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Abstract: Risk measures of a financial position are traditionally based on quantiles. Re-

placing quantiles with their least squares analogues, called expectiles, has recently received

increasing attention. The novel expectile-based risk measures satisfy all coherence require-

ments. We revisit their extreme value estimation for heavy-tailed distributions. First, we

estimate the underlying tail index via weighted combinations of top order statistics and

asymmetric least squares estimates. The resulting expectHill estimators are then used as

the basis for estimating tail expectiles and Expected Shortfall. The asymptotic theory of

the proposed estimators is provided, along with numerical simulations and applications to

actuarial and financial data.
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1 Introduction

The risk of a financial position Y is usually summarized by a risk measure. Value at Risk

(VaR) is arguably the most common risk measure used in practice. The VaR at probability

level τ P p0, 1q is given by the τ -quantile qτ :“ FÐY pτq “ infty P R : F pyq ě τu, where

F is the distribution function of Y . Koenker and Bassett [22] elaborated an absolute error

loss minimization framework extending this definition of quantiles as left continuous inverse

functions to the minimizers

qτ P arg min
θPR

E tρτ pY ´ θq ´ ρτ pY qu ,

with equality if F is increasing, where ρτ pyq “ |τ ´ 1Ipy ď 0q| |y| and 1Ip¨q is the indicator

function. There are different sign conventions for VaR which co-exist in the literature. In

this paper, the position Y is a real-valued random variable whose values are the negative

of financial returns. The right-tail of the distribution of Y , for levels τ close to one, then

corresponds to the negative of extreme losses. In actuarial science where Y is typically a

non-negative loss variable, the sign convention we have chosen implies that extreme losses

also correspond to levels τ close to one. The position Y is therefore considered riskier as its

risk measure gets higher.

One of the major criticisms on VaR qτ is its failure to fulfill the subadditivity property in

general (Acerbi [1]), and hence it is not a coherent risk measure according to the axiomatic

foundations in Artzner et al. [2]. Furthermore, it fails to account for the size of losses beyond

the level τ , since quantiles only depend on the frequency of tail losses and not on their

values (Dańıelsson et al. [8]). In both of these aspects, expectiles are a perfectly reasonable
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alternative to quantiles as they depend on both the tail realizations and their probability

(Kuan et al. [24]) and define a coherent risk measure (Bellini et al. [4]). This is mainly due

to their conception as a least squares analogue of quantiles. More precisely, by substituting

the absolute deviations in the asymmetric loss function ρτ with squared deviations, Newey

and Powell [25] obtain the τth expectile of the distribution of Y as the minimizer

ξτ :“ arg min
θPR

E tητ pY ´ θq ´ ητ pY qu , (1)

with ητ pyq “ |τ ´ 1Ipy ď 0q| y2. The additional term ητ pY q ensures the existence of a unique

solution ξτ for distributions with finite absolute first moment. Expectiles are determined by

tail expectations rather than tail probabilities, which allows for more prudent and reactive

risk management. Altering the shape of extreme losses may not change the quantile-VaR,

but it does impact all the expectiles (Taylor [31]). Another advantage of expectiles is that

they make more efficient use of the available data since they rely on the distance to all ob-

servations and not only on the frequency of tail losses (Sobotka and Kneib [30]). Moreover,

using expectiles has the appeal of avoiding recourse to regularity conditions on the underlying

distribution (see e.g. Holzmann and Klar [21], Krätschmer and Zähle [23]). Perhaps most

importantly, expectiles induce the only coherent law-invariant risk measure that is elicitable

(Ziegel [33]). The property of elicitability corresponds to the existence of a natural backtest-

ing methodology. Also, expectiles are the only M-quantiles (Breckling and Chambers [6])

that are coherent risk measures (Bellini et al. [4]). Further theoretical and numerical merits

in favor of the adoption of expectiles in risk management can be found in Ehm et al. [14]

and Bellini and Di Bernardino [5].

In this article we first investigate the problem of estimating tail expectiles from the
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perspective of extreme value theory. This translates into considering both intermediate and

extreme asymmetry levels, respectively, τ “ τn Ñ 1 such that np1´τnq Ñ 8 and τ “ τ 1n Ñ 1

such that np1 ´ τ 1nq Ñ c ă 8, as n Ñ 8. We focus on the Fréchet maximum domain of

attraction of heavy-tailed distributions that perfectly describe the tail structure of most

actuarial and financial data (see, e.g., Embrechts et al. [18] and Resnick [26]). This problem

is, in comparison to extreme quantile estimation, still in full development. The absence of a

closed form expression for expectiles makes the extreme value analysis of their asymmetric

least squares estimators a much harder mathematical problem than for order statistics. Yet,

we have initiated a satisfactory solution to this problem in an earlier paper [10] by proposing

intermediate and extreme expectile estimators and developing their asymptotic theory. Very

recently, we have come up in [11] with powerful approximations of the tail empirical expectile

process. First, Theorem 1 in Daouia et al. [11] derives an explicit joint asymptotic Gaussian

representation of the tail expectile and quantile processes. Second, Theorem 2 in [11] unravels

the discrepancy between the tail empirical expectile process and its population counterpart.

As these two theorems constitute the basic theoretical tools for our asymptotic analysis in

the present paper, they are briefly described below in Theorem 1 along with the statistical

model in Section 2.

Built on these recent advances, Section 3 shows that the tail index of the underlying

Pareto-type distribution can be estimated in a novel and more general manner. This index

tunes the tail heaviness of F and its knowledge is of utmost interest since it makes the

estimation of extreme quantiles and expectiles possible by means of appropriate extrapolation

techniques. We first construct asymmetric least squares estimators of the tail index and

derive their asymptotic normality in Theorem 2. We then construct a more general class
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of weighted estimators by computing a linear combination of these pure expectile-based

estimators and of the popular Hill estimator (Hill [20]). This inspired the name expectHill

estimators for this class. Thanks to the joint weighted Gaussian approximations of the

tail expectile and quantile processes in Theorem 1, we get the asymptotic normality of the

expectHill estimators and derive their joint convergence with both intermediate quantile and

expectile estimators in Theorem 3.

Built on the expectHill estimators themselves, we propose in Section 4 general weighted

estimators for intermediate expectiles ξτn whose asymptotic normality, obtained in Theo-

rem 4, follows as a corollary of Theorem 3. Based on the ideas of Daouia et al. [10, 11], the

weighted intermediate expectile estimators are then extrapolated to the very extreme expec-

tile level τ 1n that may approach one at an arbitrarily fast rate. The asymptotic properties of

the extrapolated ξτ 1n estimators are established in Theorem 5.

An important alternative to the VaR qτ and its coherent least squares analogue ξτ is

Expected Shortfall (ES). It is favored by practitioners who are more concerned with the risk

exposure to a catastrophic event that may wipe out an investment in terms of the size of

potential losses. The conventional quantile-based ES at level τ equals

QESτ :“
1

1´ τ

ż 1

τ

qt dt.

It is coherent (Acerbi [1]) and identical, when the financial position Y is continuous, to

the so-called Conditional Value at Risk ErY |Y ą qτ s (Rockafellar and Uryasev [28, 29]).

Similarly to this intuitive tail conditional expectation, Taylor [31] has introduced and used

the expectile-based form ErY |Y ą ξτ s as the basis for estimating the standard quantile-

based measure ErY |Y ą qτ s. Given that both conditional expectations ErY |Y ą qτ s and
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ErY |Y ą ξτ s are not coherent risk measures in general, Daouia et al. [11] have suggested to

estimate the coherent ES form QESτ on the basis of its expectile-based analogue

XESτ :“
1

1´ τ

ż 1

τ

ξt dt,

obtained by substituting the expectile ξt in place of the quantile qt in QESτ . This definition

is more convenient than ErY |Y ą ξτ s as it induces a proper coherent risk measure (see

Proposition 2 in [11]), while keeping the intuitive meaning of the conditional expectation,

when τ Ñ 1, since XESτ „ ErY |Y ą ξτ s (see Proposition 3 in [11]). In addition to this

asymptotic equivalence, the tail values XESτ and ErY |Y ą ξτ s share exactly the same

estimators, for both intermediate and extreme expectile levels τ “ τn and τ “ τ 1n.

The proposed estimation procedures in Daouia et al. [11] for both extreme values XESτ 1n

and QESτ 1n are mainly based on the classical Hill estimator of the tail index. In Section 5,

we extend their extrapolation devices by using the generalized weighted expectHill estimator;

see Theorems 6-7. In particular, when the ultimate interest is in estimating the traditional

form QESτ 1n in the case of real-valued profit-loss distributions, our composite asymmetric

least squares estimators perform better than the rival estimators of Daouia et al. [11] and

El Methni et al. [15]. Section 6 contains our experiments with simulated data and Section 7

presents applications to medical insurance data and financial returns data. The proofs and

auxiliary results are deferred to the Supplementary Material document.

6



2 Statistical model and basic tools

In this paper we consider the class of heavy-tailed distributions, referred to as the Fréchet

maximum domain of attraction, with tail index 0 ă γ ă 1. The survival function of these

Pareto-type distributions has the form

F pyq :“ 1´ F pyq “ y´1{γ`pyq, (2)

for y ą 0 large enough, where ` is a slowly varying function at infinity, i.e., a positive

function on p0,8q satisfying `ptyq{`ptq Ñ 1, as tÑ 8, for any y ą 0. The index γ tunes the

tail heaviness of F : the larger the index, the heavier the right tail. Let Y be the actuarial

or financial position of interest having survival function F , and let Y´ “ minpY, 0q denote

the negative part of Y . Then, together with condition E|Y´| ă 8, the assumption γ ă 1

ensures the existence of the first moment of Y , and hence the existence of expectiles. By

Corollary 1.2.10 in de Haan and Ferreira [12], the model assumption (2) is equivalent to

lim
tÑ8

Uptxq

Uptq
“ xγ for all x ą 0, (3)

where Uptq :“ q1´t´1 ” infty P R : 1{F pyq ě tu stands for the tail quantile function of Y .

Under (2) or equivalently (3), it has been found that

ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ñ 1 (4)

(Bellini and Di Bernardino [5]). A refined asymptotic expansion of ξτ{qτ with a precise

quantification of the bias term is obtained in Proposition 1(i) of Daouia et al. [11] under the
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following second-order regular variation condition:

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ

where ρ ď 0 is a constant parameter and A is an auxiliary function converging to 0 at infinity

and having ultimately constant sign. Hereafter, pxρ´ 1q{ρ is to be understood as log x when

ρ “ 0.

Assumption C2pγ, ρ, Aq is a standard condition in extreme value theory, which controls

the rate of convergence in (3). The monographs of Beirlant et al. [3] and de Haan and

Ferreira [12] give abundant examples of commonly used continuous distributions satisfying

C2pγ, ρ, Aq, along with thorough discussions on the interpretation and the rationale behind

this second-order condition.

Suppose we observe independent copies tY1, . . . , Ynu of the random variable Y and denote

by Y1,n ď Y2,n ď ¨ ¨ ¨ ď Yn,n their nth order statistics. Let the expectile level τ “ τn approach

one at an intermediate rate in the sense that np1´ τnq Ñ 8 as nÑ 8. A natural estimator

of the corresponding intermediate expectile ξτn is given by its empirical version

rξτn “ arg min
uPR

n
ÿ

i“1

ητnpYi ´ uq. (5)

Under condition C2pγ, ρ, Aq, Daouia et al. [11] prove in their Theorem 1 that the tail empirical

expectile process

p0, 1s Ñ R, s ÞÑ rξ1´p1´τnqs
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can be approximated by a sequence of Gaussian processes with drift and derive its joint

asymptotic behavior with the tail empirical quantile process

p0, 1s Ñ R, s ÞÑ pq1´p1´τnqs :“ Yn´tnp1´τnqsu,n,

where t¨u stands for the floor function. They also analyze in their Theorem 2 the difference

between the tail empirical expectile process and its population counterpart. For our purposes

below, we recall these two approximations in the following result.

Theorem 1 (Daouia et al., 2018b). Suppose that E|Y´|2 ă 8. Assume further that con-

dition C2pγ, ρ, Aq holds, with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1 ´ τnq Ñ 8 and
a

np1´ τnqApp1 ´ τnq
´1q “ Op1q. Then there exists a sequence Wn of standard Brownian

motions such that, for any ε ą 0 sufficiently small,

pq1´p1´τnqs
qτn

“ s´γ

˜

1`
1

a

np1´ τnq
γ
a

γ´1 ´ 1 s´1Wn

ˆ

s

γ´1 ´ 1

˙

`
s´ρ ´ 1

ρ
App1´ τnq

´1
q ` oP

˜

s´1{2´ε
a

np1´ τnq

¸¸

and
rξ1´p1´τnqs

ξτn
“ s´γ

ˆ

1` psγ ´ 1q
γpγ´1 ´ 1qγ

qτn
pEpY q ` oPp1qq

`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

`
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ
ˆ
s´ρ ´ 1

ρ
App1´ τnq

´1
q

` oP

˜

s´1{2´ε
a

np1´ τnq

¸¸

uniformly in s P p0, 1s.
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If in addition ρ ă 0, then

rξ1´p1´τnqs
ξ1´p1´τnqs

“ 1`
1

a

np1´ τnq
γ2
a

γ´1 ´ 1 sγ´1
ż s

0

Wnptq t
´γ´1 dt

` oP

˜

s´1{2´ε
a

np1´ τnq

¸

uniformly in s P p0, 1s.

The assumptions that γ P p0, 1{2q and E|Y´|2 ă 8 essentially guarantee that the loss

variable has a finite variance. This is the case in most studies on actuarial and financial data

where the realized values of γ have been found to lie well below 1{2; see, e.g., the R package

CASdatasets, Daouia et al. [10] and the references therein.

The extra condition ρ ă 0, in the second part of Theorem 1, is required in most ex-

trapolation results formulated in the extreme value literature under condition C2pγ, ρ, Aq;

see, e.g., Chapter 4 of de Haan and Ferreira [12] regarding extreme quantile estimation and

Daouia et al. [10] for extreme expectile estimation. Note also that, in contrast to the first

part of Theorem 1, the second part avoids the error terms that are proportional to 1{qτn and

App1´ τnq
´1q.

This theorem, already proved in Daouia et al. [11], constitutes the main intermediate

theoretical tool for our ultimate interest in constructing general weighted estimators of the

tail index and extreme expectiles, as well as of Expected Shortfall risk measures.

3 Estimation of the tail index

In this section, we first construct purely expectile-based estimators of the tail index γ and

derive their asymptotic distributions. We shall then construct a more general class of esti-
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mators by combining both intermediate empirical expectiles and quantiles. The basic idea

stems from Theorem 1 which suggests the following approximation:

ż 1

0

log

˜

rξ1´p1´τnqs
ξτn

¸

ds «

ż 1

0

logps´γq ds “ γ

where τn Ñ 1 is such that np1´ τnq Ñ 8. One can then estimate γ by

qγτn :“

ż 1

0

log

˜

rξ1´p1´τnqs
rξτn

¸

ds.

A computationally more viable option is to use a discretized version of the integral estimator

qγτn on a regular l´grid of points in r0, 1s, namely:

rγτn,l :“
1

l

l
ÿ

i“1

log

˜

rξ1´p1´τnqpi´1q{l
rξτn

¸

where l “ lpnq Ñ 8. A particularly interesting example is

rγτn :“
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

˜

rξ1´pi´1q{n
rξ1´tnp1´τnqu{n

¸

(6)

or, equivalently, rγτn “ rγ1´tnp1´τnqu{n,tnp1´τnqu. This simple estimator has exactly the same

form as the popular Hill estimator (Hill [20])

pγτn “
1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

log

ˆ

pq1´pi´1q{n
pq1´tnp1´τnqu{n

˙

(7)

with the tail empirical quantile process pq in (7) replaced by its asymmetric least squares

analogue rξ. Beirlant et al. [3] and de Haan and Ferreira [12] provide an extensive overview
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of the asymptotic theory for the Hill estimator pγτn . The next theorem gives the asymptotic

normality of the three new estimators qγτn , rγτn,l and rγτn . Its proof essentially consists in

writing

log

˜

rξ1´p1´τnqs
rξτn

¸

“ log

˜

rξ1´p1´τnqs
ξτn

¸

´ log

˜

rξτn
ξτn

¸

before integrating and crucially using Theorem 1 twice in order to control both of the loga-

rithms on the right-hand side.

Theorem 2. Suppose that E|Y´|2 ă 8. Assume further that condition C2pγ, ρ, Aq holds,

with 0 ă γ ă 1{2. Let τn Ñ 1 be such that np1 ´ τnq Ñ 8, and suppose that the bias

conditions
a

np1´ τnqApp1 ´ τnq
´1q Ñ λ1 P R and

a

np1´ τnq{qτn Ñ λ2 P R are satisfied.

Then:

(i)
a

np1´ τnqpqγτn ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1 ´ EpY q

γ2pγ´1 ´ 1qγ

γ ` 1
λ2,

2γ3

1´ 2γ

˙

.

(ii) If l “ lpnq fulfills
a

np1´ τnq logpnp1´ τnqq{l Ñ 0, then (i) holds with qγτn replaced by

rγτn,l. Especially, (i) holds with qγτn replaced by rγτn.

Before using the estimator rγτn to construct a more general class of tail index estimators,

we formulate a couple of remarks about its theoretical and practical behavior.

Remark 1. The conditions involving the auxiliary function A in Theorem 2 are also re-

quired to derive the asymptotic normality of the conventional Hill estimator pγτn in (7), with

asymptotic bias λ1{p1 ´ ρq and asymptotic variance γ2 [see Theorem 3.2.5 in de Haan and

Ferreira ([12], p.74)]. Theorem 2 also features a further bias condition involving the quantile
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function q; this was to be expected in view of Theorem 1, of which a consequence is that

the remainder term in the approximation ξ1´p1´τnqs{ξτn « s´γ depends on both A and q.

Yet, it is straightforward to eliminate this bias component: note that the centered variable

Z “ Y ´EpY q is also heavy-tailed, with the same extreme value parameters as Y , and thus

the estimator qγZτn constructed on the Zi “ Yi ´ EpY q satisfies

a

np1´ τnqpqγ
Z
τn ´ γq

d
ÝÑ N

ˆ

p1´ γqpγ´1 ´ 1q´ρ

p1´ ρqp1´ γ ´ ρq
λ1,

2γ3

1´ 2γ

˙

.

This suggests to define pZi “ Yi ´ Y n, where Y n is the sample mean, and then to consider

the estimator qγ
pZ
τn . Due to the translation equivariance of expectiles, the gap between qγ

pZ
τn

and qγZτn has the same order as |Y n ´ EpY q| “ OPp1{
?
nq. It follows that qγ

pZ
τn has the same

asymptotic distribution as qγZτn , and is therefore a bias-reduced version of qγτn which eliminates

the quantile component of the bias.

Remark 2. The selection of τn is a difficult problem in general, since any sort of opti-

mal choice will involve the unknown parameter ρ as well as the function A; for a discussion

about the optimal choice of τn in the Hill estimator based on mean-squared error, see Hall and

Welsh [19]. A usual practice for selecting a reasonable estimate pγτn is, in the reparametriza-

tion τn “ 1 ´ k{n, to plot the graph of k ÞÑ pγ1´k{n for k P t1, 2, . . . , n ´ 1u, and then to

pick out a value of k corresponding to the first stable part of the plot [see, e.g., de Haan

and Ferreira ([12], Section 3)]. There have been a number of attempts at formalizing this

procedure, including Resnick and Stărică [27], Drees et al. [13], and more recently El Methni

and Stupfler [16, 17]. The Hill plot may be, however, so unstable that reasonable values

of k (which would correspond to estimates close to the true value of γ) may be hidden in
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the graph. The least squares analogue rγ1´k{n in (6) is, in contrast to pγ1´k{n, based on ex-

pectiles that enjoy superior regularity properties compared to quantiles (see Proposition 1

in Holzmann and Klar [21]). One may thus expect that rγ1´k{n affords smoother and more

stable plots compared to those of the Hill estimator pγ1´k{n. This advantage is illustrated

in Section A of the Supplementary Material document, where we examine the behavior of

pγ and rγ on two concrete actuarial and financial data sets. It can be seen thereon that the

plots of k ÞÑ rγ1´k{n are indeed far smoother than the arguably wiggly plots of k ÞÑ pγ1´k{n.

It could, however, happen that rγ has a higher bias than the Hill estimator. This is for

instance the case if |ρ| is large, since a large |ρ| means that the underlying distribution is, in

its right tail, very close to a multiple of the Pareto distribution for which the Hill estimator

is unbiased. An efficient way to take advantage of the desirable properties of both rγ and pγ

in a large class of models is by using their linear combination for estimating γ. For α P R,

we then define the more general estimator

γτnpαq :“ αpγτn ` p1´ αqrγτn . (8)

We shall call this linear combination the expectHill estimator. For example, the simple mean

γτnp1{2q would represent an equal balance between the use of large asymmetric least squares

statistics in (6) and top order statistics in (7). The convergence of the expectHill estimator

is, however, a highly non-trivial problem as it hinges, by construction, on both the tail

expectile and quantile processes. The explicit joint asymptotic Gaussian representation of

these two processes, obtained in Theorem 1, is a pivotal tool for our analysis, and enables us

to address the convergence problem in its full generality. We establish below the asymptotic
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normality of the expectHill estimator, along with its joint convergence with intermediate

sample quantiles and expectiles.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, for any α P R,

a

np1´ τnq

˜

γτnpαq ´ γ,
pqτn
qτn

´ 1,
rξτn
ξτn

´ 1

¸

d
ÝÑ N pmα,Vαq

where mα is the 1ˆ 3 vector mα :“ pbα, 0, 0q, with

bα “
λ1

1´ ρ

ˆ

α ` p1´ αq
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ

˙

´ p1´ αqEpY q
γ2pγ´1 ´ 1qγ

γ ` 1
λ2, (9)

and Vα is the 3ˆ 3 symmetric matrix with entries

Vαp1, 1q “ γ2
ˆ

α2

„

3´ 4γ

1´ 2γ
´ 2

pγ´1 ´ 1qγ

1´ γ



´ 2α

„

1

1´ 2γ
´
pγ´1 ´ 1qγ

1´ γ



`
2γ

1´ 2γ

˙

,

Vαp1, 2q “ p1´ αqγrpγ´1 ´ 1qγ ´ 1´ γ logpγ´1 ´ 1qs,

Vαp1, 3q “
γ3

p1´ γq2

„

αpγ´1 ´ 1qγ ` p1´ αq
1´ γ

1´ 2γ



,

Vαp2, 2q “ γ2, Vαp2, 3q “ γ2
ˆ

pγ´1 ´ 1qγ

1´ γ
´ 1

˙

, Vαp3, 3q “
2γ3

1´ 2γ
.

As an immediate consequence, we have for any α P R,

a

np1´ τnq
`

γτnpαq ´ γ
˘ d
ÝÑ N pbα, vαq where vα “ Vαp1, 1q. (10)

This remains valid if rγτn is replaced in (8) by the continuous version qγτn , or any other

discretized version rγτn,l provided
a

np1´ τnq logpnp1´ τnqq{l Ñ 0.
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Remark 3. The optimal value of the weighting coefficient α in (8), which minimizes the

asymptotic variance vα of γτnpαq, only depends on the tail index γ and has the explicit

expression

αpγq “
p1´ γq ´ p1´ 2γqpγ´1 ´ 1qγ

p1´ γqp3´ 4γq ´ 2p1´ 2γqpγ´1 ´ 1qγ
.

Its plot against γ P p0, 1{2q is given in Section B of the Supplementary Material document.

It can be seen thereon that the simple mean γτnp1{2q of pγτn and rγτn , with α “ 1{2, affords

a middle course between pγτn ” γτnp1q and rγτn ” γτnp0q in terms of asymptotic variance. In

terms of smoothness, γτnp1{2q offers a middle course as well, as shown in Section A of the

Supplementary Material document.

4 Extreme expectile estimation

In this section, we first return to intermediate expectile estimation by making use of the

general class of γ estimators tγτnpαquαPR to construct alternative estimators for high expec-

tiles ξτn such that τn Ñ 1 and np1´ τnq Ñ 8 as nÑ 8. Then we extrapolate the obtained

estimators to the very high expectile levels that may approach one at an arbitrarily fast rate.

Alternatively to the asymmetric least squares estimator rξτn defined in (5), one may use

the asymptotic connection ξτn „ pγ´1 ´ 1q´γqτn , described in (4), to define the following

semiparametric estimator of ξτn :

pξτnpαq :“
`

γτnpαq
´1
´ 1

˘´γτn pαq
pqτn .

Even more generally, one may combine the two estimators pξτnpαq and rξτn to define, for β P R,
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the weighted estimator

ξτnpα, βq :“ β pξτnpαq ` p1´ βq rξτn .

When α “ 1, we recover the particular expectile estimator ξτnpβq :“ ξτnp1, βq introduced

in Daouia et al. [11]. The limit distribution of the more general variant ξτnpα, βq crucially

relies on the asymptotic dependence structure in Theorem 3 between γτnpαq, pqτn and rξτn .

Theorem 4. Suppose that the conditions of Theorem 2 hold. Then, for any α, β P R,

a

np1´ τnq

˜

ξτnpα, βq

ξτn
´ 1

¸

d
ÝÑ β

`

bα ` rp1´ γq
´1
´ logpγ´1 ´ 1qsΨα `Θ

˘

` p1´ βqΞ

where the bias component bα is bα “ λ1b1,α ` λ2b2,α with

b1,α “
p1´ γq´1 ´ logpγ´1 ´ 1q

1´ ρ

„

α ` p1´ αq
p1´ γqpγ´1 ´ 1q´ρ

1´ γ ´ ρ



´
pγ´1 ´ 1q´ρ

1´ γ ´ ρ
´
pγ´1 ´ 1q´ρ ´ 1

ρ
,

b2,α “ ´γpγ
´1
´ 1qγEpY q

ˆ

1` p1´ αqrp1´ γq´1 ´ logpγ´1 ´ 1qs
γ

γ ` 1

˙

,

and pΨα,Θ,Ξq is a trivariate Gaussian centered random vector with covariance matrix Vα

as in Theorem 3.

Let us now extend the estimation procedure far into the right tail, where few or no

observations are available. This translates into considering the expectile level τ “ τ 1n Ñ 1

such that np1´ τ 1nq Ñ c P r0,8q, as nÑ 8. To estimate the extreme expectile ξτ 1n , the basic

idea is to extrapolate a consistent expectile estimator of intermediate order τn to the very

high level τ 1n. To do so, note that on the one hand we have ξτ 1n{ξτn „ qτ 1n{qτn in view of (4).

17



On the other hand, we have the classical Weissman extrapolation formula

qτ 1n
qτn

“
Upp1´ τ 1nq

´1q

Upp1´ τnq´1q
«

ˆ

1´ τ 1n
1´ τn

˙´γ

as τn and τ 1n approach one (Weissman [32]). Thus, we arrive at the expectile approximation

ξτ 1n «

ˆ

1´ τ 1n
1´ τn

˙´γ

ξτn . (11)

By substituting our expectHill estimator γτnpαq and the general weighted intermediate es-

timator ξτnpα, βq, respectively, in place of γ and ξτn , we get the extrapolated expectile

estimator

ξ
‹

τ 1n
pα, βq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq

ξτnpα, βq. (12)

The special case α “ 1 corresponds to the estimator ξ
‹

τ 1n
pβq :“ ξ

‹

τ 1n
p1, βq introduced by

Daouia et al. [11]. We extend this estimator by using the generalized expectHill estimator

γτnpαq instead of the Hill estimator pγτn . The next theorem gives the asymptotic behavior of

ξ
‹

τ 1n
pα, βq.

Theorem 5. Suppose that the conditions of Theorem 2 hold. Assume also that ρ ă 0 and

np1´ τ 1nq Ñ c ă 8 with
a

np1´ τnq{ logrp1´ τnq{p1´ τ
1
nqs Ñ 8. Then, for any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n
pα, βq

ξτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq

with pbα, vαq as in (9) and (10).

One can observe that the limiting distribution of ξ
‹

τ 1n
pα, βq is controlled by the asymptotic
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distribution of γτnpαq. This is a consequence of the fact that the convergence of ξ
‹

τ 1n
pα, βq is

governed by that of the extrapolation factor rp1´τ 1nq{p1´τnqs
´γτn pαq. The latter approximates

the theoretical factor rp1 ´ τ 1nq{p1 ´ τnqs
´γ in the extrapolation (11) at a slower rate than

both the speed of convergence of ξτnpα, βq to ξτn , given by Theorem 4, and the speed of

convergence to 0 of the bias term that is incurred by the use of (11) and that can be

controlled by Theorem 1.

5 Estimation of tail Expected Shortfall

This section aims to estimate both expectile- and quantile-based forms of Expected Shortfall,

XESτ :“
1

1´ τ

ż 1

τ

ξt dt, QESτ :“
1

1´ τ

ż 1

τ

qt dt, (13)

at a very extreme security level τ that may approach one at an arbitrarily fast rate. To do

so, Daouia et al. [11] have already suggested to start by estimating these risk measures at

an intermediate level τn Ñ 1 such that np1 ´ τnq Ñ 8, before extrapolating the resulting

estimates to the far tail by making use of the traditional Hill estimator pγτn of the tail index γ.

Here, we extend their device by using the generalized expectHill estimator γτnpαq in place of

pγτn . The following asymptotic connections, established in Proposition 3 of Daouia et al. [11],

will prove instrumental in the estimation procedure.
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Proposition 1 (Daouia et al., 2018b). Assume that E|Y´| ă 8 and that Y has a Pareto-type

distribution (2) with tail index 0 ă γ ă 1. Then

XESτ
QESτ

„
ξτ
qτ
„

ErY |Y ą ξτ s

ErY |Y ą qτ s
and

XESτ
ξτ

„
1

1´ γ
„

ErY |Y ą ξτ s

ξτ
, τ Ñ 1.

5.1 Expectile-based Expected Shortfall

Under the model assumptions that E|Y´| ă 8 and Y has a heavy-tailed distribution (2),

we wish to estimate an extreme value of the expectile-based form XESτ 1n , where τ 1n Ñ 1 and

np1´ τ 1nq Ñ c ă 8. By Proposition 1, we have

XESτ 1n
XESτn

„
ξτ 1n
ξτn

as nÑ 8.

It follows from the approximation (11) that XESτ 1n «
´

1´τ 1n
1´τn

¯´γ

XESτn . Then, by replacing

γ with γτnpαq and XESτn with its empirical counterpart

ĆXESτn :“
1

1´ τn

ż 1

τn

rξt dt,

we obtain the extrapolated XESτ 1n estimator

ĆXES
‹

τ 1n
pαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq

ĆXESτn . (14)

One may also estimate XESτ 1n by using the asymptotic equivalence XESτ 1n „ p1´γq
´1ξτ 1n

in Proposition 1. By substituting γ and ξτ 1n with their estimators γτnpαq and ξ
‹

τ 1n
pα, βq,
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described respectively in (8) and (12), we define the alternative XESτ 1n estimator

XES
‹

τ 1n
pα, βq :“ r1´ γτnpαqs

´1 ξ
‹

τ 1n
pα, βq (15)

for the weights α, β P R. A last option for estimating XESτ 1n is motivated by the different

asymptotic equivalence XESτ 1n „
ξτ 1n
qτ 1n

QESτ 1n in Proposition 1. This yields the XESτ 1n estimator

zXES
‹

τ 1n
pα, βq :“

zQES
‹

τ 1n
pαq

pq‹τ 1npαq
ξ
‹

τ 1n
pα, βq (16)

for the estimators pq‹τ 1npαq of qτ 1n and zQES
‹

τ 1n
pαq of QESτ 1n defined as

pq‹τ 1npαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq

pqτn , (17)

zQES
‹

τ 1n
pαq :“

ˆ

1´ τ 1n
1´ τn

˙´γτn pαq 1

tnp1´ τnqu

tnp1´τnqu
ÿ

i“1

Yn´i`1,n. (18)

In the special case α “ 1, the latter estimators are identical to the popular qτ 1n estimator of

Weissman [32] and to the extrapolated QESτ 1n estimator of El Methni et al. [15], respectively.

The next result provides the convergence of the three estimators ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq

and zXES
‹

τ 1n
pα, βq of XESτ 1n .
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Theorem 6. Assume that the conditions of Theorem 5 hold. Then, for any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ĆXES
‹

τ 1n
pαq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

XES
‹

τ 1n
pα, βq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq,

and

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

zXES
‹

τ 1n
pα, βq

XESτ 1n
´ 1

¸

d
ÝÑ N pbα, vαq

with pbα, vαq as in (9) and (10).

The three estimators share the same asymptotic behavior from a theoretical point of

view. However, our experience with simulated data in Section 6.2.1 indicates that ĆXES
‹

τ 1n
pαq

is more efficient in the case of real-valued profit-loss distributions with heavy left and right

tails, while zXES
‹

τ 1n
pα, βq affords advantageous estimates in the case of non-negative heavy-

tailed loss distributions.

5.2 Quantile-based Expected Shortfall

In this section, we return to the estimation of the usual form QESpn of tail Expected Short-

fall, for a pre-specified tail probability pn Ñ 1 with np1 ´ pnq Ñ c ă 8. The general-

ized Weissman-type estimators zQES
‹

pnpαq, defined in (18), already provide a first family of

weighted estimators. Here, we wish to derive alternative families of composite expectile-

based estimators from the three XESτ 1n estimators introduced above, where τ 1n “ τ 1nppnq is

to be determined. The starting point is the asymptotic equivalences QESpn „ ErY |Y ą qpns

and XESτ 1n „ ErY |Y ą ξτ 1ns in Proposition 1. The basic idea is then to pick out τ 1n so that

ξτ 1n ” qpn , and hence QESpn „ XESτ 1n . In this way, QESpn inherits the extreme value esti-
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mators of XESτ 1n itself, namely ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and zXES

‹

τ 1n
pα, βq described in (14),

(15) and (16). Yet, it remains to estimate the extreme expectile level τ 1nppnq :“ τ 1n such that

ξτ 1n “ qpn . It has been found in Proposition 3 of Daouia et al. [10] that such a level satisfies

1´ τ 1nppnq „ p1´ pnq
γ

1´ γ
as nÑ 8,

under the model assumption of heavy tails (2) with tail index 0 ă γ ă 1. Built on our novel

expectHill estimator γτnpαq of γ, we can then estimate τ 1nppnq by

pτ 1nppnq :“ 1´ p1´ pnq
γτnpαq

1´ γτnpαq
. (19)

By substituting this estimated value in place of τ 1nppnq ” τ 1n in the extrapolated estima-

tors ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and zXES

‹

τ 1n
pα, βq, we obtain composite estimators that estimate

XESτ 1nppnq „ QESpn . Note that the composite expectile-based estimator zXES
‹

pτ 1nppnq
pα, 1q, ob-

tained for the special weight β “ 1, is actually identical to the quantile-based estimator

zQES
‹

pnpαq defined in (18).

The asymptotic properties of the extrapolated estimators ĆXES
‹

τ 1n
pαq, XES

‹

τ 1n
pα, βq and

zXES
‹

τ 1n
pα, βq, stated in Theorem 6, still hold true for their composite versions as estimators

of QESpn , with the same conditions.
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Theorem 7. Suppose the conditions of Theorem 5 hold with pn in place of τ 1n. Then, for

any α, β P R,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

ĆXES
‹

pτ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq,

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

XES
‹

pτ 1nppnq
pα, βq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq,

and

a

np1´ τnq

logrp1´ τnq{p1´ pnqs

˜

zXES
‹

pτ 1nppnq
pα, βq

QESpn
´ 1

¸

d
ÝÑ N pbα, vαq

with pbα, vαq as in (9) and (10).

6 Numerical simulations

In order to illustrate the behavior of the presented estimation procedures of the tail in-

dex γ and the two expected shortfall forms XESτ 1n and QESpn , we consider the Student

t-distribution with 1{γ degrees of freedom, the Fréchet distribution F pxq “ e´x
´1{γ

, x ą 0,

and the Pareto distribution F pxq “ 1´ x´1{γ, x ą 1. The finite-sample performance of the

different estimators is evaluated through their relative Mean-Squared Error (MSE) and bias,

computed over 200 replications. All the experiments have sample size n “ 500 and true tail

index γ P t0.35, 0.45u (motivated by our real data applications where the realized values of

γ were found to vary between 0.35 and 0.45). In our estimators we used the extreme levels

τ 1n “ pn “ 1´1{n and the intermediate level τn “ 1´k{n, where the integer k can be viewed

as the effective sample size for tail extrapolation. To save space, all figures illustrating our

simulation results are deferred to Section C of the Supplementary Material document.
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6.1 Estimation of the tail index

Our Monte-Carlo simulations in Supplement C.1 indicate that the expectHill estimator

γ1´k{npαq, introduced in (8) with the weight α “ 1{2, is more efficient relative to the stan-

dard Hill estimator pγ1´k{n, given in (7), for both Student and Fréchet distributions. In the

case of the real-valued Student distribution, it may be seen therein that γ1´k{np
1
2
q performs

better than pγ1´k{n in terms of MSE, for all values of k, without sacrificing too much qual-

ity in terms of bias, especially for the larger value of γ. We arrive at the same tentative

conclusion in the case of the Fréchet distribution. By contrast, in the special case of the

Pareto distribution, the Hill estimator pγ1´k{n is exactly the maximum likelihood estimator of

γ and is unbiased, whereas the expectHill estimator γ1´k{np
1
2
q “ 1

2
ppγ1´k{n ` rγ1´k{nq is biased

in this case. Unsurprisingly, the Monte Carlo results obtained here indicate that pγ1´k{n is

the winner.

6.2 Expected Shortfall estimation

6.2.1 Estimates of XESτ 1n

Before comparing the finite-sample performance of ĆXES
‹

τ 1n
pαq described in (14), XES

‹

τ 1n
pα, βq

in (15) and zXES
‹

τ 1n
pα, βq in (16), as estimators of XESτ 1n , we first investigated the accuracy

of each estimator in terms of the associated weights α and β. Then we compared the

three estimators with each other by using the best choice of α and β in each scenario; see

Supplement C.2. In particular, we arrive at the following tentative conclusion: ĆXES
‹

τ 1n
pαq

seems to be the winner in the case of the real-valued Student distribution for α “ 1, while

zXES
‹

τ 1n
pα, βq appears to be the most efficient in the case of the non-negative Fréchet and
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Pareto distributions, for α P t0.5, 1u and β “ 1.

6.2.2 Estimates of QESpn

We have also undertaken simulation experiments to evaluate the finite-sample performance of

the composite expectile-based estimators ĆXES
‹

pτ 1nppnq
pαq, XES

‹

pτ 1nppnq
pα, βq and zXES

‹

pτ 1nppnq
pα, βq

studied in Theorem 7, with pτ 1nppnq being described in (19). They estimate the same con-

ventional expected shortfall QESpn as the direct quantile-based estimator zQES
‹

pnpαq defined

in (18). In Supplement C.3, we first examined the accuracy of each estimator for various

values of α and β, and then we compared the four estimators with each other. We arrive at

the following tentative conclusions:

• In the case of the (real-valued) Student distribution, the best estimator seems to be

ĆXES
‹

pτ 1nppnq
pα “ 0q;

• In the cases of Fréchet and Pareto distributions (both positive), the best estimators

seem to be, respectively, XES
‹

pτ 1nppnq
pα “ 0.5, β “ 1q and zQES

‹

pnpα “ 1q ”zXES
‹

pτ 1nppnq
pα “

1, β “ 1q.

6.2.3 Confidence intervals for QESpn

By Theorem 7 we have

?
k

logrk{np1´ pnqs

˜

ĆXES
‹

pτ 1nppnq
pαq

QESpn
´ 1

¸

d
ÝÑ N pbαpγq, vαpγqq,

where bαpγq :“ bα and vαpγq :“ vα are described in (9) and (10), respectively. Under the

bias condition λ1 “ λ2 “ 0 in Theorem 2, the asymptotic bias in (9) reduces to bαpγq “ 0.
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With this condition, the (symmetric) expectile-based asymptotic confidence interval with

confidence level 100ϑ% has the form ĂCIϑpkq “ ĆXES
‹

pτ 1nppnq
pαq ˆ I, where I stands for the

interval

I :“

„

1˘ zp1`ϑq{2 log

ˆ

k

np1´ pnq

˙

b

vα
`

γ1´k{npαq
˘

{k



,

with zp1`ϑq{2 being the p1 ` ϑq{2´quantile of the standard Gaussian distribution. Like-

wise, the confidence intervals derived from the asymptotic normality of XES
‹

pτ 1nppnq
pαq and

zXES
‹

pτ 1nppnq
pα, βq, in Theorem 7, can be expressed respectively as

CIϑpkq “ XES
‹

pτ 1nppnq
pα, βq ˆ I, xCIϑpkq “zXES

‹

pτ 1nppnq
pα, βq ˆ I.

Note also that the quantile-based confidence interval, derived from the asymptotic normality

of zQES
‹

pnpαq ”
zXES

‹

pτ 1nppnq
pα, 1q, is just xCIϑpkq for β “ 1. In Supplement C.4, we compared the

average lengths and the achieved coverages of the three 95% asymptotic confidence intervals

ĂCI0.95pkq, CI0.95pkq and xCI0.95pkq. It follows that

• ĂCI0.95pkq performs best in the case of the Student distribution, for the selected weight

α “ 1;

• xCI0.95pkq performs quite well in the case of the Fréchet distribution, for the selected

weights α “ 1 and β “ 1;

• CI0.95pkq performs quite well in the case of the Pareto distribution, for the selected

weights α “ 1 and β “ 0.5.
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7 Applications

This section applies our expectile-based method to estimate the tail expected shortfall on

medical insurance data and financial returns data.

7.1 Medical insurance data

We first illustrate the methodology via the Society of Actuaries group medical insurance

large claims data discussed in Beirlant et al. [3] and Daouia et al. [11], among others. The

database contains n “ 75,789 claim amounts exceeding 25,000 USD, collected over the year

1991 from 26 insurers. The scatterplot and histogram of the log-claim amounts, shown in

Figure 1(a), clearly exhibit an important right-skewness. Beirlant et al. ([3], p.123) have

argued that the underlying distribution satisfies the model assumption (2) with a γ estimate

around 0.35. A popular measure to assess the magnitude of future unexpected higher claim

amounts is the expected shortfall QESpn defined in (13). Insurance companies typically

are interested in an extremely low exceedance probability, say 1 ´ pn “ 1{100,000, which

corresponds to a rare event that occurs on average only once every 100,000 cases.

In this setting of non-negative data with heavy right tail, our experience with simulated

data indicates that XES
‹

pτ 1nppnq
pα “ 0.5, β “ 1q and zQES

‹

pnpα “ 1q provide the best extrapo-

lated pointwise estimates of the extreme value QESpn in terms of MSE and bias. As such,

these are the estimates we adopt here. For the sake of simplicity, they will be denoted by

XES
‹

pτ 1nppnq
and zQES

‹

pn , respectively.

The evolution of the composite expectile-based estimator XES
‹

pτ 1nppnq
as a function of the

sample fraction k is represented in Figure 1(b) as rainbow curve, for the selected range of in-
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termediate values of k “ 10, 11, . . . , 700. The effect of the expectHill estimate γ1´k{npα “ 0.5q

on XES
‹

pτ 1nppnq
is highlighted by a colour-scheme, ranging from dark red (low γ1´k{n) to dark

violet (high γ1´k{n). This γ estimate seems to mainly vary within the interval r0.35, 0.36s,

which corresponds to the stable (green) part of the plot. The curve k ÞÑ XES
‹

pτ 1nppnq
exceeds

overall the sample maximum Yn,n “ 4.51 million (indicated by the horizontal pink dashed

line). To select a reasonable pointwise estimate, we applied a simple automatic data-driven

device that consists first in computing the standard deviations of XES
‹

pτ 1nppnq
over a mov-

ing window large enough to cover 20% of the possible values of k in the selected range

10 ď k ď 700. Then the k where the standard deviation is minimal defines the desired

sample fraction. The resulting estimate XES
‹

pτ 1nppnq
“ 5.99 million is obtained for the value

k “ 208 in the window r119, 259s.

The graph of the pure quantile-based estimator zQES
‹

pn against k is superimposed in the

same figure as dashed black curve. It is broadly similar to that of XES
‹

pτ 1nppnq
, but the latter

is smoother and more stable. The pointwise estimate zQES
‹

pn “ 6.37 million is indicated by

the minimal standard deviation achieved at k “ 222 over the window r119, 259s. It is more

pessimistic (in risk assessment terminology) than XES
‹

pτ 1nppnq
“ 5.99 million, probably due to

the instability of the quantile-based plot in dashed black.

Our experience with simulated data also indicates that reasonably good asymptotic 95%

confidence intervals for QESpn , in terms of average lengths and achieved coverages, are pro-

vided by xCI0.95pkq, constructed via zQES
‹

pn , and CI0.95pkq constructed on XES
‹

pτ 1nppnq
pα “ 1, β “

0.5q. The two confidence intervals CI0.95pkq and xCI0.95pkq are superimposed in Figure 1(b) as

well, respectively, in dotted blue and solid grey lines. Though CI0.95pkq gives slightly more

pessimistic confidence bounds than xCI0.95pkq, both confidence intervals point towards similar
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conclusions. In particular, the stable parts of their lower boundaries (around k P r100, 500s)

remain quite conservative as they are very close to the maximum recorded claim amount.

We finally comment on the estimator pτ 1nppnq of the extreme expectile level τ 1nppnq which

ensures that XES
‹

pτ 1nppnq
is an asymptotically normal estimator for both XESτ 1nppnq and QESpn .

The graph of pτ 1nppnq against k is displayed in Figure 1(c) as rainbow curve, and the corre-

sponding optimal pointwise estimate is indicated by the horizontal dashed black line. As is

to be expected from (19), since our estimate of γ is less than 1{2, this selected optimal level

pτ 1nppnq “ 0.9999944 is higher than the pre-specified relative frequency pn “ 0.99999 indicated

by the horizontal dashed pink line.

7.2 Financial returns data

In this section, we apply our method to estimate the ES for three large US financial insti-

tutions. We consider the same investment banks as in the study of Cai et al. [7], namely

Goldman Sachs, Morgan Stanley and T. Rowe Price. All of these banks had a market cap-

italization greater than 5 billion USD at the end of June 2007. The dataset consists of the

negative log-returns pYiq on their equity prices at a daily frequency during 10 years from

July 3rd, 2000, to June 30th, 2010. The choice of the frequency of data and time hori-

zon follows the same setup as in Cai et al. [7] and Daouia et al. [10]. This results in the

sample size n “ 2513. We use our composite expectile-based method to estimate the stan-

dard quantile-based expected shortfall QESpn , or equivalently the expectile-based expected

shortfall XESτ 1nppnq, with an extreme relative frequency pn “ 1 ´ 1
n

that corresponds to a

once-per-decade rare event.

In this setting of real-valued profit-loss distributions, our experience with simulated data
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Figure 1: (a) Scatterplot and histogram of the log-claim amounts. (b) The ES plots k ÞÑ

XES
‹

pτ 1nppnq
pα “ 0.5, β “ 1q as rainbow curve, and k ÞÑ zQES

‹

pnpα “ 1q in dashed black, along
with the constant sample maximum Yn,n in horizontal dashed pink. The confidence intervals

CI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey lines. (c) The plot of k ÞÑ pτ 1nppnq as
rainbow curve, along with the selected optimal pointwise estimate in horizontal dashed black
line, and the constant tail probability pn in horizontal dashed pink.
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indicates that the composite estimator ĆXES
‹

pτ 1nppnq
pαq provides the best QESpn estimates in

terms of MSE and bias for the special weight α “ 0, while it provides reasonably good

asymptotic 95% confidence intervals ĂCI0.95pkq for the different weight α “ 1. In the estima-

tion, we employ the intermediate sequence τn “ 1 ´ k{n as before, for the selected range

of values k “ 1, . . . , 150. For our comparison purposes, we use as a benchmark the direct

quantile-based estimator zQES
‹

pnpα “ 1q ” zXES
‹

pτ 1nppnq
pα “ 1, β “ 1q of El Methni et al. [15],

as well as the corresponding asymptotic 95% confidence interval xCI0.95pkq. We will denote

in the sequel the rival estimates ĆXES
‹

pτ 1nppnq
pα “ 0q and zQES

‹

pnpα “ 1q simply as ĆXES
‹

pτ 1nppnq

and zQES
‹

pn .

For each bank, we superimpose in Figure 2 the plots of the two estimates ĆXES
‹

pτ 1nppnq
and

zQES
‹

pn against k, as rainbow and dashed black curves respectively, along with the competing

confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in solid grey lines. The effect

of the expectHill estimate γ1´k{npα “ 0q ” rγ1´k{n on the estimate ĆXES
‹

pτ 1nppnq
is highlighted

by a colour-scheme, ranging from dark red (low rγ1´k{n) to dark violet (high rγ1´k{n).

We have already provided some Monte Carlo evidence that the composite expectile-based

estimates ĆXES
‹

pτ 1nppnq
and confidence intervals ĂCI0.95pkq are efficient and accurate relative to

the pure quantile-based estimates zQES
‹

pn and confidence intervals xCI0.95pkq, respectively.

Their superiority in terms of plots’ stability and confidence intervals’ length can clearly be

visualized in Figure 2 for the three banks. The final ES levels based on minimizing the

standard deviations of the estimates, computed over a moving window covering 20% of the

possible values of k, are reported in Table 1, along with the asymptotic 95% confidence

intervals of the ES. Based on the reliable ĆXES
‹

pτ 1nppnq
estimates (in the second column), the ES

levels for Goldman Sachs and T. Rowe Price seem to be very close (around ´30% to ´34%),
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whereas the ES level for Morgan Stanley is almost twice higher (around ´60%). The zQES
‹

pn

estimates (in the fourth column) point also towards similar pessimistic results. The lower

confidence bands (in third and fifth columns) are themselves quite conservative since they

are almost equal to the maximum losses (in the last column) for the three banks.

The theory for our ES estimator ĆXES
‹

pτ 1nppnq
and for the estimator zQES

‹

pn of El Methni et

al. [15] is derived for independent and identically distributed random variables Y1, . . . , Yn.

For this application to financial returns, the potential serial dependence may then affect

the estimation results. Similarly to our extreme value analysis under mixing conditions in

Daouia et al. [9], our convergence results may work under serial dependence with enlarged

asymptotic variances. A practical solution already employed by Cai et al. [7] to reduce

substantially the potential serial dependence in this particular dataset is by using weekly

loss returns in the same sample period (i.e. sums of the daily loss returns during each

week). This results in a sample of size n “ 522. The plots of the two estimates and the

asymptotic 95% confidence intervals, against k P r1, 80s, are superimposed in Figure 3 for the

three banks, along with the new sample maxima. The final pointwise results are reported

in Table 2. By comparing the obtained estimates for the daily and weekly losses, it may be

seen that the results are qualitatively robust to the change from daily to weekly data. In

particular, the ĆXES
‹

pτ 1nppnq
levels for Goldman Sachs and T. Rowe Price are still almost equal,

while the estimated level for Morgan Stanley remains almost twice higher. Quantitatively,

these ES estimates are much more conservative: around ´40% to ´43% for Goldman Sachs

and T. Rowe Price, and around ´87% for Morgan Stanley.
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Figure 2: Results based on daily loss returns of the three investment banks: (a) Goldman
Sachs, (b) Morgan Stanley, and (c) T. Rowe Price, with n “ 2513 and pn “ 1 ´ 1{n. The

estimates ĆXES
‹

pτ 1nppnq
pα “ 0q as rainbow curve and zQES

‹

pnpα “ 1q as dashed black curve, along

with the asymptotic 95% confidence intervals ĂCI0.95pkq in dotted blue lines and xCI0.95pkq in
solid grey lines. The sample maximum Yn,n indicated in horizontal dashed pink line.
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Bank ĆXES
‹

pτ 1
nppnq

ĂCI0.95 zQES
‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.345 (0.210, 0.506) 0.393 (0.235, 0.544) 0.210
Morgan Stanley 0.598 (0.376, 0.785) 0.601 (0.316, 0.984) 0.299
T. Rowe Price 0.308 (0.171, 0.411) 0.301 (0.177, 0.437) 0.197

Table 1: ES levels of the three investment banks, with the 95% confidence intervals and the
sample maxima. Results based on daily loss returns, with n “ 2513 and pn “ 1´ 1

n
.

Bank ĆXES
‹

pτ 1
nppnq

ĂCI0.95 zQES
‹

pn
xCI0.95 Yn,n

Goldman Sachs 0.436 (0.194, 0.620) 0.495 (0.226, 0.680) 0.365
Morgan Stanley 0.874 (0.384, 1.305) 0.883 (0.366, 1.478) 0.904
T. Rowe Price 0.401 (0.213, 0.511) 0.407 (0.216, 0.548) 0.305

Table 2: Results based on weekly loss returns, with n “ 522 and pn “ 1´ 1
n

.

Supplementary Material

The supplement to this article contains simulation results along with the proofs of all our

theoretical results.
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