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Abstract

While potentially more productive, more complex tasks request more e¤ort, generating larger

agency rents. Agents therefore prefer to acquire complex skills, to earn large rents. In our overlapping

generations model, their ability to do so is kept in check by competition with predecessors. Old agents,

however, are imperfect substitutes for young ones, because the latter are easier to incentivize, thanks

to longer horizons. This reduces competition between generations, enabling young managers to go for

larger complexity than their predecessors. Consequently, equilibrium complexity and rents gradually

increase, especially when agents are patient and turnover limited, so that compensation deferral is

very useful to mitigate moral hazard.
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1 Introduction

Agency problems arise when principals cannot precisely observe and control what agents do (Holm-

strom, 1979; Grossman and Hart 1983; Holmstrom and Tirole, 1997). To provide incentives to limited

liability agents, principals must promise large compensation in case of success. This gives rise to

agency rents.2

As shown in Holmstrom and Tirole (1997), agency rents increase with the cost of e¤ort, or, equiva-

lently, the private bene�t from shirking. The (opportunity) cost of e¤ort varies with the characteristics

of the task delegated to the agent. An important characteristic of a task is its complexity. Brünner-

meier and Oehmke (2009) note that a complex problem can be decomposed in sequence of simple,

elementary ones. To successfully complete the complex task, the agent must solve each of the sub-

problems. Hence, the larger the complexity of the tasks and the number of subproblems, the larger the

agent�s e¤ort, and the more severe the moral hazard problem. They analyse variation in the number

of tasks a manager has to carry out. Dessein and Santos (2006) emphasize the �exibility enjoyed

by managers with broad job de�nitions. While Dessein and Santos (2006) do not consider agency

problems, this suggests that complex jobs, with many tasks and large �exibity, leaving signi�cant

discretion to the agent, are exposed to more severe moral hazard. Combining these observations with

Holmstrom and Tirole (1997), complex tasks raises more severe moral hazard problem, and generate

larger agency rent.

We study the dynamics of complexity and rents in an equilibrium model in which successive

generations of agents acquire increasingly sophisticated skills corresponding to increasingly complex

tasks, generating increasing rents.

Model and results: To clarify the origin of rents in our analysis, we assume there is no scarcity

of managers. Thus, if the market for managers was frictionless, principals would hire only those

managers that are optimal from their point of view, maximizing returns net of rents. Since agents

2 Instead of unobservable ex-ante e¤ort, Thomas and Worall (1988), Kocherlakota (1998), Townsend (1979), Diamond

(1984), and Bolton and Scharfstein (1990), emphasize ex-post unobservability and limited commitment: A problem arises

when the agent cannot commit not to leave the �rm, while it would be di¢ cult to complete the task successfully if the

agent absconded. In this context, the principal must leave the agent a rent, to convince him not to abscond. Our key

insights also obtain in that alternative, but for our purpose essentially equivalent, framework.
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would choose to acquire only those skills that make them employable, complexity would not rise above

what is optimal for principals. In contrast, we assume there are search frictions in the labour market.

We consider an overlapping generations model, in which agents live two periods. At the beginning

of his life, a generation t young manager chooses (at a cost) a given skill, corresponding to a given

type of task, denoted by b. b can be interpreted as the number of layers of complexity of the task.

More complex tasks potentially generate larger gross returns, but their completion also demands larger

e¤orts, and therefore entails larger costs.

Once agents have acquired their skill, each young principal meets a young agent, observes his b,

and decides whether to hire him or not.3 When making this choice, the principal bears in mind that

she could instead i) search for another generation t agent or ii) hire a generation t�1 agent, and then

another agent at time t+ 1. We assume principals incur a (possibly very small) cost when searching

for managers. This shuts down competition between contemporaneous managers, as in Diamond

(1971), enabling one to focus on the key driving force in our model: competition between successive

generations.

It is particularly attractive for a generation t principal to try and hire a generation t � 1 agent

if low bs were chosen by that generation. Thus, when generation t � 1 acquired skills corresponding

to simple tasks, this limits the ability of generation t to increase its own b to earn high rents. The

competitive pressure imposed by the previous generation is limited, however, by the endogenously im-

perfect substitutability among generations. The intuition is the following: To reduce rents, principals

defer compensation (as in Becker and Stigler, 1974, and Rogerson, 1985). This makes it relatively

unattractive for a young principal to hire an old agent. Indeed, old agents have short horizons, which

prevents deferring their compensation to reduce their rents. Thus, other things equal, it is cheaper to

incentivize young agents than old ones. Because old agents are imperfect substitutes for young ones,

the latter can a¤ord to choose technologies with greater agency problems than their predecessors, and

still be hired. This gives rise to an upward trend in complexity and agency rents, which is the core

result of our paper, stated in Proposition 1, below. Note that, even when higher complexity raises

gross returns, the increase in rents eventually reduces net returns for principals.

3 In our main analysis, we focus on the case in which the principal can make a take-it or leave-it o¤er to the agent.

We then relax this assumption, analysing the case in which the agent has some, but not all the, bargaining power. Our

key results still hold in that extension.
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Empirical implications: The main novel empirical implication of our theoretical analysis is that

increasing complexity should be associated with increasing agency rents. This should be particularly

pronounced for industries in which agents have greater opportunities to opt for complex techniques,

and in which such complexity is more likely to create agency problems.

One industry for which this is particularly relevant is �nance, where the lack of hard�wired techno-

logical constraints raises the scope for rent-seeking driven complex innovations.4 Accordingly, Philip-

pon and Reshe¤ (2008) observe a simultaneous increase in managers�rents and investment techniques

complexity, while Célerier and Vallée (2014) document an increase in complexity for structured prod-

ucts, and Greenwood and Sharfstein (2012) observe an increasing share of institutions relying on

complex investment techniques. Also in line with our model, Böhhm, Metzger and Strömberg (2018)

observe rising rents in the �nance sector without an increase in talent and suggest this points to moral

hazard rents.

In order to confront our model to a broader cross-section of industries, we use S&P Capital IQ

Professional Data, which document job functions and compensation for professionals. We focus on

US �rms between 2010 and 2016, a period during which the capital IQ dataset is well documented.

We rely on two proxies for complexity: the number of functions of an executive and the number of

occurrences of the term �complexity�in a company�s 10-K form. For both proxies, we �nd that, during

our sample period, average compensation grew signi�cantly more in industries with larger increase

in complexity.5 We also �nd, in line with our model, that rents grew more in industries with lower

turnover.6

Our model delivers additional testable predictions: The increase in rents and complexity spurred

by an initial deregulation or technology shock should not be instantaneous. Rather it should be

sustained and delayed. Consequently sustained increases in rents and complexity can still take place

when there is no current change in exogenous variables.

Yet another implication of our analysis relates the increase in rents to the search for yields. In

4Another industry in which increasingly complex techniques may have led to increasing rents is the healthcare industry

(see e.g. Bodenheimer, 2005).
5We do not claim causality. Our empirical results should be seen as descriptive and illustrative.
6Turnover acts in our model as a restriction on long-term contracts, which mitigates the ability of agents to extract

more rents than previous generations.
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general, the rise of complexity and rents is limited by the constraint that agents must leave enough

return to the principals to convince them to delegate the management of their wealth rather than

self-invest it. When the return on self-investment is low, which can be proxied by low safe return and

low return on indexing, this should increase agents�ability of agents to increase complexity and rents.

Finally, our analysis implies that experienced managers and junior managers are imperfect sub-

stitutes. This should show up in hiring and compensation data. For example, when new slots open

up, experienced managers are imperfect substitutes for junior ones. Our theory also predicts that

imperfect substitutability, and its consequences, should be stronger when incentive problems are more

severe and compensation more backloaded.

Literature: Our analysis of agents� rent�seeking is in line with Baumol (1990) and Murphy,

Shleifer and Vishny (1991). Both in their analysis and ours, rent�seeking agents impose costs upon

the others. In Baumol (1990) and Murphy, Shleifer and Vishny (1991), however, these costs are

exogenously directly induced by the actions of the rent�seeker, e.g., warfare, litigation or predatory

trading. In contrast, in our analysis, the initial choice of the agent (complexity) has an indirect

endogenous impact on the principal, via the agency rent it induces, and also on subsequent increases

in complexity.7

Our work is also related to Axelson and Bond (2015)�s equilibrium analysis of dynamic contracting

with overlapping generations and moral hazard. In Axelson and Bond (2015) agents can be assigned

to two types of task, with di¤erent levels of moral hazard and productivity. Thus, a common theme in

their paper and ours is the selection of tasks, and corresponding moral hazard, arising in equilibrium.

The endogenous rise in rents over time, re�ecting imperfect competition between successive generation,

is one of the key speci�c results of our model, di¤erentiating it from Axelson and Bond (2015).

Our point that agents in the �nance industry choose complex products and techniques to increase

the rents they extract from principals, echoes the point made by Carlin (2009) that competing �nancial

institutions design complex products to increase their market power. A major di¤erence is that our

analysis hinges on agency problems, which can arise even with large rational investors, while Carlin

(2009) focuses on retail investors and abstracts from agency issues.

7 In Rajan and Zingales (1998), agents�ex-ante investment in human capital increases their rents ex-post. While in

Rajan and Zingales (1998) this can be e¢ cient, in our analysis there is ine¢ ciently large investment in technology.
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Our analysis is also related to Bolton, Santos and Scheinkman (2013). In their paper also, op-

portunistic occupational decisions lead to rents and ine¢ ciencies and give rise to externalities. The

economic mechanisms at work in the two papers are di¤erent, however. In Bolton et al (2013), that

many agents choose to become dealers in the OTC market worsens adverse selection in the other

market. In contrast, in our analysis, that agents choose complex techniques worsens moral hazard,

and increases rents, for the following generations.

Last, our paper is related to the literature on social norms, which explores, notably, how parents

transmit values or preferences to their children (see, e.g., Bisin and Verdier, 2000). In our model,

in contrast with that literature, the transmission of norms from one generation to the next is driven

by competition between generations. And we show that the imperfection of that competitive process

induces a decline in standards.

The next section presents the model. Section 3 presents the optimal contract designed by one

principal, hiring one agent for two periods. Section 4 embeds this bilateral contracting problem in an

equilibrium labour market context and analyzes the dynamics of rents. Section 5 discusses robustness

and extensions. Section 6 presents our empirical analysis. Section 7 brie�y concludes. Proofs not

given in the text are in the appendix.

2 Model

Investors and managers: Each period, a mass�one continuum of investors and a mass�M

continuum of managers are born. M � 1, so that there is no scarcity of managers. In this overlapping

generations model, successive generations of managers coexist in the market at a given point in time,

which creates the scope for competition between generations.8

All market participants are risk neutral, have limited liability and live for two periods. The discount

factor of investors is � 2 (0; 1), while that of managers is � 2 (0; 1). In line with the literature on

dynamic �nancial contracting (e.g., DeMarzo and Fishman (2007) and Biais, Mariotti, Plantin and

8While successive generations of agents are key to our analysis, our qualitative results would be unchanged if we

considered in�nitely lived principals.
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Rochet (2007)), we assume � � �.

Each investor is initially endowed with one unit of investment good. She can invest it in a default

technology, which she can operate herself and which returns 1 unit of consumption good per period

during two periods. Alternatively, she can delegate the management of her capital to an agent,

hereafter referred to as �the manager�. For simplicity the choice between self�investment and delegated

investment is irreversible.

Managers have zero initial endowment. At the beginning of his life, each young manager must

choose among a range of techniques indexed by b 2 [0; 1]. Each technique corresponds to a speci�c

type of skills, knowhow and human capital. The (non�monetary) cost of acquiring skills b is equal to

cb, with c � 0. Importantly, the choice of b is irreversible. The idea is that managers acquire skills,

human capital, relations and technical knowledge at an early stage in their career. Then, they use

this informational capital.9

Complex tasks: When entrusted with one unit of capital, manager b can generate return equal

to R(b) � 1 units of consumption good per period during each of the two periods of his life. We

assume R is continuous, increasing and concave in b.10 R0(b) denotes the left derivative of R(b). Since

R is concave, R0 is decreasing and, in the same spirit as Inada conditions, we assume that R0(1) = 0.

b measures the complexity of the task delegated to the agent. As noted by Brünnermeier and

Oehmke (2009, page 6): �One way to deal with complexity is by dividing up a larger, complex task

into smaller, more manageable subtasks.�b can be thought of as the number of subtasks. The greater

the number of subtasks to be completed, the greater the cost of e¤ort for the agent.

As Holmstrom and Tirole (1997), we assume e¤ort is unobservable and the agent has limited

liability, which raises a moral hazard problem. At the beginning of each period, the agent can exert

e¤ort or shirk. When the agent exerts e¤ort, i.e., checks each of the b layers of complexity, the project

generates cash �ow R(b) for sure, while, when the agent fails to exert e¤ort, cash �ows can be R(b)

with probability 1��, or 0 with probability �.

In line with Holmstrom and Tirole (1997), instead of framing the model in terms of cost of e¤ort,

9See Oyer (2008) for empirical evidence on long term e¤ects of initial career paths in the �nancial sector.
10The assumption that R is increasing is not needed for our analysis. Our qualitative results are upheld when R is

constant. Moreover, one can interpret R(b) as the e¢ cient frontier of the production set, in b/output plane.
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we, equivalently, assume private bene�ts from shirking, i.e., opportunity cost of e¤ort.11 In line with

the above discussion, we assume this opportunity cost of e¤ort is increasing in b, the complexity of

the task. More precisely, we assume the private bene�t is equal to b�R(b), i.e., fraction b 2 [0; 1] of

the loss in expected output due to shirking (�R(b)). Increasing complexity makes checking all the

aspects of the project more demanding, which raises the opportunity cost of e¤ort.12

Sequence of play: for an investor and a manager born at t � 1, the timing of actions is the

following:

At time t:

� Stage 1: Young manager i in generation t chooses bit 2 [0; 1).

� Stage 2: Each young investor is matched with one young manager, observes his bit, and decides

whether to make him a take�it�or�leave�it contract o¤er or reject him. For simplicity, we

assume the principal has all the bargaining power. In Subsection 5.2.1 we show that our results

are robust to giving the agent some (but not all) bargaining power. Since there is a mass one

of investors, and a mass M � 1 of managers, each manager is matched with an investor with

probability 1=M . This probability is the same for all managers. In particular, it cannot depend

on the choices made by managers at stage 1, because an investor can check a manager�s b only

after being matched with him.

� Stage 3: If the investor decides to reject the young manager with whom she was matched, or

if the manager rejects the o¤er, then the investor decides whether to self�invest or search for

another manager, at cost �, which can be arbitrarily small. If the investor decides to continue

searching for managers, she can direct her search towards young or old managers. Then, on

meeting a new manager, the investor observes his b and can make him a take�it�or�leave�it

o¤er, and the process is iterated. Eventually, investment takes place.

� Stage 4: Each employed manager decides whether to exert e¤ort or not, then output is realized

(and equals R(bit) or 0), and the manager receives the compensation stated in the contract.
11The di¤erence is that, while the cost of e¤ort is incurred on the equilibrium path, the private bene�ts from shirking

are not. This leads to slightly simpler expressions.
12Sato (2015) o¤ers a more precise microfounded analysis of the e¤ect of complexity and opacity on agency problems.
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At time t+ 1:

� If the investor born at time t hired a manager born at time t, they apply contract signed at time

t. If the time t output was 0 and the contract stated the manager should be �red in that case,

the investor can search for a new agent, at cost �.

� If the investor born at time t hired a manager born at time t � 1, she can search for a new

manager at t = 1.

� If the investor did not hire a manager at time t, she invested her endowment of investment good

in the default technology, and therefore no longer has any choice to make at t+ 1.

3 Optimal contracting

In this section, we analyse the optimal contract designed by one principal, hiring one agent, taking bt

as given. In the next section we embed this contracting problem in a market equilibrium and study the

endogenous determination of bt. The compensation contract o¤ered at time t by the investor states

the wages to be received by the manager as a function of the output realized at time t and at time

t+ 1. It also speci�es if the manager should be kept after period t or �red.

First consider the contract requesting the agent to exert e¤ort at both times. In that case, on the

equilibrium path, the output is equal to R(bt) at each period. It is clearly optimal to �re the manager,

without any compensation, when output is 0. Hence, the time t contract is pinned down by the pair

of wages, wtt and w
t
t+1, paid to the manager if output R(bt) is generated in period t and in period

t + 1. After success at time t, the incentive compatibility condition at time t + 1 is that the gain of

the agent when exerting e¤ort (wage wt+1) be larger than or equal to his gain when shirking (wage

with probability 1�� plus private bene�t from shirking)

wtt+1 � (1��)wtt+1 +�btR(bt);

that is

wtt+1 � btR(bt): (1)
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At the end of period t, after R(bt) has been obtained, the continuation utility of the agent, anticipating

e¤ort at t+ 1, is �wt+1. Thus, at time t the incentive compatibility condition is

wt + �w
t
t+1 � (1��)(wtt + �wtt+1) + �btR(bt):

That is

wtt + �w
t
t+1 � btR(bt): (2)

In this section we set the exogenous outside option of the manager to 0, so that his participation

constraint never binds. In the next section, the endogenous outside option of the manager will still be

0. The program of the investor is to maximize expected net returns subject to incentive compatility

constraints, i.e.,

max
wtt ;w

t
t+1

R(bt)(1 + �)� wtt � �wtt+1; s.t., (1) and (2). (3)

The solution to this program is spelled out in the next lemma.

Lemma 1: At time t, for a given choice of bt, if � > �, the solution to (3) is such that (1) and

(2) bind, the wages conditional on success are

fwtt; wtt+1g = f(1� �)btR(bt); btR(bt)g: (4)

If � = �, only (2) binds, but the wages in (4) are still (weakly) optimal. In the optimal contract

inducing e¤ort the net gains of the investor are

Z(bt) � R(bt)[(1 + �)� (1 + �� �)bt]; (5)

while the present value of the manager�s earnings is

wtt + �w
t
t+1 = btR(bt): (6)

Complexity, net returns and rents. By Lemma 1, the present value of the fund manager�s

earnings is btR(bt). Thus, the agent captures a fraction (bt) of the gross return on the investment over

one period (R(bt)). Since the agent�s outside reservation utility is 0, btR(bt) is his rent. Although the

principal has all the bargaining power at the contracting stage, incentive compatibility and limited
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liability imply the agent earns a rent. In that sense, the agency problem (parametrized by b) gives

the agent some endogenous bargaining power.

As the complexity of the task (bt) increases, the total gross return increases, because R0 � 0. In

addition, the fraction of that return captured by the agent also increases, because the agency problem

worsens. Combining these two e¤ects, the compensation of the agent increases with the complexity of

the task.

While agents bene�t from an increase in complexity, principals can be made better o¤ or worse o¤

when complexity rises. Indeed,

Z 0(bt) = [(1 + �)� (1 + �� �)bt]R0(bt)� (1 + �� �)R(bt):

Because (1 + �) > (1 + � � �)bt and R
0
(b) is decreasing, the investors�net return is concave in the

complexity of the task. And because R0(1) = 0, we have Z 0(1) � 0. Thus, starting from Z(0),

investors�net return initially increases with b, re�ecting the increase in gross return R(b). Then, it

reaches a maximum point at

b� = argmax
b
Z(bt): (7)

Finally, for b > b�, investors�net return goes down with b, re�ecting that an increasing fraction of the

return is captured by the agent. To make things interesting, we assume Z 0(0) � c, i.e., at the lowest

level of complexity the enhancement in net return brought about by an increase in b exceeds the cost

c. Finally denote by bmax the highest value of b in [0; 1] such that Z(b) � 1 + �, i.e., investors prefer

delegated investment rather than self-investment.

Optimality of e¤ort: For the contract in Lemma 1 to be the optimal contract, it must generate

higher net gains for the principal than the alternative contracts requesting i) no e¤ort at all, or ii)

e¤ort at time t and no e¤ort at time t + 1, or iii) no e¤ort at time t and e¤ort at time t + 1. By

Lemma 1, the net gains of the investor requesting e¤ort at both periods are as given in (5). On the

other hand, if the principal lets the agent shirk at both periods, he does not need to pay any wage,

and his net gains are

R(bt)(1 + �)(1��): (8)
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(5) is greater than (8) i¤

�
1 + �

1 + �� � � bt: (9)

Since bt 2 [0; 1], this always holds i¤� is large enough, in the sense that

� � 1 + �� �
1 + �

: (10)

One can show that under (10) shirking once is also dominated by e¤ort at both periods. Hence, the

contract spelled out in Lemma 1 is the optimal contract if (10) holds, which, for simplicity, we assume

hereafter. If we did not make that assumption, there would be a threshold value of b at which the

principal would prefer to give up on e¤ort. In equilibrium, agents would not set b above that threshold,

whose role would be similar to that of bmax. Apart from that, relaxing (10) would not alter our results.

Example: A simple example is when R(b) is the piecewise linear function min[�b+1; �R], where

� and �R > 1 are positive constants. For this simple case, if the agency problem is not too severe, in

the sense that
1 + �

1 + �� � �
2 �R� 1
�

; (11)

then the level of complexity maximising Z(b) is also that maximising output net of cost,

b� =
�R� 1
�

: (12)

4 Equilibrium dynamics

We now turn to the dynamics of complexity. We focus on symmetric equilibria, in which all managers

born at time t choose the same equilibrium level of complexity, b�t .

For simplicity, we assume the ex-ante expected gain of an agent, bR(b)M � bc, is increasing in b, i.e.,

R(b) + bR0(b)

M
� c: (13)

This implies that, for any b, the ex-ante expected gain of an agent is non negative, and also that any

b < b� would be Pareto dominated: both managers and investors would be better o¤ with a larger b.

So, we initialize the process at b0 = b�.
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From that point on, any increase in complexity reduces the net returns of investors, while raising

the rents of managers. Thus, there is a con�ict of interest between the former and the latter. We now

study whether market forces lead to an equilibrium that is more favorable for the investors (keeping

complexity at b�) or for the managers (letting complexity rise above b�).

Given an initial level of complexity, b0, an equilibrium is a sequence E = fb�t ; wt
�
t ; w

t�
t+1gt�1, satis-

fying the following conditions:

� Optimization: At each time t, each young manager i chooses bit to maximize his gains, and

each investor makes an optimal hiring decision.

� Rational expectations: Investors and managers have rational expectations about the equilib-

rium dynamics E and �nd it optimal to also play according to E . Thus, on the equilibrium path

at time t, young manager i �nds it optimal to set bit = b�t , and each investor o¤ers the optimal

contract

fwt�t ; wt�t+1g = f(1� �)b�tR(b�t ); b�tR(b�t )g: (14)

In each generation, at stage 2, each manager is drawn with probability 1
M . This probability does

not vary with managers� bs, because we assume that, before contacting the manager, the investor

cannot observe the manager�s type. Once drawn, a manager strictly prefers to be hired and earn (6).

Thus, at stage 1, manager i chooses bit to maximize his expected gains

1

M
R(bit)b

i
t � cbit; (15)

subject to the constraint that the investor prefers hiring hime when drawing him. To analyse that

constraint, we need to compare the investor�s payo¤ when hiring the young manager to her payo¤

from alternative actions:

� The �rst alternative option for the investor is self�investment. She does not choose that option

if her net return on delegated investment, Z(bit), is larger than

1 + �: (16)
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� The second alternative option for the investor is to hire an old agent in period t and then hire

a generation t manager at t+ 1. At time t she would have to compensate the old agent enough

to avoid shirking. This would entail promising the old agent compensation at least as large as

b�t�1R(b
�
t�1). Such compensation would attract the old manager irrespective of whether he is

employed or not. Similarly, at time t+1 the investor would have to pay the new recruit b�tR(b
�
t ).

Hence, overall, if she were to opt for that deviation, the time t investor would expect to get

R(b�t�1)(1� b�t�1) + �R(b�t )(1� b�t )� �(1 + �); (17)

where the last term (�(1 + �)) is the search cost of going after an old manager at t and then

another one at t+ 1.

� The third alternative option for the investor is to hire an old manager at t and then a young

one at t+ 1. In this case, when deviating, the generation t investor expects to pay b�t�1R(b
�
t�1)

to the old manager she hires at time t, and b�t+1R(b
�
t+1) to the young manager she hires at time

t+ 1. Consequently, the deviating investor expects to earn

R(b�t�1)(1� b�t�1) + �R(b�t+1)(1� b�t+1)� �(1 + �): (18)

� The fourth alternative option for the investor is to search for another young manager at time t,

expecting to hire him for two periods and to compensate him with fwt�t ; wt�t+1g given in (14). In

this case the investor expects to earn

Z(b�t )� �: (19)

Overall, the employability constraint for the young manager is that Z(bit) be larger than or equal

to (16), (17), (18), and (19).

Bearing in mind that bmax is the highest b such that investors prefer delegated investment rather

than self-investment, the young manager is employable as long as he picks b in the subset of [b�; bmax]

such that

Z(b) � max[R(b�t�1)(1� b�t�1) + �max[R(b�t )(1� b�t ); R(b�t+1)(1� b�t+1)]� �(1 + �); Z(b�t )� �]:

Since the expected gain of the young manager is increasing in b as long as he remains employable, his

optimal choice is as stated in the next lemma.
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Lemma 2: The maximisation program of the young agent at time t has a unique solution bt

which is either equal to bmax or such that

Z(bt) = max[R(b
�
t�1)(1� b�t�1) + �max[R(b�t )(1� b�t ); R(b�t+1)(1� b�t+1)]� �(1 + �); Z(b�t )� �]: (20)

Equation (20) implicitly de�nes the function � giving the optimal choice of bt as a function of

b�t�1, b
�
t and b

�
t+1, i.e., bt = �(b�t�1; b

�
t ; b

�
t+1). In equilibrium, the young investor must �nd it optimal to

choose a level of complexity equal to b�t . Therefore, either b
�
t = bmax or

b�t = �(b�t�1; b
�
t ; b

�
t+1): (21)

It can never be the case that Z(b�t ) = Z(b�t ) � �, even when � is arbitrarily small, as long as it

is strictly positive. Thus the cost of searching for managers, even if it is very small, shuts down

competition within the same generation.13 Consequently, evaluated at bt = b�t , (20) simpli�es to

Z(b�t ) = R(b�t�1)(1� b�t�1) + �max[R(b�t )(1� b�t ); R(b�t+1)(1� b�t+1)]� �(1 + �): (22)

R(b)(1 � b) is the net return to an investor hiring a manager, with skill b, for one period. For

b � b�, this net return is decreasing with b, re�ecting that the manager extracts an increasing fraction

of the surplus.14 Thus, when it is expected that complexity will increase from t to t + 1, the max in

(22) is R(b�t )(1� b�t ). In that case, either b�t = bmax (in which case b�t � b�t�1), or (22) simpli�es to

R(b�t )(1� b�t )�R(b�t�1)(1� b�t�1) = ��b�tR(b�t )� �(1 + �): (23)

Since, the right�hand�side of (23) is negative, we have that R(b�t )(1� b�t ) � R(b�t�1)(1� b�t�1), that is

b�t � b�t�1. Thus, between t� 1 and t, there is an increase in complexity, worsening agency problems,

and eroding investors�returns while raising managers�rents. This is stated in the next lemma.

13As discussed below, this is similar to Diamond (1971), but, in contrast with Diamond (1971), in our model, managers

from generation t also compete with their predecessors and successors.
14To see this note that Z0(b), which for b � b� is negative, is equal to the derivative of R(b)(1 � �b) plus a positive

term.
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Lemma 3: If b�t+1 � b�t , then b
�
t � b�t�1.

To interpret the increase stated in Lemma 3, consider the right�hand�side of (23). �(1+�), the cost

incurred by investors searching for another manager, obviously limits competition between managers,

in particular managers belonging to the same generation (as in Diamond, 1971). To focus on the

speci�c economic mechanism at play in our model, which is driven by competition between managers

from di¤erent generations, consider the limit case where � goes to 0. In that case, the increase in b is

solely driven by �b�tR(b
�
t ). This is the di¤erence between the net investor�s revenue when the principal

hires agent b�t on a long term basis (Z(b�t )) and when she hires the agent via a sequence of short�

term contracts ((1 + �)R(b�t )(1 � b�t )). This is a measure of the advantage of long term contracting,

which is feasible with young agents, but not with old ones. Thus, it is a measure of the extent to

which old managers are only imperfect substitutes for young ones. (23) shows how young managers

take advantage of this imperfect substitutability: They raise complexity (and thus rents) above the

prior level, up to the point at which investors are indi¤erent between i) hiring young managers on a

long�term basis to complete a more complex task, and ii) hiring old managers on a short�term basis

to complete a less complex task.

While Lemma 3 spells out what happens at time t when b is expected to rise after t, the next

lemma states that future bs cannot decrease in equilibrium.

Lemma 4: b�t never decreases.

The intuition for Lemma 4 is the following. By Lemma 3, if b was to decrease at t, it would have

to decrease at t+1. In fact, as shown in the appendix, b would have to go down by increasingly large

lumps and eventually go below 0, which is a contradiction. Combining Lemmas 2, 3 and 4, we obtain

our �rst proposition:

Proposition 1: There exists a unique symmetric equilibrium. In that equilibrium, investors

hire managers from their own generation for two periods. Equilibrium complexity and agents�rents

increase until b�t reaches bmax. Starting from b0 = b�, as long as b�t < bmax, b�t is the unique solution

of the recursive equation (23), which implicitly de�nes the function  mapping b�t�1 into b
�
t .
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Proposition 1 directly implies the next corollary, which gives a lower bound on the increase in b�t

due to imperfect competition among generations.

Corollary 1: As long as b�t < bmax, the growth of b�t is faster than exponential, i.e.,starting from

b0 = b�,

b�t �
b�

(1� �)t : (24)

The greater the patience of the agent (�), the greater the advantage of long�term contracts over

short term�contracts, the lower the substitutability among generations, the higher above b�t�1 gener-

ation t can raise b�t . Hence the larger the lower bound on the growth of b
�
t .

Relation with Diamond (1971) and role of �. If � was strictly equal to 0, the equilibrium

condition would be

Z(b�t ) = max[1 + �;R(b
�
t�1)(1� b�t�1) + �max[R(b�t )(1� b�t ); R(b�t+1)(1� b�t+1)]; Z(b�t )]: (25)

The process b�t presented in Proposition 1 solves (25), and thus remains an equilibrium when � = 0.

There are, however, other equilibria, in which the equilibrium value of b is between b� (de�ned in (7))

and b�t (characterized in Proposition 1). In those equilibria, it is the last term (rather than the middle

one) that binds in the max on the right�hand�side of (25). That is, the choice of b by a generation t

manager is constrained by the choices of his competitors from the same generation (not by those of

his predecessors).

When � = 0 and (25) holds, it is weakly optimal for investors not to resample after drawing a

manager. If they follow that strategy, the equilibrium remains as in Proposition 1. It is, however,

also weakly optimal for an investor to sample all the 1 �M managers that are not employed, after

drawing a manager with b�t . If a manager anticipated such behaviour, then his best�response would

be to opt for bit slightly lower than b
�
t , to make sure he would eventually be drawn and hired. Since

all managers would reason similarly, this would drive the equilibrium choice of b down to b�. In this

type of equilibrium, competition between managers would lead to the outcome preferred by investors.

This argument, however, and the possibility for b� to be an equilibrium, don�t apply when � is

strictly positive, in which case the unique equilibrium is that characterized in Proposition 1. Thus

17



�, arbitrarily close to, but strictly above, 0, limits competition between managers belonging to the

same generation. This is comparable to the way search costs limit competition and generate rents

in Diamond (1971). One contribution of our analysis, relative to Diamond (1971), is to study the

equilibrium dynamics of rents, and show they have a tendency to increase along the equilibrium path.

To see this more clearly, note that the model in Diamond (1971) is similar to a one�period version of

our model, where the equilibrium condition on the level of b prevailing at time 1 would be

Z(b�1) = max[1 + �; Z(b
�
1)� �]: (26)

(26) immediately leads to b�1 = bmax. This contrasts with our model where b�t progressively increases

over several periods, before eventually reaching bmax. The reason why the increase in b�t is only

progressive in our model is that the choice of generation t is constrained by the choices of previous

generations. That anchor does not exist in Diamond (1971). Yet, in our model, the moderating e¤ect

of the previous generation is limited, due to imperfect substitutability between generations. Hence

the gradual increase in b�t .

Externalities. When choosing b�t�1, generation t� 1 sets a benchmark, with which generation t

will have to compete when choosing b�t . Thus, while the actions of generation t� 1 have no exogenous

direct e¤ect on the following generation, they exert an endogenous externality on the latter. When

choosing a relatively high level of complexity b�t�1, generation t� 1 does not internalize that this will

lead to an even larger level of complexity b�t , and thus large rents for generation t managers and low

net returns for generation t investors.

Compensation and seniority. Lemma 1 implies that wtt < wtt+1. Thus, for a given genera-

tion, compensation rises with seniority, i.e., a given agent earns more when senior than when junior.

Proposition 1 and Corollary 1, however, imply that senior managers from the previous generations

earn less than junior managers from the current generation. Indeed, from Lemma 1, wt�1�t � wt�t i¤

b�t�1R(b
�
t�1) � (1� �)b�tR(b�t ): (27)

Since b�t � b�t�1, (24) implies (27). The increase in rents (driven by the increase in complexity) from

one generation to the next is larger than the increase in compensation, within one generation, from

one period to the next.
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Example: In our simple example, in which R(b) = min[�b+1; �R], the following corollary obtains:

Corollary 2: If R(b) = min[�b+ 1; �R] and (11) holds then, as � goes to 0, b�t goes to

min[
b�

(1� �)t ; bmax]: (28)

In general, the increase in b�t above b
�, made possible by the imperfect substitutability between

old and young managers, is enhanced by the fact that R(b) increases in b. In the simple example,

however, R(b) is constant when b is above b�. In that situation, the increase in b�t is solely due to the

imperfect substitutability between old and young managers. Correspondingly, the growth in b�t is just

equal to its lower bound, stated in Corollary 1.

Welfare. As discussed above, the optimal level of complexity for investors is b�, which maximizes

Z(b) (see (7)), while (by (13)) it is bmax � b� for managers. Now turn to what a benevolent social

planner would decide. For simplicity, we herafter set � = �. Since utilities are linear, there is a unique

Pareto optimum regarding real decisions, and the points on the Pareto frontier di¤er only in terms of

purely redistributive transfers between investors and managers. In the �rst best, the social planner

solves the following problem:

max
b2[0;1]

W (b) = (1 + �)R(b)�Mcb:

The optimum is such that the marginal bene�t of e¤ort equals its marginal cost, i.e.,

b�� = R0�1(
Mc

1 + �
):

Since R
0
(1) = 0, we have b�� � 1. Now,

W (b) = Z(b) + (bR(b)�Mcb):

Hence
@W (b)

@b
jb=b� = (R(b�)�Mc) + b�R0(b�);

which, by (13), is positive. Consequently, b�� � b�. We summarize this discussion is the next propo-

sition:
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Proposition 2: The level of complexity preferred by investors is lower than the socially optimal

level of complexity, which, in turn, is lower than the level of complexity preferred by the managers,

i.e.,

b� � b�� � bmax:

The fraction of total surplus obtained by investors is decreasing in b. Therefore they prefer b to

be lower than the social optimum. In contrast, the fraction of total surplus obtained by managers is

increasing in b, and therefore they want it to be higher than the social optimum.

Delayed adjustment to changes in the environment. Suppose complexity increased, ac-

cording to the law of motion given in Proposition 1, and reached its maximum level: bmax. For

simplicity, we hereafter focus on the simple case in which R(b) increases linearly with slope � until �R

and then becomes �at for all b � b� =
�R�1
� . This implies bmax = (1 + �)(1� 1

�R
).

Now assume that, due to a technological breakthrough or change in regulation, for projects initiated

from time t on, �R is raised to
�R
! , with ! 2 (0; 1).

15 This leads to an increase in the maximum possible

level of complexity to

(1 + �)(1� !
�R
):

How does this a¤ect complexity and rents?

The next proposition states that the positive shock generates a progressive increase in complexity

and rents, which persists until all the additional pro�tability has been absorbed by agency rents.

Proposition 3: Suppose that, at time s < t, equilibrium complexity reached bmax = (1+�)(1�
1
�R
) and then remained constant. If, at time t, there is a one-o¤ permanent technological change,

raising �R up to
�R
! , then, if �

�R � 1, complexity starts rising again until it reaches its new maximum

(1 + �)(1� !
�R
).

At t � 1, the constraint that the principal be better o¤ hiring an agent than self investing was

binding. The time t technological shock relaxes this constraint. Yet, complexity does not jump

immediately to the new level at which the constraint binds. Rather, the positive technological shock
15Our analysis is valid irrespective of whether this change was anticipated or not.
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implies that now it�s the employability constraint that binds complexity choices. Thus b�t is anchored

by b�t�1, and progressively rises, as in Proposition 1, until it reaches its new maximum. Our theory thus

predicts that increases in rents and complexity will occur long after (and not just after) technology or

deregulation shocks.

5 Robustness and extensions

In this section we discuss extensions of the model and compare it to an alternative speci�cation.

For simplicity we hereafter focus on the case, introduced above as an example, in which R(b) is the

piecewise linear function min[�b+ 1; �R], where � and �R > 1 are positive constants.

5.1 Agents�bargaining power

In the analysis above we assumed the principal had all the bargaining power. This implied that an

agent�s rent, when hired at time t, was set by the binding incentive compatibility constraint, and

therefore just equal to b�t �R. How would relaxing this assumption a¤ect equilibrium dynamics?

First, consider the case in which agents have all the bargaining power. Then, when a principal

contacts an agent, the latter demands all the surplus, leaving the former with the reservation utility

from self�investment, 1 + �. If the principal was to reject such a demand, then she would have to

draw another agent, at cost �. Since this new agent would also have all the bargaining power, he

would also o¤er the principal 1 + � only. Hence, rejecting the initial o¤er and drawing another agent

would give the principal at most 1 + � � �. Thus, when agents have all the bargaining power and

there are (possibly in�nitesimal) search costs, principals only obtain 1 + �, while agents extract any

additional value creation (in line with the Diamond paradox). In this context, rents immediately

jump to their maximum level: In contrast with the benchmark case in which principals have all the

bargaining power, there is no progressive increase in rents. Moreover, while in the benchmark case,

agents strategically opt for complexity in order to obtain rents, in the alternative case in which agents

have all the bargaining power, agents choose complexity to maximise productive e¢ ciency.

Second, consider the case in which agents have some of the bargaining power, but not all. More

precisely, assume that, each time a principal and an agent meet, with probability � < 1 the agent can
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make a take it or leave it o¤er and, with probability 1 � �, the principal can make a take it or leave

it o¤er (in our benchmark case in the previous section, � = 0.)

When meeting at time t a young agent i with complexity bit, if the principal has the bargaining

power, she can o¤er her bit �R, since, if the young agent refused, he would get 0 (as he would be rejected

and never drawn again.) In contrast, at the initial meeting time, if the young agent has all the

bargaining power, she demands rent w�t , leaving the principal with

�R(1 + �)� w�t :

If the principal rejects that o¤er, one thing she can do is to draw another young agent, hoping to have

the bargaining power with that one. If she does have the bargaining power she gets

�R(1 + �)� b�tR:

If she does not, the agent o¤ers her w��t , and if she accepts, she gets:

�R(1 + �)� w��t ;

where w��t is the equilibrium wage the principal expects to pay if he draws another agent. Hence, to

be acceptable, the initial o¤er of the young agent must be such that

�R(1 + �)� w�t � �( �R(1 + �)� w��t ) + (1� �)( �R(1 + �)� b�t �R)� �;

where the left-hand side is what the principal gets if she accepts the young agent�s o¤er, and the

right-hand side is a lower bound on what the principal expects to get if she rejects the initial agent

and draws another one from the pool.

In equilibrium, w��t = w�t . Thus the acceptability constraint yields

b�t �R+
�

1� � � w��t :

Since, at the same time, incentive compatibility requires

w��t � b�t �R;

we have

b�t �R+
�

1� � � w��t � b�t �R:
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Thus, as long as � remains bounded away from 1 (i.e., agents don�t have all the bargaining power),

when � goes to 0, the agency rent goes to b�t �R. Because the principal can draw another agent at

in�nitesimal cost �, even if the agent has some bargaining power, she obtains just b�t �R, exactly as

when the principal has all the bargaining power. Hence, the results obtained in the previous sections,

corresponding to � = 0, still hold when 1 > � > 0: There is a progressive increase in rents, driven by

the equilibrium increase in complexity.

5.2 Experience and productivity

In our benchmark model, young agents are more attractive than old ones, because they have longer

horizon. This e¤ect could be undermined if experience increased productivity, which would increase

the attractivity of older agents relative to younger ones. To examine this point we now assume that,

when exerting e¤ort, a young agent generates R(b), while an old one generates �R(b) with � > 1.

While experience increases productivity, ageing in itself does not. This rules out an equilibrium in

which only old agents would be employed, since these agents would not be experienced and therefore

would not be productive. Thus, in equilibrium young agents are employed for two periods, as in the

benchmark case.

In this context, �rst take b � b� as given and consider a principal dealing with an agent over

two periods. It is easy to show that the optimal contract is to pay the agent only when output �R is

obtained, and set wages equal to

wt = bmax[1� ��; 0] �R;

in the �rst period, and

wt+1 = b� �R;

in the second period. Thus, when old agents are really more productive than young ones, as � > 1
� ,

the agent is paid only at the second period, and, at the �rst period, the present value of his rent is

�b� �R. In contrast, when � � 1
� , the agent is paid at both periods and, at the �rst period, the present

value of his rent is (1� ��)b �R+ �b� �R = b �R, as in our benchmark model.

First consider the case in which the productivity advantage of experience is moderate, i.e., 1 < � �
1
� . Following the same logic as in our benchmark model, the employability condition for the generation
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t agent choosing his bt is (as � goes to 0)

�R(1 + ��)� bt �R � �R(� � b�t�1�) + � �Rmax[� � b�t �; 1� b�t+1]:

The left�hand side is the present value of the gains of the principal hiring for two periods the young

agent he drew from the pool. The right�hand side is the present value of the gains of the principal

rejecting the young agent and then hiring two consecutive agents. The �rst term on the right-hand side

is the net gain of the principal at the �rst period, during which she hires an old agent from generation

t� 1. The second term on the right�hand side is the present value of the gains of the principal at the

second period. The max operator re�ects that the principal will optimize between hiring an old agent

(from generation t) and a young agent (from generation t = 1).

Binding the employability condition, and imposing the equilibrium condition that bt = b�t , we have

�R(1 + ��)� b�t �R = �R(� � b�t�1�) + � �Rmax[� � b�t �; 1� b�t+1]:

Simplifying, this yields

b�t � b�t�1 =
(� � 1 + ��)b�t�1 � (� � 1)

1� �� +
�

1� �� min[0; (� � 1) + b
�
t+1 � b�t �]:

If

b�t�1 >
� � 1

� � 1 + �� ;

then the right-hand side is strictly positive, and therefore b�t > b�t�1. Thus we can state our next

proposition:

Proposition 5: If �� � 1 and

b� >
� � 1

� � 1 + �� ;

then equilibrium complexity increases until it reaches bmax.

So when the productivity advantage of experienced agent is moderate, the equilibrium outcome is

qualitatively similar to what obtained in the benchmark model. Now, turn to the alternative case, in
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which � > 1
� . In that case, the present value of the rent of a young agent b hired for two periods is

�b� �R. Thus, the employability condition is

�R(1 + ��)� �bt� �R � �R(� � b�t�1�) + � �Rmax[� � b�t �; 1� ��b�t+1]:

In equilibrium this must hold for bt = b�t . This yields the equilibrium condition

�R(1 + ��)� �b�t � �R � �R(� � b�t�1�) + � �Rmax[� � b�t �; 1� ��b�t+1]:

Simplifying

b�t�1� � (� � 1) + �max[0; �(b�t � �b�t+1)� (� � 1)]:

Since b�t cancels out, except in the max on the right-hand side, the employability constraint does not

impose a cap on b�t . Hence, the only constraint on that choice is that the principal prefer delegated

management rather than self investment. Correspondingly, b�t moves directly to bmax.

Thus, the equilibrium prevailing when � is large is qualitatively di¤erent from the benchmark case.

Because experienced agent are much more productive than rookies, there is no competition between

generations, and the maximum value of complexity and rents is reached immediately.

5.3 Turnover

Now suppose that, at the end of period t, with probability 1 � �, an agent born at the beginning of

t is hit by an exogenous shock forcing him/her to leave the market. The principal who initially hired

this agents must, at period t + 1 hire a new agent. To do so the principal draws from the pool of

unemployed old agents, o¤ering wage b�tR(b
�
t ). For the agents born at t and who have ot been hit by

a shock, the incentive compatibility condition at t+ 1 is still (1). In contrast, at time t, the incentive

compatibility condition is no longer (2), but

wtt + ��w
t
t+1 � btR(bt): (29)

As before, the two incentive conditions bind and the wage pro�le of the agent born at time t is

fwtt; wtt+1g = f(1� ��)btR(bt); btR(bt)g; (30)
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while the net return to the principal is

R(bt)[(1 + �)� (1 + �� ��)bt]: (31)

Thus, everything is as in the benchmark model, except that the discount factor � is now multiplied

by the probability to be around at the next period, �. Thus, as � goes to 0, b�t goes to

min[
b�

(1� ��)t ; bmax]; (32)

and, noting that the turnover rate is 1� �, we can state the next corollary:

Corollary 3: When an agent can be hit by an exogenous shock forcing him/her to leave the

market, the equilibrium growth rate of rents is decreasing in the probability of this shock, which, in

equilibrium, is the turnover rate.

5.4 An alternative model with technological progress but without moral hazard

The analysis in the previous sections shows that moral hazard combined with endogenous choice of

complexity leads to an increase in rents and complexity. Could the same patterns obtain, without

moral hazard, just because of technological progress? To examine that issue, consider an alternative

model di¤ering from ours in three ways:

First, there is technological progress. To capture this as simply as possible, assume R(b) =

min[�bt + 1; �Rt] where �Rt increases with time.

Second, there is no moral hazard.

Third, to ensure that the agent can earn rents (in spite of the absence of moral hazard), assume

wages are pinned down by Nash bargaining: The fraction of gross pro�t (R(bt)) transferred as wage

to the agent is equal to the bargaining power of the agent, which we denote by 
.

In this context, the principal and the agent agree on the optimal level of complexity: that which

maximises output net of costs. Since � > c, the optimum is obtained at b�t =
�Rt�1
� . To compare the

equilibrium outcomes in that alternative model and in ours, it is useful to focus on the following four

variables:
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� Complexity: In both models, complexity increases with time: b�t is b�

(1���)t in our model and
�Rt�1
� in the alternative model.

� Wages: In both models, agent�s total wage increases with time: b�tR(b�t ) in our model and 
R(b�t )

in the alternative model.

� Wages as a fraction of gross output: In our model, agent�s total wage as a fraction of gross output

is b�t , which increases with time, while in the alternative model it is equal to 
, a constant.

� Deferral: In our model, to mitigate moral hazard agent�s pay must be partly deferred, so that

wtt < wtt+1, in spite of the fact that the agent is more impatient than the principal. In the

alternative model, because the agent is more impatient than the principal, wages are front

loaded, so that wtt > wtt+1.

6 Empirical analysis

Our model delivers two types of implications about the relation between managers�compensation on

the one hand, and complexity and turnover on the other hand:

First, at a bilateral contracting level our model predicts that individuals whose jobs are more

complex, and hence more prone to moral hazard, should have higher compensation, re�ecting agency

rents (see Lemma 1).

Second, at an equilibrium level our model predicts that industries in which complexity grew more

should also be industries in which compensation grew more (see Proposition 1). Our model also

predicts that this increase in compensation should be muted in industries in which turnover is large

(see Corollary 3).

A formal econometric test of our model is beyond the scope of this paper. Rather, the goal of this

section is to present empirical patterns in compensation, complexity and turnover and compare them

to the above described implications from theory.
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6.1 Data

S&P Capital IQ Professional Data: Our main data source is S&P Capital IQ Professional Data

(accessed through WRDS), which gathers pro�les of professionals with their company a¢ liations.

Available data includes individual identi�ers, standardized job functions, titles and compensation.

Using information on the start date and end date of the a¢ liation on an individual with a given

company, we build a panel where each observation is an (individual, �rm, year) triplet. We restrict

the data set to employees of publicly-traded �rms that were included at least once, between 2010 and

2016, in the S&P Composite 1500 Index.16 We focus on the recent period 2010-2016 because Capital

IQ is substantially weaker before 2010.

In our sample, in a given year, a �rm employs on average 20 professionals included in the Capital

IQ dataset.17 We de�ne a yearly measure of turnover at the �rm level by computing for each (�rm,

year) the number of relationships ending during the year divided by the total number of observable

employees.

Proxies for complexity: Our �rst proxy for the complexity of an individual�s job is the number of

functions of that individual in Capital IQ. The larger the number of functions of the agent, the larger

the number of layers of complexity, in the same spirit as in Brünnermeier and Oehmke (2009). Also

the larger the number of functions, the larger the �exibility and discretion enjoyed by the manager, in

the same spirit as in Dessein and Santos (2006). Thus, the larger the number of functions, the more

severe the moral hazard.

Our second proxy for complexity is computed at the �rm-level, by counting the number of occur-

rences of the string "complex" in a �rm�s 10-K report: When �rm complexity is higher, we expect the

word �complexity� to be reported more frequently. And we expect managers operating in complex

�rms to have complex tasks, raising the scope for moral hazard. To construct this second proxy for

complexity, we access and parse company �lings information from the U.S. Securities and Exchange

16This index combines three indices, the S&P 500, the S&P MidCap 400, and the S&P SmallCap 600 to cover

approximately 90% of the U.S. market capitalization.
17Thus the number of employees that we can attach to a company at a given point in time is substantially higher

than in EXECUCOMP. This is one of the reasons why we use these data. The second one is that Capital IQ reports the

Number of Functions of each employee, which, as discussed next, we use to proxy for complexity.
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Commission (SEC) available online in the SEC EDGAR system. For each company in our sample, we

collect the 10-K �ling in 2010 and in 2016, when available, and calculate the number of occurrence of

the string �complex�in the document.

Our two proxies of complexity are quite di¤erent: The �rst one varies with individuals, so that it

o¤ers some variation within �rms. The industry-level correlation of the two proxies is .12, showing

that, while positively correlated, the two variables are capturing di¤erent dimensions of complexity.

Variables used in the empirical analysis: In the appendix, we provide a detailed de�nition of the

all variables used in the empirical analysis. The median total annual compensation of the professionals

in our sample is USD 765,113, with a standard deviation of USD 1,403,558. The median number of

functions is 3, with a standard deviation of 2.13. The median number of occurrences of the term

�complexity� in a �rm�s 10-K is 3, with a standard deviation of 6.37. The median yearly turnover

rate is 10%, with a standard deviation of 4%.

We compute variables at the SIC 3 industry level by aggregating information of �rms-workers in

each industry, and averaging across �rms in the industry. Thus we compute average total compensation

growth, average variation in the number of functions of workers and average change in the number of

occurrence of �complex�in the 10-K �lings, between 2010 and 2016, as well as average yearly turnover.

Furthermore, to be used as control variables, we calculate the average market value of �rms in a

given industry, as well as corresponding average market value growth between 2010 and 2016, using

Compustat consolidated company-level market value (common shares outstanding multiplied by the

month-end price that corresponds to the period end date).

6.2 Regressions

Individual-level regressions: In line with Lemma 1, we regress the log of an individual�s average

annual compensation over the years spent at a given �rm on our two complexity variables. For the

�rst proxy of complexity (NbFunction), which varies within �rms, we can add �rm �xed e¤ects, which

allows for an identi�cation based on within �rms variations in job complexity. In line with the model,

and for both proxies, there is a signi�cantly positive link between complexity and the level of total
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compensation.18 To give a sense of the economic magnitude, a one standard deviation change in the

second measure of complexity (NbComplex10K) is associated with a 13% increase in the level of total

compensation.

Industry-level regressions: In a second set of regressions, reported in Table 2, we compare ag-

gregate behaviours across industries. To do so, we average variables at the industry level (SIC3).

When computing averages, we restrict ourselves to individuals working in the same SIC3 industry in

2010 and 2016. Last, we only consider industries with more than one �rm, which leaves us with a

cross-section of 180 SIC3 industries.

As stated above in Corollary 3, our model predicts compensation growth to be smaller in industries

in which turnover is higher. As can be seen in Column 1 of the table, the cross-industries correlation

between compensation growth and turnover is signi�cantly negative. Again, we are not claiming

causality, we are just observing that the correlation between endogenous variables observed in the

data has the same sign as that predicted by the model. To give a sense of magnitudes, a one standard

deviation increase in the level of turnover is associated with compensation growth that is lower by

8 percentage points. The result is robust to adding additional controls (see Column 2), namely the

average market value of �rms in the industry in 2010 (AvgMktV alue) and the average market value

growth between 2010 and 2016 (AvgMktV alueGrowth).

As stated in Proposition 1, in equilibrium compensation increases simultaneously with complex-

ity. Thus, empirically, across industries, large compensation growth should be associated with larger

increase in complexity. This is the case in our data, both when complexity is proxied by the number

of functions of an agent (Colums 3 and 4), and when it is proxied by the number of occurrences of the

word complex (see Columns 5 to 8). To illustrate the economic magnitude of the e¤ect, a one standard

deviation higher increase in complexity (in the cross-section of industries) is on average associated with

a compensation that is higher by 12 percentage points.

18As mentioned above, we think of this regression as an illustration of empirical patterns rather than a formal econo-

metric test. In particular, we don�t interpret the observed correlations in terms of causality.
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7 Conclusion

We study how overlapping generations of agents acquire skills corresponding to more or less complex

tasks. Complexity increases gross returns, as well as the cost of e¤ort, which, in turn, increases agency

rents. Because of the link between incentives and horizons, young and old generations are not perfect

substitutes. Thus, young agents can choose more complex technologies, and correspondingly larger

rents, than their elder peers. Competition, however, precludes large deviations from the choices of

older generations. This leads to a progressive increase in complexity and rents. This key insight is

robust to several changes in the modeling of the game between principals and agents, such as (1) giving

more power to the principal (e.g. commit to simple technologies, access monitoring technologies, better

search technologies) and (2) giving more bargaining power to the agent.
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Proofs:

Proof of Lemma 1: The Lagrangian is

L = R(1 + �)� wtt � �wtt+1 + �t(wtt + �wtt+1 � btR) + �t+1(wtt+1 � btR);

where �t and �t+1 are the multipliers of the time t and t+1 incentive constraints, respectively. The �rst

order condition with respect to wt is: �1+�t = 0. Hence the incentive compatibility constraint at time

t binds, i.e., wtt+�w
t
t+1 = btR. The �rst order condition with respect to wt+1 is: ��+�t�+�t+1 = 0.

Substituting �t = 1, �t+1 = � � �. When � > �, �t+1 > 0, so that the the incentive compatibility

constraint at time t+ 1 also binds. Hence, the optimal compensation is as stated in the lemma.

QED

Proof that, under (10), shirking once is dominated by e¤ort at both periods: E¤ort

at both periods dominates shirking at t, followed by e¤ort at t+ 1, if

R(bt)[(1 + �)� (1 + �� �)bt] � R(bt)[(1��) + �(1� bt)]:

That is
�

1� � � bt: (33)

E¤ort at both periods dominates e¤ort at t, followed by shirking at t+ 1, if

R(bt)[(1 + �)� (1 + �� �)bt] � R(bt)[(1� bt) + �(1��)]:

That is
��

�� � � bt: (34)

Now
1 + �

1 + �� � <
1

1� � �
�

�� � ;

Hence if (9) holds (which it does under (10)), then (33) and (34) also hold, so that e¤ort at both

periods is optimal.

QED
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R and Z in the simple example: If R(b) = min[�b+ 1; �R],

Z(b) = (�b+ 1)[(1 + �)� (1 + �� �)b];8b �
�R� 1
�

and Z(b) = �R[(1 + �)� (1 + �� �)b];8b >
�R� 1
�

:

Thus

Z
0
(b) = �[(1 + �)� 2(1 + �� �)b]� (1 + �� �);8b �

�R� 1
�

and Z
0
(b) = �(1 + �� �) �R;8b >

�R� 1
�

:

Thus, Z 0 � 0 for b � �R�1
� . For b � �R�1

� , Z 0 � 0 if and only if

�(1 + �)� (1 + �� �)
2(1 + �� �) � �b:

This holds for all b � �R�1
� , if

�(1 + �)� (1 + �� �)
2(1 + �� �) � �R� 1:

That is
1 + �

(1 + �� �) �
2 �R� 1
�

;

i.e., (11) holds. Hence, (11) implies b� =
�R�1
� .

Proof of Lemma 2: 
 is non-empty because b� 2 
. Indeed

Z(b�) � max[R(b�t�1)(1� b�t�1) + �max[R(b�)(1� b�); R(b�t+1)(1� b�t+1)]� �(1 + �); Z(b�t )� �];

since R(b)(1� b) is decreasing in b for b � b�. 
 is compact. This compact subset of the real line has

a unique maximum, bt, which de�nes the unique solution of the maximisation program of the agent.

If bt 6= bmax, it must be that bt < bmax. If (20) did not hold, this would imply that the left�hand

side of (20) would be strictly above its right-hand side. This strict inequality would by continuity

extend to a neighbourhood of bt included in [0; bmax], which would contradict the fact that bt is the

maximum of 
. So, either bt = bmax, or bt solves (20).

QED

Proof of Lemma 4: By Lemma 3, if b is to decrease between t � 1 and t, i.e., b�t < b�t�1, we

must have b�t+1 < b�t . Then, as long as b � bmax, (22) is

R(b�t )(1 + �)(1� b�t ) + �b�tR(b�t ) = R(b�t�1)(1� b�t�1) + �R(b�t+1)(1� b�t+1)� �(1 + �): (35)
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Denote g(bt) = R(bt)(1� bt). In terms of g, (35) writes as

g(b�t )(1 + �) + �b
�
tR(b

�
t ) = g(b�t�1) + �g(b

�
t+1)� �(1 + �):

That is

g(b�t ) =
g(b�t�1) + �g(b

�
t+1)

1 + �
� �b�tR(b

�
t )

1 + �
� �(1 + �): (36)

Since
g(b�t�1) + �g(b

�
t+1)

1 + �
� �b�tR(b

�
t )

1 + �
� �(1 + �) <

g(b�t�1) + �g(b
�
t+1)

1 + �
;

we have

g(b�t ) <
g(b�t�1) + �g(b

�
t+1)

1 + �
:

By Jensen inequality (as g is concave and decreasing), this implies

b�t >
b�t�1 + �b

�
t+1

1 + �
;

that is

b�t � b�t+1 >
1

�
(b�t�1 � b�t ):

Because 1
� > 1, This implies that, as t goes to in�nity, b�t � b�t+1 goes to plus in�nity, which, since

b�t � bmax, implies b�t+1 goes to minus in�nity, a contradiction since b � 0.

QED

Proof of Corollary 1: (23) rewrites as

R(b�t )

R(b�t�1)
= (

1� b�t�1
1� (1� �)b�t

)� �(1 + �)

[1� (1� �)b�t ]R(b�t�1)
: (37)

Proposition 1 implies that the left�hand side of (37) is larger than one. Hence (37) implies

(
1� b�t�1

1� (1� �)b�t
)� �(1 + �)

[1� (1� �)b�t ]R(b�t�1)
� 1;

which, in turn yields (24).

QED
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Proof of Corollary 2: In the simple example, for b � b�, (23) simpli�es to

b�t =
b�t�1
1� � +

�(1 + �)

(1� �) �R
:

Thus, as � goes to 0, we get (28).

QED

Proof of Lemma 5: W (b) decreases with b, 8b > b�. 8b � b�, W (b) increases with b if

(1 + �)� �Mc. This is implied by our assumption that R(b�) �Mc, if

(1 + �)� � R(b�) = �R:

Now, since � = �, condition (11) simpli�es to

�(1 + �) � 2 �R� 1:

Hence, W (b) increases with b if

�R � 1;

which holds. Hence, W (b) increases with b, and b�� = b�.

QED

Proof of Proposition 3: At time t� 1, we had

b�t�1 = (1 + �)(1�
1
�R
);

since the equilibrium choices of agents and principals were pinned down by the constraint that b �

(1+�)(1� 1
�R
), and the employability constraint involved only variables set at time t� 1 or t� 2. The

time t change in technology, however, a¤ects the time t employability constraint, which becomes

�R

!
[1 + � � b�t ] = max[

�R

!
(1� (1 + �)(1� 1

�R
)) + �

�R

!
(1� b�t ); 1 + �]: (38)

The left�hand side is the present value of the principal�s gains if she hires the b�t agent. The right�hand

side is the maximum of what the principal could get if i) hiring an old agent (with b = (1+�)(1� 1
�R
))

at time t, and then another old agent (with b = b�t ) at t+ 1, or ii) self investing.
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At time t � 1, the constraint that the principal be as well o¤ hiring the agent as self investing

was binding. The change in technology opens up the possibility that at time t this constraint becomes

slack. In that case, (38) yields

b�t =
1 + �

1� � (1�
1
�R
) > b�t�1;

i.e., complexity starts growing again. This does not violate the constraint that the principal be better

o¤ hiring the agent than self investing if

�R

!
[1 + � � 1 + �

1� � (1�
1
�R
)] � 1 + �; (39)

where the left-hand side is the present value of the gains of the principal hiring the b�t agent, while the

right-hand side is the present value of self investment. (39) simpli�es to

�R[1� 1

1� � (1�
1
�R
)] � !:

This holds for ! small enough i¤

� �R � 1:

QED

Proof of Proposition 4: Once an agent has been selected (from the pair the principal was

initially matched with), all is as in the benchmark model. The employability condition is still

b � b�t�1 + �Min[b�t ; b
�
t+1] + (1 + �)

�

R
: (40)

Prior to that stage, however, the agent also takes into account that her choice of b a¤ects the

probability to be chosen against his competitor. Rationally expecting the actions of the principals

and the other agents, the agent expects to be hired with probability

2

M
Pr(b � b�t + �

ji
t ) =

2

M
(1� F (b� b�t )):

So his expected rent is :

8<: 2
M (1� F (b� b

�
t ))bR if b � b�t�1 + �Min[b�t ; b

�
t+1] + (1 + �)

�
R

0 otherwise
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Denote by bc(b�t ) the value of b at which (1�F (b�b�t ))b reaches its maximum. bc(b�t ) is the solution

of the implicit equation b = 1�F (b�b�t )
f(b�b�t )

(uniquely de�ned by the monotone hazard rate assumption).

Without the employability constraint, if the agent anticipated his competitors to opt for b�t , he

would choose bc(b�t ). As long as b
�
t < bc(b

�
t ), the employability constraint binds, and the agent can�t

choose bc(b�t ). Rather he goes for b
�
t , just as in the benchmark case of Proposition 1.

Now suppose that i) at time t, b�t < bc(b
�
t ) holds, but ii) the subsequent complexity arising in

the benchmark case, b�t+1, would be such that b
�
t+1 > bc(b

�
t+1). Then, unlike in the benchmark case,

equilibrium complexity goes to the �xed point of bc

1� F (0)
f(0)

=
1

2f(0)
:

Combining the two cases, the unique symmetric equilibrium complexity, b�t , is de�ned recursively

by:

8<: b�t =
b�t�1
1�� +

1+�
1��

�
R if

b�t�1
1�� +

1+�
1��

�
R < min[bmax;max[b

�; 1
2f(0) ]]

min[bmax;max[b
�; 1
2f(0) ]] otherwise

QED
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De�nition of the variables used in the empirical analysis

Variables used in individual regressions:

� AvgTotalCompensationi;f : Average Total Annual Cash Compensation between 2010 and 2016

of individual i while working at �rm f .

� NbFunctioni;f : Number of function of individual i at �rm f in 2010.

� NbComplex10Kf : Number of occurrence of the string �complex� in the 10-K �ling in 2010 of

the company f employing the individual.

Variables used in industry regressions:

� AvgTotalCompensationGrowthj : Growth of the average compensation in industry j, i.e., (Av-

erage Total Annual Cash Compensation in 2016)/(Average Total Annual Cash Compensation

in 2010), using all individuals working at a �rm in industry j in 2010 and/or 2016.

� �NbFunctionj : Variation in the average number of function of individuals in industry j between

2010 and 2016, i.e., (Average number of function in 2016)-(Average number of function in 2010).

� �NbComplex10Kj : Variation, between 2010 and 2016, in the average number of occurrence of

the string �complex� in the 10-K �lings of companies belonging to industry j, i.e., (Average

number of occurrence in 2016)-(Average number of occurrence in 2010).

� Turnoverj : Average yearly turnover of �rms in industry j between 2010 and 2016, where the

yearly turnover is de�ned as the ratio between the number of workers leaving the �rm in the

year and the total number of workers this year.

� AvgMktV aluej : Average market value of �rms in industry j in 2010.

� AvgMktV alueGrowthj : Growth of the average market value of �rms in industry j between 2010

and 2016, i.e., (Average Market Value in 2016)/(Average Market Value in 2010) - 1.
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log(AvgTotalCompensation)

(1) (2) (3)

Intercept 13.56*** 13.84*** 13.49***

(0.02) (0.32) (0.02)

NbFunction 0.01* 0.02*** -

(0.005) (0.004)

NbComplex10K - - 0.01**

(0.004)

Firm F.E. - Yes -

R2 0.0003 0.43 0.002

Nb. Obs. 9,724 9,724 15,425

Table 1: Regression of the log of the average compensation (AvgTotalCompensation) on the number

of functions (NbFunction) and the number of occurrence of �complex�in the employer�s 10-K �lings

(NbComplex10K), between 2010 and 2016, at the individual level. ***, ** and * correspond to

rejection of the null that the coe¢ cient is zero, respectively at the 1%, 5% and 10% level. Standard

errors are reported in parentheses and are clustered at the �rm level for the regression in Column (3).

Observations lying above (below) the quantile 99% (1%) of the dependant or independent variable

distribution are removed.
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AvgTotalCompensationGrowth

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 1.41*** 1.43*** 1.23*** 1.25*** 1.18*** 1.20*** 1.37*** 1.38***

(0.10) (0.10) (0.03) (0.03) (0.03) (0.03) (0.10) (0.10)

Turnover -1.89** -1.91** - - - - -1.57* -1.59*

(0.85) (0.82) (0.89) (0.89)

�NbFunction - - 0.27*** 0.26*** - - 0.24*** 0.23***

(0.07) (0.07) (0.06) (0.07)

�NbComplex10K - - - - 0.03** 0.03** 0.02* 0.02**

(0.01) (0.01) (0.01) (0.01)

Controls - Yes - Yes - Yes - Yes

R2 0.02 0.05 0.07 0.09 0.03 0.05 0.11 0.13

Nb. Obs. 180 180 180 180 180 180 180 180

Table 2: Regression of the growth in the average compensation (AvgTotalCompensationGrowth) on

average yearly turnover (Turnover), variation in the average number of functions (�NbFunction)

and change in the number of occurrence of the string �complex� in companies� 10-K �lings

(�NbComplex10K), between 2010 and 2016, at the industry level. Controls include the average

market value of �rms in the industry in 2010 (AvgMktV alue) and the average market value growth

between 2010 and 2016 (AvgMktV alueGrowth). Variable de�nitions are provided above. ***, ** and

* correspond to rejection of the null that the coe¢ cient is zero, respectively at the 1%, 5% and 10%

level. Standard errors are reported in parentheses. Observations corresponding to industries contain-

ing only one �rm or lying above (below) the quantile 99% (1%) of the dependant variable distribution

are removed.
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