
 

18‐890	

	

	
	

“Robustified	expected	maximum	production	frontiers”	
	

	

Abdelaati	Daouia,	Jean‐Pierre	Florens	and	Léopold	Simar	

Februray	2018	



Robustified expected maximum production frontiers

Abdelaati Daouia∗

abdelaati.daouia@tse-fr.eu

Jean-Pierre Florens ˚

jean-pierre.florens@tse-fr.eu
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Abstract

The aim of this paper is to construct a robust nonparametric estimator for the production
frontier. We study this problem under a regression model with one-sided errors where the
regression function defines the achievable maximum output, for a given level of inputs-usage,
and the regression error defines the inefficiency term. The main tool is a concept of partial
regression boundary defined as a special probability-weighted moment. This concept motivates
a robustified unconditional alternative to the pioneering class of nonparametric conditional
expected maximum production functions. We prove that both the resulting benchmark partial
frontier and its estimator share the desirable monotonicity of the true full frontier. We derive
the asymptotic properties of the partial and full frontier estimators, and unravel their behavior
from a robustness theory point of view. We provide numerical illustrations and Monte Carlo
evidence that the presented concept of unconditional expected maximum production functions
is more efficient and reliable in filtering out noise than the original conditional version. The
methodology is very easy and fast to implement. Its usefulness is discussed through two concrete
datasets from the sector of Delivery Services, where outliers are likely to affect the traditional
conditional approach.

Key words : Boundary regression, Expected maximum, Nonparametric estimation, Production function,

Robustness.

1 Introduction

The conventional microeconomic theory of the firm is based on the assumption of optimizing

behavior. It is assumed that producers optimize their production choices by avoiding wasting

resources. Theoretically, producers shall operate somewhere on the upper boundary, rather

than on the interior, of their production possibility set

Ψ “ tpx, yq P Rp
` ˆ R`| y can be produced by xu .
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The upper boundary of Ψ, referred to as production frontier or surface, represents the set of

the most efficient firms. The economic performance of a firm is defined in terms of its ability

to operate close to or on the production frontier. This efficient frontier is often described

by the graph of the function ϕpxq “ supty | px, yq P Ψu, which gives the maximal level of

output (e.g., a quantity of goods produced) attainable by a firm operating with a vector of

inputs x (e.g., labor, energy, capital). The efficiency of a unit working at px, yq may then be

estimated via the distance between its production level y and the optimal level ϕpxq. The

standard Farrell-Debreu efficiency score is given by the ratio y{ϕpxq, so that an efficiency

equal to one corresponds to an output-efficient unit. More generally, the score y{ϕpxq ď 1

gives the increase of output that the firm should reach to be viewed as output-efficient.

The estimation of the frontier function ϕ from a random sample of production units

tpX1, Y1q, . . . , pXn, Ynqu is thus of utmost importance in production econometrics. A large

amount of literature is devoted to this problem, where two different approaches have been

mainly developed: the deterministic frontier approach which supposes that all the obser-

vations pXi, Yiq belong to Ψ with probability 1, and the stochastic frontier approach where

random noise allows some observations to be outside Ψ. The issue of stochastic frontier

estimation goes back to the works of Aigner et al. (1977) and Meeusen and van den Broeck

(1977). Typically, it is assumed that ϕ has a parametric structure like Cobb-Douglas or

translog. The estimation techniques include modified least-squares and maximum likelihood

methods, see for instance Greene (2008) for a survey. Some attempts have been proposed to

relax the parametric restriction such as, for instance, Kumbhakar et al. (2007) and Simar

and Zelenyuk (2011), see also Kneip et al. (2015) and the references therein.

Our contribution in this paper is related to the context of inference for deterministic

production frontiers, where it is assumed that ϕ is monotone nondecreasing. A pioneer-

ing contribution in this area is due to Farrell (1957), who introduced Data Envelopment

Analysis (DEA), based on either the conical hull or the convex hull of the data. This was

further extended by Deprins et al. (1984) to the Free Disposal Hull (FDH) estimator, whose

properties have been extensively discussed in the literature. See for instance Kneip et al.

(2008) and Daouia et al. (2010, 2014) for a recent survey of the available results. The most

appealing characteristic of such frontier estimators is that they rely on very few assumptions,

but they are by construction very sensitive to outliers. To remedy this vexing defect, robust

extensions using a concept of partial production frontiers have been suggested. Instead of

estimating the true full frontier ϕ itself, the idea is to first estimate a partial frontier of the

production set Ψ and then shift the obtained estimator to the right place. Prominent among

these developments are the concepts of expected maximum production frontiers by Cazals

et al. (2002) and quantile-based frontiers by Aragon et al. (2005) and Daouia and Simar
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(2007). Comparisons between the two concepts from a robustness and an asymptotic points

of view can be found in Daouia and Ruiz-Gazen (2006) and Daouia and Gijbels (2011). In

particular, once the quantile-based frontiers break down for large chosen tail probability lev-

els, they become definitely less resistant to outliers than the conditional expected maximum

output frontiers. Moreover, the latter class of partial production functions has the additional

advantage to make more efficient use of the available data since its relies on the distance to

observations, whereas quantiles only use the information on whether an observation is below

or above the predictor.

Yet, the class of conditional expected maximum output frontiers is not without disadvan-

tages. First, it is not constrained to inherit the requisite theoretical axiom of monotonicity

of the true full production function ϕpxq. Economic considerations lead actually to the gen-

eral production axiom of free disposability of inputs and outputs, that is, if px, yq P Ψ then

px1, y1q P Ψ for any x1 ě x and y1 ď y. The monotonicity of ϕpxq, referred to as non-negative

marginal productivity, is justified by the free disposability assumption and is a minimal re-

quirement in production theory [see, e.g., Gijbels et al. (1999) and Park et al. (2000)]. The

partial expected maximum production functions enjoy the property of monotonicity if and

only if the hypothesis of tail monotonicity holds [see Theorem A.3 in Cazals et al. (2002)].

Second and most importantly, even if this theoretical hypothesis is satisfied, the empirical

estimators of expected maximum production functions, needed to be used in practice, are

not constrained to enjoy the property of monotonicity. Third, a desirable property of any

benchmark partial frontier is to closely parallel the true production frontier, as argued by

Wheelock and Wilson (2008) and Daouia et al. (2017). However, by construction, both pop-

ulation and empirical expected maximum output frontiers diverge from the true full frontier

as the input level increases [see, e.g., Daouia and Gijbels (2011)]. In particular, similarly

to the FDH boundary, the estimated partial frontiers tend to envelop production units with

small inputs-usage including outliers, and are thus very non-robust to such observations.

However, in contrast to the FDH frontier, they may lie below some relatively inefficient

production units with large inputs-usage. This opposite behavior for small and large inputs

makes the selection of an appropriate benchmark partial frontier in practice a hard problem.

Also, measuring the distance of production units relative to a conditional expected maximum

production frontier may result in misleading efficiency scores accordingly.

In this paper we adopt a different strategy based on a robustified unconditional formu-

lation of expected maximum production functions. This new formulation has an analogous

interpretation to the original concept and corrects all of its vexing defects. The proposed

unconditional expected maximum output frontiers and their estimators share the desirable

property of monotonicity without resorting to the hypothesis of tail monotonicity or any
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other assumption. Another substantial advantage of these new partial production bound-

aries over the traditional conditional approach is that they do not suffer from border and

divergence effects for small or large levels of inputs. Thanks to this benefit and because

monotonicity eliminates sharp changes in the slope and curvature of the built unconditional

partial frontiers, the selection problem of an appropriate benchmark frontier tends to be

easier than conditional unconstrained partial boundaries. We derive the asymptotic distri-

butional behavior of the resulting frontier estimators (both full and partial) by using simpler

arguments relative to the standard conditional method. The superiority of our method is

also established from a robustness theory point of view. To illustrate the discussed ideas,

we use two concrete datasets from the sector of Delivery Services, where outliers are likely

to affect the traditional conditional method. The first dataset involves 4,000 French post

offices observed in 1994. It has been discussed in Cazals et al. (2002), Aragon et al. (2005),

and Daouia et al. (2010, 2012) among others. The second dataset comprises 2,326 European

post offices observed in 2013. For each post office i, the input Xi represents the labor cost

measured by the quantity of labor, and the output Yi is the volume of delivered mail in

number of objects. The scatterplots are given below in Figures 1 and 2.

The paper is further organized as follows. In Section 2, we present a deeper discussion

on the concept of expected maximum production functions. We provide the main results

including robustness and asymptotic properties as well as our motivating real data examples.

Section 3 gives some numerical illustrations and Monte Carlo evidence. Section 4 concludes.

2 Robust boundary regression

Let us revisit the popular free disposal hull (FDH) frontier estimator in Section 2.1 and

the concept of expected maximum production frontiers in Section 2.2, before moving to the

main conceptual results in Section 2.3. Practical guidelines to effect the necessary parameter

selection are described in Section 2.4.

2.1 Setting and objective

In the standard nonparametric frontier model, the data

Yj “ ϕpXjq ´ Uj, j “ 1 . . . , n,

are observed, with ϕp¨q being the unknown production function and Uj ě 0 being the ineffi-

ciency term. For a fixed level of inputs-usage x P Rp
`, a closed form expression of the frontier

function ϕpxq has been suggested by Cazals et al. (2002) in terms of the non-standard con-

ditional distribution of Y given X ď x. If pΩ,A,Pq denotes the probability space on which
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the random vector pX, Y q P Rp
` ˆ R` is defined and

FY |Xpy|xq “ PpY ď y |X ď xq

is the distribution function of Y conditioned by X ď x, assuming FXpxq :“ PpX ď xq ą 0,

then ϕpxq can be characterized as the upper conditional endpoint

ϕpxq “ supty ě 0 |FY |Xpy|xq ă 1u. (1)

Generally speaking, ϕpxq is not the upper extremity of the support of pX, Y q at X “ x, say

ϕupxq, but equals supx1ďx ϕ
upx1q. Therefore, it is isotonic nondecreasing in x and envelops the

true upper support boundary. In the case where the frontier function ϕu is nondecreasing,

which is a minimal requirement in production econometrics, ϕ coincides with ϕu. Then,

consideration of the constrained envelop ϕpxq is advantageous as it affords estimation at a

faster rate than ϕupxq, see Daouia and Park (2013). Because of the local nature of ϕupxq,

one can use only the data points in a local strip around x to estimate it. In contrast, by

substituting the empirical conditional distribution function

pFY |Xpy|xq “
n
ÿ

i“1

1IpXi ď x, Yi ď yq{
n
ÿ

i“1

1IpXi ď xq

in place of FY |Xpy|xq in (1), with 1Ip¨q being the indicator function, Cazals et al. (2002)

recover the usual FDH estimator

pϕpxq “ supty ě 0 | pFY |Xpy|xq ă 1u “ max
i:Xiďx

Yi,

which defines the smallest step and monotone surface lying above the sample points pXi, Yiq.

Park et al. (2000) have determined its limit distribution under the condition that the density

of data is strictly positive at the boundary. More recently, Daouia et al. (2010, 2014) have

elucidated its full asymptotic theory in a general setting from the perspective of extreme

value theory. In particular, there exists bn ą 0 such that b´1n ppϕpxq ´ ϕpxqq converges to a

non-degenerate distribution if and only if

FXpxqr1´ FY |Xpy|xqs “ Lx
`

tϕpxq ´ yu´1
˘

pϕpxq ´ yqρx as y Ò ϕpxq,

for some constant ρx ą 0, where Lxp¨q is a slowly varying function, i.e., limtÒ8 Lxptzq{Lxptq “

1 for all z ą 0. The limit distribution function is identical to

Fρxpyq “ expt´p´yqρxu with support p´8, 0s.

Under the sufficient condition that Lx ptϕpxq ´ yu
´1q „ `x ą 0 as y Ò ϕpxq, that is

FXpxqr1´ FY |Xpy|xqs “ `x
`

ϕpxq ´ y
˘ρx
` o

`

pϕpxq ´ yqρx
˘

as y Ò ϕpxq, (2)
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it is shown in Daouia et al. (2010, Corollary 2.1) that

pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8,

where a random variable W is said to follow the distribution Weibullp1, ρxq if W ρx is Expo-

nential with parameter 1. The exponent ρx has the following intuitive meaning in terms of

the density of pX, Y q and the dimension pp` 1q: When ρx ą p` 1, the joint density decays

to zero at a speed of power ρx ´ pp` 1q of the distance from the frontier point ϕpxq. When

ρx “ p ` 1, the density has a sudden jump at the frontier. Finally, when ρx ă p ` 1, the

density rises up to infinity at a speed of power ρx´ pp` 1q of the distance from the frontier.

In absence of information on whether the available data are measured accurately, it would

look awkward for practitioners to assume that only the FDH frontier points pXi, Yi ” pϕpXiqq

contain valuable information about the true efficient support extremity. In many empirical

applications, some FDH observations may appear so isolated that they hardly seem related

to the sample. They may be outliers resulting from data corruption due to by reporting,

transcription, or other errors. Other top observations, well inside the sample, could help

the practitioners to achieve their objective of ‘robustification’. The underlying idea is to

estimate an anchor partial frontier well inside the production set but near the true full

frontier, and then to shift it to the right place. As suggested by Cazals et al. (2002) and

Daouia et al. (2012), a practitioner can protect himself by specifying a trimming number

m P t1, 2, . . .u and considering a notion of expected maximum achievable level of output

among m firms drawn in the population of firms using less than a given level of inputs. Next,

we introduce formally this robust concept of expected maximum output frontier and propose

a new and more valuable variant based on an unconditional dimensionless characterization

of the production process.

2.2 Expected maximum production frontiers

For a given level of inputs-usage x such that FXpxq ą 0, the expected maximum output

function of order m is defined as

ψmpxq “ E
“

maxpY 1, . . . , Y m
q|X ď x

‰

“

ż 8

0

`

1´ rFY |Xpy|xqs
m
˘

dy,

where pY 1, . . . , Y mq are i.i.d. random variables generated by the conditional distribution of

Y given X ď x. The quantity ψmpxq gives the expected maximum achievable production

among a fixed number of m firms drawn from the population of production units using less

than x as inputs. For a particular firm operating at px, yq, comparing its output y with the

benchmark value ψmpxq gives a clear indication of how well this firm is performing compared

with m production units using less inputs than x.
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It is easily seen that ψmpxq “ ϕpxq´
şϕpxq

0
rFY |Xpy|xqs

m dy, and hence the partial produc-

tion frontier ψmpxq converges to the true efficient frontier ϕpxq itself as m Ñ 8. Likewise,

for a fixed sample size n, the empirical counterpart

pψmpxq “

ż 8

0

`

1´ r pFY |Xpy|xqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY |Xpy|xqs
m dy

achieves the envelopment FDH surface pϕpxq as m Ñ 8. Putting Nx “
řn
i“1 1IpXi ď xq

and taking Yx1 , . . . ,YxNx to be the Yi’s such that Xi ď x, the exact value of pψmpxq can be

computed as

pψmpxq “
Nx
ÿ

i“1

Yxpiq
"ˆ

i

Nx

˙m

´

ˆ

i´ 1

Nx

˙m*

, (3)

where Yx
piq denotes the ith order statistic of the points Yx1 , . . . ,YxNx [see Equation (2.4) in

Daouia and Gijbels (2011)]. Figure 1 (top panel) and Figure 2 (top panel) display, respec-

tively, the scatterplots of our motivating real datasets on the activity of n “ 2, 326 and

n “ 4, 000 delivery post offices, along with the estimated expected maximum production

frontiers of order m “ 600, 700, 800, 900 and m “ 8 (FDH).

The strength of the partial frontier estimators pψmpxq in terms of robustness has been

established from a theoretical point of view by Daouia and Ruiz-Gazen (2006), and Daouia

and Gijbels (2011). In particular, both pψmpxq ” Tm,x
`

pFpX,Y q
˘

and ψmpxq ” Tm,x
`

FpX,Y q
˘

are representable as a functional Tm,x of the empirical and population distribution functions

pFpX,Y qpx, yq :“
1

n

n
ÿ

i“1

1IpXi ď x, Yi ď yq and FpX,Y qpx, yq :“ PpX ď x, Y ď yq,

respectively, where the statistical functional Tm,x associates to a distribution function F p¨, ¨q

on Rp
` ˆ R`, such that F px,8q ą 0, the real value

Tm,xpF q “

ż 8

0

ˆ

1´

„

F px, yq

F px,8q

m˙

dy,

with the integrand being identically zero for y ě infty P R`|F px, yq{F px,8q “ 1u. The rich-

est quantitative robustness information is then provided by the influence function px0, y0q ÞÑ

IF
`

px0, y0q;T
m,x, FpX,Y q

˘

of Tm,x at FpX,Y q. It is defined as the first Gâteaux derivative of

the functional Tm,x at FpX,Y q, where the point px0, y0q plays the role of the coordinate in

the infinite-dimensional space of probability distributions [see Hampel et al. (1986)]. The

relevance of the influence function lies in its two main uses. First, it describes the effect

of an infinitesimal contamination at the point px0, y0q on the estimate, standardized by the

mass of the contamination. Second, it allows one to assess the relative influence of individual

observations px0 “ Xi, y0 “ Yiq on the value of the estimate pψmpxq. An important robustness
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requirement is the B-robustness [Rousseeuw (1981)] which corresponds to a finite gross-error

sensitivity. The maximum absolute value

γ˚
`

Tm,x, FpX,Y q
˘

“ sup
px0,y0qPRp`1

`

ˇ

ˇIF
`

px0, y0q;T
m,x, FpX,Y q

˘

|

defines the gross-error sensitivity of Tm,x at FpX,Y q. If this is unbounded, outliers can cause

trouble. But according to Daouia and Ruiz-Gazen (2006), we have

IF
`

px0, y0q;T
m,x, FpX,Y q

˘

“
m

FXpxq
1Ipx0 ď xq

ż ϕpxq

0

Fm´1
Y |X py|xq

“

FY |Xpy|xq ´ 1Ipy0 ď yq
‰

dy,

(4)

and hence γ˚
`

Tm,x, FpX,Y q
˘

ď m
FXpxq

ϕpxq. Even more precisely, we show the following.

Proposition 1. For all m ě 1 and x P Rp
` such that FXpxq ą 0,

γ˚
`

Tm,x, FpX,Y q
˘

“
m

FXpxq
max

#

ż ϕpxq

0

Fm
Y |Xpy|xqdy,

ż ϕpxq

0

Fm´1
Y |X py|xq

“

1´ FY |Xpy|xq
‰

dy

+

”
m

FXpxq
max tϕpxq ´ ψmpxq, ψmpxq ´ ψm´1pxqu . (5)

Also, it follows from the functional convergence theorem of Cazals et al. (2002) that

?
n
`

pψmpxq ´ ψmpxq
˘

“
1
?
n

n
ÿ

i“1

IF
`

pXi, Yiq;T
m,x, FpX,Y q

˘

` opp1q as nÑ 8.

Thus the influence function also measures the asymptotic bias caused by contamination

in the observations pXi, Yiq, i “ 1, . . . , n. More recently, under regularity conditions on

FY |Xp¨|xq, Daouia et al. (2012) have used pψmpxq to estimate the full frontier ϕpxq itself,

with m “ mn Ñ 8 at a slow rate as n Ñ 8. The estimator pψmnpxq is then corrected for

its inherent bias to obtain a final regularized frontier more robust than the traditional FDH

curve to extreme values and outliers.

Yet, the conditioning by the event tX ď xu results in partial m-frontiers that can still

be severely attracted by extreme and/or outlying observations with small Xi’s, especially as

the input level x decreases. The occurence of this vexing border effect is reflected by the

presence of low values of FXpxq in the denominator of (4) and (5). This is visualized in

Figure 1 (top panel) and Figure 2 (top panel), where the selected large m-frontiers pψmpxq

coincide with the non-robust FDH estimator pϕpxq over an important range of values of

x. Instead, we propose in the sequel to use a different formulation of expected maximum

production functions without recourse to the conditioning by X ď x.
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2.3 Robustified unconditional m-frontiers

For a fixed level of inputs-usage x P Rp
` such that FXpxq ą 0, we propose in this paper to

transform the pp`1q-dimensional random vector pX, Y q and the n-tuple tpX1, Y1q, . . . , pXn, Ynqu

into the dimensionless random variables

Y x
“ Y 1IpX ď xq and Y x

i “ Yi1I pXi ď xq , i “ 1, . . . , n. (6)

Their common distribution function FY xp¨q is closely related to the original conditional dis-

tribution function FY |Xp¨|xq since

FY xpyq “
 

1´ FXpxqr1´ FY |Xpy|xqs
(

1Ipy ě 0q.

A nice property of these transformed univariate random variables lies in the fact that

ϕpxq ” supty ě 0 |FY xpyq ă 1u,

pϕpxq ” supty ě 0 | pFY xpyq ă 1u “ maxpY x
1 , . . . , Y

x
n q,

where pFY xpyq “ p1{nq
řn
i“1 1IpY x

i ď yq. We then introduce the alternative concept of ex-

pected maximum achievable level of production

ϕmpxq “ E
“

maxpY x
1 , . . . , Y

x
mq
‰

“

ż 8

0

`

1´ rFY xpyqs
m
˘

dy, (7)

where pY x
1 , . . . , Y

x
mq can be any m independent copies of Y x such as, for instance, the Y x

i ’s

described in (6). Clearly, for any trimming number m ě 1, the quantity ϕmpxq is nothing

but the expectation of the FDH estimator based on the m-tuple tY x
i “ Yi1I pXi ď xq , i “

1, . . . ,mu.

Taking a closer look to ϕmpxq we see that it can be defined equivalently as the following

special probability-weighted moments.

Proposition 2. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have

ϕmpxq ” E
 

m ¨ rFY xpY
x
qs
m´1

¨ Y x
(

” E
 

Jm
`

FY |XpY |xq
˘

¨ Y |X ď x
(

,

where Jm
`

FY |Xpy|xq
˘

“ mFXpxq
“

1´ FXpxqr1´ FY |Xpy|xqs
‰m´1

“ mPpX ď xq r1´ PpX ď x, Y ą yqsm´1 .

The probability weight Jm
`

FY |Xpy|xq
˘

assigns bigger weights to relevant outputs. Like

ψmpxq, ϕmpxq achieves the optimal production frontier ϕpxq when the trimming number m

tends to infinity. Likewise, its empirical version

pϕmpxq “

ż 8

0

`

1´ r pFY xpyqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY xpyqs
m dy (8)
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converges to the FDH frontier pϕpxq asmÑ 8. However, unlike pψmpxq, the weight-generating

function defining pϕmpxq is by construction appreciably less sensitive to border effects:

pϕmpxq “

n
ÿ

i“1

Y x
piq

"ˆ

i

n

˙m

´

ˆ

i´ 1

n

˙m*

(9)

“

Nx
ÿ

i“1

Yxpiq
"ˆ

n´Nx ` i

n

˙m

´

ˆ

n´Nx ` i´ 1

n

˙m*

,

where Y x
piq denotes the ith order statistic of the observations Y x

1 , . . . , Y
x
n . This marks a

substantial difference with pψmpxq as can be seen from (3) and visualized in Figure 1 (bottom

panel) and Figure 2 (bottom panel) in both cases of postal services.

From a robustness theory viewpoint, both ϕmpxq ” Tm
`

FY x
˘

and pϕmpxq ” Tm
`

pFY x
˘

are

representable as a functional Tm of the population and empirical transformed distribution

functions FY x and pFY x , respectively, where Tm associates to a univariate distribution function

F p¨q on R` the real value

TmpF q “

ż 8

0

`

1´ rF pyqsm
˘

dy “

ż F´1p1q

0

`

1´ rF pyqsm
˘

dy,

with the integrand being identically zero for y ě F´1p1q :“ infty P R|F pyq “ 1u. Following

Hampel et al. (1986, Definition 1, p.84), the corresponding influence function of Tm at FY x

is defined as the ordinary derivative

u P R` ÞÑ IF
`

u;Tm, FY x
˘

“
d

dt |t“0
Tm pp1´ tqFY x ` tδuq .

In robust statistics, a small fraction of the observations would have a strong influence on the

estimator if their values were equal to a u where the influence function is large.

Proposition 3. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have

IF
`

u;Tm, FY x
˘

“ ´m

ż ϕpxq

0

rFY xpyqs
m´1

 

δupyq ´ FY xpyq
(

dy

” ´m

ż ϕpxq

0

“

1´ FXpxq ` FpX,Y qpx, yq
‰m´1  

1Ipu ď yq ´ 1` FXpxq ´ FpX,Y qpx, yq
(

dy.

This closed form expression of the influence function indicates that the unconditional

m-frontiers pϕmpxq ” Tm
`

pFY x
˘

do not suffer from the inherent border effects of the initial

concept of conditional m-frontiers pψmpxq ” Tm,x
`

pFpX,Y q
˘

. Moreover, by making use of the

same technique of proof of Proposition 1, it is easily seen that the gross-error sensitivity

λ˚
`

Tm, FY x
˘

:“ supuě0
ˇ

ˇIF
`

u;Tm, FY x
˘
ˇ

ˇ satisfies

λ˚
`

Tm, FY x
˘

“ m ¨max

#

ż ϕpxq

0

Fm
Y xpyqdy,

ż ϕpxq

0

Fm´1
Y x pyq r1´ FY xpyqs dy

+

” m ¨max tϕpxq ´ ϕmpxq, ϕmpxq ´ ϕm´1pxqu .

10



Also, as can be seen from the next proposition, IF
`

Y x
i ;Tm, FY x

˘

represents the approximate

contribution, or influence, of the observation pXi, Yiq toward the estimation error
 

pϕmpxq ´

ϕmpxq
(

.

Proposition 4. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have

?
n
 

pϕmpxq ´ ϕmpxq
(

“ ´m
?
n

ż ϕpxq

0

rFY xpyqs
m´1

 

pFY xpyq ´ FY xpyq
(

dy ` opp1q

“
1
?
n

n
ÿ

i“1

IF
`

Y x
i ;Tm, FY x

˘

` opp1q as nÑ 8.

Another immediate consequence of this proposition is that
?
n
 

pϕmpxq´ϕmpxq
(

is asymp-

totically normal with zero mean and variance

σ2
px,mq “ E

#

m

ż ϕpxq

0

rFY xpyqs
m´1

 

1IpY x
ď yq ´ FY xpyq

(

dy

+2

“ m2

ż ϕpxq

0

ż ϕpxq

0

“

FY xpyqFY xpzq
‰m´1 

FY xpy ^ zq ´ FY xpyqFY xpzq
(

dydz.

Next, we show that
?
n
 

pϕmpxq ´ ϕmpxq
(

also obeys a law of the iterated logarithm, which

improves the order of convergence to Op
?

log log nq and even gives the proportionality con-

stant.

Theorem 1. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have almost surely, for

either choice of sign,

lim sup
nÑ8

˘

?
n
 

pϕmpxq ´ ϕmpxq
(

p2 log log nq1{2
“ σpx,mq.

It should be clear that the estimation of a “partial” frontier ϕm, for a sufficiently large

value of m, instead of the “full” frontier ϕ is mainly motivated by the construction of a

“robust” frontier estimator pϕm which is well inside the cloud of data points tpXi, Yiq, i “

1, . . . , nu, but lies near the true upper support boundary. The robustness of pϕm comes from

its convergence monotonely from below to the smallest sample envelope (FDH) pϕ as the

trimming number m increases. It is then natural to verify whether the asymptotic normality

of the anchor production frontier pϕmpxq is still valid when it is shifted to the right place for

m “ mn Ñ 8 at a slow rate as nÑ 8.

Theorem 2. For x P Rp
` such that FXpxq ą 0, if mn Ñ 8 and mnpmn´1q

σpx,mnq
“ O

´ ?
n

log logn

¯

as

nÑ 8, then ?
n

σpx,mnq
tpϕmnpxq ´ ϕmnpxqu

L
ÝÑ N p0, 1q, nÑ 8.

11



Also, under the extreme-value condition (2), if mn Ñ 8 with mn “ O
´ ?

n
log logn

¯
1

3
2`

1
ρx , then

this asymptotic normality is still valid.

When the trimming level m “ mn Ñ 8 fast enough as n Ñ 8, the frontier estima-

tor pϕmnpxq estimates ϕpxq itself and converges to the same limit distribution as the FDH

estimator with the same scaling.

Theorem 3. For x P Rp
` such that FXpxq ą 0, if (2) holds and mn ě βn logpCnqt1` op1qu

for some constants β ą 1
ρx
` 1 and C ą 0, then

pn`xq
1{ρx

 

ϕpxq ´ pϕmnpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8.

It should also be clear that, from the point of view of the axiomatic foundation for pro-

duction functions, nothing guarantees that the conditional expected maximum production

function ψmpxq and its estimator pψmpxq satisfy the monotonicity requirement. In contrast,

both population and sample unconditional versions ϕmpxq and pϕmpxq enjoy the desirable

axiom of monotonicity of the true efficient frontier ϕpxq. Indeed, it is not hard to verify that

FY xpyq ” t1´ PpX ď x, Y ą yqu 1Ipy ě 0q.

Then, for all y ě 0, the function x ÞÑ FY xpyq is monotone nonincreasing. Therefore, the

unconditional partial frontier function ϕmpxq defined in (7) is monotone nondecreasing in x,

for all m ě 1. Likewise, it is easily seen that

pFY xpyq ”

#

1´
1

n

n
ÿ

i“1

1IpXi ď x, Yi ą yq

+

1Ipy ě 0q

is monotone nonincreasing in x. Whence, the empirical estimator pϕmpxq described in (8) is

constrained to be monotone nondecreasing in x, for all m ě 1.

2.4 Trimming selection problem

As with any trimming techniques, the degree of truncation, here reflected through m selec-

tion, is a major issue in practice. But monotonicity itself is a rather powerful way of regu-

larizing the estimated expected maximum production function. Because it eliminates sharp

changes in the slope and curvature of the unconditional m-frontier function, the trimming

selection problem tends to be easier than unconstrained conditional m-frontier estimation.

Of course, if the model is known or believed to be nearly correct, then the use of the envel-

opment FDH estimator pm “ 8q is required. Otherwise, if the dataset contains suspicious

isolated extreme observations, it is more prudent to seek for ‘robustification’ via the choice of

12
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Figure 1: Scatterplot of the n “ 2, 326 delivery post offices (data in logarithms)—

Estimated expected maximum production frontiers pψm (top) and pϕm (bottom), with m “

600, 700, 800, 900 and m “ 8 (FDH), respectively, in green, red, yellow, violet and gray
curves.
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an adequate trimming level m. To verify the presence of such influential observations among

the data (e.g. French and European postal datasets), a simple diagnostic tool is by using the

gross-error sensitivity of the sequence tpϕmum which corresponds to the maximum influence

function. Figure 3 shows the sample gross-error sensitivity x ÞÑ λ˚
`

Tm, pFY x
˘

, for various

values of m “ 100, 200, . . . , 1500. For both postal services, the evolution of λ˚ exhibits some

slight and severe breakdowns at different values of x, especially in the case of French post

offices (r-h.s). This indicates the presence of isolated extreme and/or anomalous data. One
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Figure 3: Plots of x ÞÑ λ˚
`

Tm, pFY x
˘

for m “ 100, 200, . . . , 1500. From left to right, the 2,326
and 4,000 post offices.

way of choosing the trimming number m is then by looking to Figure 4 which indicates how

the percentage of data points pXi, Yiq above the curve of pϕm decreases with m. The basic

idea is to choose values of m for which the frontier estimator pϕm is sensitive to the magnitude

of valuable extreme post offices while remaining resistant to isolated outliers.

The evolution of the percentage in both sectors of Delivery Services has clearly an “L”

structure. Such an L deviation should appear for any other analyzed data set since, by

construction, the probability-weighted moments pϕm steer an advantageous middle course

between sensitivity and robustness to extreme values and/or outliers. In the case of 2, 326

delivery post offices (top picture in Figure 4), the percentage first falls rapidly along the ‘red’

part of the curve. This means that most of the observations lying above the corresponding

m-frontiers are not extremes but interior points to the cloud of data points. Then the

evolution of the percentage shows an “elbow effect” along the ‘orange’ and ‘green’ parts of

the curve. This means that the observations outside the corresponding m-frontiers are no

more inefficient, but still contain either relatively efficient post offices that are well inside

the sample or top observations that are valuable post offices. In contrast, after the elbow

15
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Figure 4: Evolution of the % of sample points outside the partial m-frontiers pϕm.

effect, it may be seen that the percentage decreases very slowly along the ‘blue’ part, say

850 ď m ď 1250, before to become extremely stable along the ‘violet’ part of the curve. This

means that all observations left outside the partial frontier of order m “ 850 are really very

extreme in the Y -direction and could be outlying or perturbed by noise. This might suggest

to select 850 as a potential lower value for m. On the other hand, the extreme stability of the

percentage curve from m “ 1250 may indicate that the observations above the frontier pϕ1250

are really outlying or suspicious isolated extremes that deserve to be carefully examined.

This might suggest to choose 1250 as a potential upper value for m. The two potential

choices of the frontier estimator pϕm are graphed in Figure 5 along with the FDH estimator.

As regards the 4, 000 delivery post offices (bottom picture in Figure 4), it may be seen
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that the “elbow effect” corresponds to the ‘orange’ part of the percentage curve, and the

desired range of values of m follows as the ‘green’ part, say, 500 ď m ď 1000. The lower and

upper selected prudential frontiers pϕ500 and pϕ1000 are superimposed in Figure 5 along with

the FDH estimator. Unsurprisingly, there are very few observations lying between the two

partial frontiers.

3 Numerical illustrations

In this section, we illustrate our procedure through two standard examples with simulated

data. We consider the same data generating processes traditionally used in the literature

of nonparametric frontier estimation such as, for instance, Gijbels et al. (1999), Cazals

et al. (2002), Simar (2003), Florens and Simar (2005), Daouia et al. (2005), Daouia and

Ruiz-Gazen (2006), Daouia and Gijbels (2011), and Noh (2014).

Example 1. We first consider a situation where the upper extremity of the joint support

of pX, Y q is linear. We choose pX, Y q uniformly distributed over the triangle tpx, yq P r0, 1s2 :

y ď xu. Here, the true full frontier function is ϕpxq “ x, and the conditional distribution

function is FY |Xpy|xq “ 2x´1y ´ x´2y2, for 0 ă x ď 1 and 0 ď y ď ϕpxq. The partial

conditional order-m frontier function is

ψmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

2m´kp´1qkx{pm` k ` 1q.

Its unconditional analogue for the same order m is given by

ϕmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

p´1qkx2k`1{p2k ` 1q.

Example 2. We now consider a more realistic example from the point of view of production

econometrics. We choose a non-linear production frontier given by the Cobb-Douglas model

Y “ X1{2 expp´Uq, where X is uniform on r0, 1s and U , independent of X, is exponential

with mean 1{3. Here, the full production function is ϕpxq “ x1{2, and the conditional

distribution function is FY |Xpy|xq “ 3x´1y2 ´ 2x´3{2y3, for 0 ă x ď 1 and 0 ď y ď ϕpxq.

The partial order-m frontier functions have the following closed form expressions:

ψmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

3m´kp´2qk
?
x{p2m` k ` 1q,

ϕmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

xk`1{2p´1qk
k
ÿ

j“0

ˆ

k

j

˙ j
ÿ

i“0

ˆ

j

i

˙

p´3qj´i2i{p2j ` i` 1q.

For both examples, the graphs of ψm and ϕm are superimposed in Figures 6 and 7, for

three values of m “ 1, 10, 25, along with the true support boundary ϕ. First, it may be
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Figure 5: Selected (lower and upper) expected maximum production frontiers pϕm. Top—
dataset of size 2, 326 in logarithms, with m “ 1250 (upper) in red line, m “ 850 (lower) in
blue line, and m “ 8 (FDH) in green line. Bottom—dataset of size 4, 000, with m “ 1000
(upper) in red line, m “ 500 (lower) in blue line, and m “ 8 (FDH) in green line.
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seen from the plots that the conditional m´frontiers ψmpxq [dotted red curves] diverge from

the true frontier ϕpxq [solid green curve] as x increases. Whereas the new unconditional

m´frontiers ϕmpxq [dashed blue curves] tend to be more parallel to the full frontier ϕpxq.

Second, the partial conditional m´frontiers approach rapidly the full frontier as m increases,

while the convergence of the unconditional m´frontiers seems to be slower. Already these

substantial differences indicate the usefulness of the new concept of unconditional expected

maximum production m´frontiers.

Moreover, the new unconditional m´frontier ϕm can be viewed as a ‘robustified’ alter-

native to the original conditional m´frontier ψm, for each trimming level m. This is visu-

alised in Figures 8 and 9, where the gross-error sensitivities γ˚
`

Tm,x, FpX,Y q
˘

of ψmpxq and

λ˚
`

Tm, FY x
˘

of ϕmpxq are plotted against m, for various values of x P t1
4
, 1
2
, 3
4
u. According

to Hampel, Ronchetti, Rousseeuw and Stahel (1986, p.43), the most important quantita-

tive robustness requirement is a low gross-error sensitivity. From this basis, it is clear that

the new class of unconditional m´frontiers affords more reliability since the corresponding

gross-error sensitivity λ˚ [dashed magenta] is overall smaller than γ˚ [solid cyan]. Of interest

is the limit case m Õ 8, where γ˚ explodes especially for low inputs-usage x, whereas λ˚

remains appreciably small and stable whatever the value of x. This indicates that the se-

quence of empirical unconditional m´frontiers tpϕmpxqun is more resistant to extreme values

and/or outliers than its conditional analogue t pψmpxqun for estimating the true full frontier

ϕpxq “ limmÑ8 ϕmpxq “ limmÑ8 ψmpxq. The lack of robustness of t pψmpxqun, for small

values of x, is due to its construction via the conditioning by X ď x.

To evaluate finite-sample performance of pψmp¨q and pϕmp¨q, as robust estimators of ϕp¨q,

we have undertaken some simulation experiments. All the experiments were performed over

1,000 simulations for the sample sizes n “ 100, 500, 1000. Three outliers were added in

each simulated data set: tp0.1, 0.6q, p0.35, 0.8q, p0.6, 1qu for both uniform-triangle and Cobb-

Douglas examples. The measures of efficiency for each simulation used were the mean squared

error and the bias

MSEt pψmu “
1

L

L
ÿ

`“1

!

pψmpx`q ´ ϕpx`q
)2

, Biast pψmu “
1

L

L
ÿ

`“1

!

pψmpx`q ´ ϕpx`q
)

MSEtpϕmu “
1

L

L
ÿ

`“1

tpϕmpx`q ´ ϕpx`qu
2 , Biastpϕmu “

1

L

L
ÿ

`“1

tpϕmpx`q ´ ϕpx`qu

with the x`’s being L “ 100 points regularly distributed in r^Xi,_Xis. To guarantee a fair

comparison among the two rival estimation methods, we used for each estimator the optimal

parameter m minimizing its MSE over the wide range t1, . . . , nu. The resulting values of

MSE and bias are averaged on the 1,000 Monte Carlo replications and reported in Tables 1
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Figure 6: Uniform triangle example—Graphs of ϕ in solid line, ψm in dotted line, and ϕm
in dashed line.
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Figure 7: Cobb-Douglas example—Same graphs as before.
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Figure 9: Cobb-Douglas example—Gross-error sensitivities plots as before.

and 2, along with the average m of the optimal 1,000 trimming levels m. The obtained

estimates provide Monte Carlo evidence that the new class of partial m´frontiers tpϕmum is

more efficient and robust relative to t pψmum for estimating ϕ. A typical realization of the

experiment in each simulated scenario with n “ 100 is shown in Figure 10, where the optimal

parameter m of each frontier estimator was chosen in such a way to minimize its MSE.

4 Conclusions

In this paper we suggest a new approach to estimate nonparametrically and in a robust

way the upper extremity of the joint support of a random vector pX, Y q P Rp
` ˆ R`. For
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MSE

n t pψmu tpϕmu

100 0.0414 0.0031
500 0.0240 0.0014
1000 0.0175 0.0010

Bias

t pψmu tpϕmu

0.0169 -0.0103
-0.0219 -0.0104
-0.0312 -0.0095

m

t pψmu tpϕmu

7.90 31.76
15.71 100.61
21.02 163.09

Table 1: Uniform triangle example—Results averaged on 1,000 simulations.

MSE

n t pψmu tpϕmu

100 0.0050 0.0019
500 0.0023 0.0006
1000 0.0016 0.0004

Bias

t pψmu tpϕmu

-0.0104 -0.0101
-0.0147 -0.0074
-0.0139 -0.0062

m

t pψmu tpϕmu

21.19 51.24
51.42 150.73
76.65 239.33

Table 2: Cobb-Douglas example—Results averaged on 1,000 simulations.
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Figure 10: Typical realizations for simulated samples of size n “ 100. Top—Uniform triangle
example. Bottom—Cobb-Douglas example. True frontier ϕ in dotted line with its optimal
m´frontier estimators pψm in dashed line and pϕm in solid line.

a prespecified level of inputs-usage x interior to the marginal support of X, the basic idea

is to first transform the pp ` 1q-dimensional vector pX, Y q into a dimensionless random

variable Y x “ Y 1IpX ď xq, and then to define a concept of partial m-frontier ϕmpxq “
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E
“

maxpY x
1 , . . . , Y

x
mq
‰

as the expected maximum of m independent copies of Y x. In other

words, we characterize ϕmpxq as the expectation of the popular envelopment FDH estimator

of the true full frontier ϕpxq based on the m-tuple of observations Y x
i “ Yi1I pXi ď xq,

i “ 1, . . . ,m. We get robust estimators of the partial m-frontier functions ϕm as well

as the full production function ϕ (corresponding to the limiting case m Ñ 8). We derive

their asymptotic distributions and robustness properties, and show their superiority over the

pioneering class of conditional expected maximum production frontiers initiated by Cazals

et al. (2002) and popularized by Daouia and Simar (2005), Florens and Simar (2005),

Daouia and Ruiz-Gazen (2006), Daouia and Gijbels (2011), Daouia et al. (2012), to name a

few. The merits and usefulness of our new class of unconditional expected maximum output

frontiers are explored through two concrete datasets on delivery offices in the sector of postal

services. The question of estimating both ϕm and ϕ in a stochastic frontier model, where

the regression errors are assumed to be composite, is a topic of interest for future research.

Appendix: Proofs

Proof of Proposition 1. We have

γ˚
`

Tm,x, FpX,Y q
˘

“
m

FXpxq
sup
y0ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ż ϕpxq

0

Fm´1
Y |X py|xq

“

1Ipy0 ď yq ´ FY |Xpy|xq
‰

dy

ˇ

ˇ

ˇ

ˇ

ˇ

“
m

FXpxq
max

#

ż ϕpxq

0

Fm
Y |Xpy|xqdy, sup

0ďy0ďϕpxq

Hpy0q

+

,

where Hpy0q :“
şy0
0
Fm
Y |Xpy|xqdy `

şϕpxq

y0
Fm´1
Y |X py|xq

“

1´ FY |Xpy|xq
‰

dy. The function Hp¨q

being convex and continuous on r0, ϕpxqs, it achieves it supremum at y0 “ 0 or y0 “ ϕpxq.

The conclusion is then immediate.

Proof of Proposition 2. By definition (7) we have ϕmpxq “ EpWmq, where Wm “

maxpY x
1 , . . . , Y

x
mq. Hence ϕmpxq “ arg minθPR E

 

pWm ´ θq
2
(

. On the other hand, it is easily

seen that

E
 

pWm ´ θq
2
(

“ E
 

mrFY xpY
x
qs
m´1

¨ pY x
´ θq2

(

.

Therefore, ϕmpxq “ arg minθPR E
 

mrFY xpY
xqsm´1 ¨ pY x ´ θq2

(

. The first-order necessary

condition for the optimality leads to the solution

ϕmpxq “ E
 

mrFY xpY
x
qs
m´1

¨ Y x
(

{E
 

mrFY xpY
x
qs
m´1

(

“ E
 

mrFY xpY
x
qs
m´1

¨ Y x
(

.

The last equality follows from the fact that E
 

mrFY xpY
xqsm´1

(

“ 1.
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Proof of Proposition 3. Putting Ft “ p1´ tqFY x ` tδu and F´1t p1q “ infty|Ftpyq “ 1u, we

have

IF
`

u;Tm, FY x
˘

“
d

dt |t“0
Tm pFtq “

d

dt |t“0

ż F´1
t p1q

0

r1´ Fm
t pyqsdy.

Since Ftpyq Ñ FY xpyq as t Ñ 0 for every y P R, we obtain the weak convergence of the

distribution functions Ft ù FY x , which in turn implies the weak convergence of the under-

lying quantile functions as tÑ 0 in view of a van der Vaart’s lemma (1998, Lemma 21.2, p.

305). In particular, F´1t p1q Ñ F´1Y x p1q ” ϕpxq as t Ñ 0. Then for any ν ą ϕpxq, we have

F´1t p1q ă ν as tÑ 0. Therefore

IF
`

u;Tm, FY x
˘

“
d

dt |t“0

ż ν

0

r1´ Fm
t pyqsdy “ ´m

ż ν

0

rFY xpyqs
m´1

 

δupyq ´ FY xpyq
(

dy,

for any ν ą ϕpxq. Taking the limit as ν Ñ ϕpxq ends the proof.

The influence function in Proposition 3 coincides with the first Gâteaux derivative of the

functional Tm at FY x . To prove Proposition 4 we need the stronger concept of Hadamard-

differentiability.

Fix m ě 1 and x P Rp
` such that FXpxq ą 0. Define the domain Dx to be the set of

distribution functions F p¨q on R` whose right endpoint F´1p1q :“ infty ě 0|F pyq “ 1u

satisfies F´1p1q ď ϕpxq. Then, for any F P Dx, we have

TmpF q “

ż 8

0

r1´ Fm
pyqsdy “

ż F´1p1q

0

r1´ Fm
pyqsdy “

ż ϕpxq

0

r1´ Fm
pyqsdy.

In particular, we have Tm
`

FY x
˘

” ϕmpxq and Tm
`

pFY x
˘

” pϕmpxq “
şϕ̂pxq

0
p1´r pFY xpyqs

mqdy
a.s.
“

şϕpxq

0
p1´ r pFY xpyqs

mqdy since ϕ̂pxq ď ϕpxq with probability 1.

Lemma 1. The map Tm : Dx Ă L8pR̄q ÝÑ r0, ϕpxqs is Hadamard-differentiable at FY x with

derivative

pTmq
1
FY x

: h P L8pR̄q ÞÝÑ pTmq
1
FY x
phq “ ´m

ż ϕpxq

0

rFY xpyqs
m´1hpyqdy.

Proof. Let h P L8pR̄q and ht Ñ h uniformly in L8pR̄q, where FY x ` tht P Dx for all

small t ą 0. Write ϕmtpxq :“ TmpFY x ` thtq. Following the definition of the Hadamard

differentiability [see van der Vaart (1998), p.296], we shall show that pϕmtpxq ´ ϕmpxqq{t

converges to pTmq
1
FY x
phq as t Ó 0. We have

ϕmtpxq ´ ϕmpxq “

ż ϕpxq

0

trFY xpyqs
m
´ rFY xpyq ` thtpyqs

m
u dy.
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By Taylor’s formula, for any y P r0, ϕpxqs, there exists a point ζt,xpyq interior to the interval

joining rFY xpyqs and rFY xpyq ` thtpyqs such that

rFY xpyqs
m
´ rFY xpyq ` thtpyqs

m
“ ´mtζm´1t,x pyqhtpyq.

Hence
ϕmtpxq ´ ϕmpxq

t
“ ´m

ż ϕpxq

0

rζt,xpyqs
m´1htpyqdy.

It follows from the definition of ζt,xpyq and the uniform convergence ht Ñ h in L8pR̄q that

rζt,xpyqs
m´1htpyq converges to rFY xpyqs

m´1hpyq uniformly in y as t Ó 0. Therefore, we obtain

limtÓ0pϕmtpxq ´ ϕmpxqq{t “ pTmq
1
FY x
phq. l

Proof of Proposition 4. By the Donsker Theorem, the empirical process
?
np pFY x ´ FY xq

converges in distribution in L8pRq to an FY x-Brownian bridge FY x , a Gaussian process with

zero mean and covariance function EpFY xpt1qFY xpt2qq “ FY xpt1 ^ t2q ´ FY xpt1qFY xpt2q, for

all t1, t2 P R. Then, by applying the functional delta method [see van der Vaart (1998),

Theorem 20.8, p.297] in conjunction with Lemma 1, we get
?
ntTmp pFY xq ´ TmpFY xu “

pTmq
1
FY x
p
?
np pFY x ´ FY xqq ` opp1q.

Proof of Theorem 1. By Taylor’s formula, for any y P r0, ϕpxqs, there exists a point

ηx,npyq interior to the interval joining FY xpyq and pFY xpyq such that r pFY xpyqs
m´rFY xpyqs

m “

mrFY xpyqs
m´1t pFY xpyq ´ FY xpyqu ` pm{2qpm ´ 1qrηx,npyqs

m´2t pFY xpyq ´ FY xpyqu
2. By using

the fact that
 

pϕmpxq ´ ϕmpxq
( a.s.
“

şϕpxq

0

`

rFY xpyqs
m ´ r pFY xpyqs

m
˘

dy, we get

 

pϕmpxq ´ ϕmpxq
(

´m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy (A.1)

a.s.
“ ´pm{2qpm´ 1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq ´ FY xpyqu
2dy.

On the other hand, we have by the law of the iterated logarithm (LIL) for empirical processes

sup
y

ˇ

ˇ pFY xpyq ´ FY xpyq
ˇ

ˇ “ O
`

plog log n{nq1{2
˘

, (A.2)

with probability 1. It follows that supyt
?
nr pFY xpyq ´ FY xpyqs

2u
a.s.
ÝÑ 0 as n Ñ 8. Finally,

since 0 ď ηx,npyq ď 1 for all y, we arrive at

Rm,npxq :“
?
n

˜

 

pϕmpxq ´ ϕmpxq
(

´m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy

¸

a.s.
ÝÑ 0.

By applying again the classical LIL [see, e.g., Serfling (1980), Theorem A, p.35], we obtain

lim sup
nÑ8

˘

?
nm

p2 log log nq1{2

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy “ σpx,mq
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for either choice of sign, with probability 1. By combining this result with the fact that

Rm,npxq{p2 log log nq1{2
a.s.
ÝÑ 0 as nÑ 8, we get the desired LIL.

Proof of Theorem 2. Here we employ similar arguments of proof as in Theorem 3.1 and

Lemma 3.1 of Daouia et al. (2012). We know by (A.1) that
?
n

σpx,mq

 

pϕmpxq ´ ϕmpxq
( a.s.
“

?
n

σpx,mq
m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy

´

?
n

σpx,mq
pm{2qpm´ 1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq ´ FY xpyqu
2dy,

and that supy
ˇ

ˇ pFY xpyq´FY xpyq
ˇ

ˇ

a.s.
“ O

`

plog log n{nq1{2
˘

in view of (A.2). For any y Ps0, ϕpxqr

we have 0 ă ηx,npyq ă 1 and so rηx,npyqs
m´2 a.s.

Ñ 0 when nÑ 8. Hence, using the dominated

convergence theorem, we have
şϕpxq

0
rηx,npyqs

m´2dy
a.s.
Ñ 0. Since

?
nmpm ´ 1q{σpx,mq “

Opn{ log log nq, we get
?
n

σpx,mq

m

2
pm´1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq´FY xpyqu
2dy

a.s.
“ Op1q

ż ϕpxq

0

rηx,npyqs
m´2dy

a.s.
ÝÑ 0.

On the other hand,
?
n

σpx,mq
m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy “
n
ÿ

i“1

Zn,i
?
nσpZn,iq

(A.3)

where Zn,i “ m
şϕpxq

0
rFY xpyqs

m´1
 

FY xpyq ´ 1IpY x
i ď yq

(

dy and its variance is σ2pZn,iq “

σ2px,mq. We have nEr|Zn,1|3s{tnσ2pZn,1qu
3{2 ď mϕpxq{

?
nσpZn,1q Ñ 0 sincem{

?
nσpx,mq Ñ

0. Hence the leading term (A.3) converges in distribution to N p0, 1q by Lyapounov’s Theo-

rem. Therefore
?
nσ´1px,mq

 

pϕmpxq ´ ϕmpxq
( L
Ñ N p0, 1q.

In what concerns the second assertion, it is easily seen that

σ2
px,mq “ 2m2

ż ϕpxq

0

ż ϕpxq

0

Fm
Y xpyqF

m´1
Y x pzqr1´ FY xpzqs1Ipy ď zqdydz

“ 2m2

ż ϕpxq

0

Fm´1
Y x pzqSY xpzq

ˆ
ż z

0

Fm
Y xpyqdy

˙

dz.

Then, for all δ ą 0 sufficiently small, we have

σ2
px,mq ě 2m2

ż ϕpxq

ϕpxq´δ

Fm´1
Y x pzqSY xpzq

ˆ
ż z

z´δ

Fm
Y xpyqdy

˙

dz

ě 2m2δ

ż ϕpxq

ϕpxq´δ

Fm´1
Y x pzqSY xpzqF

m
Y xpz ´ δqdz

ě 2m2δ

ż ϕpxq

ϕpxq´δ

F 2m
Y x pz ´ δqSY xpzqdz

ě 2m2δF 2m
Y x pϕpxq ´ 2δq

ż ϕpxq

ϕpxq´δ

SY xpzqdz.
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It follows from the regularity condition (2) that

σ2
px,mq ě m2δF 2m

Y x pϕpxq ´ 2δq`xδ
ρx`1{pρx ` 1q, δ Ñ 0.

We also have by (2) that

F 2m
Y x pϕpxq ´ 2δq ě t1´ 2`xp2δq

ρxu
2m
“ exp

“

2m log t1´ 2`xp2δq
ρxu

‰

ě e´8m`xp2δq
ρx
, δ Ñ 0.

Thus, for δ “ p1{mq1{ρx , we get

σ2
px,mq ě m2δρx`2e´8m`xp2δq

ρx
`x{pρx ` 1q ě cxm

1´2{ρx , mÑ 8,

for some constant cx ą 0. Whence

mpm´ 1q{σpx,mq ď c´1{2x mpm´ 1qm´ 1
2
` 1
ρx , mÑ 8.

Hence, if m “ O p
?
n{ log log nq

1
3
2`

1
ρx , it is immediate that mpm´1q

σpx,mq
“ O p

?
n{ log log nq as

nÑ 8, and so the asymptotic normality holds.

Proof of Theorem 3. According to Daouia et al. (2010, Corollary 2.1), we have under (2)

that

pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8.

The basic idea of proof is then to consider the following decomposition

pn`xq
1{ρx

 

ϕpxq ´ pϕmpxq
(

“ pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
(

` pn`xq
1{ρx

 

pϕpxq ´ pϕmpxq
(

and show that the second term on the right-hand side pn`xq
1{ρx

 

pϕpxq ´ pϕmpxq
(

“ opp1q as

nÑ 8. It follows from (9) that

pϕpxq ´ pϕmpxq “ Y x
pnq ´ pϕmpxq “

n´1
ÿ

i“1

pi{nqm
 

Y x
pi`1q ´ Y

x
piq

(

.

The support of Y x being bounded (included in r0, ϕpxqs), we have with probability 1 that

pϕpxq ´ pϕmpxq “ O

˜

n´1
ÿ

i“1

pi{nqm

¸

“ O

ˆ

n

„

1´
1

n

m˙

.

Hence, for the term pn`xq
1{ρx

 

pϕpxq´pϕmpxq
(

to be opp1q, it is sufficient to choose m “ mn such

that n
1
ρx
`1

“

1´ 1
n

‰mn
Ñ 0 as nÑ 8. To achieve this, it suffices to have

“

1´ 1
n

‰mn
“ Opn´βq,

or equivalently,
“

1´ 1
n

‰mn
ď pCnq´β for some constants β ą 1

ρx
`1 and C ą 0. This condition

reduces to mn ě βn logpCnqt1`op1qu by using the fact that logp1´1{nq „ ´1{n as nÑ 8.
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