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Abstract. This article considers inference in linear models with dX regressors, some or many of which

could be endogenous, and dZ instrumental variables (IVs). dZ can range from less than dX to any order

smaller than an exponential in the sample size. For moderate dX , identification robust confidence sets are

obtained by solving a hierarchy of semidefinite programs. For large dX , we propose the STIV estimator.

The analysis of its error uses sensitivity characteristics introduced in this paper. Robust confidence

sets are derived by solving linear programs. Results on rates of convergence, variable selection, and

confidence sets which “adapt” to the sparsity are given. Generalizations include models with endogenous

IVs and systems of equations with approximation errors. We also analyse confidence bands for vectors

of linear functionals and functions using bias correction. The application is to a demand system with

approximation errors, cross-equation restrictions, and thousands of endogenous regressors.

1. Introduction

The high-dimensional paradigm concerns inference in models where the number of regressors
dX is large relative to the number of observations n. A challenging situation is when dX is much larger
than n (dX � n) but there is an unknown small set of important regressors. This can happen for
various reasons. Researchers increasingly have access to large datasets and theory is often silent on the
correct choice of regressors. The number of observations can be limited because data is costly to obtain,
because there simply exist few units (e.g., countries or states), or because the researcher is interested
in a stratified analysis. Even if the relevant regressors are known, it is atypical to know the functional
form, and so functions of regressors can be included. It is then tempting to use many functions to
incur a small approximation error. A model can also be low-dimensional with questionable instrument
exogeneity, which one justifies with control variables, giving rise to a second model where the instru-
ment is exogenous but there is an additional nonparametric function. In social effects models with
unobserved networks, individual and peer outcomes can be determined simultaneously, peer identities
are unobserved, and the number of peers can be small if link formation is costly. Multiple treatment
models can also exhibit high-dimensionality, for example if there are group level heterogeneous effects
and many groups.
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The usual econometrics toolbox and fixed dX large n asymptotic framework are not appropriate
when there is high-dimensionality. Comparing models for all subsets of regressors is impossible when
dX is moderately large. The high-dimensional literature proposes methods that are computationally
feasible. For high-dimensional regression, the Lasso ([31]) replaces the penalty on the number of nonze-
ros in the parameter by its`1-norm. The Dantzig Selector of [16] is a linear program.

To address endogeneity in a cross-section, researchers usually rely on instrumental variables
(henceforth IVs). This paper concerns the high-dimensional linear structural model where some or
many regressors are endogenous but the structural parameter β is sparse, meaning it has few nonzero
entries, or approximately sparse, meaning it is well approximated by a sparse vector. It allows for a
number of IVs dZ � n but of any order less than exp(n). It also allows for dZ < dX when β is sparse.

If there are weak and/or many IVs, inference based on asymptotic approximations can fail even
if dX is small. Strong IVs are often scarce, particularly when there are many endogenous regressors.
For these reasons, this paper pays particular attention to robustness to identification and finite sample
validity. We make use of a `∞-norm statistic derived from the moment condition. This is close in spirit
to identification robust test inversion in which the exogeneity is the null hypothesis and a confidence
set is formed by all parameters which are not rejected. The Anderson-Rubin test is one such example.
In practice, tests are conducted over a grid, which is only feasible for small dX . This paper does not
rely on grids but on various well-structured convex relaxations (linear, conic or semidefinite), hence
on polynomial time optimization routines. Our approach does not rely on sparsity or approximate
sparsity of a high-dimensional first-stage (as in two-stage least-squares, henceforth 2SLS). It does not
estimate a first-stage reduced form to allow for uniformity in the first-stage coefficients.

Our main contributions are as follows. First, we provide confidence sets for a vector of functions
of β. Some of our confidence sets are uniform over identifiable parameter vectors and the distribu-
tion of the data among classes which leave the dependence structure between the regressors and IVs
unrestricted, implying robustness to identification. Second, we propose the Self Tuned Instrumental
Variables (henceforth STIV) estimator, and establish error bounds and rates of convergence. These are
based on stronger assumptions, including on features of the joint distribution of the regressors and IVs.
The STIV estimator can also be a pilot (first-stage) estimator. We use it to perform variable selection
and obtain confidence sets which adapt to the sparsity. We also use it to conduct joint inference on
approximately linear functions of β based on a data-driven bias correction, itself obtained with a vari-
ant of STIV. Our extensions are to models where a few IVs can be endogenous, to systems of models
with approximation errors (hence nonparametric IV) and cross-equation restrictions. The proposed
methods jointly estimate standard errors of the structural error or of the moments, making the tuning
parameters data-driven. This paper restricts attention to linear moments for computational reasons.

2. Preliminaries

Notations. The symbol , means is defined as. Inequality between vectors is defined entrywise.
(ek)k∈[dX ] is the canonical basis of RdX and (fl)l∈[dZ ] for RdZ , Md,d′ the set of d × d′ matrices, and
0 (resp. 1) sometimes denote a vector of 0 (resp. 1). For 1 ≤ p ≤ ∞ and a matrix ∆, |∆|p is the
`p-norm of the vectorized ∆. ∆f,k is the element at row f and column k, ∆f,· (resp. ∆·,k) is the

f th row (resp. column) of ∆. For S ⊆ [d] × [d′], |S| is its cardinality and Sc its complement. For
∆ ∈ Md,d′ , let S(∆) = {(k, l) ∈ [d] × [d′] : ∆k,l 6= 0} be the support of ∆, and, for S ⊆ [d] × [d′], we

define ∆S , (∆k,l1l{(k, l) ∈ S})k∈[d],l∈[d′]. For a ∈ R, we set a+ , max(0, a). We use the conventions

a/0 =∞ for a > 0.
The data comprises outcomes Y ∈ Rn, regressors X ∈ Mn,dX , and IVs Z ∈ Mn,dZ . P is the

distribution of the data and E[·] the expectation under P. The set SI ⊆ [dX ] collects the indices of
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the regressors included in the list of IVs and SQ ⊆ [dX ] of size dQ collects the indices of the regres-
sors for which the relevance is questionable. The vector ϕ(β) of functions of β on which we make
inference has dimension dF . Some results are asymptotic in n → ∞ in which case dZ , dX , dQ, dF ,
and s can increase with n. For d ∈ N and a random matrix R ∈ Mn,d, the sample and population

means are En[R] ,
∑

i∈[n] Ri,·/n and E[R] ,
∑

i∈[n] E [Ri,·] /n and, for k ∈ [d] and p ≥ 0, En
[
Rpk
]

and E
[
Rpk
]

are obtained by replacing Ri,k by Rp
i,k, DR is the diagonal matrix in Md,d with entries

En
[
R2
k

]−1/2
for k ∈ [d] and we write DR for the population counterpart. We define the function

b ∈ RdX → U(b) , Y − Xb ∈ Rn. For b ∈ RdX , P(b) is the distribution of (X,Z,U(b)) implied

by P. We write Ψ̂ , DZZ>XDX/n, and Ψ , DZE[ZX>]DX . For a mean zero random variable A,

σA , E[A2]1/2.

Baseline Model. The linear IV model is

∀i ∈ [n], E
[
Z>i,·Ui(β)

]
= 0(2.1)

β ∈ B, P(β) ∈ P,(2.2)

where B ⊆ RdX can account for restrictions on β and P is a nonparametric class. We write ∀i ∈ [n]
in (2.1) is because the data need not be identically distributed. The set I collects the vectors which
satisfy (2.1)-(2.2). The researcher believes there exists a true structural parameter β∗ ∈ I. Because I
might not be a singleton, our results (e.g., confidence sets) are for all β ∈ I, so they hold for β = β∗.

Sparsity Certificate. We call a sparsity certificate an a priori bound s ∈ [dQ] on the sparsity.

To make this explicit, we maintain the original B and write Is , I ∩
{
β ∈ RdX : |S(β) ∩ SQ| ≤ s

}
.

This is the set of s-sparse identifiable parameters. Clearly, for s ≤ s′ ≤ dQ, Is ⊆ Is′ ⊆ IdQ = I.
Let us present, for i.d. data, two conditions under which a sparsity certificate yields identification.
Assume dZ < dX (e.g., one is uncertain about some exclusion restrictions as in [23]), SQ = [dX ],

B = {γ ∈ RdX : q = Rγ} for q ∈ RdR and R> ∈MdX ,dR of rank dR. When dZ +dR+dQ−s > dX , (2.1)

yields
(
dZ+dR+dQ−dX

s

)
overdetermined systems and identification is achieved if there exists a solution for

only one system and it is unique. When B = RdX , a sufficient condition is an extension of a condition
in [16]: Is is a singleton if all sub-matrices formed from 2s columns of E[ZX>] have full column rank
(see [22]).

The `∞-norm statistic. Our confidence sets and estimators use slacked versions of (2.1) based

on the statistic t̂(b) ,
∣∣D(b)Z>U(b)

∣∣
∞ /n for b ∈ RdX . The diagonal matrix D(b) is introduced for scale

invariance and to obtain finite sample results. It is either; (1) the diagonal matrix with positive diagonal

elements 1/σ̃l(b) for l ∈ [dZ ], where σ̃l(b)
2 , En

[
(ZlU(b))2

]
, or (2) DZ/σ̂(b) where σ̂(b)2 , En[U(b)2].

We use, for β ∈ I, the events

G0 ,
{
t̂(β) ≤ r0(n)

}
(in case (1)) and G ,

{
t̂(β) ≤ r̂

}
(in case (2)).

For a chosen confidence level α, r0(n) (resp. r̂) is adjusted so that P(G0) ≥ 1 − α − αB(n) (resp.
P(G) ≥ 1 − α − αB(n)), where αB(n) is the coverage error, uniformly over P and β ∈ I. The ex-
pressions of r0(n), r̂, and αB(n), for 5 large classes P are given in Section A.1.1. These restrict the
joint distribution of Z and U(β), classes 1-4 allow for conditional heteroscedasticty, and all leave the
dependence between X and Z unrestricted. For classes 1-3 we have αB(n) = 0. A reference behavior

for r0(n) is
√

ln(dZ)/n, so the price to pay for many IVs is modest. The reference behaviour of r̂ is
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slightly larger than for r0(n), e.g., with an extra logarithmic factor.

Examples. In each of the following examples, the data is i.i.d., the regressors and IVs have
mean zero and variance 1, SQ = [dX ], and B = RdX .
Example E1. All regressors are endogenous (SI = ∅) and uncorrelated with one another. For β ∈ I,
regressors with index k ∈ S(β) are correlated with lk ∈ [dZ ] IVs, with correlations ρj,k for j = 1, . . . , lk,

and ρk , maxj∈[lk] |ρj,k| > 0. IVs correlated with regressor k are uncorrelated with all other regressors.
This example permits dZ < dX . A particular case of Example E1 with a geometric decay rate of the

entries of ρ is Example O2 in (v5), where the regressors are functions of X̃i and the IVs are functions

of Z̃i. If additionally E[ZZ>] = I, then Ψ> is the best linear predictor of the regressors given the
instruments, and the support of its rows of index in S(β) do not overlap.
Example E2. The last regressor is endogenous (ScI = {dX}), Ψ = (I ρ), and there is no excluded IV

(dZ = dX − 1). In this example the support of the rows of Ψ> overlap.

Roadmap. The paper is organized to progressively strengthen the assumptions. Here, we
demonstrate our methods with the simplifications SQ = [dX ], DX = DX = I, the data is i.i.d. and, for

i ∈ [n] and β ∈ I, Ui(β)|Z>i,· is normally distributed with mean 0 and known variance σ2. Our results

do not require any of these. The simplifications permit us to use D(b) of type (2) replacing σ̂(b) with σ

and r̂ = r = −Φ−1(α/(2dZ))/
√
n, which is smaller than

√
ln(2dZ/α)/n when 2

√
edZ ≥ α. This gives

coverage error αB(n) = 0 for G.
Suppose that the functional of interest is ϕ(b) = b. Given a sparsity certificate s, a natural

starting point is to obtain bounds by minimizing and maximizing the entries of b ∈ RdX subject to
t̂(b) ≤ r and |S(b)| ≤ s. This is the principle underlying the SNIV confidence sets presented in Section
3. Supersets based on convex relaxations can be computed when dX is up to around 100. For larger dX
the researcher can find b ∈ RdX which minimizes |b|1 subject to t̂(b) ≤ r. A solution to this problem,

denoted β̂, is a type of STIV estimator, which we introduce in Section 4. It can be computed for very
large dX and, is typically sparse. To analyse its estimation error and construct confidence sets, we
use sensitivitity characteristics, introduced in Section 4.1. To explain their role, we now take a β ∈ I
(β = β∗ if I is a singleton). Since β̂ is a minimizer, on the event G we can use |β̂|1 ≤ |β|1, t̂(β̂) ≤ r

and t̂(β) ≤ r. Letting ∆̂ , β̂ − β, the first inequality implies |∆̂S(β)c |1 ≤ |∆̂S(β)|1. The last two imply

|Ψ̂∆̂|∞ ≤ 2σr. For k ∈ [dX ] we introduce a sensitivity

κ̂∗ek,S(β) = min
∆∈RdX :|∆k|=1, |∆S(β)c |1≤|∆S(β)|1

|Ψ̂∆|∞,

which by its definition gives |∆̂k| ≤ |Ψ̂∆̂|∞/κ̂∗ek,S(β) ≤ 2σr(n)/κ̂∗ek,S(β). We do not know S(β) but if we

know |S(β)| ≤ s, we replace κ̂∗ek,S(β) with a lower bound κ̂∗ek(s) obtained by solving linear programs.

This yields the bounds β̂k±2σr(n)/κ̂∗ek(s), which gives us a second type of confidence set. An attractive
feature of both confidence sets is that the coverage guarantee is uniform among classes P which leave
the dependence between X and Z unrestricted. Moreover, Is need not be a singleton. For example,
one can have dZ < dX . This means that they are robust to any “weakness” of the IVs and lack of
identification.

In Section 4.4 we obtain rates of convergence for β̂ by replacing sensitivities with their population
analogues, which depend on Ψ. The rates are fast if there is a strong IV for every endogenous regressor
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which is relevant. In Example E1, even if dZ < dX , we obtain∣∣∣β̂ − β∣∣∣
1
. r(n)|S(β)|

(
min
k∈S(β)

ρk

)−1

,
∣∣∣β̂k − βk∣∣∣ . r(n)ρ−1

k ∀k ∈ [dX ].

Assuming the nonzero entries of β are large relative to their rate of estimation, we obtain results on

estimation of S(β), and construct confidence sets based on κ̂∗ek(Ŝ), where the estimated support Ŝ is
an estimator of S(β).

In Section 5, we present extensions to the moment models: (2.1b) E[Z>i,·Ui(β) − θ] = 0 where

θl 6= 0 accounts for the failure of (2.1) for IV l ∈ [dZ ] (i.e., the lth IV is endogenous); (2.1c)
U(β) = W(β) + V(β) and (2.1) holds W(β) rather than U(β) and V(β) is a small approxima-
tion error. For (2.1b) we propose the SNIV sets, the C-STIV estimator and confidence sets, and a
two-stage method. C-STIV uses a scaling matrix in the spirit of D(b) of type (1), adapted to (2.1b).
For (2.1c) we propose the E-STIV and allow for U(β) to be a vector of residuals from a system of
equations. This is important for our empirical application which has both approximation errors and
cross-equation restrictions.

STIV is typically “biased” towards zero. This allows to simultaneously perform estimation and
model selection but is not necessarily well suited for inference. In Section 6, we present confidence
bands for vectors of approximately linear functionals which are based on bias correction of a STIV,
C-STIV, or E-STIV estimator. These are obtained by applying a C-STIV for systems in a second step
to estimate left-inverses of each of the linear functionals by Ψ, and combining the two estimators. In
Example E1, to construct a confidence interval for regressor k ∈ [dX ], the assumption that a left-inverse
of ek by Ψ exists is ρk > 0 and f>l /ρl,k is a sparse left-inverse, where IV l has the strongest absolute
correlation with regressor k.

In Section 7, we conduct a Monte-Carlo experiment to study the relative merits of the methods,
and apply them to the EASI demand system ([25]) using a second-order in prices approximation, which
results in many endogenous regressors.

Practical Guidance. We recommend starting with the STIV estimator. If the researcher
suspects there might not be a strong enough instrument for every relevant endogenous regressor, she
can compute the STIV confidence sets based on a sparsity certificate. If these are wide then she can
invest in implementing the SNIV sets, provided that dX is not too large. Otherwise, she can confi-
dently use STIV as a pilot estimator and compute the STIV confidence sets based on an estimated
support and the two-stage confidence bands. In the empirical application we have dZ = dX and we
believe every endogenous regressor in the model has a strong instrument. For this reason we apply the
confidence bands involving bias correction and report together with the bands the plug-in estimator
and the bias-corrected one. When using a sparsity certificate, the researcher may be unsure as to what
is an appropriate value of s. She can then construct nested confidence sets over different values, which
can be used to assess the information content of progressively stronger assumptions on the sparsity.

References. Econometrics for high-dimensional sparse models has become an active field. To
name a few; [4] uses Lasso type methods to estimate the optimal IV and make inference on a low-
dimensional structural equation, [18] consider a nonconvex approach to IV estimation, [12, 13] consider
GMM and large dimensions but do not handle the high-dimensional regime, and [38] studies a 2SLS
approach. Inference for subvectors in high-dimension is an active topic to which Section 6 relates (see
[6, 21, 33, 37], but also [10, 20, 14] in the case of IVs using a 2SLS or GMM approach, and [7] using
the C-STIV estimator as a pilot and orthogonalisation, [8] reviews some of the results based on the
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nonpivotal STIV and others). Applications and extensions of this paper, in the context of networks
can be found in [19, 28, 3].

3. Self-Normalized IV Confidence Sets

In this section we use D(b) of type (1) and P can be one of classes 1-4. We propose SNIV

confidence sets, defined as Ĉϕ(s) , {ϕ(β) : β ∈ Ĉ(s)}, where

(3.1) Ĉ(s) ,
{
b ∈ B : |S(b) ∩ SQ| ≤ s, t̂(b) ≤ r0(n)

}
.

Because, for all β ∈ Is, P
(
ϕ(β) ∈ Ĉϕ(s)

)
= P

(
t̂(β) ≤ r0(n)

)
, Ĉ(s) satisfies

inf
s∈[dQ]

inf
β,P: β∈Is

P
(
ϕ(β) ∈ Ĉϕ(s)

)
≥ 1− α− αB(n).(3.2)

A natural way to summarize the confidence set Ĉϕ(s) is to compute a confidence band comprising dF
intervals such that ϕ(b) lies in the band when ϕ(b) ∈ Ĉϕ(s). We use, for all j ∈ [dF ], the lower and
upper bounds

(3.3) Ĉϕj (s) , min
b∈Ĉ(s)

ϕj(b), Ĉϕj (s) , max
b∈Ĉ(s)

ϕj(b).

A computational difficulty is that t̂(b) ≤ r0(n) gives rise to dZ inequalities, each requiring that a
polynomial in b be nonnegative (henceforth referred to as polynomial inequalities). This usually does
not define a convex set. Even if ϕ is linear, finding a global solution to such quadratically constrained
linear programs is NP-hard. Local methods can only be guaranteed to reach local solutions, hence we
would only obtain certain subsets of the confidence set and have no coverage guarantee. [4] (Section
4.5) propose to use a grid in the case where there is no sparsity constraint. This is not a practical
solution even in moderate dimensions.

We use hierarchies of convex relaxations for the optimization problems in (3.3). These allow for
the sparsity constraint, and can be applied when ϕ(b) is a rational function (i.e., a ratio of polynomials)
and B can be written via polynomial inequalities. We apply the Sparse BSOS hierarchy of [7] which
avoids the large scale semidefinite programs required by the SOS method1 by using additional linear
constraints. Solving large scale SDPs is currently computationally infeasible. When B is compact, the
Sparse BSOS hierarchy of optimization problems provides monotonic sequences of lower (resp. upper)

bounds which converge to Ĉϕj (s) (resp. Ĉϕj (s)). A simple diagonostic indicates whether a solution
obtained via the hierarchy is one of the original problem. Further details are in Section C.1. We show
in Section 7.1 that the relaxed SNIV sets can give useful information even in the presence of endogenous
IVs and when there are more regressors than IVs. This offers a practical solution to problems where
even testing if Is is a singleton is NP-Hard. In practice we find that SNIV is computationally feasible
for moderate dX , of dimension up to 100.

Remark 3.1. If B = RdX , the set Ĉ(s) is defined by polynomials of degree 2 inequalities, so it can
be empty, unbounded or disconnected depending on the (random) values of the polynomial coefficients.
The same occurs for Anderson-Rubin confidence sets (see [39]). The fact that they can be unbounded
is unavoidable for confidence sets which are robust to weak IVs (see [17]).

1In (v5) we apply Lasserre’s SOS hierarchies (see [24]) of semidefinite programs.
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4. Self-Tuned IV Estimator and Confidence Sets

To permit large dX we introduce parameters to replace the denominators in the definition of
D(b): σ̃l(b), for l ∈ [dZ ], in case (1) (resp. σ̂(b) in case (2)) in place of σl (resp. σ). This gives rise to

the statistic t̂(b, σ1, . . . , σdZ ) (resp. t̂(b, σ)). To obtain a convex set in case (1) we replace Ĉ(s) with

(4.1)
{
b ∈ B : t̂(b, σ1, . . . , σdZ ) ≤ r0(n), σ̃l(b) ≤ σl, ∀l ∈ [dZ ]

}
,

and use a convex objective function which induces sparsity on the solution β̂ and prevents the vector

(σ̃l(β̂))l∈[dZ ] from having large entries. This is the idea behind the C-STIV estimator presented in
Section 5. For the sake of exposition we present the more simple estimator corresponding to case (2).
It is easier to compute and handles much larger dZ in practice.

Definition 4.1. The set of IV-constraints is defined, for σ, r > 0, by

(4.2) Î(r, σ) ,

{
b ∈ B,

∣∣∣∣ 1nDZZ>U(b)

∣∣∣∣
∞
≤ rσ, σ̂(b) ≤ σ

}
.

Definition 4.2. For c, r > 0, a Self-Tuned Instrumental Variables (STIV) estimator is any solution

(β̂, σ̂) of the minimization problem

(4.3) min
b∈Î(r,σ),σ≥0

(∣∣D−1
X bSQ

∣∣
1

+ cσ
)
.

The `1-norm is a convex relaxation of |S(b)∩SQ|. The researcher applying STIV should choose
a class P and the corresponding value of r = r̂ from Section A.1.1. The estimator also depends on
c, which trades off sparsity with the relaxation of the sample moment conditions. The term cσ favors

small σ, hence increasing c tightens the set Î(r, σ). If c = 0, (4.3) minimizes the `1-norm of bSQ , yielding

β̂SQ = 0. The matrix D−1
X guarantees invariance to scale of the regressors. In this formulation, if B

comprises linear (in)equality restrictions, a STIV estimator is computed by solving a convex (second-
order) conic program.

If the data is i.i.d., σ̂(β̂), σ̂, and σ , (σ̂ + σ̂(β̂))/2 are estimators of the standard error of the
structural error, which STIV does not require the researcher to know. Moreover, the researcher need
not know an upper bound, nor have a preliminary estimator. STIV generalizes the Dantzig Selector to
unknown variance.

If we have an upper bound σ on the standard error of the structural error, we can remove
σ̂(b) ≤ σ from (4.2) and +cσ from (4.3), as presented in Section 2. This is the nonpivotal STIV
analyzed in Section 7.1 in (v1). The STIV estimator can be used as a pilot to estimate the standard
error before applying the nonpivotal STIV. The proof of Theorem 4.3 provides rates of convergence
(see (A.46) and (A.47)) for estimation of the standard error. However, relying on a pilot estimator
does not provide robustness to identification, and so we focus the exposition on STIV. Consider now

O(b) , max

(
σ̂(b),

1

r

∣∣∣∣ 1nDZZ>U(b)

∣∣∣∣
∞

)
.

The first component of O(b) is the square-root of the least-squares objective function. The second is
derived from the exogeneity of the IVs and uses a `∞- norm statistic divided by r(n) (the size of its
fluctuations). Minimizing O(b) trades-off the two, which is desirable in the presence of weak IVs (see
[1] for references comparing 2SLS and OLS). It is simple to check that the STIV estimator is a solution
of a penalized version:

(4.4) β̂ ∈ argminb∈B

(
1

c

∣∣D−1
X bSQ

∣∣
1

+O(b)

)
, σ̂ = O(β̂).
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The STIV estimator can also be obtained as a solution of the convex program

(4.5) min
(b,σ)∈B×(0,∞)

(
2

c

∣∣D−1
X bSQ

∣∣
1

+ σ +
1

σ
O(b)2

)
,

which can be obtained by iteratively minimizing over b and σ using

Algorithm 4.1. Initialize at
(
β̂(0), σ̂(0)

)
. At iteration t, solve

β̂(t) ∈ argminb∈B

(
2σ̂(t−1)

c

∣∣D−1
X bSQ

∣∣
1

+O(b)2

)
, σ̂(t) = O

(
β̂(t)
)
,

then replace t by t+ 1, and iterate until convergence.

Section C.3 gives details and presents a numerical acceleration of the minimization over b. If
we remove the second term in the maximum in the definition of O(b) and take SQ = [dX ], (4.4) is the
Square-root Lasso (see [5]), (4.5) is the Concomitant Lasso (see [27]), and Algorithm 4.1 is the Scaled
Lasso (see [30]).

Remark 4.1. The STIV estimator is not necessarily unique. When O(b)2 is a differentiable and strictly
convex function of Wb, [32] shows that minimizers in problems such as Algorithm 4.1 are unique if the
entries of W are drawn from a continuous distribution and discusses regularization paths. This can
be useful when one does not know how to adjust the level of the penalty (2σ̂(t−1)/c in Algorithm 4.1).
The assumptions are not satisfied for STIV. Non uniqueness also occurs for LIML which minimizes the
Anderson-Rubin statistic. We emphasize however, that our analysis and inference methods are valid
for all minimizers and that determination of the penalty level is also less of an issue because STIV is
pivotal and our results hold for all c.

4.1. Sensitivity Characteristics. If Z = X, the minimal eigenvalue of X>X/n can be used to obtain
error bounds. It is the minimum of b>X>Xb/(n|b|22) over b ∈ RdX . If the structural parameter is sparse
and the estimator uses an `1 penalty, RdX can be replaced with a subset. This is typically expressed via
the restricted isometry property of [16] or the restricted eigenvalue condition of [9]. These cannot be
used for models with endogenous regressors because Z>X/n can be rectangular. We introduce scalar

sensitivity characteristics related to the action of Ψ̂ on a restricted set K̂S (a cone) for S ⊆ [dX ]. Let
L be the set of continuous functions from RdX to [0,∞) which are homogeneous of degree 1. We define
the sensitivity

(4.6) κ̂l,S , min
∆∈K̂S : l(∆)=1

∣∣∣Ψ̂∆
∣∣∣
∞
.

|Ψ̂∆|∞ arises due to the `∞-norm in the definition of Î(r, σ) and l ∈ L should be interpreted as a loss
function. Due to the `∞-norm in (4.6), one strong IV is enough to ensure a large sensitivity. Additional

IVs can only increase |Ψ̂∆|∞, even if they are weak. The cost of additional IVs is mild since it appears
in a logarithmic factor (see the typical behavior at the beginning of Section 4.4).

The cone comes from the form of the objective function in (4.3) which is such that, for every

β ∈ I, on the event G, ∆̂ ∈ K̂S(β), where

(4.7) K̂S ,
{

∆ ∈ RdX : ∆
Sc∩S(β̂)c

= 0,
∣∣∆Sc∩SQ

∣∣
1
≤
∣∣∆S∩SQ

∣∣
1

+ cĝ(∆)
}

and ĝ(∆) , r̂|∆SI |1+
∣∣∆ScI

∣∣
1
. When B ( RdX , we replace ∆ ∈ RdX by DX∆ ∈ BD , {b1 − b2, ∀b1, b2 ∈ B}.

The error bounds for STIV in Section 4.2 are small when the sensitivities are sufficiently bounded away

from zero, hence it is important that K̂S be as small as possible. The researcher’s knowledge com-
ponents B, SI and SQ serve this purpose. The form of ĝ comes from the fact that, by convexity and
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because the regressors of index in SI are used as IVs, σ̂(β)− σ̂(β̂) ≤ ĝ(∆̂). If we ignore exogeneity or

if all regressors are endogenous, we obtain σ̂(β) − σ̂(β̂) ≤ |∆̂|1. Because r̂ is small, accounting for SI
yields a smaller set. The nonpivotal STIV does not contain c and σ, so cĝ(∆) is omitted from (4.7). If
we omit ∆

Sc∩S(β̂)c
= 0 , take SQ = [dX ], B = RdX , and replace ĝ(∆) by |∆|1 we obtain the simple cone{

∆ ∈ RdX : (1− c)|∆Sc |1 ≤ (1 + c)|∆S |1
}

used in (v1). This is RdX if c ≥ 1. In our Monte-Carlo exper-
iment, we find that STIV performs better for c > 1, and so we use (4.7) instead. Notice also that if there

are no endogenous regressors (SI = [dX ]), we have K̂S ⊆
{

∆ ∈ RdX : (1− cr̂)|∆Sc |1 ≤ (1 + cr̂)|∆S |1
}

.
The restriction ∆

Sc∩S(β̂)c
= 0 can be removed, for example to obtain rates of convergence. We use this

restriction to construct confidence sets which ought naturally to depend on β̂. Doing so yields smaller
confidence sets in practice.

If β is not sparse, K̂S(β) can be large (e.g., RdX when S(β) = [dX ]). To handle such cases, the

sensitivities are defined by replacing K̂S with

K̂γ,S ,
{

∆ ∈ RdX :
∣∣∆Sc∩SQ

∣∣
1
≤ 2

(∣∣∆S∩SQ
∣∣
1

+ cĝ(∆)
)

+
∣∣∣∆ScQ

∣∣∣
1

}
.

They are denoted by γ̂ instead of κ̂. Due to the additional terms on the right-hand side of the in-

equality, K̂γ,S is larger than K̂S . However, in our analysis the sensitivities need not be computed at

S = S(β). The slackness allows ∆̂ ∈ K̂γ,S , on the event G provided that
∣∣D−1

X βSc∩SQ
∣∣
1

is sufficiently
small. The form of the additional terms is related to the factor 3 which appears in Theorem 4.2.

List of Sensitivities. For 1 ≤ q ≤ ∞, S0 ⊆ [dX ], and l(∆) = |∆S0 |q, we define the `q-S0 block
sensitivity as κ̂q,S0,S . By convention, we set κ̂q,∅,S = ∞ and, when S0 = [dX ], we use the shorthand
notation κ̂q,S and call this the `q sensitivity. For sparse vectors we make use of the loss ĝ and for

nonsparse vectors of ĥ(∆) , min(|∆SQ |1, 1
2(3|∆S∩SQ |1 + cr̂|∆SI |1 + c|∆ScI

|1 + |∆ScQ
|1)) and refer to

κ̂ĝ,S and γ̂
ĥ,S

as the corresponding sensitivities. By taking ω ∈ RdX and l(∆) = |ω>∆| we obtain

the sensitivity κ̂∗ω,S for a linear combination. If ω = ek this is the sensitivity κ̂∗ek,S which we refer to
as coordinate-wise sensitivity. Proposition A.2 shows how the sensitivities can be related to one another.

The sensitivities are not only core elements to analyse the performance of STIV. They also
provide sharper results than existing quantities for the analysis of the Dantzig Selector and Lasso2.

These differ from the quantities introduced by [36] in the definitions of the cone K̂S , the matrix Ψ̂,

and in that it does not involve a scaling by |S|1/q because, the sensitivities typically depend on S in a
more complex manner than simply via |S|.

To get the intuition, consider the sensitivity κ̂∗ek,S for k ∈ [dX ]. If SQ = ∅, B = RdX , and

Ψ̂·,−k is obtained from
∑

i∈[n] Z
>
i,·Xi,· by removing the kth column, we have K̂S = RdX and κ̂∗ek,S =

min∆∈RdX−1 |DZ(
∑

i∈[n] Z
>
i,·Xi,k − Ψ̂·,−k∆)|∞/n. It is zero if

∑
i∈[n] Z

>
i,·Xi,k/n is in the range of Ψ̂·,−k,

which has probability zero if dZ ≥ dX and Z>X has a continuous distribution. When the minimization

is carried over a cone, certain combinations of the columns of Ψ̂·,−k are ruled out. To be precise, if

l ∈ L is point-separating, κ̂l,S > 0 iff ker(Ψ̂) \ {0} ⊆ K̂c
S .

4.2. Basic Error Bounds.

2See Section A.4 in (v5).
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Theorem 4.1. For all β,P such that β ∈ I and all STIV estimators (β̂, σ̂), l ∈ L, and c > 0, we have,
on G,

l
(
D−1

X

(
β̂ − β

))
≤ 2r̂

κ̂l,S(β)
min

σ(1− r̂

κ̂ĝ,S(β)

)−1

+

, σ̂(β)

(
1− r̂

cκ̂1,S(β)∩SQ,S(β)

)−1

+

 .

The first term in the minimum is used for confidence sets and the second for rates of convergence.

Theorem 4.2. For all β,P such that β ∈ I and all STIV estimators (β̂, σ̂), q ∈ [1,∞], S0, S ⊆ [dX ],
and c > 0, we have, on G,∣∣∣∣D−1

X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ 2 max

(
r̂

γ̂q,S0,S
min

σ(1− r̂

γ̂ĝ,S

)−1

+

, σ̂(β)

(
1− r̂

cγ̂
ĥ,S

)−1

+

 ,

3
∣∣D−1

X βSc∩SQ
∣∣
1

)
.

Theorem 4.2 can give sharper results than Theorem 4.1 when I contains nonsparse vectors. It is
the basis of the sparsity oracle inequality in Theorem 4.3 (iii), to which point we defer the comparison
of Theorems 4.1 and 4.2.

To obtain a confidence set one needs to use the sensitivities for S = S(β) for β ∈ I, and should
circumvent their dependence on the unknown S(β) and provide a computationally feasible method.
This is the focus of Section 4.3. For rates of convergence, one should relate the upper bounds in the
above theorems to deterministic ones. This is the focus of Section 4.4.1.

4.3. Computable Lower Bounds on the Sensitivities and Robust Confidence Sets. We pro-

pose two means to bound the sensitivities from below; one based on an estimated set Ŝ, and another

using a sparsity certificate. We postpone the discussion on how to obtain Ŝ and the properties of the
resulting confidence set to Section 4.4, in which we analyse variable selection. Even if S(β) were known,

computing the sensitivities is non-trivial since K̂S(β) is not a convex set.

If Ŝ ⊇ S(β), by (i) in Proposition A.2, we can replace S(β) with Ŝ. To handle non-convexity,
we introduce a new decision variable µ ∈ RdX to play the role of |∆| and augment the constraints to
include −µ ≤ ∆ ≤ µ, µ

Ŝc∩S(β̂)c
= 0, and µ ≤ |∆|∞. For some j ∈ [dX ] we have |∆|∞ = η∆j , where

η is the sign of ∆j . If we knew j and η we could replace the non-convex constraint µ ≤ |∆|∞ with
µ ≤ η∆j . Since j ∈ [dX ] and η = ±1, for k ∈ [dX ] we have,

κ̂∗ek,S(β) ≥ κ
∗
ek

(Ŝ) , min
j∈[dX ],η=±1

min
−µ≤∆≤µ≤η∆j , µ

Ŝc∩S(β̂)c=0

µ>
Ŝc∩SQ

1≤(µ
Ŝ∩SQ

+cr̂µSI+cµSc
I

)>1, µk=1

|Ψ̂∆|∞

which is computed by solving 2dX LPs. If instead of Ŝ we have a sparsity certificate s, we use
|∆S(β)∩SQ |1 ≤ s|∆|∞, which also results in 2dX LPs. Proposition 4.1 applies these ideas to other
sensitivities, including those for the non-sparse case. Further details and other solutions are provided
in Section C.2.

Proposition 4.1. For all S ⊆ Ŝ ⊆ [dX ], |S ∩ SQ| ≤ s, and c > 0,

κ̂∞,S ,≥ max
(
κ̂∞

(
Ŝ
)
, κ̂∞(s)

)
, κ̂∗ω,S ≥ max

(
κ̂∗ω

(
Ŝ
)
, κ̂∗ω(s)

)
,

κ̂1,S ≥ max
(
κ̂1

(
Ŝ
)
, κ̂1(s)

)
, κ̂ĝ,S ≥ max

(
κ̂ĝ

(
Ŝ
)
, κ̂ĝ(s)

)
,
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1− r

κ̂ĝ,S

)−1

+

≤ min
(
θ̂κ

(
Ŝ
)
, θ̂κ(s)

)
,

where the quantities in the bounds are in Table 9. The same holds for the sensitivities γ̂ using, instead

of B̂ and θ̂κ, the sets B̂γ and constant θ̂γ.

Based on these lower bounds, Ĉϕ,κ(s) , {ϕ(b) : b ∈ Ĉκ(s)}, where

Ĉκ(s) ,

{
b ∈ B : ∀l ∈ L, ∀c > 0, l

(
D−1

X

(
β̂ − b

))
≤ 2r̂σθ̂κ(s)

κ̂l(s)

}
,(4.8)

defines a confidence set. It inherits the same robustness and uniformity properties as the SNIV con-

fidence set (i.e. (3.2) applies). In practice we can summarize Ĉϕ,κ(s) by using a finite number of
functions in L in (4.8). We focus on constructing a confidence band comprising dF intervals in which

ϕ(b) lies when ϕ(b) ∈ Ĉϕ,κ(s). For example, if ϕ(b) = b we can take dX functions, l(∆) = |e>k ∆| for
k ∈ [dX ], yielding dX lower and upper bounds,

Ĉϕk,κ(s) = max
c>0

β̂k − 2r̂σθ̂κ(s)

κ̂∗ek(s)
√

En[X2
k ]

 , Ĉϕk,κ(s) = min
c>0

β̂k +
2r̂σθ̂κ(s)

κ̂∗ek(s)
√
En[X2

k ]

 .(4.9)

Alternatively, we can take one function, l(∆) = |∆|∞, and replace κ̂∗ek(s) with κ̂∞(s) in (4.9). The
latter yields wider bounds but is less computationally demanding. In the same way, if ϕ(β) = Ωβ
for some specified Ω, one can use either the sensitivities κ̂∗ωj (s) for j ∈ [dF ] and ωj = DXΩ>j,· or the

sensitivity for loss l(∆) = |ΩDX∆|∞. Though we do not make it explicit, the bound in (4.8) depends
on c. Increasing c decreases σ (by increasing the penalty on σ in the STIV objective function) but

increases θ̂κ(s)/κ̂l(s) (by enlarging K̂S). The optimal value for c does not admit a tractable form. Due
to uniformity in c, in (4.9) we can maximize (resp. minimize) the lower (resp. upper) bound over a
grid on c. In Section 7.1 we propose a rule of thumb to determine a single value of c. Even if c is
determined from the data, the set has coverage at least 1− α − αB(n) due to (4.8). Since it relies on
conic and linear programs, the approach is computationally feasible even for large dX . Unlike SNIV,

the inequalities at the basis of the sets are linear, but the sets can be infinite due to θ̂κ(s).

4.4. Rates, Model Selection, and Refined Confidence Sets. To obtain rates of convergence we
use deterministic bounds to replace the random error bounds in Theorem 4.1 and Theorem 4.2. Our

analysis relies on replacing Ψ̂ with Ψ and the sensitivities (and their lower bounds) with their population
analogues. To obtain deterministic bounds, we further restrict P using Assumption A.2. The additional
restrictions still do not restrict the dependence between Z and X. These are simply mild assumptions
on second moments which give finite sample bounds on the error made by replacing empirical averages
by population ones. Assumption A.2 also allows r̂ and σ̂(β) to be replaced by nonrandom r(n)and
σU(β). Our results are stated on G∩GΨ which has probability at least 1−α−αD(n), where αD(n)→ 0.

Asymptotic statements allow c to depend on n. Our statements involve a sequence (τ(n))n∈N ∈ (0, 1)N

converging to zero with n such that ln(max(dZ , dX , dF ))/(nτ(n)2)→ 0. This behaviour is adequate if
Zi,· and Xi,· are uniformly bounded. For other distributions τ(n) can have to decay more slowly to
zero. The results hold for all sequence (τ(n))n∈N. Details are in Section A.1.2. The sequence r(n) is of

the order of
√

ln(dZ)/n,
√

ln(C(n)ndZ) ln(dZ)/n, or
√

ln(C(n)d2
Z) ln(dZ)/n, where C(n) is inversely

proportional to a coverage error sequence, depending on the class P.

4.4.1. Population Sensitivities. The population analogues of the sensitivities are key objects to establish

the rate. The analogues of κ̂, γ̂, θ̂ are denoted by κ, γ, θ. They are obtained by replacing Ψ̂, K̂S and
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K̂γ,S with Ψ, KS and Kγ,S , where

KS ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤
∣∣∆S∩SQ

∣∣
1

+ cg(∆)
}
,

Kγ,S ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤ 2

(∣∣∆S∩SQ
∣∣
1

+ cg(∆)
)

+
∣∣∣∆ScQ

∣∣∣
1

}
,

g is defined as ĝ using r(n) instead of r̂, 1n ,
√

(1− τ(n))/(1 + τ(n)), and we do not write the set BD
for simplicity. As with g, h is the counterpart of ĥ which replaces r̂ with r(n). The results below hold
for all c but if c ≥ 1n/r(n) we have KS = RdX .

For S ⊆ [dX ], we use S , (S ∩ SQ) ∪ ScQ ∪ ScI if c ≥ 1n, S = (S ∩ SQ) ∪ ScQ if c < 1n,

cκ(S) , min(c>,κ(S), c<,κ(S)),

c>,κ (S) , ((1 + 1n)|S ∩ SQ|+ 1n|ScQ|+ c(1− r(n))|ScI |)(1n − cr(n))−1
+ ,

c<,κ(S) , ((1 + 1n)|S ∩ SQ|+ 1n|ScQ|)(1n − c)−1
+ ,

and cγ(S) for the sensitivities γ replacing (1 + 1n) by (2 + 1n) and c by 2c. If c < 1n and SQ = [dX ],

we have S = S, cκ(S) = uκ|S|, and, if c < 1n/2, cγ(S) = uγ |S|, where uκ , (1 + 1n)/(1n − c) and

uγ , (2 + 1n)/(1n − 2c). We refer to this condition together with B = RdX as (IC).

Proposition 4.2. We have, for all S ⊆ [dX ], S0 ⊆ [dX ], and q ∈ [1,∞],

(i) κq,S0,S ≥ κq,S,
(ii) κ∞,S0,S = mink∈S0 κ

∗
ek,S

,

(iii) cκ(S)−1/qκ∞,S ≤ κq,S ≤ κ∞,S,

(iv) |S0|−1/qκ∞,S0,S ≤ κq,S0,S ≤ κ∞,S0,S,
(v) κ1,S ≥ κ∞,S,S/cκ(S),

(vi) κg,S ≥ max(κ1,S ,
(
r(n)/κ1,SI ,S + 1/κ1,ScI ,S

)−1
),

(vii) For all S0 ⊇ S,

κ∞,S0,S ≥ min
k∈S0

max
λ∈RdZ :|λ|1≤1

(
|λ>Ψ·,k| − (cκ(S)− 1) max

k′ 6=k
|λ>Ψ·,k′ |

)
,

(viii) For all k ∈ [dX ],

κ∗ek,S ≥ max
λ∈RdZ :|λ|1≤1

((|λ>Ψ·,k|+ max
k′ 6=k
|λ>Ψ·,k′ |)

(
cκ(S) maxk′ 6=k |λ>Ψ·,k′ |

κ∞,S,S
+ 1

)−1

.

The above statements hold if we replace the sensitivities based on KS by those based on Kγ,S, cκ(s) by
cγ(s). We also have γh,S ≥ γ1,S.

Maximizing only on the vectors (fl)l∈[dZ ], (vii) yields

(4.10) κ∞,S0,S ≥ min
k∈S0

max
l∈[dZ ]

(
|Ψl,k| − (cκ(S)− 1) max

k′ 6=k
|Ψl,k′ |

)
.

The advantage of (vii) is that it allows for combinations of the IVs, which can provide a tighter bound.
These combinations do not need to be constructed in practice. The term maxk′ 6=k |λ>Ψ·,k′ | could be
set to zero by taking λ in the orthogonal complement of the vector space spanned by the columns Ψ·,k′

for k′ 6= k. Doing so, one could then maximize |λ>Ψ·,k| for vectors λ in that space such that |λ|1 ≤ 1
(which is not trivial if dX − 1 < dZ) to optimally combine the IVs. The lower bound in (vii) is sharper
and achieves a trade-off, which is desirable when the orthogonal complement is too small to deliver a
strong IV. Results (vii), (iii), and (v) yield a lower bound on κq,S for q ∈ [1,∞]. The lower bound (viii)

for coordinate-wise sensitivities is useful to analyse variable selection. Result (ii) with S0 = S ∪ {k}
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also provides bounds for the coordinate-wise sensitivities κ∗ek,S which could be sharper than (viii). In

case (IC), we have

(4.11) κ1,S ≥ (uκ|S|)−1 κ∞,S,S , κq,S ≥ (uκ|S|)−q κ∞,S .
It is usual, in the absence of endogeneity, to assume that certain quantities such as eigenvalues of all
sub-blocks of Ψ of size at most s (sparse eigenvalues) or restricted eigenvalues are bounded away from
zero (see, e.g., [9]) in which case κ1,S ≥ κ/s for some κ > 0 which could depend on n (see Section A.4
in (v5)). In contrast, the lower bounds on κ1,S and κ∞,S,S only depend on the regressors with index in
S. This can give much sharper lower bounds than when we pay the price of a minimum over all sets
of size s. Proposition A.3 provides an alternative lower bound in case (IC).

We now illustrate these bounds in case (IC). The examples can be simple because, due to (vii),
the identity of the IVs or their linear combination is irrelevant. In Example E1, by (4.10) and (viii),
we have κ∞,S,S ≥ mink∈S ρk and κ∗ek,S ≥ ρk. Due to the form of κ∞,S,S , its magnitude and those of

the sensitivities we deduce from it (e.g., κ1,S) depend on S beyond its cardinality. For each relevant
regressor, what matters is the strength of the strongest IV. The sensitivity κ∞,S,S can be small if some
regressors of index in S do not have sufficiently strong IVs, but not if this happens for regressors outside
S.

In Example E2, taking the entries of the vector λ to be constant on a set S̃ ⊆ [dZ ] and zero
elsewhere for k = dX and λ = fk for k ∈ S ∩ SI , (vii) yields κ∞,S,S ≥ min(max

S̃⊆[dZ ]
(|ρ

S̃
|1 − (uκ|S| −

1))/|S̃|, 1 − (uκ|S| − 1)|ρS∩SI |∞). From the first term in the minimum it is important that uκ|S| − 1
be small relative to |ρ|1. This occurs if there are sufficiently many exogenous regressors with index
outside S which are sufficiently correlated with the endogenous regressor. Due to the second term in
the minimum, the regressors of index in S ∩ SI should have a sufficiently small correlation with the
endogenous regressor.

4.4.2. Rates of Convergence and Confidence Sets with Estimated Support. Theorem 4.3 establishes the

rate of convergence for β̂. Rates of convergence for σ̂ and σ̂(β̂) are given in (A.46) and (A.47). For
S ⊆ [dX ], we use

Θκ(S) , (1 + τ(n))

(
1− τ(n)

κ1,S
− r(n)(1 + τ(n))

cκ1,S∩SQ,S

)−1

+

and Θγ(S) which is obtained by replacing κ1,S and κ1,S∩SQ,S by γ1,S and γh,S . We also sometimes use,

for vectors ω ∈ RdX , the restricted set of identified vectors to comprise vectors with sufficiently large
nonzero entries

I(ω) , I
⋂{

β : ∀k ∈ S(β), 1n

√
E[X2

k ] |βk| > ωk

}
.

Theorem 4.3. Let c > 0. Under Assumption A.2, for all β,P such that β ∈ I and all STIV estimators

(β̂, σ̂), we have, on G ∩ GΨ,

(i) For all l ∈ L,

1nl
(
D−1
X

(
β̂ − β

))
≤

2r(n)σU(β)

κl,S(β)
Θκ(S(β));

(ii) If β ∈ I(ω) where, for all k ∈ S(β), ωk = 2r(n)σU(β)Θκ(S(β))/κ∗ek,S(β), then S(β) ⊆ S(β̂);

(iii) For all q ∈ [1,∞] and S0 ⊆ [dX ],

1n

∣∣∣∣D−1
X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ 2 min
S⊆[dX ]

max

(
2r(n)σU(β)

γq,S0,S
Θγ(S), 3

∣∣D−1
X βSc∩SQ

∣∣
1

)
.
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For a given β̂, one can take the infimum over β ∈ I on both sides of the inequality in (i) or
(iii). The left-hand side can then be viewed as the distance to a set, and the right-hand side defines

the elements of I to which β̂ is closest. The discussion below uses such β. If I is a singleton, β = β∗.
Due to Proposition 4.2 (i), Θκ(S(β)) is close to 1 when max(r(n), τ(n))/κ1,S(β) → 0. For Example E1,
using (4.11), this occurs if

(4.12) max(r(n), τ(n))|S(β)|
(

min
k∈S(β)

ρk

)−1

→ 0.

If Θκ(S(β)) is close to 1, then (i) implies |D−1
X (β̂ − β)|1 . r(n)/κ1,S(β). We might ask ourselves if

this converges to zero as n goes to infinity. If dX increases with n, this is a bound on the norm of an

increasingly large vector. For Example E1, we obtain |D−1
X (β̂ − β)|1 . r(n)|S(β)|(mink∈S(β) ρk)

−1 and
“consistency” in `1-norm simply relies on (4.12), hence on mink∈S(β) ρk � max(r(n), τ(n))|S(β)|. This
means that there should exist a strong enough IV for every regressor with index in S(β). The rate is
not affected if there is not a strong IV for a regressor which is irrelevant. When ρ is constant, (4.12)
requires max(r(n), τ(n))|S(β)| → 0 which imposes an upper bound on the sparsity of the structural
vector. When the entries of ρ are in decreasing order and the largest index in S(β) is k∗, then consistency
requires max(r(n), τ(n))|S(β)|ρ−1

k∗
→ 0. The magnitude of ρ−1

k∗
depends on the rate of decay of the

components of ρ but also on the identity of the relevant regressors. It is independent of dX . Even if
dX is very large, the rate of convergence of STIV in `1-norm can be very small.

Remark 4.2. If in Example E1 we also have E[ZZ>] = I and, for all k ∈ S(β), ρj,k = 1/
√
lk when it is

nonzero (so the population R2 does not change with lk), one should have max(r(n), τ(n))
√
|lS(β)|∞|S(β)| →

0. If we take the first typical behavior for r(n), we cannot show that STIV is consistent when |lS(β)|∞ ln(dZdX)/n
converges to a nonzero constant. When dX = 1 this becomes dZ ln(dZ)/n converges to a nonzero con-
stant. This is a case where 2SLS is consistent (it is not when we remove ln(dZ)).

If we consider different losses for Example E1, we have a different behavior. For example,

|β̂k − βk| . r(n)ρ−1
k and the sparsity does not play a role. This means that we can have heterogenous

rates of convergence for different components. Moreover, maxk∈S0 |β̂k − βk| . r(n) maxk∈S0 ρ
−1
k . This

echoes [26] for linear regression, except for the additional maxk∈S0 ρ
−1
k factor. Importantly STIV can

be consistent when dZ < dX including for Example E2.
The condition β ∈ I(ω) in (ii) is a beta-min condition. It makes sense in applications such as

social interactions when the network is sparse. There, the coefficients also have a clear interpretation
and are meaningful parameters of interest. The beta-min assumption is not aimed to be used when the
regressors are functions of baseline regressors introduced to approximate a structural function. The

value of ωk corresponds to the upper bound on 1n

√
E[X2

k ]|β̂k − βk|. In Example E1, the magnitude

of ωk is proportional to ρ−1
k . Result (ii) means that, for all β ∈ I(ω), the STIV estimator recovers a

superset of the regressors. Based on (ii), the set Ĉϕ,κ , {ϕ(b) : b ∈ Ĉκ}, where

Ĉκ ,

{
b : ∀l ∈ L, l

(
D−1

X

(
β̂ − b

))
≤ 2r̂σθ̂κ(S(β̂))

κ̂l(S(β̂))

}
,(4.13)

is such that

(4.14) inf
β,P: β∈I(ω)

P
(
ϕ(β) ∈ Ĉϕ,κ

)
≥ 1− α− αD(n).

The confidence set Ĉϕ,κ is not robust to identification because ω depends on Ψ, hence on the joint
distribution of Z and X, through the population sensitivities.
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If β ∈ I is sparse, the upper bound in (iii), which holds for all S ⊆ [dX ], also applies to S = S(β)
in which case the second term in the maximum is zero. We are then left with a bound which is similar
to the right-hand side of (i). The second term is an alternative bound on the loss when, on G, β /∈ Kγ,S .

When q = 1 and S0 = SQ = [dX ], it is 6 times the error we would make by having β̂ = βS (estimating
perfectly the components in S). This is the sense in which the second term is an approximation error.
The STIV estimator performs a data-driven trade-off for nonsparse vectors. This trade-off is desirable
when a subvector βSc∩SQ cannot be distinguished from zero, in which case it is better to estimate it
as zero and make a smaller error on the important entries. One gets from (iii) that, for an optimal set
S∗ ⊆ [dX ] (not necessarily S(β)),

(4.15) 1n

∣∣∣D−1
X

(
β̂ − β

)∣∣∣
1
≤

2r(n)σU(β)

γ1,S∗
Θγ(S∗).

This allows us to define formally approximately sparse vectors as vectors which are sufficiently well
approximated by a sparse vector so that the right-hand side of (4.15) is small. In the case of Example
E1 with a decreasing sequence ρk (this is without loss of generality because (iii) concerns nonlinear
approximation) and an ordered sequence of subsets of the form S = [K] for K ∈ [dX ], we obtain∣∣∣D−1

X

(
β̂ − β

)∣∣∣
1
. min

K∈[dX ]
max

(
sr(n)

ρK
,
∑
k>K

∣∣(D−1
X β

)
k

∣∣) .
To avoid the right-hand sides of (i) and (iii) being infinite, or the set of vectors in I(ω) being empty for
some P ∈ P (due to the sensitivities being too small), one can restrict further the class P. The results
are no longer robust to identification nor uniform in the sense that Ψ can no longer be arbitrary.

4.4.3. Selection of Variables and Confidence Sets with Estimated Support. Theorem 4.3 (ii) provides a
superset of regressors. Under a stronger beta-min condition exact selection can be performed. For this

purpose, we use a thresholded STIV estimator β̂ω which uses a sparsity certificate. It is defined by

(4.16) β̂ωk , β̂k1l

{√
En[X2

k ]
∣∣∣β̂k∣∣∣ > ω̂k(s)

}
, ω̂k(s) ,

2r̂σθ̂κ(s)

κ̂∗ek(s)
.

for k ∈ [dX ]. The constants κl(s) and κ∗ω(s) are population analogues of the lower bounds in Proposition
4.1. Due to the duality between testing and confidence sets, for the same value of c, the thresholded

STIV estimator is equivalently obtained by setting to zero the entries of β̂ for which 0 lies in the bounds
in (4.9). The following theorem shows that, based on thresholding a STIV estimator, we achieve sign

consistency and hence, S(β̂ω) = S(β) for all β ∈ Is∩I(2ω(s)). It uses sign(b) , (sign(bk))k∈[dX ], where

sign(t) , 1l{t > 0} − 1l{t < 0}. We make use of the following population counterparts to establish the
result

ωk(s) ,
2r(n)

√
1 + τ(n)θκ(s)

κ∗ek(s)
sup
β∈Is

σU(β)

2

(
1− r(n)(1 + τ(n))

cκ1,S(β)∩SQ,S(β)

(
1− τ(n)

κ1,S(β)

)−1

+

)−1

+

− 1

 ,

for all k ∈ [dX ], where θκ(s) and κ∗ek(s) are defined in Proposition A.1.

Theorem 4.4. Let s ∈ [dQ]. Under Assumption A.2, for all β,P such that β ∈ Is ∩ I(2ω(s)) and all

STIV estimators (β̂, σ̂), we have, on G ∩ GΨ, sign(β̂ω) = sign(β).

The confidence sets corresponding to Theorem 4.4 are obtained by replacing S(β̂) by S(β̂ω) in
(4.13), and satisfy (4.14) with Is ∩ I(2ω(s)) in place of I(ω) in the infimum. The sparsity certificate
s can be large, and possibly equal to dX . The width of the sets matches the error bound in Theorem
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4.1 as regards the dependence on S(β). For this reason the confidence set adapts to the sparsity. To
achieve this we need to remove a small set from B (the vectors which are too close to |S(β)|-sparse
vectors). This is related to impossibility results for adaptive confidence sets in nonparametric and
high-dimensional statistics.

5. Other Moment Models

5.1. Endogenous IVs. Testing IV exogeneity in the presence of overidentification is a classical prob-
lem studied since [29]3. We replace (2.1) with (2.1b), (2.2) with (β, θ) ∈ B, P (β, θ) ∈ P, where P (β, θ)

is the distribution of
(
Xi,·,Zi,·,Z

>
i,·Ui(β)− θ

)
i∈[n]

implied by P, and modify I ⊆ RdX+dZ accordingly.

The class P can be any of classes 1-4 in Section A.1.1, replacing Z>i,·Ui(β) with Z>i,·Ui(β)− θ. The set

B ⊆ RdX+dZ accounts for the restrictions on (β, θ). For example, the researcher could know the sign of
the correlation between an endogenous regressor and the structural error. An important restriction is
θS⊥ = 0 for S⊥ ⊆ [dZ ] which corresponds to the indices of the IVs known to be exogenous. We denote

by dEX , |S⊥| and Is,s̃ = I ∩ {(β, θ) ∈ B : |S(β) ∩ SQ| ≤ s, |S(θ)| ≤ s̃}, where s̃ ∈ [dZ − dEX ] is a
sparsity certificate for the possibly endogenous IVs. We now present confidence sets for ϕ(β, θ). They
do not require dEX ≥ dX .

First, the SNIV confidence set in (3.1) is easy to modify, yielding

Ĉ(s, s̃) ,

{
(b, t) ∈ B : |S(b) ∩ SQ| ≤ s, |S(t)| ≤ s̃, max

l∈[dZ ]

∣∣∣∣∣ 1n Z>·,lU(b)− ntl
σ̃l(b, t)

∣∣∣∣∣ ≤ r0(n)

}
,

where σ̃l(b, t)
2 , En[(ZlU(b)− tl)2]. Further details are in Section C.1. A second approach relies on

the C-STIV estimator (see Section B.1.1).

Definition 5.1. For c ∈ (0, 1), the C-STIV estimator (β̂, θ̂, σ̂) is any solution of

min
(b,t)∈ÎC(r0(n),σ),σ≥0

∣∣D−1
X bSQ

∣∣
1

+
∣∣DZtSc⊥

∣∣
1

+ cσ,

where

ÎC(r0(n), σ) ,

{
(b, t) ∈ B :

∣∣∣∣DZ

(
1

n
Z>U(b)− t

)∣∣∣∣
∞
≤ r0(n)σ, F̂ (b, t) ≤ σ

}
,

∀ (b, t) ∈ RdX+dZ , F̂ (b, t) , max
l∈[dZ ]

σ̂l (b, t) , and σ̂l (b, t)
2 , (DZ)2

l,l En
[
(ZlU(b)− tl)2

]
.

When dEX = dZ the C-STIV is an alternative to the STIV estimator4. Its analysis is similar to
that of STIV. The main computational difference is that there are as many second-order cones as dZ .
This makes it much harder to solve. However, we use a smoothing approach to approximate it which
makes the computations much faster (see Section C.3). This development is essential for the confidence
bands in Section 6 to handle easily thousands of regressors and instruments (as in the application in
Section 7.2) which would else be limited to a few hundreds. The C-STIV estimator is also used to
estimate certain left inverses of Ψ in Section 6.

C-STIV obtains (β̂, θ̂) simultaneously. Alternatively, one can apply STIV or C-STIV to obtain

a pilot estimator β̂ using IVs of index in S⊥, and obtain θ̂ using the NV-STIV estimator (see Section

B.1.2). NV-STIV is a modification of C-STIV, in which ÎC(r0(n), σ) is altered to include b = β̂, r0(n)σ

is replaced by r0(n)σ + b̂ and F̂ (b, t) ≤ σ by F̂ (b, t) ≤ σ + b̂σ. The terms b̂, b̂σ are constructed using

3This question is addressed in (v1), see (v5) for references.
4The idea appeared in (6.5) in (v1) and C-STIV was called the STIV when the paper was first revised (see (v2b)).
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lower bounds on sensitivities and such that for β in Is

(5.1)

∣∣∣∣(Ψ̂D−1
X

(
β̂ − β

))
Sc⊥

∣∣∣∣
∞
≤ b̂, ρ̂ZX,Sc⊥

∣∣∣D−1
X

(
β̂ − β

)∣∣∣
1
≤ b̂σ,

with high probability, where

ρ̂ZX,Sc⊥ , max
l∈Sc⊥, k∈[dX ]

(DZ)l,l (DX)k,k

√
En
[
Z2
l X

2
k

]
,

which is simply denoted by ρ̂ZX when we replace l ∈ Sc⊥ by l ∈ [dZ ]. One then uses sensitivities for
the NV-STIV to construct confidence sets for θ.

5.2. Approximation Errors and Systems of Equations. We replace (2.1) to (2.1c) and assume
that σV (β) ≤ v(dX), for v(dX) decaying to zero with dX . The assumptions previously made on
(X,Z,U(β)) are made on (X,Z,W(β)) and I is modified accordingly and incorporates σV (β) ≤ v(dX).
The class P can be any of classes 1-5. The model with approximation errors allows for the structural
equation

(5.2) ∀i ∈ [n], Yi = f(X̃i) + Wi, E[Wi|Z̃i] = 0,

where f ∈ S, and for functions (ϕk)k∈N and a decreasing sequence (v(dX))dX∈N,

(5.3) ∀dX ∈ N, sup
g∈S

inf
b∈RdX

E

(g (X̃i

)
−

dX∑
k=1

ϕk

(
X̃i

)
bk

)2
 ≤ v(dX)2.

The rate of decay of (v(dX))dX∈N is usually taken slow so that S can be large. This amounts to assuming
minimum smoothness. The function f can lie in a class of much smoother functions contained in S. The

model with approximation error is obtained by taking f ∈ S, Xi,· = (ϕ1(X̃i), . . . , ϕdX (X̃i)), Vi(β) =

f(X̃i) −
∑dX

k=1 ϕk(X̃i)βk, and σV (β) ≤ vdX . The term Vi(β) is the error made by approximating the

function in the high-dimensional space, and v(dX) = o(n−1/2) for dX sufficiently large. For well chosen
classes S and functions (ϕk)k∈N, the vector β ∈ I is approximately sparse. We use IVs which comprise

functions of Z̃i. This approach can be generalized to system where β ∈MdX ,dG , SQ, SI ⊆ [dX ]× [dG],

U(β),V(β),W(β) ∈Mn,dG , and σV (β) ≤ v(dX) for v(dX) ∈ RdG . We now define the estimator.

Definition 5.2. For c, v̂ > 0, the E-STIV estimator
(
β̂, σ̂

)
is any solution of

(5.4) min
b∈ÎE(r̂,σ),σ≥0

(∣∣D−1
X bSQ

∣∣
1

+ c|σ|1
)
,

where

ÎE(r̂, t) ,

{
b ∈ B, ∀g ∈ [dG],

∣∣∣∣ 1nDZZ>(Y·,g −Xb·,g)

∣∣∣∣
∞
≤ r̂σg + (r̂ + 1)v̂g, σ̂g(b) ≤ tg

}
,

∀b ∈MdX ,dG , ∀g ∈ [dG], σ̂g(b)
2 , En[Ug(b)

2].

For the nonparametric model (5.2) with a single equation, one can take v̂ =
√

1 + τ(n)v(dX).
The E-STIV estimator can also be used for other approximate models such as bracketed data (then
v̂ can be determined from the data, see (v5)). We analyse the E-STIV estimator in Section B.2. It
allows for cross-equation restrictions, and the number of equations dG can depend on n.

6. Confidence Bands using Bias Correction

The confidence sets presented thus far can be conservative if dF is small relative to dX . In this
section, for Ω ∈ MdF ,dX , we propose an estimator and confidence band for ϕ(b) = Ωb. Specifically,
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we construct a confidence band comprising dF intervals and directly control the probability that Ωβ
lies inside. Taking Ω = e>k for k ∈ [dX ] yields a confidence interval as a special case. If the structural
equation is (5.2), we can use this to construct a confidence band around f at dF grid points (i.e., around

f(t1), f(t2), . . . , f(tdF ) where (tj)
dF
j=1 is a grid on the support of X̃) by taking Ω = (ϕk(tj))j∈[dF ],k∈[dX ]

and we control instead the probability that Ωβ+V (β), where V (β) is the approximation error at those
grid points, lies in the band. The number of grid points is permitted to grow with n.

A first strategy to estimate Ωβ is to use the plug-in estimator Ωβ̂, where β̂ is an estimator from
the STIV family. A second strategy is to rely on the assumption

(6.1) ∃Λ ∈MdF ,dZ : ∀i ∈ [n], ΛE
[
Z>i,·Xi,·

]
= Ω.

The statement ∀i ∈ [n] is to allow for independent but non i.i.d. data. To understand this condition,
let us consider the case of i.i.d. data. We have ΛE

[
ZX>

]
β = ΛE[ZY ], so Ωβ = ΛE[ZY ]. This yields

a second plug-in strategy to estimate Ωβ by using an estimator of Λ. Condition (6.1), however, can be
problematic. It states that there exists a solution to a system of dFdX equations in dFdZ unknowns.
If dZ < dX , the system is overdetermined, and so a solution may only exist for particular choices of
Ω. If there exists a unique solution, it might not be sparse. If dZ > dX there are more unknowns
than equations. If a solution exists, the set of Λ which satisfy (6.1) is an affine space, and so Λ is not
point identified but there can exist for example a sparsest solution. In case of E

[
ZX>

]
β = E[ZY ]

and (6.1), one has to deal with the multiplication of the parameter to estimate with E
[
ZX>

]
, either

to the left or to the right. The dimensions dZ and dX play opposite roles: having dZ ≥ dX is desirable
to estimate β, while having dX ≥ dZ is desirable to estimate Λ. To deal with both underidentified
situations sparsity is a useful device. We now denote, for L ∈MdF ,dZ , by Ti (L) , Ω− LZ>i,·Xi,·.

Using either of these plug-in strategies poses problems in high-dimensions because STIV types
estimators perform shrinkage and are “biased” towards zero. They can also converge slowly or even
fail to converge as we have seen in the case of many equally weak IVs. The approach that we take is
to combine the two estimators and form the bias corrected estimator

Ω̂β , Ωβ̂ +
1

n
Λ̂Z>U(β̂).(6.2)

It amounts to estimating dF linear combinations of the IVs and interacting them with the estimated
residuals. It is at the basis of the confidence bands in this section. They can yield less conservative
inference than the previous confidence sets when dF is small.

Remark 6.1. The bias-corrected estimator is close in spirit to [21]. Another motivation for it is that

the mapping O defined as O(b, L) , Ωb + L(E[Z>Y ] − E[Z>X]b) has partial derivatives with respect
to b and L which are zero at, respectively, identified β and Λ (due to E

[
ZX>

]
β = E[ZY ] and (6.1))

and O(β,Λ) = Ωβ. This is a type of double-robustness (see, e.g., [15]). In the approach of this paper,

β̂ is not obtained by estimating regressions (hence no machine learning) but directly in a robust way,
allowing all regressors to be endogenous. Another difference is that our analysis is based on (B.21)
which does not include a term which is the product of two estimation errors. For this reason, we can
have much weaker requirements on rates of convergence.

Remark 6.2. The assumptions on (β̂, σ̂) and (Λ̂, ν̂) will not be symmetric. If the researcher thinks

they are more likely to hold if we interchange their role, she can use Ω̃β , (Λ̂Z>Y +
∑

i∈[n] T(Λ̂)β̂)/n.

The mapping O′ defined as O′(b, L) , LE[Z>Y ]+(Ω−LE[Z>X])b satisfies the same double-robustness
property as O.

The previous methods can be used to estimate Λ because (6.1) is simply another system of
moment conditions. Condition (6.1) can hold approximately like in Section B.2. In this section we use
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the C-STIV estimator for a system of dF equations. For λ ∈ (0, 1), we obtain Λ̂ by solving

(6.3) min
L∈ÎC(r′0(n),ν),ν>0

∣∣LD−1
Z

∣∣
1

+
λν

ρ̂ZX
,

where

ÎC(r′0(n), ν) ,
{
L ∈MdF ,dZ :

∣∣∣∣∣∣ 1n
∑
i∈[n]

Ti(L)DX

∣∣∣∣∣∣
∞

≤ r′0(n)ν, F̂ (L) ≤ ν
}
,

∀L ∈MdF ,dZ , F̂ (L) , max
(f,k)∈[dF ]×[dX ]

σ̂f,k (L) , and σ̂f,k (L)2 , (DX)2
k,k En

[
(T (Λ))2

f,k

]
.

If Ω = I and Z = X, Λ̂ is an approximate inverse of the matrix X>X/n, which improves on the
CLIME estimator of [11] by additionally estimating standard errors. The rates of convergence are
given in Theorem B.3.

The sequences c, r̂ and α for the preliminary estimator can vary with n, the last converging to
zero. P ′ is a nonparametric class for P(β,Λ) the distribution of (X,Z,U(β), (Ti(Λ))i∈[n],ZΛ>DΛZ).
The one on which our analysis is based defined in Assumption B.1. To choose r′0(n), we use a suitable
modification of the classes presented in Section A.1.1. For ease of exposition we focus on class 4, in
which case r′0(n) is defined identically to r0(n), replacing α with a sequence converging to zero and dZ
with dFdX . We define the set of identifiable parameters

IΩ ,
{
β ∈ I,Λ : ∀i ∈ [n],ΛE

[
Z>i,·Xi,·

]
= Ω,P (β,Λ) ∈ P ′.

}
,

Since it is needed for the empirical application, we present our results below for the case in which

β̂ is a pilot estimator of the parameters of a system of dG equations as the one studied in generalization

(2.1d) or the C-STIV estimator for system used here to obtain Λ̂. β̂ is a dX × dG matrix and dG can
depend on n. For α ∈ (0, 1), we define

ĈΩ,g ,
[
ĈΩ,g, ĈΩ,g

]
, ĈΩ,g , Ω̂β·,g − q̂, , ĈΩ,g , Ω̂β·,g + q̂,(6.4)

q̂ ,

(
q
GΩ|U(β̂)ZΛ̂>

(1− α) + 2ζ(n)
)

√
n

D−1

U(β̂)ZΛ̂>
1 +

v(n)√
n
,(6.5)

where q
GΩ|U(β̂)ZΛ̂>

(1−α) is the 1−α quantile of the distribution of GΩ = |D
U(β̂)ZΛ̂>

Λ̂Z>U(β̂)E|∞/
√
n

given U(β̂)ZΛ̂> (computed by simulation), E is a Gaussian vector in Rn with mean zero and variance

I and independent from U(β̂)ZΛ̂>, and (ζ(n))n∈N, (v(n))n∈N, and (αΩ(n))n∈N are sequences appearing
in Assumption B.2. To have a unified framework, the result below is for the vector of approximately
linear functionals Ωβ·,g + V g(β).

Theorem 6.1. Let assumptions B.1 and B.2 hold. Then, for all P, (β,Λ) such that (β,Λ) ∈ IΩ and

n ∈ N, every collection (ĈΩ,g)g∈[dG] satisfies

P
(

Ωβ·,g + V g(β) ∈ ĈΩ,g

)
≥ 1− α− αΩ(n) ∀g ∈ [dG].

The sequence (v(n))n∈N in (6.5) allows to obtain a result which is uniform in n but the researcher
can use v(n) = 0. The confidence bands have asymptotically coverage at least 1− α if αΩ(n)→ 0 and
v(n)→ 0. The first condition is very mild and requires that (ζ(n))n∈N does not converge too fast to 0
(see (i) in Assumption B.2), αβ(n) + αΩ(n)→ 0, and dF is of smaller order than an exponential in n.
Due to item (iii) in Assumption B.2, the second condition holds if

√
n(1 + vD(n))

(∣∣DΛZW (β)

∣∣
∞ r
′
0(n)vF (Λ)(n)vβ,1(n) +

∣∣DΛZW (β)

∣∣
∞ |V (β)|∞(6.6)
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+
(
vΛ,3(n) +

∣∣DΛZW (β)D
−1
ΛZ

∣∣
∞

)
|v(dX)|∞

)
→ 0,

vD(n) , min
((∣∣DΛZW (β)ΛD

−1
Z

∣∣
∞,∞ +

∣∣DΛZW (β)

∣∣
∞ vΛ,1(n)

)
(ρZX(n)vβ,1(n) + ρZv(dX)) + vΛ,2(n),

∣∣DΛZU(β)

∣∣
∞ vΛ,1(n)ρZX

(
vβ,1(n) +

∣∣D−1
X β

∣∣
1

)
+ max
f∈[dF ]

√
E
[((

DΛZW (β)Λ
)
f,· ZV (β)

)2
]

+ vβ,2(n)
)
,

where the additional sequences are introduced in Section B.3. The sequences of the form vΛ,1(n),
vΛ,2(n), and vΛ,3(n) are rates of convergence for the estimation of Λ for three different losses, vF (Λ)(n)
is a bound for ν̂ (hence is not converging to zero), and vβ,1(n) and vβ,2(n) are rates of convergence for
the estimation of β. In the absence of approximation error and for linear functionals, the condition
simplifies because v(dX) = 0 and V (β) = 0. Omitting the second term in the minimum in the definition
of vD(n), a sufficient condition is that

(1) (|DΛZW (β)ΛD
−1
Z |∞,∞ + |DΛZW (β)|∞vΛ,1(n))ρZX(n)vβ,1(n) + vΛ,2(n) = O(1),

(2) |DΛZW (β)|∞r′0(n)vF (Λ)(n)vβ,1(n) = o(1/
√
n).

Item 1 can hold can hold even if vΛ,1(n) diverges but vΛ,2(n) remains bounded. So it is not required

that Λ̂ even converges, for any of the two losses for which vΛ,1(n) and vΛ,2(n) account, to an element
Λ such that (β,Λ) ∈ IΩ. Assuming

∣∣DΛZW (β)

∣∣
∞ vF (Λ)(n) = O(1), which again does not require the

consistency of Λ̂, item 2 holds if r′0(n)vβ,1(n) = o(1/
√
n). So the estimation error on β should be

o(ln(dFdX)−1/2). This is very mild and much weaker than what is usually needed with doubly robust
methods (the product of the rates for estimation of Λ and β is o(1/

√
n)). Another advantage of the

bias correction analysed in this section is that the researcher does not need to find the form of robust
moments and can rely on a simple data-driven method.

In nonidentified cases it is possible that two elements of I give rise to the same Ωβ and what then

matters is that β̂ converges to an approximately sparse element of I giving rise to the same functional.

When Ψ is such that we cannot prove consistency of β̂ then the coverage of the confidence bands might
not be correct. This is because these bands are not robust to identification. Also, the confidence bands
can be valid even if condition 1 does not hold and the quantity diverges, if (vβ,1(n))n∈N converges faster

to 0. Condition (6.6) can be restrictive due to terms like |DΛZW (β)ΛD
−1
Z |∞,∞ in vD(n). The second

term in the minimum in the definition of vD(n) can then be useful because it involves instead |D−1
X β|1.

In Section B.3 we show that if we assume that the structural errors are conditional homoscedastic
and consider alternative confidence bands, those conditions can be relaxed significantly. When the
researcher uses the debiaising technique of Remark 6.2, the role of the estimation error of β and of Λ
are exchanged. Section 8.2 in (v5) proposes an alternative solution to handle non identified matrices
Λ. Section 8.3 in (v5) combines the confidence bands with an upper bound on the bias obtained from
the identification robust confidence sets in case we suspect the “bias” of the debiased estimator might
not be negligible.

7. Inference Put Into Practice

7.1. Simulation Study. We consider the model (2.1)-(2.2) with i.i.d. data, B = RdX and SQ = [dX ].

We set β∗ = (1,−2,−0.5, 0.25, 0, . . . , 0)> and let Z>i,· be a Gaussian vector in RdZ with mean zero and

variance I. We take the exogenous regressors to be the first |SI | IVs. For an endogenous regressor
of index k we set Xi,k = Zi,·Π·,k + Vi,k where Π ∈ MdZ ,|ScI | is a matrix of first-stage parameters and

Vi,· ∈ R|ScI |. We let (Ui,Vi,·)
> be a Gaussian vector in R1+|ScI | with mean zero and variance Σ, with
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entries
Σi,j = 1 if i = j = 1, Σi,j = 1− π if i = j > 1, Σi,j = 0.05 otherwise.

We set Π such that |Π·,k|22 = π for k ∈ [|ScI |], and π ∈ {0.5, 0.8} controls the collective IV strength. This
implies that each regressor has unit variance. Since the IVs are uncorrelated with one another, a matrix
version of the concentration parameter Π>Z>ZΠ/(1 − π) has diagonal elements close to nπ/(1 − π)
and the degree of endogeneity is 0.05/

√
1− π (see [1]). In low dimensions this would be considered a

strong IV situation. However, we consider cases in which the first-stage is not approximately sparse
so even a first-stage Lasso estimator would not be consistent (so it is not possible to even estimate
the concentration parameter and apply a method akin to 2SLS), most of the IVs have very weak
correlation with the endogenous regressors, and identification fails in the absence of sparsity. We take
ΠdZ ,1 = ΠdZ−1,2 = · · · = ΠdZ−|ScI |+1,|ScI | =

√
3π/4. For the remaining entries we set

Πi,j =

{
−
√

(π/4)/(dZ − 1) i is odd and j is odd, or i is even and j ≥ dZ/2
+
√

(π/4)/(dZ − 1) otherwise

This means that there is one stronger IV and dZ−1 weaker IVs for each endogenous regressor. Though
each weaker IV accounts for a small fraction of the variance in the endogenous regressors, collectively
the weaker IVs account for fraction π/4 of the variance. Moreover, when dZ ≤ dX all of the IVs are
strongly correlated with at least one regressor.

We construct confidence sets for ϕ(b) = b and the corresponding confidence bands using Ω = I.
To construct confidence sets based on SNIV and lower bounds on the sensitivities we use r0(n) from
class 4 with α = 0.05 and invoke assumption A.1 to set r̂ = 1.01r0(n). We consider sparsity certificates
4, 5, 6, 7, 10. For the choices of dX , dZ below, the design is such that Is is a singleton for each sparsity
certificate (i.e., there is identification under sparsity). We construct the bounds in (4.9), replacing
c > 0 with a grid, the construction of which is discussed below. For computational reasons we limit
the grid to at most two points. Increasing the number of grid points (and/or loss functions) could lead
to less conservative inference. We follow the same approach to construct the confidence set in (4.13)

based on an estimated support, taking c equal to the first grid point and S(β̂) to be the indices of the

elements of DX
−1β̂ with absolute value larger than 1e-4. For the confidence bands we use STIV for

the pilot and class 5 to set r̂ (as mandated by Assumption B.1). Since the IVs are uncorrelated with
one another, the values of r̂ corresponding to classes 4 and 5 are nearly identical. We use the STIV

estimator with c = 0.99/r̂ for the pilot and set λ = 0.99 to estimate Λ̂. Computational details and
software are in Section C.4.

Rule of Thumb for c. We start by applying STIV with c = r̂−1, which corresponds to the

least shrinkage of β̂. As c decreases the estimate remains almost unchanged, until a point after which
σ increases. If the researcher wishes to use a single value of c, we recommend this value. As c decreases
further, the estimator remains unchanged until a point after which there is a second increase in σ. If
we use a second point to construct a grid we use this value, and so on. Choosing the grid in this way
means that we use the smallest possible c (yielding the largest possible sensitivities) for a given value
of σ.

Estimation. We consider estimation in a challenging setting with n < dZ < dX . We set n =
750, dX = 1750 and dZ = 1500. We take ScI = {1, 5, 1503, ..., 1750}, such that there are 250 endogenous
regressors. Table 1 reports the results for different choices of c and π over 1000 replications. For
sufficiently large c, the estimator performs well in terms of selecting nonzero entries of the parameter,
and does not select entries of the parameter with values of zero. Due to the shrinkage, there is a
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Table 1. STIV estimator

dZ = 1500, dX = 1750, n = 750, π = 0.8

cr̂ = 0.95 cr̂ = 0.75 cr̂ = 0.5 cr̂ = 0.25

p2.5 p50 p97.5 p2.5 p50 p97.5 p2.5 p50 p97.5 p2.5 p50 p97.5

β∗1 (= 0.5) 0.8 0.88 0.95 0.74 0.82 0.91 0.67 0.78 0.88 0.27 0.55 0.78
β∗2 (= −2) -1.9 -1.83 -1.75 -1.9 -1.83 -1.75 -1.9 -1.82 -1.74 -1.89 -1.81 -1.73
β∗3 (= −0.5) -0.41 -0.33 -0.26 -0.41 -0.33 -0.26 -0.41 -0.33 -0.26 -0.41 -0.32 -0.25
β∗4 (= 0.25) 0.01 0.08 0.16 0.01 0.08 0.16 0 0.08 0.16 0 0.08 0.16
β∗5 (= 0) 0 0 0 0 0 0 0 0 0 0 0 0
β∗6 (= 0) 0 0 0 0 0 0 0 0 0 0 0 0
σ∗(= 1) 1 1.05 1.1 1.01 1.06 1.12 1.02 1.07 1.13 1.05 1.12 1.2∣∣∣(β̂ − β∗)S(β∗)

∣∣∣
∞

0.15 0.2 0.25 0.16 0.21 0.27 0.17 0.23 0.33 0.23 0.45 0.73∣∣∣(β̂ − β∗)S(β∗)c

∣∣∣
∞

0 0 0.03 0 0 0 0 0 0.03 0 0.17 0.39

S(β̂) ⊇ S(β∗) 0.98 0.98 0.98 0.96

S(β̂) = S(β∗) 0.62 0.95 0.91 0.06

dZ = 1500, dX = 1750, n = 750, π = 0.5

β∗1 (= 0.5) 0 0.79 0.96 0 0.78 0.96 0 0.79 0.98 0 0.8 0.98
β∗2 (= −2) -1.93 -1.83 -1.5 -1.91 -1.83 -1.48 -1.9 -1.83 -1.47 -1.93 -1.83 -1.49
β∗3 (= −0.5) -0.39 -0.32 0 -0.4 -0.34 0 -0.4 -0.34 0 -0.4 -0.33 0
β∗4 (= 0.25) 0 0.08 0.18 0 0.07 0.18 0 0.08 0.16 0 0.07 0.15
β∗5 (= 0) 0 0 0 0 0 0 0 0 0 0 0 0
β∗6 (= 0) 0 0 0 0 0 0 0 0 0 0 0 0
σ∗(= 1) 1 1.09 3.3 0.99 1.09 3.42 0.99 1.08 3.4 0.98 1.08 3.38∣∣∣(β̂ − β∗)S(β∗)

∣∣∣
∞

0.15 0.24 1 0.15 0.23 1 0.15 0.23 1 0.15 0.24 1∣∣∣(β̂ − β∗)S(β∗)c

∣∣∣
∞

0 0.02 0.42 0 0.02 0.43 0 0.02 0.45 0 0.02 0.43

S(β̂) ⊇ S(β∗) 0.82 0.82 0.80 0.78

S(β̂) = S(β∗) 0.49 0.45 0.47 0.46

1000 replications. r0(n) = 0.16.

bias towards zero, which is decreasing in c. The shrinkage also leads to a slight upwards bias in the
estimator of the variance.

Confidence Sets. We set n = 2000, dX = 50, dZ ∈ {2050, 49}, ScI = {1, 5} and construct
confidence sets for β∗. This design is challenging since there are two endogenous regressors and either
dZ < dX or n < dZ . We limit dX so as to permit application of all of our methods to the same design
over 1000 replications. Below we modify the design to allow for dX > n. Table 2 illustrates the SNIV
confidence sets for a single dataset. The bounds are nested and contain the true value for all values of
s. If π = 0.8 the bounds are sufficiently narrow so as to be informative on the sign of first three entries
of β∗, which are the largest in magnitude. If dZ = 49 there is no strong IV for regressor 5, yielding wide
bounds. Table 3 reports results for the other confidence sets over 1000 replications. The confidence
sets based on a sparsity certificate are are nested. If dZ = 2050, they can be sufficiently narrow so as
to be informative on the sign of the first three entries of β∗. Though robust to identification, the sets
can also be conservative, with infinite volume if dZ = 49 and coverage close to 1 if dZ = 2050. The
STIV estimator performs well in selecting the nonzero entries of the parameter, which results in less
conservative confidence sets based on an estimated support. These are narrower than those based on
the sparsity certificate s = |S(β∗)| = 4, even those based on SNIV. This is because they use information
on both the cardinality and identities of the relevant regressors. Confidence sets based on estimated
support have coverage below the nominal level when dZ = 2050 and π = 0.5. This is because STIV
applied using the rule of thumb value for c sometimes fails to distinguish β∗4 = 0.25 from zero. In the
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Table 2. 0.95 SNIV confidence sets for β∗

dZ = 49, dX = 50, n = 2000, π = 0.8 dZ = 2050, dX = 50, n = 2000, π = 0.8

Lower bound Upper bound Lower bound Upper bound

SC 10 SC 6 SC 5 SC 4 SC 4 SC 5 SC 6 SC 10 SC 10 SC 6 SC 5 SC 4 SC 4 SC 5 SC 6 SC 10

β∗1 (= 0.5) 0.40 0.40 0.59 0.60 1.33 1.48 1.50 1.55 -0.17 0.01 0.07 0.07 1.53 2.00 2.05 2.15
β∗2 (= −2) -2.37 -2.34 -2.24 -2.23 -1.76 -1.66 -1.64 -1.61 -2.59 -2.57 -2.46 -2.42 -1.49 -1.33 -1.33 -1.27
β∗3 (= −0.5) -0.87 -0.83 -0.80 -0.79 -0.18 -0.16 -0.14 -0.09 -0.93 -0.83 -0.83 -0.89 -0.05 -0.05 0.01 0.09
β∗4 (= 0.25) -0.28 -0.21 -0.19 -0.07 0.51 0.66 0.70 0.75 -0.42 -0.36 -0.36 -0.13 0.49 0.76 0.78 0.86
β∗5 (= 0) -3.59 -3.59 -3.54 -3.42 3.51 3.51 3.57 3.71 -0.53 -0.47 -0.46 -0.42 0.42 0.42 0.48 0.68
β∗6 (= 0) -0.34 -0.29 -0.27 -0.28 0.29 0.30 0.32 0.37 -0.54 -0.34 -0.34 -0.34 0.35 0.36 0.44 0.54

dZ = 49, dX = 50, n = 2000, π = 0.5 dZ = 2050, dX = 50, n = 2000, π = 0.5

β∗1 (= 0.5) -0.30 -0.15 -0.12 -0.09 1.94 1.98 2.09 2.21 -1.10 -0.92 -0.82 -0.64 2.64 2.70 2.91 3.05
β∗2 (= −2) -2.53 -2.49 -2.48 -2.42 -1.62 -1.54 -1.42 -1.40 -2.92 -2.88 -2.84 -2.72 -0.99 -0.91 -0.80 -0.50
β∗3 (= −0.5) -1.12 -1.05 -1.05 -0.98 0.01 0.06 0.08 0.18 -1.47 -1.36 -1.28 -1.24 0.25 0.34 0.38 0.55
β∗4 (= 0.25) -0.49 -0.42 -0.33 -0.29 0.74 0.75 0.82 0.93 -0.69 -0.61 -0.54 -0.52 0.87 0.91 0.98 1.08
β∗5 (= 0) -6.22 -6.00 -6.00 -5.73 5.99 6.64 6.46 6.76 -1.50 -1.36 -1.26 -1.17 1.14 1.22 1.42 1.59
β∗6 (= 0) -0.76 -0.63 -0.57 -0.54 0.47 0.47 0.53 0.69 -0.93 -0.83 -0.75 -0.74 0.61 0.69 0.74 0.90

1 replication. For dZ = 49 (resp. 2050) r0(n) = 0.074 (resp. 0.094). ‘SC s’ use sparsity certificate s.

other designs, confidence sets using an estimated support are typically sufficiently narrow so as to be
informative on the signs of the first three entries of β∗. The bias corrected STIV reduces the shrinkage
of STIV and centers its distribution on the true value. For dZ = 2050, there exists a sparse Λ verifying
(6.1), with |SI |+ |ScI |dZ = 4148 nonzero entries out of a possible dXdZ = 102500. The coverage of the
confidence bands is slightly below 0.95, but the bands are narrower than those based on sensitivities.
Coverage below 0.95 stems from the shrinkage applied when estimating Λ. For dZ = 49, there does not
exist Λ verifying (6.1). This leads the coverage to be below 0.95, significantly so when π = 0.5.

Confidence Sets with dX > n. We set n = 4000, dX = 4100, ScI = {1, 5} and dZ = 4100.

Confidence bands are computationally infeasible since Λ̂ is the solution of a second order cone program
with dXdZ = 41002 cones. Table 4 reports the results. If π = 0.8, confidence sets with a sufficiently
small sparsity certificate can be informative on the signs. For sparsity certificate s = 7, the confidence
set has infinite volume when one grid point over c is used and finite (though large) volume with two
grid points. STIV performs well in terms of variable selection, which translates into less conservative
confidence sets based on estimated support. Reducing the strength of the IVs (π = 0.5) increases the
width of the sets but does not yield coverage below the 0.95 level.

Endogenous IVs: Fewer Known Exogenous IVs than Regressors. We take n = 2000,
dX = 6, ScI = {1, 5} and dZ = 50. The 45 IVs with indices Sc⊥ = {5, 6, ..., 49} are possibly endogenous.

We modify the design above by taking Zi,5 =
√

1− 0.82ei + 0.8Ui with ei is an independent standard

Gaussian. This preserves the variance matrix of Zi,· as the identity but implies that E[Z>i,·U(β∗)i] = θ∗

has one nonzero entry given by θ∗5 = 0.8. We construct SNIV and sensitivity based confidence sets.
The sensitivity based confidence sets are based on the C-STIV estimator. Table 5 illustrates the SNIV
confidence sets for a single dataset. The confidence sets based on a sparsity certificate fix s = 4 for the
sparsity of β and vary s̃ ∈ [5] for the sparsity of θ. The bounds for the endogenous IV do not include
zero, and so SNIV detects it for every sparsity certificate. In contrast, the bounds on the exogenous
instrument include zero for all sparsity certificates. Table 6 reports results for the other confidence sets
over 1000 replications. The C-STIV estimator detects the endogenous IV, though is downwards biased
due to the shrinkage. The confidence sets using a sparsity certificate correctly detect the endogenous IV
with frequency 0.74 for s̃ = 1, which decreases as s̃ increases. The confidence sets based on estimated
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Table 3. 0.95 confidence sets and bands

dZ = 2050, dX = 50, n = 2000, π = 0.8

STIV SC 4 SC 5 SC 6 SC 10 ES BC STIV CB

p2.5 p50 p97.5 Median width/2 p2.5 p50 p97.5 Width/2

β∗1 (= 1) 0.9 0.95 0.99 0.8 1.02 1.32 6.07 0.33 0.94 1 1.06 0.1
β∗2 (= −2) -1.95 -1.9 -1.85 0.58 0.73 0.94 4.55 0.26 -2.04 -1.99 -1.95 0.07
β∗3 (= −0.5) -0.45 -0.4 -0.36 0.57 0.73 0.94 4.64 0.26 -0.54 -0.49 -0.45 0.07
β∗4 (= 0.25) 0.11 0.15 0.19 0.57 0.73 0.95 4.65 0.26 0.2 0.24 0.29 0.07
β∗5 (= 0) 0 0 0 0.8 1.02 1.31 6.03 0 -0.05 0 0.06 0.1
β∗6 (= 0) 0 0 0 0.57 0.73 0.95 4.62 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 0.98 0.94

S(β̂) = S(β∗) 0.98 (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.97,0.98) (0.92,0.95)

dZ = 49, dX = 50, n = 2000, π = 0.8

β∗1 (= 1) 0.84 0.9 0.96 ∞ ∞ ∞ ∞ 0.24 0.94 0.99 1.05 0.07
β∗2 (= −2) -1.96 -1.91 -1.87 ∞ ∞ ∞ ∞ 0.2 -2.04 -2 -1.95 0.07
β∗3 (= −0.5) -0.47 -0.43 -0.39 ∞ ∞ ∞ ∞ 0.2 -0.54 -0.5 -0.46 0.07
β∗4 (= 0.25) 0.13 0.18 0.23 ∞ ∞ ∞ ∞ 0.2 0.2 0.25 0.3 0.07
β∗5 (= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.03 0.02 0.08 0.1
β∗6 (= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 0.93

S(β̂) = S(β∗) 0.96 (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.91,0.95)

dZ = 2050, dX = 50, n = 2000, π = 0.5

β∗1 (= 1) 0.98 1.02 1.07 1.55 2.31 3.78 ∞ 0.43 0.92 1 1.07 0.12
β∗2 (= −2) -1.95 -1.9 -1.86 0.85 1.26 2.08 ∞ 0.27 -2.04 -1.99 -1.95 0.07
β∗3 (= −0.5) -0.45 -0.4 -0.36 0.86 1.27 2.1 ∞ 0.27 -0.54 -0.49 -0.45 0.07
β∗4 (= 0.25) 0.11 0.16 0.2 0.85 1.26 2.08 ∞ 0.26 0.2 0.24 0.29 0.07
β∗5 (= 0) 0 0.03 0.07 1.56 2.32 3.78 ∞ 0 -0.07 0 0.07 0.12
β∗6 (= 0) 0 0 0 0.85 1.26 2.1 ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 0.75 0.95

S(β̂) = S(β∗) 0.13 (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.72,0.77) (0.93,0.96)

dZ = 49, dX = 50, n = 2000, π = 0.5

β∗1 (= 1) 1 1.05 1.09 ∞ ∞ ∞ ∞ 0.31 0.99 1.03 1.08 0.03
β∗2 (= −2) -1.97 -1.93 -1.88 ∞ ∞ ∞ ∞ 0.2 -2.04 -1.99 -1.95 0.07
β∗3 (= −0.5) -0.47 -0.42 -0.38 ∞ ∞ ∞ ∞ 0.2 -0.54 -0.49 -0.45 0.07
β∗4 (= 0.25) 0.13 0.18 0.22 ∞ ∞ ∞ ∞ 0.2 0.2 0.25 0.29 0.07
β∗5 (= 0) 0 0.05 0.09 ∞ ∞ ∞ ∞ 0 -0.03 0.03 0.09 0.1
β∗6 (= 0) 0 0 0 ∞ ∞ ∞ ∞ 0 -0.04 0 0.04 0.07

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 0.50

S(β̂) = S(β∗) 0.02 (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.996,1) (0.47,0.53)

1000 replications. ‘SC s’ use sparsity certificate s. ‘ES’ use estimated support. ‘CB’ use Ω = I. SC/ES use one
grid point for c. For dZ = 49 (resp. 2050) r0(n) = 0.074 (resp. 0.094). ‘STIV’ uses c = 0.99/r̂. ‘BC STIV’ is
the bias corrected STIV. For SC/ES (resp. CB) ‘Cover’ reports the frequency with which β∗ lies in the bounds
defined in (4.9) (resp. (B.20)). 0.95 confidence intervals for the coverage are in parentheses (see [34]).

support detect the endogenous IV in every replication.

Endogenous IVs: As Many Known Exogenous IVs as Regressors. We take n = 3000,
dX = 90, ScI = {1, 5} and dZ = 100. There are 10 possibly endogenous IVs with indices Sc⊥ =

{89, 90, ..., 98}. There is one endogenous IV, Zi,89 =
√

1− 0.82ei + 0.8Ui where ei is an independent
standard Gaussian. We apply the NV-STIV estimator. We use STIV for the pilot, taking r0(n) from
class 4 with α = 0.025 and r̂1(n) = 1.01r0(n). We choose one value of c using the rule of thumb above.
For the NV-STIV estimator we take r2(n) from class 4 with α = 0.025. As both stages use α = 0.025,
we construct confidence sets with prescribed coverage probability 0.95. We use sparsity certificates
s = 4 for β and s̃ ∈ [10] for θ. The confidence sets are intersected over a grid of 19 points for c̃. Table
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Table 4. 0.95 confidence sets with dX > n

dZ = 4100, dX = 4100, n = 4000, π = 0.8

STIV SC 4 SC 5 SC 6 SC 7 SC∗ 7 SC 10 ES

p2.5 p50 p97.5 Median width/2

β∗1 (= 1) 0.87 0.91 0.94 0.65 1.08 2.66 ∞† 97.7 ∞ 0.22

β∗2 (= −2) -1.96 -1.93 -1.90 0.40 0.59 1.29 ∞† 42.84 ∞ 0.17

β∗3 (= −0.5) -0.46 -0.43 -0.39 0.40 0.60 1.29 ∞† 42.51 ∞ 0.17

β∗4 (= 0.25) 0.14 0.18 0.21 0.40 0.59 1.29 ∞† 41.89 ∞ 0.17

β∗5 (= 0) 0 0 0 0.65 1.09 2.68 ∞† 97.37 ∞ 0

β∗6 (= 0) 0 0 0 0.40 0.60 1.29 ∞† 43.32 ∞ 0

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 1 0.97

S(β̂) = S(β∗) 0.99 (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.94,0.99)

dZ = 4100, dX = 4100, n = 4000, π = 0.5

β∗1 (= 1) 1.02 1.05 1.08 3.52 18.64 ∞ ∞ ∞ ∞ 0.65
β∗2 (= −2) -1.96 -1.93 -1.90 1.56 7.02 ∞ ∞ ∞ ∞ 0.4
β∗3 (= −0.5) -0.46 -0.43 -0.4 1.57 6.97 ∞ ∞ ∞ ∞ 0.4
β∗4 (= 0.25) 0.15 0.18 0.21 1.55 6.99 ∞ ∞ ∞ ∞ 0.4
β∗5 (= 0) 0.02 0.05 0.08 3.58 19.18 ∞ ∞ ∞ ∞ 0
β∗6 (= 0) 0 0 0 1.57 7.05 ∞ ∞ ∞ ∞ 0

S(β̂) ⊇ S(β∗) 1 Cover 1 1 1 1 1 1 0.97

S(β̂) = S(β∗) 0.01 (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.98,1) (0.94,0.99)

200 replications. ‘SC s’ use sparsity certificate s. ‘ES’ use estimated support. ‘CB’ use Ω = I.
SC/ES use one grid point for c. r0(n) = 0.07.‘STIV’ uses c = 0.99/r̂. ‘Cover’ reports the frequency

with which β∗ lies in the bounds defined in (4.9). †: The frequency of replications with confidence
sets of finite width is 0.03. ∗: Where they are not identical, we report confidence sets using two
grid points.

Table 5. 0.95 SNIV confidence sets for detection of endogenous IVs

dZ = 50, dX = 6, n = 2000, π = 0.8

Lower bound Upper bound

SC 4,5 SC 4,4 SC 4,3 SC 4,2 SC 4,1 SC 4,1 SC 4,2 SC 4,3 SC 4,4 SC 4,5

θ∗5(= 0.8) 0.02 0.02 0.06 0.06 0.07 1.31 1.31 1.31 1.36 1.36
θ∗6(= 0) -1.16 -1.15 -1.12 -1.07 -1.01 0.61 0.61 0.64 0.63 0.68

1 replication. r0(n) = 0.07. ‘SC s, s̃’ use sparsity certificates s, s̃.

Table 6. 0.95 C-STIV confidence sets for detection of endogenous IVs

dZ = 50, dX = 6, n = 2000, π = 0.8

C-STIV SC 4,1 SC 4,2 SC 4,3 SC 4,4 SC 4,5 ES

p2.5 p50 p97.5 Median width/2

θ∗5(= 0.8) 0.66 0.71 0.77 0.69 0.71 0.73 0.76 0.78 0.25
θ∗6(= 0) 0 0 0 0.69 0.71 0.74 0.76 0.78 0

S(θ̂) ⊇ S(θ∗) 1 Power 0.74 0.51 0.26 0.11 0.04 1

S(θ̂) = S(θ) 1 (0.71,0.77) (0.48,0.54) (0.23,0.29) (0.09,0.13) (0.03,0.05) (0.996,1)

1000 replications. ‘SC s, s̃’ use sparsity certificates s, s̃. ‘ES’ use estimated support. SC/ES use
one grid point for c. r0(n) = 0.07. ‘C-STIV’ uses c = 0.99. ‘Power’ is the frequency with which
the confidence sets do not include θ5 = 0.

7 reports results. Due to shrinkage, the NV-STIV estimator is centred on 0.6. The endogenous IV is
detected with frequency 0.95 for s̃ = 1, decreasing to 0.91 for s̃ = 10.

7.2. Second-order Approximation of the EASI Demand System. The EASI demand system of
[25] implies the vector of expenditure shares Si ∈ RdG for dG goods consumed by household i satisfies

Si =

dP∑
p=0

bpT
p
i + CH>i,· +DH>i,·Ti +A0P

>
i,· +

dH∑
h=1

AhP
>
i,·Hi,h +BP>i,·Ti + Wi;(7.1)
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Table 7. 0.95 NV-STIV confidence sets for detection of endogenous IVs

dZ = 100, dX = 90, n = 3000, π = 0.8

NV-STIV SC 4,1 SC 4,2 SC 4,3 SC 4,5 SC 4,7 SC 4,10

p2.5 p50 p97.5 Median width/2

θ89(= 0.8) 0.55 0.6 0.65 0.53 0.53 0.53 0.53 0.54 0.54
θ90(= 0) 0 0 0 0.53 0.53 0.53 0.53 0.54 0.54

S(θ̂) ⊇ S(θ∗) 1 Power 0.95 0.94 0.94 0.93 0.92 0.91

S(θ̂) = S(θ∗) 1 (0.93,0.96) (0.92,0.95) (0.92,0.95) (0.91,0.94) (0.9,0.93) (0.89,0.92)

1000 replications. ‘SC s, s̃’ use sparsity certificates s, s̃. SC use one grid point for c. r0(n) = 0.07 is
from class 4 with α = 0.025, and r̂1(n) = 1.01r0(n). r2(n) = 0.06 is from class 4 with α = 0.025.
Confidence sets use a grid of 19 points for c̃. ‘NV-STIV’ uses c̃ = 0.99. ‘Power’ reports the
frequency with which the confidence sets do not include θ89 = 0.

Ti =
Ei −Pi,·Si + Pi,·(A0 +

∑dH
h=1AhHi,h)P>i,·/2

1−Pi,·BP>i,·/2
;(7.2)

where Ei is nominal expenditure, Pi,· is a vector of log-prices of size dG, H>i,· is a vector of household
characteristics of size dH , Wi is a vector of errors, and Ti is deflated expenditure. The parameters are
bp ∈ RdG for p = 0, ..., dP , C,D ∈ MdG,dP and A0, ..., A5, B ∈ MdG,dG . Theory imposes restrictions
such as (1) expenditure shares sum to one and (2) Slutsky symmetry, hence

1>b0 = 1, 1>C = 1>D = 0, 1>B = 0; ∀p ∈ [dP ], 1>bp = 0;

∀h ∈ [dH ], 1>Ah = 0, Ah = A>h ; B = B>;

A1, . . . , AdH and B are symmetric.

Since Ti depends on the parameters, the system is nonlinear, and hence cumbersome to estimate. [25]
proposes an approximate EASI system in which Ti is replaced by its first-order in prices approximation
Di = Ei −Pi,·Si. This corresponds to deflating nominal expenditure with a Stone price index. Prices
are normalized for a subset of the sample, implying log prices of 0. To reduce approximation error, we
consider a second-order approximation. We use (7.2) to obtain, for all p ∈ N,

Tp
i = Dp−1

i

(
Di +

p− 1

2
Pi,·

(
A0 +

dH∑
h=1

AhHi,h +BDi

)
P>i,·

)
+O(|Pi,·|42)(7.3)

and inject (7.3) into (7.1) to obtain a second-order approximation of the expenditure share equation. An
approximation error arises due to the second term in (7.3). Due to the normalization, the approximation
error is small. Since (7.3) depends on parameters, the second-order approximation depends on products
of the parameters, violating linearity. Where this arises, we replace the product with a new parameter
and use the parameter restrictions above to obtain restrictions involving the new variables.

We use the Canadian data of [25] for n = 4847 rental-tenure single-member households that had
positive expenditures on rent recreation, and transportation. The categories of the dG = 9 goods are:
(1) food consumed at home, (2) food consumed out of the home, (3) rent, (4) clothing, (5) household
operation, (6) household furnishing/equipment, (7) transportation operation, (8) recreation, and (9)
personal care. The individual characteristics comprise: (1) age minus 40, (2) gender, (3) a dummy
for car non-ownership equal to one if real gasoline expenditures (at 1986 gasoline prices) are less than
$50, (4) a social assistance dummy equal to one if government transfers are greater than 10 percent
of gross income, and (5) a time trend equal to the calendar year minus 1986 (that is, equal to zero in
1986). Following [25], we use dP = 5 for the degree of the polynomial in deflated expenditure. Each
equation in the second-order approximation has dX = 1879 parameters. It is reasonable to expect
that the parameter vector be sparse, particularly for the second-order approximation terms. Prices are
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normalized to be 1 for residents of Ontario in 1986, implying log prices of 0. The approximation error
from the second order approximation is likely small because n−1

∑
i∈[n] |P·,i|42 = 0.0008. In contrast,

n−1
∑

i∈[n] |P·,i|22 = 0.0268, and the mean budget share for five of the goods is less than 0.1, suggesting a

sizeable first order approximation error. This means that, in order to obtain reliable results, a researcher
using the first order approximation might need to use a subsample for which the approximation error
is not large relative to the budget shares. Since Di = Ei−Pi,·Si depends on Wi, every regressor which
involves Di is endogenous. This implies that 1819 of the 1879 regressors are endogenous. We construct
dZ = dX IVs by replacing Di with Di = Ei −Pi,·En[S].

The IVs are strong and dZ = dX and so we apply Section 6. We construct uniform 0.9 confidence
bands for the Engel curves based on dF = 11 grid points. We use 0.9 for comparability with [25]. In
the first step, we apply the SE-STIV estimator, adjusting r̂ according to class 5 using α = 0.05/dG,
taking c = 0.99/r̂ and v̂g = 1/n for all g ∈ [dG]. We choose SQ so as to exempt the constant, linear, and
quadratic parts of the Engel curves (b0, b1, b2) and the linear price parameters (A0) from the `1 penalty,
since these form a parsimonious baseline specification for the demand system (see [2]). The SE-STIV
estimator permits unrestricted cross-equation correlation in the entries of Wi. For brevity, we do not
present the full estimation results, focussing instead on the Engel curves. There are 1879dG = 16911
parameters in the system. Among the 1771dG = 15399 parameters in SQ, only 50 are estimated as
nonzero, 22 of which are parameters which arise due to the second-order approximation. In the second
step we apply the C-STIV estimator in (6.3) using r′0(n) from class 4 with α = 0.05 and λ = 0.99.
Figure 1 depicts the preliminary estimator of the Engel curve for transportation operation, its bias
corrected counterpart and 90% confidence bands. The second-order approximation yields a different
curve to that of [25], which is downwards sloping and close to linear. The slope is negative and
the bias correction large, changing the shape from an inverted U to decreasing and nonlinear. The
preliminary estimator lies outside the confidence band, which is wider close to the end points. This
is most likely because there is less data at the end points, and is true for all of the goods. Appendix
D depicts the Engel curves for the other goods. The curves for food are close to linear and have
the expected slopes: negative for food-in and positive for food-out. The bias correction is large for
rent, household operation, clothing, and personal care, for which the preliminary estimator does not
lie within the confidence bands. The Engel curves are similar to those of [25] apart from household
and transportation operation. The confidence bands are marginally wider. This is expected since we
construct uniform bands rather than pointwise intervals.
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A-1

SUPPLEMENTAL APPENDIX FOR “HIGH-DIMENSIONAL INSTRUMENTAL
VARIABLES AND CONFIDENCE SETS”

In this appendix CN(m) , e(2 ln(m) − 1) for m ≥ 3 is the Nemirovski constant (see, Theorem
2.2 in [5]).

Appendix A: Proofs and Complements to the Main Text

A.1. Possible Classes P. We present 5 baseline classes P which we further restrict when need be. For
example, some confidence sets require very mild assumptions on P while rates of convergence require
working within subsets of these classes.

A.1.1. Baseline Classes. The baseline classes 1-5 are identification robust because they do not restrict
the joint distribution of (Z,X). Classes 1-4 are concerned with independent data but there are also
results on moderate deviations for self-normalized sums in the case of dependent data which could be
used as well (see, e.g., (v5)). Let us start by presenting classes 1-4. They are the classes under which
we work with G0. The choices of r0(n) below are based on Theorems A1-A.4 in (v5). Φ is the standard
normal CDF.

Class 1: (Z>i,·Ui(β))i∈[n] are i.i.d. and symmetric and dZ < 9α/
(
4e3Φ (−

√
n)
)
;

r0(n) = − 1√
n

Φ−1

(
9α

4dZe3

)
.

Class 2: (Z>i,·Ui(β))i∈[n] are i.i.d., there exists γ4 > 0 such that maxl∈[dZ ] E[(Zi,lUi)
4](E[(Zi,lUi)

2])−2 ≤
γ4, and dZ < α exp (n/γ4) /(2e+ 1);

r0(n) =

√
2 ln(dZ(2e+ 1)/α)

n− γ4 ln(dZ(2e+ 1)/α)
.

Class 3: (Ui(β))i∈[n] are independent and symmetric conditional on Z or (Z>i,·Ui(β))i∈[n] are inde-
pendent and symmetric;

r0(n) =

√
2 ln(2dZ/α)

n
.

Class 4: (Z>i,·Ui(β))i∈[n] are independent, there exists δ in (0, 1] and γ2+δ > 0 such that∣∣∣∣((E [|ZlU(β)|2+δ
]) (

E
[
Z2
l U(β)2

])−(2+δ)/2
)
l∈[dZ ]

∣∣∣∣
∞
≤ γ2+δ,

and dZ ≤ α/
(

2Φ
(
−n1/2−1/(2+δ)γ

−1/(2+δ)
2+δ

))
;

r0(n) = − 1√
n

Φ−1

(
α

2dZ

)
.

For classes 1-3 the coverage error αB(n) is 0. Class 4 yields an asymptotic guarantee with finite sample

error αB(n) , αC1γ2+δ (1 +
√
nr0(n))

2+δ
n−δ/2, where C1 is a universal constant. Classes 1 and 3

rely on symmetry. Class 2 relaxes symmetry but requires fourth moments and the upper bound γ4.
When n− γ4 ln(dZ(2e + 1)/α) ≥ n/2 one can take r0(n) = 2

√
ln(dZ(2e+ 1)/α)/n. Class 3 allows for

dependence in the matrix Z.
For the event G, we can work with classes 1-4. This requires a suitable modification of r0(n) to

obtain r̂. Taking r̂ = r0(n)
∣∣DZZ>

∣∣
∞ yields G0 ⊆ G. The following developments are motivated by the

fact that choice of r̂ can result in conservative inference.
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We can make use of concentration arguments. For example, define the events

EU ,
{∣∣(En − E)[U(β)2]

∣∣ ≥ τ(n)E[U(β)2]
}
, β ∈ I;

E ′Z ,
{

min
l∈[dZ ]

(
D−1

Z

)
l,l

(DZ)l,l ≤
√

1− τ(n) or max
l∈[dZ ]

(
D−1

Z

)
l,l

(DZ)l,l ≥
√

1 + τ(n)

}
.

Lemma A.1. If (C5.ii) holds then P (EU ) ≤ m4/(nτ(n)2) and if (C5.iv) holds then
P (E ′Z) ≤ CN(dZ)MZ(dZ)/(nτ(n)2).

Proof. The first statement follows from the Chebychev inequality. For the second statement we use

P
(
E ′Z
)

= P

∣∣∣∣∣∣
(

n∑
i=1

(
z2
li

E
[
Z2
l

] − 1

))
l∈[dZ ]

∣∣∣∣∣∣ ≥ nτ(n)


≤ 1

(nτ(n))2
E

max
l∈[dZ ]

∣∣∣∣∣
n∑
i=1

(
z2
li

E
[
Z2
l

] − 1

)∣∣∣∣∣
2
 (by the Chebyshev inequality)

≤ CN(dZ)

nτ(n)2
E

max
l∈[dZ ]

∣∣∣∣∣
(

Z2
l

E
[
Z2
l

] − 1

)∣∣∣∣∣
2
 (by the Nemirovski inequality)

≤
CN(dZ)M ′Z(dZ)

nτ(n)2
. �

This allows to take r̂ = r0(n)
√

1 + τ(n)/(1 − τ(n)) based on classes 1-4 if we restrict these classes so
that:

Assumption A.1. Let dX , dZ ≥ 3, M ′ZU (dZ) ≥ 0. For all β,P such that β ∈ I, (C5.ii) and (C5.iv)
below hold, we have Z and U(β) are independent, and

E

[∣∣∣∣((ZlU(β))2 /
(
E
[
Z2
l

]
E
[
U(β)2

])
− 1
)
l∈[dZ ]

∣∣∣∣2
∞

]
≤M ′ZU (dZ).

Indeed we have G0∩
{

maxl∈[dZ ] En
[
(ZlU(β))2

]
/
(
En[Z2

l ]En[U(β)2]
)
≤ (1 + τ(n))/(1− τ(n))2

}
⊆ G, so

inf
β,P: β∈I

P (G) ≥ inf
β,P: β∈I

P (G0)− αC(n),

where αC(n) , (m4 + CN(dZ) (M ′Z(dZ) +M ′ZU (dZ))) /(nτ(n)2) by the same arguments as those lead-
ing to Lemma A.1. The coverage error αB(n) in Section 2 corresponds to the one from either of class
1-4 plus αC(n).

The union bound used for r0(n) in classes 1-4 does not account for dependence over l ∈ [dZ ]
of Zi,lUi(β), and so r(n) can be larger than necessary, even under Assumption A.1. To account for
dependence, we consider class 5.

Class 5: dZ ≥ 3, m4,MZ(dZ),M ′Z(dZ), q2 > 0, B(n) ≥ 1, and (αE(n))n∈N is a sequence
converging to zero. For all n ∈ N,

(C5.i) For all i ∈ [n], E
[
Ui(β)2

∣∣Zi,·] = σ2
U(β);

(C5.ii) E
[((

U(β)/σU(β)

)2 − 1
)2
]
≤ m4;

(C5.iii) E
[∣∣DZ

(
ZZ> − E

[
ZZ>

])
DZ

∣∣2
∞

]
≤MZ(dZ);

(C5.iv) E
[∣∣∣(Z2

l /E
[
Z2
l

]
− 1
)dZ
l=1

∣∣∣2
∞

]
≤M ′Z(dZ);
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(C5.v) max

(
E
[(

(DZ)l,l ZlU(β)/σU(β)

)2+q1
]
,E
[(

(DZ)l,l ZlEi

)2+q1
])
≤ B(n)q1 ,∀l ∈ [dZ ], q1 ∈ [2];

(C5.vi) max
(
E
[(∣∣∣DZZ>i,·Ui(β)

∣∣∣
∞
/(B(n)σU(β))

)q2]
,E
[(∣∣∣DZZ>i,·Ei

∣∣∣
∞
/B(n)

)q2])
≤ 2, ∀i ∈ [n];

where E is a mean zero Gaussian vector with covariance I, E and Z are independent.
Under class 5,

r̂ =
1√
n

(
qG|Z(1− α) + 2ζ(n)

)
,

where qG|Z is the quantile function of G , |(
∑

i∈[n] DZZ>i,·Ei)/
√
n|∞ given Z, which is obtained by

simulation. (ζ(n))n∈N is a sequence such that ζ(n) → 0 arbitrarily slowly but ζ(n)/τ(n) → ∞. For
this r̂, for all n, we have P (G) ≥ 1− α− αB(n), where

αB(n) , 2ζ2(n) + ζ ′2(n) + ϕ(τ(n)) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
+ ι(dZ , n),

ζ ′2(n) , P
(
N0 >

ζ(1− τ(n))

τ(n)

)
+ ι(dZ , n) +

CN(dZ)M ′Z(dZ)

nτ(n)2
+

m4

nτ(n)2
,

ζ2(n)2 , P

N0 > ζ(n)

(
1√

1− τ(n)
− 1

)−1
+ ι(dZ , n) +

CN(dZ)M ′Z(dZ)

nτ(n)2
,

ι(d, n) , C2

((
B(n)2 (ln(dZn))7 /n

)1/6
+
(
B(n)2(ln(dZn))3n−1+2/q2

)1/3
)

for d ∈ N,

ϕ is the function x ∈ (0, 1) → C1x
1/3 max (1, ln(2dZ/x))2/3, C1 is a constant and C2 can depend on

q2, N0 , |
∑

i∈[n] (EDZZ)i,· |∞/
√
n where (EDZZ)i,· are independent Gaussian vectors of covariance

E[DZZ>i,·Zi,·DZ ]. Also we have P(r̂ ≤ r(n)) ≥ 1− αC(n), where

r(n) , qN0 (1− α+ ζ2(n) + ϕ(τ(n))) /
√
n+ 3ζ(n)/

√
n,

αC(n) , CN (dZ(dZ + 1)/2)MZ(dZ)/(nτ(n)2) + ζ2(n),

and qN0 is the quantile function of N0. (C5.iv) is redundant once (C5.iii) is imposed but we write it
for further reference and because we can have M ′Z(dZ) ≤MZ(dZ).

Proof of the statement for Class 5. Let EZ ,
{∣∣DZ(En − E)

[
ZZ>

]
DZ

∣∣
∞ ≥ τ(n)

}
. By the same

arguments as those leading to Lemma A.1, (C5.iii) yields

(A.1) P (EZ) ≤ CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
.

Let β ∈ I. Define

T ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DZZ>i,·
Ui(β)

σ̂(β)

∣∣∣∣∣∣
∞

, T0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DZZ>i,·
Ui(β)

σU(β)

∣∣∣∣∣∣
∞

, G0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DZZ>i,·Ei

∣∣∣∣∣∣
∞

.

T0, G0, and N0 have same covariance matrix, indeed

E

[
DZZ>i,·Zi,·DZ

Ui(β)2

σU(β)2)

]
= E

[
DZZ>i,·Zi,·DZE

[
Ui(β)2

σU(β)2)

∣∣∣∣∣Z
]]

= E[DZZ>i,·Zi,·DZ ].

Let us show that, for all α ∈ (0, 1),
∣∣P (T ≤ qG|Z(α)

)
− α

∣∣ ≤ αB(n). Using (C5.v), (C5.vi) and
Proposition 2.1 in [4], we obtain

(A.2) max (|P (T0 ≤ t)− P (N0 ≤ t)| , |P (G0 ≤ t)− P (N0 ≤ t)|) ≤ ι(dZ , n).
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Indeed, by (C5.i), the law of iterated expectations, and the independence between E and Z, we have

E
[(

(DZ)l,l ZlU(β)/σU(β)

)2
]

= E
[(

(DZ)l,l ZlE
)2
]

= 1 for all l ∈ [dZ ], so condition (M.1) in [4] is

satisfied. We denote by qG0|Z the conditional quantile functions of G0 given Z. By the arguments in
the proof of Proposition A.1 and Lemma 3.2 in [3], denoting by qG0|Z(α) the conditional α quantile of
G0 given Z, for all α ∈ (0, 1),

min
(
P
(
qG0|Z(α) ≤ qN0(α+ ϕ(τ(n)))

)
,P
(
qN0(α) ≤ qG0|Z(α+ ϕ(τ(n)))

))
(A.3)

≥ 1− CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
.

For all α ∈ (0, 1), on the event {P
(
T0 ≤ qG0|Z(α)

)
− α > 0}, we have∣∣P (T0 ≤ qG0|Z(α)

)
− α

∣∣ ≤P (T0 ≤ qN0(α+ ϕ(τ(n))))− α+
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
(by (A.3))

≤α+ ϕ(τ(n))− α+ ι(dZ , n) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
(by (A.2)),

on the complement of the event,∣∣P (T0 ≤ qG0|Z(α)
)
− α

∣∣ ≤α− P (T0 ≤ qN0(α− ϕ(τ(n)))) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
(by (A.3))

≤ϕ(τ(n)) + ι(dZ , n) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
(by (A.2)),

hence, we always have

(A.4)
∣∣P (T0 ≤ qG0|Z(α)

)
− α

∣∣ ≤ ϕ(τ(n)) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
+ ι(dZ , n).

On E ′cZ , we have

|G−G0| ≤

(
1√

1− τ(n)
− 1

)
G0,

hence, by the Markov inequality, the law of iterated expectations, and second bound in (A.2), setting

ζ2(n)2 ,P

N0 > ζ(n)

(
1√

1− τ(n)
− 1

)−1
+ ι(dZ , n) +

CN(dZ)M ′Z(dZ)

nτ(n)2
,

we have

P (P ( |G−G0| > ζ(n)|Z) > ζ2(n)) < ζ2(n).(A.5)

On E ′cZ ∩ EcU , we have

(A.6) |T − T0| ≤
τ(n)T0

1− τ(n)
,

hence, by the first bound in (A.2),

(A.7) P (|T − T0| > ζ(n)) ≤ P
(
N0 >

ζ(n)(1− τ(n))

τ(n)

)
+ ι(dZ , n) +

CN(dZ)M ′Z(dZ) +m4

nτ(n)2

and we denote the right-hand side by ζ ′2(n). Using Lemma 3.3 in [3] and (A.5) in the first display, (A.7)
in the second, (A.4) in the third display

P
(
T − 2ζ(n) ≥ qG|Z(1− α)

)
< P

(
T − ζ(n) ≥ qG0|Z(1− α− ζ2(n))

)
+ ζ2(n)
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≤ P
(
T0 ≥ qG0|Z(1− α− ζ2(n))

)
+ ζ2(n) + ζ ′2(n)

≤ α+ 2ζ2(n) + ζ ′2(n) + ϕ(τ(n)) +
CN(dZ(dZ + 1)/2)MZ(dZ)

nτ(n)2
+ ι(dZ , n).

The result on the deterministic upper bound r(n) on r̂ is obtained using Lemma 3.3 in [3] and (A.3).
�

A.1.2. Deterministic Bounds on Sample Objects. The purpose of this section is to provide probabilistic
conditions under which we can replace random quantities appearing in Section 4.2 by determinist ones.
These are: r̂, σ̂(β), and the sensitivities. This requires to further restrict the class P so that:

Assumption A.2. Let dX , dZ ≥ 3, α∞(n), m4, MΨ(dZ , dX), MX(dX), M ′Z(dZ), and B(n, dZ) posi-
tive. For all β,P such that β ∈ I, we have

E
[∣∣∣DZ

(
ZX> − E

[
ZX>

])
DX

∣∣∣2
∞

]
≤MΨ(dZ , dX),(A.8)

E
[∣∣∣(X2

k/E
[
X2
k

]
− 1
)dX
k=1

∣∣∣2
∞

]
≤MX(dX).(A.9)

For P from class 1-4, we have either (C5.ii), (C5.iv), P
(∣∣DZZ>

∣∣
∞ > B(n, dZ)

)
≤ α∞(n) or Assump-

tion A.1.

For classes 1-4 with Assumption A.2 but without Assumption A.1, we set αC(n) = α∞(n) +

(m4 + CN(dZ)M ′Z(dZ)) /(nτ(n)2) and r(n) , r0(n)B(n, dZ)/
√

1− τ(n). For example, if DZZ> has

sub-Gaussian entries, B(n, dZ) can be taken proportional to
√

ln(CndZ/α∞(n)), where the constants
C and of proportionality depend on tail parameters of the sub-Gaussian distribution. For classes 1-4
with Assumption A.2 and Assumption A.1, αC(n) has already been introduced and we set r̂ = r(n). For

class 5, αC(n) and r(n) have been defined above. There, r(n) is proportional to
√

ln(Cd2
Z/αC(n))/n for

a constant C depending on the covariance matrix of N0. The following result relates random quantities
to their population counterparts.

Proposition A.1. Under Assumption A.2, for all β,P such that β ∈ I, on an event G ∩ GΨ such that
P (G ∩ GΨ) ≥ 1− α− αD(n), where

(A.10) αD(n) , αB(n) + αC(n) + (CN(dX)MX(dX) + CN(dZdX)MΨ(dZ , dX)) /(nτ(n)2),

G holds but also, for all c > 0, r̂ ≤ r,
σ2
U(β)(1− τ(n)) ≤ σ̂(β)2 ≤ σ2

U(β)(1 + τ(n)),(A.11)

∀b ∈ RdX , l ∈ L,
√

1− τ(n)l
(
D−1
X b
)
≤ l
(
D−1

X b
)
≤
√

1 + τ(n)l
(
D−1
X b
)
,(A.12)

∀S ⊆ [dX ], l ∈ L, κ̂l,S ≥
κl,S

1 + τ(n)

(
1− τ(n)

κ1,S

)
, ∀k ∈ [dX ], κ̂∗ek,S ≥

κ∗ek,S
1 + τ(n)

(
1− τ(n)

κ1,S

)
,(A.13)

∀S ⊆ [dX ], l ∈ L, γ̂l,S ≥
γl,S

1 + τ(n)

(
1− τ(n)

γ1,S

)
, ∀k ∈ [dX ], γ̂∗ek,S ≥

γ∗ek,S
1 + τ(n)

(
1− τ(n)

κ1,S

)
,(A.14)

If |S ∩ SQ| ≤ s,
∀l ∈ L, κ̂l(s) ≥ κl(s), ∀k ∈ [dX ], κ̂∗ek(s) ≥ κ∗ek(s),

where

κl(s) ,
κl(s)

1 + τ(n)
min

S:|S∩SQ|≤s

(
1− τ(n)

κ1,S

)
, κ∗ek(s) ,

κ∗ek(s)

1 + τ(n)
min

S:|S∩SQ|≤s

(
1− τ(n)

κ1,S

)
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and κl(s) and κ∗ek(s) are the analogue of the lower bounds in (A.13) using the population counterparts,

and θ̂κ(s) ≥ θκ(s), where

θκ(s) ,

(
1− r

κg(s)

)−1

+

.

Proof of Proposition A.1. Define the events

E ′X ,
{

min
k∈[dX ]

(
D−1

X

)
k,k

(DX)k,k ≤
√

1− τ(n) or max
k∈[dX ]

(
D−1

X

)
k,k

(DX)k,k ≥
√

1 + τ(n)

}
;

EZX> ,
{∣∣∣DZ(En − E)

[
ZX>

]
DX

∣∣∣
∞
≥ τ(n)

}
.

The event E ′Z is such that E ′Z ⊆ EZ . Define GΨ , {r̂ ≤ r(n)} ∩ E ′cZ ∩E ′cX ∩EcZX> ∩E
c
U for classes 1-4 and

GΨ , {r̂ ≤ r(n)} ∩ EcZ ∩ E ′cX ∩ EcZX> ∩ E
c
U for class 5. Recall that P(r̂ ≤ r(n)) ≥ 1−αC(n). Similarly to

Lemma A.1, we have

P
(
E ′X
)
≤ CN(dX)MX(dX)

nτ(n)2
, P (EZX>) ≤ CN(dZdX)MΨ(dZ , dX)

nτ(n)2
.

Clearly, on E ′cX , (A.12) holds. Assume now that we work on the event GΨ.

Let S ⊆ [dX ], l ∈ L, and ∆ , D−1
X DX∆. Due to (A.12), we have, for all l ∈ L, in particular `1-norms

of subvectors,
√

1− τ(n)l(∆) ≤ l(∆) ≤
√

1 + τ(n)l(∆). This, the fact that r̂ ≤ r, and manipulations

on the `1-norm of subvectors used previously, yield ∆ ∈ KS if ∆ ∈ K̂S and ∆ ∈ Kγ,S if ∆ ∈ K̂γ,S .
Now, because GΨ ⊆ E ′cZ ∩ EcZX> , we obtain∣∣∣Ψ̂∆

∣∣∣
∞
≥ min

l∈[dZ ]

(
DZD

−1
Z

)
l,l

∣∣∣DZEn
[
ZX>

]
DXD

−1
X DX∆

∣∣∣
∞

≥ 1√
1 + τ(n)

(∣∣∣DZE
[
ZX>

]
DX∆

∣∣∣
∞
−
∣∣∣DZ(En − E)

[
ZX>

]
DX∆

∣∣∣
∞

)
≥ 1√

1 + τ(n)

(∣∣Ψ∆
∣∣
∞ − τ(n)

∣∣∆∣∣
1

)
.(A.15)

Inequalities (A.13) and (A.14) are obtained from the definition of κ1,S and γ1,S and the fact that, on

GΨ, l(∆) ≤
√

1 + τ(n)l(∆). Finally, we check that P(G ∩ GΨ) ≥ 1− αD(n). �

A.2. Lower Bounds on the Sensitivities. We use the quantity ĉκ(S, S(β̂)) , min(ĉ>,κ(S, S(β̂)), ĉ<,κ(S, S(β̂))),
where

ĉ>,κ

(
S, S

(
β̂
))
,

1

(1− cr̂)+

(
2 |S ∩ SQ|+

∣∣∣ScQ ∩ (S ∪ S (β̂))∣∣∣+ c(1− r̂)
∣∣∣ScI ∩ (S ∪ S (β̂))∣∣∣) ,

ĉ<,κ

(
S, S

(
β̂
))
,

1

(1− c)+

(
2|S ∩ SQ|+

∣∣∣ScQ ∩ (S ∪ S (β̂))∣∣∣) .
The set Ŝ(S, S(β̂)) is defined as (S ∩ SQ) ∪ ((ScQ ∪ ScI) ∩ (S ∪ S(β̂))), when 1 ≤ c < r̂−1, and as

S ∪ (ScQ ∩S(β̂)), when c < 1. The following result relates the sensitivities for various losses. It requires

no assumption. Similar bounds can be obtained for the sensitivities based on K̂γ,S (see (v5)).

Proposition A.2. Let S ∈ [dX ] and c > 0.

(i) Let S ⊆ Ŝ ⊆ [dX ]. Then, for all l ∈ L, we have κ̂l,S ≥ κ̂l,Ŝ.

(ii) For all S0 ⊆ [dX ] and q ∈ [1,∞], we have κ̂q,S0,S ≥ κ̂q,S.
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(iii) For all q ∈ [1,∞] and S0 ⊆ [dX ],

cκ(S, S(β̂))−1/qκ̂∞,S ≤ κ̂q,S ≤ κ̂∞,S ,(A.16)

cκ(S, S(β̂))−1κ̂∞,Ŝ(S,S(β̂)),S
≤ κ̂1,S ,(A.17)

|S0|−1/qκ̂∞,S0,S ≤ κ̂q,S0,S ≤ κ̂∞,S0,S .(A.18)

(iv) In addition to (A.16)-(A.17), we have

κ̂1,S ≥ max

( 2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S
+

c

κ̂g,S

)−1

, (1− cr̂)+

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S
+
c(1− r̂)
κ̂1,ScI ,S

)−1

,(A.19)

(1− c)+

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S

)−1
 .

(v) We have

κ̂g,S ≥ max

(1− cr̂)+

(
2

r(n)κ̂1,S∩SQ,S
+

r̂

κ̂1,ScQ,S
+

1− r̂
κ̂1,ScI ,S

)−1

,

(
r̂

κ̂1,SI ,S
+

1

κ̂1,ScI ,S

)−1

, κ̂1,S

 .(A.20)

(vi) For all S0 ⊆ [dX ], we have

κ̂∞,S0,S = min
k∈S0

κ̂∗ek,S = min
k∈S0

min
∆∈K̂S : ∆k=1, |∆|∞≤1

∣∣∣Ψ̂∆
∣∣∣
∞
.

Proof of Proposition A.2. We prove the bounds for the sensitivities based on K̂S , those for the

sensitivities based on K̂γ,S are obtained similarly. Parts (i) and (ii) are easy. The upper bound in
(A.16) follows from the fact that |∆|q ≥ |∆|∞. We obtain the lower bound as follows. Because

|∆|q ≤ |∆|1/q1 |∆|
1−1/q
∞ , we get that, for ∆ 6= 0,

(A.21)

∣∣∣Ψ̂∆
∣∣∣
∞

|∆|q
≥

∣∣∣Ψ̂∆
∣∣∣
∞

|∆|∞

(
|∆|∞
|∆|1

)1/q

.

Furthermore, for ∆ ∈ K̂S , by definition of the set, we have

(A.22) |∆Sc∩SQ |1 ≤ |∆S∩SQ |1 + cr̂|∆|1 + c(1− r̂)|∆ScI
|1

which, by adding |∆(S∩SQ)∪ScQ |1 on both sides, is equivalent to

|∆|1 ≤
1

(1− cr̂)+

(
2|∆S∩SQ |1 + |∆ScQ

|1 + c(1− r̂)|∆ScI
|1
)
.(A.23)

From (A.23) and the fact that ∆
Sc∩S(β̂)c

= 0, we deduce

(A.24) |∆|1 ≤

∣∣∣∆Ŝ(S,S(β̂))

∣∣∣
∞

(1− cr̂)+

(
2|S ∩ SQ|+

∣∣∣ScQ ∩ (S ∪ S (β̂))∣∣∣+ c(1− r̂)
∣∣∣ScI ∩ (S ∪ S (β̂))∣∣∣) .

Let us obtain an alternative lower bound for the case where c ∈ (0, 1). The condition that ∆ ∈ K̂S can
also be written as

|∆Sc∩SQ |1 ≤ |∆S∩SQ |1 + c(r̂ − 1)|∆SI |1 + c|∆|1
which implies

|∆Sc∩SQ |1 ≤ |∆S∩SQ |1 + c|∆|1
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and, by adding |∆(S∩SQ)∪ScQ |1 on both sides, if c ∈ (0, 1), this is equivalent to

(A.25) |∆|1 ≤
1

1− c

(
2|∆S∩SQ |1 + |∆ScQ

|1
)
.

Using ∆
Sc∩S(β̂)c

= 0, this yields

(A.26) |∆|1 ≤
2|S ∩ SQ|+

∣∣∣ScQ ∩ (S ∪ S (β̂))∣∣∣
(1− c)+

∣∣∣∆Ŝ(S,S(β̂))

∣∣∣
∞
.

We obtain inequality (A.17) and the lower bound in (A.16) using (A.24) and (A.26), that |∆S∪ScQ∪S
c
I
|∞ ≤

|∆|∞, |∆S∪ScQ |∞ ≤ |∆|∞, and (A.21).

Inequality (A.18) can be proved in a similar manner. The lower bounds follows from the fact that∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0 |q
≥

∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0 |∞

(
|∆S0 |∞
|∆S0 |1

)1/q

and |∆S0 |1 ≤ |S0||∆S0 |∞. While the upper bound holds because |∆S0 |q ≥ |∆S0 |∞.

To prove (A.19) it suffices to note that, by definition of the set K̂S ,

|∆|1 ≤

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S
+

c

κ̂g,S

)∣∣∣Ψ̂∆
∣∣∣
∞
,(A.27)

by (A.23),

|∆|1 ≤
1

(1− cr̂)+

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S
+
c(1− r̂)
κ̂1,ScI ,S

)∣∣∣Ψ̂∆
∣∣∣
∞
,

and, by (A.25),

|∆|1 ≤
1

(1− c)+

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S

)∣∣∣Ψ̂∆
∣∣∣
∞
.

The bound (v) is obtained by rewriting ∆ ∈ K̂S as

(A.28) (1− cr̂)|∆SI |1 + (1− c)|∆ScI
|1 ≤ 2|∆S∩SQ |1 + |∆ScQ

|1,

which yields

r̂|∆SI |1 + |∆ScI
|1 ≤

r̂

(1− cr̂)+

(
2|∆S∩SQ |1 + |∆ScQ

|1 +
1− r̂
r̂
|∆ScI

|1
)

(A.29)

≤
r̂
∣∣∣Ψ̂∆

∣∣∣
∞

(1− cr̂)+

(
2

κ̂1,S∩SQ,S
+

1

κ̂1,ScQ,S
+

1− r̂
r̂κ̂1,ScI ,S

)
.

The second upper bound follows from noticing that, if κ̂g,S > 0, we have

1

κ̂g,S
= sup

∆∈K̂S : |Ψ̂∆|∞=1

(
r̂ |∆SI |1 +

∣∣∆ScI

∣∣
1

)
≤ sup

∆∈ŜS : |Ψ̂∆|∞=1

r̂ |∆SI |1 + sup
∆∈K̂S : |Ψ̂∆|∞=1

∣∣∆ScI

∣∣
1
.

The third upper uses that r̂ |∆SI |1 +
∣∣∆ScI

∣∣
1
≤ |∆|1.

Let us now prove (vi). Because for all k in S0, |∆S0 |∞ ≥ |∆k|, one obtains that for all k in S0,

κ̂∞,S0,S = min
∆∈K̂S0

∣∣∣Ψ̂∆
∣∣∣
∞

|∆S0 |∞
≤ min

∆∈K̂S

∣∣∣Ψ̂∆
∣∣∣
∞

|∆k|
= κ̂∗ek,S .
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Thus κ̂∞,S0,S ≤ mink∈S0 κ̂
∗
ek,S

. But one also has

(A.30) κ̂∞,S0,S = min
k∈S0

min
∆∈K̂S : |∆k|=|∆S0

|∞=1

∣∣∣Ψ̂∆
∣∣∣
∞
≥ min

k∈S0

min
∆∈K̂S : |∆k|=1

∣∣∣Ψ̂∆
∣∣∣
∞
. �

A.3. Lower Bound on κ1,S in Case (IC).

Proposition A.3. In case (IC), we have

κ1,S ≥
1

uτ(n)
max

m∈[dX−|S|]
min
S1⊆Sc
|S1|≤m

max
λ:|λ|1≤1

 min
∆:|∆|1=1
S(∆)⊆S∪S1

|λ>Ψ∆| −
uτ(n) − 1
√
m

max
S̃⊆Sc
|S̃|≤m

|λ>Ψ·,S̃ |2

 .

Proof of Proposition A.3. Take λ ∈ RdZ such that |λ|1 ≤ 1 and ∆ ∈ KS . Define S1 the set of m
largest entries of ∆ of index in Sc, S2 the subsequent m largest in Sc, and so forth, and S01 = S ∪ S1.
By the inverse and direct triangle inequalities, we have∣∣∣λ>Ψ∆S01

∣∣∣ ≤∑
j≥2

|λ>Ψ∆Sj |+ |Ψ∆|∞ .

For j ≥ 2, we have

|λ>Ψ∆Sj | ≤ |λ>Ψ·,Sj |2|∆Sj |2

≤ 1√
m
|λ>Ψ·,Sj |2|∆Sj−1 |1

≤ 1√
m

(
max

|S̃|≤m,S̃⊆Sc
|λ>Ψ·,S̃ |2

)
|∆Sj−1 |1,

so, using ∆ ∈ KS in the last display,∑
j≥2

|λ>Ψ∆Sj | ≤
1√
m

(
max

|S̃|≤m,S̃⊆Sc
|λ>Ψ·,S̃ |2

)
|∆Sc |1

≤
uτ(n) − 1
√
m

(
max

|S̃|≤m,S̃⊆Sc
|λ>Ψ·,S̃ |2

)
|∆S |1.

Moreover,

|∆S |1

 min
∆:|∆|1=1
S(∆)⊆S∪S1

|λ>Ψ∆|

 ≤ |∆S01 |1

 min
∆:|∆|1=1
S(∆)⊆S∪S1

|λ>Ψ∆|

 ≤ ∣∣∣λ>Ψ∆S01

∣∣∣
and

min
∆:|∆|1=1
S(∆)⊆S∪S1

|λ>Ψ∆| ≥ 1√
m+ |S|

min
∆:|∆|2=1
S(∆)⊆S∪S1

|λ>Ψ∆|,

so we use that |∆|1 ≤ uτ(n)|∆S |1, take the supremum of the lower bound over λ (so λdepends on ∆
via S1) and then the minimum over S1. Because the computation was made for m arbitrary, the lower
bound is the maximum over m of the lower bounds. �
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Lower bounds can be obtained, by using |λ|1 ≤ |λ|2
√
|S(λ)| and |∆|1 ≤ |∆|2

√
m+ |S| when

S(∆) ⊆ S ∪ S1, as follows

κ1,S ≥
1

uτ(n)
max

m∈[dX−|S|]
min
S1⊆Sc
|S1|≤m

max
λ:|λ|2≤1

1√
|S(λ)|

 1√
m+ |S|

min
∆:|∆|2=1
S(∆)⊆S∪S1

|λ>Ψ∆| −
uτ(n) − 1
√
m

max
S̃⊆Sc
|S̃|≤m

|λ>Ψ·,S̃ |2


and replacing the maximum over λ by

max
S2∈[dZ ]

1√
|S2|

 1√
m+ |S|

max
λ:|λ|2≤1
S(λ)⊆S2

min
∆:|∆|2=1
S(∆)⊆S∪S1

|λ>Ψ∆| −
uτ(n) − 1
√
m

min
λ:|λ|2≤1
S(λ)⊆S2

max
∆:|∆|2≤1
S(∆)⊆Sc
|S(∆)|≤m

|λ>Ψ∆|

 .

The argument using the sequence of sets Sj is used in [16] and [9]. A similar result is given in [7]. The
main difference is that the negative term above is smaller in absolute value than a maximum singular
value and the first term in the bracket above is larger than a minimum singular value. Moreover, this
lower bound depends explicitly on S. A disadvantage of this bound (and the one in [7]) is the presence
of the set S1 which implies that, in the lower bound, we can pay a price for a regressor which is not in
the model.

A.4. Proofs of the Results in the Main Text. Proof of Theorem 4.1. Take β ∈ I and set

∆̂ , D−1
X (β̂ − β). By definition of Î and σ̂(β) = En[U(β)2], on G, we have β ∈ Î (r̂, σ̂(β)). On G, we

also have ∣∣∣Ψ̂∆̂
∣∣∣
∞
≤
∣∣∣∣ 1nDZZ>

(
Y −Xβ̂

)∣∣∣∣
∞

+

∣∣∣∣ 1nDZZ>(Y −Xβ)

∣∣∣∣
∞

(A.31)

≤ r̂ (σ̂ + σ̂(β)) .(A.32)

On the other hand, (β̂, σ̂) minimizes the criterion
∣∣D−1

X β
∣∣
1

+ cσ. Thus, on G, we have

(A.33)
∣∣∣D−1

X β̂SQ

∣∣∣
1

+ cσ̂ ≤ |D−1
X βSQ |1 + cσ̂(β).

This implies, on G,∣∣∣∆̂S(β)c∩SQ

∣∣∣
1

=
∑

k∈S(β)c∩SQ

∣∣∣En[X2
k ]1/2β̂k

∣∣∣(A.34)

≤
∑

k∈S(β)∩SQ

(∣∣∣En[X2
k ]1/2βk

∣∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)+ c (σ̂(β)− σ̂)

≤
∣∣∣∆̂S(β)∩SQ

∣∣∣
1

+ c
(
σ̂(β)− σ̂

(
β̂
))

.

The last inequality holds because by construction σ̂(β̂) ≤ σ̂.

Because γ →
√
σ̂(γ) is convex and

w∗ , −
1
n

∑
i∈[n] xi(Yi −Xi,·β)√

1
n

∑
i∈[n](Yi −Xi,·β)2

1l

 1

n

∑
i∈[n]

(Yi −Xi,·β)2 6= 0

 ∈ ∂σ̂(·)(β).

we have

σ̂(β)− σ̂
(
β̂
)
≤ w>∗

(
β − β̂

)
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= (DXw∗)
>D−1

X

(
β − β̂

)
= − (DXw∗)

> ∆̂.

Now, for all k ∈ SI , we have |(DXw∗)k| ≤ r̂ on G. This is because these regressors serve as their

own IV and, on G, β ∈ Î (r(n), σ̂(β)). On the other hand, for all row of index k in the set ScI , the
Cauchy-Schwarz inequality yields

|(DXw∗)k| ≤
|En[XkU(β)]|√
En[X2

k ]En[U(β)2]
≤ 1.

Finally, we obtain

σ̂(β)− σ̂
(
β̂
)
≤ r̂

∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1
.(A.35)

Combining (A.35) with (A.34), we find that ∆̂ ∈ K̂S(β) on G. Using (A.31) and (A.35), we find∣∣∣Ψ̂∆̂
∣∣∣
∞
≤ r̂

(
σ̂ + σ̂

(
β̂
)

+ σ̂(β)− σ̂
(
β̂
))

≤ r̂
(

2σ + r̂
∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1

)
.(A.36)

Using the definition of the sensitivities we obtain, on G,∣∣∣Ψ̂∆̂
∣∣∣
∞
≤ r̂

2σ + r̂

∣∣∣Ψ̂∆̂
∣∣∣
∞

κ̂ĝ,S(β)

 ,

which implies

(A.37)
∣∣∣Ψ̂∆̂

∣∣∣
∞
≤ 2r̂σ

(
1− r̂

κ̂ĝ,S(β)

)−1

+

.

(A.37) and the definition of the sensitivities yield the first upper bound.
For the second upper bound we use that, by (A.33) and the definition of κ̂1,S(β)∩SQ,S(β),

cσ̂ ≤
∣∣∣∆̂S(β)∩SQ

∣∣∣
1

+ cσ̂(β) ≤

∣∣∣Ψ̂∆̂
∣∣∣
∞

κ̂1,S(β)∩SQ,S(β)
+ cσ̂(β),(A.38)

and, by adding cσ̂(β) to both sides and (A.32),

(A.39) σ̂ + σ̂(β) ≤ 2σ̂(β)

(
1− r

cκ̂1,S(β)∩SQ,S(β)

)−1

+

. �

Proof of Theorem 4.2. Take β ∈ I and S ⊆ [dX ]. Acting as in (A.34), on G, we get∑
k∈Sc∩SQ

∣∣∣En[X2
k ]1/2β̂k

∣∣∣+
∑

k∈Sc∩SQ

∣∣∣En[X2
k ]1/2βk

∣∣∣
≤

∑
k∈S∩SQ

(∣∣∣En[X2
k ]1/2βk

∣∣∣− ∣∣∣En[X2
k ]1/2β̂k

∣∣∣)+ 2
∑

k∈Sc∩SQ

∣∣∣En[X2
k ]1/2βk

∣∣∣+ c
(
σ̂(β)− σ̂

(
β̂
))

≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ cr̂
∣∣∣∆̂SI

∣∣∣
1

+ c
∣∣∣∆̂ScI

∣∣∣
1
.

This yields

(A.40)
∣∣∣∆̂Sc∩SQ

∣∣∣
1
≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ cr̂
∣∣∣∆̂SI

∣∣∣
1

+ c
∣∣∣∆̂ScI

∣∣∣
1
.
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Let us show the first inequality and consider two cases.

Case 1: 2|(D̂−1
X β)Sc∩SQ |1 ≤ |∆̂S∩SQ |1 + cr̂|∆̂SI |1 + c|∆̂ScI

|1 + |∆̂ScQ
|1, then ∆̂ ∈ K̂γ,S . From this, using

the definition of the sensitivity γ̂q,S0,S , we get the upper bound corresponding to the first term in the
minimum. Also, we have

σ̂ ≤ 1

c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

)
+ σ̂(β)

≤ 1

c
min

(∣∣∣∆̂SQ

∣∣∣
1
,
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣D−1

X βSc∩SQ
∣∣
1

)
+ σ̂(β)

≤ 1

c
min

(∣∣∣∆̂SQ

∣∣∣
1
,
1

2

(
3
∣∣∣∆̂S∩SQ

∣∣∣
1

+ cr̂
∣∣∣∆̂SI

∣∣∣
1

+ c
∣∣∣∆̂ScI

∣∣∣
1

+
∣∣∣∆̂ScQ

∣∣∣
1

))
+ σ̂(β)(A.41)

≤

∣∣∣Ψ̂∆̂
∣∣∣
∞

cγ̂
ĥ,S

+ σ̂(β),(A.42)

which, with (A.32) also yields

(A.43) σ̂ + σ̂(β) ≤ 2σ̂(β)

(
1− r

cγ̂
ĥ,S

)−1

+

.

Case 2: 2|(D̂−1
X β)Sc∩SQ |1 > |∆̂S∩SQ |1 + cr̂|∆̂SI |1 + c|∆̂ScI

|1 + |∆̂ScQ
|1, then we have∣∣∣∆̂∣∣∣

1
=
∣∣∣∆̂Sc∩SQ

∣∣∣
1

+
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣∣∆̂ScQ

∣∣∣
1
≤ 6

∣∣∣∣(D̂−1
X β

)
Sc∩SQ

∣∣∣∣
1

.

In conclusion, |∆̂S0 |q is smaller than the maximum of the two bounds. �

Proof of Proposition 4.1. This is a consequence of the definition of the sensitivities, the cones K̂
Ŝ

and K̂
γ,Ŝ

, and the fact that minimizing on a larger set yields lower bounds on the sensitivities. More

specifically, we use |∆S∩SQ |1 ≤ min(s, |Ŝ ∩ SQ|)|∆Ŝ∩SQ |∞. The last constraint is not convex but the

cone is a union of sets involving the linear constraint |∆S∩SQ |1 ≤ min(s, |Ŝ∩SQ|)|∆j |, hence the second
minimum. �

Proof of Proposition 4.2. Start by proving (vii). Let λ ∈ RdZ such that |λ|1 ≤ 1, k ∈ [dX ], and
∆ ∈ KS . By the inverse triangle inequality we have∣∣∣λ>Ψ∆− λ>Ψ·,k∆k

∣∣∣ ≤
∑
k′ 6=k
|∆k′ |

max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣ ,

which yields ∣∣∣λ>Ψ·,k

∣∣∣ |∆k| ≤

∑
k′ 6=k
|∆k′ |

max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣+
∣∣∣λ>Ψ∆

∣∣∣ ,
hence (∣∣∣λ>Ψ·,k

∣∣∣+ max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣) |∆k| ≤ |∆|1 max

k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣+ |Ψ∆|∞ ,

≤ cκ(S) max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣ ∣∣∆S

∣∣
∞ + |Ψ∆|∞ ,(A.44)
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≤ cκ(S) max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣ |∆S0 |∞ + |Ψ∆|∞ .

(A.44) uses that, by similar arguments as those leading to (A.24) and (A.26), noting that ĉκ(S, S(β̂)) ≥
cκ(S) and Ŝ(S, S(β̂)) ⊆ S, we have |∆|1 ≤ cκ(S)|∆S |∞.
For k such that |∆k| = |∆S0 |∞, this yields(∣∣∣λ>Ψ·,k

∣∣∣− (cκ(S)− 1) max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣) |∆S0 |∞ ≤ |Ψ∆|∞ ,

(A.45) max
λ∈RdZ : |λ|1≤1

(∣∣∣λ>Ψ·,k

∣∣∣− (cκ(S)− 1) max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣) |∆S0 |∞ ≤ |Ψ∆|∞ ,

and we conclude by taking the minimum over k ∈ S0 and then using the definition of the `∞-S0

sensitivity. This proves (vii).
Start from (A.45) and use (A.17) in Proposition A.2 to obtain (v).
To prove (viii) we start from (A.44). By definition of the `∞-S0 sensitivity,(∣∣∣λ>Ψ·,k

∣∣∣+ max
k′ 6=k

∣∣∣λ>Ψ·,k′
∣∣∣) |∆k| ≤

(
cκ(S) maxk′ 6=k

∣∣λ>Ψ·,k′
∣∣

κ∞,S,S
+ 1

)
|Ψ∆|∞

and we conclude by taking ∆k = 1.
The proof of the other items is very similar to the proof of Proposition A.2. �

Proof of Theorem 4.3. The inequalities in (i) and (iii) follow from the second bounds in theorems
4.1 and 4.2 and Proposition A.1 but also the fact that, on G ∩ GΨ,

√
1− τ(n)σU(β)

(
1− 2r(n)Θκ(S(β))

κg,S(β)

)
≤ σ̂(β̂) ≤ σ̂ ≤

√
1 + τ(n)σU(β)

(
2

(
1− r(n)(1 + τ(n))

cκ1,S(β)∩SQ,S(β)

(
1− τ(n)

κ1,S(β)

)−1
)−1

+

− 1

)
,

(A.46)

√
1− τ(n)

(
σU(β) − min

S⊆[dX ]
max

(
2r(n)(1 + τ(n))σU(β)

γg,S

(
1− τ(n)

κ1,S
− r(n)(1 + τ(n))

cγh,S

)−1

+

,
2

c1n

∣∣D−1
X βSc∩SQ

∣∣
1

))
≤ σ̂(β̂)

(A.47)

≤ σ̂ ≤
√

1 + τ(n)

(
σU(β) +

1

c
min
S⊆[dX ]

max

(
2σU(β)

((
1− r(n)(1 + τ(n))

cγh,S

(
1− τ(n)

γ1,S

)−1
)−1

+

− 1

)
,

3

2

∣∣D−1
X βSc∩SQ

∣∣
1

))
.

The right inequality in (A.46) is obtained from (A.39). The left one uses that, from (A.35), (A.32),
and (A.39),

σ̂
(
β̂
)
≥ σ̂ (β)− r̂ (σ̂ + σ̂(β))

κ̂ĝ,S
≥ σ̂ (β)

1− 2r̂

κ̂ĝ,S

(
1− r

cκ̂1,S(β)∩SQ,S(β)

)−1

+

 .

Similarly, we obtain the right inequality in (A.47) by using (A.43) and that, in case 2, using the second
element in the minimum in (A.41), we get

σ̂ ≤ 3

c

∣∣∣(D−1
X β

)
Sc∩SQ

∣∣∣
1

+ σ̂(β).

An we obtain the left one, using that, by (A.35),

σ̂ (β)− 2

c

∣∣∣(D−1
X β

)
Sc∩SQ

∣∣∣
1
≤ σ̂

(
β̂
)
.
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Part (ii) follows from (i) and (iii) with l(∆) = |e>k ∆| and the fact that the assumption on |βk| implies:

β̂k 6= 0 for k ∈ S(β) (resp., S∗ as defined at the end of Section 4.4.2). �

Proof of Theorem 4.4. Fix s and β in Is and work on G ∩ GΨ. Using Theorem 4.3 (i), we obtain
ω̂k(s) ≤ ωk(s). The following two cases can occur. First, if k ∈ S(β)c (so that βk = 0) then, using

the bound in (4.8) for l defined by l(∆) = |e>k ∆| we obtain
√

En[X2
k ]|β̂k| ≤ ω̂k(s), which implies

β̂ωk = 0. Second, if k ∈ S(β), then using again (4.8) for the same functional, we get ||β̂k|− |βk|| ≤ |β̂k−
βk| ≤ ω̂k(s)/

√
(1− τ(n))E[X2

k ] ≤ ωk(s)/
√

(1− τ(n))E[X2
k ]. Since |βk| > 2ωk(s)/

√
(1− τ(n))E[X2

k ]

for k ∈ S(β), we obtain |β̂k| > ωk(s)/
√

(1− τ(n))E[X2
k ] ≥ ω̂k(s)/

√
En[X2

k ], so that β̂ωk = β̂k. �

Proof of Theorem 6.1. The elements relative to assumptions and estimation of Λ are in Section B.3.
We make the proof in the case dG = 1. Extension to dG > 1 is straightforward. Take (β,Λ) ∈ Is′r . Let

∆̂ , D−1
X (β̂ − β). Due to Assumption B.1 (iv), P (EZV ) ≤ CN(dF )MZV (dF )/(nτ(n)2), where

EZV ,
{
∃f ∈ [dF ] : En

[
(Λf,·ZV (β))2

]
/E
[
(Λf,·ZV (β))2

]
≥ 1 + τ(n)

}
.

We work on E , G ∩ G′0 ∩ GΨ ∩ {ρ̂ZX > ρZX(n)} ∩ E ′cT ∩ EcZW ∩ EcZ ∩ EcZV of probability 1 −
αβ(n) − αΛ(n) − P (EZV ), where the confidence level associated to G and G′0 converge to 1. We use

max
(√

1 + τ(n)− 1, 1−
√

1− τ(n)
)

= 1−
√

1− τ(n) ≤ τ(n) and, for all a ∈ RdZ and b ∈ RdX ,

1

n

∑
i∈[n]

((
D−1

Z a
)>

(DZZi,·)
>Xi,·b

)2
=
(
D−1

Z a
)> 1

n

∑
i∈[n]

DZZ>i,·Xi,·bb
>X>i,·Zi,·DZ

D−1
Z a

≤
∣∣D−1

Z a
∣∣2
1

∣∣∣∣∣∣ 1n
∑
i∈[n]

DZZ>i,·Xi,·bb
>X>i,·Zi,·DZ

∣∣∣∣∣∣
∞

≤
∣∣D−1

Z a
∣∣2
1

∣∣D−1
X b
∣∣2
1

∣∣∣∣∣∣ 1n
∑
i∈[n]

DXX>i,·Zi,·D
2
ZZ>i,·Xi,·DX

∣∣∣∣∣∣
∞

≤
∣∣D−1

Z a
∣∣2
1

∣∣D−1
X b
∣∣2
1
ρ̂2
ZX .

For all f ∈ [dF ], we have

(
DΛZW (β)

)
f,f

∣∣∣∣∣
√

En
[(

Λ̂f,·ZU(β̂)
)2
]
−
√

E [(Λf,·ZW (β))2]

∣∣∣∣∣
≤

√
En
[((

DΛZW (β)

)
f,f

Λ̂f,·Z
)2 (

X>∆̂
)2
]

+

√
En
[((

DΛZW (β)

)
f,f

Λ̂f,·Z
)2
V (β)2

]

+
(
DΛZW (β)

)
f,f

(√
En
[((

Λ̂f,· − Λf,·

)
ZW (β)

)2
]

+

∣∣∣∣√En [(Λf,·ZW (β))2]−
√

E [(Λf,·ZW (β))2]

∣∣∣∣
)

≤
∣∣∣(DΛZU(β)

)
f,f

Λ̂f,·D
−1
Z

∣∣∣
1

(
ρ̂ZX

∣∣∣∆̂∣∣∣
1

+ ρ̂Z
√

1 + τ(n)v(dX)
)

+ vΛ,2(n) + τ(n)

≤
√

1 + τ(n)
(∣∣∣(DΛZU(β)

)
f,f

Λf,·D
−1
Z

∣∣∣
1

+
∣∣DΛZU(β)

∣∣
∞ vΛ,1(n)

)(
ρZX

∣∣∣∆̂∣∣∣
1

+ ρZ
√

1 + τ(n)v(dX)
)

+ vΛ,2(n) + τ(n)
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and(
DΛZW (β)

)
f,f

∣∣∣∣∣
√
En
[(

Λ̂f,·ZU(β̂)
)2
]
−
√

E [(Λf,·ZW (β))2]

∣∣∣∣∣
≤

√
En
[((

DΛZW (β)

)
f,f

(
Λ̂f,· − Λf,·

)
ZX>DXD−1

X β̂
)2
]

+
(
DΛZW (β)

)
f,f

√
En
[(

Λf,·ZXDX∆̂
)2
]

+
(
DΛZW (β)

)
f,f

√
En
[
(Λf,·ZV (β))2

]
+ τ(n)

≤
√

1 + τ(n)
∣∣DΛZU(β)

∣∣
∞ vΛ,1(n)ρZX

(
vβ,1(n) +

√
1 + τ(n)

∣∣D−1
X β

∣∣
1

)
+ vβ,2(n)

+
√

1 + τ(n)

√
E
[((

DΛZW (β)Λ
)
f,· ZV (β)

)2
]

+ τ(n).

We have obtained
∣∣∣DU(β̂)ZΛ̂>

D−1
ΛZW (β)

∣∣∣
∞
≤ 1 + vD(n) + τ(n). We now use the decomposition

(A.48)
√
nD

U(β̂)ZΛ̂>

(
Ω̂β − Ωβ − V (β)

)
= R1 +R2 +R3 +

1√
n

D
U(β̂)ZΛ̂>

Λ̂Z>W(β),

whereR1 ,
√
nD

U(β̂)ZΛ̂>

(
Ω− 1

n Λ̂Z>X
)

DX∆̂, R2 = D
U(β̂)ZΛ̂>

Λ̂Z>V(β)/
√
n, andR3 = −

√
nD

U(β̂)ZΛ̂>
V (β).

On E , we have

|R1|∞ ≤
√
n(1 + vD(n) + τ(n))

∣∣DΛZW (β)

∣∣
∞ r
′
0(n)vF (Λ)(n)vβ,1(n),

|R2|∞ ≤
√
n(1 + vD(n) + τ(n))

(
vΛ,3(n) + (τ(n) + 1)

∣∣DΛZW (β)D
−1
ΛZ

∣∣
∞

)
v(dX)

√
1 + τ(n),

|R3|∞ ≤
√
n(1 + vD(n) + τ(n))

∣∣DΛZW (β)

∣∣
∞ |V (β)|∞.

Define

TΩ ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

D
U(β̂)ZΛ̂>

Λ̂Z>i,·Wi(β)

∣∣∣∣∣∣
∞

, TΩ1 =

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZW (β)Λ̂Z>i,·Wi(β)

∣∣∣∣∣∣
∞

,

TΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZW (β)ΛZ>i,·Wi(β)

∣∣∣∣∣∣
∞

, GΩ1 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZW (β)Λ̂Z>i,·Ui(β̂)Ei

∣∣∣∣∣∣
∞

,

GΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZW (β)ΛZ>i,·Wi(β)Ei

∣∣∣∣∣∣
∞

, NΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

(
EDΛZW (β)ΛZW (β)

)>
i,·

∣∣∣∣∣∣
∞

,

where
(
EDΛZW (β)ΛZW (β)

)
i,·

are independent Gaussian vectors of covariance E[DΛZW (β)ΛZ>i,·Ui(β)2Zi,·Λ
>DΛZW (β)].

On E , we have |TΩ − TΩ1| ≤ TΩ1(vD(n) + τ(n)) and |TΩ1 − TΩ0| ≤ vΛ,2(n), so

|TΩ − TΩ0| ≤ (TΩ0 + vΛ,2(n))(vD(n) + τ(n)) + vΛ,2(n).

Also, on E ∩ {En[E2] ≥ 1 + τ(n)}, we have |GΩ −GΩ1| ≤ GΩ1(vD(n) + τ(n)) and |GΩ1 −GΩ0| ≤
vD(n)

√
1 + τ(n), so

|GΩ −GΩ0| ≤ (GΩ0 + vD(n)
√

1 + τ(n))(vD(n) + τ(n)) + vD(n)
√

1 + τ(n).

We can now proceed as for (A.5) and (A.7) and obtain P (|TΩ − TΩ0| > ζ(n)) ≤ ζ ′2(n) and

P
(
P
(
|GΩ −GΩ0| > ζ(n)|U(β̂)ZΛ̂>

)
> ζ2(n)

)
< ζ2(n).
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Due to Assumption B.1 (vi), we have P (EΛZW ) ≤ CN(dF (dF + 1)/2)MF,ZW (dF )/(nτ(n)2), where

EΛZW ,
{∣∣DΛZW (β)Λ(En − E)

[
ZZ>W (β)2

]
Λ>DΛZW (β)

∣∣
∞ ≥ τ(n)

}
. The same argument as the one

leading to (A.4) now gives∣∣P (TΩ0 ≤ qGΩ0|Z(α)
)
− α

∣∣ ≤ ϕ(τ(n)) +
CN(dF (dF + 1)/2)MF,ZW (dF )

nτ(n)2
+ ι(dF , n).

Hence, we have
P
(
T ≥ qGΩ|Z(1− α) + 2ζ(n)

)
< α+ αB(n). �

Appendix B: Details on the Other Moment Models

B.1. Endogenous IVs. A more detailed presentation is in (v5), where we allow for the possibility of
using additional moments. The C-STIV in the formulation of this paper imposes c < 1. The additional
moments allow to have c ≥ 1 when some regressors are exogenous and there are no endogenous IVs
(i.e., dEX = dZ). These additional moments are readily assumed when we maintain Assumption A.1.

B.1.1. Analysis of C-STIV. The class P corresponds to any of classes 1-4 where Zi,lUi(β) − θl plays
the role of Zi,lUi(β). To obtain rates of convergence, the class is restricted in a similar manner as in

Assumption A.2, replacing P
(∣∣DZZ>

∣∣
∞ > B(n, dZ)

)
≤ α∞(n) by P (ρ̂ZX > ρZX(n)) ≤ α∞(n), where

ρZX(n) depends on n via dZ and dX , and (C5.ii) by, for M ′ZU,NV (dZ) > 0, for all (β, θ) ,P such that

(β, θ) ∈ I,

E
[∣∣∣∣((ZlU(β)− θl)2 /σ2

ZlU(β)−θl − 1
)dZ
l=1

∣∣∣∣
∞

]
≤M ′ZU,NV (dZ).

For simplicity, we still refer to this assumption as Assumption A.2 and use

αC(n) = α∞(n) + CN(dZ)
(
M ′ZU,NV (dZ) +M ′Z(dZ)

)
/(nτ(n)2)

αD(n) = (CN(dX)MX(dX) + CN(dZdX)MΨ(dZ , dX)) /(nτ(n)2) + αB(n) + αC(n).

For (β, θ) ∈ I, we work with

G ,

max
l∈[dZ ]

|En [ZlU(β)− θl]|√
En
[
(ZlU(β)− θl)2

] ≤ r0(n)


and r0(n) is defined as in Section A.1.1. The cones, for S ⊆ [dX ] and S̃ ⊆ [dZ ], are given in Table

8. Denote by m(τ(n)) ,
√

min (1/(1 + τ(n)), 1− τ(n)), M(τ(n)) ,
√

max (1/(1− τ(n)), 1 + τ(n)),
κ and γ the population sensitivities and their lower bounds where we replace, in the definitions of

κ̂ and γ̂ and the lower bounds in Proposition 4.1, Ψ̂, K̂S , K̂γ,S , by Ψ, KS , and Kγ,S . Their lower
bounds are computed on the sets of Table 8 and for the deterministic bounds we simply replace ρ̂ZX
by ρZX(n). We define similarly θκ(s) and κ∗ek(s). The sensitivities, their population counterparts, and
lower bounds are now indexed by two sets or two sparsity certificates. Below, we refer to Assumption
A.2 for conciseness, it is indeed the suitable modification based on the elements that we have given.
We omit the set coming from B when we write the cones for conciseness.

Proposition B.1. Under Assumption A.2, for all (β, θ) ,P such that (β, θ) ∈ I, n ∈ N and c > 0, we
have, on an event GΨ of probability 1− αD(n),

F (β, θ)
√

1− τ(n) ≤ F̂ (β, θ) ≤ F (β, θ)
√

1 + τ(n) (see Table 8);

∀
(
b, b̃
)
∈ RdX+dZ , l ∈ L, m (τ(n)) l

(
D−1
X b,DZ b̃

)
≤ l
(
D−1

X b,DZb̃
)
≤M(τ(n))l

(
D−1
X b,DZ b̃

)
;
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∀S ⊆ [dX ], ∀S̃ ⊆ [dZ ], l ∈ [dZ ], κ̂
l,S,S̃
≥

κ
l,S,S̃√

1 + τ(n)m (τ(n))

(
1− τ(n)

κ
1,[dX ],∅,S,S̃

)
;

γ̂
l,S,S̃
≥

γ
l,S,S̃√

1 + τ(n)m (τ(n))

(
1− τ(n)

γ
1,[dX ],∅,S,S̃

)
.

The lower bounds in Proposition 4.1 involving the sparsity certificates hold if we remove the hats.

The main elements of the proofs are as follows. Take (β, θ) ∈ I. Set ∆̂ , D−1
X

(
β̂ − β

)
and

∆̃ , DZ

(
θ̂ − θ

)
. Clearly, on G, (β, θ) belongs to ÎC

(
r0(n), F̂ (β, θ)

)
. We now work on that event.

Following the arguments in the proof of Theorem 4.1, we obtain∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ r0(n)

(
σ̂ + F̂ (β, θ)

)
(B.1) ∣∣∣∆̂S(β)c∩SQ

∣∣∣
1

+
∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̂S(β)∩SQ

∣∣∣
1

+
∣∣∣∆̃S(θ)

∣∣∣
1

+ c
(
F̂ (β, θ)− F̂

(
β̂, θ̂
))

.

Each function γ ∈ RdX+dZ → σ̂l(γ) is convex and

wl∗ , −
(
wl
w̃l

)
1l
{
En
[
(ZlU(β)− θl)2

]
6= 0
}
∈ ∂σ̂l (β, θ) ,

where

wl ,
En [XZl (ZlU(β)− θl)]√

En
[
Z2
l

]
En
[
(ZlU(β)− θl)2

] and w̃l ,


0

En[ZlU(β)−θl]√
En[Z2

l ]En[(ZlU(β)−θl)2]
0

 .

By the Cauchy-Schwarz inequality, for all k ∈ [dX ], (DX)k,k |(wl)k| ≤ ρ̂ZX . Taking w∗ = (w>, w̃>)> as

one of the wl∗ for which σ̂l (β, θ) = F̂ (β, θ) yields an element of ∂F̂ (β, θ) by Lemma A.1 recalled in

(v5). By definition of the subdifferential ∂F̂ (β, θ), we have

F̂ (β, θ)− F̂
(
β̂, θ̂
)
≤ w>∗

(
β − β̂
θ − θ̂

)
≤ |DXw|∞

∣∣∣∆̂∣∣∣
1

+
∣∣D−1

Z w̃
∣∣
∞

∣∣∣∆̃Sc⊥

∣∣∣
1

≤ ρ̂ZX
∣∣∣∆̂∣∣∣

1
+ r0(n)

∣∣∣∆̃Sc⊥

∣∣∣
1
.(B.2)

As a result, we have (∆̂, ∆̃) ∈ K̂S(β),S(θ). Using (B.1) and (B.2), we find∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ r0(n)

(
2σ + ρ̂ZX

∣∣∣∆̂∣∣∣
1

+ r0(n)
∣∣∣∆̃Sc⊥

∣∣∣
1

)
.(B.3)

Using the definition of the sensitivities, we obtain∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞
≤ r0(n)

2σ + r0(n)2

∣∣∣Ψ̂∆̂
∣∣∣
∞

κ̂g,S(β),S(θ)

 ≤ 2r0(n)σ

(
1− r0(n)2

κ̂g,S(β),S(θ)

)−1

+

,

cσ̂ ≤ |∆̂S(β)∩SQ |1 +
∣∣∣∆̃S(θ)

∣∣∣
1

+ cF̂ (β, θ) ≤

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞

κ̂1,S(β)∩SQ,S(θ),S(β),S(θ)
+ cF̂ (β, θ) .
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Table 8. Table of correspondence for the results on the C-STIV

STIV C-STIV

σ, r̂, r(n) (σ̂ + F̂ (β̂, θ̂))/2, r0(n)
|D−1

X βSc∩SQ |1 |D−1
X βSc∩SQ |1 + |DZθS̃c |1

|D−1
X βSc∩SQ |1 |D−1

X βSc∩SQ |1 + |DZθS̃c |1/
√

(1− τ(n))(1 + τ(n))

|D−1
X (β̂ − β)S0 |q |D−1

X (β̂ − β)S0 |q + |DZ(θ̂ − θ)S̃0
|q/
√

(1− τ(n))(1 + τ(n))

K̂S K̂S,S̃ ,

{
(∆, ∆̃) : ∆Sc∩S(β̂)c = 0, ∆̃S̃c∩S(θ̂)c = 0,

|∆Sc∩SQ |1 + |∆̃S̃c |1 ≤ |∆S∩SQ |1 + |∆̃S̃ |1 + c(ρ̂ZX |∆|1 + r0(n)|∆̃Sc⊥
|1)

}

K̂γ,S K̂γ,S,S̃ ,

{
(∆, ∆̃) : |∆Sc∩SQ |1 + |∆̃S̃c |1
≤ 2(|∆S∩SQ |1 + |∆̃S̃ |1 + c(ρ̂ZX |∆|1 + r0(n)|∆̃Sc⊥

|1)) + |∆ScQ
|1

}
KS KS,S̃ ,

{
(∆, ∆̃) : (1n − cρZX(n))|∆|1 + (1− r0(n))|∆̃Sc⊥

|1 ≤ 2|∆S∩SQ |1 + |∆ScQ
|1 + 2|∆̃S̃ |1

}
Kγ,S Kγ,S,S̃ ,

{
(∆, ∆̃) : (1n − 2cρZX(n))|∆|1 + (1− r0(n))|∆̃Sc⊥

|1 ≤ 3|∆S∩SQ |1 + 2|∆ScQ
|1 + 3|∆̃S̃ |1

}
κ̂q,S0,S κ̂q,S0,S̃0,S,S̃

, min
(∆,∆̃)∈K̂S,S̃ : |∆S0

|q+|∆̃S̃0
|q=1
|Ψ̂∆ + ∆̃|∞

κ̂ĝ,S κ̂ĝ,S,S̃ , min
(∆,∆̃)∈K̂S,S̃ : ρ̂ZX |∆|1+|∆̃Sc⊥

|1=1
|Ψ̂∆ + ∆̃|∞

γ̂ĥ,S γ̂ĥ,S,S̃ , min
(∆,∆̃)∈K̂γ,S,S̃

min(|∆SQ
|1+|∆̃Sc⊥

|1, 12 (3|∆S∩SQ |1+3|∆̃S̃ |1+c(ρ̂ZX |∆̃|1+r0(n)|∆̃Sc⊥
|1)+|∆Sc

Q
|1))=1

|Ψ̂∆ + ∆̃|∞

B̂(Ŝ) B̂(Ŝ, S̃) ,


−µ ≤ ∆ ≤ µ, −µ̃ ≤ ∆̃ ≤ µ̃, µŜc∩S(β̂)c = 0, µ̂̃

S
c

∩S(θ̂)c
= 0,

(1− cρ̂ZX)(
∑
j∈SIc µj) + (1− cr0(n))(

∑
l∈Sc⊥

µ̃l)

≤ 2(
∑
j∈Ŝ∩SQ µj +

∑
l∈̂̃S µ̃l) +

∑
j∈ScQ

µj


B̂(k) B̂(k, l) ,


−µ ≤ ∆ ≤ µ, −µ̃ ≤ ∆̃ ≤ µ̃
(1− c)(

∑
j∈SI µj) + (1− cρ̂ZX)(

∑
j∈ScI

µj) + (1− cr0(n))(
∑
l∈Sc⊥

µ̃l)

≤ 2(sµk + s̃µ̃l) +
∑
j∈ScQ

µj


θ̂κ(Ŝ), θ̂κ(s) θ̂κ(Ŝ, S̃), θ̂κ(s, s̃)

Θκ(S) Θκ(S, S̃) ,
√

1 + τ(n)δ(n)

(
1− τ(n)

κ1,[dX ],∅,S,S̃
− r0(n)δ(n)

cκ1,S∩SQ,S̃,S,S̃

)−1

+

Θγ(S) Θγ(S) ,
√

1 + τ(n)δ(n)

(
1− τ(n)

γ1,[dX ],∅,S,S̃
− r0(n)δ(n)

cγh,S,S̃

)−1

+

σU(β) F (β, θ) ,
1√

1− τ(n)
max
l∈[dZ ]

(DZ)l,lσZlU(β)−θl

β̂ω β̂ωk , β̂k1l
{
|β̂k| > ω̂k(s, s̃)/

√
En[X2

k ]
}
, θ̂ωl , θ̂l1l

{
|θ̂l| > ω̂l(s, s̃)

√
En[Z2

l ]
}

ω̂k(s) ω̂k(s, s̃) , 2r0(n)σθ̂κ(s, s̃)/κ̂∗ek,0(s, s̃), ̂̃ωl(s, s̃) , 2r0(n)σθ̂κ(s, s̃)/κ̂∗0,fl(s, s̃)

ωk(s) ωk(s, s̃) ,
2r0(n)

√
1 + τ(n)θκ(s, s̃)

κ∗ek,0(s, s̃)
sup

(β,θ)∈Is
F (β, θ)

2

(
1− r0(n)δ(n)

cκ1,S(β)∩SQ,S(β),S(θ)

(
1− τ(n)

κ1,[dX ],∅,S(β),S(θ)

)−1

+

)−1

+

− 1


ω̃l(s, s̃) obtained by replacing κ∗ek,0(s, s̃) by κ∗0,fl(s, s̃)

δ(n) ,
√

1 + τ(n)m(τ(n)).

For nonsparse vectors, S ⊆ [dX ], and S̃ ⊆ [dZ ], we obtain∣∣∣∆̂Sc∩SQ

∣∣∣
1

+
∣∣∣∆̃S̃c

∣∣∣
1
≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+
∣∣∣∆̃S̃

∣∣∣
1

+ c
(
ρ̂ZX

∣∣∣∆̂∣∣∣
1

+ r0(n)
∣∣∣∆̃Sc⊥

∣∣∣
1

)
+2
∣∣D−1

X βSc∩SQ
∣∣
1

+2
∣∣DZθS̃c

∣∣
1
.

We again consider two cases.

First, if 2|D−1
X βSc∩SQ |1 + 2|DZθS̃c |1 ≤ |∆̂S∩SQ |1 + |∆̃

S̃
|1 + c(ρ̂ZX |∆̂|1 + r0(n)|∆̃Sc⊥

|1) + |∆̂ScQ
|1, then
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(∆̂, ∆̃) ∈ K̂
γ,S,S̃

. Also, we have

σ̂ ≤ 1

c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

+
∣∣DZθSc⊥

∣∣
1
−
∣∣∣DZθ̂Sc⊥

∣∣∣
1

)
+ F̂ (β, θ)

≤

∣∣∣Ψ̂∆̂ + ∆̃
∣∣∣
∞

cγ̂
ĥ,S,S̃

+ F̂ (β, θ) .

Second, if 2|D−1
X βSc∩SQ |1 + 2|DZθS̃c |1 > |∆̂S∩SQ |1 + |∆̃

S̃
|1 + c(ρ̂ZX |∆̂|1 + r0(n)|∆̃Sc⊥

|1) + |∆̂ScQ
|1, then∣∣∣∆̂∣∣∣

1
+
∣∣∣∆̃Sc⊥

∣∣∣
1

=
∣∣∣∆̂Sc∩SQ

∣∣∣
1
+
∣∣∣∆̂S∩SQ

∣∣∣
1
+
∣∣∣∆̂ScQ

∣∣∣
1
+
∣∣∣∆̃S̃c

∣∣∣
1
+
∣∣∣∆̃S

∣∣∣
1
≤ 6

(∣∣∣∣(D̂−1
X β

)
Sc∩SQ

∣∣∣∣
1

+
∣∣∣(D̂Zθ

)
S̃c

∣∣∣
1

)
.

For the deterministic lower bounds on the sensitivities we use that, on GΨ, denoting by ∆̂ = D−1
X DX∆̂

and ∆̃ = DZD−1
X ∆̃, we have∣∣∣Ψ̂∆̂
∣∣∣
∞
≥ min

l∈[dZ ]

(
DZD

−1
Z

)
l,l

∣∣∣DZEn
[
ZX>

]
DX∆̂ + ∆̃

∣∣∣
∞

≥ 1√
1 + τ(n)

(∣∣∣DZE
[
ZX>

]
DX∆̂ + ∆̃

∣∣∣
∞
−
∣∣∣DZ(En − E)

[
ZX>

]
DX∆̂

∣∣∣
∞

)
≥ 1√

1 + τ(n)

(∣∣∣Ψ∆̂ + ∆̃
∣∣∣
∞
− τ(n)

∣∣∣∆̂∣∣∣
1

)
.

The rest is easy. �

B.1.2. The NV-STIV Estimator and Confidence Sets. The sensitivities for NV-STIV, their lower bounds

and population counterparts use |(Ψ̂∆)S⊥ |∞ instead of |Ψ̂∆|∞. The one associated to the first bound
in (5.1) is

κ̂Ψ
S , min

∆∈K̂S :

∣∣∣∣(Ψ̂∆)
Sc⊥

∣∣∣∣
∞

=1

∣∣∣∣(Ψ̂∆
)
S⊥

∣∣∣∣
∞
.

For simplicity, we assume that we use the STIV estimator as a pilot estimator and denote by G1 the
usual event G with dZ −dEX moments, and by r̂1 the constant r̂ under either of classes 1-5 adjusted so
that P(G1) ≥ 1− α1 − αB(n). We consider that β ∈ Is. Using the previous results for sparse vectors,

(5.1) holds1 when b̂ and b̂σ are

b̂ =
2r̂1σθ̂κ(s)

κ̂Ψ(s)
, b̂σ =

2r̂1ρ̂ZX,Sc⊥σθ̂κ(s)

κ̂1(s)
.

Definition B.1. For c > 0, the NV-STIV estimator (θ̂, ̂̃σ) is any solution of

(B.4) min
θ∈ÎNV (σ̃,r2(n)),σ̃≥0

(∣∣DZθSc⊥

∣∣
1

+ c̃σ̃
)
,

where, for a set of restrictions Θ̃ on θ including θS⊥ = 0,

ÎNV (σ̃, r2(n)) ,

{
θ ∈ Θ̃ :

∣∣∣∣∣DZ

(
1

n
Z>
(
Y −Xβ̂

)
− θ
)
Sc⊥

∣∣∣∣∣
∞

≤ r2(n)σ̃ + b̂, F̂2

(
β̂, θ
)
≤ σ̃ + b̂σ

}
∀ (β, θ) ∈ RdX+dZ , F̂2 (β, θ) , max

l∈Sc⊥
σ̂l (β, θ) .

1(v5) considers two other cases involving estimated support.
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r2(n) is obtained using class 4 so that P(G2) ≥ 1− α2 − αB(n), where

G2 ,

max
l∈Sc⊥

|En [ZlU(β)− θl]|√
En
[
(ZlU(β)− θl)2

] ≤ r2(n)

 .

We make use of the following notations, for s̃ ∈ [dZ − dEX ],

ω̂ (c̃, s̃) , 2

(
1− 2r2(n)2s̃

1− c̃r2(n)

)−1

+

(
r2(n)̂̃σ + b̂+ r2(n)

(
1 +

c̃r2(n)

1− c̃r2(n)

)
b̂σ
)
,

ω (c̃, s̃) , 2

(
1− 2r2(n)s̃

(
1

1− c̃r2(n)
+

1

c̃

))−1

+

(
r2(n)

√
1 + τ(n)F (β, θ) + b∗ + r2(n)

(
1 +

c̃r2(n)

1− c̃r2(n)

)
bσ∗

)
,

where b∗ and bσ∗ are the following deterministic upper bounds on b̂ and b̂σ on the event G1 ∩ G2 ∩ GΨ:

b∗ =
2r1(n)θκ(s)

κΨ(s)
sup
β∈Is

(
σU(β)Θκ (S(β))

)
, bσ∗ =

2r1(n)ρZX,Sc⊥(n)θκ(s)

κ1(s)
sup
β∈Is

(
σU(β)Θκ (S(β))

)
.

We continue to use the notation GΨ to denote the event on which we can relate random quantities to
deterministic quantities. Its formal definition can be obtained with now obvious modifications. Recall
that P (GcΨ) appears in the coverage error so we simply choose α1 and α2 so that α1 + α2 = α.

Theorem B.1. Let s̃ ∈ [dZ − dEX ]. For all (β, θ),P such that (β, θ) ∈ IdQ,s̃ and either of (1)-(3)

holds, we have, on G1 ∩ G2 in case (1) and G1 ∩ G2 ∩ GΨ in cases (2) or (3), with inequalities holding
for all c̃ ∈

(
0, r2(n)−1

)
(and c ∈

(
0, r1(n)−1

)
in case (1)),∣∣∣DZ

(
θ̂ − θ

)∣∣∣
∞
≤ ω̂ (c̃, s̃) ;(B.5) ∣∣∣DZ

(
θ̂ − θ

)∣∣∣
1
≤ 2s̃

1− c̃r2(n)
ω̂ (c̃, s̃) +

2c̃b̂σ

1− c̃r2(n)
;(B.6)

on G1∩G2∩GΨ, for all solution (θ̂, ̂̃σ) of (B.4), we have, with inequalities holding for all c̃ ∈
(
0, r2(n)−1

)
,∣∣∣DZ

(
θ̂ − θ

)∣∣∣
∞√

1 + τ(n)
≤ ω (c̃, |S (θ)|) ;(B.7) ∣∣∣DZ

(
θ̂ − θ

)∣∣∣
1√

1 + τ(n)
≤ 2 |S (θ)|

1− c̃r2(n)
ω (c̃, |S (θ)|) +

2c̃bσ∗
1− c̃r2(n)

.(B.8)

If c̃ and c are fixed and we restrict IdQ,s̃ so that |θl| > ω(c̃, |S(θ)|)
√

(1 + τ(n))E[Z2
l ], for all l ∈ Sc⊥,

we have, on G1 ∩ G2 ∩ GΨ, S(θ) ⊆ S(θ̂), while, if we restrict IdQ,s̃ so that, for all l ∈ Sc⊥, |θl| >

2ω(c̃, s̃)
√

(1 + τ(n))E[Z2
l ], then sign(θ̂ω) = sign(θ), where θ̂ω , (θ̂l1l{|θ̂l| >

√
En[Z2

l ]ω̂(c̃, s̃)})dZl=1.

Inequalities (B.5) and (B.6) are confidence sets and the uniformity in c̃ and c allows to inter-
sect the sets that various c̃ and c would produce (in practice to use random values given by a rule

of thumb). The last statement yields “adaptive” confidence sets by replacing s̃ by |S(θ̂ω)| in (B.5)
and (B.6). This theorem is useful when r2(n) is small (i.e., n � ln(|Sc⊥|)). The first upper bounds
are finite if |S (θ)| = O

(
1/r2(n)2

)
= O (n/ ln (|Sc⊥|)) is small enough. Bounds for `q-norms follow by

interpolation.
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Proof of Theorem B.1. We work on G1∩G2. First, we show that (θ, F̂2(β, θ)) ∈ ÎNV by the following
computations∣∣∣∣∣DZ

(
1

n
Z>
(
Y −Xβ̂

)
− θ
)
Sc⊥

∣∣∣∣∣
∞

≤
∣∣∣∣DZ

(
1

n
Z>U(β)− θ

)∣∣∣∣
∞

+

∣∣∣∣Ψ̂D−1
X

(
β̂ − β

)
Sc⊥

∣∣∣∣
∞

≤ r2(n)F̂2 (β, θ) + b̂.

The second constraint in the definition of ÎNV is satisfied because, by the triangle inequality and

convexity, F̂2(β̂, θ) ≤ F̂2 (β, θ) + b̂σ. Now, because (θ, F̂2 (β, θ)) ∈ ÎNV and (θ̂, ̂̃σ) minimizes (B.4), we
have

(B.9)
∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̃S(θ)

∣∣∣
1

+ c̃
(
F̂2 (β, θ)− ̂̃σ) .

Using that F̂2(β̂, θ) ≤ ̂̃σ + b̂σ (by definition of the estimator) and the computations from the proofs of
the results of Section B.1, we obtain

(B.10) F̂2 (β, θ)− ̂̃σ ≤ r2(n)
∣∣∣∆̃Sc⊥

∣∣∣
1

+ 2b̂σ.

This and (B.9) yield ∣∣∣∆̃S(θ)c

∣∣∣
1
≤
∣∣∣∆̃S(θ)

∣∣∣
1

+ c̃r2(n)
∣∣∣∆̃Sc⊥

∣∣∣
1

+ 2c̃b̂σ

and, equivalently,

(B.11)
∣∣∣∆̃S(θ)c

∣∣∣
1
≤ 1 + c̃r2(n)

1− c̃r2(n)

∣∣∣∆̃S(θ)

∣∣∣
1

+
2c̃

1− c̃r2(n)
b̂σ.

Next, using the second constraint in the definition of (θ̂, ̂̃σ), we find∣∣∣DZ

(
θ̂ − θ

)∣∣∣
∞
≤

∣∣∣∣∣D̂Z

(
1

n
Z
>
(
Y −Xβ̂

)
− θ̂
)
Sc⊥

∣∣∣∣∣
∞

+

∣∣∣∣∣DZ

(
1

n
Z>U(β)− θ

)
Sc⊥

∣∣∣∣∣
∞

+

∣∣∣∣∣DZ

(
1

n
Z>X

(
β̂ − β

))
Sc⊥

∣∣∣∣∣
∞

≤ r2(n)
(̂̃σ + F̂2 (β, θ)

)
+ 2b̂.

This and (B.10) yield

(B.12)
∣∣∣∆̃∣∣∣
∞
≤ r2(n)

(
2̂̃σ + r2(n)

∣∣∣∆̃∣∣∣
1

+ 2b̂σ
)

+ 2b̂.

On the other hand, (B.11) implies∣∣∣∆̃∣∣∣
1
≤ 2

1− c̃r2(n)

∣∣∣∆̃S(θ)

∣∣∣
1

+
2c̃b̂σ

1− c̃r2(n)

≤ 2 |S (θ)|
1− c̃r2(n)

∣∣∣∆̃∣∣∣
∞

+
2c̃b̂σ

1− c̃r2(n)
.(B.13)

Inequalities (B.5) and (B.6) follow by simple manipulations of (B.12)-(B.13).
As before, we obtain

(B.14) ̂̃σ ≤
∣∣∣∆̃S(θ)

∣∣∣
1

c̃
+
√

1 + τ(n)F̂2 (β, θ) ≤
|S (θ)|

∣∣∣∆̃∣∣∣
∞

c̃
+
√

1 + τ(n)F̂2 (β, θ) ,

which, together with (B.12)-(B.13), yield∣∣∣DZ

(
θ̂ − θ

)∣∣∣
∞
≤2

(
1− 2r2(n) |S (θ)|

(
1

1− c̃r2(n)
+

1

c̃

))−1

+

(
r2(n)

√
1 + τ(n)F (β, θ) + b̂+ r2(n)

(
1 +

c̃r2(n)

1− c̃r2(n)

)
b̂σ
)
.
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The rest is as before. �

B.2. Systems of Equations with Approximation Errors. To allow for approximation error, we
modify P, so that W(β) plays the role of U(β). For simplicity we only consider classes 1-4. We modify
G accordingly and GΨ is defined as in the proof of Proposition A.1 replacing EcU by EcV ∩ EcW , where
both are defined like EU , and the probability m4(nτ(n)2)−1 in the definition of αC(n) is replaced by
2dGm4(nτ(n)2)−1. We choose r(n) and r0(n) as in Section A.1.1 replacing α by α/dG and use the
event

G ,

max
g∈[dG]
l∈[dZ ]

|En [ZlWg(β)]|√
En[Z2

l ]En [Wg(β)2]
≤ r(n)

 .

We rely on a union bound because there could be dependence between the errors in each equation and
we do not model them. The number of equations dG can depend on n. The population sensitivities

are obtained replacing |Ψ∆|∞ by
∑dG

g=1 |Ψ∆·,g|∞, K̂S and K̂γ,S by

KS ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤
∣∣∆S∩SQ

∣∣
1

+ cg(∆)
}
,

Kγ,S ,
{

∆ ∈ RdX : 1n
∣∣∆Sc∩SQ

∣∣
1
≤ 2

(∣∣∆S∩SQ
∣∣
1

+ cg(∆)
)

+
∣∣∣∆ScQ

∣∣∣
1

}
,

where g(∆) , r(β, n)|∆SI |1 + |∆ScI
|1 and r(β, n) , maxg∈[dG] min(r(n) + (r(n) + 1)(1nσWg(β)/vg(dX)−

1)−1
+ , 1) is used instead of r(n) in the definition of the sensitivities. We also denote by ΨX =

DXE[XX>]DX and EX is defined like EZ replacing Z byX of probability CN(dX(dX+1)/2)MX(dX)/(nτ(n)2).

Theorem B.2. For all β,P such that β ∈ I, assuming as well En[vg(dX)2] ≤ v̂2
g on GΨ and all solution(

β̂, σ̂
)

of (5.4), the following hold on G ∩ GΨ (on G ∩ GΨ ∩ E ′cX for the second inequality of (ii))

(i) For a sparse matrix β, for all l ∈ L, we have

1nl
(
D−1
X

(
β̂ − β

))
≤

2r(n)
∑dG

g=1

(
σWg(β) + (r(n) + 2) vg(dX)

)
κl,S(β)

Θκ(S(β)),

En
[(
X>

(
β̂·,g − β·,g

))2
]
≤

2r(n)
∑dG

g=1

(
σWg(β) + (r(n) + 2) vg(dX)

)
1n
√
κ1,[dX ]×{g},S(β)

Θκ(S(β));

(ii) For all S, S0 ∈ [dX ]dG, and q ∈ [1,∞], we have

1n

∣∣∣∣D−1
X

(
β̂ − β

)
S0

∣∣∣∣
q

≤ 2 max

(
r(n)

∑dG
g=1

(
σWg(β) + (r(n) + 2) vg(dX)

)
γq,S0,S

Θγ(S), 3
∣∣D−1

X βSc∩SQ
∣∣
1

)

En
[(
X>

(
β̂·,g − β·,g

))2
]1/2

≤
∣∣∣D−1

X

(
β̂·,g − β·,g

)∣∣∣
1

√
|ΨX |∞ + τ(n);

In all cases, we have

(B.15) |σ̂g(β̂)− σWg(β)| ≤ En
[(
X>

(
β̂·,g − β·,g

))2
]1/2

+ σWg(β)τ(n) +
√

1 + τ(n)vg(dX).

Proof of Theorem B.2. Take β in I, set ∆̂ , D−1
X

(
β̂ − β

)
, and work on G ∩ GΨ. We have, for

g ∈ [dG], using the triangle inequality in the second and fourth display, and the definition of G and the
Cauchy-Schwartz inequality in the third,∣∣∣∣ 1nDZZ>(Y·,g −Xβ·,g)

∣∣∣∣
∞
≤
∣∣∣∣ 1nDZZ>W·,g(β)

∣∣∣∣
∞

+

∣∣∣∣ 1nDZZ>V·,g(β)

∣∣∣∣
∞
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≤ r(n)
√
En[Wg(β)2] +

√
En[Vg(β)2]

≤ r(n)σ̂g(β) + (r(n) + 1)
√
En[Vg(β)2]

≤ r(n)σ̂g(β) + (r(n) + 1)v̂g.

Hence, β ∈ ÎE (r(n), σ̂(β)) and

(B.16)
∣∣∣Ψ̂∆̂·,g

∣∣∣
∞
≤ r(n) (σ̂g + σ̂g(β)) + 2(r(n) + 1)

√
1 + τ(n)vg(dX).

Moreover, by the inverse triangle inequality, we have

σ̂g(β) ≥
√

En[Wg(β)2]−
√

En[Vg(β)2] ≥
√

1− τ(n)σWg(β) −
√

1 + τ(n)vg(dX).

Hence, by convexity, we have

σ̂g(β)− σ̂g
(
β̂
)
≤ min

r(n) +
(r(n) + 1)

√
1 + τ(n)vg(dX)(√

1− τ(n)σWg(β) −
√

1 + τ(n)vg(dX)
)

+

, 1

 |∆̂SI |1 +
∣∣∣∆̂ScI

∣∣∣
1

≤ min

(
r(n) + (r(n) + 1)

(
1n
σWg(β)

vg(dX)
− 1

)−1

+

, 1

)∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

≤ r(β, n)

∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

.(B.17)

Hence we obtain the first inequality in (i).

Denoting by Ψ̂X , DXEn[XX>]DX , the second inequality comes from

En
[(
X>

(
β̂·,g − β·,g

))2
]
≤
∣∣∣Ψ̂X∆g

∣∣∣
∞
|∆g|1 .

The third inequality comes from

|σ̂g(β̂)− σWg(β)| ≤ En
[(
X>

(
β̂·,g − β·,g

))2
]1/2

+ |σWg(β) − σ̂g(β)|

and max
(√

1 + τ(n)− 1, 1−
√

1− τ(n)
)
≤ τ(n).

Now, by definition of the estimator, we have∣∣∣∆̂Sc∩SQ

∣∣∣
1
≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ c
∑
g∈[dG]

(
min

(
r(n) + (r(n) + 1)

(
1nσWg(β)

vg(dX)
− 1

)−1

+

, 1

)∣∣∣∣(∆̂SI

)
·,g

∣∣∣∣
1

+

∣∣∣∣(∆̂ScI

)
·,g

∣∣∣∣
1

)

≤
∣∣∣∆̂S∩SQ

∣∣∣
1

+ 2
∣∣D−1

X βSc∩SQ
∣∣
1

+ c
(
r(β, n)

∣∣∣∆̂SI

∣∣∣
1

+
∣∣∣∆̂ScI

∣∣∣
1

)
and

dG∑
g=1

∣∣∣Ψ̂∆̂·,g

∣∣∣
∞
≤ r(n)

dG∑
g=1

(σ̂g + σ̂g(β)) + 2(r(n) + 1)
√

1 + τ(n)

dG∑
g=1

vg(dX)

≤ r(n)

c

(∣∣D−1
X βSQ

∣∣
1
−
∣∣∣D−1

X β̂SQ

∣∣∣
1

)
+ 2r(n)

dG∑
g=1

σ̂g(β) + 2(r(n) + 1)
√

1 + τ(n)

dG∑
g=1

vg(dX).
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The second inequality from (ii) is obtained in a similar manner as in the proof of Theorem B.3. The
last statement is obtained using that, by similar arguments as those leading to (A.1) and (A.15),

(B.18) En
[(
X>

(
β̂·,g − β·,g

))2
]
≤
∣∣∣D−1

X

(
β̂·,g − β·,g

)∣∣∣2
1
|Ψ̂X |∞. �

The second inequalities in both items allow to bound the loss in a system of nonparametric IV
equations. In a model where all the Vi,g(β) are zero, we take v̂g = 0 and can derive the same results
as for the STIV estimator, including the confidence sets.

B.3. C-STIV Estimation of Λ. Assumption B.1 gives the class P ′ which we consider in Section 6,
it allows for approximation errors as in sections 5.2 and B.2. We denote by

ρ̂Z , max
l,l′∈[dZ ]

(DZ)l,l (DZ)l′,l′

√
En
[
Z2
l Z

2
l′
]
,

G′0 ,

{
max

f∈[dF ],k∈[dX ]

|En [(T (Λ))f,k]|√
En [(T (Λ)f,k)2]

≤ r′0(n)

}
.

Assumption B.1. Let dX , dZ , dF ≥ 3. There exists MT (dF , dX),MZV (dF ),MZW (dZ),MF,ZW (dF ), q2 >
0, B(n) ≥ 1, positive sequence (α∞(n))n∈N decaying to zero, such that, for all P, (β,Λ) ∈ IΩ such that
P(β,Λ) ∈ P ′, positive sequences (αβ(n))n∈N, and (vβ,1(n))n∈N and (vβ,2(n))n∈N which can depend on
β, for all n ∈ N,

(i) P is class 4, replacing α with α/dG in the definition of r0(n), restricted in a similar manner as
in Assumption A.2, assuming as well P ({ρ̂ZX > ρZX(n)} ∪ {ρ̂Z > ρZ(n)}) ≤ α∞(n);

The estimator β̂ is such that, with probability 1− αβ(n) (on G ∩ GΨ),

max
g∈[dG]

∣∣∣D−1
X

(
β̂·,g − β·,g

)∣∣∣
1
≤ vβ,1(n), max

g∈[dG]

√
En
[((

DΛZW (β)Λ
)
f,· ZX

(
β̂·,g − β·,g

))2
]
≤ vβ,2(n);

(ii) For all (f, k) ∈ [dF ]× [dX ], the distribution of
(

(Ti (Λ))f,k

)
i∈[n]

belongs to class 4;

(iii) E

[∣∣∣∣((T (Λ))2
f,k /σ

2
(T (Λ))f,k

− 1
)

(f,k)∈[dF ]×[dX ]

∣∣∣∣2
∞

]
≤MT (dF , dX);

(iv) E

[∣∣∣∣((Λf,·ZV (β))2 /E
[
(Λf,·ZV (β))2

]
− 1
)
f∈[dF ]

∣∣∣∣2
∞

]
≤MZV (dF );

(v) E
[∣∣DZW (β)

(
ZZ>W (β)2 − E

[
ZZ>W (β)2

])
DZW (β)

∣∣2
∞

]
≤MZW (dZ);

(vi) E
[∣∣DΛZW (β)Λ

(
ZZ>W (β)2 − E

[
ZZ>W (β)2

])
Λ>DΛZW (β)

∣∣2
∞

]
≤MF,ZW (dF );

(vii) max

(
E
[((

DΛZW (β)Λ
)
f,· ZW (β)

)2+q1
]
,E
[((

DΛZW (β)Λ
)
f,· ZW (β)E

)2+q1
])
≤ B(n)q1 ,∀f ∈ [dF ], q1 ∈

[2];

(viii) max
(
E
[(∣∣∣DΛZW (β)ΛZ>i,·Wi(β)

∣∣∣
∞
/B(n)

)q2]
,E
[(∣∣∣DΛZW (β)ΛZ>i,·Wi(β)Ei

∣∣∣
∞
/B(n)

)q2])
≤ 2, ∀i ∈

[n];

The cones for the population sensitivities used to establish the rate of convergence of Λ̂ are

K ′S ,

{
∆′ ∈MdF ,dZ : 1n

∣∣∆′Sc∣∣1 ≤ 1 + λ

1− λ
∣∣∆′S∣∣1} , K ′γ,S , {∆′ ∈MdF ,dZ : 1n

∣∣∆′Sc∣∣1 ≤ 2 + λ

1− λ
∣∣∆′S∣∣1} .

We use κ′, γ′ to denote the population sensitivities using the cones above, which are defined identically

to κ, γ, replacing |Ψ∆|∞ with |∆′Ψ>|∞. Since Λ̂ can have more than one column, its analysis requires
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the use of mixed norms. We use | · |p,q norm to denote the operator norm from `p to `q. Note
that | · |2,∞ and | · |∞,∞ are, respectively, the maximum `2 and `1-norm of the rows. We denote

the population sensitivities for mixed `p − `q loss by κ′(p,q),S , γ
′
(p,q),S . We also define, for lF,∞(∆′) ,

maxf∈[dF ](DΛZW (β))f,f |∆′f,·|1,

Θ′κ(S) , (1 + τ(n))

(
1− τ(n)

κ′(∞,∞),S

− r′0(n)ρZX(n)(1 + τ(n))

λκ′1,S,S

)−1

+

and Θ′γ(S) which is obtained by replacing κ′(∞,∞),S and κ′1,S,S by γ′(∞,∞),S and γ′h,S . The event E ′T is

defined like E ′X for En[T (Λ)]DX and has probability CN(dFdX)MT (dF , dX)/W (β)(nτ(n)2) and EZW
is defined like EZ replacing Z by ZW (β) of probability CN(dZ(dZ + 1)/2)MZU (dZ)/(nτ(n)2), and

we define F (L) , |(σ(T (L))f,k(DX)k,k)(f,k)∈[dF ]×[dX ]|∞ for L ∈ MdF ,dZ , ΨZ , DZE[ZZ>]DZ , and

ΨZW (β) , DZE[ZZ>W (β)2]DZ .

Theorem B.3. Under Assumption B.1 (ii), (iii), (v), and (C5.iii), for all (β,Λ),P such that (β,Λ) ∈
IΩ and all solution (Λ̂, ν̂) of (6.3) with λ ∈ (0, 1), we have, on G′0∩GΨ∩{ρ̂ZX > ρZX(n)}∩E ′cT ∩EcZW∩EcZ ,

(i) If Λ is sparse, for all l ∈ L,

l
((

Λ̂− Λ
)
D−1
Z

)
≤

2r′0(n)
√

1 + τ(n)F (Λ) Θ′κ(S(Λ))

1nκ′l,S(Λ)

,

ν̂ ≤ (1 + τ(n))F (Λ)

(
1 +

2r′0(n)ρZX(n)Θ′κ (S(Λ))

λκ′1,S(Λ),S(Λ)

)
,

max
f∈[dF ]

(
DΛZW (β)

)
f,f

En
[((

Λ̂f,· − Λf,·

)
ZW (β)

)2
]1/2

≤ 2r′0(n)F (Λ)
Θ′κ(S(Λ))

κ′lF,∞,S(Λ)

√
|ΨZW (β)|∞ + τ(n);

max
f∈[dF ]

(
DΛZW (β)

)
f,f

En
[((

Λ̂f,· − Λf,·

)
Z
)2
]1/2

≤ 2r′0(n)F (Λ)
Θ′κ(S(Λ))

κ′lF,∞,S(Λ)

√
|ΨZ |∞ + τ(n);

(ii) Else,∣∣∣(Λ̂− Λ
)
D−1
Z

∣∣∣
1
≤ 2

1n
min

S⊆[dF ]×[dZ ]
max

(
r′0(n)

√
1 + τ(n)F (Λ) Θ′γ(S)

γ′1,S
,
3 + λ

1− λ
∣∣ΛScD−1

Z

∣∣
1

)
,

ν̂ ≤ (1 + τ(n))

(
F (Λ) +

ρZX(n)

λ
min
S⊆[dX ]

max

2F (Λ)

1− r′0(n)ρZX(n)(1 + τ(n))

λγ′h,S

(
1− τ(n)

γ′1,S

)−1
−1

+

− 1

 ,

3

2
√

1 + τ(n)

∣∣ΛScD−1
Z

∣∣
1

))
,

max
f∈[dF ]

(
DΛZW (β)

)
f,f

En
[((

Λ̂f,· − Λf,·

)
ZW (β)

)2
]1/2

≤
√
|ΨZW (β)|∞ + τ(n)2 min

S⊆[dF ]×[dZ ]
max

(
r′0(n)

√
1 + τ(n)F (Λ) Θ′γ(S)

γ′lF,∞,S
,
3 + λ

1− λ
∣∣DΛZW (β)

∣∣
∞

∣∣ΛScD−1
Z

∣∣
1

)
,

and with obvious modifications a bound on maxf∈[dF ]

(
DΛZW (β)

)
f,f

En
[((

Λ̂f,· − Λf,·

)
Z
)2
]1/2

.
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Proof of Theorem B.3. Take (β,Λ) ∈ IΩ. Set ∆̂′ , (Λ̂− Λ)D−1
Z , and ∆̂′ , ∆̂′DZD

−1
Z . Clearly, on

G′0, Λ belongs to ÎC
(
r′0(n), F̂ (Λ

)
. We now work on the event in the statement of the theorem.

We start by proving (i). The arguments in the proof of Theorem 4.1 yield∣∣∣∆̂′Ψ̂>∣∣∣
∞
≤ r′0(n)

(
ν̂ + F̂ (Λ)

)
(B.19) ∣∣∣∆̂′S(Λ)c

∣∣∣
1
≤
∣∣∣∆̂′S(Λ)

∣∣∣
1

+
λ

ρ̂ZX

(
F̂ (Λ)− F̂

(
Λ̂
))

and, by those of the proof results of Section B.1, F̂ (Λ)− F̂ (Λ̂) ≤ ρ̂ZX |∆̂′|1.

As a result, ∆̂′ ∈ K ′S(Λ) ⊆ K̂ ′S(Λ) and, using the definition of κ̂′1,S(Λ),S(Λ) and of the objective function

in (6.3) in the first display and (B.19) in the third display,

ν̂ ≤
ρ̂ZX

∣∣∣∆̂′Ψ̂>∣∣∣
∞

λκ̂′1,S(Λ),S(Λ)

+ F̂ (Λ) ;

ν̂ + F̂ (Λ) ≤ 2F̂ (Λ)

(
1− r′0(n)ρ̂ZX

λκ̂′1,S(Λ),S(Λ)

)−1

+

;

∣∣∣∆̂′Ψ̂>∣∣∣
∞
≤ 2r′0(n)F̂ (Λ)

(
1− r′0(n)ρ̂ZX

λκ̂′1,S(Λ),S(Λ)

)−1

+

.

Let us now show the results of item (ii). Take S ⊆ [dF ]× [dZ ]. We have

|∆̂′Sc |1 ≤
∣∣∣∆̂′S∣∣∣

1
+ 2

∣∣ΛScD−1
Z

∣∣
1

+ λ
∣∣∣∆̂′∣∣∣

1

and distinguish the two cases:

Case 1: 2|ΛScD−1
Z |1 ≤ |∆̂′S |1 and the rest is usual.

Case 2: 2|ΛScD−1
Z |1 > |∆̂′S |1. In that case, we have∣∣∣∆̂′∣∣∣

1
=
∣∣∣∆̂′Sc∣∣∣

1
+
∣∣∣∆̂′S∣∣∣

1
≤ 2

3 + λ

1− λ
∣∣ΛScD−1

Z

∣∣
1
,

hence ∣∣∣∆̂′∣∣∣
1
≤ 2

3 + λ

1− λ
1

1n

∣∣ΛScD−1
Z

∣∣
1
. �

Due to item(ii), even if multiple matrices Λ satisfy (6.1), Λ̂ can converge to a sparse solution.
We denote by αΛ(n) the probability of the complement of the event in Theorem B.3, it is independent
of Λ. We also denote by vΛ,1(n), vΛ,2(n), vΛ,3(n), and vF (Λ)(n) the first (taking for l the norm | · |∞,∞),
third, fourth, and second upper bounds on the right of (i) and (ii), they can depend on Λ such that
(β,Λ) ∈ IΩ. Define the following sequences

vD(n) , min
(√

1 + τ(n)
(∣∣DΛZW (β)ΛD

−1
Z

∣∣
∞,∞ +

∣∣DΛZW (β)

∣∣
∞ vΛ,1(n)

)
(ρZX(n)vβ,1(n)

+ ρZ
√

1 + τ(n)v(dX)) + vΛ,2(n),√
1 + τ(n)

∣∣DΛZU(β)

∣∣
∞ vΛ,1(n)ρZX

(
vβ,1(n) +

√
1 + τ(n)

∣∣D−1
X β

∣∣
1

)
+
√

1 + τ(n) max
f∈[dF ]

√
E
[((

DΛZW (β)Λ
)
f,· ZV (β)

)2
]

+ vβ,2(n)
)
,
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v0(n) ,
√
n(1 + vD(n) + τ(n))

(∣∣DΛZW (β)

∣∣
∞ r
′
0(n)vF (Λ)(n)vβ,1(n) +

∣∣DΛZW (β)

∣∣
∞ |V (β)|∞

+
(
vΛ,3(n) + (τ(n) + 1)

∣∣DΛZW (β)D
−1
ΛZ

∣∣
∞

)
|v(dX)|∞

√
1 + τ(n)

)
,

ζ2(n)2 , P

(
NΩ0 >

ζ(n)− vD(n)
√

1 + τ(n)

vD(n) + τ(n)
− vD(n)

√
1 + τ(n)

)
+ αβ(n) + αΛ(n) + e−nτ(n)2/8

+ CN(dF )MZV (dF )/(nτ(n)2) + ι(dF , n),

ζ ′2(n) , P
(
NΩ0 >

ζ(n)− vΛ,2(n)

vD(n) + τ(n)
− vΛ,2(n)

)
+ αβ(n) + αΛ(n) + +CN(dF )MZV (dF )/(nτ(n)2) + ι(dF , n),

αB(n) , 2ζ2(n) + ζ ′2(n) + ϕ(τ(n)) +
CN(dF (dF + 1)/2)MF,ZW (dF )

nτ(n)2
+ ι(dF , n),

αΩ(n) , αB(n) + αβ(n) + CN(dF )MZV (dF )/(nτ(n)2) + αΛ(n).

To obtain coverage guarantees for the confidence bands, we use:

Assumption B.2. For all (β,Λ) ∈ IΩ, we have

(i) ζ(n)/vD(n)−max(
√

2vD(n), vΛ,2(n))→∞;
(ii) αΩ(n)→ 0;

(iii) ∀n ∈ N, v(n) ≥ v0(n), and v(n)→ 0.

The use of Assumption B.1 (iv) and vβ,2(n) is not necessary. Using them allows the second term
in the minimum in the definition of vD(n).

Let us now consider alternative confidence bands when we maintain (C5.i), defined as

ĈΩ,g , Ω̂β·,g − q̂, , ĈΩ,g , Ω̂β·,g + q̂, ĈΩ,g ,
[
ĈΩ,g, ĈΩ,g

]
,(B.20)

q̂ ,
q
GΩ|ZΛ̂>(1− α) + 2ζ(n)

√
n

σ̂g

(
β̂
)

D−1

ZΛ̂>
1 +

v(n)√
n
,

where q
GΩ|ZΛ̂>(1− α) is the 1− α quantile of GΩ = |D

ZΛ̂>Λ̂Z>E|∞/
√
n given ZΛ̂>.

For the analysis, we add to Assumption B.1 (i)

max
g∈[dG]

|σ̂g(β̂)− σWg(β)| ≤ vσ(Wg(β))(n),

which is obtained from (B.15) and yields, for all g ∈ [dG],∣∣∣∣∣ 1

σ̂g(β̂)
− 1

σWg(β)

∣∣∣∣∣ ≤ vσ(Wg(β))(n)

σWg(β)(σWg(β) − vσ(Wg(β))(n))+
, vσ,g(n).

We also replace (v)-(viii) in Assumption B.1 by (C5.iii) and

(v’) E
[∣∣DΛZΛ

(
ZZ> − E

[
ZZ>

])
Λ>DΛZ

∣∣2
∞

]
≤MF,Z(dF );

(vi’) max

(
E
[(

(DΛZΛ)f,· ZWg(β)/σ(Wg(β))
)2+q1

]
,E
[(

(DΛZΛ)f,· ZWg(β)E/σ(Wg(β))
)2+q1

])
≤ B(n)q1 ,∀f ∈

[dF ], q1 ∈ [2], g ∈ [dG];

(vii’) max
(
E
[(∣∣DΛZΛZ>i,·Wi,g(β)

∣∣
∞ /(B(n)σ(Wg(β)))

)q2]
,E
[(∣∣DΛZΛZ>i,·Wi,g(β)Ei

∣∣
∞ /(B(n)σ(Wg(β))

)q2])
≤

2, ∀i ∈ [n], g ∈ [dG].

The loss lF,∞ is replaced by lF,∞(∆′) , maxf∈[dF ](DΛZ)f,f |∆′f,·|1 and Theorem B.3 (but the third

inequalities of both items which we do not use) holds replacing DΛZU(β) by DΛZ . The coverage is
guaranteed if we assume:
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Assumption B.3. For all (β,Λ) ∈ IΩ, we have

(i) τ(n)/vΛ,3(n)→ 0, ζ(n)/vΛ,3(n)−max(
√

2vΛ,3(n), vσ,g(n)(1 + 1/vΛ,3(n)))→∞;
(ii) αΩ(n)→ 0;

(iii) ∀n ∈ N, v(n) ≥ v0(n), and v(n)→ 0.

Item (iii) is weaker than for the previous confidence bands. Indeed, the condition of item 1 in
the discussion after Theorem 6.1 simply becomes vΛ,3(n) = O(1) and does not involve any norm of Λ.

Analysis of the Bands Under (C5.i). On the event E , G′0 ∩ GΨ ∩ {ρ̂ZX > ρZX(n)} ∩ E ′cT ∩ EcZ of
probability 1− αΛ(n), we have

(DΛZ)f,f

∣∣∣∣∣
√

En
[(

Λ̂f,·Z
)2
]
−
√

E [(Λf,·Z)2]

∣∣∣∣∣
≤ (DΛZ)f,f

(√
En
[((

Λ̂f,· − Λf,·

)
Z
)2
]

+

∣∣∣∣√En [(Λf,·Z)2]−
√
E [(Λf,·Z)2]

∣∣∣∣
)

so
∣∣D

ZΛ̂>D
−1
ΛZ

∣∣
∞ ≤ 1 + vΛ,3(n) + τ(n). We now use the decomposition

(B.21)
√
nD

ZΛ̂>

(
Ω̂β − Ωβ − V (β)

)
= R1 +R2 +R3 +

1√
n

D
ZΛ̂>Λ̂Z>W(β),

where R1 ,
√
nD

ZΛ̂>

(
Ω− 1

n Λ̂Z>X
)

DX∆̂, R2 = D
ZΛ̂>Λ̂Z>V(β)/

√
n, and R3 = −

√
nD

ZΛ̂>V (β).

On E ∩ G, we have

|R1|∞ ≤
√
n(1 + vΛ,3(n) + τ(n))

∣∣DΛZW (β)

∣∣
∞ r
′
0(n)vF (Λ)(n)vβ,1(n),

|R2|∞ ≤
√
n(1 + vΛ,3(n) + τ(n)) (vΛ,3(n) + τ(n) + 1) v(dX)

√
1 + τ(n),

|R3|∞ ≤
√
n(1 + vΛ,3(n) + τ(n))

∣∣DΛZW (β)

∣∣
∞ |V (β)|∞.

Define

TΩ ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

D
ZΛ̂>Λ̂Z>i,·

Wi(β)

σ̂(β̂)

∣∣∣∣∣∣
∞

, TΩ1 =

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZΛ̂Z>i,·
Wi(β)

σ̂(β̂)

∣∣∣∣∣∣
∞

, TΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZΛZ>i,·
Wi(β)

σW (β)

∣∣∣∣∣∣
∞

,

GΩ1 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZΛ̂Z>i,·Ei

∣∣∣∣∣∣
∞

, GΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

DΛZΛZ>i,·Ei

∣∣∣∣∣∣
∞

, NΩ0 ,

∣∣∣∣∣∣ 1√
n

∑
i∈[n]

(EDΛZΛZ)>i,·

∣∣∣∣∣∣
∞

,

where (EDΛZΛZ)i,· are independent Gaussian vectors of covariance E[DΛZΛZ>i,·Zi,·Λ
>DΛZ ].

On E , |TΩ − TΩ1| ≤ TΩ1(vΛ,3(n) + τ(n)) and |TΩ1 − TΩ0| ≤ vσ,g(n), so

|TΩ − TΩ0| ≤ (TΩ0 + vσ,g(n))(vΛ,3(n) + τ(n)) + vσ,g(n).

Also, on E ∩ {En[E2] ≥ 1 + τ(n)}, we have |GΩ −GΩ1| ≤ GΩ1(vΛ,3(n) + τ(n)) and |GΩ1 −GΩ0| ≤
vΛ,3(n)

√
1 + τ(n), so

|GΩ −GΩ0| ≤ (GΩ0 + vΛ,3(n)
√

1 + τ(n))(vΛ,3(n) + τ(n)) + vΛ,3(n)
√

1 + τ(n).

We obtain P (|TΩ − TΩ0| > ζ(n)) ≤ ζ ′2(n) and P
(
P
(
|GΩ −GΩ0| > ζ(n)|ZΛ̂>

)
> ζ2(n)

)
< ζ2(n), where

ζ2(n)2 , P

(
NΩ0 >

ζ(n)− vΛ,3(n)
√

1 + τ(n)

vΛ,3(n) + τ(n)
− vΛ,3(n)

√
1 + τ(n)

)
+ αΛ(n) + e−nτ(n)2/8 + ι(dF , n),
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ζ ′2(n) , P
(
NΩ0 >

ζ(n)− vσ,g(n)

vΛ,3(n) + τ(n)
− vσ,g(n)

)
+ αΛ(n) + ι(dF , n),

αB(n) , 2ζ2(n) + ζ ′2(n) + ϕ(τ(n)) +
CN(dF (dF + 1)/2)MF,Z(dF )

nτ(n)2
+ ι(dF , n),

αΩ(n) , αB(n) + αβ(n) + αΛ(n),

and P
(
T ≥ qGΩ|Z(1− α) + 2ζ(n)

)
< α+ αB(n).

Finally v0(n) is replaced by

v0(n) ,
√
n(1 + vΛ,3(n) + τ(n))

(∣∣DΛZW (β)

∣∣
∞
(
r′0(n)vF (Λ)(n)vβ,1(n) + |V (β)|∞

)
+ (vΛ,3(n) + τ(n) + 1) |v(dX)|∞

√
1 + τ(n)

)
.

Appendix C: Computational details

C.1. SNIV Confidence Sets and Sparse BSOS. If B = RdX or B comprises polynomial (in)equality

restrictions (e.g., linear restrictions), the SNIV confidence set Ĉ(s) in (3.1) is characterized by poly-
nomial inequalities. To model the sparsity constraint we introduce η ∈ {0, 1}dX as indicators for the
nonzero entries of β (see [6]), yielding the quadratic constraints

(C.1) |S(b) ∩ SQ| ≤ s⇔ ∃η ∈ RdX : ∀k ∈ SQ, (1− ηk)bk = 0, ηk(1− ηk) = 0,
∑
k∈SQ

ηk ≤ s

Squaring both sides, the remaining constraints in (3.1) can be rewritten as the quadratic inequality

(C.2) max
l∈[dZ ]

(
Z>·,lU(b)

)2
≤ n2r0(n)2σ̃l(b)

2.

This implies that if ϕ(b) is a polynomial (or more generally, a rational function), (3.3) comprises

polynomial optimization problems. With possibly endogenous IVs, the SNIV confidence set Ĉ(s, s̃) in
Section 5 is characterized by replacing (C.1)-(C.2) by

∀k ∈ SQ, (1− ηk)bk = 0, ηk(1− ηk) = 0,
∑
k∈SQ

ηk ≤ s;(C.3)

∀l ∈ Sc⊥, (1− δl)tl = 0, δl(1− δl) = 0,
∑
l∈Sc⊥

δl ≤ s̃;(C.4)

max
l∈[dZ ]

(
Z>·,lU(b)− ntl

)2
≤ n2r0(n)2σ̃l(b, t)

2,(C.5)

We now describe a general approach to convex relaxation in polynomial optimization. The
main idea is to introduce new decision variables to replace monomials in the original decision variables
of degree two or larger. For example, p(x) = x2

1 + x1x2 + x1 − x2 − 1 is replaced by p(x, y) =
y20 + y11 + x1 − x2 − 1, where y are new decision variables with subscripts referring to the exponents
of the monomials they replace. One then imposes additional constraints on x and y. There are two
means of doing this. First, notice that if the constraints of the original problem are 0 ≤ g1(x) ≤ 1, 0 ≤
g2(x) ≤ 1...0 ≤ gm(x) ≤ 1 then

∏m
i=1 gi(x)ai(1 − gi(x))bi ≥ 0 for all ai ∈ {0, 1, ...d}∀i ∈ [m], bi ∈

{0, 1, ...d}∀i ∈ [m],
∑m

i=1 ai + bi ≤ d and d ∈ {1, 2, ...}. In this way we can obtain additional constraints
through polynomial multiplication. Equality constraints can be represented by two inequalities of
opposing direction. This yields linear constraints in the decision variables x, y. For given d, the linear
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constraints are given by the vector

hd(x) ,

(
m∏
i=1

gi(x)ai(1− gi(x))bi

)
ai∈{0,1,...d}∀i∈[m],
bi∈{0,1,...d}∀i∈[m],∑m

i=1 ai+bi≤d

≥ 0

Second, one can use semidefinite constraints. If y20 = x2
1, y11 = x1x2, y02 = x2

2 then

S1(x) = (1, x1, x2)>(1, x1, x2) = S1(x, y) =

 1 x1 x2

x1 y20 y11

x2 y11 y02


has rank 1. The set of rank 1 matrices is not convex, and so we replace this with the set of positive
semi-definite matrices. Notice that S1(x) is the outer product of the vector of monomials in x of degree
less than or equal to 1. More generally, we can use

Sk(x) = (1, x1, x2, x
2
1, x1x2, x

2
2, ..., x

k
2)>(1, x1, x2, x

2
1, x1x2, x

2
2, ..., x

k
2),

for k ∈ N+. If the polynomial to be minimized is f(x), for given k and d the optimization problem is:

min
x,y

hd(x,y)≥0

Sk(x,y) is positive semi-definite

f(x, y)

A solution x∗, y∗ of the level d hierarchy is a solution of the original optimization problem if 2k is larger
than the maximum degree of the polynomials f(x), g1(x), ...gm(x) and Sk(x∗, y∗) is rank 1.

To represent the SNIV confidence set we apply the Sparse BSOS hierarchy of [7] to solve the
optimization problems in (3.3). Sparse BSOS is a variant of the Sum Of Squares (SOS) hierarchy of
semidefinite optimization problems. It is a bounded degree hierarchy, meaning that the sequence of
optimization problems is defined by holding k fixed (and small in practice) and taking d ∈ {1, 2, ...}.
Increasing d increases the computational burden, but also provides tighter bounds. [7] show that the
bounds bind as d → ∞. Fixing k is computationally advantageous, since adding linear constraints is
less computationally intensive than increasing the dimension of semidefinite matrices. Sparse BSOS
is also a sparse hierarchy. This is not related to sparsity in the sense of few nonzero entries in a
parameter, but refers to the idea that each of the polynomials f(x), g1(x), g2(x), ...gm(x) depends on
only a few decision variables. The advantage of sparsity is that one need only impose a subset of the
linear constraints hd(x) ≥ 0 and it permits a large semi-definite matrix Sk(x) to be replaced by multiple
smaller semi-definite matrices. This makes the optimization problems more computationally tractable.
This idea is stated precisely in the Running Intersection Property (RIP) of [7].

In our simulations, for SNIV without possibly endogeous IVs we use f(b, η) = ϕ(b) = ±bk for
k ∈ [dX ] and the constraints are in (C.1)-(C.2). To make the constraints take the form 0 ≤ g1(b, η) ≤
1, 0 ≤ g2(b, η) ≤ 1, ...0 ≤ gm(b, η) ≤ 1 we augment Ĉ(s) to include |b| ≤ b, where b is a large positive
constant. Since |η| ≤ 1, we can then rescale the coefficients of g(b, η) ≥ 0 to guarantee 0 ≤ g(b, η) ≤ 1.
We fix k = 2, which yields the semidefinite matrices:

S2,b = (1, b1, b2, ..., b
2
dX

)>(1, b1, b2, ..., b
2
dX

), S2,η = (1, η1, η2, ..., η
2
dX

)>(1, η1, η2, ..., η
2
dX

),

S2,bk,ηk = (1, bk, ηk, b
2
k, bkηk, η

2
k)
>(1, bk, ηk, b

2
k, bkηk, η

2
k) ∀k ∈ [dX ]

The implementation with possibly endogenous IVs is similar, replacing S2,b with

S2,(b,t) = (1, b1, b2, ..., bdX , t1, ..., tdZ , ..., t
2
dZ

)>(1, b1, b2, ..., bdX , t1, ..., tdZ , ..., t
2
dZ

),

S2,tl,δl = (1, tl, δl, t
2
l , tlδl, δ

2
l )
>(1, tl, δl, t

2
l , tlδl, δ

2
l ) ∀l ∈ [dZ ], S2,δ = (1, δ1, δ2, ..., δ

2
dZ

)>(1, δ1, δ2, ..., δ
2
dZ

)
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All of our reported results are for level d = 1 of the hierarchy, which uses only the original constraints.
To compute the SNIV confidence sets we use SuperSCS 1.3.2. Our implementation satisfies the RIP
condition.

C.2. Computable Lower Bounds on Sensitivities. In Table 9 we present the most computationally
tractable lower bounds on the sensitivities, which are applicable even if dX and dZ are large. We
omit the sets coming from B for conciseness (see (v5)). If B = RdX or comprises linear (in)equality

constraints, the programs are LPs. The set Ŝ below is such that S ⊆ Ŝ ⊆ [dX ]. To tighten the bounds
in Table 9, one can specify a small set U ⊆ [dX ] and include the additional constraint µj = ηj∆j ,
∀j ∈ U in the LPs of Table 9, where ηj = ±1 is the sign of ∆j . Since the signs are unknown, one
replaces mink∈[dX ] with mink∈[dX ],ηj=±1∀j∈U in Table 9. This augments the number of linear programs

by a factor of 2|U |. In our simulations we take U = ScI to construct lower bounds based on a sparsity

certificate. The design is such that |U | = 2. If constructing lower bounds using Ŝ of small cardinality,

we use U = Ŝ. Further details can be found in sections 5.1 and A.6 in (v5).
One can also compute the lower bounds below on κ̂∗ek and obtain the lower bounds on the other

sensitivities from them using Proposition A.2. In the cases where S ⊆ Ŝ ⊆ S(β̂) which we consider, we

can use ĉκ(S, S(β̂)) ≤ ĉκ(Ŝ, S(β̂)) (a lot of simplifications occur) and Ŝ(S, S(β̂)) ⊆ (Ŝ ∩ SQ) ∪ ((ScQ ∪
ScI)∩S(β̂)), when 1 ≤ c < r̂−1, and Ŝ(S, S(β̂)) ⊆ (Ŝ∩SQ)∪ (ScQ∩S(β̂)), when c < 1. When we assume

|S ∩ SQ| ≤ s, we have ĉκ(S, S(β̂)) ≤ ĉκ(s) , min(ĉ>,κ(s), c<,κ(s)), where

ĉ>,κ(s) ,
1

(1− cr̂)+

(
2s+

∣∣ScQ∣∣+ c(1− r̂)
(∣∣ScI ∩ ScQ∣∣+ min

(
|ScI ∩ SQ| , s+

∣∣∣ScI ∩ SQ ∩ S (β̂)∣∣∣)))
and c<,κ(s) , (2s+ |ScQ|)/(1− c)+ and Ŝ(S, S(β̂)) ⊆ S. For example, to compute an alternative lower

bound on κ̂1(Ŝ), one can rely on (vi) in Proposition A.2 to obtain a lower bound on κ̂∞,Ŝ(Ŝ,S(β̂)),Ŝ
and

multiply it by ĉκ(Ŝ, S(β̂))−1. To compute a lower bound on κ̂1(s), one can use ĉκ(s)−1κ̂∞(s).

C.3. FISTA with Partial Smoothing. The C-STIV estimator (β̂, θ̂, σ̂) is a solution to a conic

program with dZ cones. The C-STIV estimator (Λ̂, υ̂) defined in (6.3) is a solution of a conic program
with dXdZ cones. If dZ is large, interior-point based methods are not computationally tractable. For
this purpose, we apply an iterative procedure. We present the algorithm for the C-STIV estimator of

(β̂, θ̂, σ̂), though it can be applied for (Λ̂, υ̂) with minor modifications. Because u = minσ>0

{
σ + u2/σ

}
,

the C-STIV estimator can alternatively be obtained as a solution to a similar program as (4.4), where
the minimum is over (b, t, σ) ∈ B × (0,∞),

∣∣D−1
X bSQ

∣∣
1

is replaced by |D−1
X bSQ |1 + |DZtSc⊥ |1, and the

loss becomes

O(b, t)2 , max
l∈[dZ ]

(DZ)2
l,l max

(
σ̂l (b, t)

2 ,
(En [ZlU(b)]− tl)2

r0(n)2

)
.

The objective function is convex because f(x, y) = x2/y is convex on R× (0,∞). As a result when the
restrictions defining B are a product of restrictions for β and restrictions for θ, a solution of C-STIV
can be obtained by iteratively minimizing over (β, θ) and over σ.

Algorithm C.1. Initialize at (β̂(0), θ̂(0), σ̂(0)). At iteration s, solve

(β̂(s), θ̂(s)) ∈ argmin(b,t)∈B

(
2σ̂(s−1)

c

(∣∣D−1
X bSQ

∣∣
1

+
∣∣DZtSc⊥

∣∣
1

)
+O(b, t)2

)
,

σ̂(s) = L
(
β̂(s), θ̂(s)

)
,
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Table 9. Lower bounds on sensitivities

κ̂∞(Ŝ) , min
j∈[dX ]

min
(∆,µ)∈B̂(Ŝ)
∆j=1, µ≤1

|Ψ̂∆|∞ κ̂∞(s) , min
j∈[dX ]

min
(∆,µ)∈B̂(j)
∆j=1, µ≤1

|Ψ̂∆|∞

κ̂∗ω(Ŝ) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(Ŝ)

ω>µ=1, µ≤η∆j

|Ψ̂∆|∞ κ̂∗ω(s) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(j)

ω>µ=1, µ≤η∆j

|Ψ̂∆|∞

κ̂1(Ŝ) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(Ŝ)∑

k∈[dX ] µk=1, µ≤η∆j

|Ψ̂∆|∞ κ̂1(s) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(j)∑

k∈[dX ] µk=1, µ≤η∆j

|Ψ̂∆|∞

κ̂ĝ(Ŝ) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(Ŝ)∑

k∈SI
r̂µk+

∑
k∈SIc

µk=1, µ≤η∆j

|Ψ̂∆|∞ κ̂ĝ(s) , min
j∈[dX ]
η=±1

min
(∆,µ)∈B̂(j)∑

k∈SI
r̂µk+

∑
k∈SIc

µk=1, µ≤η∆j

|Ψ̂∆|∞

θ̂κ(Ŝ) ,
(

1− r̂/κ̂ĝ(Ŝ)
)−1

+
θ̂κ(s) , (1− r̂/κ̂ĝ(s))−1

+

B̂(Ŝ) ,

{
−µ ≤ ∆ ≤ µ, µŜc∩S(β̂)c = 0,

(1− cr̂)
∑
k∈SI µk + (1− c)

∑
k∈SIc µk ≤ 2

∑
k∈Ŝ∩SQ µk +

∑
k∈ScQ

µk

}

B̂(j) ,

{
−µ ≤ ∆ ≤ µ,
(1− cr̂)

∑
k∈SI µk + (1− c)

∑
k∈SIc µk ≤ 2sµj +

∑
k∈ScQ

µk

}

B̂γ(Ŝ) ,

{
−µ ≤ ∆ ≤ µ,
(1− 2cr̂)

∑
k∈SI µk + (1− 2c)

∑
k∈SIc µk ≤ 3

∑
k∈Ŝ∩SQ µk + 2

∑
k∈ScQ

µk

}

B̂γ(j) ,

{
−µ ≤ ∆ ≤ µ,
(1− 2cr̂)

∑
k∈SI µk + (1− 2c)

∑
k∈SIc µk ≤ 3sµj + 2

∑
k∈ScQ

µk

}

then replace s by s+ 1, and iterate until convergence.

Algorithm C.1 iterates between (b, t) and σ. Since the program is convex, the iterative algorithm
converges to a global minimum. Step 1 can be computationally intensive, whereas Step 2 is trivial. To
solve Step 1, we use FISTA with partial smoothing ([1, 2]). Both terms in the minimization problem are
convex but non-smooth; the first involves an `1-norm, and the second a maximum. The smoothing is
partial because, following [2], we smooth only the maximum, for which we use log-sum-exp smoothing,
replacing it with

gµ(b, t) , µ ln

∑
l∈[dZ ]

exp

(
σ̂2
l (b, t)

µ

)
+ exp

(
1

µr0(n)2

(
(DZ)l,l

(
1

n
Z>·,lU(b)− tl

))2
) .

Based on Proposition 4.1 and Theorem 3.1 of [2], in practice we take µ = ε/(2 ln 2dZ) and ε = 0.1.
Smaller values of ε improve the approximation of the maximum but increase the computational burden.
After smoothing we are left with the sum of an `1-norm and a smooth function, to which we apply
FISTA ([2]).

C.4. Software. We implement our methods in MATLAB. To compute the STIV, C-STIV and lower
bounds on the sensitivities we use MOSEK version 9 (https://www.mosek.com). To compute for C-
STIV estimator of Λ we use FISTA with partial smoothing ([2], https://github.com/tiepvupsu/FISTA).
To compute the SNIV confidence sets we use SuperSCS 1.3.2 (https://kul-forbes.github.io/scs).

https://www.mosek.com
https://github.com/tiepvupsu/FISTA
https://kul-forbes.github.io/scs/
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Appendix D: Engle Curves for the Remaining Goods
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