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Abstract

Does traders’ experience reduce their propensity to participate in speculate bub-

bles? This paper studies this issue from a theoretical and an experimental viewpoint.

We focus on a game in which bubbles, if they arise, are irrational, as in the Smith,

Suchanek, and Williams (1988)’s set up. Our theoretical results are based on Camerer

and Ho (1999)’s Experience-Weighted Attraction learning model. Adaptive traders are

assumed to adjust their behavior according to actions’ past performance. In the long

run, learning induces the market to converge to the unique no bubble equilibrium.

However, learning initially increases traders’ propensity to speculate. In the short run,

more experienced traders thus create more bubbles. An experiment shows that bub-

bles are very pervasive despite the fact that subjects have become experienced. Our

estimation of the EWA model also indicates that learning is at work.
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1 Introduction

Do traders learn to avoid participating in speculative bubbles? This question is the object of

a long-standing debate in the financial economics literature. On the one hand, Smith et al.

(1988) propose an experimental design to study speculative bubbles and show that bubbles

are less likely but do not disappear with experience. This result is confirmed by King, Smith,

Williams, and VanBoening (1993). Dufwenberg, Lindqvist, and Moore (2005) further show

that bubbles also diminish with experience when only part of the traders are experienced. On

the other hand, more recent papers suggest that bubbles can be rekindled when experienced

traders are confronted with new market parameters (Hussam, Porter, and Smith (2008)) and

when new traders enter the market in an overlapping-generation experiment (Deck, Porter,

and Smith (2014)). The objective of this paper is to study learning in speculative bubbles

and to identify, both theoretically and experimentally, the conditions under which experience

can be expected to shut down speculation. To achieve this objective, we focus on the bubble

game designed by Moinas and Pouget (2013). In this game, trading proceeds sequentially,

traders’ position in the sequence is random, and prices increase exponentially. When there

is a price cap, there is no bubble at the dominance-solvable Bayesian Nash equilibrium:

confronted with the highest potential price, a rational trader refuses to buy. Anticipating

this behavior, a rational trader receiving the second highest price should also refuse to buy.

Proceeding backward, this logic rules out the formation of bubbles (the higher the price cap,

the higher the number of iterated reasoning steps needed to reach equilibrium). However,

when traders suffer from bounded rationality (in the form of limited depth of reasoning as

in cognitive hierarchy models or in the form of random mistakes as in the quantal response

models), bubbles can emerge

The bubble game is useful to study learning to speculate for three reasons. First, there is

a finite number of decisions individuals can make. This makes it possible to analyze behavior

in the bubble game thanks to learning models without making strong auxiliary assumptions.
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Second, the bubble game enables to study different types of speculative behavior: speculation

that is due to costly mistakes and speculation that arises when traders try to profitably trade

on others’ mistakes. Third, the bubble game is short enough so that it can be repeated a large

number of times. This enables to provide subjects with numerous learning opportunities.

We run an experiment based on the bubble game in a stranger design with a small or

with a large number of steps of reasoning required to understand that there is no bubble

equilibrium. In our experiment, 132 subjects participate in a bubble experiment similar

to Moinas and Pouget (2013) with two treatment variables: the cap on the first price is

either 1 or 10,000 (corresponding to a maximum number of steps of reasoning of 2 and 6,

respectively) and the number of replications of the experiment is either 10 or 20.

Our experimental findings are as follows. When the cap is 1, there are few steps of

reasoning and we find that the probability to participate in bubbles tends to decrease over

time. When the cap is 10,000, this probability tends to increase. Thus, in our experiment, we

observe bubbles that do not vanish with experience. We run panel logit regressions to study

individual speculative behavior. These regressions show that subjects’ behavior changes

depending on the outcomes of past actions. This is an evidence of adaptive learning. Our

experimental results, at the market and at the individual levels, suggest that individual

learning does not immediately convert into markets experiencing less bubbles.

From a theoretical standpoint, we capture traders’ learning process using Camerer and

Ho (1999)’s Experience-Weighted Attraction model. This adaptive learning model is general

in the sense that it nests belief-based learning and reinforcement learning. Traders’ choices

depend on the various actions’ attractions, i.e., accumulated past payoffs. A crucial param-

eter in this model is the imagination parameter. When it is equal to 0, agents only reinforce

chosen actions, as it is the case in reinforcement learning. When the imagination param-

eter is greater than 0, agents also reinforce actions that were not actually chosen, as it is

implicitly assumed in belief-based learning. Traders’ attractions are transformed into choice

probabilities via a logistic function with a given payoff responsiveness parameter. When this
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responsiveness parameter is 0, players choose each action with the same probability, while

when it is infinite, players choose with probability one the action with the highest attraction.

Camerer and Ho (1999)’s model is useful because it enables us to study whether adaptive

traders’ speculating behavior depends on the type of learning process.

We first provide analytical results. In the long term, the market converges to the unique

dominance-solvable no-bubble equilibrium. This is in line with the analysis of Milgrom

and Roberts (1991). However, in the short term, the propensity to speculate can increase.

In order to study speculation in the intermediate term, we run simulations of the bubble

game with 1,000 independent trials that each includes 1,000 successive runs. We show that

learning initially increases traders’ propensity to speculate. More experienced traders thus

initially create more bubbles. The effect of imagination on speculation depends on whether

traders can observe the choice of the next trader in the market sequence even if they do not

speculate.

To better understand the type of learning at work in our data, we structurally estimate

the learning model on our experimental data. We find an imagination parameter of 0.45, not

statistically different from zero. This indicates that imagination is not an important ingre-

dient for learning in our speculation setting. Our estimate of the responsiveness parameter

is 0.2. This suggests that there is a lot of noise in individual behavior. Vuong tests indicate

that the learning model fits the data better than a no-learning model in which agents’ choice

probabilities are constant and similar to the first period of play. Our structural estimations of

the learning model thus suggests that learning is indeed at work in our experiment. Overall,

our results show that learning does not easily shut down speculative bubbles.

The rest of the paper is organized as follows. The next section offers a review of the

relevant literature. Section 3 presents the bubble game and the experimental setup. Section

4 presents the experimental results. Section 5 offers a theoretical analysis of bubbles based

on adaptive learning and estimates the EWA model. Section 6 concludes.
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2 Related literature

In their seminal contribution, Smith et al. (1988) propose an experimental setup in which

(irrational) bubbles can be studied, and they show that such bubbles arise in their ex-

periments.This contribution has triggered an extremely large number of experimental and

theoretical work on bubble formation (see for example, Deck et al. (2014) for a discussion

of a number of the follow-up studies to Smith et al. (1988), and Caginalp and Ermentrout

(1990) for a mathematical model of speculation inspired by Smith et al. (1988)).

Smith et al. (1988) also show that several replications with the same subjects were re-

quested to attenuate the emergence of bubbles. Their results were replicated in numerous

subsequent papers including King et al. (1993) who show that bubbles emerge in a variety

of market environments and also conclude that three replications of the experiments were

necessary to shut down irrational speculation. Dufwenberg et al. (2005) further shows that

bubbles diminish even when part of the traders are experienced.

The impact of experience on bubble formation is however not completely clear since

more recent papers suggest that bubbles can be rekindled when experienced traders are

confronted with new market parameters (Hussam et al. (2008)) and when new traders enter

the market in an overlapping-generation experiment (Deck et al. (2014)). Our paper speaks

to this debate and studies, both theoretically and experimentally, the conditions under which

experience can be expected to shut down irrational speculative bubbles.

Duffy and Ünver (2006) use the Smith et al. (1988) bubble environment in order to study

the behavior of artificially-intelligent agents. They show that near-zero intelligence traders

generate irrational bubbles and crashes when traders are endowed with some foresight ability

and adopt a price setting behavior with anchoring effects and within exogenously defined

bounds. We complement the analysis of Duffy and Ünver (2006) by studying how learning

affects speculative behavior.

Some papers have studied learning to speculate in an environment were it is rational. In
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this case, the surprising result is that speculation did not occur as much as could be expected.

Duffy and Ochs (1999) for example show that subjects had difficulties coordinating on the

speculative equilibrium in a money experiment. They show that this lack of speculation was

related to a tendency of subjects to rely on past choices’ payoffs rather than on the profit to

be expected from speculation. Duffy (2001) extends the analysis of Duffy and Ochs (1999)

and shows that the propensity to speculate increases when profit opportunities are more

frequent or less risky in line with an agent-based model that incorporates some features of

adaptive learning. We complement these articles by proposing a simple irrational bubble

experiment in which a more general adaptive learning model can be tested and estimated.

Learning has also been extensively studied both by experimentalists and by empiricists.

For example, Nagel and Tang (1998) propose an experiment to study learning in the normal-

form centipede game. Their results suggest that learning is not necessarily conducive to

equilibrium. Duffy and Nagel (1997) show that directional learning in a beauty contest game

can induce some agents to adjust their play away from equilibrium as they get experienced.

This phenomenon can also be present in the adaptive learning model that we study and we

show that it plays an important role in the fact that experience might induce more bubbles

in the short-run. The result that more experienced traders may speculate more echoes the

findings of De Martino, O’Doherty, Ray, Bossaerts, and Camerer (2013) indicating that

people who are more sophisticated, in the sense that they are better able to infer intentions

from others’ actions, are more prone to speculate in bubbles.

Empiricists have also found clever ways at identifying learning and its impact on various

financial and macroeconomic variables. For example, Kaustia and Knüpfer (2008) find that

the outcomes of IPOs in which they have participated affect future investment behavior of

individuals. Malmendier and Nagel (2011, 2016) show that investors’ expectations regarding

stock returns and inflation depend on their own economic experience rather than on the

entire sample of information available. This indicates that learning based on experience is

at work in the field. We complement these studies by showing how adaptive learning can

6



fuel speculative bubbles. In particular, our theoretical analysis based on adaptive learning

complements the analyses of Caginalp and Ermentrout (1990), Caginalp and DeSantis (2011),

and Barberis, Greenwood, Jin, and Shleifer (2015) which show that extrapolative behavior

can trigger bubble formation.

3 The bubble game and the experimental setup

3.1 The bubble game

To study how experience affects speculative behavior, we focus on the bubble game designed

by Moinas and Pouget (2013). This game features a sequential market for a valueless asset.

There are three traders. Each of them is randomly assigned to a position in the market

sequence: a trader can be first, second, or third in the sequence with probability 1
3
. Traders

do not have information about their positions but can infer some information from the price

at which they are offered to buy the asset.

For simplicity, prices are assumed exogenous. The first trader is offered a price 10n,

where n is random and follows a geometric distribution of parameter 1
2
: P (n = k) = 1

2

k+1
,

where k ∈ {0, 1, 2, 3, ...}. Each subsequent trader is (potentially) offered a price that is ten

times higher than the previous price. This setting is such that no trader can ever be sure to

be last in the market sequence despite prices revealing some information regarding traders’

position. In this case, Moinas and Pouget (2013) show that rational bubbles can arise at the

Nash equilibrium. However, they show that, when there is a price cap, no bubble can arise at

equilibrium if rationality is common knowledge: the unique dominance solvable equilibrium

involve all traders refusing to buy the asset.

We consider a repeated version of the above bubble game with a cap on the first price.

At the beginning of each period, each trader is endowed with 1 monetary unit that he can

use to buy the asset. If a trader in the previous position, if any, decided not to buy, a trader

obtains a trading profit of 0 since the game has stopped before his decision could matter.
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Being proposed to buy at a price P , if a trader chooses not to buy the asset, his profit from

this action is 0. If a trader decides to buy the asset, we assume that an outside financier

provides the remaining funds P−1 and shares the proceeds proportionately. The trader thus

obtains a trading profit of 9 if he is able to sell the asset to the next trader, and a trading

loss of −1 if he cannot sell back.

3.2 Experimental design

To test whether subjects’ experience influences bubble formation, we run an experiment in

which subjects participate in a sequence of independent bubble games. In order to study

the influence of complexity on learning and speculation, we vary the maximum number of

steps of reasoning required to reach the Nash equilibrium. The maximum number of steps

of reasoning is 2 when the cap on the first price is 1 while this number is 6 when the cap

is 10,000. The number of replications is either 10 or 20. We thus have four treatments: 30

subjects have participated in an experiment with a cap at 1 and 10 replications, 72 subjects

with a cap at 10,000 and 10 replications, 12 subjects with a cap at 1 and 20 replications,

and 18 subjects with a cap at 10,000 and 20 replications. A total of 132 subjects have

participated in our experiment. Subjects are junior and senior undergraduates in business

administration at the University of Toulouse.

In the experiment, we use a quasi-strategy method: the price proposed to the first subject

in the trading sequence is randomly drawn and the prices that could be proposed to the next

two subjects are functions of the first price. Subjects, according to their position in the

sequence, are proposed the corresponding price and indicate whether, if they were proposed

this price, they would buy or not the asset. This enables us to observe all three traders’

decisions, even if the first trader decides not to buy (a case in which the bubble does not start

and in which we could not have observed what other traders would have done). Because we

do not observe subjects’ decisions at all potential prices but only at the price that they could

be proposed given the draw of the first price, we are not in a full fledged strategy method.
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Subjects are offered one unit of experimental currency at the beginning of each replication.

Their trading payoffs are determined as indicated in Section 3.1. If they are not offered to

buy or decide not to buy the asset, their trading profit is zero. If they are able to buy and

resell the asset, their trading profit is 9. If they are not able to resell the asset to the next

subject, they make a trading loss of −1. The exchange rate we use in the experiment is

one Euro per experimental monetary unit. The instructions of the experiment with a cap at

10,000 are in Appendix A. The average gain in the experiment was 30 Euros. The overall

minimum and maximum payments in the experiment, including a 5 Euros show-up fee, were

5 Euros and 134 Euros. The experiment lasted between one hour and one hour and a half.

4 Experimental results

Our findings are summarized in Figure 1 which displays the evolution of average probability

to buy across replications (the solid red line on the graph). When the cap on the first price

is 1 (top graph), there are few steps of reasoning to reach the equilibrium and behavior

seems to converge to the no bubble equilibrium: the average probability to buy shows a

decreasing trend. However, when the cap on the first price is 10,000 (bottom graph), there

is no monotonically negative trend in the probability to buy.

To further document the evolution of speculative behavior in the experiment, Figure 2

displays the probability to buy across replications for the different price levels. The different

price levels are associated with different number of steps of reasoning and with a different

conditional probability to be last. When the cap on the first price is 1 (top graph), the

probability to buy seem to decrease at all price levels even if not monotonically. This is

consistent with the experimental findings of King et al. (1993) and Dufwenberg et al. (2005).

When the cap on the first price is 10,000 (bottom graph), behaviors seem different across

prices. When the price is 1, the probability to buy is constant at 100% after the first period.

When the price is 10, 100 and 1,000, the probability to buy seems to increase with experience.
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Figure 1: Data and predictions from learning models.
Probability to buy by period averaged across subjects and prices, as measured in the data.
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For the remaining prices, the probability to buy trends upward, downward or is flat. Overall,

there is some evidence that behavior evolves with experience but not always towards less

speculation.

In order to study whether we can identify learning in our data, we set up a panel logit

regression. We regress the likelihood that a subject buys the overvalued asset onto various

explanatory variables that reflect the probability to be last in the market sequence, the

number of steps of reasoning, and the result of past actions. For example, 11Step=1 or 2 is

a dummy variable that takes the value 1 if the number of steps of reasoning is 1 or 2,

110<P (last)<1 takes the value 1 if the probability to be last is strictly between 0 and 1, and

11bought and lost at least once indicates that, in at least one previous replication, the subject has

bought the asset and could not sell it back. We control for subject and replication fixed

effects. In the analysis, 4 subjects were dropped because they never bought and 5 because

they always bought.

The results of the panel logit regression are in Table 1. The first regression specification

of Table 1 replicates the analysis of the one-shot game in Moinas and Pouget (2013) on

subjects’ decisions in the first period. We find that, as in Moinas and Pouget (2013), when

the probability to be last decreases and when the number of steps of reasoning increases,

subjects are more likely to speculate and buy the overvalued asset in the hope to resell it

at a profit. We complement these results, in the next two specifications, by showing how

past outcomes influence speculation, when subjects play multiple periods. We find that the

propensity to speculate goes down after a subject has bought the asset but was unable to

sell it back (the propensity to speculate appears larger after a subject has experienced a

profit from speculating in the past, but this result is not statistically significant). The third

specification indicates that this effect is significant especially when subjects are sure not to be

last. These results are consistent with adaptive learning being at work in our experimental

bubble market. The fact that they have already been proposed the highest potential price

seems not to affect the propensity to speculate, indicating that their speculation is not driven
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Figure 2: Data on the probability to speculate per price.
Probability to buy per price by period averaged across subjects, as measured in the data.
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by their lack of understanding of the game structure.

To summarize our results, Figure 3 plots the empirical frequencies of bubbles in our

experiment. Large, medium and small bubbles correspond to situations in which all three

subjects in a market have decided to buy the asset, only the first two subjects have bought,

and only the first subject has bought, respectively. The upper left graph displays the results

for the case in which there is a cap on the first price at 1 and there are 10 replications of the

game. It shows that the market experiences less and less bubbles over time. During the first

replication, no bubble occurs 30% of the time while, during the 10th replication, no bubble

occurs 80% of the time. As shown in the bottom left graph, bubbles are not eliminated by

experience when there is a large number of steps of reasoning as is the case when the cap on

the first price is 10,000. The two graphs on the right of the Figure show that the likelihood

of large bubbles is very high even after 20 replications of the experiment. More precisely,

as shown in the bottom right graph, large bubbles occurs around 30% of the time in the

first replication but almost 70% of the time in the twentieth replication when the cap on the

first price is 10,000. Overall, our experimental results suggest that learning is not likely to

shut down speculative bubbles quickly, especially when a high number of steps of reasoning

is needed.

5 A theory of bubbles based on adaptive learning

We present a model based on adaptive learning in which traders’ behavior evolves over time.

We then estimate the model using our experimental data.

5.1 The adaptive learning model

In our model, traders are assumed to adopt an adaptive behavior and adjust their choices

according to past performance. We capture adaptive behavior using a simplified version of

Camerer and Ho (1999)’ Experience-Weighted Attraction model that nests reinforcement
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(1) (2) (3)
Buy Decision Buy Decision Buy Decision

Constant -2.251** -6.456*** -6.819***
(-3.03) (-5.49) (-5.58)

11Step=1 or 2 × 110<P (last)<1 1.558 15.10 14.72

(1.37) (0.02) (0.02)
11Step=1 or 2 × 11P (last)=0 3.350*** 5.235*** 5.681***

(4.04) (9.05) (9.03)
11Step≥3 × 110<P (last)<1 2.308** 18.03 17.65

(2.83) (0.02) (0.02)
11Step≥3 × 11P (last)=0 5.619*** 21.66 21.97

(4.46) (0.03) (0.03)
Accumulated gains 0.0116 0.0113

(1.31) (1.26)
11has observed the max price at least once × 11P (last)<1 -0.349

(-0.78)
11bought and lost at least once × 11P (last)<1 -1.255***

(-3.68)
11bought and won at least once × 11P (last)<1 0.441

(1.28)
11bought and lost at least once × 110<P (last)<1 -0.766*

(1.79)
11bought and lost at least once × 11P (last)=0 -1.678***

(-3.93)
11bought and won at least once × 110<P (last)<1 0.484

(1.01)
11bought and won at least once × 11P (last)=0 0.251

(0.60)

Observations 132 1230 1230
Time and Subject Fixed Effects No Yes Yes

Table 1: Regressions of the probability to speculate.

Regression of the likelihood that a subject buys the overvalued asset onto various explanatory variables that
reflect the probability to be last in the market sequence, the number of steps of reasoning, and the result
of past actions. We control for subject and replication fixed effects. In the panel analysis (columns 2 and
3), 4 subjects were dropped because they never bought and 5 because they always bought. T-statistics are
in parentheses. *, **, and *** denote statistical significance (two tailed) at the 10%, 5%, and 1% levels,
respectively.
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Figure 3: Data on the frequency of bubbles.
Large, medium and small bubbles correspond to situations in which all three subjects in a
market have decided to buy the asset, only the first two subjects have bought, and only the
first subject has bought, respectively.

and belief-based learning. Let ai(t) denote the action chosen by agent i at date t. An action

is denoted by j with j ∈ {B,∅} (B stands for a decision to buy, ∅ for a decision not to

buy). In our repeated trading game, at a given price P , the attraction of action j for trader

i at period t+ 1 is updated as follows:

Aji (t+ 1|P ) =


Aji (t|P ) +

[
δ + (1− δ)1j=ai(t)

]
π(j, a−i(t)) if i is proposed price P

Aji (t|P ) otherwise

(1)

π(j, a−i(t)) is the profit received by trader i if he chooses action j given other traders choosing

action a−i(t). 1j=ai(t) is an indicator function, which is equal to 1 if j = ai(t) and 0 otherwise.

In equation (1), the first part represents how the attraction of trader i’s action j conditional

on price P is updated if trader i is proposed a price P at period t; the second part represents

how this attraction is updated if trader i is not proposed price P at period t.1

1Note that traders may not be proposed any price in a given period, when one of the previous traders
has decided not to buy.
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δ is the imagination parameter that controls how much agents are able to display counter-

factual reasoning. When δ = 0, trader i reinforces the profit of action j only if it is selected

at period t, while when δ > 0, trader i reinforces the profit of action j no matter whether it

is actually chosen or not, provided that he is proposed the price P .

This adaptive learning model captures both the law of actual effect and the law of sim-

ulated effect. The law of actual effect means that the attraction of an action is adjusted

only if this action has been selected (δ = 0). If the action generates a positive profit, this

action will be more attractive, otherwise, it will be less attractive. This law is at the core

of reinforcement learning (see, for example, Roth and Erev (1995)). The law of simulated

effect indicates that the attraction of an action is adjusted according to the profit it could

have generated even if it has not been selected (δ > 0). This law is at the core of belief-based

learning (see, for example, Fudenberg and Levine (1998)).

According to the attraction, trader i decides the probability to choose action j at period

t+ 1 as follows:

Prji (t+ 1|P ) =
1

1 + eλ[A
−j
i (t|P )−Aji (t|P )]

(2)

where λ represents the responsiveness of traders to attractions. Equation (2) indicates that

the probability for trader i to choose action j is determined by its relative attraction in the

previous period.

To close the system, the initial values of Aji (0|P ) need to be specified. We set Aji (0|P ) = 0,

i.e. traders initially choose each action with the same probability.2

5.2 Simulation results

Our simulations consider two cases as in the experiments: price cap is 1 and 10, 000. For

both cases, we have a 2 × 2 design with δ being equal to 0 or 1, and λ being equal to 1 or

2Our version of the EWA learning model corresponds to the original version of Camerer and Ho (1999)
with ρ = 0 and φ = 1.
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1, 000. Our simulation proceeds as follows: for a given set of parameters, each simulation

contains 1, 000 independent trials; each trial contains 1, 000 runs, where each run represents

one trading session. In our experiments, at the end of each period, subjects have been

provided with information regarding the action of the next subject in the market sequence

only when he has bought (and when the previous trader, if any, has also bought). Therefore,

imagination, measured by δ, only matters in the case where a trader receives the highest

possible price and decides not to buy. In this case, the trader can imagine he would have

lost −1 if he had bought the asset.3

5.2.1 Individual trading behavior: Cap on the first price is 1

Figure 4 depicts the simulated average probability to buy at different prices. We first look

at the case in which δ = 0 and λ = 1 (upper left graph). Since the last trader can never sell

back the asset, he cannot gain if he chooses to buy and therefore he learns not to participate

in trading this asset. Due to lack of experience, the last trader initially chooses to buy with

a high probability (50% given the initial attractions). In this case, the second trader can sell

the asset at 10 times higher price with a high probability. He can gain from trading, thus

initially leading to more speculation. As time goes by, the last trader learns not to speculate

and the second trader is then less prone to speculate. The same pattern occurs for the first

trader, the only difference being that the first trader is more inclined to buy the asset due to

the higher speculation of the second trader. As a result, the convergence to no speculation

is very slow for the first trader.

Speculative behavior does not change dramatically if δ increases to 1, i.e., the maximal

level of imagination thanks to which agents adapt their behavior in response to the payoffs

they could have had. The simulations (bottom left) show that imagination leads to quicker

learning: initially, agents who are proposed the maximum price learn quickly not to speculate,

3A trader who buys can always use his imagination to compute the payoff he would received if he does
not buy. However, since the profit from not buying is equal to zero, imagination cannot affect the attraction
of the action not to buy.
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which induces the occurrence of bubbles to decrease more rapidly than in the case without

imagination.4

An increase in traders’ responsiveness to attractions, λ, reduces (but does not eliminate)

speculation, especially when δ = 0. Note that even in this case, the probability to buy of the

last trader may converge very slowly to zero (as in the upper right graph): when traders early

in the market sequence have already learnt not to speculate, the last trader is very rarely

offered the opportunity to buy (and thus to learn, because we assume that attractions are

specific to a given price and are updated only when this price is proposed to traders). This

result might explain why bubbles can be rekindled when experienced traders are confronted

with new market parameters as in Hussam, Porter and Smith (2008).

These results on individual behavior shed some light on the aggregate market behavior.

The fact that the first (respectively, last) traders in the market sequence initially learn to

(respectively, not to) speculate indicates that the likelihood of bubbles initially increases and

then takes some time to converge to zero.5 Second, imagination induces the first traders in

the market sequence to learn more strongly to speculate in the short run but also to learn

more quickly to converge to no speculation.

5.2.2 Individual trading behavior: Cap on the first price is 10, 000

As shown in Figure 5, raising the cap on the first price significantly fosters traders’ specula-

tion: with a price cap at 1, the trading approaches to the no bubble scenario within the 1,000

simulation runs. However, when the price cap is 10, 000, traders’ propensity to speculate

is very high even after 1, 000 runs: the probability to buy the asset at prices of 1, 10, 100

and 1,000 ends up greater than 70% when λ = 1. When λ = 1, 000, the probability to buy

decreases with experience but at a slower pace than when the price cap is 1.

4In Appendix B, we show that, when traders observe the actions of the subsequent traders and δ = 1, the
propensity to speculate is initially stronger than with no imagination because imaginative traders who are
proposed low prices realize that they could have obtained a higher payoff by buying the asset if subsequent
traders decided to buy.

5The fact that some traders see their propensity to speculate initially increase depends on the fact that
some traders in the market sequence buy with a probability larger than 10%.
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Figure 4: Probability to speculate per price in the EWA learning model when the cap on
the first price is 1.

This figure displays the average probability to buy in the bubble game as provided by the EWA learning
model of Camerer and Ho (1999). We set Aj

i (0|P ) = 0.
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Figure 5: Probability to speculate per price in the EWA learning model when the cap on
the first price is 10,000.

This figure displays the average probability to buy in the bubble game as provided by the EWA learning
model of Camerer and Ho (1999). We set Aj

i (0|P ) = 0.
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5.3 Analytical results

In this subsection, we complement our simulation results and provide analytical results on

the propensity to speculate. We focus on the long run and the short run. The intermediate

case is much more difficult to analyze but it can be qualitatively understood by comparing

the short and the long run. The proofs are in Appendix C.

Our first proposition focuses on the long run convergence of the adaptive learning model

applied to the bubble game. This analysis is an application of the more general case studied

in Milgrom and Roberts (1991).

Proposition 1 Assume that λ > 0. In the long run, the trading game converges to the no

bubble equilibrium.

This result comes from the fact that the bubble game with a price cap is dominance

solvable. The trader with the highest price can only loose money by speculating. Adaptive

learning will thus lead to a decrease in the probability to buy the asset at this price towards

zero. Once this probability is low enough, the trader with the second highest price will also

see his probability to buy converge to zero. Eventually, all traders will see their probability

to buy converge to zero.

The short run situation is very different from the long run and is summarized in the

following proposition.

Proposition 2 Assume that λ > 0. At period 1, traders randomly select between buy or

no buy with equal probability. At period 2, if a trader observes a price of 1 or 10, inducing

that he cannot be last in the market sequence, his expected probability to buy increases. If

a trader observes a price which is strictly higher than 10 and lower than the highest price,

his expected probability to buy increases if λ is small and decreases otherwise. If a trader

observes the highest price, his expected probability to buy always decreases.

Overall, we find that in the short run the propensity to speculate can increase especially

when the trader is sure he cannot be the last in market sequence. This is in line with our
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experimental result as displayed in Table 1. We also find that, in the long run, traders learn

not to speculate. In the intermediate periods, we thus expect that a trader’s propensity to

speculate at a given price will decrease at some point in time as soon as the probability to

speculate of traders at the next price has become low enough.

5.4 Structural estimation of the learning model of speculation

We now estimate our version of the EWA learning model on the data generated in our

experiment using the Maximum Likelihood technique. This is useful in order to study the

type of adaptive learning that is at work: by estmating the EWA learning model, we can

determine whether people tend to use the law of actual effect only (i.e., whether the estimate

of the imagination parameter δ is zero) or whether they also use the law of simulated effect

(the estimate of δ is larger than zero).

Initial attractions are estimated from the behavior in the first replication of the experi-

ment and in the one-period experiment of Moinas and Pouget (2013).6 For the Maximum

Likelihood estimation, we restrict the set of parameter values as follows: δ is between 0 and

1 with increments of 0.05, and λ between 0 and 10 with increments of 0.05. We compute the

likelihood of the model for all the potential parameters’ values. The estimated parameters

correspond to the ones associated with the highest likelihood.

To compute confidence intervals for the parameters, we estimate the model several times

after dropping one or more replications at the end of the experiment. We do this in order

to keep the time dependency that is inherent to repeated experiments: we re-estimate the

model on 6, 7 or 8 first replications only (after the first replication which is not included in

the learning parameters’ estimation). Moreover, we also re-estimate the model by dropping

one of the experimental sessions. Overall, this provides us with 35 replications. For each

parameter, we drop the two minimum parameter values and the two maximum ones to get

an 11% confidence interval.

6We used data from the one-shot bubble game of Moinas and Pouget (2013) in order to have observations
at all prices, which is not the case in the present experiment.
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The results are displayed in Table 2. The first column corresponds to the model esti-

mation. Because subjects do not observe the subsequent trader’s decision, the parameter δ

can be only be identified for subjects who are proposed the highest price and decide not to

buy. The three other columns are offered for comparison. The second column corresponds

to the case in which δ is set to 0, i.e., traders learn but have no imagination; the third col-

umn corresponds to the case in which δ is set to 1, i.e., traders learn and have imagination.

Comparing these two columns enables one to assess the importance of the law of simulated

effect in our bubble experiment. Finally, the last column provides the likelihood of a model

in which there is no learning and the behavior of agents is fixed and similar to behavior in

the first period.

The results show that in our data, the learning model has a higher likelihood than the

fixed behavior model. The difference in log-likelihood is statistically significant according

to a Vuong test (the p-value is lower than 1%). This is in line with our previous regression

results indicating that adaptive learning is at play in our experiments and is an important

element in speculative behavior.

We also find that imagination does not play a large role in our experiment. According to

Vuong tests, the maximum likelihood of the learning model is significantly larger when δ is

unconstrained than when it is constrained to 0 or to 1 (the p-values are equal to 0.03). The

improvements however appear relatively small compared to the improvement in maximum

likelihood between the learning models and the no-learning benchmark. This is not to say

that imagination is not important for speculation. Indeed, in our experiment, when a subject

decided not to buy, he was not told what the next subject in the market sequence (if any)

wanted to do. He thus had no data on which to apply his potential imagination. To study

this issue further and test whether imagination is important for speculation decisions, it

would be interesting to run an experiment in which subjects were told what the next subject

wanted to do.
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Unconstrained δ δ = 0 δ = 1 No learning

λ 0.20 0.20 0.20 > 0
δ 0.45 0.00 1.00
Max L -571.17 -571.33 -571.36 -594.73

Contribution of cap = 1

Max L -275.92 -276.08 -276.11 -290.80

Contribution of cap = 10, 000

Max L -295.25 -295.25 -295.25 -303.93

Bootstrapped confidence intervals

min λ 0.15 0.15 0.15 > 0
max λ 0.25 0.25 0.20
min δ 0.00
max δ 0.50
Average Max L -425.96 -426.01 -426.30 -438.90

Table 2: Maximum likelihood estimations of the imagination and responsiveness parameters
of the EWA learning model.

This table shows the results of the Maximum Likelihood Estimation of the imagination parameter δ, and
responsiveness parameter, λ, of the EWA learning model. Initial attractions are set up to fit the behavior
of subjects as displayed in the first period and in Moinas and Pouget (2013). Confidence intervals are
obtained bootstrapping. 35 estimations are done taking into account the time dependence: 8 estimations
after dropping one of the 8 sessions, 1 estimation after dropping the last period; 8 estimations after dropping
one of the 8 sessions and the last period; 1 estimation after dropping the last two periods; 8 estimations after
dropping one of the 8 sessions and the last two periods; 1 estimation after dropping the last three periods;
8 estimations after dropping one of the 8 sessions and the last three periods. 89% confidence intervals are
obtained by dropping the 4 most extreme estimates of each parameter out of the 35 estimations.
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6 Conclusion

In this paper, we study whether traders’ experience reduces their propensity to speculate.

We theoretically study a financial market populated by adaptive traders. Following Camerer

and Ho (1999)’s Experience-Weighted Attraction learning model, these traders are assumed

to adjust their behavior according to actions’ past performance. The EWA model nests

reinforcement learning, on the one hand, and belief-based learning, according to which agents

use their imagination to do counter-factual reasoning, on the other hand.

We focus on the Bubble Game designed by Moinas and Pouget (2013) in which agents

sequentially trade a worthless asset. Speculation may arise because agents do not always

know where they stand in the market sequence. In the version of the Bubble Game we

consider, because there is a cap on the maximum price that can be achieved, no rational

bubbles can form.

The learning model shows that, in the long-run, the market converges to the unique

no bubble equilibrium. However, we also find that learning may initially increase traders’

propensity to speculate: this is because as long as not all traders have learned not to spec-

ulate, some traders can make substantial profit by speculating. In the short run, more

experienced traders thus create more bubbles. Moreover, we show that this effect is stronger

when traders are more sophisticated and when the price cap is higher.

We provide experimental evidence that is consistent with these theoretical results. First,

adaptive learning is at work in speculative markets: their past payoffs have a statistically

significant impact on the propensity of subjects to speculate. Secondly, the propensity to

speculate and the occurrence of bubbles are reduced with experience when the price cap

is low but not when it is high. Overall, our findings reconcile the experimental results of

King et al. (1993) and Dufwenberg et al. (2005) who show that experience attenuates the

formation of speculative bubbles, and those of Hussam et al. (2008) and Deck et al. (2014)

who show that bubbles may occur with experienced traders when market parameters change
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and when new traders enter the market.

In future work, it would be interesting to study how traders learn when they can observe

other traders’ behavior. This would allow one to investigate how observing a bubble inflating

affects the propensity to speculate of a trader who has not yet decided to ride the bubble. In

the context of the bubble game, this could be captured by enabling agents to observe what

the next trader in the market sequence has done. In this context, imagination could play a

more important role than in our setting in which it appears not to affect learning.
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Appendix A Instructions
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INSTRUCTIONS 
 

Welcome to this market game. Please read carefully the following instructions. They 
are identical for all participants. Please do not communicate with the other participants. The 
game will last approximately one hour, including the reading of the instructions. 

You will be able to earn some money during the game. Your total gain will be paid to 
you on March 27th, 2017. 
 
Trading process 
 

To play this game, we form groups of three players. Each player is endowed with one 
experimental currency unit (ECU) that can be used to buy an asset. Your task during the game 
is to decide whether you want to buy or not the asset. This asset does not generate any dividend. 
If the asset price exceeds 1 ECU, you can still buy the asset. We indeed consider that a financial 
partner (who is not part of the game) provides you with the additional capital and shares profits 
with you according to the respective capital invested. The market proceeds sequentially. A 
proposal to buy at a price P1 is made to the first player. If he buys, he proposes to sell the asset 
to the second player at a price which is ten times higher, P2=10*P1. If the second player accepts 
to buy, the first player ends up the game with 10 ECU. Otherwise, the first player ends up with 
nothing. If he or she accepted to buy, the second player then proposes to sell the asset to the 
third trader at a price P3=10*P2=100*P1. If the third player buys the asset, the second player 
ends up the game with 10 ECU. Otherwise, the second player ends up with nothing. The third 
player does not find anybody to whom he or she can sell the asset. Since this asset does not 
generate any dividend, he or she ends up the game with nothing. If a player refuses to buy, he 
or she ends up the game with 1 ECU (so do all the player after him or her in the market 
sequence). 

At the beginning of the game, players do not know their position in the market sequence. 
Positions are randomly determined with one chance out of three for each player to be first, 
second or third. The game is summarized in the following figure. 
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Proposed prices 
 

The price P1 that is proposed to the first player is random. This price is a power of 10 
and is determined as follows: 
 

Price P1 Probability that this price is realized 
1 1/2 (50%) 

10 1/4 (25%) 
100 1/8 (12.5%) 

1,000 1/16 (6.25%) 
10,000 1/16 (6.25%) 

 
Players’ decisions are made simultaneously and privately. For example, if the first price 

P1=1 is drawn, the prices that are simultaneously proposed to the three players are: P1=1 for 
the first player, P2=10 for the second player, and P3=100 for the third player. Identically, if the 
first price P1=10,000 has been drawn, the prices that are simultaneously proposed to the three 
players are: P1=10,000 for the first player, P2 = 100,000 for the second player, and 
P3=1,000,000 for the third player. 

The price that you are been proposed can give you the following information regarding 
your position in the market sequence:  
§ if you are proposed to buy at a price of 1, you are sure to be first in the market sequence; 
§ if you are proposed to buy at a price of 10, you have one chance out of three to be first and 

two chances out of three to be second in the market sequence. You are sure not to be last; 
§ if you are proposed to buy at a price of 100 or 1,000, you have one chance out of seven to 

be first, two chances out of seven to be second, and four chances out seven to be last in the 
market sequence;  

§ if you are proposed to buy at a price of 10,000, you have one chance out of four to be first, 
one chance out of four to be second, and two chances out four to be last in the market 
sequence; 

§ if you are proposed to buy at a price of 100,000, you have one chance out of two to be 
second, and one chance out of two to be third; in this case, you are sure not to be first in the 
market sequence; 

§ if you are proposed to buy at a price of 1,000,000, you are sure to be last in the market 
sequence. 

 
****** 

 
Outcomes and final gain 

 
You are going to participate in 10 independent periods of the game. The composition of 

each group is anonymous, randomly determined and different at each period of the game. After 
each period, once decisions are made, we will indicate (anonymously) if you were proposed to 
buy the asset and at what price. We will also indicate your gain for this period and your overall 
gain. 

At the end of the ten periods of the game, we will compute your total gain as the sum of 
the gains in each period. Your total gain will be paid to you in euros. The rate of exchange is: 
1 € for 1 ECU. 

 
Do you have any question? 
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QUESTIONNAIRE 
 
 

• Is it possible to be first and be proposed to buy at a price of 100.000? 
§ Yes 
§ No 

 
• If you are proposed to buy at a price of 1, are you sure to be first? 

§ Yes 
§ No 

 
• If you are proposed to buy at a price of 100.000, are you sure to be second? 

§ Yes 
§ No 

 
• If you are proposed to buy at a price of 100, are you sure to be third? 

§ Yes 
§ No 

 
• If you are proposed to buy at a price of 1.000.000, are you sure to be third ? 

§ Yes 
§ No 

 
• If you accept to buy at 100, you will propose to resell at 

§ 1.000 
§ 1.100 

 
• If you are first, buy at 100, and resell at 1,000, your payoff in the game is 

§ 10 euros 
§ 900 euros 

 
• If you are first, buy at 100, and find nobody to resell to at 1,000, your payoff in the game 

is 
§ 0 euro 
§ 10 euros 

 
• If you refuse to buy, your payoff is 

§ 1 euro 
§ 0 euro 
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Appendix B Simulations when a trader observes sub-

sequent trader’s behavior

This appendix displays the results of simulations for the same game as in the experiment

except that it is assumed that traders can observe the decision of the next trader in the

market sequence. Figure 6 refers to the case in which the price cap is 1. Figure 7 refers to

the case in which the price cap is 10,000.

When traders observe the actions of the subsequent trader, the propensity to speculate is

initially stronger than with no imagination because imaginative traders who are proposed low

prices realize that they could have obtained a higher payoff by buying the asset if subsequent

traders decided to buy. The speed at which traders learn is then faster.
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Figure 6: Probability to speculate per price in the EWA learning model when the cap on
the first price is 1. Setting in which a trader observes subsequent trader’s behavior.

This figure displays the average probability to buy in the Bubble game assuming that traders can observe
the choice of the next trader in the market sequence. Behavior is modeled as in the EWA learning model of
Camerer and Ho (1999). We set Aj

i (0|P ) = 0.
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Figure 7: Probability to speculate per price in the EWA learning model when the cap on
the first price is 10,000. Setting in which a trader observes subsequent trader’s behavior.

This figure displays the average probability to buy in the Bubble game assuming that traders can observe
the choice of the next trader in the market sequence. Behavior is modeled as in the EWA learning model of
Camerer and Ho (1999). We set Aj

i (0|P ) = 0.
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Appendix C Proofs of the analytical results

Notations – In all the proofs below, K ∈ {0, 4} is the cap on the initial price (i.e., the

highest price observed is P = 10K+2), ai(t) is the action chosen by agent i at date t, the set

of potential actions j is {B,∅} where B stands for a decision to buy, ∅ for a decision not

to buy, Aji (t+ 1|P ) is the attraction of action j at period t+ 1 for agent i updated as shown

in equation (1), and Prji (t+ 1|P ) is the probability for agent i to choose action j at period

t+ 1 defined in equation (2). Denote i− and i+ as the previous and next trader for trader i.

In all the proofs below, we exclude the case in which λ = 0. In this case indeed, the

expected probability to buy is constant and equal to 1
2

regardless of the price, the period

and the past experience.

Proposition 1 – Proof.

We want to show that for any trader i, his probability to buy given any price P will

converge to 0 in the long run.

From equation (2), the probability to buy of trader i given price P at period t + 1 is

determined by the difference between his attraction for the action not to buy and that of his

action to buy conditional on price P at period t, i.e., A∅
i (t|P )− ABi (t|P ).

Applying equation (1) to both actions for trader i, we have:

A∅
i (t|P )− ABi (t|P ) = A∅

i (t− 1|P )− ABi (t− 1|P ) + ∆πi(t|P ), (3)

where we define ∆πi(t|P ) as the incremental payoff between the two actions. Computation

yields:

∆πi(t|P ) =


[
δ + (1− δ)11∅=ai(t)

]
π(∅, a−i(t))−

[
δ + (1− δ)11B=ai(t)

]
π(B, a−i(t)) if i observes P

0 otherwise

(4)

Whether the probability to buy of trader i would increase or decrease between t and t + 1
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thus depends on ∆πi(t|P ).

• First, we show that no bubble arises on the highest price, i.e., P = 10K+2, in the long

run. In the case where P = 10K+2, if trader i does not buy, his payoff does not depend

on the actions of the others: π(∅, a−i(t)) = 0. If the trader buys, his payoff depends on

the actions of the previous traders; however, given that he observes the highest price,

he will never be able to resell the asset, thus π(B, a−i(t)) ∈ {0,−1}. It follows that

∆πi(t|10K+2) can only take three values, 0, δ or 1:

∆πi(t|10K+2) =


1 trader i observes price 10K+2 and chooses to buy

δ trader i observes price 10K+2 and chooses not to buy

0 otherwise

(5)

Iterating equation (3) from period 1 to t, and using our assumption that A∅
i (0|P ) =

ABi (0|P ) = 0 to initialize the series, the probability to buy at period t+ 1 conditional

on the highest price for trader i can be written as:

PrBi (t+ 1|10K+2) =
1

1 + eλ
∑t
τ=1 ∆πi(τ |10K+2)

. (6)

From the discussion above, we have ∆πi(t|10K+2) ≥ 0.

– Case I: the probability for trader i observing price 10K+2 does not converge to

0 as t → +∞, i.e., the probability to buy with second and third largest price

does not converge to 0. In this case, we suppose that the probability to buy

conditional on the highest price does not converge to 0 either. It implies that

∆πi(t|10K+2) > 0 always holds at each period with a non-negligible probability.

Thus, plimt→∞
∑t

τ=1 ∆πi(τ |10K+2) = +∞ and plimt→∞Pr
B
i (t+ 1|10K+2) = 0. It
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contradicts the initial assumption! Thus, the probability to buy given the highest

price will converge to 0 as t→ +∞.

– Case II: the probability for trader i observing price 10K+2 converges to 0 when

t→ +∞, i.e., the probability to buy with second or third largest price converges

to 0. In this case, trading already stops at the second or third largest price. Thus,

no bubble arises with the highest price either.

• Second, we show that no bubble arises on the second highest price, i.e., P = 10K+1, in

the long run.

– First, we consider the case where the probability to buy given the highest prices

converge to 0 in the long run. That is, ∀ε > 0, δ > 0, there exists a T , such that

t > T , Pr(
∣∣PrBi (t|10K+2)− 0

∣∣ > ε) < δ. We consider the case where t ≥ T , the

probability to buy conditional on the second highest price for any trader j is

PrBj (t+ 1|10K+1) =
1

1 + e−λA
B
j (T−1|10K+1)eλ

∑t
τ=T ∆πi(τ |10K+2)

, (7)

where e−λA
B
j (T−1|10K+1) is bounded and ∆πi(t|10K+1) are as follows:

∆πi(t|10K+1) =



1 trader i observes price 10K+1 and buys but cannot sell

−9 trader i observes price 10K+1 and buys and is able to sell

0 otherwise

(8)

∗ Case I: the probability for trader j observing price 10K+1 does not converge

to 0 as t → +∞, i.e., the probability to buy with third or fourth largest

price does not converge to 0. In this case, we suppose that the probability to

buy conditional on the second highest price does not converge to 0 either. It

implies that ∆πi(t|10K+1) > 0 happens at each period with a non-negligible

probability.
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Since ∀ε > 0, δ > 0, there exists a T , such that t > T , Pr(
∣∣PrBi (t|10K+2)− 0

∣∣
> ε) < δ. Intuitively, if trader j observes price 10K+1, his probability to sell,

i.e., the probability that ∆πi(t|10K+1) = −9, converges to 0 as t is sufficiently

large. In summary, the probability that ∆πi(t|10K+1) ≥ 0 approaches to 1 and

∆πi(t|10K+1) > 0 happens with a non-negligible probability at each period

when t is sufficiently large. Thus, plimt→∞
∑t

τ=T ∆πi(τ |10K+1) = +∞. Since

e−λA
B
j (T−1|10K+1) is bounded, we obtain that plimt→∞ PrBi (t + 1|10K+1) = 0.

It contradicts the initial assumption! Thus, the probability to buy given the

second highest price converges to 0 in the long run.

∗ Case II: the probability for trader j observing price 10K+1 converges to 0

when t→ +∞, i.e., the probability to buy with third or fourth largest price

converges to 0. In this case, trading already stops at the third or second

largest price. Thus, no bubble arises with the second highest price either.

– Second, we consider the case where no bubble arises for the highest price because

that trading already stops at the second or third largest price. It is obvious that,

in this case, no bubble arises with the second highest price either.

• Last, according to the same reasoning, the same analysis can be applied to the traders

with other lower prices and we can show that no bubble arises conditional on those

prices. Therefore, in the long run, the trading should converge to no bubble equilib-

rium.

Proposition 2 – Proof.

At period 1, the probability to buy for any trader at any price is 1
2

since the initial

attractions are assumed to be 0. Let us analyze whether the probability to buy of a trader

i at period 2 for any price P ∈ {1, ..., 10k, ..., 10K+2} is higher or smaller than 1
2
.
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Let us denote by qPr the probability for a trader who is in position r ∈ {1, 2, 3} in the

market sequence to observe price P . More precisely, qP1 = Pr(First observes P ), qP2 =

Pr(Second observes P ), and qP3 = Pr(Third observes P ). We have:

q10k

1 = q10k+1

2 = q10k+2

3 =



1
2

k+1
if k < K

1
2

K
if k = K

0 if k > K.

(9)

At period 1, there are four different potential cases. Trader i will observe price P with

probability 1
3
(qP1 + qP2 + qP3 ). His incremental payoff between not buy and buy thus writes

as follows:

• With probability Pr(First observes P
⋂
i is First) = 1

3
qP1 , trader i observes price P

and is in first position. In this case,

∆πi(1|P ) =


−9 if ai(1) = B and ai+(1) = B

(
1
4

)
1 if ai(1) = B and ai+(1) = ∅

(
1
4

)
0 if ai(1) = ∅

(
1
2

) (10)

If trader i buys the asset and the next trader also buys the asset, which happens with

probability 1
4
, the incremental payoff the trader i can obtain between not buy and buy

is −9. If trader i buys the asset but the next trader refuses to buy, which happens

with probability 1
4
, the incremental payoff is 1. Finally, if trader i refuses to buy, which

happens with probability 1
2
, the incremental payoff is 0. In the latter case, imagination

for what would happen if he had bought would not kick in since trader i is not provided

the information on the next trader.

• With probability Pr(Second observes P
⋂
i is Second) = 1

3
qP2 , trader i observes price

P and is in second position. This yields:

38



∆πi(1|P ) =



0 if ai−(1) = ∅
(

1
2

)
−9 if ai−(1) = B and ai(1) = B and ai+(1) = B

(
1
8

)
1 if ai−(1) = B and ai(1) = B and ai+(1) = ∅

(
1
8

)
0 if ai−(1) = B and ai(1) = ∅

(
1
4

)
(11)

In this case, the incremental payoff not only depends on the action of the next trader,

but also on that of the previous one. If the previous trader chooses not to buy, which

happens with probability 1
2
, the incremental payoff is 0; otherwise, the three cases are

similar to those described below equation (10).

• With probability Pr(Third observes P
⋂
i is Third) = 1

3
qP3 , trader i observes price P

and is in third position. Following the same reasoning as above, if P < 10K+2, we

have:

∆πi(1|P ) =


1 if ai(1) = B and ai−(1) = B and ai−−(1) = B

(
1
8

)
0 otherwise

(
7
8

) (12)

In this case, the incremental payoff depends on not only the action of trader i but also

the actions of the previous two traders. If the previous two traders and trader i choose

to buy, which happens with probability 1
8
, the incremental payoff is 1; otherwise, the

incremental payoff is 0.

The case in which trader i observes the highest possible price, i.e., P = 10K+2 is slightly

different: in that case indeed, a trader who would not buy could still imagine the payoff

he would have received if he had bought given that he infers from P his position in the

market sequence. This yields:
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∆πi(1|10K+2) =


1 if ai(1) = B and ai−(1) = B and ai−−(1) = B

(
1
8

)
δ if ai(1) = ∅ and ai−(1) = B and ai−−(1) = B

(
1
8

)
0 otherwise

(
3
4

) (13)

In this case, the incremental payoff is 1 if all the three traders choose to buy, and δ if

the first two traders choose to buy and trader i chooses not to buy since he can imagine

that he would have received −1 if he had bought. For other cases, the incremental

payoff is 0.

• With probability 1−1
3

(
qP1 + qP2 + qP3

)
, trader i does not observe price P and ∆πi(1|P ) =

0.

To sum up, the incremental payoff trader i can obtain between not buy and buy is as

follows: for price P < 10K+2

∆πi(1|P ) =


0 with prob. 1− 1

3
(qP1 + qP2 + qP3 ) + 1

6
(qP1 + 3

2
qP2 + 7

4
qP3 )

1 with prob. 1
12

(qP1 + 1
2
qP2 + 1

2
qP3 )

−9 with prob. 1
12

(qP1 + 1
2
qP2 ),

(14)

and for the highest possible price P = 10K+2:

∆πi(1|10K+2) =



0 with prob. 1− 1
3
(qP1 + qP2 + qP3 ) + 1

6
(qP1 + 3

2
qP2 + 3

2
qP3 )

1 with prob. 1
12

(qP1 + 1
2
qP2 + 1

2
qP3 )

−9 with prob. 1
12

(qP1 + 1
2
qP2 )

δ with prob. 1
24
qP3

(15)

40



We now compared the probability to buy at period 2 with the probability to buy at

period 1 which is 1
2
. From equation (2), the probability to buy for trader i conditional on

price P at period 2 can be written as:

PrBi (2|P ) =
1

1 + eλ∆πi(1|P )
, (16)

where ∆πi(1|P ) is distributed according to equation (14) if P < 10K+2 and equation (15) if

P = 10K+2.

We can see that the expected probability to buy at period 2 for trader i if P < 10K+2 is

E1(PrBi (2|P )) =

[
1− 1

3
(qP1 + qP2 + qP3 ) +

1

6
(qP1 +

3

2
qP2 +

7

4
qP3 )

]
× 1

2

+
1

12
(qP1 +

1

2
qP2 +

1

2
qP3 )× 1

1 + eλ

+
1

12
(qP1 +

1

2
qP2 )× 1

1 + e−9λ
,

(17)

and the expected probability to buy at period 2 for trader i if P = 10K+2 is

E1(PrBi (2|10K+2)) =

[
1− 1

3
(qP1 + qP2 + qP3 ) +

1

6
(qP1 +

3

2
qP2 +

3

2
qP3 )

]
× 1

2

+
1

12
(qP1 +

1

2
qP2 +

1

2
qP3 )× 1

1 + eλ

+
1

12
(qP1 +

1

2
qP2 )× 1

1 + e−9λ

+
1

24
qP3

1

1 + eλδ
.

(18)

Finally, the expected probability can be simplified as follows:

E1(PrBi (2|P )) =


1
12

[
6− qP1 −

qP2
2 −

qP3
4 +

qP1 +
qP2
2

1+e−9λ +
2qP1 +qP2 +qP3

2(1+eλ)

]
if P < 10K+2

1
24

[
12 + (2qP1 + qP2 )( 1

1+eλ
+ 1

1+e−9λ − 1) + qP3 ( 1
1+eλ

+ 1
1+eδλ

− 1)
]

if P = 10K+2.

(19)

It is useful to compute the probabilities qPr for r ∈ {1, 2, 3} in equation (9) explicitly.

Tables 3 and 4 show the values of these probabilities for any price P when the cap on the
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Table 3: Price Cap on the first price is 1

Price P qP1 qP2 qP3 E1(PrBi (2|P ))

1 1 0 0 1
12

(
5 + 1

1+e−9λ + 1
1+eλ

)
10 0 1 0 1

24

(
11 + 1

1+e−9λ + 1
1+eλ

)
100 0 0 1 1

24

(
11 + 1

1+eλ
+ 1

1+eδλ

)

Table 4: Price Cap on the first price is 104

Price P qP1 qP2 qP3 E1(PrBi (2|P ))

1 1
2

0 0 1
24

(
11 + 1

1+e−9λ + 1
1+eλ

)
10 1

4
1
2

0 1
24

(
11 + 1

1+e−9λ + 1
1+eλ

)
102 1

8
1
4

1
2

1
24

(
45
4

+ 1
2

1
1+e−9λ + 1

1+eλ

)
103 1

16
1
8

1
4

1
192

(
93 + 2

1+e−9λ + 4
1+eλ

)
104 1

16
1
16

1
8

1
384

(
188 + 3

1+e−9λ + 5
1+eλ

)
105 0 1

16
1
16

1
768

(
381 + 2

1+e−9λ + 4
1+eλ

)
106 0 0 1

16
1

384

(
191 + 1

1+eλ
+ 1

1+eλδ

)

first price are 1 and 104 respectively. Notice that 0 ≤ qP1 + qP2 + qP3 ≤ 1.

• First, we analyze the case where trader i observes the highest price. Notice that

q10K+2

1 = q10K+2

2 = 0 and q10K+2

3 > 0. If trader i observes the highest price, we obtain

from equation (19) that

E1(PrBi (2|10K+2)) =
1

24

[
12 + q10K+2

3 (
1

1 + eλ
+

1

1 + eδλ
− 1)

]
,

which is strictly lower than 1
24

[
12 + q10K+2

3 (1
2

+ 1
2
− 1)

]
= 1

2
for λ > 0 and δ ≥ 0. The

probability to buy of a trader who observes the highest price is expected to decrease

immediately between period 1 and period 2.
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• Second, let us analyze the cases where trader i observes the two lowest prices, P = 1

or P = 10. Notice that trader i can never be last, i.e., q1
3 = q10

3 = 0. It follows from

equation (19) that:

E1(PrBi (2|P )) =
1

12

[
6− qP1 −

1

2
qP2 + (qP1 +

qP2
2

)(
1

1 + e−9λ
+

1

1 + eλ
)

]
.

Now, we have if λ > 0:

1

1 + e−9λ
+

1

1 + eλ
=1− 1

1 + e9λ
+

1

1 + eλ
> 1− 1

1 + eλ
+

1

1 + eλ
= 1

Based on the above two results, we can see that the expected probability to buy at

period 2 when P ∈ {1, 10} satisfies

E1(PrBi (2|P )) >
1

12

[
6− qP1 −

1

2
qP2 + (qP1 +

qP2
2

)

]
=

1

2

Therefore, the expected probability to buy increases for prices 1 and 10 at period 2

whatever the cap on the initial price.

• Third, when the cap is K = 4, let us analyze the cases where trader i observes the

price is 10k, where k = 2, 3, 4, 5. To this end, we differentiate the expected probability

to buy defined in equation (19) with respect to λ, using the exact values of qPr defined
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in Table 4. Computation yields:

∂E1(PrBi (2|102))

∂λ
=

1

48
eλ
(

9e8λ

(1 + e9λ)2
− 2

(1 + eλ)2

)
∂E1(PrBi (2|103))

∂λ
=

1

96
eλ
(

9e8λ

(1 + e9λ)2
− 2

(1 + eλ)2

)
∂E1(PrBi (2|104))

∂λ
=

1

384
eλ
(

27e8λ

(1 + e9λ)2
− 5

(1 + eλ)2

)
∂E1(PrBi (2|105))

∂λ
=

2

768
eλ
(

9e8λ

(1 + e9λ)2
− 2

(1 + eλ)2

)

It is easy to show that the first order differentiation is strictly positive if and only

if 0 ≤ λ < λ∗(P ), where λ∗(P ) ∈ (0,+∞). That is, for all P ∈ {102, 103, 104, 105},

there exists a λ∗(P ) ∈ (0,+∞) such that the expected probability to buy at price P

increases with λ when λ ≤ λ∗(P ) and decreases with λ when λ > λ∗(P ).

When λ = 0, the expected probability to buy at period 2 is constant and equal to 1
2

regardless of the price. When λ → +∞, the expected probability to buy at period 2

are 47
96

, 95
192

, 191
384

and 383
768

at prices 102, 103, 104 and 105 respectively. These probabilities

are all lower than 1
2
. Therefore, there exists a λ′(P ) ∈ (0,+∞) such that the expected

probability to buy at period 2 is greater than 1
2

if λ ∈ (0, λ′(P )) and lower than 1
2

if

λ ∈ (λ′(P ),+∞).
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Appendix D Traders’ speculation in the short term

given the initial probabilities from the ex-

perimental data

Notations – In all the proofs below, PrBi (t|P,K) represents the probability to buy for

trader i at period t conditional on price P in the case where the price cap on the first price

is 10K . Aji (t|P,K) represents the attraction of trader i at period t conditional on price P in

the case where the price cap on the first price is 10K , where j ∈ {B,∅} and K ∈ {0, 4}.

Proof.

From the first replications of the experiment, we know that: in the case where K = 0,

the probabilities to buy at first period PrBi (1|P, 0) are 80.00%, 55.00% and 10.00% when the

price P is 1, 10, and 100 respectively. In the case where K = 4, the probabilities to buy at

first period PrBi (1|P, 4) are 95.24%, 94.29%, 62.50%, 50.00%, 60.00%, 20.00% and 10.00%

when price P is 1, 10, ..., 105 and 106 respectively. We analyze whether the probability to

buy of a trader i at period 2 will increase or decrease relative to that at period 1.

At period 1, there are four different potential cases. Trader i observes price P with

probability 1
3
(qP1 + qP2 + qP3 ), where qP1 , qP2 and qP3 satisfy equation (9). The attraction of

trader i at period 2 is updated as follows:

• With probability Pr(First observes P
⋂
i is First) = 1

3
qP1 , trader i observes price P

and is in first position. In this case,

ABi (1|P,K) = ABi (0|P,K) +


9 if ai(1) = ai+(1) = B (b1)

−1 if ai(1) = B and ai+(1) = ∅ (b2)

0 if ai(1) = ∅ (b3)

(20)

where
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b1 = PrBi (1|P,K)PrBi (1|10P,K),

b2 = PrBi (1|P,K)
(
1− PrBi (1|10P,K)

)
,

and b3 = 1− PrBi (1|P,K).

If trader i buys the asset and the next trader also buys the asset, which happens

with probability b1, the attraction of buying for trader i will add profit 9. If trader

i buys the asset but the next trader refuses to buy, which happens with probability

b2, the attraction will add loss −1. If trader i refuses to buy, which happens with

probability b3, the attraction will be exactly the same as the initial one. In the latter

case, imagination for what would happen if he had bought would not kick in since

trader i is not provided the information on the next trader.

• With probability Pr(Second observes P
⋂
i is Second) = 1

3
qP2 , trader i observes price

P and is in second position. This yields:

ABi (1|P,K) = ABi (0|P,K) +



0 if ai−(1) = ∅ (b4)

9 if ai−(1) = ai(1) = ai+(1) = B (b5)

−1 if ai−(1) = ai(1) = B and ai+(1) = ∅ (b6)

0 if ai−(1) = B and ai(1) = ∅ (b7)

(21)

where

b4 = 1− PrBi (1| P
10
, K),

b5 = PrBi (1| P
10
, K)PrBi (1|P,K)PrBi (1|10P,K),

b6 = PrBi (1| P
10
, K)PrBi (1|P,K)

(
1− PrBi (1|10P,K)

)
and b7 = PrBi (1| P

10
, K)

(
1− PrBi (1|P,K)

)
.

In this case, the attraction not only depends on the action of the next trader, but also on

that of the previous one. If the previous trader chooses not to buy, which happens with
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probability b4, the attraction is exactly the same as the initial attractions; otherwise,

the three cases are similar to those described below equation (20).

• With probability Pr(Third observes P
⋂
i is Third) = 1

3
qP3 , trader i observes price P

and is in third position. Following the same reasoning as above, if P < 10K+2, we

have:

ABi (1|P,K) = ABi (0|P,K) +


−1 if ai(1) = ai−(1) = ai−−(1) = B (b8)

0 otherwise (b9)

(22)

where

b8 = PrBi (1| P
100
, K)PrBi (1| P

10
, K)PrBi (1|P,K),

and b9 = 1− PrBi (1| P
100
, K)PrBi (1| P

10
, K)PrBi (1|P,K).

In this case, the attraction depends on not only the action of trader i but also the

actions of the previous two traders. If all the three traders choose to buy, which

happens with probability b8, the attraction will add −1; otherwise, the attraction is

exactly the same as the initial attraction.

The case in which trader i observes the highest possible price, i.e., P = 10K+2 is slightly

different: in that case indeed, a trader who would not buy could still imagine the payoff

he would have received if he had bought given that he infers from P his position in the

market sequence. This yields:

AB
i (1|10K+2,K) = AB

i (0|10K+2,K) +


−1 if ai(1) = ai−(1) = ai−−(1) = B (b10)

−δ if ai(1) = ∅ and ai−(1) = ai−−(1) = B (b11)

0 otherwise (b12)

(23)

where

b10 = PrBi (1| P
100
, K)PrBi (1| P

10
, K)PrBi (1|P,K),

b11 = PrBi (1| P
100
, K)PrBi (1| P

10
, K)

(
1− PrBi (1|P,K)

)
,
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and b12 = 1− PrBi (1| P
100
, K)PrBi (1| P

10
, K).

In this case, the attraction will add −1 if all the three traders choose to buy, and −δ if

the first two traders choose to buy and trader i chooses not to buy since he can imagine

that he would have received −1 if he had bought. For other cases, the incremental

payoff is 0.

• With probability 1−1
3

(
qP1 + qP2 + qP3

)
, trader i does not observe price P andABi (1|P,K) =

ABi (0|P,K).

To sum up, the attraction of buying for trader i is as follows: if price P < 10K+2, we

have

ABi (1|P,K) = ABi (0|P,K) +


0 with prob. c1

−1 with prob. c2

9 with prob. c3,

(24)

where

c1 =
1

3
qP1 b3 +

1

3
qP2 (b4 + b7) +

1

3
qP3 b9 + 1− 1

3
(qP1 + qP2 + qP3 ),

c2 =
1

3
qP1 b2 +

1

3
qP2 b6 +

1

3
qP3 b8,

c3 =
1

3
qP1 b1 +

1

3
qP2 b5.

(25)

If P = 10K+2, we have

ABi (1|10K+2, K) = ABi (0|10K+2, K) +



0 with prob. c4

−1 with prob. c5

9 with prob. c6

−δ with prob. c7.

(26)
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where

c4 =
1

3
qP1 b3 +

1

3
qP2 (b4 + b7) +

1

3
qP3 b12 + 1− 1

3
(qP1 + qP2 + qP3 ),

c5 =
1

3
qP1 b2 +

1

3
qP2 b6 +

1

3
qP3 b10,

c6 =
1

3
qP1 b1 +

1

3
qP2 b5,

c7 =
1

3
qP3 b11.

(27)

From equation (2), the probability to buy for trader i conditional on price P at period 2

is:

PrBi (2|P,K) =
1

1 + e−λA
B
i (1|P,K)

, (28)

where ABi (1|P,K) is distributed according to equation (24) if P < 10K+2 and equation (26)

if P = 10K+2.

We obtain that e−λA
B
i (0|P,K) = 1

PrBi (1|P,K)
− 1. We can see that the expected probability

to buy at period 2 for trader i is computed as follows: if P < 10K+2, we have

E1(PrBi (2|P,K) = c1Pr
B
i (1|P,K) +

c2

1 + eλ
(

1
PrBi (1|P,K)

− 1
) +

c3

1 + e−9λ
(

1
PrBi (1|P,K)

− 1
) ,
(29)

where c1, c2 and c3 are as equation (25).

If P = 10K+2, we have

E1(PrBi (2|10K+2, K) =c4Pr
B
i (1|P,K) +

c5

1 + eλ
(

1
PrBi (1|P,K)

− 1
)

+
c6

1 + e−9λ
(

1
PrBi (1|P,K)

− 1
) +

c7

1 + eδλ
(

1
PrBi (1|P,K)

− 1
) , (30)

where c4, c5, c6 and c7 are as equation (27).

Tables 5 and 6 show the values of these probabilities for any price P when the cap on
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Table 5: Price Cap on the first price is 1

Price P qP1 qP2 qP3 E1(PrBi (2|P,K = 1))

1 1 0 0 1
75

[
44 + 44

4+e−9λ + 36
4+eλ

]
10 0 1 0 11

750

[
32 + 11

11+9e−9λ + 99
11+9eλ

]
100 0 0 1 1

750

[
64 + 11

1+9eλ
+ 99

1+9eδλ

]

Table 6: Price Cap on the first price is 104

Price P qP1 qP2 qP3 E1(PrBi (2|P,K = 4))

1 1
2

0 0 2381
1.5×108

[
50476 + 2381×9429

2381+119e−9λ + 571×2381
2381+119eλ

]
10 1

4
1
2

0 3143
5∗1011

[
115763301 + 22693750×9429

9429+571e−9λ + 13616250×9429
9429+571eλ

]
102 1

8
1
4

1
2

1
1.92×109

[
997566505 + 360725000

5+3e−9λ + 1258742960
5+3eλ

]
103 1

16
1
8

1
4

1
768000

[
360571 + 16800

1+e−9λ + 30058
1+eλ

]
104 1

16
1
16

1
8

3
3200

[
623 + 12

3+2e−9λ + 73
3+2eλ

]
105 0 1

16
1
16

1
4000

(
797 + 1

1+4e−9λ + 14
1+4eλ

)
106 0 0 1

16
1

4000

[
399 + 1

1+9eλ
+ 9

1+9eδλ

]

the first price are 1 and 104 respectively. Notice that 0 ≤ qP1 + qP2 + qP3 ≤ 1.

• First, let us analyze the case where trader i observes the highest or the second highest

prices.

– Case I: K = 0.

In this case, q100
1 = q100

2 = 0 and q100
3 = 1. Based on the initial probabilities to

buy and equation (30), we obtain the expected probability to buy at period 2 if

trader i observes price 100 as follows:

E1(PrBi (2|100, 0)) =
1

750

[
64 +

11

1 + 9eλ
+

99

1 + 9eδλ

]
,
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which is strictly lower than 0.1 for λ > 0 and δ ≥ 0. The probability to buy of a

trader who observes the highest price 100 when the price cap is 1 is expected to

decrease immediately between period 1 and period 2.

We look at the second highest price 10. q10
1 = q10

3 = 0 and q10
2 = 1. Given the

initial probabilities and equation (29), similarly we can show that the expected

probability to buy at the second highest price 10

E1(PrBi (2|10, 0)) =
11

750

[
32 +

11

11 + 9e−9λ
+

99

11 + 9eλ

]
,

which is strictly lower than 0.55 (the probability to buy at period 1) when λ > 0

and δ ≥ 0.

– Case II: K = 4.

In this case, q106

1 = q106

2 = 0 and q106

3 = 1
16

. Given the initial probabilities and

equation (30), we also obtain the expected probability to buy at period 2 is

E1(PrBi (2|106, K)) =
1

4000

[
399 +

1

1 + 9eλ
+

9

1 + 9eδλ

]
,

which is strictly lower than 0.1 for λ > 0 and δ ≥ 0. The probability to buy of a

trader who observes the highest price 106 when the price cap is 104 is expected

to decrease immediately between period 1 and period 2.

We look at the second highest price 105, where q105

1 = 0 and q105

2 = q105

3 = 1
16

.

Given the initial probabilities and equation (29)), similarly we can show that the

probability to buy at the second highest price 105

E1(PrBi (2|105, K)) =
1

4000

(
797 +

1

1 + 4e−9λ
+

14

1 + 4eλ

)
,

which is strictly lower than 0.2 (the probability to buy at period 1) when λ > 0

and δ ≥ 0.

51



– In summary, the probability to buy of a trader who observes the highest or the

second highest price is expected to decrease between period 1 and period 2.

• Second, we analyze the cases where trader i observes prices which are not the highest or

second highest to check whether they will have incentive to speculate more next period,

i.e., period 2. We compute the expected probability to buy at different prices given

different caps by using equation (29). Similarly, we obtain the expected probabilities

to buy in Tables 5 and 6. To this end, we differentiate the expected probability to buy

in these two tables with respect to λ. Computation yields:

∂E1(PrBi (2|1, 0))

∂λ
=

1

75

(
396e9λ

(1 + 4e9λ)2
− 36eλ

(4 + eλ)2

)
∂E1(PrBi (2|1, 4))

∂λ
=

283339e−9λ

1.5× 108

(
84861

(2381 + 119e−9λ)2
− 571e10λ

(2381 + 119eλ)2

)
∂E1(PrBi (2|10, 4))

∂λ
=

184328983711341e−9λ

400000000

(
15

(9429 + 571e−9λ)2
− e10λ

(9429 + 571eλ)2

)
∂E1(PrBi (2|102, 4))

∂λ
=

eλ

1.6× 107

(
81163125e8λ

(3 + e9λ)2
− 31468574

(5 + 3eλ)2

)
∂E1(PrBi (2|103, 4))

∂λ
=

63e9λ

320(1 + e9λ)2
− 15029eλ

384000(1 + eλ)2

∂E1(PrBi (2|104, 4))

∂λ
=

3

3200

(
216e9λ

(2 + e9λ)2
− 146eλ

(3 + 2eλ)2

)

It is easy to show that all the first order differentiations are strictly positive if and only

if 0 ≤ λ < λ∗(P,K), where λ∗(P,K) ∈ (0,+∞). That is, there exists a λ∗(P,K) ∈

(0,+∞) such that the expected probability to buy at price P given cap 10K increases

with λ when λ ≤ λ∗(P,K) and decreases with λ when λ > λ∗(P,K).

When λ = 0, the expected probability to buy at period 2 are equal to 80% when price

is 1 and cap is 1, and 95.24%, 94.29%, 62.50%, 50%, and 60% at prices 1, 10, 102,

103, and 104 and when price cap is 104 respectively, which are exactly the same as

the initial probabilities. When λ → +∞, the expected probability to buy at period

2 are 73.33% when price is 1 and cap is 1, and 95.09%, 87.03%, 55.71%, 49.14%

and 58.78% at prices 1, 10, 102, 103, and 104 and when price cap is 104 respectively.
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These probabilities are all lower than the initial probabilities. Therefore, there exists

a λ′(P,K) ∈ (0,+∞) such that the expected probability to buy at period 2 is greater

than the initial probability if λ ∈ (0, λ′(P,K)) and lower than the initial probability if

λ ∈ (λ′(P,K),+∞).

• In summary, given the initial probabilities to trader from the experimental data, we

find that traders choose not to speculate if the observing price is highest or second

highest. For other lower prices, traders have incentive to speculate especially λ is not

too large.
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