“Vertical Foreclosure and Multi-Segment Competition”

Bruno Jullien, Markus Reisinger and Patrick Rey
Vertical Foreclosure and Multi-Segment Competition*

Bruno Jullien† Markus Reisinger‡ Patrick Rey§

15 December 2017

Abstract

This paper analyzes a supplier’s incentives to foreclose downstream entry when entrants have stronger positions in different market segments, thus bringing added value as well as competition. We first consider the case where wholesale contracts take the form of linear tariffs, and characterize the conditions under which the competition-intensifying effect dominates, thereby leading to foreclosure. We then show that foreclosure can still occur with non-linear tariffs, even coupled with additional provisions such as resale price maintenance.

JEL classification: D43, L12, L42, K21

Keywords: Foreclosure, Vertical Contracting, Customer Segments, Downstream Competition

*The financial support of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 670494) is gratefully acknowledged.
†Toulouse School of Economics, CNRS, Toulouse, France; bruno.jullien@tse-fr.eu.
‡Department of Economics, Frankfurt School of Finance & Management, Frankfurt, Germany; m.reisinger@fs.de.
§Toulouse School of Economics, University of Toulouse Capitole, Toulouse, France; patrick.rey@tse-fr.eu.
1 Introduction

Many industries have seen the emergence of new distribution channels, such as mobile virtual network operators (MVNOs) in the telecommunication industry, or platforms such as Amazon.com or Alibaba.com in online retailing. These new channels often appeal to different types of customers than existing channels. For example, MVNOs typically offer cheaper “no-frills” services, targeting price-sensitive or younger customers. Similarly, online platforms attract a broad audience whereas established brick-and-mortar stores appeal more to consumers with high brand loyalty. A challenge for these entrants, however, is to get access to established suppliers. For example, MVNOs do not possess their own networks and therefore need to secure access to incumbent mobile network operators (MNOs). Similarly, online platforms must convince consumer good manufacturers to distribute their products through their channels.\footnote{In the telecommunication industry, MNOs foreclosed MVNOs in several countries (e.g., Spain or Poland) without regulation of the market (see European Commission, 2006). Also, many established apparel producers offer no or only a small selection of their products on Internet retailers.}

When deciding on whether to grant access to their products, or denying supply and foreclosing the market, the incumbents face a trade-off. Entrants bring value by attracting different types of consumers. In theory, the incumbents may benefit from this added value through appropriate wholesale arrangements. In practice, however, it may be difficult to limit entry to specific segments and, more generally, to control entrants’ marketing strategies; they may then compete with the incumbents, thereby dissipating profit, and may even end-up challenging incumbents’ core business.

In this paper, we develop a simple framework to study this trade-off. Specifically, we consider a setting with one incumbent at both upstream and downstream levels, and two market segments. The downstream incumbent has a strong position in the high-end segment, and faces an entrant that brings value in the low-end segment. We first characterize the drivers of the incumbents’ decision to accommodate entry or foreclose the market when contractual arrangements with the entrant are limited to simple linear wholesale tariffs. We then show that general non-linear tariffs – even coupled with additional vertical restraints such as resale price maintenance (RPM) – do not always suffice to maximize industry profit or ensure entry accommodation. This is because, as long as wholesale contracts cannot condition on the customer group to which the entrant is allowed to sell, the entrant prefers to divert units from the low-end to the high-end segment whenever the margins are larger there. As a result, foreclosure may occur.

The existing literature has considered the incentive of incumbent suppliers to dampen downstream competition by raising rivals’ costs in various circumstances. Ordover et al. (1990), Chen (2001), and Sappington (2005) study the situation with a single incumbent and demonstrate that if the stand-alone firm has an outside option or sells a differentiated good, foreclosure is only partial. Ordover and Shaffer (2007), Hoeffler and Schmidt (2008),
and Bourreau at al. (2011) allow for multiple suppliers and demonstrate that partial foreclosure can also occur with competition in the upstream market. These papers focus on linear wholesale tariffs and therefore cannot answer the question why an incumbent still prefers foreclosure if more elaborate contracts are feasible. The literature on non-linear wholesale tariffs (e.g., Hart and Tirole, 1990, O’Brien and Shaffer, 1992) demonstrates that if the entrant offers a differentiated good, full exclusion is never optimal because the non-linear tariff allows the supplier to extract the higher industry profits in a better way. In contrast, we find that when firms can target specific market segments, non-linear tariffs, even augmented with RPM, are not enough to guarantee entry.\(^2\)

2 The Model

Initially, there are two incumbent firms, \(U\) and \(D\). \(U\) costlessly supplies an input to \(D\), who transforms it into a final good using a one-to-one technology. There is a unit mass of consumers, with heterogeneous values and cost of service: a proportion \(x\) of consumers have valuations \(V_D\) and unit costs \(C\), whereas the others have valuations \(v_D\) and unit cost \(c\); the first group of consumers constitutes the “high-end” market segment and are more valuable:

\[
V_D - C > v_D - c.
\]

We will consider two scenarios, in which either the incumbents are vertically integrated, or they can engage in efficient contracting (e.g., two-part tariffs); all results are valid in both scenarios. Throughout the paper, “the incumbents” will refer to the integrated firm in the former scenario, and to the upstream supplier in the latter scenario.

A new firm \(E\) can enter the downstream market, with a comparative advantage in the low-end segment: for the sake of exposition, we suppose that it faces the same costs as \(D\) in each segment, \(C\) and \(c\), but offer different values to consumers, \(V_E\) and \(v_E\), satisfying:

\[
v_E > v_D \text{ and } V_D > V_E.
\]

Downstream firms can discriminate consumers across the two segments: each firm \(i = D, E\) sets two prices, \(P_i\) in the high-end and \(p_i\) in the low-end segment.\(^4\) By contrast, we assume that the supplier cannot discriminate the terms of the contract offered to \(E\)

\(^2\)See Rey and Tirole (2007) for a summary of foreclosure incentives with non-linear tariffs.

\(^3\)Gabrielsen and Johansen (2017) demonstrate that non-linear tariffs and RPM are not sufficient to maximize the industry profit if downstream firms must also make investment decisions. However, they are not concerned with market foreclosure.

\(^4\)For the sake of exposition, we focus here on third-degree price discrimination (which is here equivalent to first-degree price discrimination, due to consumer homogeneity within a segment). However, if consumption patterns differ across segments (e.g., high-end consumers generate larger volumes), then our insights extend to second-degree price discrimination – i.e., when firms cannot distinguish between consumers but can offer several types of contracts. See the Online Appendix for a formal analysis.
according to targeted downstream segments – that is, the tariff can only be based on the quantity bought by E, but cannot be made contingent on which consumers the quantity is sold to.\footnote{Assigning “exclusive territories” would be a simple way of preventing competition among downstream firms, and would thus allow the incumbents to achieve industry profit maximization. However, such vertical restraints are not always allowed (in Europe, for example, manufacturers are prevented from restricting brick-and-mortar retailers to open online stores as well), and they may be difficult to enforce. In practice, U may be unable to identify E’s customers, and even if such information was available, it may not be verifiable in courts.}

The game consists of two stages: in the first stage, U offers a wholesale price w_E to E (and a two-part tariff (F_D, w_D) to D, if separated), which E (and D) can either accept or reject. In the second stage, D and E compete in prices.

Absent entry, the industry maximizes its profit by setting $P_D = V_D$ and $p_D = v_D$, yielding a profit of

$$\Pi^m = x (V_D - C) + (1 - x) (v_D - c).$$

We will assume that foreclosure is more profitable than removing D from the market, that is:

$$\Pi^m > x (V_E - C) + (1 - x) (v_E - c). \tag{1}$$

Throughout the paper, we assume that the incumbents accommodate entry whenever they are indifferent between foreclosing it or not.

3 Equilibrium

The following proposition determines under which conditions foreclosure is optimal:

Proposition 1 The incumbents foreclose entry if and only if

$$x [(V_E - C) - (v_E - c)] > (1 - x)(v_E - v_D). \tag{2}$$

Proof. The incumbents can secure Π^m by charging $w_E = +\infty$ (and $(F_D = \Pi^m, w_D = 0)$, under separation). Furthermore, in order for the incumbents to obtain more profit than Π^m, E must be serving the low-end segment, which requires $w_E \leq v_E - c$.

Thus, consider $w_E \leq v_E - c$ and a candidate equilibrium in which E serves the low-end segment. If E supplies only the low-end segment, then the price at which D serves the high-end segment must satisfy $V_D - P_D \geq V_E - (C + w_E)$, as E will compete with D in the high-end segment and is willing to set P_E as low as $C + w_E$; hence, the incumbents cannot obtain more than

$$\Pi_I = x (P_D - C) + (1 - x) w_E \leq x (V_D - V_E) + w_E.$$
If instead E supplies both segments, then the incumbents’ profit is equal to w_E. It follows that the maximal profit that the incumbents can obtain does not exceed:

$$x(V_D - V_E) + v_E - c.$$

Comparing this expression with Π^m shows that foreclosure occurs whenever (2) holds.

We now show that, conversely, entry occurs when (2) is not met. Suppose that U sets $w_E = v_E - c$, inducing E to offer $p_E = v_E$ in the low-end segment and $P_E = v_E - c + C$ in the high-end segment. If $v_E - c > V_E - C$, then E cannot actively compete in the high-end segment (as $P_E > V_E$) and D can thus charge $P_D = V_D$ in that segment. The incumbents (with $w_D = V_D - C$, under separation)\footnote{This in particular ensures that D is not willing to contest E in the low-end segment.} can then obtain the entire monopoly profit, equal to

$$\Pi^M = x(V_D - C) + (1 - x)(v_E - c) > \Pi^m.$$

If instead $v_E - c \leq V_E - C$, then D can serve the high-end segment at price $P_D = C + V_D - V_E + v_E - c$. Under vertical integration, the incumbents thus obtain:

$$\Pi = x(V_D - V_E) + v_E - c,$$

which exceeds Π^m if (2) does not hold. Under separation, charging $w_D = v_D - c$ ensures that D is not willing to serve the low-end segment but is willing to serve the high-end segment at price P_D, as the margin $P_D - C = V_D - V_E + v_E - c$ exceeds w_D (using $V_D > V_E$ and $v_E > v_D$).

The intuition is as follows. Accommodating entry is profitable only if E serves the low-end segment, in which case U optimally charges $w_E = v_E - c$ to extract E’s profit in that segment. If $v_E - c \geq V_E - C$, then E cannot compete in the high-end segment (as $w_E + C$ exceeds V_E), and the incumbents obtain the maximal industry profit; hence, foreclosure does not occur in equilibrium. By contrast, if $v_E - c < V_E - C$, then E can compete in the high-end segment as well, which reduces the profit that the incumbents can achieve in that segment. Foreclosure is then optimal if this profit-dissipation effect (measured by the left-hand side of (2)) off-sets the added-value brought by E in the low-end segment (measured by the right-hand side). As can be seen from (2), this is more likely when the high-end segment is large (x high), E is relatively less competitive in the low-end segment ($(V_E - C) - (v_E - c)$ large), or adds little value to D in that segment ($(v_E - v_D)$ small).

When foreclosure occurs, mandating entry (e.g., by imposing a cap on the wholesale price w_E not exceeding $v_E - c$) can only benefit consumers,\footnote{Consumers benefit from a lower price in the high-end market, and may obtain a greater value in the low-end market if $w_E < v_E - c$.} and increase social welfare.
4 Different types of wholesale contracts

From the previous discussion, if \(V_E - c \geq V_E - C \), then the incumbents obtain the maximal industry profit. Otherwise, competition in the high-end segment prevents full industry profit maximization, and leads to foreclosure if (2) holds. We now analyze whether these insights carry over with more elaborate wholesale contracts.

We first show that the use of more general tariffs does not necessarily restore industry profit maximization.

Proposition 2 If \(v_E - c < V_E - C \), non-linear tariffs do not allow the incumbents to achieve industry profit maximization.

Proof. To maximize industry profit, \(D \) must serve the high-end consumers at price \(V_D \) and \(E \) must serve the low-end segment at price \(v_E \). However, \(E \) can then divert one unit from the low-end to the high-end segment and sell it at price (slightly below) \(V_E \), and has indeed the incentive to do so if \(V_E - C > v_E - c \), a contradiction.

Proposition 2 shows that non-linear tariffs alone do not suffice to achieve joint profit-maximization. The reason is that they cannot prevent \(E \) from diverting part of its sales to the high-end segment, and \(E \) has indeed an incentive to do so whenever its margin there is larger than the margin in the low-end segment. A common way to restrict further the behavior of downstream firms is to control consumer prices, a practice known as Resale Price Maintenance (RPM). In the spirit of the above analysis, we consider here “industry-wide” RPM, where the price restrictions cannot be made contingent on consumer segments. If both types of consumers wish to buy at the contracted price, then the effectiveness of such provisions depends on the extent to which firms have to satisfy demand. We will consider two polar scenarios: in the first one (no rationing), firms cannot ration demand in any way; in the second scenario, firms can not only ration demand, but moreover select which consumers to serve. The next proposition shows that combining RPM with non-linear tariffs enables industry profit maximization for a larger range of situations, but not for all.

Proposition 3 Suppose that \(v_E - c < V_E - C \) and that non-linear contracts are allowed. We then have:

(i) If \(C < c \) and \(V_E > v_E \), then RPM cannot restore industry profit maximization, regardless of whether firms can ration demand.

(ii) If instead \(V_E \leq v_E \), then RPM restores industry profit maximization, even when firms cannot ration demand.\(^8\)

\(^8\)In that case, simple linear tariffs actually suffice to achieve industry profit maximization.
Finally, if \(V_E > v_E \) but \(C \geq c \), then RPM restores industry profit maximization when firms can select which buyers to serve.

Proof. (i) From the proof of Proposition 2, as \(v_E - c < V_E - C \), the incumbents cannot achieve industry profit maximization if they do not sign an RPM contract with \(E \). With an industry-wide RPM provision (for \(E \), or for both downstream firms), \(D \) must charge \(P_D = V_D \), and \(E \) must charge \(p_E = v_E \) in both segments. If \(V_E > v_E \), consumers from the high-end segments are then willing to buy from \(E \), and \(E \) finds it profitable to divert sales from the low-end to the high-end segment whenever \(C < c \).

(ii) If \(V_E \leq v_E \), then consumers from the high-end segment are not interested in buying from \(E \) at price \(p_E = v_E \). The incumbents can then obtain the industry monopoly profit by charging \(w_E = v_E - c \), together with an RPM provision requiring \(E \) to charge \(p_E = v_E \). \(E \) is willing to accept this contract and can then only sell to the low-end segment at that price. Furthermore, under integration, \(D \) has no incentive to compete in the low-end market, as \(U \)'s upstream margin, \(w_E = v_E - c \), exceeds \(D \)'s downstream margin, \(v_D - c \); similarly, under separation, charging \(w_D = V_D - C \) ensures that \(D \) does not want to sell to the low-end segment (as \(w_D = V_D - C > v_D - c \), which is the largest margin \(D \) could obtain in the low-end segment) and appropriates all of \(D \)'s profit.

(iii) Finally, when \(V_E > v_E \) but \(C \geq c \), charging \(w_E = v_E - c \) achieves industry profit maximization if \(E \) can select its buyers: \(E \) is then willing to accept this contract and to serve the low-end segment at price \(p_E = v_E \), and is not willing to serve the high-end segment at that price;\(^9\) furthermore, as in case (ii), \(D \) has no incentive to compete with \(E \) in the low-end segment under integration, and under separation when \(w_D = V_D - C \).

As should be clear from the above proof, if \(V_E > v_E \) and \(C \geq c \), then, in order to achieve profit maximization with industry-wide RPM, \(E \) must be able to ration demand selectively (namely, to refuse selling to high-end consumers). If instead \(E \) could simply ration demand but not choose its buyers, then under usual rationing schemes some high-end consumers would end-up buying from \(E \).

The above propositions characterize the conditions under which the incumbents can obtain the industry monopoly profit. When this is not the case, they may be tempted to foreclose entry. The following Proposition confirms this possibility; for the sake of exposition, in what follows we focus on the case where firms can selectively ration consumers:

Proposition 4 Suppose that \(C < c \) and \(V_E > v_E \), that RPM is allowed, and that firms can select which buyers to serve. Regardless of whether non-linear contracts are allowed, foreclosure then occurs if and only if

\[
x (V_E - v_E) > (1 - x) (v_E - v_D).
\]

\(^9\)In the limit case \(C = c \), \(E \) is indifferent between serving that segment or not, and is thus willing to serve only the low-end segment.
Proof. To characterize the profit that the incumbents can achieve by accommodating entry, we first provide a lower bound, and show that it cannot be improved.

Suppose that \(U \) offers to supply \(E \) at wholesale price \(w_E = v_E - c \), together with a RPM provision requiring \(E \) to set \(p_E = v_E \). Under integration, \(E \) then wins the competition for the low-end segment (as the integrated firm’s upstream margin, \(w_E = v_E - c \), exceeds its own downstream margin, \(v_D - c \)); it follows that \(D \) wins the competition for the high-end segment, at price \(\hat{P}_D = V_D - V_E + v_E \): indeed, \(D \) slightly undercut \(E \) in that segment, as the associated margin, \(\hat{P}_D - C = V_D - V_E + v_E - C \), exceeds the integrated firm’s upstream margin, \(w_E = v_E - c \). Under separation, \(U \) can achieve the same outcome (and appropriate all the profits) by supplying \(D \) at wholesale price \(w_D = \hat{P}_D - C \): \(D \) (resp., \(E \)) then sells the high-end (resp., low-end) market at price \(\hat{P}_D \) (resp., \(v_E \)) and cannot profitably serve the other segment. Hence, the resulting profit for the incumbents is given by:

\[
\hat{\Pi} = x(V_D - V_E + v_E - C) + (1 - x)(v_E - c).
\]

Suppose now that there exists an alternative equilibrium in which the incumbents accommodate entry and obtain a profit \(\Pi > \hat{\Pi} \). This profit must be at least equal to \(\Pi^m \), otherwise the incumbents would not accommodate entry; using (1), it must therefore satisfy:

\[
\Pi > \max \{ \hat{\Pi}, x(V_E - C) + (1 - x)(v_E - c) \} = x \left(\max \{ \hat{P}_D, V_E \} - C \right) + (1 - x)(v_E - c) \equiv (3)
\]

Furthermore, as the entrant cannot lose money in equilibrium, the incumbents’ profit, \(\Pi \), cannot exceed the maximal industry profit, and thus:

\[
x \left(\max \{ P_D, V_E \} - C \right) + (1 - x)(v_E - c) \geq \Pi \equiv (4)
\]

where \(P_D \) denotes \(D \)’s equilibrium price. To see this, note that \(v_E - c \) is an upper bound on the margin obtained in the low-end segment, and \(\max \{ P_D, V_E \} - C \) an upper bound on the margin obtained in the high-end segment: either \(D \) sells, or \(E \) sells at a price that cannot exceed \(V_E \). It follows from (3) and (4) that \(P_D > \hat{P}_D \).

Next, we note that \(E \) must be serving (part of) the low-end segment: otherwise, foreclosure would be more profitable. This, in turn, requires \(p_E \leq v_E \). High-end consumers would therefore be willing to buy from \(E \) at price \(p_E \) (as \(p_E \leq v_E \) and \(P_D > \hat{P}_D \)). Moreover, as \(C < c \), \(E \) prefers serving the high-end segment at \(p_E \) than serving low-end consumers at the same price. As it can select which buyers to serve, it follows that \(E \) must be serving the entire high-end segment, at some price \(P_E \leq V_E \), as well as (part of) this amounts to \(V_D - V_E + v_E - C > v_E - c \), which follows from \(V_D > V_E \) and \(C < c \).
the low-end segment. As the margin on the low-end segment cannot exceed \(v_E - c \), the resulting industry profit is thus bounded by:

\[
x (V_E - C) + (1 - x) (v_E - c).
\]

From (1), this profit is lower than \(\Pi^m \), a contradiction.

It follows that the incumbents' profit must be equal to \(\hat{\Pi} \). Comparing \(\hat{\Pi} \) with \(\Pi^m \) yields the condition in the Proposition.

We conclude with a discussion of the impact of non-linear tariffs and RPM on consumers and society. Obviously, enlarging the set of instruments available has no impact when the incumbents achieve the industry monopoly outcome with linear tariffs, which is the case if \(v_E - c \geq V_E - C \). When instead \(v_E - c < V_E - C \), allowing non-linear tariffs and RPM can only increase the profit derived from accommodating entry, which enhances total welfare. The impact on consumers is more ambivalent, and depends on what happens in the benchmark situation (i.e., with linear tariffs and no RPM):

- When foreclosure occurs, consumers obtain no surplus. In that situation, enlarging the set of instruments benefits consumers if: (i) it induces entry; and (ii) it does not allow the incumbents to achieve the industry monopoly outcome. This is indeed the case when \(V_E > v_E, C < c \), and:

\[
x [(V_E - C) - (v_E - c)] > (1 - x)(v_E - v_D) \geq x (V_E - v_E).
\]

In that case, allowing (non-linear tariffs and) RPM induces the incumbent to accommodate entry, and high-end consumers benefit from some competition (\(D \) serves them at price \(\hat{P}_D < V_D \)).

- When instead entry occurs, consumers obtain some surplus; in that situation, which arises when

\[
x [(V_E - C) - (v_E - c)] \leq (1 - x)(v_E - v_D),
\]

allowing non-linear tariffs and RPM harms consumers, by allowing the incumbents to increase the price charged in the high-end segment (namely, from \(P_D = V_D - [(V_E - C) - (v_E - c)] \) to either \(\hat{P}_D = P_D + c - C \) if \(c > C \) and \(V_E > v_E \), and up to \(V_D \) otherwise.)
References

Online Appendix (Not for Publication)

In this Appendix we show how our analysis can apply to the case of second-degree price discrimination, where firms cannot explicitly discriminate consumers (e.g., because they do not identify consumers’ types, or because of a legal ban on such discrimination) but can offer multiple contracts, designed for different types.

To this end, we modify the baseline model by assuming that high-end consumers must get at least \(N > 1 \) units in order to obtain the utility \(V_D \) or \(V_E \); otherwise, their utility is zero. The other assumptions remain unchanged: low-end consumers only need one unit to obtain the utility \(v_D \) or \(v_E \), and the costs of serving high-end and low-end consumers are still \(C \) and \(c \), respectively (note that \(C \) now denotes the total cost of supplying \(N \) units to a high-end consumer).

To discriminate consumers, each firm \(i = D, E \) can offer two options: a single unit at price \(p_i \) and a bundle of \(N \) units at price \(P_i \). For the sake of exposition, we will assume that low-end consumers cannot “unbundle” multi-unit options (high-end consumers may however satisfy their needs by combining several single-unit options). As a result, if \(N \) is large, namely, if

\[
N v_D \geq V_D,
\]

then absent entry the incumbents can still extract all the surplus from consumers (by charging \(V_D \) and \(v_D \) to high-end and low-end consumers, respectively) and obtain:

\[
\Pi' = x (V_D - C) + (1 - x) (v_D - c).
\]

For the sake of exposition, we focus here on the case where the wholesale contract between \(U \) and \(E \) simply consists of a linear tariff, and denote the wholesale price by \(w_E \). Following the same reasoning as in the proof of Proposition 1, it can be checked that, to maximize their profit, the incumbents must charge \(w_E = v_E - c \) and induce \(E \) to supply low-end consumers (and only those) at price \(p_E = v_E \). High-end consumers are then not tempted to buy from \(E \) (at unit price \(p_E = v_E \)), as the above condition \(N v_D \geq V_D \) (combined with \(v_E > v_D \) and \(V_D > V_E \)) implies \(N v_E \geq V_E \). However, instead of making zero profit in the low-end segment, \(E \) could target high-end consumers by offering them \(N \) units at a price above the associated cost, equal to \(C + (v_E - c) N \); if this cost is lower than \(V_E \) and larger than \(v_E \), then \(E \) indeed exerts competitive pressure on \(D \), preventing it to charge more than

\[
\hat{P}_D = V_D - V_E + C + (v_E - c) N.
\]

\footnote{For example, the low-end segment may correspond to households and the high-end segment to businesses, requiring larger volumes.}

\footnote{The case \(C + (v_E - c) N < v_E \) does not look plausible and would induce \(E \) to sell the \(N \)-unit package at a minimal price \(\hat{P} = x [C + (v_E - c) N] + (1 - x) v_E \).}
Summing-up, if $V_E - C > (v_E - c)N \geq v_E - C$, the maximal profit from accommodating entry is

$$x [V_D - C - (V_E - C) + (v_E - c)N] + (1 - x)(v_E - c).$$

Comparing this profit with Π^f, foreclosure is optimal if and only if

$$x ((V_E - C) - (v_E - c)N) > (1 - x)(v_E - v_D).$$

We therefore obtain a very similar conclusion as in the baseline model: E still has an incentive to target the most profitable segment, which limits the incumbents’ ability to exploit high-end consumers; this may induce the incumbents to foreclose entry.