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Abstract

We consider a mechanism design environment where a principal

can partially control agents’ information before they play a mecha-

nism (e.g., a seller disclosing quality information). Assuming that

the principal can ex ante commit to his disclosure policy, this is a

Bayesian persuasion problem with an endogenous payoff function as a

consequence of optimal mechanism design. We first show that, if the

principal’s and agents’ information are independent or affiliated, and if
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the implementable set of (non-monetary) allocation rules is invariant

to disclosure policies, then it is optimal for the principal to disclose all

the relevant information. In case of negative correlation or in case the

set of implementable allocation rules varies with disclosure policies,

then full disclosure is not necessarily optimal. We then characterize

the optimal (non-full) disclosure policy under additional assumptions,

which, viewed as a Bayesian persuasion problem, provides a solution

to a novel class of environments.

1 Introduction

In this paper, we consider a mechanism design environment where a principal

can partially control agents’ information before they play a mechanism.

For example, a seller of a second-hand car, who designs a monopoly-

pricing mechanism, may disclose a quality certificate of the car. As another

example, a regulation authority, who designs a regulation mechanism, may

announce some statistics about the future economic situation. In both cases,

the principal (seller / authority) may not fully disclose the true information:

he may have an incentive to strategically control the quality of the infor-

mation in order to manipulate the agents’ (buyers / industries) behavior.

This paper aims to develop some tools to analyze the optimal information

disclosure by the principal and to study the interaction between the optimal

mechanism design and information disclosure.

The crucial assumption in this paper is that the principal can commit (at

the ex ante stage) to any information disclosure policy, as well as to any mech-

anism. Methodologically, this commitment assumption makes our problem a
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Bayesian persuasion problem.1 A simple interpretation of this commitment

assumption is that the principal himself does not observe his information,

but can ask a third-party certifier to generate (possibly noisy) hard evidence

about it. As is often the case in practice, this hard evidence is assumed

to become public information.2 Because of this commitment assumption to

public disclosure, our approach differs from the (non-committed) signaling

literature such as in the informed-principal literature,3 and, in environments

with multiple agents, differs from the private-disclosure literature.4 These

assumptions are admittedly restrictive: a principal in practice may enjoy

some commitment power, though not as strongly as assumed in this paper.

Nevertheless, we believe that the analysis in this paper could be a useful

benchmark by providing some basic economic tradeoffs for a principal who

can affect both agents’ information and their allocations. Moreover, we argue

that our main messages would be robust with respect to some timing and

commitment assumptions (Remark ??).

Hence, in our setting, information disclosure means that both the princi-

pal and the agents become more informed, and therefore, its basic tradeoff

is as follows. For the principal’s side, more disclosure means that his mech-

anism can be contingent on more precise information. This flexibility effect

1See, for example, Kamenica and Gentzkow (2011), Rayo and Segal (2010), Gentzkow
and Kamenica (2015), and Kolotilin et al. (2015)

2See Dranove and Jin (2010) for public certification and other information disclosure
exercises in practice. This assumption excludes a possibility that the principal observes a
certificate without disclosing it to the agent (or equivalently, the agent must make all the
decisions before he observes the certificate), as studied by Skreta (2011).

3See, for example, Myerson (1983), Maskin and Tirole (1990, 1992), Mylovanov and
Tröger (2012), and Koessler and Skreta (2016).

4See, for example, Bergemann and Morris (2013), Kolotilin et al. (2015), and Berge-
mann et al. (2017).
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in the mechanism choice makes, given everything else equal, the principal

favor more disclosure. For the agent’s side, more disclosre means that his

incentive compatibility and participation constraint become more stringent

(e.g., under full disclosure, these constraints must be satisfied “ex post”, that

is, for each realization of the principal’s information; while under no disclo-

sure, they must be satisfied only “on average”). More generally, the set of

implementable allocation rules may become smaller by more disclosure. This

implementability effect makes, given everything else equal, the principal favor

less disclosure. The optimal disclosure policy is determined by appropriately

balancing these two effects.5

Our first main result builds on the simple idea that, if the second im-

plementability effect is null, then full disclosure is optimal for the principal.

This simple observation unifies some known results in the literature: a class

of single-agent, monotone and quasilinear environments with affiliated infor-

mation, such as the monopoly-pricing environment of Ottaviani and Prat

(2001); and a class of multi-agent, monotone and linear environments with

independent information, such as the acution environment of (a benchmark

case of) Eső and Szentes (2007). Those results are obtained in quite different

environments (and with different motivations), based on different economic

intuitions. We uncover a hidden connection between those results based

on the nullity of the second implementability effect above, which is appli-

5Note that, in our paper, any certification policy is assumed to be costless for the
principal, which, in particular, excludes the (third-party) certifier’s pricing decision. This
simplifying assumption is made in order for us to focus on the study of basic tradeoffs
brought by information disclosure in the mechanism design stage, that is, the effect of in-
formation on the flexibility of the mechanism choice and on the agents’ incentives. See, for
example, Lizzeri (1999) and Stahl and Strausz (2017), as the study of certifier’s incentive
in his pricing decision.
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cable more generally in environments other than revenue maximization in

monopoly pricing and auction.

This general insight is also useful in understanding the limit of the full-

disclosure result. We show that, in certain other environments (e.g., neg-

atively correlated information, non-monotone or nonlinear payoffs, and re-

striction on monetary transfers such as due to a budget-balance restriction)

the implementability effect can be significant, and hence full disclosure may

not be optimal. For example, in the bilateral-trade environment of Myerson

and Satterthwaite (1983), full disclosure is strictly suboptimal under very

mild assumption.

Given that full disclosure is not optimal in certain class of environments,

a natural next question is characterization of the (not-necessarily-full) op-

timal disclosure policy. As is known in the Bayesian persuasion literature,

characterization of the optimal policy is a hard problem, especially when

the principal’s information is a continuous random variable.6 As in Kolotilin

et al. (2015) and Gentzkow and Kamenica (2015), we assume that the agents

only care about the posterior mean (rather than the entire posterior distribu-

tion) so that the principal’s choice variable is a one-dimensional function, a

distribution over the posterior means. Although the problem is still infinite-

dimensional, under a weak regularity assumption on the payoff functions, we

characterize the optimal information disclosure policy, and show that it can

always be implemented by a combination of full-disclosure regions (i.e., if

the realization of the principal’s information lies in this region, it is (fully)

disclosed) and “binary lower-truncation” regions (i.e., if the realization lies

6On the other hand, the shape of the sender’s value function is characterized as a
concavification in a quite general environment by Kamenica and Gentzkow (2011).
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in this region, only its (randomly-chosen) lower bound is disclosed; more-

over, only two realizations are possible in this region). This means that the

principal’s result is now finite-dimensional (under additional conditions, it

can be as simple as even one- or two-dimensional), and hence many standard

techniques can straightforwardly be applied.

1.1 Some related literature

In terms of the motivation for studying the effect of the principal’s infor-

mation on implementability, our work is related to the informed-principal

literature, where the principal fully knows his information but cannot gen-

erate any hard evidence by himself. There are two main differences. First,

in our paper, the principal can commit, at the ex ante stage, to any dis-

closure policy, while in the informed-principal literature, he does not have

such a commitment power. Second, in our paper, the principal cannot make

a mechanism contingent on any non-disclosed part of the principal’s infor-

mation, while in the the informed-principal literature, a mechanism can be

contingent on the principal’s information (without disclosing it to the agent),

although such contingency must be consistent with the principal’s own incen-

tive constraints. In this sense, the comparison of these two approaches are

not trivial, and one might wonder if our results crucially depend on the as-

sumption that a mechanism cannot be contingent on the non-disclosed part

of the principal’s information. In Remark ??, we conjecture that similar

methodology as in this paper would be useful in an extended model where

a mechanism can be contingent both on the non-disclosed part of the prin-

cipal’s information (as in the informed-principal literature, i.e., subject to
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the principal’s incentive constraints) and also on the disclosed part of the

principal’s information as in our main model.

In the literature of committed information disclosure in mechanism de-

sign, Eső and Szentes (2007) (except for their “benchmark case”), Bergemann

and Pesendorfer (2007), Li and Shi (2015), and Zhu (2017) consider situa-

tions where the disclosed information by the principal is not observed by the

principal himself (but only by the agents).7 Their assumption fits well, for

example, to a situation where a seller of an experimental good (i.e., a buyer

does not know his true value before consuming it) can allow for its “trial”

to buyers. The seller can perhaps control the quality of the signal delivered

by the trial, but cannot usually observe the signal realization (and hence the

price cannot be directly contingent on it). On the other hand, our assump-

tion that everyone (including the principal) can publicly observe the signal

realization fits better to the context of third-party certification. In this sense,

these two approaches are complementary.

Methodologically, our paper is most related to the Bayesian-persuasion

literature. Our contribution to the Bayesian-persuasion literature is two-fold.

First, we characterize the shape of the “sender’s” (principal’s) payoff func-

tion in mechanism design contexts as a consequence of optimal mechanism

design, while in the standard Bayesian persuasion model, the sender’s pay-

off function is usually exogeneously given. Indeed, it has been considered

as an important question in the literature under what conditions the prin-

cipal’s expected payoff given the optimal mechanism is maximized by the

full-disclosure policy. Second, we characterize the optimal information dis-

7See also Bergemann and Wambach (2015) and Eső and Szentes (2017) for similar
approaches in dynamic environments.
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closure policy in a class of environments where the sender’s information is a

continuous random variable, as a combination of full-disclosure regions and

“lower-truncation” regions.Gentzkow and Kamenica (2015), Kolotilin et al.

(2015), Kolotilin (2016), and Dworczak and Martini (2017) study such con-

tinuous cases under various assumptions. Gentzkow and Kamenica (2015)

consider cases where a receiver’s action is either binary or trinary, implying

that a sender’s payoff is a two- or three-step function of the posterior mean.

Similarly, a receiver in Kolotilin et al. (2015) has a binary action space, but he

also has (independent) private information, and hence a sender’s payoff is in

general more complicated than simple step functions. Under the assumption

that the sender’s payoff function is linear in the receiver’s payoff, they char-

acterize the optimal disclosure policy, and show that it can be interpreted as

a “censorship” policy. Our characterization is obtained under less structures

and hence could be useful in more general environments. Kolotilin (2016)

and Dworczak and Martini (2017) apply duality theory to establish that,

under fairly general conditions, the (primal) problem of finding an optimal

disclosure policy is equivalent to the (dual) problem of choosing a function

which satisfies some lower bound conditions. Their dual-based approaches

are particularly useful when the researcher has some candidate optimal poli-

cies to confirm its optimality. Our primal-based approach is useful when the

researcher does not yet have an idea for an optimal policy. Also, its simple

implementation as combination of full disclosure and truncation policies is

novel (see also Footnote 26).

The paper is structured as follows. We consider a single-agent model in

Section 2, and a multi-agent model in Section 3. The main results in these
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sections are: (i) in linear environments with independent or affiliated infor-

mation, full disclosure is optimal (Theorem 1, 2, and 3); and (ii) in other

environments, full disclosure may not be optimal (Example 1 and Theorem

4). Given that full disclosure is not optimal in certain class of environments,

Section 4 characterizes the (not-necessarily-full) optimal information disclo-

sure policy under additional assumptions. Section 5 concludes. The proofs

are in Appendix and Supplementary Materials.

2 Single agent

2.1 Environment

In this section, we consider a situation where there is one principal and one

agent.

The agent has payoff-relevant private information (“type”) t ∈ T = [0, 1].

Another payoff-relevant information, whose disclosure is controlled by the

principal, is denoted by θ ∈ Θ = [θ, θ] ⊆ R.8 At the ex ante stage, the

principal and agent share a common prior for (θ, t) ∈ Θ× T . The marginal

prior for θ is denoted by F0 with density f0.9 The conditional for t|θ is

denoted by F1(·|θ) for each θ with density f1(·|θ). In Section 2.1, θ, t are

assumed to be independently drawn. In Section 2.2, θ, t are allowed to be

correlated, and in particular, are affiliated.

8Some results can be generalized for the case where Θ is a more general space. For
example, Theorem 1 and 3 hold true for any Θ that is a separable, complete metric space.
Theorem 2 holds true for the same domain if endowed with a partial order (monotonicity
conditions in Section 2.4 are defined based on that partial order).

9In this paper, by abuse of notation, I treat a probability measure for a real random
variable and its representation as a cumulative distribution function interchangeably.
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The principal assigns an allocation χ ∈ X through a mechanism. The

principal’s payoff is given by u0(χ, θ, t), and the agent’s payoff is given by

u1(χ, θ, t). Later, we impose more assumptions on X, u0 and u1.

The timing of the game is as follows. First, the principal chooses an

information disclosure strategy (M,G), where M is a measurable space and

G : Θ → ∆(M). We interpret M as the principal’s message space, and G

as the rule that generates a randomized message in M , whose distribution

depends on the realized state θ ∈ Θ. Second, after m ∈ M is publicly

observed, the principal designs a direct mechanism χm : T → X. Finally,

the agent sends a message to the mechanism, and the allocation is realized.

There are several implicit assumptions in this formulation. First, the

principal has a commitment power both in terms of the mechanism and

information disclosure policy. Second, the allocation can depend on any

disclosed information (m), but not on any non-disclosed part of θ. Also, m

is observed equally by any agent of any type (“public” disclosure). Although

we believe that this formulation is sensible in certain applications and at

least as a benchmark, admittedly there are many other possible alternative

formulations. We briefly discuss them in the concluding remarks.

2.2 Principal’s problem

2.2.1 Agent’s posterior

The principal’s message m is important because it affects the agent’s poste-

rior for θ and hence affects his incentive. Thus, our first step to understand

the problem is to compute the agent’s posterior given m. However, unless θ, t
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are independently distributed, the agent’s posterior for θ given m depends

on his type t, which makes the problem nontrivial.

A useful observation is that the principal’s message m can correlate with

t only through θ. In other words, regardless of the principal’s information

disclosure, the conditional distribution t|θ cannot be affected, and hence is

always given by F1(·|θ). Therefore, once a distribution solely of θ is obtained

(given m), say Ψ0(·|m), then the distribution jointly for (θ, t) is given by the

product of Ψ0(·|m) and F1(·|θ). Then, the conditional of θ|(t,m) is obtained

in the standard way.

Existence of a distribution of θ|m is given by the following well-known

result in probability theory.

Proposition 1. (Product-regular-conditional-probability property10) Each

(M,G) induces a pair (µ, (Ψm)m∈M) such that (i) µ ∈ ∆(M), (ii) Ψm ∈

∆(Θ) for each m, and (iii)
∫
m∈B Ψm(A)dµ =

∫
θ∈AG(B|θ)dF0(θ) for each

measurable A ⊆ Θ and B ⊆M .

µ is the marginal distribution over the message space M , and for each

realization m ∈ M , Ψm is the posterior over Θ. The last condition implies

(by taking B = M)
∫
m∈M Ψm(A)dµ = F0(A) for each A, i.e., the system of

posterior distributions (Ψm)m∈M must satisfy a martingale property.11

As discussed above, given Ψ0 ∈ ∆(Θ) induced by an arbitrary message,

the agent’s posterior for θ given his type t is given by Ψ1(·|t,Ψ0), where for

10The crucial assumption for this property to hold is that Θ is a separable, complete
metric space. On the other hand, no assumption is necessary on M (except that it is a
measurable space). For the proof, see Faden (1985), for example.

11This is called Bayesian plausibility by Kamenica and Gentzkow (2011).
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each measurable subset Θ′ ⊆ Θ,

Ψ1(Θ′|t,Ψ0) =

∫
θ∈Θ′

f1(t|θ)dΨ0(θ)∫
θ∈Θ

f1(t|θ)dΨ0(θ)
.

2.2.2 Mechanism design

Because the principal essentially makes a sequential decision of information

disclosure and then mechanism design, we first consider the mechanism-

design problem.

Given Ψ0 ∈ ∆(Θ) induced by an arbitrary message, let Π(Ψ0) denote the

principal’s expected payoff under the optimal mechanism, i.e.,

Π(Ψ0) = sup
χ:T→X

∫
θ∈Θ

∫
t∈T

u0(χ(t), t, θ)dF1(t|θ)dΨ0(θ)

sub. to

∫
θ∈Θ

u1(χ(t), t, θ)dΨ1(θ|t,Ψ0)

≥
∫
θ∈Θ

u1(χ(t′), t, θ)dΨ1(θ|t,Ψ0), ∀t, t′,∫
θ∈Θ

u1(χ(t), t, θ)dΨ1(θ|t,Ψ0) ≥ 0, ∀t.

The first constraint corresponds to the agent’s Bayesian incentive compat-

ibility condition, and the second constraint is the agent’s interim individual

rationality or participation condition. Because the agent observes a public

message by the principal, the agent’s expected utility is computed using his

posterior Ψ1(·|t,Ψ0) over θ.
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2.2.3 Information disclosure

Next, we consider the information disclosure problem. Recall that, by Propo-

sition 1, each disclosure policy (M,G) induces a distribution (µ) over the set

of posteriors ((Ψm)m∈M) that satisfies the martingale property. The con-

verse is also true: for each distribution over the set of posteriors, denoted by

λ ∈ ∆(∆(Θ)), that satisfies the martingale property, there exists a disclo-

sure policy (M,G) that induces it. Thus, in what follows, we consider the

principal’s problem of choosing λ ∈ ∆(∆(Θ)), instead of choosing (M,G).

Proposition 2. For each (M,G) (and its induced (µ, (Ψm)m∈M) as in Propo-

sition 1), there exists λ ∈ ∆(∆(Θ)) such that, for each measurable12 C ⊆

∆(Θ), we have λ(C) = µ({m ∈ M |Ψm ∈ C}) with the martingale property

that
∫

Ψ0∈∆(Θ)
Ψ0(·)dλ(Ψ0) = F0(·).

Conversely, for each λ ∈ ∆(∆(Θ)) with the martingale property that∫
Ψ0∈∆(Θ)

Ψ0(·)dλ(Ψ0) = F0(·), there exists (M,G) (and its induced (µ, (Ψm)m∈M)

as in Proposition 1) such that, for each measurable C ⊆ ∆(Θ), we have

λ(C) = µ({m ∈M |Ψm ∈ C}).

By this proposition, the principal’s optimal information disclosure prob-

lem can be written as follows.

Π∗ = sup
λ∈∆(∆(Θ))

∫
Ψ0∈∆(Θ)

Π(Ψ0)dλ

sub. to

∫
Ψ0∈∆(Θ)

Ψ0(·)dλ = F0(·).

12In what follows, we endow ∆(Θ) with a Prokhorov metric (which metrizes its weak-*
topology) and Borel σ-algebra. Then, ∆(Θ) is a complete, separable metric space.
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In the standard Bayesian persuasion problem, applying Jensen’s inequal-

ity, optimality of full disclosure is obtained when Π is convex.13 In the next

subsection, we obtain sufficient conditions on the mechanism design environ-

ment which imply the convexity of Π.

In our model, the principal’s information disclosure affects both the prin-

cipal and the agent in the following ways. For the principal’s side, more

disclosre means that his mechanism can be contingent on more precise in-

formation. This flexibility effect in the mechanism choice makes, given ev-

erything else equal, the principal favor more disclosure. For the agent’s side,

more disclosre means that his incentive compatibility and participation con-

straint become more stringent (e.g., under full disclosure, these constraints

must be satisfied “ex post”, that is, for each realization of the principal’s

information; while under no disclosure, they must be satisfied only “on av-

erage”). More generally, the set of implementable allocation rules becomes

smaller by more disclosure. This implementability effect makes, given every-

thing else equal, the principal favor less disclosure. The optimal disclosure

policy is determined by appropriately balancing these two effects.

2.3 Linear and independent environment

For the rest of this section, we mainly consider the following linear environ-

ment. An allocation χ comprises two elements, (q, p) ∈ [0, 1] × R, where q

represents a non-monetary allocation (e.g., the probability that the princi-

13In fact, convexity (concavity) is not sufficient for Π to admit Jensen’s inequality unless
∆(Θ) is finite-dimensional (see, for example, Perlman (1974)). Therefore, in the subse-
quent proofs, we additionally show an appropriate version of continuity of Π to apply
Jensen’s inequality.
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pal sells the good to the agent), and p represents a monetary transfer from

the agent to the principal. This class of environments includes, for exam-

ple, monopoly pricing (Mussa and Rosen (1978)) and regulation (Laffont and

Tirole (1993)).

The agent’s payoff is qv1(θ, t)− p, where the marginal valuation function

v1 is bounded, nondecreasing in t, and differentiable in t. The principal’s

payoff is p− c(q, θ, t) where c is bounded. Linearity in p means the players’

risk neutrality in money, which is a standard assumption in the literature.

Linearity in q for the agent’s payoff can be weakened to some extent, though

not fully. We discuss it in Supplementary Materials (Section K).

Given any posterior Ψ0 ∈ ∆(Θ) after the principal’s information disclo-

sure, let

V (t|Ψ0) =

∫
θ∈Θ

v(θ, t)Ψ1(θ|t,Ψ0)

denote the agent’s expected marginal valuation (recall that Ψ1(·|t,Ψ0) is

the agent’s posterior for θ given t and Ψ0, taking into account potential

correlation between θ and t).

Suppose, for the moment, that V is non-decreasing in t (clearly, indepen-

dence of (θ, t) is sufficient for this). Then, applying the standard technique in

mechanism design based on an envelope theorem, the principal’s mechanism
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design problem can be written as follows.

Π(Ψ0) = sup
(q,p)

∫
θ∈Θ

∫
t∈T

p(t)− c(q(t), θ, t)dF1(t|θ)dΨ0(θ)

sub.to q(t)V (t|Ψ0)− p(t) ≥ 0,

q(t)V (t|Ψ0)− p(t) ≥ q(t′)V (t|Ψ0)− p(t′), ∀t, t′

= sup
q

π(q,Ψ0)

sub.to q nondecreasing,

where

π(q,Ψ0) ≡
∫
θ∈Θ

∫
t∈T

q(t)v(θ, t)− c(q(t), θ, t)−
(∫ t

0

q(t̃)V ′(t̃|Ψ0)dt̃

)
dF1(t|θ)dΨ0(θ).

The expected value of the first two terms, q(t)v(θ, t) − c(q(t), θ, t), rep-

resents the expected total surplus generated in a mechanism that allocates

q(·). Note that this expected value is linear in Ψ0. The expected value of the

last term,
∫ t

0
q(t̃)V ′(t̃|Ψ0)dt̃, represents the expected information rent paid to

the agent. This expected value is not necessarily linear in Ψ0. However, as

we see now, the expected information rent is linear in Ψ0 (and hence π(q,Ψ0)

is linear in Ψ0 too) if (θ, t) are independent. This linearity of π(q,Ψ0) plays

an important role for the optimality of full disclosure.

Lemma 1. If (θ, t) are independent, then π(q,Ψ0) is linear in Ψ0.

Now we state the first main result of this paper.

Theorem 1. If (θ, t) are independent, then full disclosure is optimal.

The proof basically exploits a simple property that, if an objective (Π(q,Ψ0))
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is linear in a parameter (Ψ0) and the feasible set (the set of all monotonic q)

does not vary with this parameter, then the value function (Π(Ψ0)) is convex

in this parameter.

To provide some economic intuition for the result, recall that there are

two channels where information disclosure affects implementable allocation

rules. First, more disclosure implies more flexibility in the mechanism. In its

extreme, q can vary with θ under full disclosure, while q must be constant in

θ under no disclosure. This first effect makes the principal favor more disclo-

sure. Second, more disclosure implies (weakly) tighter incentive constraints.

Again in its extreme, truth-telling must be optimal given every possible real-

ization θ under full disclosure, while truth-telling needs to be optimal only “in

expectation” with respect to Θ under no disclosure. Because of this, either

expected information rent may be higher or implementable allocation rules

may be smaller under full disclosure (than under less disclosure). Hence, this

second effect makes the principal favor less disclosure.

However, in the current environment, the second effect is null. Because

every player has a linear payoff, the expected information rent is linear in

Ψ0, and hence, more disclosure does not imply strictly tighter incentive con-

straints. Therefore, only the first effect exists, leading to optimality of full

disclosure.

2.4 Correlated case

If θ and t are correlated, then the expected information rent is not in general

linear, because the change in θ affects F1(t|θ) in a nontrivial manner, and

hence the entire information rent expression. Indeed, it is possible that even
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the no-disclosure policy is optimal.

Example 1. Assume v(θ, t) = 2 + θt and c ≡ 0, and the joint distribution

over (θ, t) is given by

Pr t = 3 t = 6

θ = 1 1/12 5/12

θ = 3 5/12 1/12

Under no disclosure, the agent’s expected marginal valuation is E[v|t] =

2+E[θ|t]t = 10 for any t. Therefore, the optimal mechanism sets (q(t), p(t)) =

(1, 10) for any t, yielding the revenue 10. This is clearly the first-best out-

come.

Under more disclosure, the agent earns some information rent and/or the

second-best allocation is inefficient. Therefore, disclosing no information is

optimal.

Notice that, in this example where v is non-decreasing in θ and (θ, t) are

negatively correlated,14 less information disclosure implies less information

rent, and hence preferred to the principal.

On the other hand, if (v is non-decreasing in θ and) (θ, t) are positively

correlated, or more specifically, if F1, the conditional distribution of t|θ, ex-

hibits monotonicity in the sense that 1−F1(t|θ)
f1(t|θ) is increasing in θ,15 then the

expected information rent is concave in Ψ0 for any feasible (i.e., nondecreas-

ing) q(·), which implies convexity of π(q,Ψ0) and Π(Ψ0). Therefore, full

disclosure is again optimal.

14Equivalently (up to redefinition of θ), v is non-increasing in θ and (θ, t) are positively
correlated.

15A sufficient condition for this property is that F1 has monotone likelihood ratio prop-
erty, i.e., (θ, t) are affiliated.
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Intuitively, concavity of the information rent means that information dis-

closure implies smaller ex ante information rent. This is related to the linkage

principle of Milgrom and Weber (1982) in a correlated-value auction envi-

ronment, and more closely, Ottaviani and Prat (2001) in a monopoly-pricing

environment.

For each monotone q : [0, 1]→ [0, 1] and Ψ0 ∈ ∆(Θ), let

R(q,Ψ0) =

∫
θ∈Θ

∫
t∈T

∫ t

0

q(t̃)V ′(t̃|Ψ0)dt̃dF1(t|θ)dΨ0(θ)

denote the expected information rent.

Lemma 2. For each t, assume that v(θ, t) and 1−F1(t|θ)
f1(t|θ) are non-decreasing

in θ. Then, for each monotone q : [0, 1]→ [0, 1] and Ψ0 ∈ ∆(Θ),

R(q,Ψ0) ≥
∫
θ∈Θ

R(q, δθ)dΨ0(θ),

where δθ denotes a Dirac measure on θ.

Theorem 2. For each t, assume that v(θ, t) and 1−F1(t|θ)
f1(t|θ) are non-decreasing

in θ. Then, full disclosure is optimal.

3 Multiple agents

Similar arguments as in the single-agent case are applicable even with mul-

tiple agents.16 In Section 3.1, we show that, in the linear and independent

16Obviously, a crucial assumption is that we only consider public information disclosure.
Although we believe that it is a reasonable assumption in the context of third-party cer-
tification, in other contexts, private disclosure may be more relevant. Zhu (2017) shows
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environment as in Section 2 but with multiple agents, full disclosure is still

optimal, as long as no restriction is imposed on feasible monetary transfers.

This class of environments include applications such as auctions (Myerson

(1981), Eső and Szentes (2007)) and two-sided markets (Gomes and Pavan

(2016), Jeon et al. (2016)).

The assumption of no restriction on feasible monetary transfers is crucial.

As we see in Section 3.2, In the same environment except that monetary

transfers are restricted by a budget-balance (or no-deficit) requirement, full

disclosure is not necessarily optimal. Indeed, in a general class of bilateral-

trading environments as in Myerson and Satterthwaite (1983), we show that

full disclosure is strictly suboptimal.

3.1 Linear and independent environment

We consider the same linear model as before, except that there are now N

agents. An allocation comprises (qi, pi)
N
i=1 ∈ R2N where qi represents a non-

monetary allocation to agent i, and pi represents monetary transfer from

agent i to the principal. Let Q ⊆ RN denote the feasible set of the non-

monetary allocations to the agents (e.g., qi ≥ 0 for all i and
∑

i qi ≤ 1 in a

single-good auction), while no restriction is imposed on each pi.

As in Section 2, the principal’s information is denoted by θ ∈ Θ = [θ, θ],

and each agent i’s type is denoted by ti ∈ Ti = [0, 1]. We assume that

(θ, t1, . . . , tN) are mutually independently distributed, where F0 denotes the

that, under a version of monotone virtual value conditions in a linear environment, it is
without loss of generality to focus on the public disclosure. That is, no private disclosure
policy yields a strictly higher expected payoff of the principal than the optimal public
disclosure policy.
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distribution for θ, and each Fi denotes the distribution for ti. Also, let FT

denote the joint distribution for t.17

Each agent’s payoff is given by qivi(θ, ti)−pi, where the marginal valuation

vi is bounded, nondecreasing in ti, and differentiable in ti. As we discuss

later, the result can be extended to the case of interdependent values (i.e.,

vi is a function of (θ, ti, t−i) instead of only (θ, ti)). The principal’s payoff is∑N
i=1 pi − c(q, θ, t).

Again, applying the standard technique in mechanism design based on an

envelope theorem and integration by parts, the principal’s mechanism design

problem can be written as follows:

Π(Ψ0) = sup
q:[0,1]N→Q

π(q,Ψ0)

sub.to qi(·, t−i) nondecreasing, ∀i, t−i,

where

π(q,Ψ0) ≡
∫
θ∈Θ

∫
t∈T

∑
i

(
qi(t)vi(θ, ti))− c(q(t), θ, t)−

(∫ ti

0

∫
θ∈Θ

∂vi
∂ti

(θ, ti)dΨ0(θ)dt̃i

))
dFT (t)dΨ0(θ).

With independence, we show that the expected value of the last term, the

sum of the agents’ information rent, is linear in Ψ0. Therefore, full disclosure

is optimal. Because it is a straightforward extension of Theorem 1, we omit

the proof.

17Again, Θ can be generalized to any separable, complete metric space. For example,
Θ could be multidimensional, such as Θ ⊆ RN (where, in some applications, each agent i
might only care about the i-th argument of θ).

21



Theorem 3. Full disclosure is optimal.

The assumptions of linearity and private values can be weakened to some

extent (though not completely dispensable). See the Supplementary Materi-

als (Section K) for alternative assumptions and solution concepts that imply

similar full-disclosure results.

3.2 Budget balance and suboptimality of full disclo-

sure

As discussed in the last section, the property that the set of implementable

q does not vary with Ψ0 is crucial for the convexity of Π (and hence for

optimaility of full disclosure).

In this section, we observe that the feasible set varies with Ψ0 in balanced-

budget bilateral trading environments. This is because the budget balance

condition constrains the agents’ total expected information rents, an expres-

sion that varies with Ψ0. In this environment, we show that full disclosure is

suboptimal. More specifically, there exists a subset of Θ where the principal

strictly prefers not to reveal its realization.

Following Myerson and Satterthwaite (1983), we assume that there are

two agents, a seller (i = 1) and a buyer (i = 2). (θ, t1, t2) are mutually

independent. For each i = 1, 2, let Fi denote the cdf for ti with a full-

support density fi. For θ, we assume that F0 has a full-support density f0

on Θ = [θ, θ] with θ < 1 < θ. The seller’s payoff is −v1(θ, t1)q1 − p1 and the

buyer’s payoff is v2(θ, t2)q2−p2, where q1 = q2 ∈ [0, 1] is the trade probability

and pi ∈ R is the monetary transfer from i. The budget balance condition
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requires that p1 + p2 ≥ 0.18 Therefore, the feasible allocation set is given by

X = {(qi, pi)2
i=1 ∈ [0, 1]2 × R2|q1 = q2, p1 + p2 ≥ 0}.

The principal’s objective is the trade surplus, v2(θ, t2)q2−v1(θ, t1)q1, as in

Myerson and Satterthwaite (1983). Then, the value function for the principal

given any posterior Ψ0 is Π(Ψ0), given by

sup
(q,p1,p2):[0,1]2→X

∫
θ∈Θ

∫
t∈T

(v2(θ, t2)− v1(θ, t1))q(t)dFT (t)dΨ0(θ)

sub. to

∫
θ∈Θ

∫
t2∈T2

(−v1(θ, t1)q(t)− p1(t))dF2(t2)dΨ0(θ)

≥ max

{
0,

∫
θ∈Θ

∫
t2∈T2

(−v1(θ, t1)q(t′1, t2)− p1(t′1, t2))dF2(t2)dΨ0(θ)

}
, ∀t1, t′1,∫

θ∈Θ

∫
t1∈T1

(v2(θ, t2)q(t)− p2(t))dF1(t1)dΨ0(θ)

≥ max

{
0,

∫
θ∈Θ

∫
t1∈T1

(v2(θ, t2)q(t1, t
′
2)− p2(t1, t

′
2))dF1(t1)dΨ0(θ)

}
, ∀t2, t′2,

p1(t) + p2(t) ≥ 0, ∀t.

We assume the following “regularity” conditions.

Assumption 1.

1. ∂v2

∂t2
(θ, t2)1−F2(t2)

f2(t2)
is strictly decreasing in t2, and ∂v1

∂t1
(θ.t1)F1(t1)

f1(t1)
is strictly

increasing in t2.19

18This is also called a “no-deficit” condition. In the optimal mechanism, the constraint
binds with equality anyway.

19A stronger set of conditions is the following: v2 is concave in t2, v1 is convex in t1,
1−F2(t2)
f2(t2) is decreasing in t2, and F1(t1)

f1(t1) is increasing in t1. The last two conditions are

known as monotone hazard rate conditions.
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2. There exist 0 < b1 ≤ b2 <∞ such that (i) for each i, ti, fi(ti) ∈ [b1, b2],

(ii) for each i, ti, θ,
∂vi
∂ti

(θ, ti) ∈ [b1, b2], and (iii) for each θ, ρ(θ) =

v2(θ, 0)− v1(θ, 1) ∈ [(θ − 1)b1, (θ − 1)b2].20

The first assumption is standard in order to make sure that no bunch-

ing occurs in the optimal mechanism. The second set of assumptions is to

regulate the shape of some key functions in the following analysis. The first

two of them simply say that Fi and vi are Lipschitz with (uniformly) positive

slopes. The third one implies the following: if θ > 1 is common knowledge,

then the full-trade outcome (i.e., q(t) = 1 for all t) is efficient, which is imple-

mentable by a posted-price mechanism (“gap case”), yielding the full-trade

surplus

Π1(θ) =

∫
t∈T

(v2(θ, t2)− v1(θ, t1))dFT (t);

while if θ < 1 is common knowledge (“no-gap case”), then the full-trade

outcome is not efficient, and any mechanism can implement neither the full-

trade outcome nor the first-best efficient outcome (Myerson and Satterth-

waite (1983)).

Under Assumption 1, Π(Ψ0) is equivalently given by

sup
q:[0,1]2→[0,1]

∫
θ∈Θ

∫
t∈T

(v2(θ, t2)− v1(θ, t1))q(t)dFT (t)dΨ0(θ)

sub. to

∫
θ∈Θ

∫
t∈T

(
v2(θ, t2)− v1(θ, t1)− ∂v2

∂t2
(θ, t2)

1− F2(t2)

f2(t2)
− ∂v1

∂t1
(θ, t1)

F1(t1)

f1(t1)

)
q(t)dFT (t)dΨ0(θ) ≥ 0.

20A seemingly weaker assumption assigns different bounds for each of these three func-
tions. However, it is equivalent to our assumption here, by setting b1 as the minimum of
those three lower bounds, and b2 as the maximum of those three upper bounds.
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Theorem 4. Full disclosure is suboptimal.

The key intuition of this suboptimality is the following. As θ ↑ 1, the

Lagrange multiplier for the constraint, say λ(θ), is vanishing, as is known

in the literature. However, its rate of convergence is slower than a linear

rate. Indeed, λ′(θ) ↑ ∞ as θ ↑ 1.21 This means that, under full disclosure,

as θ decreases from 1, Π(δθ) decreases drastically. On the other hand, it

is easy to see that the full-trade surplus Π1(θ) decreases only in a linear

rate. Thus, for θ close to 1, if the full-trade outcome is ever implementable,

then it is strictly better than the best outcome under full disclosure. In

the proof, we identify θ∗, θ∗∗ with θ∗ < 1 < θ∗∗ such that, if the agents only

know that θ ∈ (θ∗, θ∗∗2 ), then the full-trade outcome is indeed implementable.

Then, based on this logic, the principal strictly prefers not to disclose θ for

θ ∈ (θ∗, θ∗∗2 ). Notice that this argument does not depend much on the specific

functional forms (except for the regularity conditions), which allows us to

obtain this suboptimality result in a fairly general environment.

4 Optimal information disclosure

When full disclosure is suboptimal, a natural next step is characterization

of the optimal disclosure policy. However, this problem in the general en-

vironment is difficult, because the principal’s choice variable λ ∈ ∆(∆(Θ)),

21More precisely, λ(θ) is vanishing at rate
√

1− θ, as implied in the inequality in the
proof:

λ(θ)

1 + λ(θ)
≥ b1

2b2

(
ρ(θ) +

b1
b2

√
−ρ(θ)b1

2b2 − ρ(θ)b1

)
.
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a distribution over posteriors, is a probability distribution over an infinite-

dimensional space. We make the following assumption to simplify the anal-

ysis.

Assumption 2. For each x ∈ [θ, θ] and Ψ0,Ψ
′
0 ∈ ∆(Θ) with x =

∫
θ∈Θ

θdΨ0(θ) =∫
θ∈Θ

θdΨ′0(θ), we have Π(Ψ0) = Π(Ψ′0), which we denote by Π(x).

Under this assumption, the principal’s choice variable is now a distribu-

tion over posterior means, denoted by F ∈ ∆(Θ). Since F is identified by

a cdf over Θ ⊆ R, it is a one-dimensional function. In this sense, the space

of feasible F is still infinite-dimensional, but simpler than the fully general

case.22

Although admittedly restrictive, the following lemma shows that this

mean-only assumption is satisfied in some environments.

Lemma 3. Assumption 2 is satisfied either (i) if (θ, t1, . . . , tN) are mutu-

ally independent, and u0(θ, t), u1(θ, t), . . . , uN(θ, t) are affine in θ; or (ii)

if there exist a random variable s ∈ {0, 1} (“unobservable fundamental”)

and functions of (s, t), û0, û1, . . . , ûN , such that uj(θ, t) = E[ûj(s, t)|θ, t] for

j = 0, 1, . . . , N , and (θ, t1, . . . , tN)|s are conditionally (on each s) mutually

independent with density f s0 (θ) for θ|s and f si (t) for ti|s.
22Assumption 2 can be replaced by the following (seemingly weaker) assumption: there

exists a measurable function ξ : Θ → R such that, for any x and Ψ0,Ψ
′
0 with x =∫

θ∈Θ
ξ(θ)dΨ0(θ) =

∫
θ∈Θ

ξ(θ)dΨ′0(θ), we have Π(Ψ0) = Π(Ψ′0) (which we denote by Π(x)).
This is just a matter of notation in the sense that, redefining ξ(θ) as θ, this alternative
assumption becomes equivalent to the original one. However, this alternative version may
be useful in applications where θ has some intrinsic economic meaning. For example,
in Lemma 3 (ii), ξ(θ) represents the posterior for some random variable. Also, in case
Θ (endowed with some intrinsic economic meaning) is multidimensional, this alternative
assumption would be important to admit a one-dimensional representation of the problem,
so that the results of this section become applicable.
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We further assume the following property on Π.

Assumption 3. (i) Π is upper-semi-continuous. (ii) There exist K ∈ N

and {xk}Kk=1 with 0 = x0 < . . . < xK = 1 such that, on each open interval

(xk−1, xk), k = 1, . . . , K,

(i) Π is differentiable with derivative Π′, and

(ii) Π′ is monotone (i.e., either nondecreasing or nonincreasing), and abso-

lutely continuous with derivative Π′′ (which exists almost everywhere).

For example, any polynomial function satisfies this assumption. Although

Π must be well-behaved on each open interval (xk−1, xk), Π can be more

“irregular” at each xk: Π may be discontinuous at xk (although we need

upper-semi-continuity), or even if not, Π′ may not exist or be discontinuous

at xk.

The main result of this section is characterization of the optimal infor-

mation disclosure policy.

Definition 1. (i) For each A ⊆ [θ, θ], we say that (M,G) exhibits full dis-

closure on A if M ⊇ A and G({θ}|θ) = 1 for each θ ∈ A.

(ii) For each a, b ∈ [θ, θ] with a < b, we say that (M,G) exhibits binary

lower truncation on sub-interval (a, b) if there exist y ∈ (a, b) and w ∈ (0, 1]

such that

(ii-i) G({z1}|θ) = 1 for θ ∈ (a, y); and

(ii-ii) G({z1}|θ) = w and G({z2}|θ) = 1− w for θ ∈ (y, b);
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where

zj =


∫ y
a θdF0(θ)+

∫ b
y wθdF0(θ)∫ y

a 1dF0(θ)+
∫ b
y wdF0(θ)

if j = 1∫ b
y θdF0(θ)∫ b
y 1dF0(θ)

if j = 2


(

= E[θ|zj is announced]
)
.

To explain these properties, we first provide a few examples.

Example 2. For simplicity, assume that F0 corresponds to U(0, 1) in the

following examples.

• Consider (M,G) which exhibits binary lower truncation on the entire

Θ = [0, 1] with w = 1. It is the no-disclosure policy, because for any θ,

G({z1}|θ) = 1 where z1 = 1
2
.

• If there exists θ∗ ∈ (0, 1) such that (M,G) exhibits binary lower trun-

cation on θ > (<) θ∗ with w = 1 and full-disclosure otherwise, it

corresponds to upper (lower) censorship of Kolotilin et al. (2015).

• If there exists θ∗ ∈ (0, 1) such that (M,G) exhibits binary lower trunca-

tion on (0, θ∗) with w = 1 and binary lower truncation on (θ∗, 1) again

with w = 1, then it corresponds to a (two-message) “monotone par-

tition” structure, as in the cheap-talk literature (Crawford and Sobel

(1982)).

• Consider (M,G) which exhibits binary lower truncation on the entire

Θ = [0, 1] with y = 1
3

and w = 1
4
. Then we have z1 = 1

3
and z2 = 2

3
,

and for each θ < 1
3
,

G

({
1

3

}
|θ
)

= 1,
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while for each θ > 1
3
,

G

({
1

3

}
|θ
)

=
1

4
,

G

({
2

3

}
|θ
)

=
3

4
.

The disclosure policy in the last example can be interpreted in the follow-

ing alternative way: instead of z1 or z2, imagine that the principal truthfully

announces a lower bound of the realized θ, say θ, either θ = 0 or θ = 1
3
. More

specifically, if θ < 1
3
, then θ = 0 is announced for sure; if θ ≥ 1

3
, then θ = 0

is announced with probability 1
4
, while θ = 1

3
is announced with probability

3
4
.23 By Bayesian updating, the posterior mean of θ given announcement of

θ = 0 is 1
3
, while given announcement of θ = 1

3
, it is 2

3
. Announcing a lower

bound in this way essentially makes the posterior distribution a lower (or

“left”) truncation of the prior; hence we call it a (binary) lower truncation

disclosure policy.

Theorem 5. There exist L ≤ K and disjoint open sub-intervals {Il}Ll=1 of

[0, 1] such that an optimal disclosure policy exhibits binary lower truncation

on each Il and full-disclosure otherwise.

There are several important properties of the optimal policy in the state-

ment. First, the message space can always be taken as a subset of [θ, θ],

because in both binary-lower-truncation regions and full-disclosure region,

23We mean by truthfulness that the principal never announces θ > θ in case θ is realized.
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the principal’s message is a number in [θ, θ]. In fact, conditional on x ∈ [θ, θ]

being announced, the (principal’s) posterior mean of θ is always x.

Second, although infinitely many messages may be necessary, it is only

because of the full-disclosure region, i.e., outside the full-disclosure region,

only finitely many messages are necessary.24 Furthermore, conditional on θ,

the support of G(·|θ) is always an (at most) binary set. In these senses, the

theorem implies a significant bound on the size of necessary messages, even

though Θ is an infinite space.

Third, the optimal policy in the statement exhibits the following monotone-

likelihood-ratio property: for any two states θ < θ′ and any two messages

x < x′, we have

G({x}|θ)G({x′}|θ′) ≥ G({x′}|θ)G({x}|θ′).

In various applications, such monotonic disclosure policies may look nat-

ural. For example, imagine that a seller of goods with uncertain quality (e.g.,

used cars, drugs, or agricultural products) can generate some hard evidence

about the quality through a third-party certifier. The certifier examines the

quality of the goods through some physical experiments, generating noisy

signals. In such a case, a feasible signal distribution would be constrained

by the nature of the physical experiments. The monotone likelihood ratio

property may be one such natural constraint. Moreover, recall that a lower

truncation policy can be interpreted as a random announcement of a lower

bound of realized θ. This would fit well into a situation where a certifier runs

24In fact, as is made clear in the proof, the total number of messages outside the full-
disclosure region is bounded by 2K.
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multiple pass-fail tests (so that each test, if passed, provides a lower bound

of realized θ), and randomly announces which tests have been passed.25

Another situation where monotonicity is important is when the sender

has a weaker commitment power. Recall that, in the Bayesian persuasion

literature, the sender is assumed to have a strong commitment power in that

he (i) sets up an experiment (M,G) at the ex ante stage, and then (ii) inputs

the realized θ “truthfully” to this G. The first assumption seems reasonable,

for example, in environments where the sender can delegate signal generation

to a third-party certifier (e.g., FDA in the context of a drug industry) at the

ex ante stage. However, the second assumption may be more controversial.

Even if the sender delegates the experiments to the third-party certifier, of-

ten times, it is the sender himself who provides a sample of the goods to

be examined to the certifier. If the sender can observe the quality of the

goods and manipulate it before providing it to the certifier, the sender may

find it profitable to do so. This means that, in such “limited commitment”

situations, feasible (M,G) would be restricted by the sender’s incentive com-

patibility in “inputting” θ to G. Relevant incentive constraints would vary

depending on the applications, and one possible situation may be that the

sender can reduce the quality of the goods for free, while cannot increase it

at all. In such a case (and with an increasing Π, such as in pure revenue

maximization), non-monotonic G is not incentive compatible, because the

25By a similar proof, the optimal information disclosure policy can also be described as
a combination of full-disclosure regions and (binary) upper-truncation regions. Such an
upper-truncation policy can be interpreted as a random announcement of failures instead
of passes. Also, any convex combination (in an appropriate sense) of lower- and upper-
truncation is also optimal, which can be interpreted as a random announcement of passes
and failures. Note that the linearity assumption plays an important role for the multiplicity
of optimal policies.
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sender may find it profitable to decrease θ to enjoy higher posterior means.

The theorem, which says that an optimal policy can always be found in

the class of monotone disclosure policies, has an important implication that

this principal’s incentive compatibility constraint is satisfied in the current

environment.26

4.1 Example 1: Bilateral trade

We consider two applications where full disclosure is suboptimal. Here, we

consider a balanced-budget bilateral trade environment, and characterize the

optimal disclosure policy (and the optimal mechanisms) in expected surplus.

In Supplementary Materials (Section M), we consider another example which

is in a single-agent correlated environment, and characterize the optimal

disclosure policy (and the optimal mechanisms) in expected profit.

Consider a balanced-budget bilateral trade example where each agent’s

type ti follows an independent uniform distribution over [0, 1]. As in Section

3.2, an allocation is represented by (q, p), where q ∈ [0, 1] denotes the prob-

ability of trading and p ∈ R denotes the payment from the buyer (agent 2)

to the seller (agent 1). Agent 1’s payoff is p − qt1, and agent 2’s payoff is

q(θ + t2)− p, where θ ∈ U(a, b) with a < 1 < b.

26 As claimed in the next lemma, our problem can be interpreted as a choice problem
of F (a cdf) that is less riskier than F0 in the sense of Rothschild and Stiglitz (1970).
In this sense, once we could characterize the optimal F in that problem, we can directly
apply the method by Rothschild and Stiglitz (1970) (or more precisely, the method by
Machina and Pratt (1997) for continuous random variables) to construct a policy (M,G)
that implements F . However, their construction is different from ours in that it does
not satisfy monotone likelihood ratio property in the above sense, and does not admit its
interpretation as combination of full disclosure and “announcement of lower bounds of
realization”. For the reasons discussed above, these properties could be advantageous in
some economic applications.
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Because the support of θ is around 1, as shown in Section 3.2, full disclo-

sure is suboptimal. We first examine the shape of Π(·) more fully.

Lemma 4. Π′ exists and continuous for all x. Π′′ exists and continuous for

all x 6= 1. More specifically, there exists x̂ (' 0.87) ∈ (1
3
, 1) such that

Π′′(x)


≥ 0 if x < x̂,

< 0 if x ∈ (x̂, 1),

= 0 if x > 1.

With this simple threshold structure, the optimal disclosure policy is

proved to be an (upper) censorship policy of Kolotilin et al. (2015).

Proposition 3. There exists x∗ ∈ [a, x̂] such that the following disclosure

strategy is optimal: fully disclose the realized θ if θ ≤ x∗, and not (at all)

disclose it if θ > x∗. For example, if a ≤ −1 and b ≥ 3, then x∗ = 1
3
, yielding

ex ante expected surplus 9b2+1
18(b−a)

.

The main tradeoff for information disclosure is between the budget-balance

requirement and flexibility in the mechanism choice. Disclosing less infor-

mation can be beneficial for the principal because it mitigates the budget-

balance requirement, especially around θ = 1. On the other hand, disclosing

more information can be beneficial, because it brings more flexibility in the

mechanism, especially for smaller θ.
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4.2 Example 2: Type-dependent outside options

5 Concluding remarks

In certain mechanism design environments, the principal finds it optimal to

fully disclose the information. Although those environments include many

“standard” mechanism design environments, in other cases, full disclosure

may be suboptimal. With additional assumptions, we characterize the opti-

mal disclosure policy as a combination of full-disclosure regions and binary

lower truncation regions.

We conclude the paper with a discussion of some alternative models. Two

important assumptions to obtain the main results of the paper are (i) public

disclosure and (ii) commitment assumptions.

Regarding the first assumption, possible alternative models may allow

the principal to (i-a) communicate with each of multiple agents privately,

i.e., send different messages to different agents, or (i-b) even for a single

agent, send a type-contingent message, i.e., different messages to different

types.27 As discussed in the introduction (see Dranove and Jin (2010) cited in

Footnote 2), we believe that the assumption of public disclosure is reasonable

in many applied contexts, but at least theoretically, such alternative models

should be considered. Note that public disclosure is always a special case of

those two alternatives, and hence, the principal can only be better off. In this

sense, the result about suboptimality of full disclosure (Theorem 4) continues

27This (i-b) can only be possible by reversing the timing of the game so that the prin-
cipal first asks each agent’s type, and then chooses a (possibly private) disclosure policy
depending on their type reports. In principle, the problem can be much more compli-
cated because which disclosure policy to adopt may be used as another source of incentive
provision (see Bergemann et al. (2017)).
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to hold. On the other hand, the results about optimality of full disclosure may

not be robust. Nevertheless, under additional assumptions, the results can be

shown to be robust to those alternative models. For example, in the model of

Section 2.3, assume that (θ, t) is independent, 1−F1(t)
f1(t)

is non-increasing, i.e., a

standard monotone hazard rate condition, and that v1 is concave in t. Then,

full disclosure continues to be optimal as follows. First, recall that, under

those assumptions, Skreta (2011) considers a much better situation (in view

of the principal) where the principal can make the allocation contingent on θ

in a fully committed manner without disclosing to the agents. The principal’s

value in her setting is obviously an upper bound of what the principal achieve

in our problem (and under alternative models such as (i-a) or (i-b)), but this

value can be indeed achieved under full disclosure.

The second crucial assumption of the current paper that the principal can

commit both to his mechanism and disclosure policy is arguably too strong to

be true in reality, while these are often assumed in the literature. Perhaps the

current results with a strong commitment power may be seen as a benchmark

analysis which could be useful to discuss more realistic “weaker commitment”

cases. As such, we do not have a strong argument for this strong commitment

assumption, but in what follows, we discuss a few points which suggest that

our results might possess some robust feature with respect to the commitment

assumption regarding the disclosure policy. First, even if the principal in

practice cannot fully commit to his desired disclosure policy, he may be

able to delegate information disclosure to some third-party certifier, and this

delegation (especially if it can be done before the principal observes θ) can

provide some commitment power to the principal, as often discussed in the
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industrial organization literature.

Second, even in environments where the principal has less commitment

power, our optimal disclosure policy may still show up. For example, in

the linear environment studied in Section 2 and 3, if the principal cannot

commit to his disclosure policy, then a natural guess would be that some

sort of unraveling argument (?) implies full disclosure in any equilibrium.

Then, our result shows that this full-disclosure outcome without commitment

is actually the best the principal attain even if he can commit. As a related

point, as discussed in Theorem 5, some (non-full) optimal policy also exhibits

certain monotonicity property, which suggests that, even if the principal has

weaker commitment policy, the same policy may still be implementable.

Other than those cases, in general, the optimal disclosure policy with dif-

ferent timing and / or under limited commitment can be different from our

fully-committed case. Nevertheless, we believe that the methodology devel-

oped in this paper may still be useful in deriving the optimal disclosure policy

in some of those alternative environments. As one such instance, imagine a

situation where the principal not only can engage in the public, committed

disclosure as in this paper, but also can reveal other information as in the

standard informed-principal manner, that is, the principal can make the al-

location rule contingent on even the part of θ that is not publicly disclosed,

though subject to the principal’s own incentive compatibility. This alter-

native assumption may correspond to the situation where the principal can

both use their-party public certification and engage in his own information

acquisition. In the current paper, we assume that the allocation rule cannot

depend on the part of θ that is not publicly disclosed, and in this sense, this

36



alternative assumption makes the principal weakly better off. Whether it

makes the principal strictly better off would depend on the situation, but

in either case, the methodology developed in this paper could be useful to

consider this problem. To explain the main idea, let Ψ0 denote the posterior

induced by public (committed) disclosure. Then, the principal essentially

faces a standard informed-principal problem where he can make the alloca-

tion contingent on the non-disclosed part of θ but subject to his incentive

compatibility. Let Π̃(Ψ0) denote the principal’s value of this second-stage

problem (which is in general higher than Π(Ψ0)). Once Π̃(·) is given, the

information-disclosure stage stays the same. Therefore, the qualitative as-

pect of our results would not change: (i) if this “modified Π(·)” is convex,

then full disclosure is optimal; and (ii) if it satisfies Assumption 2, then the

analysis in Section 4 would be applicable.28

28Of course, even if we consider the same economic environment, the shapes of our Π(·)
and Π̃(·)” can be different. Indeed, Example 1 in Koessler and Skreta (2016) illustrates a
single-agent environment with independent information (where our Π(·) is convex) where
the Π̃(·) is not convex.
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A Proof of Proposition 2

For the first statement, by Proposition 1, (M,G) induces (µ, (Ψm)m∈M)

such that (i) µ ∈ ∆(M), (ii) Ψm ∈ ∆(Θ) for each m ∈ M , and (iii)∫
m∈B Ψm(A)dµ =

∫
θ∈AG(B|θ)dF0 for each measurable A ⊆ Θ and B ⊆M .

Because a mapping m 7→ Ψm is measurable, for each measurable C ⊆

∆(Θ), {m ∈ M |Ψm ∈ C} is measurable. Thus, we define λ ∈ ∆(∆(Θ))

by λ(C) = µ({m ∈ M |Ψm ∈ C}) for each measurable C ⊆ ∆(Θ). Taking

B = M , Property (iii) above implies

F0(A) =

∫
m∈M

Ψm(A)dµ

=

∫
Ψ0∈∆(Θ)

Ψ0(A)dλ.

For the second statement, because ∆(Θ) is a complete, separable met-

ric space, the product-regular-conditional-probability property implies that

there exists (µ̃, (Ψ̃θ)θ∈Θ) such that (i) µ̃ ∈ ∆(Θ), (ii) Ψ̃θ ∈ ∆(∆(Θ)) for each

θ ∈ Θ, and (iii) for each measurable A ⊆ Θ and C ⊆ ∆(Θ),

∫
θ∈A

Ψ̃θ(C)dµ̃ =

∫
Ψ0∈C

Ψ0(A)dλ.

First, taking C = ∆(Θ), we obtain

µ̃(A) =

∫
Ψ0∈C

Ψ0(A)dλ

= F0(A),
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where the second equality is because of the martingale property of λ. Hence,

µ̃ = F0.

Consider (M,G) such that M = ∆(Θ) and G(·|θ) = Ψ̃θ(·). As in Propo-

sition 1, it induces (µ, (Ψm)m∈M) such that, for each measurable A ⊆ Θ and

C ⊆ ∆(Θ),

∫
m∈C

Ψm(A)dµ =

∫
θ∈A

G(C|θ)dF0

=

∫
θ∈A

Ψ̃θ(C)dµ̃

=

∫
Ψ0∈C

Ψ0(A)dλ.

Therefore, taking A = Θ, we obtain µ(C) = λ(C). Hence, µ = λ. This

implies that, for each measurable A ⊆ Θ and C ⊆ ∆(Θ),

∫
m∈C

Ψm(A)dµ =

∫
m∈C

m(A)dµ,

and thus, a mapping m 7→ Ψm must be an identity map for µ-a.e. m. That is,

for each measurable C ⊆ ∆(Θ), µ(C) = µ({m ∈ M |Ψm ∈ C}), establishing

λ(C) = µ({m ∈M |Ψm ∈ C}).

B Proof of Lemma 1

Because of independence, let F1 denote the distribution of t given any θ. Also,

Ψ1(·|t,Ψ0) reduces to Ψ0(·) for any t. Thus V ′(t̃|Ψ0) =
∫
θ∈Θ

∂v
∂t

(θ, t̃)dΨ0(θ).
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Therefore, the expected information rent is

∫
θ∈Θ

∫
t∈T

(∫ t

0

q(t̃)V ′(t̃|Ψ0)dt̃

)
dF1(t|θ)dΨ0(θ).

=

∫
θ∈Θ

∫
t∈T

(∫ t

0

q(t̃)
∂v

∂t
(θ, t̃)dt̃

)
dF1(t)dΨ0(θ),

which is linear in Ψ0.

C Proof of Theorem 1

Let Σ denote the set of all finite signed measures on Θ. Endowed with a

total variation norm (denoted by ‖ · ‖), Σ is a normed vector space, which

includes ∆(Θ) as a (norm-)closed and convex subset.

By Perlman (1974), Jensen’s inequality applies if Π is convex and norm-

continuous on ∆(Θ). Thus, we show each of those properties in the following

lemmas.

Lemma 5. Π is convex on ∆(Θ).

Proof. Fix arbitrary Ψ0,Ψ
′
0 ∈ ∆(Θ) and α ∈ (0, 1), and let Ψ′′0 = αΨ0 + (1−

α)Ψ′0. Fix ε > 0 and let q : T → [0, 1] represent an ε-optimal allocation rule

given Ψ0, i.e.,

π(q,Ψ0) ≥ Π(Ψ0)− ε.

Similarly, let q′ : T → [0, 1] (q′′ : T → [0, 1]) represent an ε-optimal

allocation rule given Ψ′0 (Ψ′′0).
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Because q′′ is monotonic, it is implementable given Ψ0 and Ψ′0. Thus, we

have

Π(Ψ0) ≥ π(q,Ψ0) ≥ Π(Ψ0)− ε ≥ π(q′′,Ψ0)− ε,

and

Π(Ψ′0) ≥ π(q,Ψ′0) ≥ Π(Ψ′0)− ε ≥ π(q′′,Ψ′0),

The weighted sum of the left-most and right-most expressions with weight

(α, 1− α) is

αΠ(Ψ0) + (1− α)Π(Ψ′0) ≥ απ(q′′,Ψ0) + (1− α)π(q′′,Ψ′0)− ε

= π(q′′,Ψ′′0)− ε

= Π(Ψ′′0)− 2ε,

where the first equality is because of linearity of π in the second argument.

Because the inequality holds for any ε > 0, we have

αΠ(Ψ0) + (1− α)Π(Ψ′0) ≥ Π(Ψ′′0),

implying that Π is convex.

Lemma 6. Π is norm-continuous on ∆(Θ), i.e., for each ε > 0, there exists

δ > 0 such that, if Ψ0,Ψ
′
0 ∈ ∆(Θ) satisfies ‖Ψ0 − Ψ′0‖ < δ,29 then |Π(Ψ0)−

Π(Ψ′0)| < ε.

29‖·‖ represents a total variation norm on Σ, i.e., for each Ψ̃0 ∈ Σ, ‖Ψ̃0‖ is the supremum
of Ψ̃0(A) among all measurable A ⊆ Θ.

41



Proof. We first show that, for any q, Π(q, ·) is norm-continuous on Σ. Ap-

plying the same argument as in the proof of the last lemma, π(q, ·) : Ψ0 7→

π(q,Ψ0) is a linear functional on a normed vector space Σ (not only on ∆(Θ)).

Moreover, it is a bounded linear functional, because for Ψ0 ∈ Σ,

|π(q,Ψ0)| ≤
∫
θ∈Θ

sup
(q,θ,t)

|qv(θ, t)− c(q, θ, t)|dΨ0(θ) ≤M‖Ψ0‖,

where M = sup(q,θ,t) |qv(θ, t)− c(q, θ, t)| is assumed to be bounded.

For an arbitrary ε > 0, let δε = ε
M

. Then, for any Ψ0,Ψ
′
0 ∈ Σ, if

‖Ψ0 −Ψ′0‖ < δε, then

|π(q,Ψ0)− π(q,Ψ′0)| = |π(q,Ψ0 −Ψ′0)|

≤ M‖Ψ0 −Ψ′0‖ < ε,

that is, Π(q, ·) is norm-continuous on Σ.

Now, contrarily to the statement, suppose that there exists ε∗ > 0 such

that, for all δ > 0, there exist Ψ0,Ψ
′
0 ∈ ∆(Θ) with ‖Ψ0 − Ψ′0‖ < δ and

Π(Ψ0) ≥ Π(Ψ′0) + ε∗. In particular, let δ = δε∗/2 = ε∗

2M
, and let Ψ0,Ψ

′
0 ∈

∆(Θ) be such that ‖Ψ0 − Ψ′0‖ < ε∗

2M
and Π(Ψ0) ≥ Π(Ψ′0) + ε∗. Note that

|π(q,Ψ0)− π(q,Ψ′0)| ≤ ε∗

2
for all nondecreasing q.

By definition of Π(Ψ0), there is nondecreasing q∗ such that π(q∗,Ψ0)+ ε∗

2
>
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Π(Ψ0). Thus,

π(q∗,Ψ′0) ≥ π(q∗,Ψ0)− ε∗

2

> Π(Ψ0)− ε∗

≥ Π(Ψ′0),

which contradicts that, for any nondecreasing q, we must have Π(Ψ′0) ≥

π(q,Ψ′0).

With these lemmas, Π∗ admits Jensen’s inequality in the sense that, for

each Ψ0 ∈ ∆(Θ),

L(Ψ0) ≡
∫
θ∈Θ

Π(δθ)dΨ0(θ) ≥ Π(Ψ0).

For each λ ∈ ∆(∆(Θ)) such that
∫

Ψ0∈∆(Θ)
Ψ0(·)dλ = F0(·), because L(·)

is linear,

∫
Ψ0∈∆(Θ)

Π(Ψ0)dλ ≤
∫

Ψ0∈∆(Θ)

L(Ψ0)dλ

= L(

∫
Ψ0∈∆(Θ)

Ψ0dλ)

= L(F0)

=

∫
θ∈Θ

Π(δθ)dF0(θ),

implying optimality of full disclosure.
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D Proof of Lemma 2

First, because q is monotone, letting q−1(x) = inf{t|q(t) ≥ x},

R(q,Ψ0) = lim
K→∞

K∑
k=1

∫ 1

t=q−1( k
K

)

V ′(t|Ψ0)

∫
θ∈Θ

(1− F1(t|θ))dΨ0(θ)dt.

Let Rτ (Ψ0) =
∫ 1

t=τ
V ′(t|Ψ0)

∫
θ∈Θ

(1− F1(t|θ))dΨ0(θ)dt. Then,

Rτ (Ψ0) = −V (τ |Ψ0)

∫
θ∈Θ

(1− F1(τ |θ))dΨ0(θ) +

∫ 1

τ

V (t|Ψ0)

∫
θ∈Θ

f1(t|θ)dΨ0(θ)dt

= −V (τ |Ψ0)

∫
θ∈Θ

(1− F1(τ |θ))dΨ0(θ) +

∫ 1

τ

∫
θ∈Θ

v(θ, t)f1(t|θ)dΨ0(θ)dt,

where the second equality is by definition of V (t|Ψ0).

Similarly,

∫
θ∈Θ

Rτ (δθ)dΨ0(θ) =

∫
θ∈Θ

−v(θ, τ)(1− F1(τ |θ))dΨ0(θ) +

∫
θ∈Θ

∫ 1

τ

v(θ, t)f1(t|θ)dtdΨ0(θ).

Therefore,

Rτ (Ψ0)−
∫
θ∈Θ

Rτ (δθ)dΨ0(θ)

=

∫
θ∈Θ

v(θ, τ)(1− F1(τ |θ))dΨ0(θ)− V (τ |Ψ0)

∫
θ∈Θ

(1− F1(τ |θ))dΨ0(θ)

=

∫
θ∈Θ

v(θ, τ)(1− F1(τ |θ))dΨ0(θ)−

(∫
θ∈Θ

v(θ, τ)f1(τ |θ)dΨ0(θ)∫
θ∈Θ

f1(τ |θ)dΨ0(θ)

)∫
θ∈Θ

(1− F1(τ |θ))dΨ0(θ)

=

[
Eθ|τ [v(θ, τ)

1− F1(τ |θ)
f1(τ |θ)

]− Eθ|τ [v(θ, τ)]Eθ|τ [
1− F1(τ |θ)
f1(τ |θ)

]

](∫
θ∈Θ

f1(τ |θ)dΨ0(θ)

)
≥ 0,
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where in the second last line,

Eθ|τ [·] =

∫
θ∈Θ

(·)f1(τ |θ)dΨ0(θ)∫
θ∈Θ

f1(τ |θ)dΨ0(θ)

represents expectation with respect to Ψ1(·|t,Ψ0). The last inequality is

because v(θ, τ) and 1−F1(τ |θ)
f1(τ |θ) are both increasing in θ.30

E Proof of Theorem 2

We only provide a sketch of the proof because it is mostly analogous to that

of Theorem 1.

For each nondecreasing q, define π̃(q,Ψ0) by

π̃(q,Ψ0) =

∫
θ∈Θ

∫
t

q(t)v(θ, t)− c(q(t), θ, t)dF1(t|θ)dΨ0(θ)−
∫
θ∈Θ

R(q, δθ)dΨ0(θ),

and Π̃(Ψ0) as the supremum of π̃(q,Ψ0) among all feasible q. Then, π̃(q,Ψ0) ≥

π(q,Ψ0) for all feasible q, and Π̃(Ψ0) ≥ Π(Ψ0), where the equality is obtained

(for both of these inequalities) if Ψ0 = δθ for some θ.

Because π̃(q,Ψ0) is linear in Ψ0, as in the proof of Theorem 1, we can show

that Π̃(Ψ0) is convex and norm-continuous on ∆(Θ). Thus, applying Jensen’s

30See Schmidt (2014).
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inequality, for each λ ∈ ∆(∆(Θ)) such that
∫

Ψ0∈∆(Θ)
Ψ0(·)dλ = F0(·), we have

∫
Ψ0∈∆(Θ)

Π(Ψ0)dλ ≤
∫

Ψ0∈∆(Θ)

Π̃(Ψ0)dλ

≤
∫
θ∈Θ

Π̃(δθ)dF0(θ)

=

∫
θ∈Θ

Π(δθ)dF0(θ),

implying optimality of full disclosure.

F Proof of Theorem 4

To prove the theorem, we show that there exist θ∗, θ∗∗ with θ∗ < 1 < θ∗∗

such that a strictly higher expected surplus can be achieved than under

full disclosure if the principal (i) fully discloses when θ /∈ (θ∗, θ∗∗) and (ii)

discloses nothing when θ ∈ (θ∗, θ∗∗). More specifically, for this second case,

the principal offers a posted-price mechanism so that the full-trade outcome is

implemented, where the implementability is implied by the following lemma.

Lemma 7. There exist θ1 < 1 < θ2 and τ : [θ1, 1] → [1, θ2] such that (i)

τ(θ1) = θ2 and τ(1) = 1, and (ii) for each θ ∈ (θ1, 1),
∫ τ(θ)

θ
ρ(θ)dF0(θ) = 0.31

Proof. Take θ1 < 1 so that
∫ θ
θ1
ρ(θ)dF0(θ) > 0. Because

∫ θ
1
ρ(θ)dF0(θ) > 0,

by continuity, such θ1 exists.

Then, again by continuity, for each θ ∈ [θ1, 1), we can take τ(θ) > 1 so

that
∫ τ(θ)

θ
ρ(θ)dF0(θ) = 0. Finally, we let θ2 = τ(θ1).

31Recall ρ(θ) ≡ v2(θ, 0)− v1(θ, 1) defined in Assumption 1.
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Let θ∗ ∈ (θ1, 1) and θ∗∗ = τ(θ∗). Suppose that the principal does not

disclose any information when θ ∈ (θ∗, θ∗∗). Then the full-trade outcome,

q(t) = 1 for all t, is implementable by setting −p1(t) = p2(t) = E[v1(θ, 1)|θ ∈

(θ∗, θ∗∗)] for all t.

Recall that Π1(θ) =
∫
t∈T (v2(θ, t2)− v1(θ, t1)) dFT (t) represents the ex-

pected surplus in state θ under the full-trade outcome. It is not the first-best

efficient outcome when θ < 1, but we show that, if θ is sufficiently close to

1, then such a full-trade outcome is better than the best outcome under full

disclosure. More specifically, we show the following lemma.

Lemma 8. There exist θ∗ ∈ (θ1, 1) and a continuous function ζ : (θ∗, 1) →

R++ such that, for each θ ∈ (θ∗, 1),

Π(δθ) ≤ Π1(θ)− ζ(θ),

where δθ represents a Dirac measure on θ.

Proof. Fix θ ∈ (θ1, 1) arbitrarily. The Lagrangian of the problem of Π(δθ) is

∫
t

(1 + λ)(v2(θ, t2)− v1(θ, t1)− λ
(
∂v2

∂t2
(θ, t2)

1− F2(t2)

f2(t2)
+
∂v1

∂t1
(θ, t1)

F1(t1)

f1(t1)

)
q(t)dFT (t).

Therefore, given λ ≥ 0, the pointwise maximization of the Lagrangian

yields q(t) = 1 if

v2(θ, t2)− v1(θ, t1) ≥ λ

1 + λ

(
∂v2

∂t2
(θ, t2)

1− F2(t2)

f2(t2)
+
∂v1

∂t1
(θ, t1)

F1(t1)

f1(t1)

)
,

and q(t) = 0 otherwise.

Note that such q satisfies the monotonicity (i.e., nonincreasing in t1 and
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nondecreasing in t2) because of Assumption 1. Therefore, the optimal q is

determined by identifying the smallest λ such that the constraint is satisfied,

which we denote by λ(θ). As shown by Myerson and Satterthwaite (1983),

the Lagrangian multiplier for the budget constraint, λ(θ), is strictly positive

and approaches 0 as θ ↑ 1.

Let β(θ) be the supremum value of t1 such that q(t1, 0) = 1 given λ(θ).

Assumption 1 implies that there exists θ3 > 0 such that β(θ) > 0 for any

θ ∈ (θ3, 1). In the following, θ is always taken in this range.

For each t1, let α(θ, t1) be the infimum value of t2 such that q(t1, t2) = 1.

Then,

v2(θ, α(t1, θ)) = v1(θ, t1) +
λ(θ)

1 + λ(θ)

(
∂v2

∂t2
(θ, t2)

1− F2(t2)

f2(t2)
+
∂v1

∂t1
(θ, t1)

F1(t1)

f1(t1)

)
∈
[
v1(θ, 11) +

λ(θ)

1 + λ(θ)

b1

b2

F1(β(θ3)), v1(θ, t1) +
λ(θ)

1 + λ(θ)

2b2

b1

]
,

and similarly,

v1(θ, β(θ)) ∈
[
v2(θ, 0)− λ(θ)

1 + λ(θ)

2b2

b1

, v2(θ, 0)− λ(θ)

1 + λ(θ)

b1

b2

F1(β(θ3))

]
,

Because v2(θ, α(t1, θ)) ∈ [v2(θ, 0)+b1α(t1, θ), v2(θ, 0)+b2α(t1, θ)], we have

α(t1, θ) ∈ [α(t1, θ), α(t1, θ)], where

α(t1, θ) ≤
(
v1(θ, t1) +

λ(θ)

1 + λ(θ)

2b2

b1

− v2(θ, 0)

)
1

b1

,

α(t1, θ) ≥
(
v1(θ, t1) +

λ(θ)

1 + λ(θ)

b1

b2

F1(β(θ3))− v2(θ, 0)

)
1

b2

.

Similarly, because v1(θ, β(θ)) ∈ [v1(θ, 1) − b2(1 − β(θ)), v1(θ, 1) − b1(1 −
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β(θ))], we have β(θ) ∈ [δ(θ), δ(θ)], where

1− δ(θ) ≤
(
−v2(θ, 0) +

λ(θ)

1 + λ(θ)

2b2

b1

+ v1(θ, 1)

)
1

b1

,

1− δ(θ) ≥
(
−v2(θ, 0) +

λ(θ)

1 + λ(θ)

b1

b2

F1(β(θ3)) + v1(θ, 1)

)
1

b2

.

Let B(θ, t) = v2(θ, t2) − v1(θ, t1) −
(
∂v2

∂t2
(θ, t2)1−F2(t2)

f2(t2)
+ ∂v1

∂t1
(θ, t1)F1(t1)

f1(t1)

)
.

Let θ be sufficiently close to 1 so that B(θ, t) < 0 at t = (δ(θ), α(1, θ)). This

is possible because B is continuous in (θ, t) and B(1, (0, 1)) < 0. Then,

0 ≤
∫ 1

β(x)

∫ 1

α(t1,x)

B(x, t)dF2(t2)dF1(t1) +

∫ β(x)

0

∫ 1

0

B(x, t)dF2(t2)dF1(t1)

=

∫ 1

0

∫ 1

0

B(θ, t)dFT (t) +

∫ 1

β(x)

∫ α(t1,x)

0

(−B(x, t))dF2(t2)dF1(t1)

≤ ρ(θ) +

∫ 1

δ(x)

∫ α(x,t1)

0

(
2b2

b1

− ρ(θ))b2
2 dt2dt1

≤ ρ(θ) +
b2

2

b2
1

(
2b2

b1

− ρ(θ)

)(
λ(θ)

1 + λ(θ)

2b2

b1

− ρ(θ)

)2

,

where the equality is because
∫ 1

0

∫ 1

0
B(1, t)dFT (t) = 0, the second inequality

is because −B is positive and increasing in (t1,−t2), for all t ≥ (δ(x), α(1, x)).

Therefore,

λ(θ)

1 + λ(θ)
≥ b1

2b2

(
ρ(θ) +

b1

b2

√
−ρ(θ)b1

2b2 − ρ(θ)b1

)
.

Because ρ(θ) ∈ [(θ − 1)b1, (θ − 1)b2], the inequality above implies the

following. We omit the proof because it is straightforward.
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Lemma 9. There exists θ4 ∈ (θ3, 1) such that, for all θ ∈ (θ4, 1),

1− δ(θ) ≥ φ
√

1− θ,

α(t1, θ) ≥ φ
√

1− θ − 1 + t1,

where φ =
b21F1(β(θ3))

2b42

√
b21

2b2+b1b2(1−θ3)
(> 0).

Finally, letting y =
√

1− θ, we have

Π1(θ)− Π(δθ) ≥
∫ 1

δ(θ)

∫ α(t1,θ)

0

(v2(θ, t2)− v1(θ, t1))dF2(t2)dF1(t1)

≥
∫ 1

1−φy

∫ t1−1+φy

0

(−b2y
2 + b1(t2 − t1 + 1))dF2(t2)dF1(t1)

≥ −1

2
b3

2y
4φ2 + b3

1

∫ 1

1−φy

∫ t1−1+φy

0

(t2 − t1 + 1)dt2dt1

=
y3φ2

6

(
2b3

1φ− 3b3
2y
)
,

which is strictly positive if y is sufficiently close to 0. Therefore, there exists

θ∗ ∈ (θ4, 1) such that, for all θ ∈ (θ∗, 1), we have

ζ(θ) ≡ y3φ2

6

(
2b3

1φ− 3b3
2y
)
> 0,

where ζ is obviously continuous for θ ∈ (θ∗, 1).

With this lemma, we complete the proof of the theorem as follows. As

described above, consider a disclosure policy such that the principal (i) fully

discloses when θ /∈ (θ∗, θ∗∗) and (ii) discloses nothing when θ ∈ (θ∗, θ∗∗). For

case (i), the principal offers the same mechanism as under full disclosure. For
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case (ii), the principal implements the full-trade outcome by a posted-price

mechanism so that Π1(θ) is achieved. Then, the ex ante expected surplus

under this disclosure policy is higher than under full disclosure by

∫ 1

θ∗
(Π1(θ)− Π(δθ))dF0(θ) ≥

∫ 1

θ∗
ζ(θ)dF0(θ) > 0.

G Proof of Lemma 3

(i) Fix x ∈ [θ, θ] arbitrarily, and let Ψ0 ∈ ∆(Θ) be such that x =
∫
θ∈Θ

θdΨ0(θ).

The principal’s mechanism design problem is given by

Π(Ψ0) = sup
χ:T→X

∫
t∈T

u0(χ(t), x, t)dFT (t)

sub. to ∀i, ti, t′i,∫
t−i∈T−i

ui(χ(t), x, t)dF−i(t−i)

≥ max{0,
∫
t−i∈T−i

ui(χ(t′i, t−i), x, t)dF−i(t−i)}.

Because the right-hand side depends on Ψ0 only through x, we have

Π(Ψ0) = Π(Ψ′0) if
∫
θ∈Θ

θdΨ0(θ) =
∫
θ∈Θ

θdΨ′0(θ).

(ii) Let σ = Pr(s = 1) be the (marginal) probability for s = 1. For each

θ, let

ξ(θ) =
σf 1

0 (θ)

σf 1
0 (θ) + (1− σ)f 0

0 (θ)

be the conditional probability for s = 1 given θ.

51



Let θ = 0, θ = 1, and fix x ∈ [0, 1] arbitrarily. Let Ψ0 ∈ ∆(Θ) be such

that x =
∫
θ∈Θ

ξ(θ)dΨ0(θ). Given Ψ0, agent i’s posterior for s = 1 with type

ti is

xf 1
i (ti)

xf 1
i (t) + (1− x)f 0

i (ti)
,

which we denote by σi(x, ti).

Then, the principal’s mechanism design problem is given by

Π(Ψ0) = sup
χ:T→X

∫
t∈T

[xu0(χ(t), 1, t)f 1
T (t) + (1− x)u0(χ(t), 0, t)f 0

T (t)]dt

sub. to ∀i, ti, t′i,∫
t−i∈T−i

[σi(x, ti)ui(χ(t), 1, t)f 1
−i(t−i) + (1− σi(x, ti))ui(χ(t), 0, t)f 0

−i(t−i)]dt−i

≥ max{0,
∫
t−i∈T−i

[σi(x, ti)ui(χ(t′i, t−i), 1, t)f
1
−i(t−i)

+(1− σi(x, ti))ui(χ(t′i, t−i), 0, t)f
0
−i(t−i)]dt−i}.

Because the right-hand side depends on Ψ0 only through x, we have

Π(Ψ0) = Π(Ψ′0) if
∫
θ∈Θ

ξ(θ)dΨ0(θ) =
∫
θ∈Θ

ξ(θ)dΨ′0(θ).

H Proof of Theorem 5

The first key step of the proof of the theorem is to observe that our problem is

to choose F that is less riskier than F0 in the sense of Rothschild and Stiglitz

(1970) (i.e., F has the same mean as F0, and F second-order stochastically

dominates F0).
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Lemma 10.

Π∗ = sup
F∈∆(Θ)

∫
x∈[θ,θ]

Π(x)dF (x)

sub. to

∫ x

θ

F (y)dy ≤
∫ x

θ

F0(y)dy, ∀x∫ θ

θ

F (y)dy =

∫ θ

θ

F0(y)dy.

A version of this Lemma (and its explanation based on the riskiness of

Rothschild and Stiglitz (1970)) appears in Gentzkow and Kamenica (2015).32

The key intuition is the following. Imagine that the principal recommends

the posterior mean x ∈ [θ, θ] according to a distribution F in an “honest”

way, that is, after Bayesian updating, the (principal’s) posterior mean con-

ditional on recommendation x is indeed x. This means that E[θ|x] = x,

which implies: (i) by taking expectation with respect to x ∼ F on both

sides, we obtain E[θ] = E[x]; and (ii) the distribution of θ, F0, is second-

order stochastically dominated by the distribution of x, F . Property (i)

is equivalent to
∫ θ
θ
F (y)dy =

∫ θ
θ
F0(y)dy, and Property (ii) is equivalent to∫ x

θ
F (y)dy ≤

∫ x
θ
F0(y)dy for all x.

Proof. First, we show that Π∗ is not lower than the right-hand side value of

the statement. Take any F that is feasible in the right-hand side problem.

As in Rothschild and Stiglitz (1970), if x ∼ F , there exists a random variable

ε such that E[ε|x] = 0 and (x + ε) ∼ F0. Now, let Ψx
0 ∈ ∆(Θ) denote the

conditional distribution for (x+ ε)|x. Define λ ∈ ∆(∆(Θ)) so that, for each

32See also Kolotilin et al. (2015).
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measurable A ⊆ ∆(Θ),

λ(A) =

∫
x∈[θ,θ]

1{Ψx
0 ∈ A}dF (x).

Then, for each measurable B ⊆ Θ,

∫
Ψ0∈∆(Θ)

Ψ0(B)dλ =

∫
x∈[θ,θ]

Ψx
0(B)dF (x) = F0(B),

and hence, this λ is feasible in the original problem (presented right after

Proposition 2 in Section 2.3).

Moreover,

∫
Ψ0∈∆(Θ)

Π(Ψ0)dλ =

∫
x∈[θ,θ]

Π(Ψx
0)dF (x) =

∫
x∈[θ,θ]

Π(x)dF (x),

and therefore, the value of the original problem (i.e., Π∗) is not lower than

the right-hand side value above.

Next, we show that the right-hand side value is not lower than Π∗. Take

any λ that is feasible in the original problem. Define F so that, for y ∈ [θ, θ],

F (y) =

∫
Ψ0∈∆(Θ)

1{eΨ0 ≤ y}dλ,

where eΨ0 =
∫
z∈[θ,θ]

zdΨ0(z).
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Thus, for any x ∈ [θ, θ], we have

∫ x

θ

(F0(y)− F (y))dy =

∫ x

θ

∫
Ψ0∈∆(Θ)

(Ψ0([θ, y])− 1{eΨ0 ≤ y}) dλdy

=

∫
Ψ0∈∆(Θ)

(∫ x

θ

Ψ0([θ, y])dy −
∫ x

min{x,eΨ0
}

1dy

)
dλ.

For each x ≤ eΨ0 , it is nonnegative because min{x, eΨ0} = x. For x = θ,

it is zero because

∫ θ

θ

Ψ0([θ, y])dy = 1−
∫
y∈[θ,θ]

ydΨ0(y) = 1− eΨ0 ,∫ 1

min{θ,eΨ0
}

1dy = 1− eΨ0 .

For x ∈ (eΨ0 , θ), it is nonnegative because

∫ x

θ

Ψ0([θ, y])dy −
∫ x

min{x,eΨ0
}

1dy = 0−
∫ θ

x

(Ψ0([θ, y])− 1)dy ≥ 0.

Therefore, this F is feasible in the new problem.

Moreover,

∫
Ψ0∈∆(Θ)

Π(Ψ0)dλ =

∫
Ψ0∈∆(Θ)

Π(eΨ0)dλ =

∫
x∈[θ,θ]

Π(x)dF (x),

and therefore, the value of the new problem (i.e., the right-hand side value

in the statement) is not lower than the value of the original problem (i.e.,

Π∗).

In the rest of this section, we sketch the proof idea of the theorem under
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the stronger assumption that Π is twice continuously differentiable on [θ, θ]

(so Π′ and Π′′ exist everywhere and are continuous on [θ, θ]).33 Hence, in what

follows, without loss of generality, we assume that Π′′(x) ≥ 0 on (xk−1, xk)

for each k odd, and Π′′(x) ≤ 0 on (xk−1, xk) for each k even. For the general

case (with Assumption 2), see Supplementary Materials (Section L).

Let H0(x) =
∫ x
θ
F0(y)dy for x ∈ [θ, θ]. The following lemma further

rewrites the problem, by viewing H(·) =
∫ (·)
θ
F (y)dy as a choice variable,

instead of F (·) itself. The proof is omitted.

Lemma 11.

Π∗ = sup
H:Θ→R

Π(θ)− Π′(θ)H0(θ) +

∫ θ

θ

Π′′(x)H(x)dx

sub. to H(x) ≤ H0(x), ∀x,

H(θ) = H0(θ) = 0, H(θ) = H0(θ),

H is convex,
H(x)−H(x′)

x− x′
∈ [0, 1], ∀x > x′.

The first two lines of the constraints are because F is less riskier than

F0. The last line of the constraints is because H is obtained by integrating

a cdf F : because F is nondecreasing, H must be convex; and because F

takes a value between 0 and 1, the slope of H must be between 0 and 1.

Finally, the objective is obtained by applying integration-by-parts (twice)

on
∫ θ
θ

Π(x)dF (x).34 Because the first two terms in the new objective are

constants, we consider maximization of
∫ θ
θ

Π′′(x)H(x)dx.

We can solve this problem in two steps. First, fix an arbitrary vector

33As a convention, we define a function’s derivative at x = 0 (x = 1) by its right (left)
derivative.

34For the validity of integration-by-parts, see the proof in the appendix.
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{hk}Kk=0 such that there exists a feasible Ĥ with Ĥ(xk) = hk for each k. As

the first step, we consider a constrained problem where the principal chooses

H that is feasible and satisfies H(xk) = hk for k = 0, . . . , K. Then, as the

second step, we optimize the first-step value function with respect to {hk}Kk=0.

We define the following H̃ : [θ, θ] → R. First, H̃(xk) = hk for all k.

Second, for each k odd, H̃ coincides with the largest convex function that is

below both H0 and affine function:

ξ
k

: x 7→ hk − hk−1

xk − xk−1

(x− xk−1) + hk−1.

Let f0 = 0, fK = 1, and for each k = 3, . . . , K − 1 odd, let fk−1 =

H̃ ′(xk−1 + 0) and fk = H̃ ′(xk − 0). Finally, for each k even and each x ∈

(xk−1, xk), H̃(x) = ξk(x), where:

ξk : x 7→ max{hk+1 − fk+1(xk+1 − x), hk + fk(x− xk)}.

Lemma 12. H̃ is feasible. Moreover, for any feasible H such that H(xk) =

hk for k = 0, . . . , K, we have

∫ θ

θ

Π′′(x)H(x)dx ≤
∫ θ

θ

Π′′(x)H̃(x)dx,

that is, H̃ solves the first-step problem.

Proof. First, we show that H̃ is feasible.

Claim 1: H̃ ≤ H0.

It is obvious by construction for x ∈ [xk−1, xk] on which Π is convex. For
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x ∈ [xk−1, xk] on which Π is concave, we have

H0(x) ≥ Ĥ(x) ≥ ξk(x) = H̃(x).

Claim 2: H̃(θ) = H0(θ) and H̃(θ) = H0(θ).

We have H̃(θ) = h0 = H0(θ) and H̃(θ) = hK = H0(θ).

Claim 3: H̃(x)−H̃(x′)
x−x′ ∈ [0, 1] for x > x′.

Fix x, x′ with θ ≤ x′ < x ≤ θ. By construction, clearly we have

H̃(x)−H̃(x′)
x−x′ ≥ 0. In order to show the other inequality, let k ∈ {1, . . . , K}

be such that x ≤ xk. Then:

H̃(x)− H̃(x′)

x− x′
≤ fk ≤ fK = 1.

Claim 4: H̃ is convex.

For each open subinterval (xk−1, xk), H̃ is clearly convex. Thus, we com-

plete the proof of the claim by showing that H̃ is convex around each bound-

ary point xk, k = 1, . . . , K− 1. This is indeed true, because H ′(xk+) ≥ fk ≥

H ′(xk−).

Next, we show that H̃ is optimal. If there exists H that is feasible in

the first-step problem and strictly better than H̃, either (i) there exist k odd

and x ∈ (xk−1, xk) such that H(x) > H̃(x), or (ii) there exist k even and

x ∈ (xk−1, xk) such that H(x) < H̃(x).
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If (i) holds with convex H with H ≤ H0, then H ≤ ξ
k

is violated, because

H̃ is the largest convex function that is below both H0 and ξ
k
. Then, we have

either H(xk−1) 6= hk−1 or H(xk) 6= hk, which contradicts that H is feasible

in the first-step problem.

If (ii) holds with convex H, then H ′(xk−1+) < fk−1 or H ′(xk−) > fk.

Again, it contradicts that H is feasible in the first-step problem.

In conclusion, H̃ is optimal in the first-step problem.

The lemma implies that, for any {hk}Kk=0 fixed in a feasible way, the

solution to the first-step problem satisfies the following property: there exist

L ≤ K and disjoint open sub-intervals {Il}Ll=1 such that (i) H̃ is piecewise-

linear on each Il and H̃(x) < H0(x) for x ∈ Il, and (ii) H̃(x) = H0(x)

otherwise. Thus, for the optimal F ∗ in the original problem (obtained by

the right derivative of H̃ given the optimal choice of {hk}Kk=0) there exist

L ≤ K and disjoint open sub-intervals {Il}Ll=1 such that (i) F ∗(x) is piecewise

constant and
∫ x
θ
F ∗(y)dy <

∫ x
θ
F0(y)dy for each l and each x ∈ Il, and (ii)

F ∗(x) = F0(x) and
∫ x
θ
F ∗(y)dy =

∫ x
θ
F0(y)dy otherwise.

So far, the optimal F ∗ is partially characterized by examination of the

first step of the problem, i.e., with arbitrarily fixed {hk}Kk=0. Next, we show

that optimal choice of {hk}Kk=0 implies that F ∗ can have at most two jumps

on each interval Il (on which F ∗ is piecewise constant).

Contrarily, suppose that F ∗ has three or more (but finitely many) jumps

on some interval Il.
35 Consider any three consecutive jump points, c1, c2, c3 ∈

Il with c1 < c2 < c3 (i.e., F ∗(cκ−) < F ∗(cκ) = F ∗(cκ+1−) for each κ). Define

35The previous argument implies that the first-step optimal H̃ can have at most one
kink on each interval (xk, xk−1), and thus, H̃ can have at most finitely many kinks overall.
That is, the optimal F ∗ can have at most finitely many jumps.
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F̃ as follows:

F̃ (x) =


F ∗(c1) + ε if x ∈ [c1, c2),

F ∗(c2)− c2−c1
c3−c2 ε if x ∈ [c2, c3),

F ∗(x) otherwise.

Notice that
∫ c3
c1
F̃ (x)dx =

∫ c3
c1
F ∗(x)dx. Thus, for sufficiently small ε > 0, F̃

is feasible.36 F̃ attains the principal’s expected payoff higher than F ∗ does

by the following amount:

(
Π(c1)− c2 − c1

c3 − c2

Π(c2)

)
ε.

Thus, if this is strictly positive, then it contradicts that F ∗ is optimal. So

assume that it is non-positive. If this is strictly negative, however, we again

obtain a contradiction, by considering an alternative F̂ as follows:

F̂ (x) =


F ∗(c1)− ε if x ∈ [c1, c2),

F ∗(c2) + c2−c1
c3−c2 ε if x ∈ [c2, c3),

F ∗(x) otherwise.

Therefore, we must have c2−c1
c3−c2 Π(c2) = Π(c1). In this case, F ∗ and F̂ attain

exactly the same expected payoff for the principal, and this is true for any

ε > 0 as long as the corresponding F̂ is feasible. Let ε = min{ε1, ε2}(> 0),

where ε1 solves F̂ (c1) = F̂ (c1−) and ε2 solves F̂ (c3) = F̂ (c3−). In either

36Because F ∗ has finitely many jumps, for sufficiently small ε > 0, F̃ is a cdf; in
particular, non-decreasing. Also, because

∫ x
θ
F ∗(x)dx <

∫ x
θ
F0(x)dx for all x ∈ Il, for

sufficiently small ε > 0,
∫ x
θ
F̃ (x)dx <

∫ x
θ
F0(x)dx. Finally, we clearly have

∫ θ
θ
F ∗(x)dx =∫ θ

θ
F0(x)dx.
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case with ε = ε1 or ε = ε2, the corresponding F̂ is feasible, and has a strictly

smaller number of jumps on Il than the original F ∗. We can continue this

process of reducing jumps in Il without changing the value of the objective,

until at most two jumps exist in Il.

Finally, we construct (M,G) that implements F ∗, exhibits binary lower

truncation on each Il, and exhibits full-disclosure otherwise. Let M = Θ,

and let G({θ}|θ) = 1 if θ /∈ Il for any l.

For each Il where F ∗ has only one jump (say at z∗), we have z∗ =∫ b
a θdF0(θ)

F0(b)−F0(a)
due to the requirement that F ∗ and F0 have the same mean. Thus,

on this Il, we consider a binary lower truncation policy with (arbitrary y ∈ Il
and) w = 1: G({z1}|θ) = 1 for all θ ∈ Il. This is essentially a full-pooling

policy on Il, implying that (M,G) implements F ∗ on Il.

Finally consider each Il(= (a, b)) where F ∗ has two (non-trivial) jumps,

say at z1 and z2. Note that F0(a) = F ∗(a) < F ∗(z2) = F ∗(b) = F0(b), and

that z1 <
∫ b
a θdF0(θ)

F0(b)−F0(a)
< z2 due to the requirement that F ∗ and F0 have the

same mean. First, we define y ∈ (a, F−1
0 (F ∗(z1)))37 by

∫ y

a

θdF0(θ) + z2(F ∗(z1)− F0(y))− z1(F ∗(z1)− F0(a)) = 0.

To see that y is well-defined, notice that, as a function of ỹ,

∫ ỹ

y0

xdF0(x) + z2(F ∗(z1)− F0(ỹ))− z1(F ∗(z1)− F0(a))

is continuous, strictly positive at ỹ = a,38 and strictly negative at ỹ =

37Note that z1 > a and F ∗(a) = F0(a) imply F−1
0 (F ∗(z1)) > F−1

0 (F0(a)) = a; and that
z1 < b and F ∗(b) = F0(b) imply F−1

0 (F ∗(z1)) < F−1
0 (F0(b)) = b.

38If ỹ = a, we have (z2 − z1)(F ∗(z1)− F0(a)) > 0.
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F−1
0 (F ∗(z1)),39 which means that a root of this function exists in (y0, F

−1
0 (F ∗(z1))).

Next, we define w by

w =
F ∗(z1)− F0(y)

F0(b)− F0(y)
.

Consider a binary lower truncation policy on Il = (a, b) identified by y

and w such that

G({z1}|θ) =

 1 if θ ∈ (a, y),

w if θ ∈ (y, b),

and G({z2}|θ) = 1− w for θ ∈ (y, b), where we can verify that

zj =


∫ y
a θdF0(θ)+

∫ b
y wθdF0(θ)∫ y

a 1dF0(θ)+
∫ b
y wdF0(θ)

if j = 1,∫ b
y θdF0(θ)∫ b
y 1dF0(θ)

if j = 2.


(

= E[θ|zj is announced]
)
.

Observe that this (M,G) implements F ∗ on Il = (a, b), because in the ex

39If ỹ = F−1
0 (F ∗(z1)), then ỹ < b because F0(ỹ) = F ∗(z1) < F ∗(b). Thus,∫ F−1

0 (F∗(z1))

a
F0(x)dx >

∫ F−1
0 (F∗(z1))

a
F ∗(x)dx = (z1 − a)F0(a) +

∫ F−1
0 (F∗(z1))

z1
F ∗(x)dx,

which implies ∫ F−1
0 (F∗(z1))

a

xdF0(x)− z1(F ∗(z1)− F0(a))

= F ∗(z1)(F−1
0 (F ∗(z1))− z1) + (z1 − a)F0(a)−

∫ F−1
0 (F∗(z1))

a

F0(x)dx

<

∫ F−1
0 (F∗(z1))

z1

F ∗(z1)− F ∗(x)dx ≤ 0.
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ante perspective, z1 is announced with probability

∫ y

a

1dF0(θ) +

∫ b

y

wdF0(θ) = F ∗(z1)− F ∗(a),

and z2 is announced with probability

∫ b

y

(1− w)dF0(θ) = F0(b)− F ∗(z1) = F ∗(z2)− F ∗(z1).

I Proof of Lemma 4

Given that t follows an independent uniform distribution on [0, 1], the second-

best trading rule satisfies q(t) = 1 if

(t2 + x− t1)(1 + λ(x)) ≥ (1− t2 + t1)λ(x)

⇔ t2 + x− t1 ≥
(1 + x)λ(x)

1 + 2λ(x)
≡ η(x),

where λ(x) is the Lagrange multiplier of the problem of Π(x), and q(t) = 0

otherwise. The first-best efficiency is achieved if and only if η(x) = 0, and

the size of η(x) represents inefficiency of the second-best trading.

We first characterize η(x) for each x ∈ R. By Myerson and Satterthwaite

(1983), η(x) = 0 if and only if x ≤ −1 or x ≥ 1 (called the “gap” cases),

where the first-best efficiency is achieved by a simple posted-price mechanism,

implying Π(x) = 0 for x ≤ −1 and Π(x) = E[v2 + x − v1] = x for x ≥ 1.

Thus, in the following, we consider the other case with x ∈ (−1, 1), where

η(x) must be strictly positive.

Recall that λ(x) (and hence η(x)) is determined to satisfy the budget-
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balance constraint with equality. Given arbitrarily given η > 0, consider a

trading rule such that q(t) = 1 if t2 + x − t1 ≥ η, and q(t) = 0 otherwise.

The budget surplus is then

B(x, η) =

∫
t∈T

(2t2 − 2t1 + x− 1)q(t)dt

=


0 if η ≥ 1 + x,

(1 + x− η)2(1+x−η
3
− 1+x−2η

2
) if η ∈ [x, 1 + x),

x− 1 + (1−x+η)2(5+x−4η)
6

if η ∈ (0, x).

With respect to η, B is continuously differentiable and has single-crossing.

We have

η(x) R x⇔ B(x, x) Q 0⇔ x Q
1

3
.

Case (I): x ∈ (−1, 1
3
).

In this case, we have

(1 + x− η(x))2(
1 + x− η(x)

3
− 1 + x− 2η(x)

2
) = 0,

and hence, η(x) = 1+x
4

.

We obtain Π(x) = 9(1+x)3

64
, and therefore, Π(x) is convex in this region.

Π′ and Π′′ exist and continuous in this region, and moreover, limx↓−1 Π′(x) =

limx↓−1 Π′(x) = 0, and hence, Π′ and Π′′ are continuous at x = 0 too. At the

other extreme point, limx↑ 1
3

Π′ = 3
4

and limx↑ 1
3

Π′′ = 9
8
.

Case (II): x ∈ (1
3
, 1).
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In this case, we have

x− 1 +
(1− x+ η(x))2(5 + x− 4η(x))

6
= 0,

and hence, we do not have a closed-form expression for η(x).

To simplify the expression, let z(x) = 1 − x + η(x) ∈ (0, 1). Then the

budget-balance condition becomes

x =
9z(x)2 − 4z(x)3 − 6

3z(x)2 − 6
.

By the implicit function theorem, we have

z′(x) =
−3(2− z(x)2)2

4(z(x)4 − 6z(x)2 + 6z(x))
< 0,

z′′(x) =
−9(2− z(x)2)3

8(z(x)4 − 6z(x)2 + 6z(x))3
(−2z(x)3 + 9z(x)2 − 12z(x) + 6) < 0,

z′′′(x) =
−27(2− z(x)2)4

32(z(x)4 − 6z(x)2 + 6z(x))5
6(1− z(x))2(z(x)4(2− z(x))2 + 24(1− z(x))2 + 12) < 0.

The expected social surplus is

Π(x) =

∫ 1

t1=0

∫ 1

t2=0

t2 + x− t1dt−
∫ 1

t1=1−z(x)

∫ t1−(1−z(x))

t2=0

t2 + x− t1dt

= x− z(x)2(z(x) + x− 1)

2
+
z(x)3

6
,
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and thus, under the budget-balance condition,

Π(x) =
9z(x)2 − 4z(x)3 − 6

3z(x)2 − 6
− z(x)2(z(x) + x− 1)

2
+
z(x)3

6

=
z(x)3

6
− z(x)2 + 1.

To examine the shape of Π, let T (z) = z3

6
− z2 + 1 for z ∈ (0, 1). Then,

T ′(z) = z2 − 2z, T ′′(z) = 2z − 2, T ′′′(z) = 2, and

Π′(x) = T ′(z(x))z′(x),

Π′′(x) = T ′′(z(x))(z′(x))2 + T ′(z(x))z′′(x),

Π′′′(x) = T ′′′(z(x))(z′(x))3 + 3T ′′(z(x))z′(x)z′′(x) + T ′(z(x))z′′′(x).

Hence, limx↓ 1
3

Π′(x) = 3
4
, limx↑1 Π′(x) = 1, limx↓ 1

3
Π′′(x) = 9

8
, and limx↑1 Π′′(x) =

−∞. Therefore, Π′ exists and continuous for x ∈ [1
3
, 1]. Π′′ exists and con-

tinuous for x ∈ [1
3
, 1), but Π′′(1−) = −∞ 6= 0 = Π′′(1+).

Finally, observe that

Π′′′(x) = T ′′′(z(x))(z′(x))3 + 3T ′′(z(x))z′(x)z′′(x) + T ′(z(x))z′′′(x)

=
−27(2− z(x)2)4z(x)2

32(z(x)4 − 6z(x)2 + 6z(x))5
[1 +

(1− z(x))(71(1− 2z(x))2 + 67z(x) + 579z(x)2(1− z(x))2

+z(x)3(401− 217z(x)2 − 9z(x)3 − z(x)5 − z(x)6) + 44z(x)4 + 21z(x)7)]

< 0,
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which means that there exists a unique x̂ ∈ (1
3
, 1) such that

Π′′(x) Q 0⇔ x R x̂.

A numerical search suggests x̂ ' 0.87.

J Proof of Proposition 3

Because Π′ exists everywhere and is absolutely continuous, we can rewrite

the objective function as
∫ 1

0
Π′′(x)H(x)dx (plus a constant). Because Π(x)

is convex for x < x̂ and concave for x > x̂ (hence, we have K = 2), our

“first-step” problem is to find the optimal H such that H(x̂) = h1, where h1

is arbitrarily fixed (up to feasibility, which implies h1 ≤ H0(x̂) (= x̂2

2
) and

h1 ≥ x̂− 1
2
). The “second-step” problem is optimization with respect to h1.

Applying Theorem 5, the solution of the first-step problem, denoted by

H̃, is given as follows. Letting x̃ = x̂−
√
x̂2 − 2h1,

H̃(x) =

 H0(x) (= x2

2
) if x < x̃,

max{x̃(x− x̂) + h1, x− 1
2
} if x > x̃.

Geometrically, x̃ is the point at which H0 is supported by the affine

function that (i) supports H0 on the left of x = x̂ and (ii) takes value h1 at

x = x̂.

The second step would be then to maximize the first-step value function

with respect to h1, and the corresponding x̃ would be x∗ in the statement.

As an example, assume that a ≤ −1 and b ≥ 3. In what follows, however,
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instead of working on the first-step value function, we rather characterize

x∗ directly in the original problem. Let Π̂(x) be the expected surplus if the

principal adopts the upper-censorship policy that (i) truthfully discloses the

realized θ if θ < x, and (ii) discloses nothing if θ > x. By the analysis above,

we know that the optimal value of x, x∗, is not greater than x̂. Thus,

Π̂(x) =


x+b

2
b−x
b−a if x ≤ −1,

1
b−a

[∫ x
−1

9
64

(1 + y)3dy + x+b
2

(b− x)
]

if x ∈ (−1, x̂],

which implies that x∗ is not lower than −1.

Therefore, our problem reduces to the following:

max
x∈[−1,x̂]

1

b− a

[∫ x

−1

9

64
(1 + y)3dy +

x+ b

2
(b− x)

]
,

and we obtain x∗ = 1
3
.
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Supplementary Materials

(not for publication)

K Two remarks on the full-disclosure results

Remark 1. Regarding Theorem 1–3, the assumptions of linearity and private

values can be weakened to some extent (though not completely dispensable).

We briefly see that, in the multi-agent framework studied in Section 3.1, the

same result is obtained if either (i) ui(χ, θ, t) = zi(q, t−i)yi(θ, ti) − pi, (ii)

ui(χ, θ, t) = zi(q, θ, t−i)yi(ti)− pi, or (iii) ui(χ, θ, t) = zi(q, t)yi(θ)− pi. Case

(i) is a direct generalization of the one used in the main text, allowing for

externalities in q and interdependence, as long as those are multiplicably

separated from yi(θ, ti). Either ti or θ (but not both) can be moved into zi

instead of yi, leading to Case (ii) or (iii).

For (i), agent i’s incentive compatibility is equivalent to combination of

(a) (interim) monotonocity:

Et−i
[zi(q(ti, t−i), t−i)] is nondecreasing in ti,

and (b) envelope formula:

Et−i,θ[zi(q(t), t−i)yi(θ, ti)− pi(t)]

= Et−i,θ[zi(q(0, t−i), t−i)yi(θ, ti)− pi(0, t−i)]

+

∫ ti

0

Et−i
[zi(q(0, t−i), t−i)

∂yi
∂ti

(θ, t̃i)]dt̃i,
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where expectation with respect to θ is based on a posterior Ψ0.

Therefore, the set of implementable q does not vary with Ψ0 and the

information rent is linear in Ψ0, which implies optimality of full disclosure.

We omit the other cases (ii) and (iii).

Remark 2. Although this paper only considers Bayesian incentive compat-

ibility, the same sort of exercise is possible for other solution concepts, and

the optimal disclosure strategy naturally varies with the underlying solution

concept. For example, we may consider ex post incentive compatibility with

respect to the agents’ types, i.e., each agent i finds truth-telling optimal re-

gardless of the other agents’ type realization, t−i. On the other hand, we still

keep the assumption that the principal has a full control over disclosure of θ

and can design the agents’ posterior about θ.40

To provide a more concrete idea, consider an interdependent-value auction

environment where each i’s utility is qivi(θ, t) − pi with ∂vi
∂ti

> 0. Then, ex

post incentive compatibility (with respect to t) means, for each i, ti, t
′
i, t−i,

qi(ti, t−i)Eθ[vi(θ, ti, t−i)]− pi(ti, t−i) ≥ qi(t
′
i, t−i)Eθ[vi(θ, ti, t−i)]− pi(t′i, t−i),

where expectation with respect to θ is based on a posterior Ψ0.

40Although this “double standard” in the agents’ informational assumption may look
strange, there exist some situations where this assumption is relevant. For example, imag-
ine the same Bayesian environment as in the main model (both in terms of θ and t),
but assume that each agent i can engage in covert information acquisition about the
other agents types t−i. Yamashita (2016) shows that, if the principal does not know
the agents’ information acquisition technology and hence desires to maximize his worst-
case (or “guaranteed”) expected payoff across all possible information structures, then the
optimal mechanism must satisfy ex post incentive compatibility with respect to t−i.
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Again, this is equivalent to combination of (a) ex post monotonicity:

qi(ti, t−i) is nondecreasing in ti,

and (b) envelope formula:

qi(t)Eθ[vi(θ, t)]− pi(t)

= qi(0, t−i)Eθ[vi(θ, 0, t−i)]− pi(0, t−i)

+

∫ ti

0

qi(t̃i, t−i)Eθ[
∂vi(θ, t̃i, t−i)

∂ti
]dt̃i.

Therefore, the set of implementable q does not vary with Ψ0 and the

information rent is linear in Ψ0, which implies optimality of full disclosure.

L Proof of Theorem 5 (general case)

Even without continuity or differentiability of Π or Π′, the problem can be

rewritten by changing the choice variable from F (a cdf) to H (an integrate

of a cdf), but with a more complicated expression of the objective function.

First, we provide a formal proof for a version of integration by parts as

an application of Fubini theorem.41

Lemma 13. For a, b ∈ R with a < b, let h : (a, b) → R be absolutely

continuous with derivative h′ (which exists almost everywhere), and F :

41The proof is based on Border (2016).

75



R→ [0, 1] be a cdf. Then,

∫
x∈(a,b)

h(x)dF (x) = h(b−)F (b−)− h(a+)F (a)−
∫
x∈(a,b)

h′(x)F (x)dx.

Proof. Consider two independent random variables x ∼ U(a, b) and y ∼ F .

Let µ denote the joint distribution for (x, y). Let φ : (a, b)2 → R be such

that φ(x, y) = 1{x ≤ y}h′(x). Then,

∫
(x,y)∈(a,b)2

|φ(x, y)|dµ(x, y) ≤
∫

(x,y)∈(a,b)2

|h′(x)|dµ(x, y) ≤
∫
x∈(a,b)

|h′(x)|dx <∞,

where the last inequality is because h′ is integrable. This validates an appli-

cation of Fubini theorem for φ, which implies

∫
x∈(a,b)

∫
y∈[x,b)

h′(x)dF (y)dx =

∫
y∈(a,b)

∫
x∈(a,y]

h′(x)dxdF (y).

The left-hand side equals

∫
x∈(a,b)

h′(x)(F (b−)− F (x))dx = (h(b−)− h(a+))F (b−)−
∫
x∈(a,b)

h′(x)F (x)dx,

and the right-hand side equals

∫
y∈(a,b)

(h(y)− h(a+))dF (y) =

∫
y∈(a,b)

h(y)dF (y)− h(a+)(F (b−)− F (a)).

Therefore,

∫
y∈(a,b)

h(y)dF (y) = h(b−)F (b−)− h(a+)F (a)−
∫
x∈(a,b)

h′(x)F (x)dx.
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Let H0(x) =
∫ x
θ
F0(y)dy for each x. The following lemma corresponds to

Lemma 11 in the main body.

Lemma 14.

Π∗ = sup
H:[θ,θ]→R

Π(θ) +

∫ θ

θ

Π′′(x)H(x)dx+
K∑
k=1

[
H ′(xk−1+)(Π(xk−1)− Π(xk−1+))

+H ′(xk−)(Π(xk−)− Π(xk))−H(xk)Π
′(xk−) +H(xk−1)Π′(xk−1+)

]
sub. to H(x) ≤ H0(x), ∀x,

H(θ) = H0(θ) = 0, H(θ) = H0(θ),

H is convex,
H(x)−H(x′)

x− x′
∈ [0, 1], ∀x > x′.

Proof. It suffices to show that the new objective is the same as that of the

77



original problem with H(·) =
∫ (·)
θ
F (x)dx and H0(·) =

∫ (·)
θ
F0(x)dx. Indeed:

∫
x∈[θ,θ]

Π(x)dF (x)

=
K∑
k=1

(∫
x∈(xk−1,xk)

Π(x)dF (x) + Π(xk)(F (xk)− F (xk−))

)

=
K∑
k=1

(
Π(xk−)F (xk−)− Π(xk−1+)F (xk−1)

+Π(xk)(F (xk)− F (xk−))−
∫
x∈(xk−1,xk)

Π′(x)F (x)dx

)

= Π(θ) +
K∑
k=1

(
F (xk−1)(Π(xk−1)− Π(xk−1+)) + F (xk−)(Π(xk−)− Π(xk))

−Π′(xk−1+)(H(xk)−H(xk−1))− (Π′(xk−)− Π′(xk−1+))H(xk)

+

∫
x∈(xk−1,xk)

Π′′(x)H(x)dx

)

= Π(θ) +

∫ 1

0

Π′′(x)H(x)dx+
K∑
k=1

[
H ′(xk−1+)(Π(xk−1)− Π(xk−1+))

+H ′(xk−)(Π(xk−)− Π(xk))−H(xk)Π
′(xk−) +H(xk−1)Π′(xk−1+)

]
.

Note that upper-semi-continuity of Π implies Π(xk−1) − Π(xk−1+) ≥ 0

and Π(xk−)− Π(xk) ≤ 0.

We can solve this problem in two steps. First, fix arbitrarily {hk, f−k , f
+
k }Kk=0

such that there exists a feasible Ĥ with Ĥ(xk) = hk, Ĥ
′(xk−) = f−k , and

Ĥ ′(xk+) = f+
k , for each k. As the first step, we consider a constrained

problem where the principal chooses H that is feasible and satisfies, for

k = 0, . . . , K, (i) H(xk) = hk, H
′(xk−) ≤ f−k , and H ′(xk−1+) ≥ f+

k−1 if Π′ is
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nondecreasing on the interval (xk−1, xk), and (ii) H(xk) = hk, H
′(xk−) = f−k ,

and H ′(xk−1+) = f+
k−1 if Π′ is nonincreasing on the interval (xk−1, xk). Then,

as the second step, we optimize the first-step value function with respect to

{hk, f−k , f
+
k }Kk=0. In what follows, we only consider the first step, because the

rest of the proof is the same as in the twice-continuously differentiable case

demonstrated in the main text.

For the first-step problem, we define the following H̃ : [θ, θ] → R. First,

H̃(xk) = hk for all k. Second, for each interval (xk−1, xk) where Π′ is nonde-

creasing, H̃ coincides with the largest convex function that is below both H0

and affine function:

ξ
k

: x 7→ hk − hk−1

xk − xk−1

(x− xk−1) + h(xk−1).

Finally, for each interval (xk−1, xk) where Π′ is nonincreasing, for each

x ∈ (xk, xk+1), H̃(x) = ξk(x), where:

ξk : x 7→ max{hk+1 − f+
k+1(xk+1 − x), hk + f−k (x− xk)}.

Lemma 15. H̃ is feasible. Moreover, for any feasible H such that H(xk) =

hk for k = 0, . . . , K, we have

∫ θ

θ

Π′′(x)H(x)dx ≤
∫ θ

θ

Π′′(x)H̃(x)dx,

that is, H̃ solves the first-step problem.

Proof. First, we show that H̃ is feasible.

Claim 1: H̃ ≤ H0.
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It is obvious by construction for x ∈ [xk−1, xk] on which Π is convex. For

x ∈ [xk−1, xk] on which Π is concave, we have

H0(x) ≥ Ĥ(x) ≥ ξk(x) = H̃(x).

Claim 2: H̃(θ) = H0(θ) and H̃(θ) = H0(θ).

We have H̃(0) = h0 = H0(0) and H̃(1) = hK = H0(1).

Claim 3: H̃(x)−H̃(x′)
x−x′ ∈ [0, 1] for x > x′.

Fix x, x′ with θ ≤ x′ < x ≤ θ. By construction, clearly we have

H̃(x)−H̃(x′)
x−x′ ≥ 0. In order to show the other inequality, let k ∈ {1, . . . , K}

be such that x ≤ xk. Then:

H̃(x)− H̃(x′)

x− x′
≤ f+

K ≤ 1.

Claim 4: H̃ is convex.

For each open subinterval (xk−1, xk), H̃ is clearly convex. Thus, we com-

plete the proof of the claim by showing that H̃ is convex around each bound-

ary point xk, k = 1, . . . , K−1. This is indeed true, because H ′(xk+) ≥ f+
k ≥

f−k ≥ H ′(xk−).

Next, we show that H̃ is optimal. If there exists H that is feasible in the

first-step problem and strictly better than H̃, there exist k and x ∈ (xk−1, xk)

such that, either (i) Π is convex on (xk−1, xk) and H(x) > H̃(x), or (ii) Π is
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concave on (xk−1, xk) and H(x) < H̃(x).

If (i) holds with convex H with H ≤ H0, then H ≤ ξ
k

is violated, because

H̃ is the largest convex function that is below both H0 and ξ
k
. Then, we have

either H(xk−1) 6= hk−1 or H(xk) 6= hk, which contradicts that H is feasible

in the first-step problem.

If (ii) holds with convex H, then H ′(xk−1+) < f−k−1 or H ′(xk−) > f+
k .

Again, it contradicts that H is feasible in the first-step problem.

In conclusion, H̃ is optimal in the first-step problem.

The lemma implies that, for any {hk, f−k , f
+
k }Kk=0 fixed in a feasible way,

the solution to the first-step problem satisfies the following property: there

exist L ≤ K and disjoint open sub-intervals {Il}Ll=1 such that (i) H̃(x) is

piecewise-linear on each Il and H̃(x) < H0(x), and (ii) H̃(x) = H0(x)

otherwise. Thus, for the optimal F ∗ in the original problem, there exist

L ≤ K and disjoint open sub-intervals {Il}Ll=1 such that (i) F ∗(x) is piecewise-

constant and
∫ x
θ
F ∗(y)dy <

∫ x
θ
F0(y)dy for each l and each x ∈ Il, and (ii)

F ∗(x) = F0(x) and
∫ x
θ
F ∗(y)dy =

∫ x
θ
F0(y)dy otherwise.

Moreover, the total number of kinks in H̃ is not greater than 2K, because,

as is obvious in the construction of H̃, H̃ can kink at most once on each

(xk−1, xk), and may kink on each boundary point xk. Therefore, the total

number of jumps in F ∗ is not greater than 2K either (and hence is bounded).

The rest of the proof is the same as in the previous case with twice-

continuously differentiable Π, and hence is omitted.
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M Example 2: Employment with correlated

information

We consider a single-agent environment where the agent’s information t and

the principal’s information θ are correlated. As we show in Section 2.4, if

v(θ, t) is increasing in both of the arguments and (θ, t) are affiliated, then

full disclosure is optimal. If they are negatively correlated — or equivalently

up to relabeling, if v(θ, t) is increasing in (θ,−t) (i.e., decreasing in t) and

(θ, t) are affiliated — then full disclosure can be suboptimal. In such a case,

Theorem 5 is proved to be useful in identifying the optimal disclosure policy.

Imagine that the agent is a potential employee of a firm owned by the

principal. If the agent is hired, the principal earns 1, while the agent incurs

cost 1−s, where s ∈ {0, 1} may be interpreted as an unobserved match value

between the principal and the agent. The (marginal) probability for s = 1 is

3
4
. The principal has a noisy signal θ about s, which is distributed according

to density 2(1 − θ) conditional on s = 0, and according to density 2
3
(1 + θ)

conditional on s = 1. Then we have E[s|θ] = Pr[s = 1|θ] = 1+θ
2

, and θ is

marginally distributed according to a uniform distribution over [0, 1].

If not hired, the agent enjoys the outside option 1+t
6

, where t ∈ {1, 2, 3}

is the agent’s private information and correlated with s as follows:42

42Rigorously, this example does not fit into the previous analysis because t is discrete.
However, the difference is not essential. Similar results hold by replacing the pdf of t by
its pmf.
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Pr(t, s) s = 0 s = 1

t = 1 1
15

1
10

t = 2 3
20

9
20

t = 3 1
30

1
5

Note that (s, t) are affiliated, and in particular, E[s|t] is strictly increasing

in t. Imagine that an employee with a higher match value with an employer

is more likely to have a high match value with another employer too. The

affiliation of s and t captures such positive relationship of the agent’s match

values with the principal (s) and with the other employers (summarized by

the agent’s outside option t). Conditional on s, we assume that (θ, t) are

independent.

An allocation is given by a pair (q, p), where q ∈ [0, 1] represents the

probability of hiring, and p represents the payment from the principal to

the agent. Then, the principal’s payoff is q − p, and the agent’s payoff (net

the reservation payoff t) is p− q(1− s+ t), where 1− s denotes the agent’s

(material) cost, and t denotes his opportunity cost. Observe that the agent’s

valuation for employment is increasing in s but decreasing in t. Equivalently,

if we interpret τ = −t as the agent’s private information, then the agent’s

valuation for employment is increasing in (s, τ), while (s, τ) are negatively

correlated. Thus, as observed previously, the optimal disclosure policy may

not be full-disclosure.

Given any message from the principal which implies that the (t-unconditional)

posterior for s = 1 is x, the agent’s posterior for s = 1 given (x and) his type
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t is as follows:

E[s|x, t] =


1+x
3−x if t = 1

1+x
2

if t = 2

2+2x
3+x

if t = 3

and thus, the payment necessary to hire the agent with type t is, conditional

on x,

1− E[s|x, t] +
1 + t

6
=


4
3
− 1+x

3−x if t = 1

3
2
− 1+x

2
if t = 2

5
3
− 2+2x

3+x
if t = 3.

Therefore, the optimal mechanism for each x is given in the following

lemma. The proof is omitted.

Lemma 16. Given x, the optimal mechanism (qx(·), px(·)) satisfies the fol-

lowing: letting x∗ = 9−
√

65
2

(' 0.47),

• (i) for x < x∗, qx(t) = 1 and px(t) = 5
3
− 2+2x

3+x
for all t, yielding the

expected payoff 4x
9+3x

for the principal (conditional on x);

• (ii) for x > x∗,

(qx(t), px(t)) =

 (1, 3
2
− x) if t = 1, 2

(0, 0) if t = 3,

yielding the expected payoff x(12−x)
30

for the principal (conditional on

x).
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Therefore, it is concave for x < x∗, and again concave for x > x∗. At x∗,

it is kinked “upward”, making it not globally concave.

To provide a more economic intuition, notice that the concavity of the

principal’s expected payoff in each of the two regions above means that the

principal would prefer less disclosure if the mechanism was fixed. This is

because, as in Section 2.4, in case (θ, t) are negatively correlated (and v1

is increasing in (θ, t)), or equivalently up to relabelling, in case (θ, t) are

positively correlated and v1 is increasing in (θ,−t), then more disclosure

means higher expected information rent.

On the other hand, because the optimal mechanism changes with x, this

flexibility makes the principal favor more disclosure. Indeed, the kink in the

above lemma is because the optimal mechanism drastically changes at this

point. In this sense, mechanism design plays a crucial role in this problem.

Therefore, in the optimal policy, information is “minimally disclosed” so

that such flexibility in the mechanism choice is attained, and in each region

where the same mechanism is optimal, no information is to be disclosed.

Proposition 4. There exist (y∗, w∗; z∗1 , z
∗
2 , p
∗) ' (0.34, 0.30, 0.35, 0.67, 0.54)

such that the following binary lower truncation policy (M,G) is optimal:

M = [0, 1], and

• for θ ∈ (0, y∗),

G({z∗1}|θ) = 1,
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• for θ ∈ (y∗1, 1),

G({z∗1}|θ) = w∗,

G({z∗2}|θ) = 1− w∗,

which implements F ∗ such that

F ∗(x) =


0 if x < z∗1 ,

p∗ if x ∈ [z∗1 , z
∗
2),

1 if x ≥ z∗2 .

Proof. First, applying Theorem 5, the principal’s objective is rewritten as

follows:

11

30
+ Π′(x∗)H(x∗) +

∫ 1

0

Π′′(x)H(x)dx.

Because Π′′(x) is negative for any x ∈ (0, x∗), (x∗, 1), there exist z1 ∈

[0, x∗], z2 ∈ [x∗, 1] such that the optimal H∗ is a (continuous and convex)

piecewise-linear function with kinks potentially at z1 and z2.43 That is, there

43Another potential kink is at x∗, but we can easily see that it is suboptimal to have a
kink at x∗. Indeed, if any feasible H admits a non-trivial kink exists at x∗, then we have
H ′(x∗+)(x−x∗)+H(x∗) < 0 = H ′(x∗−)(x−x∗)+H(x∗) at x = z1. In this case, consider
an alternative H̃ such that

H̃(x) =

{
max{0, H ′(x∗+)(x− x∗) +H(x∗)}(< H(x)) if x ∈ (z1, x

∗),
H(x) if x /∈ (z1, x

∗),

which is strictly better than H.
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exists p ∈ [0, 1] such that

H∗(x) = max{0, p(x− z1), x− (1− p)z2 − pz1},

where feasibility of H∗ implies p(x−z1) ≤ x2

2
for all x, and 1−(1−p)z2−pz1 =

1
2
. Or equivalently, p ≤ 2z1 and (1− p)z2 + pz1 = 1

2
.

The optimal F ∗ ∈ ∆([0, 1]) is hence written as

F ∗(x) =


0 if x < z1

p if x ∈ [z1, z2)

1 if x ≥ z2.

Therefore, our (originally infinite-dimensional) problem becomes the fol-

lowing two-dimensional problem:

Π∗ = max
z1,z2,p

4z1

9 + 3z1

p+
z2(12− z2)

30
(1− p)

sub. to pz1 + (1− p)z2 =
1

2
, z1 ≤ x∗ ≤ z2, p ≤ 2z1.

We first ignore all the inequality constraints and solve that relaxed prob-

lem. Then, we confirm that the solution satisfies the ignored inequalities,

and hence it is the solution to the problem above.

Let (z∗1 , z
∗
2 , p
∗) denote the solution to the relaxed problem. First, slightly

perturbing the solution by (dz1, dz2, dp) where p∗dz1 + (1− p∗)dz2 = dp = 0

must not improve the objective, and thus:

4

(3 + z1)2
=

6− z∗2
15

.
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Second, slightly perturbing the solution by (dz1, dz2, dp) where (z∗1 − z∗2)dp+

p∗dz1 = dz2 = 0 must not improve the objective, and thus:

4z1

9 + 3z1

− z2(12− z2)

30
+ (z∗2 − z∗1)

4

(3 + z1)2
= 0.

Applying these two necessary conditions and the constraint that pz1 +

(1 − p)z2 = 1
2
, the (relaxed) problem is a one-dimensional optimization,

which is solved in a standard manner. The solution of this relaxed problem

is (z∗1 , z
∗
2 , p
∗) ' (0.35, 0.67, 0.54), and it is easy to see that all the inequal-

ity constraints in the original problem are satisfied with strict inequalities.

Therefore, this is also the solution to the original problem. The value of the

objective is Π∗ ' 0.19.

Finally, the optimal binary lower-truncation policy is identified by solving

for (y, w) so that it induces H∗. We omit this step which is straightforward.
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