears that mollification brings

significant improvements to all other methods. Although our numerical simulation are

necessarily attached to particular cases, their interpretation corroborates some theo-

retical evidence.
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CASE II:

Method: MOL TIK CUT

n = 100

arise 0.093505 0.152658 0.098631

Stdarise 0.000920 0.001044 0.000793

〈RegPar〉 1.179047 0.161683 0.389871

n = 500

arise 0.061859 0.092822 0.065483

Stdarise 0.000467 0.000638 0.000418

〈RegPar〉 0.856686 0.081881 0.222219

n = 1000

arise 0.051734 0.074589 0.055102

Stdarise 0.000376 0.000492 0.000350

〈RegPar〉 0.739565 0.062007 0.154203

Table 5: Case II: Monte-Carlo (MC) performances of the different methods over M =

1000 replications of samples of size n = 100, 500 and 1000, respectively. The arise is the

Monte-Carlo average of the reached optimal reconstruction rise, and Stdarise is its Monte-

Carlo standard deviation. 〈RegPar〉 is the mean of the respective optimal values of the

regularization parameters.

Appendix A: Least squares and ill-posedness

Let F and G be Hilbert spaces, and let T : F → G be a linear mapping. Recall that

F = kerT ⊕ ranT ∗ and G = kerT ∗ ⊕ ranT . Otherwise expressed, the mapping T

induces an orthgonal decomposition of F and G.

Theorem 9. Let F and G be Hilbert spaces and let T : F → G be a linear mapping.

Let P denote the orthogonal projection onto ranA. Let g ∈ G and let g̃ := Pg. Then the

following are equivalent: équivalentes:

(1) g̃ = Tf◦;

(2) x◦ minimizes the function f 7→ ‖g − Tf‖;

(3) T ∗g = T ∗Tf◦.

The equation T ∗g = T ∗Tx◦ is the so-called normal equation. Notice that if g ∈
ranT + (ranT )⊥, then Pg ∈ ranT . In this case, T−1(Pg) is nonempty and, from the

previous theorem,

T−1(Pg) = {f ∈ F | T ∗g = T ∗Tg} .

Therefore T−1(Pg) is an affine subspace parallel to kerT ∗T = kerT . Now, let T◦ : (kerT )⊥ →
ranT be the linear mapping obtained by restricting T to (kerT )⊥. The mapping T◦ is
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Figure 9: Orthogonal decomposition of F and G induced by T , and construction of the

pseudo-inverse.

bijective by construction. We then define the pseudo-inverse of T as the linear mapping

T † : D(T †) −→ F

g 7−→ T †g := T−1◦ Pg,

where D(T †) := ranT + (ranT )⊥ = ranT + kerT ∗. It is then easy to prove that:

Proposition 10. For every g ∈ D(T †), T †g belongs to T−1(Pg), and T †g minimizes

the function f 7→ ‖f‖ over T−1(Pg).

We refer to T †g as the minimum norm least square solution of the linear equation

Tf = g. The orthogonal decomposition of F and G induced by T and the definition

of the pseudo-inverse T † are illustrated in Figure 9.

In this setting, the linear equation Tf = g is said to be ill-posed whenever the

pseudo-inverse T † is unbounded, yielding unstable minimum norm least square solu-

tion. The following holds:

Proposition 11. If inf
{
‖Tf‖

∣∣ f ∈ (kerT )⊥, ‖f‖ = 1
}

= 0, then T † is unbounded.

Proof. Pick (fn) in (kerT )⊥ with ‖fn‖ = 1 and ‖Tfn‖ → 0 as n → ∞. Define

gn = Tfn/ ‖Tfn‖. Since T †T is the orthogonal projection onto (kerT )⊥,∥∥∥T †gn∥∥∥ =

∥∥T †Tfn∥∥
‖Tfn‖

=
1

‖Tfn‖
→ ∞ as n→∞.

It is worth noticing that the range of T cannot be closed if the problem is ill-posed

and that, consequently, the domain D(T †) is then a proper subspace of G. As a matter

of fact, from the Open Mapping Theorem applied to T◦, the closedness of ranT would

imply the boundedness of T◦, which would imply in turn the boundedness of T †.
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Appendix B: Convolution

If f and g are two functions from R into R, we write

(f ∗ g)(x) :=

∫
f(x− y)g(y) dy

whenever the integral is well defined. This requires that the function

y 7→ |f(x− y)g(y)|

be integrable. A simple change of variable shows that, whenever this is the case, the

function y 7→ |g(x− y)f(y)| is also integrable, and that (g ∗ f)(x) = (f ∗ g)(x).

We denote by C◦(R) the vector space of all real-valued continuous functions with

compact support. If f, g ∈ C◦(R), then f ∗ g is everywhere defined and actually f ∗ g ∈
C◦(Rn). More generally, if p, q ∈ [1,∞] are conjugate exponents (i.e. p−1 + q−1 = 1)

and if f ∈ Lp(R) and g ∈ Lq(R), then f ∗ g is everywhere defined, bounded by

‖f‖p ‖g‖q, and uniformly continuous. In the case where p ∈ (1,∞), f ∗ g goes to

zero at infinity. If now f ∈ L1(R) and g ∈ Lp(R), where p ∈ [1,∞], then the function

ϕx : y 7→ f(x−y)g(y) is integrable for almost every x ∈ R and the function f ∗g (which

is almost everywhere defined) belongs to Lp(R) and satisfies ‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p. In

this setting, the following approximation theorem holds:

Theorem 12. Let ϕ ∈ L1(R) be such that
∫
ϕ(x) dx = 1. For every ε > 0, let

ϕε(x) :=
1

ε
ϕ
(x
ε

)
.

At last, let p ∈ [1,∞). Then, for every f ∈ Lp(R),

‖f ∗ ϕε − f‖p −→ 0 as ε −→ 0.

The family of functions (ϕε)ε>0 is referred to as an approximation of unity. Recall

that the Schwartz space S (R) is the vector space of all functions ϕ in C∞(R) such

that, for every α, β ∈ N,

sup
{∣∣∣xαϕ(β)(x)

∣∣∣ ∣∣∣ x ∈ R} <∞,
in which ϕ(β) denotes the β-th derivative of ϕ. Clearly, C∞◦ (R) ⊂ S (R) ⊂ Lp(R)

for every p ∈ [1,∞]. The Gaussian function x 7→ e−x
2

is well-known example of a

function in S (R) which does not belong to C∞◦ (R). The space C∞◦ (R) is dense in

Lp(R) for every p ∈ [1,∞), which obviously implies that S (R) is dense in Lp(R) for

every p ∈ [1,∞).
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Appendix C: Fourier transforms

Let f ∈ L1(R). The function x 7→ e−2iπxξf(x) is obviously integrable for every ξ ∈ R
and we denote by f̂ and f̌ the functions respectively given by

f̂(ξ) :=

∫
e−2iπxξf(x) dx and f̌(ξ) :=

∫
e2iπxξf(x) dx.

The linear mappings f 7→ f̂ and f 7→ f̌ are denoted by U and U , respectively.

Theorem 13. Let f, g ∈ L1(R). Then f ∗ g ∈ L1(R) from the above and

U(f ∗ g) = Uf · Ug.

The Schwartz space S (R) turns out to be stable under Fourier transformation.

Theorem 14. If ϕ ∈ S (R), then Uϕ ∈ S(R) Moreover, Uϕ(n)(ξ) = (2iπξ)n · Uϕ(ξ)

and (Uϕ)(n)(ξ) = U
(
[(−2iπx)n]ϕ

)
(ξ) for every n ∈ N.

Here,
[
(−2iπx)n

]
denotes the operator of multiplication by the function x 7→

(−2iπx)n.

Theorem 15 (Riemann-Lebesgue). Let f ∈ L1(R). Then Uf is bounded and ‖Uf‖∞ ≤
‖f‖1. Moreover, Uf(ξ) is continuous and goes to zero as |ξ| → ∞.

Theorem 16. Let f ∈ S (R). Then, for every x ∈ R,

f(x) =

∫
e2iπxξ f̂(ξ) dξ.

Otherwise expressed, U : S (R)→ S (R) is bijective, and U−1 = U .

Corollary 17. Let f and g be two functions of S (R). Then fg and f ∗ g belong

to S (R).

The mapping

〈·, ·〉 : S (R)×S (R) −→ C

(f, g) 7−→
∫
fg

is a Hermitian product, which turns S (R) into an inner product space. The linear

mappings U and U−1 are adjoint to each other, since

〈Uf, g〉 =

∫ (∫
e−2iπxξf(x) dx

)
g(ξ) dξ

=

∫
f(x)

(∫
e−2iπxξg(ξ) dξ

)
dx

=

∫
f(x)

∫
e2iπxξg(ξ) dξ dx

=
〈
f, U−1g

〉
,
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in which the second equality stems from the Fubini Theorem. Using the density of

S (R) in L2(R), we can extend by closure both U and U . This process can be described

by the following proposition.

Proposition 18. Let F,G be Banach spaces whose norms are denoted by ‖·‖, and let E

be a dense subspace of F . Let A : E → G be a linear mapping such that:

∃κ,K > 0: ∀x ∈ E, κ ‖x‖ ≤ ‖Ax‖ ≤ K ‖x‖ .

Then, there exists a unique continuous linear mapping A : F → G whose restriction to E

coincides with A. This mapping is referred to as the extension by closure of A. Moreover,

we have:

(1) ∀x ∈ F, κ ‖x‖ ≤ ‖Ax‖ ≤ K ‖x‖;

(2) the range of A is the closure of the range of A;

(3) A : F → ranA is bijective and bicontinuous, and A−1 is the extension by closure

of A−1 : ranA→ E.

Theorem 19. For every ϕ ∈ S (R), ‖ϕ̂‖2 = ‖ϕ‖2. Consequently, the Fourier trans-

formation U : S (R) → S (R) can be extended to a unique continuous linear mapping

U : L2(R)→ L2(R), which is an isometry of L2(R):

∀f ∈ L2(R), ‖Uf‖ = ‖f‖ .

he operator U is referred to as the Fourier-Plancherel operator. It is a Hilbert space

isomorphism since, from the polarization identity,

∀f, g ∈ L2(R), 〈f, g〉 = 〈Uf,Ug〉 .

The Fourier-Plancherel operator U is merely denoted by U , throughout. We stress

that for functions in L2(R) that are not integrable, the Fourier integral may not be

defined. However, the following holds:

Theorem 20. (1) Suppose that f ∈ L1(R) ∩ L2(R). Then Uf = f̂ , where f̂ is

identified to its equ ivalence class in L2(R).

(2) Suppose now that f is any member of L2(R). For every R > 0, let

ΦR(ξ) :=

∫ R

−R
e−2iπxξf(x) dx = U1[−R,R]f(ξ),

FR(x) :=

∫ R

−R
e2iπxξ(Uf)(ξ) dξ = U−11[−R,R]Uf(x).

Then ‖ΦR −Uf‖2 → 0 and ‖FR − f‖2 → 0 as R→∞.
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Appendix D: The multiplication operator

Theorem 21. Let ϕ be in L∞(R) and let M : L2(R) → L2(R) be the multiplication

operator defined by

Mf = ϕ · f.

Then, ‖M‖ = ‖ϕ‖∞, in which ‖M‖ denotes the operator norm of M .

Proof. We can assume without loss of generality that ‖ϕ‖∞ > 0. Let λ denote

the Lebesgue measure on R. Clearly,∫
|ϕf |2 dλ ≤ ‖ϕ‖2∞

∫
|f |2 dλ = ‖ϕ‖2∞ ‖f‖

2
2 ,

so that ‖M‖ ≤ ‖ϕ‖∞. In order to obtain the opposite inequality, let ε > 0 be fixed.

The Lebesgue measure being σ-finite, one can find A ⊂ R measurable such that

(i) 0 < λ(A) < λ(R) =∞;

(ii) for every x ∈ A, ϕ(x) ≥ ‖ϕ‖∞ − ε.

As a matter of fact, let A◦ := {x ∈ R | |ϕ(x)| ≥ ‖ϕ‖∞ − ε}. Then λ(A◦) > 0 (for

otherwise one would have ‖ϕ‖∞ ≤ ‖ϕ‖∞ − ε). If λ(A◦) < ∞, then just take A = A◦.

Otherwise, consider an increasing sequence (Bn) such that λ(Bn) > 0 for all n and

∪nBn = R. The sequence (A◦ ∩ Bn) is increasing, with limit A◦. For n◦ sufficiently

large, λ(A◦ ∩ Bn◦) > 0, since λ(A◦ ∩ Bn) → λ(A◦) > 0. Thus take A = A◦ ∩ Bn◦ in

this case.

Now, let f = 1A/
√
λ(A). Then f ∈ L2(R) and ‖f‖2 = 1, so that

‖M‖2 ≥ ‖Mf‖22 =

∫
|ϕf |2 dλ =

1

λ(A)

∫
A
|ϕ|2 dλ ≥

(
‖ϕ‖∞ − ε

)2
.

Since ε can be chosen arbitrarily small, we have shown that ‖M‖ ≥ ‖ϕ‖∞.
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