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Abstract

This paper considers a one-to-one matching model with transferable utilities, in two-sided

markets. In the model, the agents have preferences over some observable agent characteristics

(called types) on the other side of the market. There are other observed characteristics aggregated

at the level of types that determine the systematic preferences over these types. These systematic

preferences enter the agent utilities in the form of a linear index. Agents also have idiosyncratic

taste shocks. This paper shows the identification of systematic preference parameters over types,

without making any parametric assumptions on the distribution of the unobserved taste shocks.

The matching model reduces to two separate discrete-choice problems linked together by market

clearing conditions, satisfied in the presence of equilibrium transfers. However, transfers are

endogenous and unobserved which makes the discrete-choice problem non-standard. This paper

gives conditions under which transfers are simply functions of the linear indices. This insight along

with variation across i.i.d. markets is used to reduce the matching model to a semiparametric

multi-index model with an unknown link function. Identification is shown under appropriate

exclusion restrictions on the regressors.
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1 Introduction

Matching markets are two-sided markets, where agents on both sides of the market have preferences

over forming matches with agents on the other side. Empirical studies of matching markets have re-

cently garnered considerable attention. Following the pioneering contribution of Becker (1973), many

such studies view matching outcomes as a competitive equilibrium with transferable utilities, and

assume that the matching process is based on exactly one characteristic. Becker’s one-dimensional

model implies that agents with similar characteristics will find it optimal to match. Typically, a

researcher observes a pattern of how the agents sort themselves into matches. These patterns can be

based on multiple characteristics and we do not always observe agents with similar characteristics

matching. Thus, the one-dimensional Beckerian model of matching is too simplistic to explain the

different match patterns that are actually observed in the data. An alternative is to allow prefer-

ences to depend on multiple characteristics, including those that are latent (or private to the agent).

The research goal is to then identify the underlying preferences that explain observed match pat-

terns. Estimates of these preferences can be used to understand the relative importance of different

characteristics in the equilibrium matching of agents (Chiappori, Oreffice, and Quintana-Domeque

2012), to estimate the gains to matching (Botticini and Siow 2008), or to do counterfactual analysis

(Chiappori, Salanié, and Weiss 2017).

This paper contributes to a growing literature on the identification and estimation of preference

parameters in one-to-one matching models with transferable utilities. Typically, matching markets

have two disjoint groups of agents (called “sides” of the market). Agents on each side of the market

can either form a match with exactly one agent on the other side, or remain unmatched. On each

side, agents are divided into a finite number of groups called “types”. A type corresponds to one or

more characteristics of agents over which we observe sorting. Agents on each side have preferences

defined over the set of types, instead of over the set of all agents, on the other side. A match between

two agents, say agent k of type i on one side and agent l of type j on the other side, is formed when

both agents find forming the match utility-maximizing. We allow preferences to include transferable

utilities. Transfers act as prices which are determined simultaneously with the match allocation, and

adjust in a way that each agent maximizes their utility and the market clears. In particular, we

impose the following structure on utilities,

Side a : uk,ij = Xijαi + εkj − τij ,

Side b : vl,ij = Zijβj + νil + τij , (1)

where uk,ij is utility of agent k of type i when matched with an agent of type j on the other

side, and vl,ij is utility of agent l of type j when matched with agent of type i on the other side.

Here, Xijαi, Zijβj are linear indices which capture the systematic part of the preferences of agents
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matching; εkj , νil are idiosyncratic taste shocks specific to each agent; and τij are equilibrium transfers

associated with each type of match. The match allocation supported by these equilibrium transfers

will be unique, efficient, and pairwise stable. These properties of one-to-one matching with transfers

have been studied in Koopmans and Beckmann (1957), Shapley and Shubik (1972), Becker (1973,

1974), Gretsky, Ostroy and Zame (1992, 1999) and have been summarized in Roth and Sotomayor

(1990, Chapter 8).

The preference structure in (1) is similar to the ones studied in Choo and Siow (2006) and

Galichon and Salanié (2015). As in their models, agents’ preferences are composed of three additively

separable parts that depend solely on the type of match being formed, transfers, and an idiosyncratic

taste shock. We deviate from the Choo-Siow and Galichon-Salanié framework in the following three

ways. First, we explicitly model the systematic part of the preferences as a function of some covariates

that characterize the types. Second, we make no parametric assumptions on the distribution of the

taste shocks, ε, ν. Third, we exploit variation across multiple similar markets for identification.

Our goal is to identify and estimate the systematic part of preferences, which in our model corre-

sponds to the coefficients, αi, βj , of the linear index that enters agent utilities. Since, in equilibrium,

every agent is maximizing preferences over a finite number of alternatives, we can view the matching

process as a discrete-choice problem on the two sides. There is a large literature on the identification

and estimation of such parameters in discrete-choice models. However, the discrete-choice problems

in our framework are non-standard as they depend on transfers, τij , which are not observed by the

researcher. In this paper we view transfers as functions of type attributes (Xij and Zij), where

a transfer function maps observed covariates to equilibrium transfers. We show that the transfer

functions depend on these characteristics only through the linear indices. With this insight we are

able to reduce the matching model in many markets to a conditional mean model which resembles a

more familiar problem in econometrics.

In each market, the discrete-choice problem generates a vector of match proportions (for every

type of match that can be formed) as functions of the linear index, transfer function, and distribution

of unobserved taste shocks. Aggregating this information across all markets and using our result on

transfer functions, we are able to reduce this to a multiple index model with unknown link functions

and multiple equations. This approach is new in matching models.

We show that the coefficient of the indices is identified up to a scaled normalization under some

exclusion restrictions, and smoothness and non-linearity restrictions on the unknown link function.

These assumptions are similar to the ones made in Ichimura and Lee (1991), which studies identifica-

tion in a semiparametric multi-index model with a single equation. Here we modify the assumptions

to accommodate for multiple equations.

The literature on identification of preferences in matching models with transferable utility can

be broadly divided into two strands based on whether the choice sets of agents consist of types
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or individual agents. The one-to-one matching model with transferable utility has mostly been

studied where agents choose types rather than individual agents, where agents of the same type are

assumed to be exchangeable. Among these are Echenique et al. (2013), Dupuy and Galichon (2014),

Galichon and Salanié (2015), Graham (2013b) among others, which build on the seminal work of

Choo and Siow (2006). Choo and Siow (2006; henceforth, the CS model) consider identification of

the systematic preference parameters as solely a function of the match pattern when the number of

types is finite. However, this approach does not explain why such preferences occur. In this paper,

we model what factors determine these preferences by introducing covariates in the systematic part

of the utility.

The CS model also allows for matching to occur on unobserved idiosyncratic taste shocks that

can be different for every agent. They identify systematic preferences by assuming unobserved taste

shocks to be distributed as extreme value type I. This model is extended in Graham (2013b), where

the unobservables are still assumed to have an extreme value distribution but an unknown scaling

parameter is added to this distribution on both sides. Galichon and Salanié (2015) also study the

CS model where the unobservables can belong to a richer class of distributions, but where the

distribution still needs to be known a priori. Echenique et al. (2013) also consider identification in

matching models with transferable utility, but their model differs from the CS model as it allows for

only aggregate taste shocks (identical shocks for all individuals with the same type). Galichon and

Dupuy (2014) extends the CS model to a continuous logit model. All of these papers use a single

large market for identification. In this paper, we make no parametric assumptions on the distribution

of the unobserved taste shock. Thus, in contrast to the existing literature, we cannot rely on the

shape of these distributions to yield identification. Instead, we use variation across many markets in

the covariates, introduced in the systematic preferences, for identification.

On the other hand, Fox (2010), Chiappori, Oreffice, and Quintana-Domeque (2012), and Fox,

Hsu, and Yang (2017) consider identification of features of the match surplus function when the

choice set consists of individual agents. Agents are not exchangeable in this context. Fox (2010)

relies on a “rank order” assumption, and Fox, Hsu, and Yang (2017) allow for match preferences to

be based on observable and unobservable characteristics. However, their objective is complementary

to ours, in that they are interested in identifying features of the distribution of the unobservables.

Finally, Chiappori, Oreffice, and Quintana-Domeque (2012) present a general model of matching

with unobserved heterogeneity, but recover the systematic part of the preferences only ordinally. All

these papers observe matching data from multiple markets.

The CS framework has been used in many empirical papers that have studied marriage patterns,

see Fox (2009) for a review. For example, Choo and Siow (2006) used it to link changes in gains

to marriage and abortion laws. Siow and Choo (2006) apply this model to measure the impact of

demographic changes on matching patterns. Botticini and Siow (2008) and Chiappori, Salanie, and
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Weiss (2017) use this model to study returns to education on the marriage market. Banerjee et al.

(2013) estimates the impact of caste and non-caste attributes in determining matching patterns in

India. Although marriage markets are a leading application of this setting, there are other markets

that can be modeled in this framework, for example, the matching of firms with CEOs (Tervio 2008,

and Gabaix and Landier 2008).

There is also a recent related literature that studies identification of preferences with match out-

comes in a one-to-one non-transferable utilities framework (see for example Dagsvik 2000, Agarwal

and Diamond 2017, and Menzel 2015). In these models, the choice sets of agents are endogenous,

making the discrete-choice approach non-standard. In this setting, pairwise stable match alloca-

tions are not unique (in contrast to transferable utility models, where match allocations are unique).

Finally, Galichon, Kominers, and Weber (2016) consider one-to-one matching in imperfectly trans-

ferable utility models which differ from TU models in that a pairwise stable outcome may no longer

coincide with the efficient outcome. See Chiappori and Salanié (2016) for a recent survey of matching

models in econometrics.1

The remainder of the paper is organized as follows. Section 2 sets up the matching framework

and the notation. We explore the role of transfers and present the main result on transfers in Section

2.2. We use this result in Section 3 to aggregate matching information over many markets and reduce

the problem to a semiparametric multi-index model. Section 4 discusses the assumptions under which

the parameters (coefficients of the linear indices) in the reduced form model are identified. Finally,

Section 5 concludes. All proofs are in the Appendix.

2 The Model

Let T = {1, · · · , T} be the set of all markets. Each market t ∈ T is a matching market composed

of two sides, a and b. For any market t, let Nat be the set of all agents on side a and Nbt be

the set of all agents on side b. We will not allow any overlap between these two sets of agents;

that is, Nat ∩Nbt = ∅. Agents on each side will be characterized by their types. A type denotes

some characteristic(s) that are common to a subset of agents on a given side of the market. Let

I = {1, · · · , I} be the finite set of types on side a and J = {1, · · · , J} be the finite set of types on

side b.

To assign types to agents we introduce the functions

i : Nat → I,

j : Nbt → J.

1Graham (2011, 2013a) provide older surveys on this topic.
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Note I and J stay the same across every market. In any market t ∈ T, let sait denote the proportion

of type i agents on side a, and sbjt denote the proportion of type j agents on side b. The vector

St = (sa1t, · · · , saIt, sb1t, · · · , sbJt) then characterizes the proportions of types in market t.

In a one-to-one matching model each agent on side a is allowed to match with exactly one agent

on side b, or agents can remain unmatched. If agent k ∈ Nat matches with agent l ∈ Nbt, then the

match pair will be denoted by (k, l). All match pairs (k, l) such that i(k) = i and j(l) = j are said

to be of match type (i, j). If k ∈ Nat where i(k) = i remains unmatched, we will denote the match

pair by (k, 0) and the match type by (i, 0). Similarly, if l ∈ Nbt where j(l) = j remains unmatched,

we will denote the match pair by (0, l) and the match type by (0, j). Let M be the collection of all

match types where,

M = {(i, j) : i ∈ I ∪ {0}, j ∈ J ∪ {0}, (i, j) 6= (0, 0)}.

Any agent has preferences over the set of types on the other side of the market. These preferences

are determined by a systematic part that is common to agents of the same type, and an idiosyncratic

part that can be different for each agent. For instance, an agent k ∈ Nat with i(k) = i has preferences

over the set J ∪ {0} composed of a systematic part that only depends on its type i and a vector of

the agent’s idiosyncratic taste shocks, εkt. We model the systematic part of the utility for a match

as functions of covariates (denoted by Xijt) that characterize the types. That is, Xijt captures the

various attributes of a match type (i, j) that agents of type i care about. These covariates have to

vary with types and market. The vector of idiosyncratic taste shocks for agent k of type i is given by

εkt = (εk0t, εk1t, εk2t, · · · , εkJt). This is drawn from a distribution Fi for each i ∈ I, where εkjt denotes

k’s personal taste to match with type j agents on the other side, j = 1, · · · , J, and εk0t denotes k’s

personal taste to remain unmatched. Similarly, an agent l ∈ Nbt with j(l) = j will have preferences

over the set I∪ {0} based on a systematic part that is a function of covariates, Zijt, and the agent’s

idiosyncratic taste shock νlt, where νlt = (ν0lt, ν1lt, · · · , νIlt). This is drawn from a distribution Gj

for all j ∈ J. We will assume that, for all i and j, Fi and Gj are the same across all markets.

Let the number of (i, j) matches in market t be denoted by πijt, for any (i, j) ∈M. Then define

the match allocation in market t to be the following matrix,

Πt =



π11t π12t · · · π1J π10t

π21t π22t · · · π2Jt π20t
...

...
. . .

...
...

πI1t πI2t · · · πIJt πI0t

π01t π02t · · · π0Jt −


,

where the (I + 1, J + 1)th element has been removed as it has no meaning.
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The match allocation in each market t will be viewed as the competitive equilibrium of an economy

with transferable utilities.2 A competitive equilibrium will be a match allocation and an I×J matrix

of equilibrium transfers Γt, where

Γt =


τ11t · · · τ1Jt

...
. . .

τI1t τIJt

 .

The transfers τijt will only depend on the match type (i, j) and not on the identity (k, l) of the match

(this will follow from arguments in Salanié (2015)).

In a competitive equilibrium each match pair will share a match surplus according to the equi-

librium transfers. The share of agents k and l in an (i, j) match type are given by

Uk,ijt = Xijtαi + εkjt − τijt,

Ul,ijt = Zijtβj + νilt + τ ijt, (2)

where i(k) = i and j(l) = j. Here Xijt and Zijt represent dx and dz dimensional vectors of covariates

(that characterize match types), respectively, for every match type (i, j) ∈ I × J and every market

t ∈ T. These covariates enter through linear indices with coefficients αi ∈ Rdx for every i ∈ I and

βj ∈ Rdz for every j ∈ J. The linear indices represent the systematic part of the preferences. As

introduced above, εkjt denotes the taste shock for agent k on side a for type j agents on side b; νilt

denotes the taste shock for agent l on side b for type i agents on side a. If agents remain unmatched,

there are no transfers to be exchanged, and we normalize the linear index component to be zero.

Then utility of unmatched agents k ∈ Nat of match type (i, 0) and l ∈ Nbt of match type (0, j) are

given by

Uk,i0t = εk0t and Ul,0jt = ν0lt,

respectively.

In any market t ∈ T, a competitive equilibrium will be defined as a set of transfers Γt and

a match allocation Πt such that every agent maximizes their utility and the market clears. The

complete choice set of agents on side a is given by J ∪ {0} and for agents on side b is given by

2The usual notion of equilibrium in matching games is that of pairwise stability. In one-to-one transferable utility
models the match allocation in a pairwise stable match outcome coincides with the match allocation in a competitive
equilibrium (Shapley and Shubik 1972). Moreover, when markets are large (an assumption that we formalize in Section
2.3) there are unique transfers (or, prices) that support the equilibrium match allocation (Gretsky, Ostroy, and Zame
(1992,1999)).
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I ∪ {0} . Then in equilibrium, for a match (k, l) of match type (i, j) ∈M to occur it must be that

j ∈ arg max
j′∈J∪{0}

Uk,ij′t,

i ∈ arg max
i′∈I∪{0}

Ul,i′jt. (3)

and the markets clear,

J∑
j=0

πijt = sait|Nat|, ∀ i ∈ I,

I∑
i=0

πijt = sbjt|Nbt|, ∀ j ∈ J. (4)

The equilibrium match allocation will be unique even if transfers are not ( see Shapley and Shubik

1972; Gretsky, Ostroy, and Zame 1992).

2.1 Example: A Marriage Market

In this subsection we will describe a marriage market in the setting of our model. In the rest of the

paper we will use this example to illustrate the main assumptions and the intuition for the results.

Consider a marriage market where the set of men and women form two sides of a market. In

this context we can think of a market to be a city. To keep with the application in Choo and Siow

(2006), let types be given by age on both sides. Choo and Siow let types be given by the different

ages between 16 and 75. Some of their findings include that a 20-year-old man prefers to match with

a slightly younger woman, and a 20-year-old woman prefers to match with a slightly older man. On

the other hand, 40-year-old men and women have more dispersed preferences.3 This paper suggests

an approach to further understanding these preferences.

Here, for the ease of exposition, suppose there are only two age types on each side

I = {20, 40}, J = {20, 40}.

The different match types in set M will be given by the following cells:

3Choo and Siow (2006) measure preferences as distribution of systematic net gains from marriage. These are
quantities of the type log(πij/πi0) which denotes net gains of a type i man from matching a type j woman relative
to remaining unmatched. Similarly, log(πij/π0j) denotes net gains of a type j woman from matching a type i man
relative to remaining unmatched.
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Women

Age 20 Age 40

Age 20 (20, 20) (20, 40) (20, 0)

Men Age 40 (40, 20) (40, 40) (40, 0)

(0, 20) (0, 40) - .

Suppose agents’ preferences over types are based on expected education levels and the expected

income of their spouse. Moreover, agents care about having similar expected education levels as their

spouse.4 Then covariates Xijt can contain variables (Xijt,educ, Xjt,inc) where Xijt,educ = |Xit,educ −
Xjt,educ| denotes the difference in expected education between a type i (i.e. age i) man and a type

j (i.e. age j) woman, and Xjt,inc denotes the expected income for a type j woman. Similarly, we

can define covariates Zijt = (Zijt,educ, Zit,inc). The characteristics in Xijt captures the attributes of

match type (i, j) and the type of match partner j, and Zijt captures the attributes of match type

(i, j) and type of match partner i.

The systematic part of the preferences of a man of type i for a woman of type j is given by index

Xijtαi where αi = (αi,educ, αi,inc)
′. Similarly, the systematic part of the preferences of a woman of

type j for a man of type i is given by index Zijtβj where βj = (βj,educ, βj,inc)
′. These coefficients act

as weights that the agents put on the different type characteristics.

We also introduced the variable St which represented the proportions of types. The role of this

is explained in Section 2.3. Suppose that the population of men in some market t (which is a city)

is composed 60% of 20-year-olds and 40% of 40-year-olds, and the population of women is composed

of 50% of 20-year-olds and 40-year-olds. Then, St = (0.6, 0.4, 0.5, 0.5).

An important distinction from the CS framework is that, here, types i, j and covariates Xijt and

Zijt are different objects. In the CS model, including additional covariates corresponds to increasing

the number of types. For example, consider including agent education in the marriage example

above which takes only two values {High, Low}, say. Then the number of types of the form (age,

education) increases from two to four on each side,

I = {(20, H), (20, L), (40, H), (40, L)}, J = {(20, H), (20, L), (40, H), (40, L)}.

Also all possible match types increase from 8 cells to 24 cells. So making agent preferences depend on

several factors like income, education, age, etc. will increase the number of match types and typically

leads to the practical problem of having many empty (or thin) cells in the data.5 In contrast, in

4In practice, we can measure expected income (education) of an agent of type i as the average income (education) of
type i agents. Instead of expectations (or, averages) we could have considered any aggregate measure of the variables
education and income that could characterize a match type (i, j).

5This is a common problem in empirical discrete-choice problems and also encountered in the empirical section of
Choo and Siow (2006; see footnote 15).
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the setup described in this paper, we have to first take a stand on which characteristic(s) will define

types (e.g. age), and then use these types to aggregate other characteristics (e.g. education, income)

that agents may care about. This has two implications different from the CS model. First, we can

make the systematic part of the preferences depend on a rich set of covariates without increasing

the number of elements in the set of match types, M. In this sense, we are carrying out a dimension

reduction of the set M in the CS framework. Second, it imposes structure on the systematic part

of preferences over types, as functions of other characteristics. Thus, we can study what determines

preferences over types.

2.2 Discussion on Agent Preferences

As in the CS framework, agents on one side of the market have preferences only over the type of

agents on the other side and not on the individual identity of the agent. That is, any k ∈ Nat on

side a ranks the elements of set J ∪ {0} and not Nbt. Similarly, any l ∈ Nbt on side b ranks the

elements of set I ∪ {0}. This is captured by the utility specification in (2) where the utility of agent

k from match (k, l) of type (i, j) does not depend on l but only on type j. Similarly, the utility for l

only depends on type of match partner i and not on k. An implication of this is that agents of the

same type act as perfect substitutes (or, are exchangeable) for agents on the other side. For instance,

suppose k ∈ Nat has most preferred type j on side b, and let l, l′ ∈ Nbt be such that j(l) = j(l′) = j.

Then, k is indifferent between matching with l and l′. Thus, even though the model cannot capture

why agents on side a match with agent l versus agent l′, it does capture why they choose type j

versus type j′. In the marriage example in Section 2.1, it means that each man (woman) treats

women (men) of a given type as exchangeable.

The systematic part of preferences over types are determined by covariates Xijt and Zijt which

are aggregated at the level of types. In the marriage example, one of the group attributes for,

say, 20-year-old women is X20t,inc which denotes the expected income of 20-year-old women in the

market. Also suppose X20,20,tα20 > X20,40,tα20 > X20,0,tα20, then the systematic preference of any

20 year-old-man is given by: marry a 20-year-old woman � marry a 40-year-old woman � remain

unmatched.

Further, agents of the same type can have different preferences (heterogenous tastes) due to

the presence of idiosyncratic taste shocks, εkj and νil. This is even though the agents of a given

type have the same systematic preferences. For example, consider two 20-year-old men k and k′.

Then εkt and εk′t can take realizations such that X20,20,tα20 + εk,20,t > X20,40,tα20 + εk,40,t and

X20,20,tα20 + εk′,20,t < X20,40,tα20 + εk′,40,t. Then, ignoring transfers, k will prefer to marry a 20-

year-old woman, whereas k′ will prefer to marry a 40-year-old woman. We aggregate over these

idiosyncratic taste shocks and use exchangeability of agents of the same type to compute market

shares of matches in each market, in Section 3.
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It is worth observing that we allow αi to differ with i and βj to differ with j. This allows

for heterogeneity across types in the systematic part of preferences and does not rule out match

preferences where, for example, older (younger) types systematically prefer to match with older

(younger) types. This flexibility seems important to capture realistic patterns of preferences.

Of course, an important choice in our framework is which attributes of an individual should

determine the types, and which should be captured in the covariates, Xijt, Zijt. In practice, a range of

factors may determine this choice. One is the dimension reduction aspect discussed above. Another

may reflect the researcher’s understanding of the matching process. For instance, types may be

attributes observable to agents at the time of the match (e.g. ethnicity, age) while the covariates

may be unobserved but inferred based on the observable types (e.g. income).

2.3 Transfers

Transfers play an important role in our model, as they ensure markets clear.6 With transfers entering

the utility specification directly, we can treat all agents as maximizing their preferences over the entire

type set and their outside option to remain unmatched. This is simply a discrete-choice model on

both sides in each market. The complication here is that transfers are endogenous and not observed.

Thus, we are unable to use results directly from the discrete-choice literature.

In the existing matching literature with transferable utilities, there are two approaches to han-

dling transfers. The first approach relies on functional form assumptions on the distribution of

ε and ν. For instance, if we assume (as in Choo and Siow, 2006) that, for any agent k ∈ Nat

and l ∈ Nbt, {εkj : j ∈ J ∪ {0}} and {νil : i ∈ I ∪ {0}} are drawn independently from the

extreme value type I distribution, then the systematic part of the match surplus is identified as

Xijαi +Zijβj = log(πij/πi0) + log(πij/π0j), for all (i, j). As Choo and Siow (2006) show, this follows

by eliminating transfers using the logit specification. Here, we instead allow the joint distribution

of (εk0, εk1, · · · , εkJ) ∼ Fi, i(k) = i, to be unknown and have an arbitrary correlation structure. We

also allow Fi to be different for different types i ∈ I. The same is true for each Gj . Therefore, here

we cannot use the shape of the distribution functions to eliminate transfers.

The second approach to deal with transfers exploits the efficiency property of the equilibrium,

which says that the match allocation Πt maximizes the total match surplus in the market t. Thus,

one only needs to consider the sum of total match surplus in the market, which does not involve

any transfer terms. Fox (2010) assumes a rank-order property to nonparametrically identify the

match surplus function. Galichon and Salanié (2015) consider the surplus maximization problem

as a convex optimization problem. This determines the match surplus in terms of distributions Fi

and Gj (for all i and j) which are assumed to be known a priori. Their approach does not apply to

settings where Fi and Gj are unknown.

6For a discussion on having transferable utilities for marriage see Becker (1973).
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In this section we will show that, under some assumptions, transfers are functions of the linear

indices introduced in equations (2). This gives us an alternative way to deal with transfers which is

new in the literature.

Let

Xt = (X11t, X12t, · · · , X1Jt, X21t, X22t, · · · , XIJt) ∈ X IJ , X ⊆ Rdx ,

Zt = (Z11t, Z21t, · · · , ZI1t, Z12t, Z22t, · · · , ZIJt) ∈ ZIJ , Z ⊆ Rdz ,

be the lists of all covariate vectors in a market t. A market’s characteristics are then summarized by

(Πt, Xt, Zt, St), where recall that Πt is the equilibrium match allocation and St gives the proportions

of types. We impose the following assumptions on the sample of markets from which the data is

drawn.

First, we make a large market assumption common in the literature which will guarantee the

uniqueness of equilibrium transfers in each market. This will involve assuming that sets Nat and

Nbt for each market t are masses of infinitesimal agents (see Galichon and Salanié 2015, for a similar

assumption).

Assumption 2.1 In each market t, agents are infinitesimal and the total mass of the population is

normalized to 1, with
∑I

i=1 sait +
∑J

j=1 sbjt = 1.

Our approach is intended to exploit data on many markets by making use of the following further

assumption.

Assumption 2.2 (a) The distributions of shocks, as given by {Fi : i ∈ I} and {Gj : j ∈ J} for all

i and j, do not depend on the market t nor on the realization of market covariates Xt and Zt.

(b) For all i and j, Fi and Gj are absolutely continuous and have full support on RJ+1 and RI+1,

respectively.

Given these assumptions, transfers will be determined in equilibrium in each market as a function

of market covariates and the proportions of types. We can then view transfers in each market as

determined via a transfer function, which maps market characteristics to T ⊆ RI×J , the set of all

possible transfer matrices Γt. Such a function may be denoted γ̃t, where

γ̃t : X IJ ×ZIJ ×∆I+J → T such that Γt ≡ γ̃t(Xt, Zt, St),

with ∆I+J a simplex in RI+J .

Assumptions 2.1 and 2.2 together ensure that the equilibrium proportions of match types and

transfers only depend on market covariates Xt, Zt and St. Were markets small (that is, without
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Assumption 2.1), the match proportions and transfers would depend on the realizations of the id-

iosyncratic shocks. Were distributions of idiosyncratic shocks to vary across markets (that is, without

Assumption 2.2(a)), matchings and transfers would vary with the idiosyncratic shock distributions

even when markets are large. Hence, Assumptions 2.1 and 2.2 are precisely those required to ensure

that the transfer functions γ̃t do not vary across markets t (henceforth, we drop the subscript t,

Γt = γ̃(Xt, Zt, St) for all t).

We will now show that, in addition, Xt and Zt enter the transfer function through linear indices.

To this end, define

Xtα ≡ (X11tα1, X12tα1, · · · , X1Jtα1, X21tα2, X22tα2, · · · , XIJtαI) ∈ RIJ ,

Ztβ ≡ (Z11tβ1, Z21tβ1, · · · , ZI1tβ1, Z12tβ2, Z22tβ2, · · · , ZIJtβJ) ∈ RIJ ,

to be the list of all possible indices in market t.

Proposition 2.3 Under utility specification given by (2) and assumptions 2.1 and 2.2, there exists

a transfer function γ : RIJ × RIJ → T ⊆ RI×J such that

Γt = γ(Xtα,Ztβ, St)

for any market t ∈ T.

The result follows from recalling that any equilibrium in a given market t maximizes total surplus

in that market. Transfers that depend directly on market covariates Xt and Zt, and not only on

the indices Xtα and Ztβ are not consistent with surplus maximization. The argument is made

formally in the Appendix. Throughout, we will denote the (i, j)th element of γ(Xtα,Ztβ, St) by

γij(Xtα,Ztβ, St).

Proposition 2.3 is crucial in what follows. We use this result to map the observed match probabil-

ities to the parameters α = (α1, α2, · · · , αI) where αi ∈ Rdx for each i ∈ I, and β = (β1, β2, · · · , βJ)

where βj ∈ Rdz for each j ∈ J. Aggregating these across the T markets we are left with a conditional

mean model, which links the observed data to model parameters α and β through an infinite-

dimensional nuisance parameter (which arises since we do not make any parametric assumptions on

the distribution of ε and ν, and since the transfer function is unobserved). This proposition is the

key insight from this paper that links the matching model to a semiparametric multi-index model.

Section 3 studies this link more carefully.
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3 Reduced Form Model

Before we establish a link between the data and the parameters of interest, we first look at the

match probabilities in a fixed market t ∈ T, where T is a sample of markets. There are two separate

discrete-choice problems in market t, one for side a and one for side b. Define |Nat| + |Nbt| = Nt.

Recall that the proportions of types in the market is given by St = (sa1t, · · · , saIt, sb1t, · · · , sbJt),
where sait is the proportion of side a agents that are type i, and sbjt is the proportion of side b

agents that are type j.

Define

pa
ijt ≡

πijt
saitNt

to be the match probability that type i agents on side a matches with type j, and

pb
ijt ≡

πijt
sbjtNt

to be the match probability that type j agents on side b that matches with type i, conditional on

market covariates Xt = X,Zt = Z. In the marriage example of Section 2.1, sait is the proportion of

men that are type i and Nt is the total number of agents in the market. Therefore, saitNt is the total

number of type i men. Similarly, sbjtNt is total number of type j women. The above expressions

for pa
ijt and pb

ijt transform the match outcome matrix in terms of conditional choice probabilities for

each type on both sides.

Also denote the joint distribution of
{

(εkj′ − εkj) : i(k) = i, j′ ∈ J ∪ {0}, and j′ 6= j
}

by Fij ,

and the joint distribution of {(νi′l − νil) : j(l) = j, i′ ∈ I ∪ {0}, and i′ 6= i} by Gij . Then for each

type i ∈ I we have,

pa
ijt = Fij(Xijαi − τij , · · · , Xijαi −Xij−1αi − τij + τij−1, Xijαi −Xij+1αi − τij + τij+1, · · · ) (5)

for all j ∈ J ∪ {0}, such that
∑J

j=0 pa
ijt = 1. Similarly, for each type j ∈ J we have,

pb
ijt = Gij(Zijβj + τij , · · · , Zijβj − Zi−1jβj + τij − τi−1j , Zijβj − Zi+1jβj + τij − τi+1j , · · · ) (6)

for all i ∈ I ∪ {0}, such that
∑I

i=0 pb
ijt = 1.

Under the assumptions 2.1 and 2.2 we know that τij = γij(Xtα,Ztβ, St). Therefore, (5) and (6)

can just be written as H̃a
ij(Xtα,Ztβ, St) and H̃b

ij(Xtα,Ztβ, St), respectively. The following observa-

tion summarizes the main properties of the functions H̃q
ij , for q ∈ {a,b}.

Observation 3.1 For any q ∈ {a,b},

(a) H̃q
ij does not depend on t. This is because Fij , Gij , γij are market invariant.
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(b) H̃q
ij : R2IJ ×∆I+J → [0, 1].

(c)
∑J

j=0 H̃
a
ij(Xtα,Ztβ, St) = 1 for all i ∈ I. And,

∑I
i=0 H̃

b
ij(Xtα,Ztβ, St) = 1 for all j ∈ J.

(d) There will be IJ + I functions of the form H̃a
ij , and IJ + J functions of the type H̃b

ij.

In fact in every market t ∈ T we will have the following system of 2IJ + I + J equations,

pa
1jt = H̃a

1j(Xtα,Ztβ, St), ∀ j ∈ J ∪ {0},
J∑

j=0

pa
1jt = 1,

pa
2jt = H̃a

2j(Xtα,Ztβ, St), ∀ j ∈ J ∪ {0},
J∑

j=0

pa
2jt = 1,

...

pa
Ijt = H̃a

Ij(Xtα,Ztβ, St), ∀ j ∈ J ∪ {0},
J∑

j=0

pa
Ijt = 1, (7)

pb
i1t = H̃b

i1(Xtα,Ztβ, St), ∀ i ∈ I ∪ {0},
I∑

i=0

pb
i1t = 1,

pb
i2t = H̃b

i2(Xtα,Ztβ, St), ∀ i ∈ I ∪ {0},
I∑

i=0

pb
i2t = 1,

...

pb
iJt = H̃b

iJ(Xtα,Ztβ, St), ∀ i ∈ I ∪ {0},
I∑

i=0

pb
iJt = 1.

The econometrician will observe yaijt, the sample proportion of type i agents on side a that

matches with type j, and ybijt, the sample proportion of type j agents on side b that match with type

i.7 Define

Yt =

(
Y a
t

Y b
t

)
,

where

Y a
t = (ya10t, y

a
11t, · · · , ya1Jt, · · · , yaI0t, aI1t, · · · , yaIJt),

7Constructing yaijt and ybijt, from a sample N̂t of agents in market t. Let Π̂t be the match allocation in the sample
observed in market t, where its elements π̂ijt denotes the observed number of (i, j) matches in the sample. Let
Ŝt = (ŝa1t, · · · , ŝaIt, ŝb1t, · · · , ŝbJt), be the observed distribution of types in the sample of N̂t agents. That is, ŝait is
the observed proportion of side a agents that are type i, and ŝbjt is the observed proportion of side b agents that are
type j, in the sample. Define

yaijt ≡
π̂ijt

ŝaitN̂t

and ybijt ≡
π̂ijt

ŝbjtN̂t

.
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Y b
t = (yb01t, y

b
11t, · · · , ybI1t, · · · , yb0Jt, yb1Jt, · · · , ybIJt),

are vectors of dimension IJ + I and IJ + J , respectively. Therefore in every market t ∈ T, the

econometrician observes, Yt ∈ Y ⊆ [0, 1]2IJ+I+J , Xt ∈ X IJ , and Zt ∈ ZIJ .

Let eaijt and ebijt be the projection error, i.e. it is defined to be the difference between the true

and sample match proportions. Then we have,

yaijt = pa
ijt + eaijt,

ybijt = pb
ijt + ebijt,

such that

E
(
eaijt|Xt, Zt, St

)
= E

(
ebijt|Xt, Zt, St

)
= 0. (8)

We can now write the system of equations (7) as,

E(Yt|Xt, Zt, St) = H̃(Xtα,Ztβ, St) (9)

where H̃ is vector of functions that does not change with t, of dimension 2IJ + I + J. In particular,

H̃ : R2IJ ×∆I+J → [0, 1]2IJ+I+J . The components of H̃ are given by

E[yqijt|Xt, Zt, St] = H̃q
ij(Xtα,Ztβ, St),

for q = a, (i, j) ∈ I × (J ∪ {0}), and q = b, (i, j) ∈ (I ∪ {0}) × J. Further, integrating equation (9)

over St, by law of iterated expectation we have that

E[Yt|Xt, Zt] = H(Xtα,Ztβ), (10)

where H(Xtα,Ztβ) =
´
H̃(Xtα,Ztβ, St)dFS , and FS is the CDF of St.

Equation (10) gives the reduced form model. This maps the data {(Yt, Xt, Zt) : t ∈ T} to

the unknown parameters of the model (H, {αi} i∈I, {βj} j∈J). The goal of this paper is to iden-

tify the systematic preference parameters α1, α2, . . . , αI and β1, β2, . . . , βJ in the presence of the

infinite-dimensional nuisance parameter H. This is a semiparametric multi-index model with multi-

ple equations. Note that without proposition 2.3 we could not have written the conditional mean

function in terms of the indices alone.

The Marriage Example (continued from Section 2.1) Recall that Xijt = (Xijt,educ, Xjt,inc) and

Zijt = (Zijt,educ, Zit,inc), for (i, j) ∈ {20, 40}×{20, 40}. For instance, X20,40,t = (X20,40,t,educ, X40,t,inc)

where X20,40,t,educ is the absolute difference between expected education of 20-year-old men and

expected education of 40-year-old women in market t, and X40,t,inc is the expected income of 40-
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year-old men in market t. Here, we will observe the proportions of 20-year-old men matching 20-year-

old women (ya20,20,t), 40-year-old women (ya20,40,t), and proportions remaining unmatched (ya20,0,t).

Similarly, we observe matching proportions for 40-year-old men (ya40,20,t,y
a
40,40,t,y

a
40,0,t), 20-year-old

women (yb20,20,t,y
b
40,20,t,y

b
0,20,t), and 40-year-old women (yb20,40,t,y

b
40,40,t,y

b
0,40,t). Therefore, the outcome

vector Yt is given by,

Yt = (ya20,0,t, y
a
20,20,t, y

a
20,40,t, y

a
40,0,t, y

a
40,20,t, y

a
40,40,t, y

b
0,20,t, y

b
20,20,t, y

b
40,20,t, y

b
0,40,t, y

b
20,40,t, y

b
40,40,t)

′.

Any component of Yt (say, yb40,20,t) can be written as

E(yb40,20,t|Xt, Zt) = Hb
40,20(X20,20,tα20, X20,40,tα20, X40,20,tα40, X40,40,tα40,

Z20,20,tβ20, Z20,40,tβ40, Z40,20,tβ20, Z40,40,tβ40)

where Hb
40,20 is an unknown function with eight arguments. There are twelve such equations (one

for each component of Yt) with cross-equation restrictions such as, Hb
20,20 +Hb

40,20 +Hb
0,20 = 1.

4 Identification

In the previous section, we reduced the matching model in T markets to the following semiparametric

multi-index model,

E(Yt|Xt, Zt) = H(Xtα,Ztβ), t ∈ T.

Multi-index models have been studied in detail in Ichimura and Lee (1991) when there is only one

equation. Here, we have 2IJ + I + J with cross-equation restrictions. In this section, we study the

identification of preference parameters α = (α1, α2, · · · , αI) ∈ Rdx × RI and β = (β1, β2, · · · , βJ) ∈
Rdz × RJ under conditions that are similar to Ichimura and Lee (1991). The main difference is in

the exclusion restrictions we impose which are specific to the application here.

Let H denote the parameter space of H. For any vector function H ∈ H, H : R2IJ →
[0, 1]2IJ+I+J . In addition, H(·) will contain J distinct subvectors of dimension I + 1, each of which

will sum to one, and also I distinct subvectors of dimension J + 1, each of which will also sum to

1. Despite these restrictions, H ∈ H is an unknown vector function and thus there exists an inde-

terminacy between the unknown vector function H and the parameters of interest α and β. That

is, without imposing further restrictions on the parameters and the covariates, it is not possible to

identify (H,α, β) ∈ H × RIdx × RJdz . The following definitions are introduced to formalize the idea

of non-identification in Lemma 4.1.

DEFINITION: Two distinct parameter vectors (α, β) and (α∗, β∗) are said to be observationally equiv-

alent (
o.e.∼ ) if there exist H,H∗ ∈ H such that E(Y |X,Z) = H(Xα,Zβ) = H∗(Xα∗, Zβ∗).
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DEFINITION: (α, β) is said to be identified if there does not exist (α∗, β∗) 6= (α, β) such that

(α∗, β∗)
o.e.∼ (α, β).

We can write α = (α1, α2, . . . , αI) = (αi, α−i) for any i ∈ I where α−i = (α1, . . . , αi−1, αi+1, . . . , αI) ∈
Rdx × RI−1. Similarly, we can write β = (β1, β2, . . . , βJ) = (βj , β−j) for any j ∈ J where β−j =

(β1, . . . , βj−1, βj+1, . . . , βJ) ∈ Rdz × RJ−1.

Lemma 4.1 In the multiple index model given by (10) we have the following:

(a) For any c 6= 0, given i ∈ I and j ∈ J, let α∗ = (cαi, α−i) and β∗ = (cβj , β−j). Then,

(α∗, β)
o.e.∼ (α, β∗)

o.e.∼ (α, β).

(b) If Xij = Xi′j for i 6= i′, then (α, β)
o.e.∼ (α∗, β) where α∗ = (αi−αi′ , α−i). Similarly, if Zij = Zij′

for j 6= j′, then (α, β)
o.e.∼ (α, β∗) where β∗ = (βj − βj′ , β−j).

(c) If Xij is a subvector of Zi′j′ , then (α, β)
o.e.∼ (α, β∗) where β∗ = (βj′ − µ1α, β−j′), and µ1 is a

dz × dx selection matrix such that Xij = Zi′j′µ1. Similarly, if Zij is a subvector of Xi′j′ , then

(α, β)
o.e.∼ (α∗, β) where α∗ = (αi′ − µ2β, α−i′), and µ2 is a dx × dz selection matrix such that

Zij = Xi′j′µ2.

Lemma 4.1 suggests some necessary conditions for identification of α and β. Part (a) implies

that we need to restrict the parameter space of α and β in such a way that scaling is not possible

for any of the coefficients of the linear indices. Here it is convenient to assume

αi = (1, α̃i), ∀ i ∈ I and βj = (1, β̃j), ∀ j ∈ J.

Parts (b) and (c) suggest that we will need some exclusion restrictions. If Xij is the same random

variable as Xi′j , then αi cannot be distinguished from αi′ . Therefore, there needs to be at least

one component of Xij that is not included in Xi′j and vice-versa. This implies we cannot have

Xij invariant with respect to i. That is, we cannot have Xij = Xi′j = Xj . Thus, we need at

least one variable in the vector Xij (say X
(1)
ij ) that varies with match type (i, j). However, if

α1 = α2 = · · · = αI , then we do not need this exclusion. Similarly, Zij cannot be invariant with

respect to j, so we can distinguish between βj and βj′ . Finally, we also need exclusion restrictions

so that we can distinguish between the α’s and β’s. The following set of exclusion restrictions are

sufficient to rule out these non-identifiable cases.

Assumption 4.2 (a) Each Xij , (i, j) ∈ I×J, contains a continuous explanatory variable X
(1)
ij with

a non-zero coefficient normalized to one. That is, Xijαi = X
(1)
ij +X

(2)
ij α̃i. Further, X

(1)
ij 6= X

(1)
i′j

for any i 6= i′.
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(b) Each Zij , (i, j) ∈ I × J, contains a continuous explanatory variable Z
(1)
ij with a non-zero co-

efficient normalized to one. That is, Zijβj = Z
(1)
ij + Z

(2)
ij β̃j . Further, Z

(1)
ij 6= Z

(1)
ij′ for any

j 6= j′.

(c) For every (i, j), (i′, j′) ∈ I × J, X
(2)
ij is not contained in the covariate vector Z

(2)
i′j′ (and, vice-

versa).

First note that we only require the existence of one variable that is continuously distributed in

each index. This assumption is necessary because, if all the regressors were discrete, then the model

has no information. Bierens and Hartog (1988) shows this result for a single-index model. However,

we do not require a large support assumption for identification of α and β.

Assumption 4.2 helps eliminate the non-identifiable cases. We can understand this in the context

of the marriage example in Section 2.1. Here, agents care about having similar expected education

levels to their spouse. This is captured by the random variable X
(1)
ij = Xij,educ ≡ |Xi,educ −Xj,educ|,

which is a different random variable for each pair (i, j). Therefore, in each index included in the list

Xtα, X
(1)
ij will be the excluded random variable. That is, X

(1)
ij and X

(1)
i′j are two separate random

variables that act as instruments for distinguishing between αi and αi′ , where i 6= i′. For this same

reason, we can set Z
(1)
ij = X

(1)
ij , then the excluded variables X

(1)
ij and X

(1)
ij′ act as instruments that

distinguish between βj and βj′ , where j 6= j′. Thus, including a covariate that is different for each

possible pair (i, j) satisfies Assumptions 4.2(a)-(b). Also, we include Xj,inc in X
(2)
ij and Zi,inc in

Z
(2)
ij . Note that Xj,inc and Zi,inc are I + J different random variables, and thus Assumption 4.2(c)

is satisfied. Here, Xj,inc and Zi,inc act as instruments to distinguish between the α’s and the β’s.

We further impose some smoothness and non-linearity assumptions on H which will be sufficient

for identification of the finite dimensional parameters α and β.

Assumption 4.3 (a) Each Hq
ij, where q = a, (i, j) ∈ I× (J∪{0}), or q = b, (i, j) ∈ (I∪{0})×J,

is differentiable with respect to the continuous covariates.

(b) Let Hq
ij,r denote the partial derivative of Hq

ij with respect to the rth argument. Then, for each

q = a, (i, j) ∈ I × (J ∪ {0}) and q = b, (i, j) ∈ (I ∪ {0}) × J, the derivative functions Hq
ij,r,

r = 1, · · · , 2IJ are linearly independent with probability one on X IJ ×ZIJ .

The first part of Assumption 4.3 is simply a smoothness restriction on each component function

of vector function H. The second part of this assumption imposes a mild restriction on the shape of

the component functions of H. It requires the partial derivative of each component of H to be linearly

independent. A sufficient condition for this to hold is for the generalized Wronskian for derivative

functions Hq
ij,r, r = 1, · · · , 2IJ to not be zero.8 A further sufficient condition for the generalized

8Generalized Wronskians are determinant of the Jacobian matrix of the derivative function. To check this condition
we will need the derivative functions Hq

ij,r to be differentiable with respect to the continuous covariates.
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Wronskian to not be zero is that Hq
ij is non-linear in each of its arguments. This does not seem so

strong since Hq
ij is made up of joint distribution functions Fij or Gij which are typically non-linear.

Our identification strategy is such that Assumption 4.3 is only sufficient to identify components

of αi and βj that are coefficients to continuous covariates. However, we allow X
(2)
ij and Z

(2)
ij to contain

discrete random variables.9 Let ρxij be a vector of discrete covariates contained in X
(2)
ij , and ρzij be a

vector of discrete covariates contained in Z
(2)
ij . Denote the subvector of αi that is the coefficient of

ρxij by ˜̃αi, and the subvector of βj that is the coefficient of ρzij by
˜̃
βj . Define ˜̃α = (˜̃α1, . . . , ˜̃αI) and

˜̃
β = (

˜̃
β1, . . . ,

˜̃
βJ). Then we need the following additional assumption:

Assumption 4.4 Let ρijt ∈ Ω be a vector consisting of distinct components of ρxij and ρzij. Then,

there exists two points ρ = (ρx11, ...ρ
x
ij , . . . , ρ

z
11, . . . ρ

z
ij , . . . ) and ρ̄ = (ρ̄x11, ...ρ̄

x
ij , . . . , ρ̄

z
11, . . . ρ̄

z
ij , . . . ) in

Ω2IJ such that if ˜̃α0 6= ˜̃α and
˜̃
β0 6= ˜̃

β, then

H(· · · , Xijtαi + ρxijt( ˜̃αi0 − ˜̃αi), · · · , Zijtβj + ρzijt(
˜̃
βj0 − ˜̃

βj), · · · )

6= H(· · · , Xijtαi + ρ̄xijt( ˜̃αi0 − ˜̃αi), · · · , Zijtβj + ρ̄zijt(
˜̃
βj0 − ˜̃

βj), · · · ).

That is, to identify coefficients corresponding to discrete regressors, we need at least two distinct

points in its support at which the function can be distinguished.

Proposition 4.5 Let Assumptions 2.1-2.2 and 4.2-4.4 hold. Then, α and β are identified (up to a

multiplicative scalar) in the multi-index model given by (10).

We have point identification of parameter vectors α and β. However, we have said nothing so

far about the identification of the link function H. Note that H : R2IJ → [0, 1]2IJ+I+J . Without

a large (i.e., unbounded) support assumption it may not be possible to point identify the unknown

vector of link functions. Instead, under Assumption 4.2(a), H will be partially identified. Let

X = X1 × X−1 ⊆ R × Rdx−1, where X1 denotes the support of the excluded regressor X
(1)
ij , and let

Z = Z1 ×Z−1 ⊆ R× Rdz−1, where Z1 denotes the support of the excluded regressor Z
(1)
ij , for every

(i, j) ∈ I× J. The following proposition discusses identification of H.

Proposition 4.6 Let Assumptions 2.1-2.2 and 4.2-4.4 hold.

(a) If X1 = R and Z1 = R, then H is point identified.

(b) If X is a compact subset of Rdx, or Z is a compact subset of and Rdz , then H ∈ H is partially

identified. Further, the identified set, HI , will be a strict subset of H.

H is not directly the object of interest in this paper. However, depending on the estimation

method, the point or partial identification of H may be relevant for doing inference on α and β.

9In the marriage example in Section 2.1, we could have takenXj,inc as the mode of income instead of the expected
income, for type j women (where income has discrete support {high=3, medium=2, low=1},say). In this case for every
j ∈ J, Xj,inc is a discrete random variable.
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5 Conclusion

This paper considers the identification problem in a one-to-one matching model with transferable

utilities. This framework builds on Choo and Siow (2006), where the objective is to identify system-

atic preferences from the knowledge of match patterns observed over some characteristics. We extend

this framework in two salient ways. First, we explicitly model the systematic preferences of agents

by introducing covariates through linear indices. Introducing covariates in preferences aids us in un-

derstanding the role of the different covariates in determining a match outcome. Second, we consider

match patterns only over a subset of observed characteristics (which we call types). The systematic

preferences for each match type are then described by the remaining observed characteristics. This

allows us to discern preferences based on several observed agent characteristics, without increasing

the dimension of the match outcome matrix, which describes matching patterns over types. We also

allow for unobserved heterogeneity in the agent preferences, but make no distributional assumptions

over it. Instead, we consider a sample from multiple markets. With such preferences and some

additional assumptions, we show that transfers depend only on systematic preferences. Using this

result on transfers, the matching model is reduced to a semiparametric multi-index model. We then

study identification of the relevant parameters in this reduced form.

Several issues remain for future research. The systematic preferences are modeled with covari-

ates, which are aggregated at the level of types. This imposes a qualitative restriction on agent

preferences that every match partner of same type is exchangeable. The question then is if we can

relax exchangeability in these models. Another question is how much one can learn from considering

just one market when knowledge of the distribution of the taste shocks is not assumed.

In principal, semiparametric multi-index models can be estimated using sieve minimum distance

estimator of Ai and Chen (2003), or a semiparametric kernel estimator of Ichimura and Lee (1991).

However, the high dimensionality of the functions inH prevents these estimators from performing well

in finite sample. Hristache et al. (2001) provides a method for dimension reduction in multiple-index

models, thus selecting smaller number of relevant indices. One can possibly construct estimators in

the family of average derivative estimators extending methods of Hristache, Juditsky, and Spokoiny

(2001), which is beyond the scope of this paper.
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[9] Chiappori, P.-A., and B. Salanié (2016): “The Econometrics of Matching Models,” Journal of

Economic Literature, 54(3), 832-861.
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[32] Salanié, B. (2015): “Identification in Separable Matching with Observed Transfers,” Columbia

University mimeo.

[33] Shapley, L., and M. Shubik (1972): “The Assignment Game I: The Core,” International Journal

of Game Theory, 1, 111-130.

[34] Siow, A., and E. Choo (2006): “Estimating a Marriage Matching Model with Spillover Effects,”

Demography, 43(3), 463-490.

[35] Tervio, M. (2008): “The difference that CEOs make: An assignment model approach,” American

Economic Review, 98, 642-668.

23



Appendix

Proof of Proposition 2.3:

The proof builds on the observation that, if t′ and t′′ are distinct markets with Xt′α = Xt′′α and

Zt′β = Zt′′β and St′ = St′′ , then the equilibrium matching must be the same in each market (up

to values of the preference shocks that have zero measure). This follows because the equilibrium

matching in each market is efficient, and because efficient matchings are uniquely determined (up to

values of the preference shocks that have zero measure; see, e.g., Gretsky, Ostroy and Zame (1999)).

Given that the equilibrium matchings are identical in both markets, we then verify that equilibrium

transfers must be identical.

Consider a transfer function

γ̄ : X IJ × RIJ ×ZIJ × RIJ ×∆I+J → T ⊆ RI×J ,

such that the equilibrium transfers Γt in each market t are given by the matrix γ̄(Xt, Xtα,Zt, Ztβ, St),

with (i, j)th element γ̄ij(Xt, Xtα,Zt, Ztβ, St). If the result in the proposition fails to hold, then

there exist distinct markets t′ and t′′ with Xt′α = Xt′′α, Zt′β = Zt′′β and St′ = St′′ , but with

γ̄ij(Xt′ ,Xt′α,Zt′ , Zt′β, St′) 6= γ̄ij(Xt′′ , Xt′′α,Zt′′ , Zt′′β, St′′) for some (i, j).

Suppose, without loss of generality, that

γ̄ij(Xt′ , Xt′α,Zt′ , Zt′β, St′) < γ̄ij(Xt′′ , Xt′′α,Zt′′ , Zt′′β, St′′).

By Assumption 2.2(b), there exists a positive measure of shocks εk′t′ , k
′ ∈ Nat′ with i(k′) = i, such

that

Xijt′αi + ε̄k′jt′ − γ̄ij(Xt′ , Xt′α,Zt′ , Zt′β, St′) > Xij′t′αi + ε̄k′j′t′ − γ̄ij′(Xt′ , Xt′α,Zt′ , Zt′β, St′)

for all j′ ∈ J \ {j} and

Xijt′αi + ε̄k′jt′ − γ̄ij(Xt′ , Xt′α,Zt′ , Zt′β, St′) > ε̄k′0t′ ,

implying that the agent k′ in market t′ optimally chooses to match with j, and yet

ε̄k′0t′ > Xij′t′αi + ε̄k′j′t′ − γ̄ij′(Xt′′ , Xt′′α,Zt′′ , Zt′′β, St′′),

for all j′ ∈ J, implying that the agent k′ would prefer to remain unmatched given the transfers that

prevail in market t′′ (for this, it is enough to consider values ε̄k′j′t′ , for j′ 6= j, that are sufficiently
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small). Hence, if k′′ ∈ Nat′′ is an agent in market t′′ with εk′′t′′ = εk′t′ , we have

ε̄k′′0t′′ > Xij′t′′αi + ε̄k′j′t′′ − γ̄ij′(Xt′′ , Xt′′α,Zt′′ , Zt′′β, St′′),

implying that the agent k′′ prefers to remain unmatched in market t′′. Since this holds for a positive

measure of shocks, the match allocations are different for a positive measure of agents in the two

markets t′ and t′′, contradicting that the (essentially) unique allocations in both sides coincide. �

Proof of Lemma 4.1:

For Part (a) of the lemma, let the true parameters that satisfy equation (10) be given by (H,α, β) ∈
H × RIdx × RJdz . Consider α̃ = (α1, · · · , αi−1, cαi, αi+1, · · · , αI) for some c 6= 0. Let Xijtαi, j =

0, 1, 2, · · · , J be the first J+1 arguments of the vector function H. Also split the first IJ+ I compo-

nents of H into distinct subvector of J+1 dimension (Ha
1 , H

a
2 , · · · , Ha

I ) where Ha
i = (hai0, h

a
i1, ..., h

a
iJ).

And, split the remaining IJ + J components of H into distinct subvector of I + 1 dimension

(Hb
1 , H

b
2 , · · · , Hb

J ) where Hb
j = (hb0j , h

b
1j , ..., h

b
Ij).

Define a vector function H̃ such that, in H̃a
i set h̃ai0 = 1 −

∑J
j=1 h̃

a
ij for all i ∈ I; in H̃b

j

set h̃b0j = 1 −
∑I

i=1 h̃
b
ij for all j ∈ J; and h̃qij(·, ·, · · · ) = hqij

(
1
c ·, ·, · · ·

)
, where only the first J + 1

arguments are scaled by 1
c , where q ∈ {a,b} and (i, j) ∈ I×J. Then, (H̃, β, α̃) ∈ H×RIdx×RJdz . By

construction we will have that H̃(Xtα̃, Ztβ) = H(Xtα,Ztβ). Therefore the data cannot distinguish

between α and cα, and therefore we can only identify α up to a scaled normalization. Similarly we

can scale components of β.

The arguments are identical for both (b) and (c). So we will just show it for part (c). Without

loss of generality, suppose for every (i, j) ∈M, Xijt = Zijtµ where µ is a dz×dx dimensional selection

matrix. Let the true parameters that satisfy equation (10) be given by (H,α, β). Let β̃ = β − µα.

Construct a vector function H̃ as follows:

In H̃a
i set h̃ai0 = 1−

∑J
j=1 h̃

a
ij for all i ∈ I; and in H̃b

j set h̃b0j = 1−
∑I

i=1 h̃
b
ij for all j ∈ J, where

h̃qi′j′(· · · , Xijtαi, Zijtβ̃j , · · · ) = h̃qi′j′(· · · , Xijtαi, Zijtβj −Xijtαi, · · · ) = hqi′j′(· · · , Xijtαi, Zijtβj , · · · ),

for any q ∈ {a,b} and (i′, j′) ∈ I× J. Therefore the data cannot distinguish between elements of β

and β̃ that correspond to the coefficients of Xijt. �

Proof of Proposition 4.5:

Suppose there exists (α0, β0) and (α, β) such that

E[Yt|Xtα0, Ztβ0] = E[Yt|Xtα,Ztβ] = H(Xtα0, Ztβ0) (11)
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almost everywhere in the support of (Xt, Zt). By Assumption 4.2 let αi = (1, α̃i) and βj = (1, β̃j).

Further we can write Xijtαi = X
(1)
ijt + X

(2)
ijt α̃i and Zijtβj = Z

(1)
ijt + Z

(2)
ijt β̃j for all (i, j) ∈ I × J. Let

X
(2)
ijt ∈ X−1 ⊆ Rdx−1 and Z

(2)
ijt ∈ Z−1 ⊆ Rdz−1. Let wijt ∈ W ⊆ Rdw be a vector of distinct elements

of X
(2)
ijt and Z

(2)
ijt . Assumption 4.2(d) implies 1 + max(dx − 1, dz − 1) ≤ dw ≤ dx + dz − 2. Let

X
(1)
t ≡ (X

(1)
11t, · · · , X

(1)
1Jt, · · · , X

(1)
IJt) be an IJ dimensional vector, Z

(1)
t ≡ (Z

(1)
11t, · · · , Z

(1)
I1t, · · · , Z

(1)
IJt) be

an IJ dimensional vector, and wt ≡ (w11t, · · · , w1Jt, · · · , wIJt, ) has IJ components. Then let W
denote the support of (X

(1)
t , Z

(1)
t , wt).

Let δxijt = Xijtα and δzijt = Zijtβ. Define δijt = (δxijt, δ
z
ijt) and δt be the vector of all δijt,

(i, j) ∈ I× J. Then we can write

H(· · · , Xijtαi0, · · · , Zijtβj0, · · · ) = H(· · · , δxijt +X
(2)
ijt (α̃i0 − α̃i), · · · , δzijt + Z

(2)
ijt (β̃0j − β̃j), · · · ).

Combining this with equation (11) we get that

H(· · · , δxijt +X
(2)
ijt (α̃i0 − α̃i), · · · , δzijt + Z

(2)
ijt (β̃j0 − β̃j), · · · ) = φ(δt), (12)

where φ(δt) = E[Yt|δt]. Note that for any δt and wt we can compute xt and zt given α and β. So we

can view the left hand side of the equation as a function of δt and wt only.

First let all the regressors be continuous, we can choose a point (X̄(1), Z̄(1), w̄) in the interior

of W. Fix δ̄ to be δt evaluated at (X̄(1), Z̄(1), w̄). Since all of X(1), Z(1), w consist of continuous

variables, it is possible to have a neighborhood N(w̄) in the support of w such that equation (12)

holds for all w ∈ N(w̄) conditional on δ̄. That is we have

H(· · · , δ̄xijt +X
(2)
ijt (α̃i0 − α̃i), · · · , δ̄zijt + Z

(2)
ijt (β̃j0 − β̃j), · · · ) = φ(δ̄t), ∀ w ∈ N(w̄).

Differentiating the above equation with respect to w and evaluating at w̄ we get, for each q ∈ {a,b},
and (i, j) ∈M we have that

J∑
r=1

Hq
ij,r(X̄α0, Z̄β0)(α̃10 − α̃1) + · · ·+

IJ∑
r=(I−1)J+1

Hq
ij,r(X̄α0, Z̄β0)(α̃I0 − α̃I)+

+

IJ+I∑
r=IJ+1

Hq
ij,r(X̄α0, Z̄β0)(β̃10 − β̃1) + · · ·+

2IJ∑
r=2IJ−I+1

Hq
ij,r(X̄α0, Z̄β0)(β̃J0 − β̃J) = 0.

Since (X̄(1), Z̄(1), w̄) is an arbitrary point in the interior ofW and measure of boundary ofW is zero,

the above equation holds with probability one on W. Then by Assumption 4.3(b) we must have

α0 = α and β0 = β.

Now suppose we allow wijt to contain discrete regressors. Then by above arguments the coeffi-
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cients corresponding to continuous regressors are identified as before. Note that equation (12) holds

regardless of whether regressors in wijt are continuous or discrete. Thus we are left with,

H(· · · , Xijtαi + ρxijt( ˜̃αi0 − ˜̃αi), · · · , Zijtβj + ρzijt(
˜̃
βj0 − ˜̃

βj), · · · )

= H(· · · , Xijtαi + ρ̄xijt( ˜̃αi0 − ˜̃αi), · · · , Zijtβj + ρ̄zijt(
˜̃
βj0 − ˜̃

βj), · · · )

= φ(δt).

Then the result follows from Assumption 4.4 �

Proof of Proposition 4.6:

The parameters α and β are identified. First consider the case where X1 = R and Z1 = R. Then

Xijtαi = X
(1)
ijt +X

(2)
ijt α̃i and Zijtαi = Z

(1)
ijt + Z

(2)
ijt β̃j . Consider any point

r ≡ (rx11, r
x
12, · · · , rxIJ , rz11, rz12 · · · , rzIJ) ∈ R2IJ .

Fix value of X
(2)
ijt α̃i = φij and Z

(2)
ijt β̃j = ψij . Then there will always exist X

(1)
ijt = rxij − φij and

Z
(1)
ijt = rzij − ψij , such that every component Hq

ij in H is identified at point r. Since r ∈ R2IJ is

arbitrary, H is identified.

Alternatively, in the second part of the proposition, X and Z are assumed to be compact subset

of Rdx . Then Xαi is a continuous mapping from X to R, for all i ∈ I, and Zβj is a continuous

mapping from Z to R, for all j ∈ J. Then also Xαi and Zβj are compact subsets of R. Therefore,

H is identified on the compact subset (Xα1)
J × · · · × (XαI)J × (Zβ1)I × · · · × (ZβJ)I of R2IJ . By

Assumption 4.2 this compact set has positive measure since at least one of the covariates of both X
and Z are continuously distributed on its support. Therefore, HI ( H. �
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