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Abstract

This paper tests for the e�ect of weather on solar technology adoption, taking advantage of

the fact that sunshine is a direct input factor for solar electricity production. I �nd that a one

standard deviation increase in monthly sunshine hours above the long-term average leads

to an approximate 6.2 % growth in the residential solar market over a six-month period. I

consider a range of potential mechanisms and �nd strong evidence for projection bias and

salience as key drivers of my results. My �ndings show that there is an asymmetric response

to positive and negative sunshine deviations from the long-term mean and that counties with

a high vote share for the green party are particularly a�ected by these biases.
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1 Introduction

Climate change is one of the most pressing concerns for policy makers in the 21st century. Ex-

perts worldwide agree that a quick reduction in greenhouse gas emissions is needed.
1

One crucial

sector in this process are energy and electricity markets and the transition from fossil fuels to re-

newable energy sources (RES). To incentivize private investment in RES, governments engage in

costly support mechanisms. These policies often come in the form of investment or production

subsidies and implicitly build on the assumption that decision-makers act rationally by evaluat-

ing private costs and bene�ts. Behavioral economics, however, has shown in di�erent contexts

that rationality is not necessarily a good assumption. When utility is context dependent and opti-

mal decision-making involves the prediction of future utility levels, behavioral biases can lead to

consumers mis-valuing costs and bene�ts, in�uencing their decision-making. In spite of the po-

tentially large impact of behavioral biases on RES investment, this has only found little attention

in the applied literature.

This paper studies the presence of behavioral deviations from the rational agent framework

in the decision of a household to adopt a rooftop solar photovoltaics (solar PV) system. More

precisely, I ask whether variations in local weather conditions have an impact on household

solar PV adoption decisions. The rational agent framework suggests that long-term investments

in rooftop solar PV should not be a�ected by short-term �uctuations in weather, as it does not

impact the long-term investment pro�tability. In contrast, I show that households respond to

variations in sunshine. I test for a variety of competing mechanisms and �nd strong evidence

that household decisions are over-in�uenced by factors in line with projection bias and salience.

These insights are particularly relevant when it comes to costly policy support mechanisms aimed

at increasing the uptake of public goods with positive externalities.

This paper is the �rst to provide causal evidence for projection bias and salience in the re-

newable energy investment context. This is especially relevant in this context given the sig-

ni�cant amount of public resources spent on incentivizing technology adoption.
2

In line with

the behavioral economics literature (Bordalo, Gennaioli, and Shleifer 2012, 2013, Loewenstein,

1
United Nations Framework Convention on Climate Change, COP21 ‘Paris agreement’, December 2015.

2
In 2011 alone, total RES support in Germany accounted for 16.7 billion Euros. The largest individual share is

solar PV technology, with 7.7 billion Euros.

1

http://unfccc.int/paris_agreement/items/9485.php


O’Donoghue, and Rabin 2003), I provide empirical evidence that exogenous states, such as weather,

can impact individual investment decisions. Furthermore, looking at county heterogeneity, I

show that certain population groups are particularly a�ected, making them prominent candi-

dates for targeting (Allcott, Knittel, and Taubinsky 2015, Costa and Kahn 2013, Gromet, Kun-

reuther, and Larrick 2013). If the objective of the policy-maker is to reach fast product di�usion,

it is important to consider these biases when designing adoption campaigns.

I follow the theoretical literature on projection bias (Loewenstein, O’Donoghue, and Rabin

2003) and salience (Bordalo, Gennaioli, and Shleifer 2012, 2013) in durable goods purchase deci-

sions to derive testable hypotheses for the case of solar PV investment. To empirically test for

these hypotheses, I use administrative data on residential solar PV installations in Germany and

high-resolution weather data. I focus on Germany, the world-market leader in solar PV deploy-

ment in 2011, as its institutional features are particularly well-suited for this analysis. First, the

particular design of feed-in tari�s (FIT), the main support mechanism for renewable energy in-

vestment, guarantees comparable investment conditions for the time period 2000 to 2011 in an

otherwise quickly changing market environment.
3

Second, given the long project horizon of 20

years, rational agents should not respond to short-term variations in weather as their average

returns will not be a�ected. This is particularly true as there exists a time lag of approximately

9 weeks between the decision to adopt solar and the time the installation is completed and starts

to produce electricity. Third, the adoption of a rooftop solar PV system involves a large �nancial

commitment, comparable to the purchase of a car, which allows me to credibly exclude other

mechanisms, such as short-lived mood �uctuations.

For my empirical analysis, I recover the long-term weather distribution for each county and

de�ne a weather shock as a weather realization one standard deviation above the long-term mean.

My empirical identi�cation takes advantage of the randomness of local weather as well as the

3
While solar PV prices in Germany decreased by more than 50% in the time period 2006 to 2011, FITs adjust-

ment led to comparable investment conditions over time. The presence of the unique policy instrument, FIT, allows

potential solar PV customers to calculate their expected �nancial returns. Other important markets for residential

solar PV, such as California, rely on a variety of inter-dependent policies, including the federal investment tax credit,

accelerated depreciation, state incentives, and utility net-metering. Borenstein (2017) shows that private solar PV

investment in California only recently led to positive returns on investment. Moreover, given net-metering policies,

solar PV return depends on the design of the electricity block-tari�.
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time gap between decision-making and completion of the installation. In my main speci�cation,

I regress solar PV market growth on current and lagged sunshine and other weather shocks,

controlling for a rich set of county and time �xed-e�ects. In addition, I add data on county demo-

graphics, solar PV prices, as well as news on ‘solar PV’ and ‘climate change’, to test for competing

mechanisms and county heterogeneity. Finally, I perform an online survey with German solar PV

installers to provide additional market insights, in particular regarding customer key decision-

variables, installation timing, and installer marketing outreach.

I �nd strong evidence that an exceptionally sunny month leads to additional solar PV installa-

tions with a two month lag, in line with the average installation timing. A sunshine shock implies

a 6.2% growth of the residential solar PV market in a county, increasing the average number of

installations from approximately 10 to 10.6. I allow for non-linear e�ects of sunshine and �nd

that there exists a strong asymmetric response between positive and negative deviations from the

long-term mean. Months with exceptionally low number of sunshine hours, lead to signi�cantly

fewer installations. In line with these �ndings, I show that other weather variables such as rain

and cloud cover lead to similar results. On the other hand, temperature does not seem to impact

technology adoption decisions. Finally, I show that ‘green counties’, with a large historic vote

share for the green party, are particularly prone to additional adoption. Income and education,

on the other hand, do not seem to play an important role in explaining the biases. These results

suggest that political beliefs might play an important role in the response to policy interventions

based on behavioral economic interventions.

My overall �ndings are both in line with projection bias and salience. According to projec-

tion bias, even small deviations from the long-term mean can impact investment decisions when

households ‘project’ return expectations, based on current weather, into the future. On the other

hand, a large deviation from the long-term sunshine mean makes the �nancial bene�ts related

to solar PV investment more ‘salient’. The presence of salience can furthermore lead to asym-

metries in the response to sunshine deviations if perceptions of �nancial returns and investment

costs are a�ected independently by positive and negative deviations. The data does not allow me

to separate these channels. In the case of solar PV, sales are highly seasonal. For this reason, I

am not able to test for projection bias and salience separately. I am able to rule out other pos-

sible mechanisms a�ecting investment decisions such as myopia, biased weather forecasts, and

3



learning.

I perform several robustness tests of the main empirical results. In particular, I employ al-

ternative weather data and run the analysis on sub-samples. Moreover, I provide evidence for

robustness of the inference, employing standard errors that explicitly allow for spatial correla-

tion and auto-correlation. Finally, by looking at the installation of wind turbines, a market that

follows a similar investment dynamic, yet that is dominated by institutional investors, I exclude

the possibility that RES investments are spuriously correlated with sunshine shocks.

In an attempt to rule out a variety of alternative mechanisms for my empirical results, I em-

ploy a distributed lag model to show that the main e�ect cannot be explained by inter-temporal

substitution of solar PV purchases. Similarly, using data on both cloud coverage and rain, I ex-

clude the possibility that households decide rationally, yet have strong preferences to leave their

homes only in periods when it is not raining. While data on ‘solar PV’ news coverage is positively

correlated with adoption, the main sunshine e�ect is not diminished. Finally, I consider the pos-

sibility of supply-side responses to short-term variations in weather. I do not �nd evidence that

installers make strategic price promotions in periods of exceptional sunshine. In addition, the sur-

vey suggests that installers do not strategically adjust their marketing campaigns to short-term

variations in weather.

The paper proceeds as follows. The introduction concludes with a discussion of the related

literature. Section 2 gives additional details on the German solar PV market. Section 3 devel-

ops testable hypotheses for projection bias and salience in solar PV investment, while Section 4

describes the data. Sections 5 and 6 provide the main empirical strategy and results. Section 7

adds robustness and Section 8 discusses the �ndings further in light of competing mechanisms.

Finally, Section 9 concludes.

Related Literature

This paper contributes to several strands of literature, �rst and foremost to the debate on ra-

tional consumer choice in the energy context. This discussion relates to the so-called ‘energy-

e�ciency gap’ (Allcott and Greenstone 2012, Ja�e and Stavins 1994). The energy-e�ciency gap

describes the idea that even though investment in energy e�cient goods is privately bene�cial,

i.e. energy saving through the adoption of energy-saving appliances outweighs cost, technology

4



uptake remains low. Several explanations have been given in the literature for this ‘puzzle’ includ-

ing traditional market failures in line with imperfect information, inattention, or principal-agent

issues. Alternatively, systematic behavioral biases in consumer decision-making and cognitive

limitations in mental accounting may explain the presence of the energy-e�ciency gap (Allcott,

Mullainathan, and Taubinsky 2014, Gillingham, Newell, and Palmer 2009, Gillingham and Palmer

2014). The ‘rationality’ of consumer behavior in this context has been extensively tested in how

much consumers ‘undervalue’ fuel economy when purchasing a vehicle (see for example All-

cott and Wozny 2013, Anderson, Kellogg, and Sallee 2013, Busse, Knittel, and Zettelmeyer 2013,

Greene 2010, Sallee, West, and Fan 2016), yet the literature has not come to a �nal agreement.

This paper adds to this literature by providing �rst empirical evidence for projection bias and

salience in an important energy investment decision.
4

The presence of behavioral agents can

have important implications for e�ective policy design (Allan, Ja�e, and Sin 2014, Chetty 2015,

Madrian 2014, Tietenberg 2009). In a case where investment is privately pro�table and bene�cial

to society, low cost information campaigns can signi�cantly increase technology adoption (Hor-

taçsu, Madanizadeh, and Puller 2017, Ito, Ida, and Tanaka 2016, Tiefenbeck, Goette, Degen, Tasic,

Fleisch, Lalive, and Staake 2016).

Second, this paper contributes more broadly to the discussion on behavioral factors in�uenc-

ing technology di�usion, in particular concerning the adoption of solar PV technology. Estimat-

ing a dynamic discrete choice model of solar PV adoption in Belgium, De Groote and Verboven

(2016) show that households are myopic, in a sense that they signi�cantly undervalue the future

bene�ts from solar PV investment. Other papers have found strong evidence for peer-e�ects in

the di�usion of solar PV panels (Bollinger and Gillingham 2012, Graziano and Gillingham 2015,

Rode and Weber 2016). Evidence that household investment is particularly a�ected by projection

bias and salience in ‘green counties’, suggests that there might be important inter-connections

between these biases and peer e�ects.

Finally, testing for behavioral biases in �eld data remains challenging (DellaVigna 2009). The

present paper builds on the literature on projection bias in other consumer domains, such as the

4
Liao (2016) �nds evidence that bad weather conditions can be related to a increased share of solar PV contract

cancellations in the state of California and interprets her �ndings in line with projection bias. In contrast to her

analysis, I focus on the ‘sales e�ect’ of exceptional sunshine. The institutional details in Germany lead to comparable

investment conditions over time, which allows for a particularly credible test for deviations from rational choice.

5



purchase of winter cloths (Conlin, O’Donoghue, and Vogelsang 2007), college enrollment (Simon-

sohn 2010), car purchase (Busse, Pope, Pope, and Silva-Risso 2015), and health insurance (Chang,

Huang, and Wang forthcoming), and provides evidence for behavioral biases in a large investment

good, where weather (sunshine) can be directly linked to �nancial return expectations. This is the

�rst paper to provide evidence that the interaction of behavioral biases can lead to asymmetric

responses to positive and negative weather deviations from the long-term mean.

The work most closely related is Busse, Pope, Pope, and Silva-Risso (2015) that show that

idiosyncratic variations in weather a�ect people’s choice of vehicle types. In particular, they

�nd that good weather over-in�uences the purchase of convertible cars, while bad weather in-

creases purchases of 4-wheel-drive vehicles. Their setting relies on daily variations in weather. In

contrast, the institutional context in the solar market, speci�cally the time gap between decision-

making and completion of the installation, allows me rule out myopia and present bias. Bene�ts

from the installation will only be perceived several weeks after the decision is made. This makes

it unlikely that my results are driven by a share of highly myopic consumers that prefer to pur-

chase the good on a sunny day or consumers with biased beliefs about the short-term weather

evolution. Moreover, this paper extends the previous work by providing evidence on asymmetric

responses to positive and negative deviations from the long-term sunshine mean and by showing

that certain population sub-groups can be heterogeneously a�ected by behavioral biases.

2 Institutional Market Features

Germany has long been the world leader in solar PV technology deployment, accounting for more

than 35% of the global operating capacity in 2011.
5

In spite of its relatively poor sunshine radia-

tion, due to its geographic location, solar PV investment has been privately pro�table thanks to

the presence of a national feed-in tari� (FIT) scheme. FITs are long-term contracts between the

renewable energy producers and the electric utilities that guarantee access to the electric grid for

a period of 20 years and allow to sell electricity at a �xed rate, above the retail price of electric-

ity. FITs have been made available to residential solar PV investors with the introduction of the

Erneuerbare Energien Gesetz (EEG) in 2000. The EEG involves an annual downward adjustment of

5
REN21 (2012), Global Status Report on Renewables.

6
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FIT to account for decreasing solar PV module prices. This ‘degression rate’ was set by the policy

maker to keep the overall investment pro�tability comparable over time. Changes in the FIT rates

only a�ect new installations and are announced several months before the actual adjustment. For

residential investors it has been optimal to sell the full amount of electricity produced (at a high

FIT), and to continue purchasing their electricity from retailers (at the residential electricity tar-

i�).
6

Due to these incentives, solar PV investment has been mainly seen as a �nancial investment

opportunity, with an internal rate of return of approximately 7-11%.
7

During the period 2000 to 2011, there have been two amendments to the original EEG, that,

however, did not change the overall investment incentives for residential customers. Only a

major reform in 2012 changed FITs fundamentally, introducing mandatory on-site consumption

and a more stringent downward revision of FIT rates. Even though the market for residential

solar PV has grown importantly over the period 2000 to 2011, the share of solar energy in the

German electricity mix remained at 3.1% in 2011. At the same time, there were no signs of market

saturation and installed solar PV capacity continued to grow 29% in 2012.

A particularity of the solar PV market is that installations need to be handled by quali�ed

installers and require site-speci�c planning. Solar supply in Germany is highly fragmented and

dominated by local installer businesses.
8

In a survey with installers, I provide additional evidence

that consumer’s motivation to install solar PV is mainly �nancially motivated. At the same time,

the survey reveals that most installers do not engage in costly marketing campaigns, and rather

rely on word-of-mouth for customer acquisition. Most importantly, given the large investment

character and individual planning of installations, there exists an average time gap of 9 weeks

(median 8) from �rst customer contact to completion of the installation.
9

Appendix A provides

additional details on the solar PV market in Germany, including FIT design and the installer

6
In 2007, for instance, the FIT was 49.21 Eurocents per kilowatt-hour (KWh) electricity, while the average elec-

tricity rate for residential customers in Germany was 20.6 Eurocents per KWh, including all taxes and levies.

7
The return depends on the exact location (solar irradiation), timing of the installation (FIT rate, cost), and the

module’s e�ciency. Note that solar PV panels are usually maintenance free and require little follow-up investments.

The most common replacements are electric inverters that have a life-expectancy of about 10 years.

8
See for instance: Solar Installer Survey, Muehlhausen Consulting, 2014. Solar PV installation is often a comple-

mentary business to related activities, e.g. heating systems, water installations, and electric appliances.

9
A similar time gap has been found by Seel, Barbose, and Wiser (2013) that survey installers in Germany and the

US solar PV market.

7
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survey.

Weather and the Pro�tability of Solar

Climate and weather conditions have an important impact on the pro�tability of solar PV. Energy

produced by a solar module is directly related to the availability of solar energy (radiation), which

is site-dependent but can be in�uenced by factors such as the module’s orientation relative to the

sun. Average solar radiation in Germany ranges from about 1000 kWh to 1400 kWh per square

meter and is higher in the South.
10

While thick cloud cover and shading can reduce signi�cantly

the electricity production from solar cells, other weather variations in temperature or intermittent

clouds can have ambiguous e�ects on the performance of solar modules. These variations are,

however, short-lived and have little impact on the average pro�tability of solar PV investment,

which is entirely determined by long-term climatic conditions. I provide additional discussion

regarding weather e�ects in Appendix B.

3 Behavioral Biases and Solar Investment

As short-term weather variations do not have a direct impact on future returns from solar PV

investment, variation in sunshine should not a�ect the investment decisions of rational agents.

However, as pointed out by a growing literature in behavioral economics (see literature surveys

in DellaVigna 2009, Huck and Zhou 2011), many individual decisions might deviate from the stan-

dard economic model. If households forecast �nancial returns from solar PV investment based on

current sunshine, their investment decisions might be overly in�uenced by the current state of

weather in line with projection bias (Loewenstein and Schkade 1999, Loewenstein, O’Donoghue,

and Rabin 2003). Similarly, in case an exceptional sunshine period draws consumers attention

to certain product attributes, salience (Bordalo, Gennaioli, and Shleifer 2012, 2013) might a�ect

consumer choice. This section elaborates further on projection bias and salience as sources for de-

viations from the neoclassical model in durable goods purchases and develops testable hypotheses

10
Panel (a) of Figure B.1 depicts the average solar irradiation in Germany. Panels (b) - (d) of the same �gure show

actual weather averages for annual sunshine hours, mean temperature, and total annual precipitation in the time

period 2000-2011.
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for the particular case of solar PV investment.

3.1 Projection Bias

Following Loewenstein, O’Donoghue, and Rabin (2003), suppose that a person’s instantaneous

utility can be written asu(c, s), where c is consumption good and s is the state that parameterizes

the tastes of the decision maker. In case of a simple projection bias, people with current state s ′

form linear expectations about their future utility in state s. Thus, the person’s predicted utility

lies in between the true future tastes u(c, s) and the current tastes u(c, s ′) which implies that a

person’s behavior needs not to correspond to correct inter-temporal utility maximization.
11

In the speci�c case of durable goods purchase, suppose furthermore that a person’s valuation

in period t is given by the random variable, µt that is identically and independently distributed

across periods and has a �nite sample mean µ. The realization of µt is known at the beginning of

the period and the durable good lastsMmonths. Without loss of generality, I assume that future

utilities are not discounted. More importantly, the durable good does not lead to any utility in the

period of purchase. If a person decides to buy at period 1, she obtains utility from the purchase,

but has to pay price P which implies forgone consumption of other goods. Assume that the

utility for the durable good is additively separable from utility of other goods and the current

state is equal to the random variable, st = µt. Then, in a one-time buying decision, true expected

inter-temporal utility is given by

E1[U1] = E1[

M∑
k=1

µ1+k − P] =Mµ− P.

While in the presence of projection bias we have that

E1[Ũ1] = E1[

M∑
k=1

[(1− α)µ1+k + αµ1] − P] =Mµ+ αM(µ1 − µ) − P.

Clearly, µ1 > µ implies E1[Ũ1] > E1[U1] and vice versa. Thus, if the period 1 valuation is

larger than the average valuation and the consumer projects this into the future, she will be prone

to overvaluation of the durable good, or in other words, the person’s buying decision will be too

11Simple projection bias is de�ned as ũ(c, s|s ′) = (1−α)u(c, s) +αu(c, s ′), where α measures the degree of the

bias, i.e. α = 0 implies correct prediction of future utility and α = 1 implies fully myopic habits.
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sensitive to the valuation at the purchasing time. In the more realistic case of multiple buying

decisions, the consumer can buy at most once in any period t ε {1,2,...}. A rational person would

buy the good in period 1 or never, i.e. she buys if and only if Mµ − P > 0. A high valuation

µH > µ, implies thatMµ+αM(µH −µ) − P > 0, or in other words, projection bias can lead to

impulse purchases in the case where the buying decision is highly irreversible. A low valuation,

µL < µ, on the other hand, implies that that no purchase is made, even though it would be

generally bene�cial to buy the product.

3.2 Salience

Salience (Bordalo, Gennaioli, and Shleifer 2012, 2013) refers to the idea that consumers’ attention

may be systematically biased towards certain product attributes. When consumers make their

purchase decisions and an attribute is very salient, it will receive a disproportionately high weight

in the purchase decision, a�ecting their purchase choice. In the basic model, a good’s salient

attributes stand out from those of the ‘reference good’, de�ned as having the average level of

each attribute or choice set.

However, this might also be the case for the value of the attribute itself, which might vary

over time and causes the attribute’s salience to vary (see for instance Hastings and Shapiro 2013).

In the present paper, salience is related to sunshine, an exogenous weather variable, that varies

over time and location, and which can make the (�nancial) investment potential of solar PV more

salient. This type of salience is similar to the one discussed in Busse, Pope, Pope, and Silva-Risso

(2015).

The de�nition of product attributes are important in the case of salience. If the main attribute

is ‘�nancial investment potential’, then both positive and negative weather shocks might lead to

an increased number of solar sales, as both weather types will make the perceived value of solar

investment very di�erent from the reference value (having the average levels of sunshine). This

is probably inconsistent with the general intuition. Yet, de�ning two separate attributes, such as

increased ‘solar PV awareness’ in exceptional rich sunshine periods, and ‘perceived solar cost’ in

periods of exceptional poor sunshine means that responses to positive and negative deviations

from the reference good do not need to be the same. As both product attributes can be indepen-

dently a�ected, the two e�ects might lead to an asymmetric response in sunshine deviations from

10



the long-term mean.

3.3 Testable hypotheses for solar PV investment

The durable goods character of solar PV makes it necessary for households to form return ex-

pectations and forecast these over the project horizon of 20 years when making their investment

decision. The presence of FIT policies makes it easy to calculate the expected period pro�t of

solar PV, as all electricity produced will be fed to the grid. As FIT rates are �xed over the invest-

ment horizon, the household must form expectations about the long-term electricity production

of solar panels, which is directly linked to availability of sunshine and solar radiation. The net

present value (NPV) is given by the discounted cash �ow CF over the project horizon, times the

expected electricity production Ep(e). Formally,NPVp =
∑T

t=0 δ
t−1CFp×Ep[e(sun, ·)], where

CF is a function of the FIT rate and the installation cost, both de�ned at the period of investment,

p. The expected electricity production Ep[e(sun, ·)], depends on average solar radiation (sun),

and other factors related to the e�ciency of solar modules, the panel orientation towards the sun,

etc. While information on long-term solar radiation is available to economic agents, behavioral

agents might misinterpret the information contained in short term-weather events.
12

As �nancial return expectations are directly a�ected by sunshine, behavioral agents inter-

temporal pro�t evaluations might be over-in�uenced by the current state of sunshine. In line with

projection bias, agents project the current weather or their perceived pro�ts into the future when

making their purchase decision. Similarly, exceptional sunshine might remind consumers of the

investment pro�tability or the cost of solar PV in line with salience. Both channels can lead to

impulse purchases in the case of positive sunshine shocks, and to non-investment in exceptional

poor sunshine conditions. While projection bias is related to a symmetric response in sunshine

deviations from the long-term mean, the presence of salience might lead to asymmetries. I tests

for the following hypotheses in the data:

12
Information on long-term (global) solar radiation is available from di�erent online data sources, such as the

European Commission and the German Weather Service. Many installers provide households furthermore with a

detailed NPV calculation when making their investment plan. Financial constraints do not play an important role

in the case of solar PV investment in Germany due to the availability of interest-free loans o�ered by the bank for

reconstruction, KfW.
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1. Behavioral consumers will respond to idiosyncratic variations in sunshine, as sunshine

impacts the perceived �nancial returns of solar PV investment.

2. Given the average timing from decision-making to completion of the installation, I expect

the main e�ect two month after an exceptional sunshine period.

3. Both, positive and negative deviations from the long-term sunshine mean impact invest-

ment decisions. While projection bias suggests a symmetric response to positive and neg-

ative deviations, the presence of salience can lead to non-linearities.

4 Data

The primary data for this study is the universe of solar PV installations in Germany, which is avail-

able from the information platform of the transmission network operator ‘netztransparenz.de’.

This data includes information on all grid-connected solar PV installations that receive FITs. As

investment in solar PV is highly unpro�table without this policy support, this dataset is likely

to contain the universe of residential installations in Germany. In addition to the location, the

data provides information on �rst grid connection (completion of the installation), as well as the

size of the solar panel. The dataset consists of 580,000 residential solar PV installations with a

capacity smaller or equal to 10 kW in the time period 2000-2011.
13

I aggregate all installations at

county-month level and construct a balanced panel data set containing 57,888 observations (402

counties observed for 144 months). Figure 1 plots the cumulative number of solar PV installations

in the last month of my sample, normalized by the potential market size, the number of residen-

tial buildings in the pre-sample period 1999. The map shows that installations have taken place

all over Germany, even though there is important heterogeneity in terms of solar PV penetration.

I combine the installation data with detailed weather data from the German weather service

(DWD). The main weather variables are derived from weather observations, that are based on

around 400 weather stations in Germany. DWD uses a meteorological model to provide detailed

spatial data on a one-kilometer (km) by one-km grid at the monthly frequency. This dataset

13
From the raw dataset with approximately 600,000 installations, I drop obvious duplicates, i.e. observations with

the same plant id. In addition, I drop any two installations that happen on the same day in the same zip code and

are listed with equal capacity. Duplicates may emerge as a result of changes in network operator.

12
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includes variables such as sunshine hours, temperature (mean, min, max), and precipitation for

each point in the grid for every month. In addition to this ‘gridded’ data, I rely on a second

weather data set, which provides direct observations from weather stations. For a total of 51

weather stations I observe daily measures of sunshine, temperature, rain, snow, and cloud cover

ranging back to the 1970s. While sunshine, rain, and snow are cumulative measures, cloud cover

is an index describing the percentage of visible clear sky. Relying on both ‘gridded’ weather

data and station weather data provides useful robustness to my empirical analysis (Au�hammer,

Hsiang, Schlenker, and Sobel 2013, Dell, Jones, and Olken 2014). I aggregate all weather data

at the county-month level, using Geographic Information Systems (GIS) software.
14

Figure B.1

depicts the long-term solar radiation and the main weather variables for the period 2000 to 2011.
15

Additional covariates allow me to control for time varying di�erences at county level and to

test for heterogeneity of the main e�ect. County demographics come from the German statistical

agency including data on population, household income, education, unemployment, agricultural

surface, as well as the number of newly constructed residential and non-residential buildings. I

also include vote participation and the voting shares for the green party in the federal elections

1998, 2002, 2005, and 2009. I complement this with data from Lexis Nexis, an online database

covering major German newspapers. For that purpose, I downloaded all national news articles

on ‘solar PV’ and ‘climate change’ and construct two monthly time series. In addition, I obtained

data on solar PV prices for residential installations.
16

Finally, I conducted a survey with solar PV

installers to obtain better insights into the customer-installer relationship. This data allows me

to understand marketing and sales strategies of installers and more importantly, it provides me

14
Each individual weather observation is assigned to a county if the centroid falls inside the county boundaries.

I average across all data points in a given county to obtain the monthly weather averages. In the case of weather

station data, I assign each county to its closest weather station.

15
There exists an important trade-o� in de�ning the appropriate spatial aggregation for my analysis: a more

detailed weather aggregation would potentially increase the variation in local weather patterns, even though the

weather maps in Figure B.1 suggest that this is not necessarily the case beyond the county level. On the other hand,

a �ner spatial aggregation implies an excess of observations with zero installations. Moreover, the use of county-level

data allows me to add demographic and regional covariates to the analysis and to test for heterogeneous e�ects.

16
Price data is based on installer bids from an online price comparison website for solar PV. Households use this

platform to compare personalized o�ers based on location, rooftop-type, and type and size of solar PV installation

from installers from their region. The author would like to thank EuPD Research for making this data available.
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with information about the precise timing of solar PV installations, i.e. the time gap between �rst

customer contact and completion of the installation. I discuss more details about the survey in

Appendix A.2.

4.1 De�nition of Weather Shocks

To test for the impact of exceptional weather on solar PV uptake, I construct weather shocks

according to the following algorithm. First, I de�ne the long-term weather distribution for sun-

shine, temperature, rain, etc. using the time period 1990 to 2011 in each county and for each

month-of-the-year. Using this time period, the long-term averages are based on 22 observations

for each county-month-of-the-year, e.g. January in Munich. As weather shows important year-

to-year variation, it is important to consider a long time span when calculating the averages. In a

second step, I de�ne the discretized weather shocks as weather realizations that are one standard

deviation above the long-term weather averages in a given region. Appendix B provides addi-

tional descriptives on the weather shocks. In addition to the discretized weather shocks, I test for

non-linear e�ects to sunshine deviations from the long-term mean.

4.2 Descriptive Evidence

Table 1 presents summary statistics for the main weather variables, county demographics, and

solar PV installations. Column 1 focuses on the entire sample, while columns 2 and 3 split the

sample in high and low sunshine shock counties, according to the median of the average sunshine

shock over the sample period.
17

The sample split reveals that there are considerably more solar

PV installations in counties with a higher number of sunshine shocks, while the total number of

sunshine hours in the two groups is the same. Furthermore, it highlights that the two subgroups

are otherwise very similar in terms of observable characteristics. A higher number of solar PV

installations in counties with more sunshine shocks can be seen as �rst descriptive evidence for

the impact of exceptional sunshine on solar PV installations.

17
Local variability in weather realizations combined with di�erences in the long-term weather distributions lead

to di�erences in sunshine shock realizations. The mean of the sunshine shock variable is .203 (median of .201) with

a standard deviation of 0.016.
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Focusing on the time dimension, Figure 2 plots the unconditional mean of solar PV installa-

tions relative to the sunshine shock timing. The �gure depicts the number of residential solar

PV installations two months prior to a sunshine shock, in the month of a sunshine shock, and

up to six months after for the group of counties that had a sunshine shock at time t = 0 and the

group of counties that did not have a sunshine shock. While there are no detectable di�erences

between the two groups two months prior to a sunshine shock, an exceptional sunshine month is

related to more installations. This increase can be rationalized by supply side factors, e.g. rooftop

access in the winter is feasible in exceptional sunny periods, yet not when it is snowing. More

importantly, the �gure shows a strong increase in installations at a two-month lag, in line with

the average installation timing. These insights directly relate to hypotheses one and two, espe-

cially as later lags do not show an important di�erence in installations across the two groups.

In order to advance towards a causal interpretation of these insights, the next section develops

a regression framework that allows me to take into consideration sales and weather seasonality

and to control for (un)observable county di�erences that might be related to solar PV uptake.

5 Empirical Strategy and Identi�cation

5.1 Main regression model

To formally test for the impact of sunshine and other weather shocks on solar PV installations, I

estimate the following regression model

ln(yc,t) = α+

N∑
i=0

βiweatherc,t−i +

3∑
j=1

δc,mj
+ θy + εc,t (1)

where yc,t is the number of new residential solar PV installations in county c at month t di-

vided by the potential market size (number of residential buildings in the pre-sample period 1999).

The dependent variable can be interpreted as a proxy for solar PV growth.
18 Weatherc,t−i,

is a vector of current and lagged weather variables. The speci�cation includes up to 6 lags of

sunshine, temperature, and precipitation weather shocks as de�ned in the previous section. As

18
To be more precise, my main dependent variable is de�ned as: ln

(
solarc,t+1

buildingsc,1999

)
, which is approximately

normally distributed. I provide a histogram in Figure C.1.
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di�erent weather shocks might be correlated over time, I also test for the impact of individual

shocks and weather levels. The regression includes county by month-of-the-year �xed e�ects

(FEs). These FEs allow counties to follow distinct climatic patterns, i.e. spring might start earlier

in some regions than in others, which might impact the installation of solar PV panels. These FEs

are moreover allowed to vary with the three main FIT periods, δc,mj
, with j ε {2000-04, 2005-09,

2010-11}. As the FIT reforms in 2004 and 2009 are related to changes in sales volatility of solar PV,

it is important to allow the e�ects to vary over these periods (see Figure C.2). Finally, I control

for changes in aggregate market conditions, such as solar PV prices and FIT levels, with a set

of annual time dummies, θy. The total number of FEs in the main regression sums to 9,659. I

cluster all standard errors at the county-level to allow the error term to be correlated within a

given county over time.

Identi�cation

To identify the causal impact of sunshine on solar PV adoption, I rely on randomness of local

weather realizations with respect to the long-term averages. The fact that solar PV installations

are highly seasonal makes it necessary to use a �exible set of time and county �xed-e�ects in

my regression. Moreover, �nding evidence for additional solar PV installations in an exceptional

sunny period cannot be interpreted as a behavioral deviation from the neoclassical framework

unless there is a time gap of at least one month, so that investors do not obtain a realized �-

nancial return from installing in an exceptionally sunny month. In a survey with local installers

I con�rmed that the average time gap between �rst customer contact and completion of the

installation is 9 weeks (median 8 weeks). The time gap furthermore ensures that there is no con-

temporaneous correlation between current (and lagged) weather shocks and the error term, i.e.

E(weatherc,t−i, εc,t) = 0 for all i > 0.

5.2 Heterogeneous e�ects

In addition to main speci�cation 1, I test whether certain demographic groups are heteroge-

neously a�ected by the bias. To do so, I divide the sample in two groups according to household

income, share of tertiary education, and share of green voters. The division in ‘high’ and ‘low’

counties is determined according to the median. As household income may be endogenous to the

16



adoption of solar PV panels once the share gets su�ciently large, I group the counties according

to their income levels in the base year (2000). Similarly, as there might be concerns about re-

verse causality in the case of green voting behavior and the adoption of solar PV panels (Comin

and Rode 2013), I rely on the federal elections in the pre-FIT period 1998 to de�ne the groups.

The main underlying assumption is that households self-select in similar neighborhoods in line

with their own characteristics (referred to as homophily in the literature on social networks).

While this measure is far from perfect, it will provide some useful insights for policy-design and

targeting in the case of solar PV investment.

I choose to test for these variables as they are directly linked to solar technology adoption.

Solar PV investment in Germany is mainly �nancially motivated and richer households, that are

on average better educated, are more likely to adopt. Similarly, Costa and Kahn (2013) show that

the response to behavioral policy interventions can vary importantly with political beliefs. In

addition, I split the sample in high and low return counties, according to expected solar produc-

tion in line with the long-term solar radiation to test if high/low return counties are particularly

a�ected by the bias. Figure C.4 provides a visual inspection for the county division according

to the main subcategories. For each of these variables, I run a separate regression, interacting

the sunshine shock sunc,t−i with the dummy for the high group, Dh. Formally, I test for the

following regression speci�cation:

ln(yc,t) = α+

N∑
i=0

βisunc,t−i +

N∑
i=0

βisunc,t−i ×Dh + γDh +

3∑
j=1

δc,mj
+ θy + εc,t (2)

6 Results

6.1 Main results

Column 1 of Table 2 presents the main results, regressing solar PV uptake on current and lagged

sunshine shocks, controlling for time and county-month-of-the-year FEs as introduced in the pre-

vious section. Columns 2 to 4 provide �rst robustness by including additional control variables,

such as the lag of residential solar PV installations in each county, lagged sunshine hours, and

lagged temperature (both in levels). Finally, column 5 replaces the annual FEs by more �exible
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county-year FEs. All speci�cations �nd a strong and highly signi�cant impact of lag 2 of the sun-

shine shock. In line with the average installation timing, this means that a sunshine shock today

will lead to more installations at a two month lag. The fact that the coe�cient on lags 1 and 3

are positive and signi�cant in some speci�cations (although smaller in magnitude) is in line with

hypothesis two, as there is some variation in the installation timing. Lags 4 and 5, on the other

hand, are typically negative and signi�cant, indicating some harvesting-e�ects, i.e. a sunshine

shock leads to some inter-temporal substitution of solar PV investment. Consumers might have

decided to install a solar PV panel in the future, yet, the presence of a sunshine shock led them to

contact their installer and to plan their installation. To address the importance of inter-temporal

substitution of purchases, I sum the coe�cients related to the distributive-lag model, similar to

Busse, Pope, Pope, and Silva-Risso (2015), Deschenes and Moretti (2009), and Jacob, Lefgren, and

Moretti (2007). I �nd an aggregate e�ect of .062 in the main speci�cation in column 1. A Wald-test

for the joint signi�cance of the sum of coe�cients yields a F-statistic of 5.01 (p-value of 0.026).

The total aggregate e�ect indicates that a sunshine shock today leads to an approximate increase

of 6.2% in solar PV growth over the six-month period following the shock. These results are in

line with my hypotheses one and two, stating that behavioral consumers will respond to idiosyn-

cratic variations in sunshine and that the main e�ect will be at a two-month lag, in line with the

average installation timing. Finally, the high R-squared of about .8 indicates that the set of �xed

e�ect is able to capture most of the seasonal and regional variation in solar PV uptake.

To test for hypothesis three, the non-linear e�ects of sunshine, I de-mean the sunshine hours

for each county-month by its corresponding long-term mean, de�ned over the period 1990 to

2011. I construct 7 bins for these deviations from the mean. The bins are de�ned in 30 hour (h)

intervals as 105-75 h less sunshine than the average month, 75-45 h less, etc. I then estimate

model 1 including a separate dummy for each sunshine bin, including up to six lags of these. All

estimates are relative to the historic average of sunshine hours in a given county (± 15h), which

is omitted from the regression.
19

The importance to test for non-linear responses in weather

data has been documented in the previous literature (see for example Deschenes and Greenstone

19
When creating the bins, I furthermore omit observations with less than -105 sunshine hours and more than +105

sunshine hours that represent less than 1% of the total sample. A histogram of demeaned sunshine hours is provided

in Figure C.3.
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2011, Zivin and Neidell 2014). Figure 3 plots the point estimates for each of the sunshine bins

together with the 95% con�dence intervals for lags 0 to 6: panel (a) for positive deviations and

panel (b) for negative deviations from the long-term averages. There are several things worth

noting: �rst, the positive bins in panel (a) replicate the main �ndings from Table 2. The �gure

also highlights that not only the very large deviations from the sunshine mean are driving the

results, but also smaller deviations have a positive and signi�cant e�ect at lag 2, which is followed

by a small negative e�ect at lags 4 to 5. Second, both positive and negative deviations from the

long-term sunshine mean have an impact on solar PV uptake. In fact, panel (b) suggests that

negative sunshine deviations are quantitatively more important than positive ones, resulting in

a large negative e�ect.

In the next step, I test for the impact of other weather shocks on solar PV uptake. For that pur-

pose, I estimate the main regression model with weather shocks for sunshine, temperature, and

precipitation.
20

I focus on the main e�ects at lags 0 to 4, as multiple weather shocks are likely to

be correlated over time. Figure 4 plots the point estimates together with the 95% con�dence inter-

vals. The �gure shows that controlling for other type of weather shocks does not alter the main

e�ect of sunshine shocks on solar PV uptake. Moreover, as suggested by the non-linear e�ects

of sunshine, a month with exceptionally high levels of precipitation leads to fewer installations.

Temperature, on the other hand, has a zero e�ect for the main lags 2 to 4. However, I �nd that

an exceptionally warm month leads to signi�cantly fewer installations in the same period. This

negative e�ect at impact can be explained by supply-side restrictions during exceptionally hot pe-

riods in the summer, that makes rooftop access unfeasible. To test for this assumption, I estimate

the main regression model interacting contemporaneous temperature shocks with quarter-of-

the-year dummies. The results, presented in Table C.1 show that the negative e�ect is mainly

linked to the hottest month of the year (July, August, and September). This is particularly visible,

when focusing on the average maximum temperature.
21

20
The weather shocks for temperature and precipitation are constructed in an analog way to sunshine shocks.

Precipitation is measured as the average rainfall quantity in a month. Temperature is based on the mean temperature.

For robustness, I experiment also with maximum temperatures. The results are not a�ected by this choice.

21
The table employs temperature shocks based on mean temperature (columns 1 to 2) and maximum temperature

(column 3). An alternative way to test for the presence of supply-side restrictions is to focus on adverse weather

conditions in the winter months, such as snowfall that limits installer rooftop access. Figure C.7 provides evidence
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6.2 County Heterogeneity

Table 3 presents the results for heterogeneity. The upper part of the table reports the main e�ect

for lags 0 to 6 of the sunshine shocks, while the bottom part displays the interactions of the

sunshine shock and lagged shocks with the dummy variableDh indicating high income counties

(column 1), counties with a high share of tertiary education (column 2), counties with a high share

of green voters (column 3), and counties with high solar PV pro�tability (column 4). In addition to

the interaction terms, the regression controls for contemporaneous levels of household income,

share of tertiary education, unemployment rate, and percentage of agricultural surface. It is worth

pointing out that the inclusion of additional control variables does not alter the main impact of

sunshine shocks on solar PV uptake. Lag 2 of the sunshine shock remains highly signi�cant in all

four speci�cations with magnitudes aligned with the results presented in the previous section.

Focusing on the interactions for each of these subgroups, column 1 reveals that in high in-

come counties a sunshine shock leads to additional installations at lags 1 to 2, while later lags

are negative and signi�cant. The overall e�ect is zero. This evidence is in line with salience and

harvesting. As wealthy households do not require credit approval, their response time is shorter,

spreading over the two month-period following a sunshine shock. Counties with a high share of

tertiary education do not have an additional e�ects, which might be however related to noisiness

in the education measure. On the other hand, testing for an additional e�ect in ‘green counties’,

political orientation seems to play an important role in the way sunshine impacts solar PV invest-

ment decisions. While the main e�ect for sun shocks at lag 2 is reduced, the interaction term is

highly signi�cant and large in size. Adding up all lags, I �nd a total e�ect of 7.4%, while the main

sunshine shock variable reduces to 2.5%. Green counties seem to be more susceptible to solar PV

investment opportunities and exceptional sunshine has a strong additional sales e�ect. This could

make green counties natural candidates for targeting, should the objective of the policy maker

be fast product adoption. Another potential explanation for my �nding is that solar PV installers

know about the bias and target speci�cally sub-populations in line with weather. I elaborate on

this possibility next. Column 4 of Table 3 tests for an additional e�ect for counties that have a

high solar PV pro�tability. Counties with higher levels of solar radiation have a larger installation

base and investment returns might be particularly salient in sunny periods. My �ndings do not

that snow has a negative e�ect on adoption at impact.
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indicate any important di�erences across regions in response to sunshine shocks. This result can

be explained by pro�table investment conditions across Germany, given the national FIT policy.

6.3 Supplier response

As my main variable of interest is a market outcome, the overall e�ect of exceptional sunshine

on solar PV installations could be a�ected both by a response in demand and supply. Solar PV

installers may observe good weather periods and adopt marketing strategies to increase sales.

To test for this possibility, I obtained detailed price data and performed a survey with installers.

Price data is based on installer bids, which allows me to compare prices for similar installations

in each quarter for the years 2010 and 2011. The original data contains 8,881 individual price

bids for residential installations (system prices), which I aggregate at the county-quarter level.

A histogram of the original data is given in Figure C.8. As I do not observe a sale for every

county-quarter pair, I generate a second dataset, in which I interpolate missing observations

using a �exible regression model that includes a nationwide price trend, county intercepts as

well as separate e�ects for each state by half-year. Table 4 reports the main e�ects, regressing

solar PV prices on lagged installations as well as current and lagged sunshine shocks for both

the original sample and the interpolated data. The results indicate that the lagged number of

solar PV installations have a negative impact on prices, which is in line with learning-by-doing

in the solar PV industry (Bollinger and Gillingham 2014, Van Benthem, Gillingham, and Sweeney

2008). Focusing on the coe�cients related to sunshine shocks, I do not �nd evidence that prices

are lower in periods of exceptional sunshine or quarters thereafter.

In addition to price adjustments, installers might alter other components of their marketing

mix. Evidence from the installer survey suggests that this is not the case. The survey highlights

that most installers do not engage in costly marketing campaigns, but rather rely on word-of-

mouth for customer acquisition (see Appendix A.2). While seasonality plays a role in sales, i.e.

limited rooftop access during the winter, annual revision of the FIT schedule, there is no evidence

that sales strategies are adjusted to short-lived variations in weather. It is worth pointing out that

German solar PV installers are typically small in size and solar installation is often complementary

to other business activities such as water, heating, or electrical appliances.

Even though I am not able to fully exclude the possibility that installers use good weather as
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a sales argument in their discussion with customers, the fact that customer acquisition follows

word-of-mouth means that it is the households attention that needs to be drawn to solar PV in

the �rst place. This observation, paired with the average time gap, makes it unlikely that my

�ndings can be fully rationalized by supply-side factors.

7 Robustness

I perform a series of robustness checks for my main results. First, I verify that the main estimates

are not a�ected by the choice of weather data. For that purpose, I reestimate model 1 with direct

weather observations from weather stations. Weather station data is available for 51 stations

ranging back to the 1970s.
22

I assign each county to its closest weather station and re-de�ne

the weather shocks according to this data. Column 1 in Table 5 presents the original sunshine

shock variable for comparison, yet employs robust standard errors clustered at the larger weather

station area (51 clusters), allowing for a wider degree of spatial correlation. The point estimates

remain highly signi�cant and are in line with my main results. Column 2 uses the sunshine

shock de�nition based on weather station data and again �nds a strong and signi�cant e�ect at

lag 2. Other lags are not signi�cant. To minimize the measurement error for the sunshine shock

variable, I estimate the model only with the subset of counties that have a weather station (column

3). Even though this exercise reduces considerably the number of observations, it provides a good

robustness check, given the fact that weather-station location is independent of solar PV adoption

and sunshine shocks. Again, the main e�ect remains highly signi�cant for lag 2.

Second, columns 4 to 6 of Table 5 present robustness to a model with separate county FEs

and month-of-the-year FEs that are allowed to vary with the three main FIT phases. While the

standard errors in column 4 are clustered at weather station, column 5 employs Newey-West

standard errors that explicitly account for autocorrelation and column 6 uses standard errors as

in Conley (1999) that are consistent with both spatial correlation and autocorrelation. For these

speci�cations, I set the autocorrelation parameter to 4 months and the distance cuto� for spatial

correlation to 100 km. Independent of these modeling choices, the main e�ect for lag 2 remains

signi�cant.

22
The location of these weather stations is depicted in Figure B.3.
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Another issue with autocorrelated sunshine shocks was if households observed a shock today

and could learn from it about future sunshine shocks. Figure 5 provides evidence that sunshine

shocks are in deed surprises to consumers and not forecastable. For this purpose, I estimate

model 1 with a full set of time indicator variables that are interacted with the sunshine shock.

These indicator variables track the month of exceptional sunshine and the periods immediately

preceding and following a shock.
23

The main e�ect is normalized with respect to the month

preceding a sunshine shock, which is omitted from the regression. The plotted coe�cients can

be interpreted as the percent change in solar PV installations in county c relative to the month

before a sunshine shock. The main e�ect at lag 2 is comparable in magnitude and signi�cance,

while I do not �nd evidence that the months immediately preceding a sunshine shock are di�erent

from zero.

Finally, I perform an additional test to show that sunshine shocks are not spuriously corre-

lated with another type of RES investment that are dominated by institutional investors and that

does not directly depend on sunshine: wind turbines.
24

I de�ne the dependent variable for wind

installations in line with solar PV and reestimate model 1 for the subset of counties that are suit-

able for wind turbines, i.e. having at least one wind installation in the period 2000-2011. This is

the case for 310 counties. The regression controls for demographic covariates to account for this

selection. Table 6, shows that solar PV installations follows the familiar pattern with this reduced

sample. Wind installations, on the other hand, are not a�ected in the month of a sunshine shock

and the four months thereafter. The appendix provides additional robustness concerning in�uen-

tial time periods, performing a sample split in Table C.2, and in�uential observations, excluding

individual states from the regression in Figure C.11.

23
I introduce a separate dummy for the history of sunshine shocks in each country, grouping periods with more

than one year of lead or lag into an "early’ and ’late’ dummy. The Figure plots the sunshine shock coe�cient for the

most relevant period: three month prior to a sunshine shock and up to �ve month after the occurrence of a sunshine

shock.

24
Data on wind installations is available from the electricity network operator, ‘netztransparenz.de’. Wind instal-

lations are subject to the same FIT policy (with lower rates), and their seasonal sales pattern strongly resembles that

of solar PV installations (see Figure C.9).

23
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8 Discussion

The previous sections have provided strong evidence for the causal impact of sunshine shocks on

solar PV adoption that are in line with theoretical predictions of projection bias and salience. The

size of the bias is comparable to previous papers that study projection bias in consumer decision-

making, e.g. Chang, Huang, and Wang (forthcoming) �nds that a standard deviation increase in

daily air pollution leads to a 7.2% increase in the number of insurance contracts sold that day and

Busse, Pope, Pope, and Silva-Risso (2015) shows that a snow storm of approximately 10 inches

will increase the fraction of four-wheel drive vehicles by about 6% over a period of two to three

weeks.

The data at hand does unfortunately not allow me to fully disentangle the e�ects of salience

and projection bias. Salience is usually de�ned with regard to the ‘average good’, or in this case

regarding the long-term weather conditions. This implies that a consumer response to extreme

sunshine deviations imply salience e�ects. Depending on the de�nition of consumer attributes,

salience can lead to asymmetric responses in the case of positive and negative weather deviations

from the long-term mean. Projection bias, on the other hand, predicts that the current levels of

sunshine impact investment decisions, and that any deviations from the average impact product

purchase decisions. As solar PV installations follow a highly seasonal sales path that is a�ected by

average climatic conditions and FIT policy design, I am not able to directly test for these channels.

Similar to Busse, Pope, Pope, and Silva-Risso (2015), I focus on the impact of exceptional weather

(sunshine shocks) on purchase decisions. My �nding that exceptional sunshine periods lead to

more (less) solar PV investment can be seen as a sign for salience. Yet, �nding evidence that also

smaller deviations from the long-term sunshine mean lead to changes in investment behavior, is

in line with projection bias. Even though I cannot fully distinguish between the two channels,

I am able to rule out a series of alternative mechanisms for the empirical �ndings, which I will

discuss in the remainder of this section.

Myopia & present bias: Consumer myopia (O’Donoghue and Rabin 1999, Laibson 1997) can

lead to similar theoretical predictions as projection bias in the case of repeated consumer pur-

chases. Yet, for the case of a one time purchase decision, this is not necessarily the case, espe-

cially as consumers do not receive �nancial returns in the month of their purchase. Evidence

that an exceptional sunny month leads to additional installations at a two month lag is very dif-
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�cult to reconcile with consumer myopia, given the high upfront investment cost of solar PV.
25

If consumers, on the other hand, present myopia in their pro�t expectations, myopia would be

indistinguishable from projection bias.

Rain & cloud cover: Another potential concern is that individuals decide rationally about their

investment, but it happens to be a rainy period and customers have strong preferences to leave

their homes only in periods when it is dry. Using data on cloud cover helps me to eliminate this

potential concern, as I can separate the e�ects of a covered sky from precipitation. I �nd that a

high cloud cover impacts technology adoption, independent of rain (see Figure C.6).

News & information: Households might not respond to sunshine shocks themselves, but rather

to information that becomes available in sunny periods. This would especially be a concern if

news outlets are more likely to publish an article on solar PV or climate change in an exceptional

sunny period. In order to test for this possibility, I obtained data on print media news coverage

from the online database Lexis Nexis and created a monthly time series aggregating the number

of articles that appear in the German press for ‘solar PV’ (990 entries), and ‘climate change’ (922

entries). The time series is plotted together with the series of new solar PV installations in Figure

C.10. Table C.2 presents the main regression results, including data on news for solar PV (col-

umn 1), climate change (column 2), and both covariates (column 3). While both variables have

a statistically signi�cant impact on technology uptake, the main e�ect of sunshine shocks is ro-

bust to the inclusion of this potentially confounding factor. The news variables provides indirect

evidence on the two-month time lag for installations. I �nd the largest magnitude at lag 2.

Learning: Another concern is that consumers might learn from exceptionally sunshine pe-

riods about future weather and climate conditions. However, as shown in Figure 5, sunshine

shocks do not carry information on future sunshine events. Moreover, given data availability on

long-term solar radiation, it is easy for rational agents to form expectations on average invest-

ment pro�tability. Alternatively, learning might take place in a technological (product) sense, i.e.

households learn about the existence of the technology due to exceptional weather periods. Solar

might be for example more ‘visible’ on a sunny day. This type of learning, however, implies a

25
De Groote and Verboven (2016) �nd that FIT policy leads to a general undervaluation of future bene�ts from solar

PV adoption and interpret their �nding in line with myopia. This paper, on the other hand, shows that sunshine

shocks can lead to an important increase in solar adoption linked to an exaggeration of return expectations.
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behavioral response that is very closely related to salience.

Climate change beliefs: Similarly, individuals beliefs about future climate might be a�ected

by current weather conditions. The behavioral climate change literature (Deryugina 2013, Li,

Johnson, and Zaval 2011) has shown that current temperatures can have an impact on climate

change beliefs. However, this literature points typically to a relationship between exceptional

temperature and climate change. As I do not �nd a signi�cant e�ect of temperature on solar PV

investment, climate change beliefs are not likely the main driver of my results.

Biased weather forecasts: One potential shortcoming of the data is that I am unable to distin-

guish between consumers having biased beliefs about future weather conditions and consumers

having biased beliefs in their pro�t expectations. This is particularly relevant when thinking

about the external validity of the results, i.e. are these behavioral biases only present in the

case of weather (individuals mis-predicting their local weather and climate) or concerning pref-

erences. The long time gap of about two-month between decision-making and installation makes

it unlikely that investors believe that weather in two months time will be closely related to the

weather today, given their past experience in weather seasonality in Germany. An alternative

way to approach this possibility is to see by how much people are able to predict their local

weather patterns. Krueger and Clement (1994) ask students in the United States to predict av-

erage high and low temperatures in their region for given days of the year and found that they

are generally able to forecast the weather accurately. For the speci�c case of Germany, Burger-

Scheidlin (2014) investigates the local weather perception of farmers related to climate change

and long-term climatic evolutions. Her results indicate that farmers have an ample knowledge

about how the weather should be at a given time of the year. Although one can assume that the

general public has less ‘inherited’ knowledge, o�cial weather information is available to both

audiences.

9 Conclusion

This paper provides evidence that an important household investment decision, the installation of

solar PV panels, is a�ected by behavioral economic phenomenon in line with projection bias and

salience. Using administrative data on solar installations in Germany, I show that exceptionally
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sunny periods lead to an approximate 6.2% growth in the solar PV market in the six-month period

following a sunshine shock. Furthermore, I show that there exists a strongly asymmetric response

to positive and negative deviations from the long-term sunshine mean that can be explained

by interactions of the two biases. Finally, I show that ‘green counties’, with a large historic

share of green voters, are particularly a�ected by this sales e�ect. The overall �ndings cannot be

rationalized by neoclassical theory with rational consumers yet are linked to projection bias and

salience - two concepts closely related in the case of inter-temporal consumer purchase decisions.

Evidence for projection bias and salience in this high-stake investment decision implies that

likely also other important consumer decisions are a�ected by behavioral biases. If consumers

are prone to impulse purchases, a ‘cooling-o� period’ combined with mandatory information

disclosure is likely to increase consumer welfare (Loewenstein, O’Donoghue, and Rabin 2003).

As pointed out by Busse, Pope, Pope, and Silva-Risso (2015), so far no clear recipe exists on how

to de-bias consumers, which leaves an interesting �eld for future research.

On the other hand, given FIT subsidies, solar PV investment is both privately pro�table and

socially bene�cial. If the objective of the policy-maker is to obtain a fast initial product di�usion,

he might want to use these behavioral deviations from the neoclassical model to impact product

uptake. Several lines of research have shown that policy formulation based on behavioral inter-

ventions can be successful (Allan, Ja�e, and Sin 2014, Chetty 2015, Madrian 2014). Alternatively,

the �nding of this study might help solar installers to communicate more e�ectively with poten-

tial customers, leading to additional product uptake at little or no cost. This is especially true if

installers are able to target di�erent population groups. Future research aiming at disentangling

distinct behavioral channels through the use of randomized controlled trails would be bene�cial

to policy-targeting.
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Figures & Tables

Figure 1: Solar installations in Germany, December 2011

Note: Total number of residential solar PV installations (6 10 kilo-

watt) in the period January 2000 to December 2011 normalized by

the number of residential buildings in 1999. Unit of aggregation:

counties. Darker areas represent higher solar PV penetration.
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Figure 2: Solar installations and sunshine shocks
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Note: The �gure plots the average number of solar PV installations

in counties with a positive sunshine shock at time period 0 in com-

parison to counties that have no sunshine shock in the same time

period. The average number of installations is shown in two-month

intervals, from 2 month prior to a sunshine shock (t=-2) to 6 month

posterior to a sunshine shock (t =6).
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Figure 3: Non-linear e�ects: de-meaned sunshine hours
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(b) Bins for negative deviations from the long-term mean

Note: The �gure plots the coe�cients and 95% con�dence interval for a re-

gression of the log of solar PV installations to residential buildings on bins for

sunshine deviations from the long-term sunshine mean following regression

model 1. Unit of observation: county-month. Each weather observation is de-

meaned by the long-term average in a given county-month-of-the-year. The

corresponding histogram is provided in Figure C.3. All estimates are relative

to the long-term mean category (+/- 15 sunshine hours), which is omitted from

the regression. The results for positive (panel a) and negative (panel b) bins

are split in two panels for ease of exposition. All standard errors are clustered

at the county level.
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Figure 4: Distinct weather shocks
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Note: The �gure plots the coe�cients and 95% con�dence interval

regressing the log of solar PV installations to residential buildings

on weather shocks for sunshine, temperature, and precipitation.

Weather shocks are de�ned as weather realizations one standard de-

viation above the long-term weather mean. Unit of observation is

county-month. The model follows main regression speci�cation 1.

All standard errors are clustered at the county level.
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Figure 5: Predictability of sunshine shocks
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Note: The �gure plots the coe�cients and 95% con�dence interval

regressing the log of solar PV installations to residential buildings

on sunshine shocks interacted with monthly dummies. I introduce

a separate dummy for the history of sunshine shocks in each coun-

try, grouping periods with more than 12 month of lead and lag in an

‘early’ and ’late’ dummy. All results are relative to time period t-1,

which is omitted from regression. The �gure displays the sunshine

shock coe�cients for the period three month prior to a sunshine

shock and up to �ve month posterior. The model includes year and

county-month-of-the-year FEs as in speci�cation 1. All standard er-

rors are clustered at the county level.
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Table 1: Summary statistics

All High sun shock Low sun shock

Solar installations 10.02 11.53 8.71

(18.28) (20.02) (16.52)

Sunshine hours 139.66 139.60 139.72

(77.38) (76.32) (78.28)

Mean temperature, in degree C 9.45 9.32 9.56

(6.62) (6.62) (6.62)

Population 204019 199232 208142

(228264) (271895) (182422)

Household income pc, in Euros (2010) 18823 18964 18703

(2304) (2259) (2335)

Vocational training, in % 62.50 62.78 62.26

(6.04) (5.59) (6.38)

University degree , in % 8.43 8.35 8.50

(3.93) (4.01) (3.86)

Unemployment rate , in % 9.77 8.83 10.57

(4.62) (4.16) (4.85)

New residential buildings / population 0.18 0.19 0.16

(0.11) (0.11) (0.10)

Agricultural surface , in % 0.47 0.50 0.44

(0.16) (0.15) (0.16)

Green voters , in % 7.69 7.79 7.60

(3.49) (3.39) (3.56)

Vote participation , in % 76.66 77.21 76.18

(5.53) (5.37) (5.62)

Observations 57888 26784 31104

Counties 402 186 216

Note: Summary statistics for the period 2000-2011. Unit of observation is county-month. Column

1 refers to the full sample. Columns 2 and 3 split the sample according to the median of the

sunshine shock in high (column 2) and low (column 3) sun shock counties. A sunshine shock

is de�ned as a sunshine realization one standard deviation above the long-term mean in a given

county-month-of-the-year. Standard deviations reported in parentheses.
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Table 2: Main regression: sunshine shock

(1) (2) (3) (4) (5)

Sun shock –0.003 –0.003 –0.008 0.002 0.003

(0.007) (0.007) (0.007) (0.007) (0.007)

Lag sun shock –0.004 –0.005 0.055
∗∗∗

0.016
∗∗

0.002

(0.008) (0.008) (0.009) (0.007) (0.008)

Lag 2 sun shock 0.107
∗∗∗

0.107
∗∗∗

0.108
∗∗∗

0.113
∗∗∗

0.119
∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)

Lag 3 sun shock 0.014
∗

0.013
∗

0.009 0.015
∗∗

0.025
∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)

Lag 4 sun shock –0.015
∗∗

–0.015
∗∗

–0.012
∗

0.008 –0.002

(0.007) (0.007) (0.007) (0.007) (0.007)

Lag 5 sun shock –0.030
∗∗∗

–0.030
∗∗∗

–0.021
∗∗∗

–0.010 –0.029
∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)

Lag 6 sun shock –0.007 –0.006 –0.011 –0.005 –0.005

(0.007) (0.007) (0.007) (0.007) (0.007)

Observations 55476 55476 55476 55476 55476

R
2

0.794 0.794 0.795 0.796 0.859

Lag cumulative installations N Y N N N

Lag sunshine hours N N Y N N

Lag temperature N N N Y N

Year FE Y Y Y Y N

County-MoY FE Y Y Y Y Y

County-Year FE N N N N Y

Note: Dependent variable: log of solar PV installations to residen-

tial buildings. Unit of observation is county-month. Main model

(column 1) controls for year �xed e�ects (FEs) and county-month-

of-the-year FEs that vary with the three main FIT periods (2000-

04, 2005-2009, 2010-11), resulting in a total of 9,659 FEs. Columns

2 to 4 include the lagged number of solar PV installations, lagged

sunshine, and lagged temperature respectively as additional control

variables. Column 5 replaces the yearly FE by a county time year

FE. Robust standard errors are clustered at the county level. p < 0.1

(*), p < 0.05 (**), p < 0.01 (***).
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Table 3: Heterogeneous e�ects: county covariates

Dh 1(yc > y) 1(ec > e) 1(vc > v) 1(rc > r)

Sun shock –0.003 –0.012 –0.008 0.004

(0.009) (0.010) (0.010) (0.010)

Lag sun shock –0.022
∗∗

–0.019
∗

–0.022
∗

–0.041
∗∗∗

(0.011) (0.011) (0.011) (0.010)

Lag 2 sun shock 0.092
∗∗∗

0.102
∗∗∗

0.079
∗∗∗

0.095
∗∗∗

(0.011) (0.011) (0.010) (0.011)

Lag 3 sun shock 0.039
∗∗∗

0.013 0.029
∗∗∗

0.040
∗∗∗

(0.011) (0.010) (0.011) (0.010)

Lag 4 sun shock –0.004 –0.017
∗

–0.005 –0.025
∗∗

(0.009) (0.009) (0.009) (0.010)

Lag 5 sun shock –0.038
∗∗∗

–0.017 –0.041
∗∗∗

–0.041
∗∗∗

(0.010) (0.010) (0.010) (0.010)

Lag 6 sun shock –0.011 –0.002 –0.007 –0.029
∗∗∗

(0.010) (0.010) (0.010) (0.010)

Sun shock × Dh –0.000 0.020 0.008 –0.014

(0.014) (0.014) (0.014) (0.014)

Lag sun shock × Dh 0.038
∗∗

0.030
∗∗

0.035
∗∗

0.074
∗∗∗

(0.015) (0.015) (0.015) (0.014)

Lag 2 sun shock × Dh 0.031
∗∗

0.012 0.056
∗∗∗

0.024

(0.015) (0.015) (0.015) (0.015)

Lag 3 sun shock × Dh –0.050
∗∗∗

0.003 –0.028
∗

–0.055
∗∗∗

(0.014) (0.015) (0.015) (0.014)

Lag 4 sun shock × Dh –0.024
∗

0.004 –0.019 0.019

(0.014) (0.014) (0.014) (0.014)

Lag 5 sun shock × Dh 0.017 –0.027
∗

0.024 0.026
∗

(0.015) (0.015) (0.015) (0.016)

Lag 6 sun shock × Dh 0.007 –0.012 –0.002 0.038
∗∗∗

(0.014) (0.014) (0.014) (0.014)

Observations 55476 55476 55476 55476

R
2

0.796 0.796 0.796 0.796

Time FE Y Y Y Y

County-MoY FE Y Y Y Y

Note: Dependent variable: log of solar PV installations to residen-

tial buildings. Unit of observation is county-month. Each column

interacts the sunshine shock with a separate dummy variable Dh

indicating counties with high income (column 1), a high share of

tertiary education (column 2), a high share of green voters (column

3), and high average solar radiation (column 4). Dh is de�ned with

respect to the median: columns 1 to 2 considers the base-year (2000),

while the vote share of the green party refer to the federal election in

1998. A county with high solar radiation in column 4 is identi�ed re-

garding the long-term averages. The regression follows model 1 and

includes additional control variables for tertiary education, house-

hold income, unemployment rate, and agricultural surface. Robust

standard errors are clustered at the county level. p < 0.1 (*), p < 0.05

(**), p < 0.01 (***).
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Table 4: Price e�ect of sunshine shocks

Original data Interpolated data

(1) (2) (3) (4)

Lag solar installations –0.008
∗

–0.007
∗

–0.009
∗∗∗

(0.004) (0.004) (0.003)

Lag 2 solar installations 0.001 0.001 –0.001

(0.007) (0.007) (0.005)

Sun shock 0.001 –0.005 –0.004

(0.013) (0.008) (0.008)

Lag sun shock 0.015 0.014 0.013

(0.013) (0.009) (0.009)

Lag 2 sun shock 0.010 –0.002 –0.003

(0.019) (0.011) (0.011)

Observations 1835 1835 3104 3104

R
2

0.609 0.609 0.637 0.639

State-by-quarter FE Y Y Y Y

Note: Dependent variable: log price per KW of installed solar PV

capacity (residential installations). Unit of observation is county-

quarter, in 2010 and 2011. The regression controls for state by quar-

ter �xed-e�ects. Columns 1 and 2 use the original sample, while

columns 3 and 4 use an interpolated dataset that imputes missing

prices for county-quarters with no reported sales using a �exible

regression model that includes a nationwide price trend, county in-

tercepts as well as price variation by state half-year. Robust standard

errors are clustered at the county level. p < 0.1 (*), p < 0.05 (**), p <

0.01 (***).
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Table 5: Robustness: weather data and inference

(1) (2) (3) (4) (5) (6)

Shock de�nition Original Weather station data Original

Standard errors Cluster Cluster Cluster Cluster Newey-

West

Conley

Sun shock -0.003 0.007 0.029 -0.010 -0.010 -0.004

(0.013) (0.016) (0.023) (0.011) (0.049) (0.031)

Lag sun shock -0.004 0.013 0.005 -0.003 -0.003 -0.020

(0.015) (0.014) (0.021) (0.012) (0.072) (0.027)

Lag 2 sun shock 0.107
∗∗∗

0.104
∗∗∗

0.074
∗∗∗

0.100
∗∗∗

0.100
∗

0.094
∗∗∗

(0.014) (0.016) (0.022) (0.011) (0.052) (0.026)

Lag 3 sun shock 0.014 0.016 0.046
∗∗

0.019
∗

0.019 0.017

(0.012) (0.018) (0.022) (0.011) (0.044) (0.025)

Lag 4 sun shock -0.015 -0.004 0.011 -0.002 -0.002 0.004

(0.014) (0.016) (0.021) (0.013) (0.041) (0.024)

Lag 5 sun shock -0.030
∗∗

-0.014 -0.015 -0.024
∗∗

-0.024 -0.020

(0.012) (0.012) (0.021) (0.011) (0.051) (0.023)

Lag 6 sun shock -0.007 -0.009 -0.007 0.002 0.002 0.006

(0.012) (0.014) (0.020) (0.011) (0.039) (0.024)

Observations 55476 55476 6624 55476 55476 55476

R
2

0.794 0.793 0.788 0.665 - -

Time FE Y Y Y Y Y Y

County-MoY FE Y Y Y N N N

Separate county & MoY FE N N N Y Y Y

Note: Dependent variable: log of solar PV installations to residential buildings. Unit of observation is county-

month. Regression model in columns 1 to 3 controls for year FEs and county-month-of-the-year FEs. Columns

1 uses the original sunshine shock de�nition, while columns 2 and 3 employ weather station data to calculate

the sunshine shock variable. Column 3 limits the sample to the subset of 51 counties with weather station.

Columns 4 to 6 use a transformed regression model that relies on separate county FE and month-of-the-year

FE. The total number of FE in this speci�cation is 435. Columns 1 to 4 cluster at the weather station level,

column 5 employs Newey-West standard errors and column 6 follows Conley (1999). The autocorrelation lag

for these errors is set to 4 month. Spatial correlation is allowed to occur in a 100km radius. p < 0.1 (*), p <

0.05 (**), p < 0.01 (***).
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Table 6: Sunshine shock and wind installations

Solar Wind

Sun shock 0.006 0.001

(0.009) (0.006)

Lag sun shock –0.012 0.001

(0.009) (0.005)

Lag 2 sun shock 0.111
∗∗∗

0.008

(0.008) (0.006)

Lag 3 sun shock 0.016
∗∗

0.004

(0.008) (0.005)

Lag 4 sun shock –0.008 –0.009

(0.008) (0.006)

Lag 5 sun shock –0.034
∗∗∗

–0.012
∗∗

(0.008) (0.005)

Observations 43090 43090

R
2

0.811 0.760

Controls Y Y

Time FE Y Y

County-MoY FE Y Y

Note: Dependent variables: log of solar PV installations

to residential buildings (column 1) and log of wind instal-

lations to residential buildings (column 2). Unit of obser-

vation is county-month. The sample is limited to counties

that have at least one wind turbine in the period 2000-2011

(310 counties). The model includes year and county-MoY

FEs as in speci�cation 1 as well as contemporaneous con-

trol variables for tertiary education, household income,

unemployment rate, and agricultural surface. Robust stan-

dard errors are clustered at the county level. p < 0.1 (*), p

< 0.05 (**), p < 0.01 (***).
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Appendix

A The German Solar Market

A.1 Overview

In spite of its small size and poor solar radiation, Germany has long been the global leader in in-

stalled solar PV capacity.
26

Most of this ‘success’ is attributed to the introduction of the Erneuer-

bare Energien Gesetz (EEG) in 2000 and the related feed-in tari�s (FIT) scheme that created a

favorable investment environment for solar PV. Figure A.1 summarizes the main support poli-

cies. While FITs were already part of the 1991 electricity feed-in act, FIT rates were low and

oriented towards hydro-electric power plants. The �rst important step towards residential in-

vestment in solar energy was taken in 1999 with the introduction of the so-called 100,000 rooftop

program. This program had the objective to add a total of 300 Mega Watt (MW) of installed solar

PV capacity to the electricity grid. It mainly operated through interest-free loans o�ered by the

German bank for reconstruction (KfW). In 2000, the federal government introduced the EEG as

part of a larger ‘sustainability’ incentive.

Figure A.1: FIT policy in Germany

- 1999																	2000																						2004																																			2009	 2012

Renewable	Energy	Act	
(2000,	EEG)	

- FITs	for	solar
- 20	year	horizon
- 5%	annual	degression

EEG	1st Amendment	(2004)
- Adjustment	of	residential	

FIT	rates
- Removal	of	capacity	cap

EEG	2nd Amendment	(2009)
- FIT	rates	for	on-site	

consumption	(voluntary)
- Corridor	degression

oriented	at	national	plan

EEG	incentives	for	solar	
changed	importantly:	

- Mandatory	on-site	
consumption

- Accelerated	tariff	
degression

Electricity	Feed-in	Act	
(1991,	StrEG)

- Generic	feed-in	rates	
for	renewables

- 100,000	rooftop	
program	(1999)

- Interest	free	loans	for	
solar	(KfW)

The EEG introduced a revised FIT scheme, o�ering additional incentives for private invest-

ments in solar PV. It guarantees investors access to the electric grid for a period of 20 years at a

26
REN21 (2015), Global Status Report on Renewables.
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�xed FIT above the retail price of electricity. The EEG also sets a �xed ‘degression rate’, the rate

at which FITs decrease each year, in order to mimic market trends in cost developments. In the

time period 2000 to 2011, there have been two amendments to the original EEG: the �rst, enacted

in 2004, increased FIT rates for residential investors and removed the initially set capacity cap.

The second, enacted in 2009, had the objective to make FIT more cost e�ective, o�ering reduced

rates for on-site consumption. Yet, poor incentives led to little uptake of this new tari� option.

Consequently, the 2009 reform did not a�ect the average pro�tability of solar PV and led to a

record number of PV installations , both in 2010 and in 2011. The economic incentives for so-

lar PV investment changed importantly in 2012, with the introduction of a more stringent FIT

scheme.
27

Figure A.2: FIT policy and solar PV prices
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Note: Evolution of FIT tari�s and residential system solar PV prices.

Figure A.2 plots the evolution of FIT rates and solar PV prices over time. FITs are downward

adjusted on the 31 of December of each year for new installations to account for price decreases in

solar PV installations. Changes are previously announced and do not a�ect previous installations.

The average solar PV system prices is plotted both for Germany (in Euros) and internationally

(in $) to show trends in prices. The presence of FITs leads to highly comparable (and pro�table)

investment conditions in an otherwise quickly changing market environment.

27
A detailed discussion of the evolution of Feed-In tari� policies, with focus on Germany is given by Jacobs (2012).
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For example, in the year 2007, the average price per installed kilowatt (KW) was 4440 Euros.

A standard crystalline silicon panel produces around 830 KWh per year in the central German

region of Frankfurt (taking into account an estimated system loss of 14%, PV GIS Calculator,

European Commission). With the given FIT and a project horizon of 20 years, the investment

results in an internal rate of return of about 7.7%. Individual return rates be considerably higher,

depending on location, panel orientation towards the sun, and solar panel e�ciency.

A.2 Solar Installer Survey

Solar supply in Germany is highly fragmented and dominated by local installers. I conduct an

online survey with solar PV installers to obtain additional information on marketing and sales

activities as well as information on the main consumer decision variables. The survey covers three

main areas: motivation and decision variables a�ecting customer investment decisions, time gap

in decision-making, and the impact of weather and climate on installer sales activities. I obtain

solar PV installer email addresses through an automated web-scrape from an online directory of

German solar PV installers. This section is based on 56 installers that responded to the online

invitation to participate in the survey in August 2015. While the sampling rate is low (about

2%), the geographical representation of the installer sample mimics the one from my universe of

installers.
28

Even though the sample is unlikely to be fully representative of the German solar market,

it provides useful insights on solar PV supply. My sample is mainly composed by professional

solar installers (60% of respondents), electricians (12%), and heating & water installers (12%).

Most of the companies are rather small in size with 1-5 employees (52%), while 20% have more

than 20 employees. In addition, more than 50% of the respondents have been installing solar PV

panels for at least 10 years and thus can provide credible information for changes in the solar

PV business environment. In line with other Marketing surveys (see for example Muehlhausen

Consulting, 2014), I �nd that installer markets are mainly local: 60% of businesses state that their

main commercial activity is concentrated either in the same county or adjacent counties. The

main insights from the online survey can be summarized by the following points:

1. Household investment decisions are a�ected by �nancial considerations.

28
Additional data on the installer survey as well as the full questionnaire are available from the authors upon

request.
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2. Customers acquisition e�ort is low: installers mainly rely on word-of-mouth.

3. The average time gap from �rst customer contact to completion of the installation is 9

weeks.

4. There is no evidence that installers adapt their marketing strategies to short-term variations

in weather.

Panel (a) of Figure A.3 shows the percentage of installers that report that any of the listed

variables are either ‘very important’ or ‘important’ for the customer motivation to purchase a so-

lar PV panel (on a 1-7 Likert scale). The main motivations are �nancial. Environmental concerns

are only considered to be important by about 40% of installers. Panel (b) of the same �gure lists

variables that a�ect the consumer decision to adopt a solar panel. Economic variables dominate

the discussion together with information from social networks. Financing and weather, on the

other hand, are not considered to be important in�uencing factors. Finally, panel (c) of the same

�gure lists the main marketing tools that are used by installers. I �nd that most installers rely on

word-of-mouth (close to 70%) for customer acquisition. Events are used by roughly half of the

sample. Other communication strategies, such as online advertisements, print media, or direct

mailing are used by about 30-40%. Finally, as most of the installers are small in size it is not sur-

prising that 75% of respondents do not have speci�c personnel involved in sales and marketing

activities. This is in line with the fragmented nature of solar PV supply in Germany.

Finally, Figure A.4 plots the histogram for the average time gap between �rst customer contact

and completion of the installation. The questionnaire invokes two separate questions regarding

the average time length between �rst customer contact and contract signature and the time gap

between contract signature and completion of the installation. The survey shows that on average

it takes 5 weeks (median: 4 weeks) from �rst customer contact until contract signature. This time

gap can be explained by individual planning of the installation (which often involves site visits),

but also customers soliciting bids from competing installers, given the large �nancial stake. Once

the contract is signed, on average it takes another 4 weeks (median: 4 weeks) to complete the

installation. This time gap can be mainly explained by the actual work on the installation, as

well as planning, permitting, and inspection. The total time gap is 9 weeks (median: 8 weeks),

with an interquartile range from 6 to 10 weeks. These numbers are in line with an earlier survey
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Figure A.3: Solar installer survey: main categories

0 .2 .4 .6 .8 1
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Note: Solar PV installer survey, August 2015.
Author's calculation. N = 55. 
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Motivation to buy solar

(a) Customer motivation
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Current weather
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Note: Solar PV installer survey, August 2015.
Author's calculation. N = 53. 
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(b) Customer decision-making

0 .2 .4 .6 .8
Percent

Radio & TV
Others

Banners
No advertisement

Social networks
Direct mailing

Print media
Online ads

Events
Word-of-mouth

Note: Solar PV installer survey, August 2015.
Author's calculation. N = 56. 
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(c) Installer: Main marketing channels
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performed with German installers by Seel, Barbose, and Wiser (2013) that �nd that from the

moment of contract signature it takes about 38 man-hours per system installation plus about 5-

10 hours for permitting, interconnection and inspection, not considering additional site-speci�c

planning, material availability, and installer workload.

Figure A.4: Solar Installer: timing
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Note: Average time gap from customer decision-making to comple-

tion of the installation. Source: Solar installer survey (Own calcu-

lation), August 2015. N=45. Histogram cut at the 1st and 99th per-

centile.
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B Weather & Solar PV Pro�tability

In addition to sunshine, di�erent weather phenomena can impact the output of solar cells, at least

in the short-run.
29

The main variables to consider are temperature and cloud cover:

Temperature: High temperature can a�ect the performance of solar cells negatively. Both the

electric current generated and its voltage are in�uenced by the operating temperature. However

as the positive change in current is o�set by a negative change in voltage, and given the fact that

solar modules are typically made up of a number of cells connected in series, the output voltage

decrease due to temperature may become signi�cant. Especially very hot days in the summer

can lead to signi�cantly less electricity production. These e�ects are typically short-lived and

should not a�ect the overall performance of a solar PV installation over its lifespan. Generally,

temperature is a factor bene�tting electricity production from solar PV in a country like Germany

compared to other countries with more solar radiation but with higher average temperatures.

Cloud cover: Cloud cover and shade can be considered the enemies of solar PV production,

as they diminish electricity production by solar cells signi�cantly. A rainy day, with thick cloud

cover, can reduce the production from solar energy by as much as 90%. Short-term electricity

production from solar PV may, however, peak on mixed days, when the sun moves between the

clouds, as then solar cells will receive direct sunlight plus the one re�ected from the clouds.

Other weather: Similarly, other weather events such as snow and ice can a�ect the quantity

of sunlight absorbed by the solar PV panels, but their e�ects are typically short-lived and should

not a�ect the average pro�tability of solar PV investments over the 20-year project horizon.

29
See for example EEPQRC (2011) guide on small scale rooftop solar PV systems.
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Weather Shocks

Figure B.2 depicts the mean of the sunshine shock variable over month (panel a) and years (panel

b) of my sample period. Sunshine shocks are similarly likely to occur over individual months

of the year, while there exists an important year-to-year variation. This year-to-year variation

makes it necessary to condition on a long time horizon when de�ning the long-term weather

averages. To test for autocorrelation of the sunshine shock at the county level, i.e. a sunshine

shock today carries information on future sunshine shocks, Table B.1 provides summary statistic

on the Portmanteau (Q) test statistic for white noise. I construct the test statistic for each county

independently (for di�erent lag structures) and present the percentage of counties where the null

hypothesis of no autocorrelation can be rejected at the 1% and 5% signi�cance level. Focusing on

6 and 12 lags, I �nd that autocorrelation of sunshine shocks is low.

Table B.2 on the other hand looks at (global) spatial correlation of sunshine shocks. For each

month of my sample, I calculate Moron’s I test statistic and list the percentage of periods for which

the null of no spatial autocorrelation can be rejected at the 1% and 5% signi�cance level, assuming

di�erent spatial weighting matrices: "full" all counties can be correlated (weight = distance), "Q1"

counties up to the 1st quartile can be spatially correlated (weight = distance), and "Q1 (0/1)"

counties up to the median distance can in�uence the sunshine shock in a given county (weight

= binary). The table suggests that spatial correlation of shocks is overall not of concern.

Table B.1: Portmanteau (Q-statistic) for white noise

Sunshine shock

Q-statisitc 6 lags 12 lags 24 lags 40 lags

Percent counties with p<.01 .032 .007 .074 .102

Percent counties with p<.05 .089 .077 .209 .274

Note: A Q-(Portmanteau) statistic for white noise with di�erent lag

cut-o�s are calculated for each county individually. The table presents

the percentage of counties in which the white noise hypothesis can be

rejected at the 1% and 5% level of signi�cance respectively.

51



Figure B.2: Distribution of sunshine shocks
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Table B.2: Moran’s I on global spatial correlation

Sunshine shock Sunshine

Moran’s I full Q1 Q1 (0/1) full Q1 Q1 (0/1)

Percent counties with p<.01 .048 .061 .061 .021 .035 .062

Percent counties with p<.05 .067 .067 .133 .083 .076 .09

Note: The Moran I test statistic for global spatial correlation is calculated for

each of the months in my sample, assuming di�erent cuto�s for spatial corre-

lation: column 1 allows all counties to be correlated, column 2 correlation up

to the �rst quartile distance, and column 3 up to the �rst quartile distance with

binary weights. The table presents the percentage of periods in which the null

of "no spatial correlation" can be rejected at the 1% and 5% level of signi�cance

respectively.

Figure B.3: Location of weather stations

Note: Locations of freely available weather stations with a historical

record 1971-2011. Source: DWD, German Weather Service.
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C Additional Figures & Tables

Figure C.1: Histogram: main dependent variable
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Note: Histogram of log of solar PV installations to potential market

(residential buildings in 1999). Unit of observation is county-month,

2010-11. Normal distribution plotted for comparison.

Figure C.2: Main dependent variable over time
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Note: Mean of log of solar PV installations to potential market (resi-

dential buildings in 1999) over the period 2000 to 2011. Unit of obser-

vation: month. Vertical lines indicate the 2004 and 2009 FIT reforms.
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Figure C.3: Histogram: demeaned sunshine hours
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Note: Sunshine hours demeaned with respect to the long-term sun-

shine averages in each county-month-of-the-year. Unit of obser-

vation is county-month, 2010-11. Normal distribution plotted for

comparison.
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Figure C.4: Heterogeneity: county division

(a) Household income (b) Tertiary education

(c) Green voters (d) Solar radiation

Note: Individual maps divide Germany in two regions according to

the median household income (panel a), the median share of tertiary

eduction (panels b), the median vote share of the green party (panel

c), and the median solar radiation (panel d). While the division for

income and education are made with respect to the base year (2000),

the voting share is based on the 1998 federal elections, and the solar

radiation is based on long-term averages.

56



Figure C.5: Weather levels
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Note: The �gure plots the coe�cients and 95% con�dence interval

for a regression of the log of solar PV installations to residential

buildings on sunshine hours and precipitation (in levels), following

the main regression model 1. Unit of observation is county-month.

Robust standard errors clustered at the county level.

Figure C.6: Weather shocks: weather station data
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Note: The �gure plots the coe�cients and 95% con�dence inter-

val for a regression of the log of solar PV installations to residen-

tial buildings on weather shocks for temperature, precipitation, and

cloud cover. Weather shocks calculated in an analog fashion to sun-

shine shocks. Cloud cover is measured as an index of blue sky. Unit

of observation is county-month. Sample: counties with weather

station, 2000-11, N= 6423. Robust standard errors clustered at the

weather station.
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Figure C.7: Snowfall: weather station data
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Note: The �gure plots the coe�cients and 95% con�dence interval

for a regression of the log of solar PV installations to residential

buildings on snowfall (in levels). Unit of observation is county-

month. Counties with weather station, 2000-11, N= 6768. Robust

standard errors clustered at the weather station.

Figure C.8: Histogram: solar PV prices
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ted for comparison.
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Figure C.9: Wind installations
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Note: Mean of wind installations and cumulative number of wind

installations. Unit of observation: month.

Figure C.10: News coverage: solar PV & climate change
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Note: Cumulative news on solar PV and climate change plotted to-

gether with number of residential solar PV installations. Unit of

observation: month, 2000-11.
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Figure C.11: Excluding state-by-state: lag 2
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Note: The �gure plots the coe�cients and 95% con�dence interval

for a regression of the log of solar PV installations to residential

buildings on sunshine shocks following the main regression model,

excluding one federal state at a time. I plot the coe�cients for lag

2 only. Robust standard errors clustered at the county level. States:

1: Brandenburg, 2: Berlin, 3: Baden-Wurttemberg, 4: Bavaria, 5:

Bremen, 6: Hesse, 7: Hamburg, 8: Mecklenburg-Vorpommern, 9:

Lower Saxony, 10: North Rhine-Westfalia, 11: Rhineland-Palatine,

12: Schleswig-Holstein, 13: Saarland, 14: Saxony, 15: Saxony-

Anhalt, 16: Thuringia.
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Table C.1: Contemporaneous temperature e�ects

(1) (2) (3)

Mean temperature shock –0.073
∗∗∗

–0.073
∗∗∗

(0.019) (0.019)

Mean temperature shock × quarter 2 0.056
∗∗

0.049
∗∗

(0.023) (0.024)

Mean temperature shock × quarter 3 –0.199
∗∗∗

–0.208
∗∗∗

(0.024) (0.025)

Mean temperature shock × quarter 4 0.090
∗∗∗

0.090
∗∗∗

(0.022) (0.022)

Max temperature shock 0.002

(0.018)

Max temperature shock × quarter 2 –0.030

(0.022)

Max temperature shock × quarter 3 –0.320
∗∗∗

(0.023)

Max temperature shock × quarter 4 –0.015

(0.022)

Sun shock 0.016
∗∗

0.029
∗∗∗

(0.007) (0.008)

Quarter 2 –0.008 –0.006 –0.003

(0.023) (0.023) (0.023)

Quarter 3 –0.754
∗∗∗

–0.751
∗∗∗

–0.735
∗∗∗

(0.034) (0.034) (0.034)

Quarter 4 –0.422
∗∗∗

–0.420
∗∗∗

–0.412
∗∗∗

(0.041) (0.041) (0.042)

Observations 57888 57888 57888

R
2

0.807 0.807 0.807

Time FE Y Y Y

County-MoY FE Y Y Y

Note: Dependent variable: log of solar PV installations to residential

buildings. Unit of observation is county-month. The regression fol-

lows model 1. Columns 1 and 2 interact current temperature shocks

(based on mean temperature) with quarter of the year. Columns 3

uses a temperature shocks de�nition based on maximum temper-

ature. Columns 2 and 3 furthermore control for contemporaneous

sunshine shocks. Robust standard errors are clustered at the county

level. p < 0.1 (*), p < 0.05 (**), p < 0.01 (***).
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Table C.2: News coverage & sample split

(1) (2) (3) (4) (5)

6 2005 > 2005

Sun shock –0.011 0.009 –0.009 –0.012 –0.007

(0.008) (0.007) (0.008) (0.013) (0.009)

Lag Sun shock 0.004 0.010 0.020
∗∗

0.053
∗∗∗

–0.020
∗∗

(0.008) (0.008) (0.008) (0.012) (0.010)

Lag 2 Sun shock 0.099
∗∗∗

0.110
∗∗∗

0.104
∗∗∗

0.078
∗∗∗

0.097
∗∗∗

(0.007) (0.008) (0.008) (0.012) (0.009)

Lag 3 Sun shock 0.015
∗∗

0.007 0.019
∗∗∗

0.011 0.007

(0.007) (0.007) (0.007) (0.012) (0.009)

Lag 4 Sun shock –0.013
∗

–0.009 –0.031
∗∗∗

–0.047
∗∗∗

0.048
∗∗∗

(0.008) (0.007) (0.008) (0.011) (0.009)

Lag News solar 0.004
∗∗∗

0.009
∗∗∗

(0.001) (0.001)

Lag 2 News solar 0.018
∗∗∗

0.023
∗∗∗

(0.001) (0.001)

Lag 3 News solar 0.007
∗∗∗

0.007
∗∗∗

(0.001) (0.001)

Lag 4 News solar –0.016
∗∗∗

–0.020
∗∗∗

(0.001) (0.001)

Lag News climate change 0.005
∗∗∗

0.001
∗∗∗

(0.000) (0.000)

Lag 2 News climate change 0.015
∗∗∗

0.018
∗∗∗

(0.000) (0.001)

Lag 3 News climate change 0.003
∗∗∗

0.007
∗∗∗

(0.000) (0.001)

Lag 4 News climate change 0.001
∗∗∗

–0.000

(0.000) (0.000)

Observations 55476 55476 55476 26532 28944

R
2

0.798 0.796 0.802 0.714 0.739

Time FE Y Y Y Y Y

County-MoY FE Y Y Y Y Y

Note: Dependent variable: log of solar PV installations to residen-

tial buildings. Unit of observation is county-month. The regression

follows model 1. Columns 1 to 3 include additional time varying

control variables that capture the number of news in German print

media on ‘solar PV’ and ‘climate change’. Columns 4 and 5 split the

sample according to the median period (December 2005). Robust

standard errors are clustered at the county level. p < 0.1 (*), p < 0.05

(**), p < 0.01 (***).
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