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Abstract

In the context of team production, this paper studies the optimal

(deterministic and stochastic) information allocation that implements

desired effort levels as the unique Bayesian equilibrium. We show that,

under certain conditions, it is optimal to asymmetrically inform agents

even though they may be ex ante symmetric. The main intuition is
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that informing the agents asymmetrically can be effective in avoiding

“bad” equilibria, that is, equilibria with coordination failure.

KEYWORDS: Moral hazard, Unique implementation, Asymmetric

information allocation

JEL Classification: D21, D23, D86

1 Introduction

In the context of the team-production problem of Holmstrom (1982), Winter

(2004) finds that an asymmetric bonus contract may be optimal in uniquely

implementing desired effort levels, even with homogeneous agents.1 To un-

derstand its key intuition, imagine a principal who designs a bonus scheme

to make two agents play high efforts in its unique equilibrium, and that the

probability of successful outcomes is increasing and supermodular in their

total efforts. To eliminate low-effort equilibria, the principal needs to offer a

high-enough bonus scheme to one of the agents, say agent 1. On the other

1Asymmetric bonus contracts are usually suboptimal if the principal employs a wishful

thinking in equilibrium selection. Unique implementation, on the other hand, may be a

reasonable concern, for example, when lower effort levels significantly increase the proba-

bility of hazardous outcomes, and the principal does not have full control over equilibrium

selection. For example, Kreps (1990) and Cronqvist, Low, and Nilsson (2007) argue that

which equilibrium is to be played may be determined by the “corporate culture”, which is

usually difficult to fully control. Baliga and Sjostrom (1998) consider collusive behaviors

in moral hazard. See Ma (1988), Arya, Glover, and Hughes (1997), and Winter (2004)

for studies of optimal contracts that uniquely implement the desired effort choice under

various assumptions. Winter (2004) is the closest to ours in that he considers the team-

production model of Holmstrom (1982).
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hand, given this, the principal does not need to offer such a high bonus scheme

to agent 2. Because the success probability is supermodular in total effort,

the fact that agent 1 plays a high effort makes agent 2’s incentive constraint

less stringent. Thus, the optimal bonus contract is asymmetric. Similar

“divide-and-conquer” nature of optimal contracts also appear in other con-

texts. For example, see Segal (2003) in the context of bilateral contracting

with externalities.2

Although the design of a bonus scheme is important in the optimal orga-

nization design, there are other important aspects as well. This paper studies

the optimal information allocation in this context. More specifically, we con-

sider a situation in which the probability of success is not only a function of

total effort, but also a function of the (exogenously given) uncertain state.

The principal decides which agent observes the realization of this state (as

well as the bonus scheme).

Observing the realized state obviously affects this “informed” agent’s ef-

fort incentive: better state realization makes him play a high effort with

less bonus, and vice versa. However, even if an agent does not observe the

state (“uninformed”), if he knows that the other agent observes the state,

that knowledge could affect his incentive. For example, imagine the bonus

level such that the informed agent plays a high effort in the good state. In

view of the uninformed agent, this means that the informed agent will play

a high effort with some positive probability. This fact along with the super-

modularity of the success-probability function makes the uninformed agent’s

incentive constraint less stringent. Indeed, under certain parameter values,

2The term “divide-and-conquer” also appears in Segal (2003).
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we find that such asymmetric information allocation is better than informing

no agent or both agents.

In this sense, the optimal information allocation has features similar to the

optimal bonus scheme in that treating homogeneous agents asymmetrically

may be effective in avoiding bad-coordination equilibria, but there are some

important differences too; for example, (i) providing information implies bet-

ter incentive in the good state, but it also implies worse incentive in the bad

state; in contrast, (ii) providing higher bonus unambiguously improves the

agent’s incentive. Because of this difference, the optimal information struc-

ture is asymmetric only under certain parameter values. Indeed, if the cost

of allocating more information, that is, the deterioration of incentive in the

bad state, is significant, then asymmetric information allocation is subopti-

mal. The main result of the paper establishes a clear connection between

the optimal information allocation and the shape of the success-probability

function.3

The paper is structured as follows. Section 2 introduces the model, and

Section 3 studies the optimal bonus contract and information structure in

a simple two-agent case with anonymous contracts. To highlight the main

intuition, Section 3 only considers deterministic information allocation, that

is, each agent is either fully informed of the realized state, or not informed

3In various contexts, it is observed that asymmetric information sometimes mitigates

incentive problems or shrinks the set of equilibria (see, for example, Bergemann and

Pesendorfer (2007) in optimal auction, Morris and Shin (2002) in coordination games,

Schmitz (2006) and Goldlucke and Schmitz (2014) in pre-contracting investments). We

make a step forward by characterizing the optimal information allocation in the team-

production context.
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at all. Section 4 considers all (possibly stochastic) information allocations.

Although this case is much harder, the optimal stochastic information struc-

ture is similar to the optimal deterministic information structure in that

information is given in an asymmetric manner. Furthermore, they coincide

under certain parameter values. Section 5 concludes the paper. Although we

only consider a simple environment for brevity, the conclusion of this paper

is robust in a number of extensions and generalizations, such as more than

two agents, asymmetric bonus contracts, and asymmetric characteristics of

agents. Interested readers may consult our working paper version Moriya

and Yamashita (2016).

2 Model

We consider a team-production model with one manager (a principal) and

two workers (agents) engaged in a project. Each worker i = 1, 2 simultane-

ously chooses an effort level ei ∈ {0, 1}, which costs cei for c > 0. The profit

of the project is y ∈ {S, F} (S > F ). Let pθ(x) denote the probability of

success (y = S), which depends on the agents’ total effort x = e1 + e2 and

task environment θ ∈ {H,L}. We assume that pθ(x) is increasing in x for

any θ. The prior probability for each θ is fθ ∈ (0, 1) with fH + fL = 1. Let

pφ(x) = fHpH(x) + fLpL(x) denote the mean success probability, given x.

The marginal productivity of effort, denoted by πθ(x) ≡ pθ(x)−pθ(x−1),

satisfies (i) πH(x) > πL(x) for all x and (ii) πθ(x) > πθ(x− 1) for all x and θ.

The first condition requires that the marginal productivity is always higher in

state H than in state L, and the second condition requires that the agents’
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efforts are complementary; thus the agents’ collaboration is important for

success.

The main choice variable of the principal is the agents’ information struc-

ture. In Section 3, we only consider deterministic information structures,

which simply refers to how many agents are informed of θ before they make

effort choices, represented by m = 0, 1, 2.4 A possible interpretation is that

the principal controls each agent’s cost of acquiring information on θ (al-

though he himself does not observe θ). Once the principal chooses an infor-

mation structure m = 0, 1, 2, we assume that this structure becomes common

knowledge among the agents. A bonus contract can be contingent only on

the outcome, and is assumed to be the same for both agents:5 each agent

earns bonus b ≥ 0 if y = S, while he earns 0 if y = F .

Let si ∈ Si = {H,L, φ} represent agent i’s information about the state.

More specifically, (i) if he is informed, then si = θ for each θ, and (ii) if

he is uninformed, then si = φ for each θ. Hence, agent i’s strategy is to

choose ei(si) ∈ {0, 1} for each si. Given bonus b and the agents’ effort profile

e = (e1, e2) ∈ {0, 1}2, agent i’s payoff in state θ is ui(e, θ; b) = bpθ(e1 +

e2)− cei. Thus, given the information structure, the agents’ strategy profile

e = (ei(si))i,si is a (pure-strategy Bayesian) equilibrium if (i) for each i who

4In Section 4, we consider a general (stochastic) information structure.
5We restrict our attention to these symmetric bonus contracts for simplicity of analysis.

As shown by Winter (2004), in general, this restriction is with loss of generality. Never-

theless, the qualitative features of the optimal information allocation (e.g., optimality

of asymmetric information allocation under certain parameter values) do not essentially

change even if we allow for asymmetric bonus contracts. See Remark 1 at the end of

Section 3 and our working paper version Moriya and Yamashita (2016).
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is informed: for each θ ∈ {H,L} and e′i ∈ {0, 1},

ui(ei(θ), e−i(s−i), θ; b) ≥ ui(e
′
i, e−i(s−i), θ; b),

and (ii) for each i who is uninformed: for each e′i ∈ {0, 1},

E[ui(ei(φ), e−i(s−i), θ; b)] ≥ E[ui(e
′
i, e−i(s−i), θ; b)].

As standard in the literature, we assume that S is sufficiently larger than

F so that the principal’s goal is to implement the full-effort strategy profile,

that is, e = (ei(si))i,si such that ei(si) = 1 for all i and si.

Benchmark: Full-effort strategy profile as one of the equilibria We

first derive the optimal contract that makes the full-effort strategy profile

one of the equilibria and observe that m = 0 (no information) is the optimal

information structure.

With m = 0, the full-effort strategy profile is an equilibrium if bpφ(n)−c ≥

bpφ(n − 1), or equivalently b ≥ c
πφ(n)

. With m = 1 or 2, the bonus must be

sufficiently high for an informed agent to work in the low state, that is,

bpL(n) − c ≥ bpL(n − 1) or, equivalently b ≥ c
πL(n)

. Therefore, m = 0

(no information) is the optimal information structure. Intuitively, this is

because we must incentivize the agents for an average state under the no-

information structure, whereas under any other information structure, we

must incentivize the informed agent for every state.6

Unique implementation The contract to implement the full-effort strat-

egy profile as one of the equilibria implicitly assumes that the agents would

6This argument is well-known in the literature. See Myerson (1983).
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play the best equilibrium in view of the principal, even if there are multiple

equilibria in the contract. However, in case failure of the project is extremely

hazardous (e.g., accidents in a nuclear power plant, loss of a brand’s long-

term reputation, and so on), the principal may not want to follow such a

wishful thinking. Rather, it may be more reasonable to require that the

full-effort strategy profile is a unique equilibrium.

Given each information structure m, let bm ∈ R+ denote the infimum level

of bonus with which the full-effort strategy profile is a unique equilibrium.7

We say that m is the optimal information structure if bm ≤ bm′ for any other

information structure m′.

Before the formal analysis, we first illustrate the main intuition in the

following simple example.

Example 1. In the good state, each agent earns expected payoff 10 if both

agents work, 7 if he shirks but the other works, 6 if he works but the other

shirks, and 5 if both shirk. In the bad state, each agent earns 3 if both agents

work, 4 if he shirks but the other works, 1 if he works but the other shirks,

and 2 if both shirk.8

(“good”) work shirk

work (10, 10) (6, 7)

shirk (7, 6) (5, 5)

(“bad”) work shirk

work (5, 5) (1, 4)

shirk (4, 1) (3, 3)

Each state is equally likely, and hence, if no agent is informed about

the state, then “both work” and “both shirk” are equilibria, which is not

7Winter (2004) calls it the incentive-inducing contract (for the full-effort strategy pro-

file).
8One can interpret these numbers as the agents’ expected utilities given an arbitrarily

fixed bonus contract.
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desirable for the principal. Informing both agents about the state is not

desirable either, because “both shirk” is again an equilibrium in the bad

state.

Nevertheless, informing just one agent can eliminate this bad coordina-

tion. Specifically, suppose that only agent 2 is informed about the state,

whereas agent 1 is not (but agent 1 knows that agent 2 knows the state, and

so on). First, if the state is good, then it is strictly dominant for agent 2

to work. Given this, it is now (iteratively) strictly dominant for agent 1 to

work, as illustrated in the following table:

work in both states work only in good state

work (15
2
, 15

2
) (11

2
, 7)

shirk (11
2
, 7
2
) (5, 9

2
)

Finally, given that agent 1 works (in any state), it is (iteratively) strictly

dominant for agent 2 to work even in the bad state. Therefore, the desired

outcome that “both work in every state” is the unique strategy profile that

survives iterative elimination of strictly dominated strategies.9

9In this example, one might think that (work,work) may be “selected” by the agents

even if there are multiple equilibria because it is Pareto dominant for them. As a related

point, one might also think that sequential action choices by the agents (if technologi-

cally possible) solve the problem because the “leader” agent chooses to work in order to

essentially “select” the better equilibrium. However, this is just an artifact of our sim-

ple example. In general, Pareto domination and sequential action choices could lead to

shirking behavior, while asymmetric information allocation could uniquely implement the

full-effort strategy profile. See Moriya and Yamashita (2016).
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3 Optimal deterministic information structure

We first characterize bm for each information structure m, and then examine

the optimal information structure.

3.1 m = 0 (no information)

With m = 0 where neither agent is informed, the optimal bonus contract

that implements e = (1, 1) as one of the equilibria is b = c
πφ(2)

. However,

under this contract, not only e = (1, 1), but also e = (0, 0) is an equilibrium:

if i chooses ei = 0, then it is (strictly) optimal for j to choose ej = 0.10

Therefore, the optimal bonus level that uniquely implements e = (1, 1)

must be strictly greater than c
πφ(2)

. Specifically, for e = (0, 0) not to be an

equilibrium, we must have b > c
πφ(1)

(> c
πφ(2)

) so that an agent works even if

the other agent does not work.

Now, given b > c
πφ(1)

, a high effort is strictly dominant for each agent and,

hence, e = (0, 0) and any other effort choice (except for e = (1, 1)) cannot

be an equilibrium. Therefore, we have the following lemma.

Lemma 1. b0 = c
πφ(1)

.

3.2 m = 1 (asymmetric information)

We now consider the asymmetric-information scenario m = 1, where only

one of the agents (say, agent 2) is informed. We first state the result.

10Note that the convexity of the success probability function, p, plays a key role in this

argument, as in Winter (2004).
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Lemma 2. b1 = max
{

c
πH(1)

, c
πL(2)

, c
fHπH(2)+fLπL(1)

}
.

Proof. We first show that, if neither (0, (0, 0)), (0, (1, 0)), nor (1, (1, 0)) is an

equilibrium with bonus b, then

b > b̄ = max

{
c

πH(1)
,

c

πL(2)
,

c

fHπH(2) + fLπL(1)

}
.

Indeed, first, to prevent (0, (0, 0)) from being an equilibrium, we must

have either b > c
πφ(1)

, b > c
πH(1)

, or b > c
πL(1)

. Because c
πH(1)

< c
πφ(1)

, c
πL(1)

, we

obtain b > c
πH(1)

as its necessary condition.

Given b > c
πH(1)

, to prevent (0, (1, 0)) from being an equilibrium, we must

have either b > c
fHπH(2)+fLπL(1)

or b > c
πL(1)

. Because c
fHπH(2)+fLπL(1)

< c
πL(1)

,

we obtain b > c
fHπH(2)+fLπL(1)

as its necessary condition.

Given b > max{ c
πH(1)

, c
fHπH(2)+fLπL(1)

}, to prevent (1, (1, 0)) from being

an equilibrium, we must have b > c
πL(2)

.

Now we show that, conversely, (1, (1, 1)) is uniquely implemented by any

b such that b > b̄. This completes the proof by establishing b1 = b̄. First,

because b > c
πH(1)

, it is strictly dominant for the informed agent to make a

high effort in state H. Given this, because b > c
fHπH(2)+fLπL(1)

, it is (iter-

atively) strictly dominant for the uninformed agent to make a high effort.

Given this, because b > c
πL(2)

, it is (iteratively) strictly dominant for the

informed agent to make a high effort even in state L. Therefore, (1, (1, 1))

is the unique strategy profile that survives iterative elimination of strictly

dominated strategies, and hence, it is a unique equilibrium.
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3.3 m = 2 (full information)

Finally, with m = 2, it is necessary to incentivize an agent to choose a high

effort in any state even if the other agent does not work. Therefore, the bonus

must be at least c
πL(1)

. Given such a bonus level, it is strictly dominant for

each agent to choose a high effort in any state.

Lemma 3. b2 = c
πL(1)

.

3.4 Optimal information structure

We now compare the three information structures discussed above. Recall

that b0 = c
πφ(1)

is the bonus level that incentivizes an agent to work in the

average state, whereas b2 = c
πL(1)

is the bonus level that incentivizes an agent

to work in any state, even if the other agent does not work. We have b0 < b2,

i.e., informing no agent is better than informing both agents.

The difference between m = 0 and m = 1 depends on the parameter

values.

Proposition 1. b1 ≤ b0 if and only if

πL(2)− πL(1)

πH(1)− πL(1)
≥ fH .

Proof. Observe that

b0 ≥ b1 ⇔ c

πφ(1)
≥ c

πL(2)
⇔ πL(2)− πL(1)

πH(1)− πL(1)
≥ fH ,

where the first equivalence is because we always have c
πφ(1)

≥ c
πH(1)

and

c
πφ(1)

≥ c
fHπH(2)+fLπL(1)

.
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The inequality in the statement implies that asymmetric information is

more likely to be optimal as (i) the “effort complementarity effect” on the

production function measured by πL(2)−πL(1) becomes greater, and (ii) the

“state effect” measured by πH(1) − πL(1) becomes smaller. This is because

(i) if the effort complementarity effect is more important, then the concern of

potential coordination failure is greater, and therefore, the benefit of asym-

metric information allocation becomes greater. On the other hand, (ii) if

the state effect is more important, then it is costly to incentivize an informed

agent in the low state, and therefore, informing no agent is likely to be better.

Remark 1. In a similar team-production context but without state uncer-

tainty, Winter (2004) shows that an asymmetric bonus contract outperforms

any symmetric bonus contract (Winter (2004) also allows for more than two

agents). Despite this result, in this paper, we focus on symmetric bonus

contracts in order to simplify the analysis. Whether our result qualitatively

changes or not with an asymmetric bonus contract as in Winter (2004) is a

natural question.

In our working paper version Moriya and Yamashita (2016), we exam-

ine several extensions and generalizations, including those with asymmetric

bonus contracts and more than two agents. We find that the qualitative

feature of the main result is basically robust to them, although the analysis

becomes more involved and richer. More specifically, (i) with more than two

agents, we need to consider how many agents should be informed, rather than

simply compare “no information” and “asymmetric information”. However,

the infimum bonus level given each information structure is derived from a

similar iterative-elimination argument, and the optimal number of informed
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agents is similarly determined by the relative magnitudes of the state effects

and effort complementarity effects. (ii) With asymmetric bonus contracts,

again the basic logic does not change, but the analysis becomes much more

complicated: even with two agents, we need to consider who should be in-

formed and who should be paid more, and different configurations could

admit different orders of iterative elimination. Nevertheless, in Moriya and

Yamashita (2016), we show that asymmetric information allocation is op-

timal under a similar but smaller set of parameter values. Although the

intuition is essentially the same (i.e., optimality of asymmetric information

allocation occurs when the effort complementarity effects are more impor-

tant than the state effects), a smaller set of such parameter values suggests

that asymmetric bonus contracts and asymmetric information allocations are

(imperect) substitutes in view of the principal.

4 Optimal general (stochastic) information struc-

ture

In the previous sections, we consider only deterministic information alloca-

tions, that is, each agent is either perfectly informed of θ or not informed at

all. However, in some cases, the principal may have more flexibility in terms

of precision of information provided to the agents. Furthermore, in case nei-

ther agent is fully informed, the correlation between the agents’ signals could

be an important variable to control too. Therefore, in this section, we study

the optimal general (possibly stochastic) information structure.

Given that the principal has flexibility in terms of information alloca-
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tion, our problem is related to the literature on Bayesian persuasion (e.g.,

Kamenica and Gentzkow (2011)) and incomplete-information or Bayes cor-

related equilibrium (e.g., Forges (1993) and Bergemann and Morris (2013)).

However, these studies usually consider the problem of implementing a strat-

egy profile of interest as one of the equilibria by some feasible information

structures, and some techniques (most importantly, a version of revelation

principle) crucially hinge on such presumptions. On the other hand, our prob-

lem is to uniquely implement the full-effort strategy profile, and as shown in

the previous section, the key driving force for our problem comes from the

concern of eliminating “bad equilibria”. Thus, we cannot straightforwardly

apply those known techniques to our problem.11 Rather, our argument hinges

on the well-known property of the supermodular games (Topkis (1979), Vives

(1990), Milgrom and Roberts (1990)) that the lowest-effort equilibrium is

characterized by iterative elimination of strictly dominated strategies “from

below”. Because of this property, our goal is essentially to find a feasible in-

formation structure (and a bonus level) such that only the full-effort strategy

profile survives this iterative elimination procedure.

A stochastic information allocation is given by (S1, S2, µ), where each Si

denotes the message space for agent i, and µ : Θ→ ∆(S1 × S2) is such that,

for each θ, µ(s1, s2|θ) represents the probability of sending si ∈ Si to each

agent i in state θ. For simplicity, we only consider finite and full-support

information structures in the sense that (i) each Si is finite, and (ii) for all i

11Indeed, as we show below, the optimal information structure may involve an infinite

number of messages/signals even though there are only two states and two actions. In this

sense, our result below provides a counterexample for a revelation principle in the context

of unique implementation.
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and si, there exists some θ and s−i such that µ(si, s−i|θ) > 0.

Our goal is to identify the infimum bonus level, denoted by b∗, with which

the high-effort profile is the unique equilibrium outcome regardless of the true

state, by carefully designing a stochastic information structure.

Theorem 1. b∗ = max{ c
πH(1)

, 2c
fH(πH(2)+πH(1))+fL(πL(2)+πL(1))

}.

To provide some intuition before the formal proof, we first consider the

case where

c

πH(1)
≥ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
,

so that the statement reduces to b∗ = c
πH(1)

.12 This case holds if the “state

effects” represented by πH(x) − πL(x) for each x = 1, 2 are relatively small

compared to the “effort effects” represented by πθ(2) − πθ(1) for each θ. In

this case, even if an agent is informed that the state is H, he may not have

enough incentive to work if the other agent does not work. On the other

hand, once such a “never-work” strategy profile is eliminated, it is relatively

less costly to eliminate all the other “intermediate” strategy profiles. Thus,

we obtain b∗ = c
πH(1)

.

The other case with

c

πH(1)
≤ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))

holds if the state effects are large relatively to the effort effects. In this case,

an agent who is informed that the state is likely to be H has a large incentive

to work, and hence, the constraint that b∗ ≥ c
πH(1)

does not bind. On the

12Recall that this is the amount of bonus necessary to incentivize an agent in state H

if the other agent does not work.
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other hand, an agent who is informed that the state is likely to be L does

not have enough incentive to work, even if he knows that the other agent

works. To avoid this problem, the optimal information structure achieves

the following two properties simultaneously, by constructing a long chain of

messages: given each message (except for the “first” and “last” messages),

(i) each agent is made unaware that the state is L (even if it is so); and (ii)

each agent is confident that the other agent works with a sufficiently high

probability.

Proof. We first show that

b∗ ≥ max

{
c

πH(1)
,

2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))

}
.

Consider an arbitrary information structure (S1, S2, µ), and a bonus level

b with which the high-effort profile is the unique equilibrium outcome re-

gardless of the true state. Then, there exists some agent i and his message

si ∈ Si such that

b ·
∑

s−i,θ
µ(si, s−i|θ)fθπθ(1)∑

s−i,θ
µ(si, s−i|θ)fθ

≥ c,

that is, agent i works given si even if agent −i does not work. Such message

must exist, because otherwise, it is an equilibrium where no one plays a high

effort given any message. This inequality then implies that

bπH(1) ≥ c.

Let S1 ⊆ S1 denote the set of agent 1’s messages such that, when s1 ∈

S1, agent 1 works even if agent 2 does not work. As shown above, S1 is
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nonempty.13 Let T 1 = S1.

Let S2 ⊆ S2 denote the set of agent 2’s messages such that, with s2 ∈ S2,

agent 2 works if agent 1 works whenever s1 ∈ S1. By the logic above, S2

must be nonempty. Let T 2 = S2.

Inductively, for each k > 2 odd, let Sk ⊆ S1 \ T k−2 denote the set of

agent 1’s messages such that, with s1 ∈ Sk, agent 1 works if agent 2 works

whenever s2 ∈ T k−1. Then, let T k = Sk ∪ T k−2. Similarly, for each k > 2

even, let Sk ⊆ S2 \ T k−2 denote the set of agent 2’s messages such that,

with s2 ∈ Sk, agent 2 works if agent 1 works whenever s1 ∈ Sk−1. Then, let

T k = Sk ∪ T k−2.

For each k, we have

b[fH(µ(T k−1, Sk|θ)πH(2) + µ(¬T k−1, Sk|θ)πH(1))

+fL(µ(T k−1, Sk|θ)πL(2) + µ(¬T k−1, Sk|θ)πL(1))]

≥ c[fH(µ(T k−1, Sk|θ) + µ(¬T k−1, Sk|θ))

+fL(µ(T k−1, Sk|θ) + µ(¬T k−1, Sk|θ))],

where µ(A|θ) =
∑

s∈A µ(s|θ) for each A ⊆ S1 × S2, and ¬T k−1 denotes the

complement of set T k−1.

The sum of the left-hand sides for all k is

b[fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))],

and the sum of the right-hand sides for all k is 2c. Thus,

b[fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))] ≥ 2c.

13It is some agent i in the discussion above, but without loss of generality, we let this

agent be agent 1.
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Next, we show that

b∗ ≤ max

{
c

πH(1)
,

2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))

}
.

First, if

c

πH(1)
≥ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
,

then the deterministic asymmetric information structure in our paper is op-

timal (Lemma 2). Hence, in the following, we assume

c

πH(1)
≤ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
,

or equivalently,

2πH(1) ≤ fH(πH(2) + πH(1)) + fL(πL(2) + πL(1)),

and we show that

b∗ ≤ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
.

Define gH by

gH =
fH(πH(2)+πH(1))+fL(πL(2)+πL(1))

2
− πL(1)

πH(1)− πL(1)
,

and let gL = 1− gH . We have gH > fH because

fH(πH(2)+πH(1))+fL(πL(2)+πL(1))
2

− πL(1)

πH(1)− πL(1)
− fH

=
fH(πH(2)− πH(1)) + fL(πL(2)− πL(1))

2(πH(1)− πL(1))

> 0.
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Fix arbitrary M ∈ N, and let ε = fHfL
gHfL+2MgLfH

and α = gHfL−gLfH
gLfH(2M+1)

. Note

that ε, α > 0, and that ε, α→ 0 as M →∞. Consider the following informa-

tion structure (S1, S2, µ): S1 = {s1, s3, . . . , s2M+1}, S2 = {s2, s4, . . . , s2M+2},

and µ is given as follows. For each k = 1, 2, . . . , 2M + 1,

µ(sk, sk+1|H) =
gLε

fL
,

µ(sk, sk+1|L) =
gLε(1 + α)

fL
,

µ(s1, s2M+2|H) =

(
gH
fH
− gL
fL

)
ε,

and µ(s, s̃|θ) = 0 for any other combination of (s, s̃, θ) ∈ S1 × S2 ×Θ.

For this to implement the full-effort strategy profile, the bonus must sat-

isfy

b(gHπH(1) + gL(1 + α)πL(1)) ≥ (gH + gL(1 + α))c,

b(
fH
fL

(πH(2) + πH(1)) + (1 + α)(πL(2) + πL(1))) ≥ 2(
fH
fL

+ 1 + α)c,

or equivalently b ≥ b(M), where

b(M) = max

{
(gH + gL(1 + α))c

gHπH(1) + gL(1 + α)πL(1)
,

2(fH + fL(1 + α))c

fH(πH(2) + πH(1)) + fL(1 + α)(πL(2) + πL(1))

}
.

Taking the limit as M →∞, we have

b(M)→ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
.

Therefore, for any δ > 0, there exists M > 0 such that

b(gH ,M) <
2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
+ δ,

which implies that

b∗ ≤ 2c

fH(πH(2) + πH(1)) + fL(πL(2) + πL(1))
.
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The iterative elimination logic exploited in the construction of the optimal

information structure is reminiscent of the contagion arguments in email

games (Rubinstein (1989)) and in global games (Carlsson and van Damme

(1993), Frankel, Morris, and Pauzner (2003)). Interestingly, the contagious

information structures considered as instances in those papers prove to be

optimal in our context.14 It may be interesting to study whether similar

information structures become optimal (in certain senses) in other contexts,

in particular in certain class of supermodular games.

As a final corollary, we observe that the deterministic asymmetric infor-

mation allocation considered in the previous section continues to be optimal

under certain parameter values, even if we allow for stochastic information

allocations.

Corollary 1. If b1 = c
πH(1)

, or equivalently, if

πH(1) ≤ min {πL(2), fHπH(2) + fLπL(1)} ,

then b∗ = b1(=
c

πH(1)
), that is, the deterministic information allocation in

Section 3 is optimal among all stochastic information allocations.

Proof. We have

fHπH(1) + fLπH(1) ≤ fHπH(1) + fLπL(2)

πH(1) ≤ fHπH(2) + fLπL(1).

14Kajii and Morris (1997) observe that, in the context of robust prediction in games, a

similar (though somewhat different) contagious information structure plays a crucial role

in their critical-path theorem. It is an open question as to whether there is some formal

link between our result and theirs.
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Adding up both sides, we obtain

2πH(1) ≤ fH(πH(2) + πH(1)) + fL(πL(2) + πL(1)),

and thus, the previous theorem implies b∗ = c
πH(1)

.

5 Conclusion

This paper considers a team-production model with state uncertainty. When

the principal’s goal is to uniquely implement desired effort choices, we show

that, under certain conditions, asymmetrically informing the agents is the op-

timal information allocation. In this sense, by allocating information asym-

metrically, it becomes less costly to avoid badly coordinated equilibria. As

the degree of effort complementarity increases, asymmetric information allo-

cation tends to improve. On the other hand, informing an agent is always

costly in that this agent must be incentivized even in a low state, which is

the fundamental difference from other “divide-and-conquer” papers in the re-

lated literature (e.g., Winter (2004) in the team-production context), where

asymmetric bonus contracts unambiguously improve over symmetric ones.

While we show the robustness of this main intuition in a number of exten-

sions and generalizations in the working paper version Moriya and Yamashita

(2016), further research is necessary for a more comprehensive understand-

ing of desirable information allocation in organizations. We believe that the

analysis in this paper can serve as a useful benchmark for future research.
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