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Abstract

Blockchains are distributed ledgers, operated within peer-to-peer
networks. If reliable and stable, they could offer a new, cost effective
way to record transactions, but are they? We model the proof-of-work
blockchain protocol as a stochastic game and analyse the equilibrium
strategies of rational, strategic miners. Mining the longest chain is a
Markov perfect equilibrium, without forking, in line with Nakamoto
(2008). The blockchain protocol, however, is a coordination game,
with multiple equilibria. There exist equilibria with forks, leading to
orphaned blocks and persistent divergence between chains. We also
show how forks can be generated by information delays and software
upgrades. Last we identify negative externalities implying that equi-
librium investment in computing capacity is excessive.
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1 Introduction
Blockchains are decentralised protocols for recording transactions and asset
ownership. In contrast with centralised protocols in which one authority
is in charge of maintaining a unique common ledger, a blockchain operates
within a network, whose participants each possess and update their own
version of the ledger, which is therefore distributed. The blockchain design
was the main innovation underlying the digital currency network Bitcoin
(Nakamoto, 2008), but its potential benefits in terms of cost-efficiency, speed
and security, for a variety of assets and contracts, have attracted interest from
a broad range of institutions and businesses.1 Blockchain experiments have
been conducted for supply chains, trade finance, and financial transactions,
e.g. by Nasdaq, the Australian Stock Exchange, BHP Billiton, Banque de
France, and Ripple.

Our focus is on public blockchains, such as Bitcoin or Ethereum, which
are fully decentralised and in which participants are anonymous. Public
blockchains stand in contrast to private blockchains, in which a central au-
thority can authorise participants and certify transactions. The main issue
we address is whether public blockchains can be expected to generate stable
consensus: Is such consensus a necessary by-product of the blockchain pro-
tocol? Or could the blockchain protocol lead to the emergence of different,
competing, versions of the ledger?

Each block, in the blockchain, offers an updated version of the ledger,
taking into account recent transactions, and chained to a previous version
of the ledger, i.e., a previous block. In an ideal blockchain, there is a sin-
gle sequence of blocks, registering the dynamics of the ledger, on which all
participants agree. In contrast to this situation, there could be forks in the
blockchain. In that case there are competing branches, each registering a
potentially different version of the ledger. Such forks could make the ledger
less stable, reliable and useful, as they could create uncertainty about the
distribution of property rights. In practice, as discussed in the next section,
there have been several forks, some of which have persisted until now. We
endeavour to understand the economic forces at the root of forks, and why
the blockchain protocol does not seem to always be successful at avoiding
forks.

1The blockchain is cost effective in that the administrative costs of running it are limited
compared to those incurred within older technologies and institutions, such as notaries,
banks or depositories.
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To study the dynamics of the blockchain, we analyse the behaviour of its
key participants: the miners. It is the miners who decide to which previous
block a new block is chained and thus give rise to a single chain or trigger
forks. We take a game theoretic approach to analyse the strategies of the
miners and the resulting equilibrium blockchain dynamics.

The rules of the game played by the miners in the major public blockchains
(such as, e.g., Bitcoin or Ethereum) are set by the protocol known as “proof-
of-work”, which can be sketched as follows (and is described in more details
in the next section): At each point in time, miners try to validate a new block
of transactions. This implies solving a purely numerical problem unrelated
to the block’s content, an activity referred to as “mining.” A miner who solves
his problem obtains a proof-of-work, which he attaches to his block before
disseminating it through the network. The instantaneous probability that a
miner solves his proof-of-work problem is increasing in his computing power.
In this context, at each point in time, the identity of the miner who proposes
the next block is the outcome of a random draw. This ensures that miners
take turns to validate blocks, and therefore no single miner has control over
the whole verification process. When a new block is disseminated through
the network, it becomes part of the consensus if miners chain their next block
to it.

As argued by Nakamoto (2008), proof-of-work generates a stable consen-
sus, or in other words, a single chain, if miners always take the last solved
block as the parent for their next block. This ideal blockchain is illustrated
in Figure 1.

0
time

B1 B2 B3

t1 t2 t3

Figure 1: The Blockchain
At t = 0, there is an initial block B0 and a stock of transactions included in a
block B1, chained to B0. Miners work on a computational problem until a miner
solves B1, at t1. B1 is broadcast to all. Nodes check proof-of-work and transactions
validity, and express acceptance by chaining the next block to B1.

Miners, however, may choose to discard certain blocks. Suppose, e.g.,
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that the last block solved is Bn, but miner m chains his next block to the
parent of Bn, i.e., Bn−1. This starts a fork, as illustrated in Figure 2.

0
t

B1 Bn−1 Bn

t1 tn−2 tn−1 tn

B

Original chain

B
′

Fork

Figure 2: A fork

If some miners follow m, while others continue to attach their blocks to
the original chain, there are competing versions of the ledger. This reduces
the credibility and reliability of the blockchain, especially if the fork is persis-
tent. Even if, eventually, all miners agree to attach their blocks to the same
chain, the occurrence of the fork is not innocuous. The blocks in the chain
eventually abandoned are orphaned. They have been mined in vain, and the
corresponding computing power and energy have been wasted. Moreover,
the transactions recorded in the orphaned blocks could be called in question.

A fork can also occur when some miners adopt a new version of the
mining software that is incompatible with the current version. If miners fail
to coordinate on the same software, this triggers a fork.

Does the blockchain protocol rule out the occurrence of forks? In the
frictionless case in which information is instantaneously disseminated in the
network, and there is no attempt to double spend (such attempts are de-
scribed in the next section), it is commonly assumed that a single blockchain
will prevail. To examine the validity of that “folk theorem”, we design a
model that captures the key features of the proof-of-work blockchain proto-
col: There are N risk-neutral, rational and strategic miners. Each time a
miner solves a block, he obtains a reward in the cryptocurrency associated
with the branch to which his block belongs. Miners choose to which previ-
ous block to chain their current block. They do so, observing all previously
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solved blocks, to maximise the expectation of their cumulated rewards at an
exogenous liquidation time. We solve for Markov Perfect Equilibria of this
stochastic game.

Our analysis of this game uncovers two important economic forces at play
in the blockchain.

• First, miners’ actions are strategic complements: Recall their rewards
are paid in the cryptocurrency associated with the chain on which they
are solving blocks. We assume the value of that cryptocurrency depends
on the credibility of the corresponding chain, which is higher if more
miners are active on it. Hence, miners benefit from coordinating on
a single chain, which they can achieve by playing the longest chain
rule (hereafter LCR), as suggested by Nakamoto (2008). This sustains
a Pareto-optimal equilibrium (Proposition 1). The same coordination
motives, however, sustain equilibria with forks. If at some time (e.g.,
when a sunspot is observed) a miner anticipates all others to fork and
mine a new branch, his best response is to follow them. Indeed, he
rationally anticipates that any block solved out of the equilibrium path
will not be accepted by other miners and the corresponding reward will
be worthless (Proposition 2).

• Second, we identify a countervailing force which we refer to as “vested
interest”: An important feature of the blockchain protocol is that min-
ers cannot immediately spend or convert the cryptocurrency earned for
solving blocks. Consequently, a miner who has accumulated rewards by
solving several blocks on a given chain has a vested interest in this chain
remaining active. In particular, the value of these rewards would drop
if he moved to a different chain. Vested interests may counteract coor-
dination motives for a group of miners, inducing them to keep mining a
minority chain, and sustaining persistent forks in equilibrium (Proposi-
tion 3). Unlike temporary forks that only rely on coordination motives
and would arise with atomistic miners, equilibria with persistent forks
depend on miners taking into account the impact of their actions on the
blockchain. It is likely, in practice, that large pools of miners, such as
AntPool, BTC.com, ViaBTC or BTC.TOP, who each represents more
than 10% of the computing power, indeed behave strategically.

Next, we enrich the model and make it more realistic by incorporating fur-
ther real world characteristics of blockchains, such as information delays, and
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instances in which miners have to choose between incompatible upgrades of
the mining software. We show that like the sunspots in our basic model, these
characteristics can trigger forks on the equilibrium path. And we show that
the same fundamental interplay of coordination motives and vested interests
as in the basic case underlies equilibria with forks in these more realistic
extensions of the model.

Finally, we endogenise the computing capacity that each miner installs.
Because the difficulty of the mining process is adjusted upwards when the
total computing capacity in the network increases, a miner’s investment in
computing power exerts a negative externality on all other miners. This gives
rise to an arms race in which each miner ends up over-investing (not unlike
in Glode, Green and Lowery (2012) and Biais, Foucault and Moinas (2016)).
This analysis points to another source of inefficiency in the blockchain design.

Literature: Early academic contributions on distributed consensus are
in computer science. Since seminal work by Pease, Shostak and Lamport
(1980) and Lamport, Shostak and Pease (1982), finding protocols that al-
low network participants to reach an agreement has been a major issue in
computer science. In a Byzantine agreement (BA) setting, participants seek
to agree on a common output aggregating private inputs, in the presence
of “malicious” participants who try to attack, i.e. disrupt the agreement.
Nakamoto (2008) proposes the proof-of-work blockchain protocol to achieve
consensus with high probability, in spite of potential attacks by malicious
miners seeking to create a branch faster than the “honest” ones. Miller and
LaViola (2014), Pass, Seeman and Shelat (2017) and Garay, Kiayias and
Leonardos (2015) consider a larger set of attacks.2 Their results suggest that
the protocol is robust as long as honest miners represent the majority of
computing power.3

While these papers consider ad hoc strategies from exogenously honest or
malicious participants, we study optimal strategies from rational and profit-
maximising players in a game. The computer science papers to which our
analysis is the closest, by Kroll, Davey and Felten (2013) and Carlsten et
al (2016), analyse interactions between miners as a game. Kroll, Davey and
Felten (2013) offer interesting economic intuition, but do not develop a formal

2Eyal and Sirer (2014) analyse a specific strategy called selfish mining, by which some
miners maintain a “secret” branch of blocks, and then release it to the network.

3See Bonneau et al. (2015) for a survey of the literature analysing Bitcoin.
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game-theoretic analysis. Carlsten et al (2016) focus on specific strategies
(regarding the choice of which block to chain to, and which transactions to
include in a block) and show that they constitute an equilibrium. Relative
to the computer science literature, our contribution is twofold: To the best
of our knowledge, our paper offers the first formal game-theoretic analysis
of equilibria in the proof-of-work blockchain protocol. It is also the first to
point to the importance of coordination effects in that protocol and show
that they lead to multiple equilibria involving forks.

Our paper also relates to an emerging literature in economics and finance
on blockchains. Harvey (2016) discusses the pros and cons of blockchains,
while Raskin and Yermack (2016) and Yermack (2017) discuss their implica-
tions for central banking and corporate governance, respectively. Cong and
He (2017) model the effect of blockchains on product market competition:
blockchains improve contractibility and favour entry, but increase access to
transaction data, which helps sustain collusive equilibria.4 While these pa-
pers focus on the consequences of blockchains deployment, we provide a for-
mal analysis of the blockchain consensus-building mechanism itself under
proof-of-work. The analysis of proof-of-stake protocols in Saleh (2017) is
complementary to our analysis of proof-of-work. Several papers (e.g., Evans,
2014) note that a problem with the Bitcoin mining incentive scheme is that
miners are paid with bitcoins, which have a volatile value. In our analysis,
the only source of variation in the value of rewards to a given block is the
extent to which the chain including that block is actively mined. We analyse
how these variations affect incentives.

The remainder of the paper is organised as follows. The next section
offers an introduction to blockchain environments. Section 3 presents our
basic model. Section 4 develops our equilibrium analysis of the basic model.
Section 5 enriches the basic model to incorporate information delays, double
spending and upgrades. Section 6 analyses how miners choose their com-
puting capacity and establishes that negative externalities lead to excess
equilibrium capacity. Section 7 concludes. All proofs are in the appendix.

4Relatedly, Catalini and Gans (2016) argue that blockchains improve verifiability and
allow bypassing intermediaries. Khapko and Zoican (2017), who study endogenous settle-
ment time, and Malinova and Park (2017), who study the impact of anonymity in financial
markets, are motivated by features and capabilities of blockchains.
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2 A primer on blockchains
In this section we first describe the blockchain protocol and then discuss forks
that occurred in blockchains.

2.1 The blockchain protocol

Centralised vs decentralised ledgers: A ledger is a collection of
records, regarding ownership, transactions, identity, etc. For ledgers to facil-
itate interactions among economic agents, it is essential that the agents reach
a consensus about the state of the ledger and its authenticity. Historically,
a central authority, e.g., the state and its delegates, ensured this consensus
by managing and certifying the ledger. Such centralised ledgers, however,
cannot operate satisfactorily if the central authority behaves opportunisti-
cally, e.g., by excluding some participants or transactions, or by distorting
the ledger.

The distributed ledger technology (DLT) can overcome that obstacle.
Within a distributed ledger, there is a network of participants, and each par-
ticipant maintains its own ledger. When an economic transaction occurs, the
trading parties send this information to the network, so that it can be vali-
dated by network participants, each including it into its own ledger. Ledgers
should eventually be the same for all participants, giving rise to consensus
on a single, distributed, ledger.

Blockchain is the distributed ledger protocol invented by Nakamoto (2008)
when he created Bitcoin. The elegance and novelty of his solution relies in
particular on its endeavour to incorporate the incentives of the participants.5
This justifies our game theoretic approach that accounts for these incentives
to investigate the properties of this protocol.

Proof-of-work: Decentralisation of the ledger implies its validation
should not be controlled or manipulated by a single participant or a small
number of colluding participants. One way to associate all participants to
the validation of transactions would be to rely on majority voting. However,
as noted by Nakamoto (2008), page 3:

“If the majority were based on one-IP-address-one-vote, it
could be subverted by anyone able to allocate many IPs.”

5Section 6 of Nakamoto (2008) seminal paper is entitled “Incentive.”
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The solution proposed by Nakamoto (2008) to this so-called “Sybil at-
tack” is called “proof-of-work.” For convenience, participants do not validate
each transaction individually but group them in blocks. One participant is
designated to send his block to the network to update the ledger. In order
to be designated, each participant works to solve a computational problem
with adjustable difficulty (referred to as a “moderately-hard puzzle” in com-
puter science, see Dwork and Naor, 1993) attached to his block. The term
“work” in proof-of-work therefore refers to using computers and electricity to
perform this task. The problem to solve has nothing to do with the economic
transactions included in a block. Rather, it requests using computing power
to perform independent trials (similar to draws under replacement) until one
finds a solution to an arbitrary numerical problem (a hash value lower than a
given threshold.) As nodes randomly draw candidate solutions, one of them
eventually gets lucky and solves the problem before the others. Thus, proof-
of-work is a way to randomise across participants who will propose the next
change to the ledger.

A drawback of proof-of-work is that it requires costly computing capacity.
An alternative protocol to save on electricity and hardware costs is proof-of-
stake (see Saleh, 2017). The basic idea is that each participant’s probability
to be designated to propose a block for validation depends on the amount
of cryptocurrency he owns: the larger that amount, the more frequently a
participant will be chosen. Ideally, this system ensures that those who have
more stake in the network (and are thus more eager to maintain consensus)
are more likely to contribute to the validation process. But no major fully
decentralised blockchain network uses proof-of-stake yet.6 For that reason
we focus on proof-of-work in our analysis.

A property of moderately-hard puzzles is that the solution is not easy
to find, but easy to verify. Hence, when they receive a block for validation,
participants easily check whether the sender actually found the solution. If
participants accept this block, they take it as the parent of the new block
they start mining. Thus, as written by Nakamoto (2008), participants

“vote with their CPU power, expressing their acceptance of
6Protocols inspired by proof-of-stake are currently used by Nxt or BlackCoin. The

Ethereum community has been trying for a long time to develop a proof-of-stake algorithm.
Their proof-of-work protocol even includes an exponential increase in difficulty (difficulty
bomb) to induce miners to switch to the upcoming proof-of-stake protocol. Its development
proved difficult however, and the difficulty bomb has been delayed.
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valid blocks by working on extending them and rejecting invalid
blocks by refusing to work on them.” (page 8)

This process gives rise to a chain of consecutively solved blocks, i.e., the
blockchain, as illustrated in Figure 1.

Miners: The nodes conducting the above mentioned tasks are called
miners, as they get rewarded for solving proof-of-work problems with newly-
created units of the cryptocurrency (12.5 BTC per block on Bitcoin in 2018,
and 3 ETH on Ethereum since Oct. 2017).7 They also receive transaction
fees which the originators of economic transactions can choose to offer for the
validation of these transactions. These rewards are included in the block that
generates them. Bitcoin imposes a 100-block delay before rewards earned
through mining can be spent.

In practice, miners gather in large pools. Figure 3 presents the distri-
bution of computing power of the pools operating on Bitcoin in January
2018. The figure illustrates that 10 mining pools represented about 95 %
of the total hash capacity. Pools allow miners to mutualise block discovery
risk. They also coordinate individual mining strategies. For example, on
https://www.bitcoinmining.com/bitcoin-mining-pools/, one can read:

“If you participate in a Bitcoin mining pool then you will want
to ensure that they are engaging in behavior that is in agreement
with your philosophy towards Bitcoin. [...] Therefore, it is your
duty to make sure that any Bitcoin mining power you direct to a
mining pool does not attempt to enforce network consensus rules
you disagree with.”

Difficulty: As explained in Nakamoto (2008), the time it takes miner
m to solve a block problem is exponential with parameter θm. Thus, θm is
the instantaneous probability that m solves the block he is mining. θm is
determined by the miner’s individual computing power, or hash power, hm,
and by the difficulty of the mining task set by the network protocol, D:8

θm =
hm
D
. (1)

7These are the main sources of cryptocurrency creation. Some blockchain protocols
can also include additional rewards.

8Indeed, when miners try to solve the hash problem, at each trial they have a probability
1
D to solve the problem. The hash power hm is the number of trials per unit of time.
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Figure 3:
Hashrate distribution of Bitcoin mining pools on 4 January 2018.
Source: blockchain.info.

The difficulty is set by the blockchain protocol so that the expected time
between two block solutions is targeted to a constant, X (on Bitcoin X = 10
minutes, while on Ethereum it is currently 17 seconds). Thus, using the
properties of exponential distributions, for given hash powers, the difficulty
D is set so that

X =
1∑

i∈M θi
=

1∑
i∈M

hi
D

=
D∑
i∈M hi

. (2)

Equation (2) implies that the difficulty D is equal to the average duration
between block solutions (X) multiplied by the total computing power:

D = X

(∑
i∈M

hi

)
. (3)
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If the total computing power increases (e.g., due to the entry of new min-
ers and new pools), the protocol ensures that the difficulty is scaled up so
that average duration between two blocks remains equal to the desired level.
Thus, on Bitcoin every 2,016 blocks, i.e., approximately every two weeks, the
difficulty is rescaled to ensure that the average time between blocks remains
at 10 minutes.

Together, (1) and (3) imply

θm =
1

X

hm∑
i∈M hi

. (4)

Equation (4) implies that the instantaneous probability to find a block for
miner m is increasing in his/her own computing capacity, but decreasing in
the capacity of the others.

2.2 Forks

Consensus on the decentralised ledger requires that there is only one chain of
blocks, observed by all and on which all agree. It is jeopardised if the chain
splits into a fork, with two competing branches, each with its own version of
the ledger. In the present subsection we review some reasons why forks can
happen in blockchains, and describe forks which actually occurred.

Information delays: In practice, the information that a block has been
solved is not transmitted instantaneously and simultaneously to all network
participants. For example, miners in Siberia might learn before miners in
Iceland that a block has been solved in China. Thus, it will routinely happen
that a block has just been solved but some participants are not yet aware of
that. If these participants solve their own block in the meantime, this starts
a fork with two competing blocks attached to the same parent. Nakamoto
(2008) identified that problem and suggested it would be solved if miners
always chained their blocks to the longest chain (following the LCR):

“Nodes always consider the longest chain to be the correct one
and will keep working on extending it. If two nodes broadcast
different versions of the next block simultaneously, some nodes
may receive one or the other first. In that case, they work on
the first one they received, but save the other branch in case it
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becomes longer. The tie will be broken when the next proof-of-
work is found and one branch becomes longer; the nodes that
were working on the other branch will then switch to the longer
one.”Nakamoto (2008), page 3.

Double spending: The blockchain protocol was also designed to pre-
vent “double spending.” Suppose a miner buys an object from a seller, paying
for it with bitcoins. The corresponding transaction is recorded in a block B.
When the latter is validated, as soon as the seller delivers the object, the
buyer has an incentive to start a fork: he could try to solve a block that does
not contain his transaction, and that is chained to the parent of B, in the
hope of attracting miners to his chain. If he succeeded in doing so, no block
would be chained to B (i.e. B would be “orphaned”), which would void the
transfer of his bitcoins to the seller. Nakamoto (2008) argues that double
spending is unlikely to be successful because it would require solving blocks
faster than the rest of the network.9

Software upgrades: So far we used the term “fork” to refer to chain
splits. There is another possible use of the term: In the context of open source
software, forking means copying the source code of a computer program and
modifying it to create a different version. As emphasised by Lerner and Tirole
(2002), this gives rise to coordination issues on which version is adopted by
participants. In a blockchain, a “soft fork” is the introduction of an upgraded
version of the software which remains compatible with the previous version:
blocks mined with the new version are considered as valid by miners still
running the old version. In that case, a soft fork does not trigger a fork in
the blockchain, even if not all miners upgrade to the new version. In contrast,
a “hard fork” is not backward-compatible, as upgraded miners might create
blocks that will be rejected as invalid by non-upgraded miners. Therefore,
if not all miners upgrade, a hard fork can be a way to trigger a fork in the
blockchain. We describe below some actual unintended or intended forks
triggered by software upgrades.

Unintended forks: An important chain split occurred on the Bitcoin
blockchain in March 2013, following what developers thought to be an in-
nocuous soft fork: some time earlier, some miners upgraded to a new version

9See also Teusch, Jain and Saxena (2016).
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of the software, referred to as 0.8. On 11 March 2013, there turned out to be
a bug so that the miners operating with the 0.7 version rejected as invalid
one block solved by the 0.8 miners and consequently the subsequent ones
(Thus the 0.8 upgrade was in fact an unintended hard fork, which miners
identified with a delay). From that point on, the 0.8 miners worked on a
chain stemming from that block, while the 0.7 worked on a competing chain,
stemming from its parent. When they discovered the split, participants all
wanted to revert to a single chain, but they had to decide which branch to
keep and which to orphan. Achieving coordination turned out to be difficult,
as illustrated by the following discussion between Bitcoin software developers
and miners (reported by Narayanan, 2015):

“Gavin Andresen: the 0.8 fork is longer, yes? so majority
hashpower is 0.8 ... first rule of bitcoin: majority hashpower
wins

Luke Dashjr: if we go with 0.8 we are hard forking
BTC Guild: I can single handedly put 0.7 back to the majority

hashpower. I just need confirmation that that’s what should be
done.

Pieter Wuille: that is what should be done, but we should
have consensus first.”

Miners faced a dilemma. Should they follow the LCR and mine the 0.8
chain which had attracted the majority of the computing power? Or should
they revert to the 0.7 version? Miners wanted to abide to the consensus, but
they first needed to coordinate on what the consensus should be.

Eventually, BTC Guild, which was one of the largest pools at the time,
chose to downgrade to the 0.7 version. This resulted in the 0.7 chain be-
coming the longest, and all miners coordinating back to it. It took 8 hours
before participants could solve the problem. Consequently more than 24
blocks, solved on the 0.8 chain, became orphaned, and their miners (in-
cluding BTC Guild) lost the corresponding rewards. Commenting on this
situation, Narayanan (2015) wrote:

“One way to look at this is that BTC Guild sacrificed rev-
enues for the good of the network. But these actions can also
be justified from a revenue-maximising perspective. If the BTC
Guild operator believed that the 0.7 branch would win anyway
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(perhaps the developers would be able to convince another large
pool operator), then moving first is relatively best, since delaying
would only take BTC Guild further down the doomed branch.”

This discussion underscores that miners’ coordination, or the lack thereof,
plays an important role in the emergence and resolution of forks. It also
underscores the importance of beliefs in this context: An individual miner
(or a pool such as, e.g., BTC Guild) decides to chain his blocks to the branch
which he believes the others will choose. Thus, beliefs about the actions of
others influence one’s action. This generates a form of beauty contest, in
which coordination effects are critical.

Intended forks: Ethereum underwent a hard fork in the summer of
2016. Following the hack of TheDAO, a large venture capital fund operating
through smart contracts on Ethereum, members of the Ethereum community
suggested to roll back the blockchain in order to cancel the transactions that
diverted the fund’s money. They hoped all participants would coordinate
on that hard fork, leading to a single active chain. Other members, how-
ever, refused to alter the history of the ledger and rejected the hard fork.
Consequently, Ethereum split in two incompatible branches, Ethereum and
Ethereum Classic. These two branches still exist, each corresponding to a
different ledger and history of trades, and a different cryptocurrency. As of
January 2018, Ethereum Classic represented about 5% of the hash capacity
of Ethereum, and the price of ETC was about 3.5% of the ETH price. This
episode illustrates the difficulty to achieve coordination on a single chain, the
uncertainty about miners’s actions and the resulting occurrence of persistent
competition between alternative chains.

Bitcoin also underwent two hard forks, in the summer and in the fall of
2017. The first fork is linked to the size of blocks that can be mined on
the blockchain. The community had long been divided on how to relax the
limitation of the network throughput.10 Several solutions were supported by
different participants, with the threat of some to fork in order to impose their
preferred solution. In the New York Agreement signed on May 2017, most
mining pool operators agreed to roll out a compromise solution (SegWit2x).
Yet, another way to increase throughput, Bitcoin Cash, was implemented, via

10The Bitcoin protocol sets the maximum size of a block of transactions to one megabyte.
This limit slows down the speed of transactions validation and hinders the development
of the network itself.
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a hard fork, on 1 August 2017. Bitcoin then split in two branches, with two
different cryptocurrencies, Bitcoin and Bitcoin Cash. On the former branch,
following the New York Agreement, a hark fork was planed for November
2017 to double the size of blocks. There was a lot of uncertainty, and discus-
sion among miners, about who would adopt SegWit2x, and whether there
would be a new chain split. Many Bitcoin community members announced
that a chain split was very likely. At odds with those forecasts, the SegWit2x
hard fork was abandoned. One could have thought this meant participants
would coordinate on Bitcoin. Quite to the contrary, a large fraction of miners
reacted by shifting from Bitcoin to Bitcoin Cash. While, early November,
12-hour average hashrates were about 10 Exahashes (1018 hashes) per sec-
ond on Bitcoin versus less than 2 on Bitcoin Cash, on 12 November 2017,
hashrates were similar on the two branches.

The second fork, Bitcoin Gold, which occurred in the fall of 2017, relies
on a different proof-of-work algorithm than Bitcoin. It allows miners to mine
efficiently using generic graphics processing units (GPU) by preventing the
use of specific ASIC (integrated circuits that cannot be used for any other
purpose than mining and are produced by a small number of firms). While
it was initially unclear whether this fork would attract computing capacity,
it is now implemented with a market capitalisation around $ 4.5 billion as of
January 2018.

Both episodes underscore that it is difficult for miners to coordinate on
a single chain, that chain splits are not uncommon, and that the outcome is
hard to predict, even for major participants. In the next sections, we analyse
the economic mechanisms that are at the roots of these forks.

3 Basic model
In line with the above description of the blockchain technology, we consider
the following model.

Miners and pools: There are M ≥ 2 risk-neutral miners, indexed by
m ∈ M = {1, ...M}. Equivalently, each m can be thought of as a min-
ing pool, since, as explained in the previous section, a pool coordinates the
strategies of a group of miners.
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Mining technology: There is a continuous flow of transactions sent
for confirmation by end-users.11 We assume all miners perfectly and instan-
taneously observe this flow, which they include in the blocks they mine.

As mentioned above, the time it takes miner m to solve a block problem
is an exponentially distributed random variable with parameter θm. We first
consider a stationary environment, in which the number of miners, their com-
puter capacity and the difficulty of the task are constant (so that the θm are
constant also). Then, in Section 6, we endogenise difficulty and computing
capacities.

A key property of the exponential distribution is that it is memoryless:
at each point in time, the distribution of the waiting time until the miner
finds a solution is independent from how long the miner has been working
on the problem.12 This waiting time is also independent of which block m is
mining, and of which blocks the other miners are mining. We denote by Nm

the Poisson process jumping each time miner m solves a block. Thus, the
number of blocks solved by miner m between time 0 and time t, is

Nm(t) =

∫ t

s=0

dNm(s).

We assume (in line with what happens in practice) that miners do not up-
date the set of transactions defining the block they mine until a hash problem
is solved(transactions that flow in meanwhile are stored in a buffer.) Relaxing
that assumption would not alter the economic mechanism we analyse below.

We also assume that at time zm, exponentially distributed with parameter
λm, miner m is hit by a liquidity shock. At time zm the miner must leave
the game and sell the cryptocurrencies he earned previously to a new miner
who also inherits his beliefs and preferences. Thus, exits are compensated
by entries and the environment is stationary. The times at which blocks are
solved and liquidity shocks occur are all independent.

11We take the flow of transactions to be exogenous, while in practice it can actually be
endogenous. For simplicity, we don’t model the transactions and model the blockchain
process directly at the level of the blocks. See Carlsten et al (2016) for an analysis of the
choice of which transactions to include in a block.

12Another key property of the exponential distribution is that the minimum of two
exponentials, with parameters θ and θ′, is also exponential, with parameter θ + θ′. Thus,
when interpreting the M players in our game as M pools, we interpret the intensity of
pool m, θm, as the sum of the intensities of all the miners active in that pool.
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Blockchain: At time 0, there is an initial state of the ledger, encoded
in B0, and an initial set of transactions to be registered. Starting from B0,
miners start working on the first block, B1, which contains this initial set of
transactions. Once B1 is solved, miners must choose to which parent block to
chain the next block (B2) they mine. If miners choose B1 as a parent block,
they continue the first chain. Alternatively, miners can choose to disregard
B1 and attach B2 to B0. In that case, miners start a fork and the chain splits
into two competing chains, one including B0 and B1, the other B0 and B2.

As the game unfolds, a tree of blocks develops. At each vertex Bk, the
tree includes a label, identifying the miner who solved the corresponding
block, m(Bk). The indices of the blocks give the order in which they have
been solved. That is, if k < n, then block Bk was solved before block Bn.

We first assume that at any time t, all miners observe the tree of solved
blocks Ct = {Bt, Et, I t}, where Bt = (B0, ...Bn) is the set of all blocks that
have been solved by time t, Et = {(B0, B1), ...(Bk, Bk′), ...}, with 0 ≤ k <
k′ ≤ n, is the set of edges chaining these blocks, and I t = (m(B1), ...m(Bn))
is the set of identities of miners who solved blocks. We then relax the as-
sumption that Ct is observed instantaneously to study information delays.
Within a tree, a chain is a sequence of connected blocks in which each block
is connected to at most one subsequent block. Thus, each fork starts a new
chain. More formally, we define a fork as follows:

Definition 1 Fork: There is a fork at time t if and only if there exists
(Bi, Bk, Bk′) included in Bt such that Bk 6= Bk′ and both (Bi, Bk) and (Bi, Bk′)
belong to Et.

It is also useful to define the original chain for a given tree Ct, as follows:

Definition 2 Original Chain: Suppose Et contains (Bi, Bk) and (Bi, Bk′).
A chain that includes (Bi, Bk) preexists a chain that includes (Bi, Bk′) if and
only if k < k′. We call the original chain the chain that preexists all other
chains in Ct.

Note that the original chain is well defined since the “preexist” relation
provides a complete ranking of all chains (as all chains have at least one
common block, B0).

Stopping times: Miners make decisions at different points in time,
corresponding to a sequence of stopping times. Whenever a block is solved
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or a miner is hit by a liquidity shock, all miners get to make a decision.
Miners can also make a decision after a time interval of length ∆, if no
block is solved and no liquidity shock has occurred during that interval. ∆
can be arbitrarily small to approximate a continuous time environment.13

Thus, the sequence of stopping times at which miners make decisions is
T ={0, ...τj, τj+1, ...} where the next stopping time after τj, τj+1, is equal
to τj+1 = min[τj + ∆, τ l(τj), τ

b(τj)], τ l(τj) being the first time a liquidity
shock occurs after τj and τ b(τj) the first time a block is solved after τj.

Action space: At any time τ ∈ T , miners observe the set Bτ of all
the blocks that have been solved previously. A miner’s action is the choice
of which block in Bτ to attach his current block to. All miners m ∈ M =
{1, ...M} face the same action space.

Payoffs: When miner m solves a block in a given chain, he receives a
reward, included in the block he mined, and expressed in the cryptocurrency
corresponding to that chain.14 As mentioned in the previous section, Bitcoin
imposes a 100-block delay before rewards for mining can be spent. To capture
such delays in a simple manner, we assume miner m consumes the rewards
he earned throughout the game until zm, and until that time keeps the units
of cryptocurrency he earned.

When the cryptocurrency earned as a reward for mining a block is sold,
the price it fetches depends on the credibility of the chain that contains
the block. Consider two polar cases: In the first case, a block solved by a
miner becomes orphaned, i.e., no further blocks are attached to it, so that no
miner expresses acceptance of that block and the transfer of cryptocurrency
it encodes. In the second case there is a single chain to which all blocks
belong, reflecting consensus on the blocks in the chain. The market value
of the block’s reward in the first case (when the block ends up orphaned) is
likely to be zero and is bound to be smaller than in the second case. Now turn
to an intermediate case, in which the block is included in a chain competing
with another one. As long as a significant fraction of the miners are working

13This discretisation enables us to avoid technical issues regarding the definition of
strategies in continuous time games.

14For simplicity, we neglect transaction fees offered by final traders, since we do not
model explicitly transactions. Carlsten et al (2016) take the opposite approach by focusing
on transaction fees.
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on each of the chains, the value of rewards included in the blocks of the two
chains, while uncertain, can remain positive.

More formally, the payoff for miner m from solving B is an increasing
function, G(.), of the number of miners active at time zm in the chain in-
cluding B.15 For example, suppose there are two active chains at time zm.
If there are K miners active in the chain including B, and M − K in the
other, the payoffs from solving blocks are the following: The miner who
solved block B, which we denote by m(B), earns G(K) for block B. A miner
who solved a block in the other chain earns G(M − K) for that block. If
a miner solved a block that belongs to both chains, because it was mined
before the inception of the fork, he earns G(M − K) + G(K).16 We set
G(0) = G(1) = 0 since, when there is only one or no miner on a chain,
the associated cryptocurrency has no value. Finally, we assume that when
several chains compete, the total value of a unit of cryptocurrency that be-
longs to the competing chains (because it was mined before the inception of
the fork) is weakly lower than if it belonged to a single chain that was the
consensus of all miners: G(M −K) +G(K) ≤ G(M),∀K.

Our assumption that the value of the virtual currency is reduced by forks
is illustrated by Figure 4, which plots the decline in bitcoin value during the
March 2013 fork. The first vertical line indicates the time (around 22:00) at
which miners started working on two different chains. Chats between miners
realising there was a fork, started around 23:30.17 At 1:30, a message posted
on Bitcointalk asked miners to stop mining one the two branches of the chain
(the 0.8 branch). The second vertical line (approximately at 6:20) indicates
the time at which the 0.7 branch caught up the 0.8 branch. By 7:30, miners
had stopped mining the 0.8 branch, which became orphaned, so that the fork
was no longer active. The figure illustrates that, when the market realised
that miners worked on different branches this triggered a 25% drop in the

15A bubble component could be added to the payoff function. In a rationale bubble
model (see for instance Tirole, 1982 or Tirole, 1985), the bubble component would be a
martingale and would not affect the strategies of the miners since they are risk neutral.

16 We also assume that, if zm occurs just after a fork starts, the not yet realised fork does
not reduce the credibility of the current chain. That is, m(B) earns G(M) for any block
B on the current chain, as long as no block creating a fork has been mined. Alternative
hypotheses could be that the attempt to fork reduces mining rewards. Our proofs are
robust to the assumption that the reward is reduced to some arbitrary g < G(M) or to
G(K) if K miners are active on the chain.

17Source: http://web.archive.org/web/20130421062600/http://bitcoinstats.
com:80/irc/bitcoin-dev/logs/2013/03/12.
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value of the virtual currency (from around 48 at 1:00 to around 36 at 3:00).

Figure 4:
BTC/USD trade prices on Bitstamp exchange, around the March 2013 Bit-
coin fork.
The graph plots individual transaction prices obtained from a major bitcoin ex-
change platform, Bitstamp, during the March 2013 fork. The first dotted vertical
line represents the time at which the fork started, and the second dotted verti-
cal line represents the time at which the original chain caught up the fork. Data
source: Kaiko

States: At time τ ∈ T , a state ωτ includes three elements:

• First, ωτ includes the tree of solved blocks Cτ = {Bτ , Eτ , Iτ}. The
entire set of previously solved blocks, Bτ , is relevant for the miners,
since they can chain a new block to any of these previously solved
blocks. For each miner, the set of blocks he solved, measurable with
respect to Iτ , determines his payoff, and therefore influences his actions.
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• Second, ωτ includes the number of miners active on branches stemming
from each of the previously solved blocks:18

Aτ = (Aτ (B1), ..A
τ (Bk), ...A

τ (Bn)),

where Aτ (Bk) is the number of miners mining at time τ a block directly
chained to Bk, and determines the value of each miner’s reward if he’s
hit by a liquidity shock.

• Finally, as in Duggan (2012) or Cole and Kehoe (2000), to enable play-
ers to coordinate their actions using a public randomisation device, we
assume that at each time τ ∈ T , the realisation of a sunspot random
variable rτ is observed by all, and we include it in the state. rτ is
uniformly distributed on [0, 1] and i.i.d. over time.

Thus, we define ωτ = ( Cτ , Aτ , rτ ) and denote by Ω the set of states of
the world.

Strategies: Miner m chooses his strategy to maximise his expected
payoff at time zm. At each time τ ∈ T , miners observe the whole history of
the game, that is, the state ωτ , as well as, e.g., the exact timing of blocks
resolution and the previous mining choices. In line with Markov perfection,
we only consider strategies that are measurable with respect to ωτ .19 A pure
strategy for miner m is a function στm mapping each possible state of the
blockchain ωτ ∈ Ω, into an element of the action space Bτ . We denote the
strategy of miner m throughout the entire history of the game by σm and the
profile of strategies for theM miners by σ = {σm}m∈M. σ, combined with the
random variables {z}m∈M and {Nm}m∈M, yield the transition probabilities
from one state of the blockchain to the next.

Equilibrium: The above elements define our stochastic game. Our
equilibrium concept is Markov Perfect Equilibrium, i.e., Subgame Perfect
Equilibrium with strategies restricted to depend only on the current state
ωτ .

18In practice, miners cannot directly observe the current distribution of the computing
power across the different branches of the chain, but estimate it based on the observed
frequency of block resolutions. In our analysis, equilibrium strategies only depend on Aτ
via miners’ payoffs at zm.

19Indeed, the timing of previous block resolutions, as well as previous mining choices,
are payoff irrelevant.

23



4 Equilibrium analysis of the basic model
To analyse equilibrium strategies, it is useful to first note that an upper
bound on the lifetime payoff of miner m, entering the market at time 0, is

Gmax
m =

[∫ s=zm

s=0

dNm(s)

]
G(M). (5)

If the miner enters the market later, to replace an earlier miner hit by a
liquidity shock, his maximum payoff is the same as in (5), minus the price
he pays for the cryptocurrency bought from the previous miner. This sunk
cost does not affect his strategy and we neglect it hereafter.
Gmax
m is an upper bound because i) the total number of blocks solved by

m before zm is
∫ zm
s=0

dNm(t), whatever his mining strategy, and ii) m cannot
earn more than G(M) each time he solves a block. At time t, the expectation
of Gmax

m , conditional on zm ≥ t, is

Et

[∫ t

s=0

dNm(s) +

∫ zm

s=t

dNm(s)|zm ≥ t

]
G(M)

=

{
Nm(t) + E

[∫ zm

s=t

dNm(s)|zm ≥ t

]}
G(M) =

{
Nm(t) +

θm
λm

}
G(M).

Does there exist a natural strategy enabling miners to achieve this max-
imum expected payoff? The definition of Gmax

m implies that, to obtain the
maximum expected payoff, all miners should be on the same chain, when any
of them is hit by the liquidity shock. This is the case if all miners stick to the
original chain at any time τ ∈ T . If they do so the longest chain rule (LCR)
trivially holds. Our first proposition states that there exists an equilibrium
in which miners follow this strategy.

Proposition 1 There exists a Markov Perfect Equilibrium such that on the
equilibrium path there is a single chain and all miners follow the LCR, thus
obtaining their maximum expected payoff, E[Gmax

m ].

The intuition for Proposition 1 is the following. When all miners up to τ
attach their blocks to the original chain, thus following the LCR, there is a
single chain at τ . If the others abide to this strategy, then m can obtain his
maximum possible expected payoff, E[Gmax

m |ωτ ], by also abiding to it. Hence
there is no profitable one-shot deviation from the strategy which consists in
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extending the original (and thereby longest) chain. Precisely, each miner
rationally anticipates that if he deviates and solves a block, the other miners
will not follow him, and the block solved out of the equilibrium path will
have no value.

In the context of the strategic interaction characterised in Proposition
1, miners are not really competing to solve their block before the others.
That another miner solves his block before m does not, in itself, reduce m’s
gains. The only thing that matters for miners to obtain the maximum payoff
they get in Proposition 1 is that they coordinate well and all work on the
same chain. This arises only when difficulty is constant, however. In Section
6, we study the determination of total computing capacity, and discuss its
allocations to different branches of the blockchain. In that context, we point
that when one miner devotes larger computing power to one branch, he raises
the difficulty for the others. This brings in a competition effect, running in
the opposite direction to the above discussed coordination effect.

It is noteworthy that the result in Proposition 1 does not depend on the
number of miners M . The economic mechanism involved in Proposition 1
does not hinge on strategic behaviour. It is purely driven by coordination
effects, which would also be at play in a competitive environment.

Proposition 1 emphasises that attaching blocks to the original chain is a
simple way for miners to coordinate their actions, and results in a single chain
with no fork. There might, however, be other ways for miners to coordinate
in our stochastic game. In particular they could rely on the sunspot variable
rτ . We now exhibit an equilibrium in which conditioning actions on rτ leads
to equilibria with forks.

Intuitively, suppose miners follow the original chain until the realisation
of the sunspot variable is such that miners anticipate a fork. As shown below,
because of coordination effects, this anticipation is self-fulfilling.

More precisely, let τ f be the first time at which the sunspot variable is
above 1− ε (where ε can be arbitrarily small), and let n(τ) denote the index
of the last block solved by time τ . Relying on this notation we can state our
next proposition:

Proposition 2 Consider an arbitrary integer f . There exists a Markov Per-
fect Equilibrium such that the following occurs on the equilibrium path: As
long as rτ ≤ 1− ε, or f ≥ n(τ), there is a single chain and all miners chain
their current block to the previous block, Bn(τ). At the first time τ such that
rτ > 1 − ε and f < n(τ), each miner chains his current block to Bn(τ)−f .
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Afterwards, miners chain their current block to the last solved block on the
chain including the edge (Bn(τ)−f , Bn(τ)+1).

In the statement of the proposition we focus on what happens on the
equilibrium path. In the proof in the appendix, we characterise the equi-
librium strategy profile for any state. The intuition of Proposition 2 is the
following: If a miner expects all to fork to Bn(τ)−f , but chooses to deviate
and not fork to Bn(τ)−f , then he expects any block he solves will be orphaned
and earn no reward. Rationally anticipating this, he chooses to do like the
others and fork to Bn(τ)−f .

Miners’ behaviour in Proposition 2 is reminiscent of actual participants’
behavior during the 2013 Bitcoin fork reported in Subsection 2.2. Just like
BTC Guild lost the rewards from blocks mined on the 0.8 branch, miners
in Proposition 2 lose rewards from blocks Bn(τ)−f+1 to Bn(τ), since the fork
stemming from Bn(τ)−f becomes the only active chain. They fork nevertheless
because they anticipate that the others do. Consequently, these miners earn
less than Gmax

m , while the other miners do not earn more than Gmax
m . Thus

the forking equilibrium in Proposition 2 is Pareto dominated by the single
chain equilibrium in Proposition 1.

Observe that, like Proposition 1, Proposition 2 does not depend on the
number of miners M . Both propositions hinge on coordination effects, which
also arise in a competitive environment.

While in the previous proposition, in spite of forking, there was even-
tually a single chain, we now show that forking can lead to the persistent
coexistence of different branches, as in the Ethereum 2016 and Bitcoin 2017
forks discussed in Subsection 2.2.

As in Proposition 2, we consider the possibility that, at any time τ f ,
the realisation of the sunspot suggests forking to a new branch, chained to
Bn(τf )−f . This can give rise to two coexisting chains at time τ > τ f , the
original chain, including the blocks linked by the sequence of edges

(B0, B1), ...(Bn(τf )−f , Bn(τf )−f+1), ...

and a new chain, including the blocks linked by

(B0, B1), ...(Bn(τf )−f , Bk+1), ...

with k ≥ n(τ f ).
The number of blocks solved by m after Bn(τf )−f on any of these two

chains defines the vested interest of m on that chain. We denote the vested
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interests of minerm at time τ on the original and the new chain by vom(τ) and
vnm(τ) respectively. For example, suppose miner m keeps mining the original
chain. The vested interest of that miner on the original chain at time τ is
equal to vom(τ) = Nm(τ)−Nm(τ(Bn(τf )−f )) (where τ(Bn(τf )−f ) is the stopping
time at which Bn(τf )−f is solved), while his vested interest on the new chain
is vnm(τ) = 0. Alternatively, consider miner m′ who mines the new chain from
time τ f on. The vested interest of that miner on the original chain at time
τ is vom′(τ) = Nm′(τ f ) − Nm′(τ(Bn(τf )−f )), while his vested interest on the
new chain is vnm′(τ) = Nm′(τ)−Nm′(τ f ). For miners switching between the
original chain and the new one, vested interests are a bit more intricate, but
follow the same logic.

Our next result illustrates the consequences of miners’ vested interests.
To state that result, rank the miners by their vested interest in the original
chain at time τ f as follows

Pr(zm = τ ′)

Pr(Nm(τ ′)−Nm(τ f ) = 1)
vom(τ f ) ≤ Pr(zm+1 = τ ′)

Pr(Nm+1(τ ′)−Nm+1(τ f ) = 1)
vom+1(τ

f ),

where Pr(zm = τ ′) is the probability that miner m is hit by a liquidity shock
at the next stopping time τ ′, and Pr(Nm(τ ′)−Nm(τ f ) = 1) is the probability
that he solves his block at τ ′.

To simplify exposition, assume that for any M and any K < M , G(K) +
G(M − K) = G(M), and consider the following condition (whose interpre-
tation is offered after the statement of Proposition 3 just below).20

Condition 1 At time τ , there is a single chain and there exists an integer
K ≥ M

2
+ 1 such that for m > K

Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M −K)) < vom(τ)(G(M−K)−G(M−K−1))

(6)
while for m ≤ K

Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M−K)) > vom(τ)(G(M−K+1)−G(M−K)).

(7)
20The assumption that for any M and any K < M , G(K) + G(M − K) = G(M),

simplifies the presentation of Condition 1. However, a similar result also holds in the more
general case G(K) + G(M − K) ≤ G(M), as long as there is an arbitrarily large upper
bound on miners’ vested interests.
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Consider an arbitrary integer f . Let τ f be the first time at which rτ >
1 − ε, f < n(τ) and Condition 1 holds. We now show that persistent forks
can occur in equilibrium, as stated in Proposition 3 and illustrated in Figure
5.

Proposition 3 For ε sufficiently small, there exists a Markov Perfect Equi-
librium in which, on the equilibrium path, the following occurs: As long as
τ < τ f there is a single chain and all miners chain their current block to
Bn(τ). At τ f , all miners m ≤ K (defined in Condition 1) chain their current
block to Bn(τf )−f and follow that chain afterwards, while the other miners
chain their current block to Bn(τf ) and follow that chain afterwards.

The intuition for the result is the following. First note that for some
miners to fork, we must have that the left-hand-side of (7) be non negative,
which implies that K ≥ M

2
+ 1. That is, in Proposition 3, persistent forks

can occur only if a majority of miners choose to fork and this is expected by
all.

Now, suppose all miners expect that a majority will fork and this will
result in two coexisting chains, and examine whether miner m prefers forking
or remaining on the original chain. For m, the benefit from forking is that
the blocks he will mine on the new chain will be worth G(K), which is larger
than the value of blocks mined on the original chain, G(M − K). This
benefit is large if the probability that m solves a block in any given period,
Pr(Nm(τ ′) − Nm(τ) = 1), is large relative to the probability that m leaves
the game because of a liquidity shock, Pr(zm = τ ′). Note that the ratio of
these probabilities increases with the ratio of the mining intensity θm to the
liquidity shock intensity, λm. This benefit is captured in the left-hand-side
of equations (6) and (7) in Condition 1.

On the other hand, the cost of mining the new chain is that it reduces
the value of the blocks already mined on the original chain. For instance,
if miner m > K deviates from the equilibrium strategy and mines the new
chain, he reduces the value of all the blocks he solved on the original chain
from G(M −K) to G(M −K − 1). This cost is large if m has large vested
interests in the original chain, that is, if vom(τ) is large. This cost is captured
in the right-hand-side of equations (6) and (7) in Condition 1. The incentive
effect of vested interests is self-reinforcing once the fork occurred. After τ f ,
miners m ≤ K start accumulating vested interests on the new chain while
minersm > K continue accumulating them on the original chain, entrenching
further their respective strategies.
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Overall, Proposition 3 shows that the endogenous sorting between miners
who prefer to stick to the original chain and those who fork is driven by two
forces: the number of blocks that a miner expects to solve in the future, and
his vested interest in the original chain. A miner is more likely to fork when
the former is higher, and the latter is lower.

t

Bn(τf )−f Bn(τf )−f+1 Bn(τf )+i

Original chain with M −K miners

Bn(τf )+1 Bn(τf )+j

τ f

New chain with K miners

Figure 5: Equilibrium of Proposition 3

Unlike in Proposition 1 and Proposition 2, the equilibrium outcome in
Proposition 3 depends on the number of miners. More precisely, the tradeoffs
faced by the miners involve the effect of their mining strategy on the value
of their rewards. If miners were competitive and their choice had no impact
on the value of their rewards, this strategic effect would not arise.

Finally note that the equilibrium outcome in Proposition 3 is Pareto
dominated by that in Proposition 1.

5 Enriching the model
So far we considered a stylised frictionless case, in which, relying on abstract
sunspots, we showed that coordination effects could lead to forks and equi-
librium multiplicity. We now enrich the analysis by introducing information
delays, double spending attempts, and upgrades. We show that these realis-
tic events can play a similar role as sunspots in triggering forks, also because
of coordination effects.
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5.1 Information delays

As mentioned above, Nakamoto (2008) considered the possibility of infor-
mation delays in the network, generating short term forks, and argued these
forks would be rapidly resolved, as miners would follow the longest chain rule.
To examine this point, we extend our model to analyse equilibrium mining
in the presence of delays. We show how the interplay between information
delays and coordination effects gives rise to multiple equilibria.

To keep things as simple as possible, we assume that a delay in informa-
tion transmission can happen only once. As long as there has been no delay,
each time a new block Bn is solved, there is a probability η that one (and
only one) of the miners does not observe that event. In that case each of
the M − 1 miners has an equal chance of not observing the block solved by
m(Bn). As soon as the next block (Bn+1) is solved, the miner who did not
observe that Bn was solved learns that information, along with the informa-
tion that Bn+1 has been solved. In this extension of our model we obtain the
following result.

Proposition 4 When miners can observe solved blocks with a delay, there
exists a Markov Perfect Equilibrium such that on the equilibrium path miners
always mine the chain which they perceive to be the longest. If there are two
chains of the same length, each miner keeps mining the chain he was mining
just before.

At the equilibrium presented in Proposition 4, because of information
delays, two chains of the same length can appear. At this point, there is
a fork. In that case, miners continue mining the chain on which they were
active before the fork. When one chain becomes strictly longer, miners apply
the LCR and the shortest branch of the fork becomes orphaned. This is in
line with the conjecture of Nakamoto (2008). The equilibrium described in
Proposition 4 therefore illustrates the robustness of the LCR equilibrium of
Proposition 1 to information delays. This, however, is not the only equi-
librium. Because of coordination effects, other equilibria can be sustained,
in which miners don’t behave as suggested by Nakamoto (2008). This is
illustrated in the following proposition.

Proposition 5 When miners can observe solved blocks with a delay, there
exists a Markov Perfect Equilibrium such that on the equilibrium path miners
always mine the chain that they perceive as the longest. If there are two
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chains of the same length, miners always chain to the forking branch, and
the original chain becomes orphaned.

In Proposition 5, miners follow the LCR. Yet, when an information delay
causes a fork, with two equally long branches, miners abandon the chain
on which they were active and follow the fork. This equilibrium is in line
with Proposition 2: Both show how coordination effects underpin equilibrium
multiplicity. Yet, while in Proposition 2 forking was triggered by an abstract
sunspot, in Proposition 5 it is triggered by a realistic event, information
delays.

In Proposition 5 the fork is only one-block long, because the delay can only
affect the observation of one block. Longer forks could arise if delays affected
more blocks. Note that delays are not necessarily due to network latency.
In the case of the Bitcoin March 2013 fork, delays occurred because one
block was mistakenly rejected by computers using one version of the mining
software and it took time for miners to become aware of that problem. As
discussed in Subsection 2.2, miners then found it difficult to coordinate on a
single chain. This is consistent with Propositions 4 and 5, which show there is
a multiplicity of equilibria, making it difficult for participants to coordinate.

5.2 Double spending

Another important potential issue outlined in Nakamoto (2008) is double
spending. We study below whether it can arise at equilibrium. In the spirit
of the modelling of delays above, assume that after each block is solved,
there is a probability η′ that one miner has an opportunity to divert the
payment S from a transaction included in the last block. To earn S, the
miner needs to create a fork and ensure it becomes the only active chain.
Assume the opportunity to double spend occurs only once and denote γ(m, τ)
the probability that at any time τ , m is the miner who solves the next block
after τ .

Proposition 6 Assume each miner can receive an opportunity to double
spend and that for any miner

S >
G(M)(2− γ(m, τ))

γ(m, τ)
. (8)
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There exists a Markov Perfect Equilibrium such that on the equilibrium path
miners always mine the longest chain, except the miner who has the opportu-
nity to double spend. The latter tries to create a fork longer than the original
chain. If he succeeds, all miners chain to his fork and the original chain is
orphaned.

When a miner spots a double spending opportunity, he endeavours to
solve two blocks in a row before the other miners solve any new block on the
original chain. If he succeeds, the fork started by the double spending miner
becomes the longest chain. If the other miners follow the longest chain rule
they then chain their blocks to the forking branch. This enables the miner
to recover S and spend it again.

The equilibrium described in Proposition 6 relies on a similar coordination
effect as that of Proposition 4: miners have an interest in following the longest
chain when they anticipate that all other miners do the same. This in turn
can induce a miner to create a fork that will be followed by all miners if it
becomes the longest. But in contrast with the case of delays, the fork does
not start accidentally, it is intentionally triggered by the miner who tries to
double spend.

It is profitable to try to double spend if (8) holds. The intuition for that
condition is the following. When trying to create a fork after spotting S, a
miner faces a large risk that his fork does not become the longest chain. The
higher γ(m, τ), the lower that risk, and the higher the double spending S,
the larger the compensation for that risk.

In practice, however, condition (8) is unlikely to hold. A back-of-the-
enveloppe computation suggests that if λ is small and there are 15 identical
miners, (8) can be approximated as S > 30G(M). For Bitcoin, G(M) = 12.5
bitcoins in 2018, hence for (8) to hold, S must be larger than 375 bitcoins,
which is a sizeable amount. This condition could be relaxed, however, if
instead of deriving an equilibrium where all miners can double-spend, one
focuses on an equilibrium in which only the miner with the largest computing
power double-spends.

5.3 Upgrades

As discussed in Subsection 2.2, blockchain participants sometimes introduce
upgraded versions of the mining software. To study the impact of these up-
grades, we assume it is common knowledge that just after the nth block on
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the original chain has been solved, a new technology is introduced. Then,
miners must choose between staying with the existing technology, C = 0,
and adopting the new technology, C = 1. From this point on, miners choose
between C = 0 and C = 1 for each block they mine. To capture the notion
of hard fork, we assume that miners can only chain their block to a block
solved with the same technology. We also allow for the possibility that miners
derive private benefits from using one technology or the other. Private ben-
efits can reflect a cost advantage. For instance, some argued that the mining
pools controlled by Bitmain, an ASIC manufacturer, favoured Bitcoin Cash
over SegWit because they had access to a patented mining-enhancing device
that cannot be used with SegWit.21 In contrast, Bitcoin Gold is favoured
by miners who find it costly to rely on ASIC. Private benefits can also re-
flect ideological preferences. The attempt at increasing the size of blocks
on Bitcoin with the SegWit2x hard fork was supported by a group of large
mining pools. It was eventually defeated in November 2017 by the Bitcoin
core developers who opposed the principle of a hard fork and the idea of
letting these large pools impose their solution. To model private benefits,
we assume that when solving a block with technology C, miner m obtains
a reward (1 + bm(C))G(K) where K is the number of miners active on the
chain containing this block.

Proposition 7 There exists a Markov Perfect Equilibrium in which, on the
equilibrium path, all miners follow the LCR and choose technology C = 0,
and another equilibrium in which, on the equilibrium path, all miners follow
the LCR and choose technology C = 1.

If a miner anticipates all the other miners will choose technology C, then
it is a best response for this miner to also choose C, whatever his or her
private benefits. The equilibria described in Proposition 7 therefore hinge on
the same coordination effects as in Propositions 1 and 2.

When miners coordinate on the same technology and on following the
LCR, the level and distribution of private benefits does not affect which
equilibrium will prevail. In particular, it can be that C = 1 is chosen at
equilibrium even if all miners have a preference for C = 0. We explore below
how a persistent fork can also be sustained at equilibrium in the presence of
private benefits. For simplicity we assume bm(1) = 0, ∀m, while bm(0) = 0,

21This is the ASICBOOST technology that can increase the efficiency of the SHA-256
calculation.
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∀ m ≤ K and bm(0) = b > 0 ∀m > K. Denote τ f the time at which the new
technology is introduced and assume for simplicity, as in Proposition 3, that
G(K) +G(M −K) = G(M).

Proposition 8 If

b ≥ G(K)

G(M −K)
− 1, (9)

and K ≥ M
2
, there exists a Markov Perfect Equilibrium in which, on the

equilibrium path, for τ < τ f all miners follow the LCR and for τ ≥ τ f ,
miners m ≤ K choose C = 1 and follow the LCR on the chain of blocks
mined with C = 1, while miners m > K choose C = 0 and follow the LCR
on the chain of blocks mined with C = 0.

Proposition 8 focuses on the case in which the majority of miners (K out
of M) have no private benefits, while a minority of them strongly prefers not
to adopt the upgrade. In this context, if it is expected that the majority
will opt for the upgrade, then all the miners who don’t have any private
benefit anyhow choose to adopt the upgrade, but the minority with strong
private benefits sticks to the previous version of the software. This result
is reminiscent of the persistent fork equilibrium described in Proposition 3.
One difference is that here, the fork is initiated by exogenous private benefits,
instead of the endogenous distribution of vested interests from past solved
blocks in Proposition 3. However, once the fork occurred, vested interests
play the same reinforcing role as in Proposition 3 by increasing the incentives
of miners to stick to the chain they initially picked.

Proposition 7, in which miners must choose between two versions of the
software, and coordinate on a unique version, is in line with the situation
observed in November 2017, in which all miners eventually coordinated on
refusing SegWit2x. Such unanimity contrasts with Proposition 8, in which
a minority with strong private benefits rejects the upgrade adopted by the
majority. This is in line with the situation observed in July 2016, when a
minority of miners rejected the Ethereum hard fork for ideological reasons.
This is also in line with the Bitcoin Gold fork which is mined by a minority
of participants some of which have strong vested interest in that chain due
to their initial allocation of Bitcoin Gold.22

22Bitcoin Gold developers allocated themselves 100,000 units of the new cryptocurrency
by pre-mining blocks before opening the chain to the public.
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6 Computing capacity and difficulty
The analysis above takes difficulty and computing capacity as given and
fixed, independently from the choices of the miners. Correspondingly, θm
is also given and fixed for all m. In the short term this is a realistic as-
sumption. For example on the Bitcoin blockchain between two resets of the
difficulty, i.e., approximately within two weeks, difficulty remains constant in
all branches. In the longer term, however, this assumption is less realistic, as
miners can decide to change the computing capacity they allocate to differ-
ent blockchains, and difficulties are correspondingly reset. In this section we
examine separately (for simplicity) two aspects of these issues: First, holding
total capacity constant, we discuss how the allocation of computing capacity
to different branches changes difficulty in the different branches. Second, fo-
cusing on the equilibrium of Proposition 1 (with a single chain), we analyse
the ex-ante equilibrium choice of computing capacity. A key point in both
aspects of the analysis is that when one miner increases his computing ca-
pacity in one branch, he increases the difficulty in that branch, which exerts
a negative externality on the other miners operating in that branch.

6.1 Difficulty

Suppose there are two persistently competing branches in the blockchain, x
and y, attracting different computing capacity. The key difference between
this setting and our analysis above is that now the different branches have
different difficulties. To discuss the strategic issues arising in this setting,
suppose miners m = 1, ...K mine branch x while miners m = K + 1, ...M
mine branch y.23 Consider one miner, for example miner K. If K mines
branch x, by equation (3) his instantaneous probability of solving a block is

θK(x) =
1

X

hK∑K
m=1 hm

, (10)

while his reward from solving a block in that branch is G(K). If, instead,
miner K chose to mine in branch y, his instantaneous probability of solving
a block would be

θK(y) =
1

X

hK∑M
m=K hm

, (11)

23Miners could also split their computing capacity across the two branches, but that
would not alter the thrust of the argument.
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while his reward from solving a block in that chain would be G(M −K + 1).
Suppose that branch x attracts less miners and computing capacity than

y. Then miner K faces a trade-off: if he successfully mines in branch x, his
reward G(K) is lower than if he succeeds in branch y; on the other hand,
his probability to solve a block is higher on x since the difficulty of mining
is larger on y.

The first effect, already present in the previous subsections, makes it
attractive for miners to mine where they expect the others to mine (“crowding
in”). The second effect (“crowding out”) is new to this section and makes it
less attractive to mine a branch where many others mine. Characterising
equilibrium in that situation is beyond the scope of the present paper. Yet
two different types of externalities can be pointed to.

• On the one hand, when moving from branch x to branch y, miner K
exerts a positive externality on miners m > K, by increasing the value
of the rewards in their branch from G(M −K) to G(M −K + 1).

• On the other hand, miner K exerts a negative externality on miners
m > K, by increasing the computing capacity, and hence the difficulty
in branch y.

6.2 Computing capacity

We now endogenise the total computing capacity in the network, i.e., the
choices of hash rates hm by all miners at time 0. We investigate the relation
between equilibrium hash capacity and the socially optimal one. Our anal-
ysis of equilibrium capacity is similar to Dimitri (2017). The contribution
of this subsection, relative to Dimitri (2017), is to identify an externality
in the computing capacity acquisition game, which drives a wedge between
equilibrium and social optimality.

To choose hm miner m needs to anticipate how his computing capacity
will affect his continuation game payoff. To do so, the miner needs to form
a conjecture on the equilibrium that will prevail in the mining game. For
simplicity, we assume all miners rationally anticipate that the single chain
equilibrium described in Proposition 1 will prevail.

The program of miner m is

max
hm

θm
λm

G(M)− cmhm
λm

, (12)
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where cmhm, with cm > 0, is the cost of using hm per unit of time. Since
cmhm can be interpreted as the rental cost of the equipment plus the cost
of electricity, it is natural to assume that the cost is linear in the capacity.
Miner m bears this cost until he is hit by a liquidity shock.24

A Nash equilibrium of the computing capacity acquisition game is a vec-
tor {h∗m}m=1,...M such that h∗m is the optimal choice of miner m when he
anticipates the others will choose h∗−m. The following proposition presents
the equilibrium computing capacity of the network when allM miners choose
to participate.25

Proposition 9 Assume that cm ≤ M
M−1

∑
i∈M ci
M

≤ G(M),∀m. When miners
choose to participate to the network and anticipate that no fork will occur,
their equilibrium computing capacity is defined by

h∗m =
G(M)

X

M − 1∑
m∈M ci

(
1− cm

M − 1∑
i∈M ci

)
. (13)

The total computing capacity installed on the network is∑
i∈M

h∗i =
G(M)

X

M − 1∑
i∈M ci

. (14)

Condition cm ≤ M
M−1

∑
i∈M ci
M

holds if costs, ci, are not too different across
miners. It ensures that the solution to (13) is positive for all miners, while
condition

∑
i∈M ci
M−1 ≤ G(M) ensures that it is always possible to find a value

of the difficulty parameter D above one, such that the expected time be-
tween two blocks is X. Equation (13) implies that equilibrium individual
computing capacity is increasing in the mining reward (G(M)), decreasing
in the average duration between blocks (X) and in the unit cost cm. Corre-
spondingly, equation (14) implies that total network capacity decreases with∑

i∈M ci.
We now compare the equilibrium network capacity to what miners would

choose if they could coordinate their choices and maximise their joint profit.
24When miner m is hit by a shock, his successor inherits the computing capacity hm.
25There is also an equilibrium such that all miners choose not to participate. Indeed,

if a miner anticipates that the others will not install any computing capacity, his best
response is not to install any capacity either since cm > 0 and G(1) = 0. We focus on the
equilibrium in which the network is created.
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To do so in the simplest possible way, we consider the special case in which
all miners have the same cost c and the same λ.

The corresponding maximisation problem is

max
h

M(
1

λX

h

Mh
G(M)− c

λ
h).

This is decreasing in h. So miners coordinate on the smallest possible value
of h, corresponding to D = 1. We then have

∑
i∈M hi = 1

X
. Comparing

this to (14) we see that, under condition
∑
i∈M ci
M−1 ≤ G(M) of Proposition 9,

there is overinvestment in computing capacity: If miners could cooperatively
decide on their individual computing capacity, each would invest 1

MX
. But if

all miners invest 1
MX

, then any miner m has an incentive to increase his own
h in order to increase his probability to solve blocks, leading to an arms race
in computing capacity.

As in the previous subsection, by devoting computing capacity to the
mining task, a miner exerts a negative externality on the others, by increasing
the difficulty. This negative externality drives a wedge between equilibrium
and social optimality.

7 Conclusion
Miners’ incentives are key to the production of a robust consensus in a
blockchain. This paper shows that, while miners benefit from coordinat-
ing on a single chain, thereby maintaining consensus, coordination motives
can also lead to abandoning portions of the blockchain. This can jeopardise
the blockchain’s key function, i.e., producing a stable and immutable history
of transactions. In addition, vested interests can lead to the persistence of
multiple active chains.

Could these issues be overcome by communication among participants?
In practice, communication among participants proved ineffective in the cases
of Ethereum in 2016 and SegWit2x in 2017. This is in line with theoretical
and experimental findings that communication in games does not necessarily
facilitate coordination (see, e.g., Crawford (1998)).

Another issue relates to the negative externalities arising in proof-of-work
blockchains. First, as shown above, when choosing individually optimal com-
puting capacity, miners fail to internalise the negative externality their invest-
ment generates for other miners by increasing difficulty. This implies that

38



equilibrium capacity acquisition in proof-of-work mining is excessive. Sec-
ond, proof-of-work mining generates greenhouse-effect negative externalities,
whose order of magnitude is significant. As of January 2018, the electric-
ity consumed for Bitcoin mining was equal to the electricity consumption
of over 3,400,000 US households, with an average consumption per transac-
tion of around 300 KWh.26 Pigovian taxation could curb overinvestment in
mining, but it might also be difficult to put in place, given the international
decentralisation of mining.

This suggests moving from proof-of-work to proof-of-stake, in which par-
ticipants do not have to use computing power and energy to propose blocks
for consensus. Note however that proof-of-stake is exposed to the same coor-
dination problems as proof-of-work, since in both protocols participants must
choose which blocks to accept and are rewarded when the others agree with
their choice. In addition, proof-of-stake comes with its own problems, in par-
ticular the nothing-at-stake effect: a participant can stake his cryptocurrency
units on different branches, thus hindering the emergence of consensus.27

This points to a major dilemma for distributed ledgers: On the one hand,
the anonymity and decentralisation of public blockchains expose them to co-
ordination failures and externalities. On the other hand, private blockchains
can restore coordination and internalise externalities, but only to the ex-
tent that they involve the intervention of a centralised authority, which goes
against the fundamental motivation for blockchain.

26Source: https://digiconomist.net/bitcoin-energy-consumption.
27 Current proof-of-stake proposals like Casper try to alleviate this problem by imposing

coin deposits that can be seized if a participant is observed to simultaneously bet on several
competing branches. It is unclear however whether these proposals are sufficiently robust
to be implementable.
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Appendix
Notation

We summarise below notation we use throughout the proofs:

- τ(Bn) is the stopping time at which block Bn is solved,

- n(τ) is the index of the last block solved by time τ ,

- Nm(τ) is the total number of blocks solved by miner m by time τ ,

- NCm(τ) is the number of blocks solved by miner m on chain C by time
τ . In particular, N o

m(τ) is the number of blocks solved by m on the
original chain,

- p(Bn) is the index of the block to which Bn is chained (his parent).

The following Lemma implies that a candidate strategy profile {σ∗m}m∈M
forms a Markov Perfect Equilibrium (MPE) if and only if no miner has a
profitable one-shot deviation after any possible history of the game ωτ .

Lemma 1 Our blockchain game is continuous at infinity.

Proof of Lemma 1

Denote by J(σm) the expected payoff of miner m if he follows strategy σm.
Consider an alternative strategy, σ′m, that prescribes the same actions as σm
until time T and differs afterwards. The difference between the two expected
payoffs can be written as

J(σm)− J(σ′m) = Pr(zm ≤ T )E[J(σm)− J(σ′m)|zm ≤ T ]

+ Pr(zm > T )E[J(σm)− J(σ′m)|zm > T ].

Now, by definition,

E[J(σm)− J(σ′m)|zm ≤ T ] = 0.

Moreover
lim
T→∞

Pr(zm > T ) = 0,
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and J(σm)− J(σ′m) is bounded, since Gmax
m is finite. Hence,

lim
T→∞

J(σm)− J(σ′m) = 0,

which ensures that our game is continuous at infinity.

QED

Proof of Proposition 1

The candidate equilibrium strategy specifies that miners always chain their
block to the last block on the original chain. We let Bn denote that block,
and check that no miner has a profitable one-shot deviation.

Consider the strategy of miner m at time τ after history ωτ . We break
the analysis into three cases, the probabilities of which are independent of
the miners’ actions (they reflect the distributions of independent Poisson
processes with exogenous intensities).

i) Suppose the next event is zm. The equilibrium strategy prescribes that
all miners mine the original chain. Therefore ifm follows the equilibrium
strategy and chains his block to the last block on the original chain,
Bn, he earns G(M) for each block he solved on the original chain and
G(0) = 0 for any other block.

Suppose m deviates and does not chain his block to Bn. By definition,
he cannot earn more than G(M) for each block he solved on the original
chain. In addition, he cannot earn more than G(1) = 0 for each block
he solved on forks since all other miners mine the original chain. Hence
deviating is not strictly profitable in this case.

ii) Suppose the next event is that a block is solved by another miner thanm
at time τ ′.28 Then the state of the blockchain at τ ′, ωτ ′ , does not depend
on m’s action at τ . By definition, ωτ ′ captures all the payoff-relevant
information, hence m’s action at τ does not affect his payoff.

iii) Suppose the next event is thatm solves block Bn(τ)+1 at time τ ′. Since all
other miners play the equilibrium strategy going forward and m himself

28The next event can also be that nothing happens, or that another miner is hit by a
liquidity shock. Which block m chose as a parent block is also irrelevant in those cases.
For brevity, we ignore these cases in the remainder of the proofs.

41



reverts to mining the original chain after τ ′ (one-shot deviation), which
block m chose as a parent block at τ does not affect the payoff m expects
from previously mined blocks or from future blocks. Consequently, m’s
payoff in any one-shot deviation differs from his equilibrium payoff only
in the reward he obtains for Bn. This reward is G(M) if m played the
equilibrium strategy and chained Bn(τ)+1 to Bn, and G(0) if he chained
Bn(τ)+1 to any other block as in that case, no miner will ever chain a
block to Bn(τ)+1. Hence deviating is strictly dominated in this case.

Overall, there is no state ωτ in which a one-shot deviation gives m a
strictly higher expected payoff than the candidate equilibrium strategy, which
therefore forms a MPE.

QED

Proof of Proposition 2

Let τ f be the first time the sunspot variable is above 1− ε and f is strictly
lower than the number of blocks n(τ). We call “new chain” the chain created
by the fork. Formally, for every τ > τ f , the new chain, if it exists, is
the chain containing (Bn(τ)−f , Bk) that preexists all other chains containing
(Bn(τ)−f , Bk), where k ≡ min{k̂ > n(τ f ), (Bn(τ)−f , Bk̂) ∈ ωτ}.

Our candidate equilibrium strategy specifies the following:

a) Before the fork: If τ < τ f , miners chain their block to the last block on
the original chain.

b) At the fork inception and after the fork: If τ ≥ τ f , miners chain their
block to the last block on the new chain, or to Bn(τ)−f if the new chain
does not exists.

We now show that miner m does not have a profitable one-shot deviation
from this strategy at time τ .

a) Before the fork. Since m’s actions do not affect the occurrence of the
sunspot, for τ < τ f the proof operates along the same lines as the proof
of Proposition 1.
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b) At the fork inception and after the fork. Suppose τ ≥ τ f . As in the proof
of Proposition 1, we can restrict attention to the case where m solves
the next block, Bn(τ)+1, at time τ ′. In that case, m′s equilibrium payoff
differs from his payoff in a one-shot deviation only in the reward for block
Bn(τ)+1. Since m expects all miners, including himself, to attach their
block to the last block on the new chain after τ ′, m’s reward for block
Bn(τ)+1 is G(M) if he played the equilibrium strategy and chained his
block to the last block on the new chain (or to Bn(τ)−f ), and G(0) = 0 if
he chained Bn(τ)+1 to any other block.

QED

Proof of Proposition 3

Preliminary steps

We define the new chain as in the proof of Proposition 2, and let vnm(τ) =
Nn
m(τ) − Nn

m(τ f ) be miner m’s vested interest on that chain, that is, the
number of blocks he solved on the new chain after τ f .

To define our equilibrium strategies, we use the following condition, which
we will derive explicitly in the proof:

Condition 2 For τ ≥ τ f , ωτ is such that for m > K

vom(τ)(G(M −K)−G(M −K − 1))− vnm(τ)(G(K + 1)−G(K)) ≥
Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M −K)), (15)

while for m ≤ K

vom(τ)(G(M −K + 1)−G(M −K))− vnm(τ)(G(K)−G(K − 1)) ≤
Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M −K)). (16)

Our candidate equilibrium strategy profile specifies the following:

a) Before the fork: If τ < τ f , miners chain their block to the last block
on the original chain.
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b) At the fork inception and after the fork: If τ ≥ τ f and Condition 2
holds, miners m ≤ K chain their block to Bn(τf )−f if the new chain
does not exist, and to the last block on the new chain otherwise, while
miners m > K chain their block to the last block on the original chain.

c) After the fork off-path: Suppose τ > τ f and Condition 2 does not hold.
Let ∆ω ≡ ωτ \ωτf (i.e., ∆ω contains the history of the game between τ f
and τ). Then for every τ ′ ≥ τ , all miners play the strategy prescribed
after history ωτ ′ \∆ω that is defined in b). In playing strategies defined
in b), miners consider that the original and the new chain are defined
with respect to history ωτ ′ \∆ω. 29

As will become explicit below, the specification of the equilibrium strategy
in states described in c) is useful to rule out certain types of deviations.

To show that a miner does not have a profitable one-shot deviation, we
consider each of the cases above in turn.

Proof of part a): Before the fork.
Miner m’s one-shot deviation from equilibrium at time τ < τ f has two

effects on his expected payoff. First, it can affect the distribution of vested
interests on the original chain at future times τ such that rτ > 1−ε. Second,
as in the proof of Proposition 2, it can impact the value of the block m
chooses to mine. As in the previous proofs, these effects are affected by m’s
action at τ only if he solves the next block, Bn(τ)+1.

Consider the first effect. The occurrence of a fork may reduce the payoff
participants receive from the blocks they will mine after τ f , as well as some
of the blocks they have mined before τ f , namely, the f blocks between the
last block solved before the sunspot, Bn(τf ) and the first block that does not
belong to the new chain, Bn(τf )−f+1. For each of these blocks, as well as
for the blocks solved after τ f , the maximal loss for miner m is G(M). In
addition m’s deviation has an impact on the materialisation of this loss only
if the sunspot occurs beforem’s liquidity shock whenm plays the equilibrium
strategy. Hence, an upper bound on this loss, or equivalently, on the gain
from reducing the likelihood of a fork via a deviation is

Pr(τ f < zm|ωτ )[f +
θm
λm

]G(M).

29In words, miners play as if the blocks solved between τf and τ do not exist.
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Now,

Pr(τ f < zm|ωτ ) =

∫ ∞
zm=τ

Pr(τ f < zm|ωτ , zm)λme
−λmzmdzm.

Observe that

Pr(τ f < zm|ωτ , zm) < Pr(∃τ < zm, r
τ > 1−ε|ωτ , zm) = 1−Pr(∀τ < zm, r

τ ≤ 1−ε|ωτ , zm).

Moreover,

Pr(∀τ < zm, r
τ ≤ 1− ε|ωτ , zm) = E[(1− ε)ν(τ,zm)|ωτ , zm],

where ν(τ, zm) is the number of stopping times between τ and zm. Now, for
small ε, a Taylor expansion yields

(1− ε)ν(τ,zm) ≈ 1− ν(τ, zm)ε.

Hence, for small ε,

Pr(∀τ < zm, r
τ ≤ 1− ε|ωτ , zm) ≈ 1− E[ν(τ, zm)]ε.

Hence, if ε is close enough to 0, Pr(τ f < zm|ωτ , zm), and therefore the gain
from reducing the likelihood of a fork via a deviation, can be arbitrarily
small.

Next consider the second effect. If miner m solves Bn(τ)+1 but this block
is not on the original chain, no further block will be chained to it, since
all miners henceforth play the equilibrium strategy. Hence the expected
payoff for this block is G(0) = 0. If instead m was following the equilibrium
strategy when he solved Bn(τ)+1, the expected payoff from this block is strictly
positive.

Overall, the first effect, which reflects the maximum gain from a one-shot
deviation can be set arbitrarily close to 0, while the second effect, which re-
flects the cost of a one-shot deviation, is bounded away from 0. Hence, there
is no profitable one-shot deviation.

Proof of part b): At or after the fork:

i) Consider first a deviation by a miner m > K.

Any deviation other than chaining to the last block on the new chain
is ruled out by similar arguments as in Proposition 1. Hence we just
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check that m prefers to chain his block to the last block on the original
chain, rather than to the last block on the new chain. As in the proof
of Proposition 1, a one-shot deviation affects m’s payoff only if the next
stopping time τ ′ corresponds to two possible events: either m is hit by
a liquidity shock or m solves a block.

- Suppose miner m solves a block at τ ′, i.e., Nm(τ ′) − Nm(τ) = 1.
If Condition 2 is still true at τ ′, since every miner, including m,
reverts to the equilibrium strategy from τ ′ on, the only impact
of the deviation is that m earns G(K) for block Bn(τ ′) instead of
G(M−K) under the equilibrium strategy. If Condition 2 is not true
at τ ′, then from c), the impact of the deviation is that m earns 0 for
block Bn(τ ′) instead of G(M −K) under the equilibrium strategy,
and loses all rewards for blocks solved between τ f and τ ′.

- Suppose miner m is hit by a liquidity shock at τ ′, i.e., zm = τ ′.
Then his payoff under the deviation is

vom(τ)G(M −K − 1) + vnm(τ)G(K + 1) +N o
m(τ(Bn(τf )−f ))G(M)

instead of

vom(τ)G(M −K) + vnm(τ)G(K) +N o
m(τ(Bn(τf )−f ))G(M)

under the equilibrium strategy.30

It follows that there is no profitable deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)[G(K)−G(M −K)] ≤
Pr(zm = τ ′)[vom(τ)(G(M −K)−G(M −K − 1))− vnm(τ)(G(K + 1)−G(K))],

which is exactly inequality (15) in Condition 2.

ii) Consider next a deviation by a miner m ≤ K. A symmetric reasoning
yields that there is no profitable deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)[G(K)−G(M −K)] ≥
Pr(zm = τ ′)[vom(τ)(G(M −K + 1)−G(M −K))− vnm(τ)(G(K)−G(K − 1))],

which is exactly (16) in Condition 2.
30Note that we used the assumption that ∀K, G(M) = G(M − K) + G(K) to write

down miner m’s payoff from blocks solved before τ(Bn(τf )−f ).
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Next, see that at τ = τ f , vnm(τ f ) = 0 for all miners. Inequality (15) is
then written:
Pr(Nm(τ ′)−Nm(τ f ) = 1)

Pr(zm = τ ′)
[G(K)−G(M−K)] < vom(τ f )[G(M−K)−G(M−K−1)],

which is exactly inequality (6) in Condition 1. Similarly, inequality (16) is
then written:
Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
[G(K)−G(M−K)] > vom(τ)[G(M−K+1)−G(M−K)]

which is exactly inequality (7) in Condition 1.
Furthermore, if miners adhere to the equilibrium strategy, then miners

m ≤ K always mine the new chain so that inequality (7) in Condition 1
implies that inequality (16) in Condition 2 is true at any τ ≥ τ f . Symmet-
rically, given that miners m > K stick to the original chain, Condition 2
is always verified after τ f . Hence, given that Condition 1 holds at τ f , for
τ > τ f , Condition 2 holds on the equilibrium path.

Proof of part c): After the fork off-path
Suppose ωτ is as described in c). Then given that all other players play

the equilibrium, m’s payoff from adhering to the equilibrium strategy is as
in b) above. Following the same logic as in the proof of b), other deviations
can be ruled out.

QED

Proof of Proposition 4

Our candidate equilibrium strategy specifies the following:

a) If a miner solved a block outside the original chain thereby creating a
one-block-long fork as long as the original chain, that miner chains his
next block to the block he just solved.

b) Otherwise, each miner chains his current block to the last block solved
on the original chain, except if there is a fork starting with two blocks
consecutively solved by the same miner, longer than the original chain. In
that case, each miner chains his block to the longest chain, which miners
consider to be the original chain from that point on.31

31This is to define equilibrium strategies if a second fork occurs off the equilibrium path.
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We further assume that G(M − 1) + G(1) = G(M). Indeed, there can
be a transient fork created by one miner who did not observe in time the
actual state of the original chain. If another miner is hit by a liquidity shock
precisely when the fork is being formed, the blocks previously solved by that
other miner, which with certainty will not become orphaned, are worth at
the time of the fork G(M−1)+G(1). Given equilibrium strategies, the same
blocks will be worth G(M) just after the fork is resolved. Our assumption
means that these blocks have the same value at and after the fork. This
assumption also mirrors the assumption that G(1) = G(0): if only one miner
is not on the same chain as the others, the reward for solving blocks is not
affected. We specify below when this assumption is used.32

Proof of part a)
Let Bn be the last block solved on the original chain. Suppose that at

time τ , miner m has just created a one-block-long fork as long as the original
chain by solving Bn(τ) that is chained to Bn’s parent, p(Bn).33

As earlier, the relevant choice for m is between chaining his next block
to Bn(τ) (the equilibrium strategy) and chaining it to Bn (the only relevant
deviation). As in the proof of Proposition 1, a one-shot deviation affects
m’s payoff only if the next stopping time corresponds to two possible events:
either m is hit by a liquidity shock or m solves a block.

i) Suppose the next event is zm. If m deviated and chained his block to
Bn his payoff is G(0) + N o

m(τ(Bn))G(M). Indeed, all miners, including
m, chain to Bn. Hence, m earns G(0) for solving block Bn(τ) and G(M)
for every block he solved on the original chain up to τ(Bn).

If, instead, m followed the equilibrium strategy and chained his block to
Bn(τ) his payoff isG(1)+N o

m(τp(Bn))[G(M−1)+G(1)]+1{m=m(Bn)}G(M−
1). Since m is the only miner chaining to Bn(τ), he earns G(1) for block
Bn(τ). In addition, m earns G(M −1)+G(1) for each block he solved on
the original chain up to p(Bn), reflecting the occurrence of a fork where

32This assumption simplifies the proofs but is not necessary to establish the results.
If we instead assume that G(M − 1) + G(1) < G(M), the proposition would still hold
provided that the probability of a liquidity shock is sufficiently small.

33Since the equilibrium strategies are defined for all states, including those which are
not on the equilibrium path, we cannot exclude that out of equilibrium, some blocks are
solved outside the original chain before or after Bn is solved: p(Bn) is not necessarily
Bn−1, and Bn(τ) is not necessarily Bn+1.
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m chains to Bn(τ) and the M − 1 other miners chain to Bn. Finally, m
earns G(M − 1) for Bn if he solved it.

Since by assumption G(M − 1) + G(1) = G(M) and G(1) = 0, the
deviation is not strictly profitable in that case

ii) Suppose the next event is that m solves Bn(τ)+1.

- If m deviated and chained his block to Bn, the original chain be-
comes the only active chain and Bn(τ) is orphaned. m’s expected
gain is

N o
m(τ(Bn))G(M) +G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)).

Indeed, m earns G(M) for each block he solved on the original
chain up to Bn and for Bn(τ)+1. The conditional expectation is
his expected reward for the blocks solved after τ(Bn(τ)+1) if none
becomes orphaned.34 L(τ(Bn(τ)+1) is the expected loss due to one
of m’s blocks solved after τ(Bn(τ)+1) becoming orphaned. On the
equilibrium path, orphaned blocks occur iff a miner observes a block
with delay and creates a successful fork.

- If instead m played the equilibrium strategy and chained his block
to Bn(τ), the chain including Bn(τ) and Bn(τ)+1 becomes the longest,
hence the only active one. m’s expected gain is

N o
m(τ(p(Bn)))G(M) + 2G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)),

where the second term capture rewards for Bn(τ) and Bn(τ)+1.

It follows that there is no profitable deviation.

Proof of part b)
34As before, if zm occurs when a fork starts, these previously solved blocks are worth

G(M − 1) +G(1) which is equal to G(M) by assumption in that case.
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As earlier, Bn is the last block solved on the original chain.

1) Suppose that at time τ , there is no fork of two consecutive blocks solved
by the same miner and longer than the original chain.

For any miner m (who has not started a fork), the two relevant choices
are to follow the equilibrium strategy and chain his block to Bn, or to create
a fork by chaining his block to p(Bn) and try solving two blocks in a row
(other deviations are ruled out by the same reasoning as in Proposition 1).

As in the proof of Proposition 1, a one-shot deviation affects m’s payoff
only if the next stopping time corresponds to two possible events: either m
is hit by a liquidity shock or m solves a block. If the next event is zm, m’s
payoff is N o

m(zm)G(M) (if there is no fork), or N o
m(zm)(G(M − 1) +G(1)) =

N o
m(zm)G(M) (if a fork was started by another miner) whether he follows

the equilibrium strategy or deviates. If the next event is that m solves
block Bn(τ)+1, there are two possible continuations: Either another miner
does not observe that m solved Bn(τ)+1 or all miners observe that m solved
Bn(τ)+1. The probabilities of these two events are independent of m’s action,
we consider them in turn.

i) If all miners observe that m solved Bn(τ)+1, m’s expected gain if he
followed the equilibrium strategy and chained Bn(τ)+1 to Bn is

(N o
m(τBn) + 1)G(M) + E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]

− L(τ(Bn(τ)+1)).

The first term is the reward for blocks solved up to τ(Bn) plus the reward
for mining Bn(τ)+1 when the latter remains on the original chain. The
conditional expectation is m’s expected reward for solving blocks after
τ(Bn(τ)+1). The last term, L(τ(Bn(τ)+1)) is the expected loss due to one
of m’s blocks solved after τ(Bn(τ)+1) becoming orphaned.
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m’s expected gain if he deviated and chained Bn(τ)+1 to p(Bn) is35[
N o
m(τ(p(Bn)) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+2)) + Pr(m = m(Bn(τ)+2))

]
G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)).

Indeed, m earns G(M) for all blocks solved on the original chain up to
τ(p(Bn), for Bn if he solved it and it remains on the active chain (if
Bn(τ)+2 is attached to Bn), and for Bn(τ)+1 if it is included in the active
chain (if m solves Bn(τ)+2).36

The second term is the continuation payoff for all blocks solved after
Bn(τ)+1 if they are not orphaned afterwards. The third term is the
expected loss due to one of m’s blocks solved after τ(Bn(τ)+1) becoming
orphaned. Neither term depends on which block m chains Bn(τ)+1 to.

Since N o
m(τ(Bn)) ≥ N o

m(τ(p(Bn)) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+1)), if
all miners observe that m solved Bn(τ)+1, m’s expected payoff is larger
if he followed the equilibrium strategy than if he deviated.

ii) If one miner (m′) did not observe that m solved Bn(τ)+1, m’s expected
gain if he followed the equilibrium strategy is

[N o
m(τ(Bn)) + 1− Pr(m′ = m(Bn(τ)+2) = m(Bn(τ)+3))]G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)].

The first term is m’s expected reward for solving blocks up to Bn(τ)+1,
reflecting the risk that Bn(τ)+1 become orphaned if m′ solves Bn(τ)+2 and
Bn(τ)+3. The second term is m’s continuation payoff, reflecting that m
will be mining on the single active chain (be it the original one or a fork
that becomes the consensus).

35Clearly, this is the only relevant deviation since m cannot obtain more if he chained
Bn(τ)+1 to Bn(τ) if Bn(τ) started a fork: Bn(τ)+1 will never be on the active chain given
the equilibrium strategies, even if m solves Bn(τ)+2. A fortiori, m cannot obtain more if
he decides to chain Bn(τ)+1 to any block Bi with i < n(τ) outside the original chain.

36A fork can happen if one miner does not observe Bn(τ)+1, but even in that case,
Bn(τ), as well as all previously solved blocks, will be on the active chain and yield G(M)
or G(M − 1) +G(1) = G(M) depending on when zm occurs.
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If m deviated by chaining Bn(τ)+1 to p(Bn),37 to earn his reward on
Bn(τ)+1, m needs to solve Bn(τ)+2 so his expected gain is[
N o
m(τ(p(Bn)) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+2)) + Pr(m = m(Bn(τ)+2))

]
G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)].

As above

N o
m(τ(Bn)) ≥ N o

m(τ(p(Bn))) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+2)).

Consequently, there is no profitable deviation if

1− Pr(m′ = m(Bn(τ)+2) = m(Bn(τ)+3)) ≥ Pr(m = m(Bn(τ)+2)).

That is

1 ≥ Pr(m = m(Bn(τ)+2)) + Pr(m′ = m(Bn(τ)+2) = m(Bn(τ)+3)),

which holds because

1 ≥ Pr(m = m(Bn(τ)+2)) + Pr(m′ = m(Bn(τ)+2)) ≥
Pr(m = m(Bn(τ)+2)) + Pr(m′ = m(Bn(τ)+2) = m(Bn(τ)+3)).

This completes the first part of the proof of the optimality of the strategy
stated in b).

2) Suppose there is a fork starting with two blocks consecutively solved by
the same miner and longer than the original chain. The equilibrium strategy
then prescribes that miners chain their block to the longest chain.

If one miner observed a block with delay, we are in the same situation as
in Proposition 1, and there is no profitable deviation from mining the longest
chain. Off the equilibrium path, however, that fork could have occurred for
other reasons, and a new fork could still occur because of a delay in the
future. In that case there is no profitable deviation (in particular, trying to
create a fork by solving two blocks in a row is dominated by the equilibrium
strategy), as shown in the first part of b).

QED
37As above, this is the only relevant deviation.
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Proof of Proposition 5

Our candidate equilibrium strategy specifies the following:

a) If a miner solved a block outside the original chain thereby creating a
one-block-long fork as long as the original chain, all miners chain their
next block to the fork, which miners consider to be the original chain from
that point on.

b) Otherwise, each miner chains his current block to the last block solved on
the original chain.

Proof of part a)

Let Bn be the last block solved on the original chain, suppose Bk+1, with
k ≥ n, is chained to p(Bn). As above, the relevant choice for m at time
τ is between chaining his next block to Bk+1 (the equilibrium strategy) and
chaining it to Bn (the only relevant deviation). As in the proof of Proposition
1, a one-shot deviation affects m’s payoff only if the next stopping time
corresponds to two possible events: either m is hit by a liquidity shock or m
solves a block.

i) Supppose the next event is zm. If m deviated and chained his block to
Bn his payoff is

1{m=m(Bk+1)}G(M − 1) + 1{m=m(Bn)}G(1) +N o
m(τ(p(Bn)))G(M),

where G(M − 1) is his reward if he solved block Bk+1, and G(1) his
reward if he solved Bn. If, instead, m followed the equilibrium strategy
and chained his block to Bk+1 his payoff is

1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +N o
m(τ(p(Bn)))G(M).

Since by assumption G(M−1) ≤ G(M) and G(1) = G(0), the deviation
is not strictly profitable.

ii) Suppose the next event is that m solves block Bn(τ)+1.
If m chained his block to Bn, Bn(τ)+1 becomes orphaned since all miners,
including m mine the fork after τ(Bn(τ)+1). m’s expected gain is

N o
m(τ(p(Bn)))G(M) + 1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +G(0)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)),
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since blocks Bn and Bn(τ)+1 are orphaned and earn G(0). As before,
L(τ(Bn(τ)+1)) is the expected loss due to one of the blocks solved by m
after τ(Bn(τ)+1) becoming orphaned.

If instead m had chained his block to Bk+1, m’s expected gain is

N o
m(τ(p(Bn)))G(M) + 1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)),

since now m earns G(M) for solving Bk+2.

It follows that the deviation is strictly dominated.

Proof of part b)

As before, Bn is the last block solved on the original chain. Assume there
is no one-block-long fork of the same length as the original chain at time τ .
The only relevant deviation for miner m is to try and start a fork by chaining
his current block to p(Bn). If zm occurs, or if another miner solves the next
block, m’s payoff is not affected by which block he currently mines.

Consider the case where the next event is that m solves block Bn(τ)+1. If
m deviated and chained Bn(τ)+1 to p(Bn), his payoff is:

N o
m(τ(p(Bn)))G(M) +G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]− L(τ(Bn(τ)+1)).

Indeed, all miners chain their future blocks to the chain that contains Bn(τ)+1,
therefore m earns G(M) for Bn(τ)+1. If m played the equilibrium strategy
and chained Bn(τ)+1 to Bn, he obtains the same payoff, since he earns G(M)
for Bn(τ)+1 as well. Therefore there is no profitable deviation.

QED

Proof of Proposition 6

Our candidate equilibrium strategy specifies the following:

a) If a miner has the opportunity to double spend, he mines a block chained
to the parent of the last block solved on the original chain.
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b) If a miner solves a block that creates a one-block-long fork as long as
the original chain, that miner chains his next block to the block he just
solved, except if he spots an opportunity to double-spend, in which case
he plays according to a).

c) Otherwise, each miner chains his current block to the last block solved
on the original chain, except if there is a fork starting with two blocks
consecutively solved by the same miner, longer than the original chain. In
that case, each miner chains his block to the longest chain, which miners
consider to be the original chain from that point on.

The general structure of the proof is similar to that of Proposition 4. As in
this previous proof, we assume that G(M−1)+G(1) = G(M) to simplify the
exposition. We also clarify that the miner who earns the reward S is the one
who completes a double-spending fork before being hit by his liquidity shock
zm. In particular, a miner who initiates a double-spending fork but is hit by
a liquidity shock before the fork is resolved does not earn S. By contrast,
a miner who successfully completes a double-spending fork initiated by the
miner he replaced does earn S.

Proof of part a)

Let Bn be the last block solved on the original chain. Consider the strat-
egy of miner m who spots the opportunity to double spend at time τ .

Following the same reasoning as above, the relevant choice for m is be-
tween chaining his next block to p(Bn) (the equilibrium strategy), chaining it
to Bn, or chaining it to Bn(τ) if Bn(τ) is chained to p(Bn) and m = m(Bn(τ)).
(This can happen off path if m started a fork from p(Bn) and spots the
double-spending opportunity right after. By assumption, S can only be
earned if m creates a new fork from p(Bn).) As in the proof for Proposi-
tion 1, we can restrict attention to the cases where the next event is that m
either is hit by a liquidity shock, or solves a block.

Suppose first that the next event is zm. If m deviated and chained his
block to Bn his payoff is N o

m(τBn)G(M). If, instead, m followed the equilib-
rium strategy and chained his block to p(Bn) his payoff is

N o
m(τ(p(Bn)))[G(M − 1) +G(1)] + 1{m=m(Bn)}G(M − 1).
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Last, suppose m = m(Bn(τ)) and Bn(τ) is chained to p(Bn). If m devi-
ated and chained his block to Bn(τ), his payoff is the same as when chain-
ing his block to p(Bn), plus G(1) for solving Bn(τ).38 Since by assumption
G(M − 1) +G(1) = G(M) and G(1) = 0, there is no profitable deviation.

Alternatively, suppose the next event is that m solves Bn(τ)+1.
To analyse this case, we condition m’s payoffs on the event that m =

m(Bn(τ)+2), that is m solves Bn(τ)+2 before being hit by a liquidity shock.
This event’s probability is independent from m’s strategy, and if m follows
the equilibrium strategy, then m earns S if and only if this event is true.

i) Suppose m solves Bn(τ)+2.

If m deviated and chained his block to Bn, his payoff is

N o
m(τ(Bn))G(M)+2G(M)+E[

∫ zm

τ(Bn(τ)+2)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+2)].

m earns G(M) for all the blocks solved on the original chain up to τ(Bn).
m earns G(M) for solving Bn(τ)+1 and Bn(τ)+2 which belong to the orig-
inal chain, and for all the future blocks solved after τ(Bn(τ)+2), since m
knows that no other double spending opportunity will be spotted.

Ifm = m(Bn(τ)) and Bn(τ) is chained to p(Bn), ifm deviated and chained
Bn(τ)+1 to Bn(τ), his payoff is

N o
m(τp(Bn))G(M)+3G(M)+E[

∫ zm

τ(Bn(τ)+2)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+2)].

m’s fork has succeeded and he earns G(M) on all blocks solved up to
p(Bn) on the original chain, plus on Bn(τ), Bn(τ)+1 and Bn(τ)+2.

If m played the equilibrium strategy and chained Bn(τ)+1 to p(Bn), his
payoff is

N o
m(τp(Bn))G(M)+2G(M)+E[

∫ zm

τ(Bn(τ)+2)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+2)]+S.

m earns G(M) for all the blocks he solved before the fork (up to p(Bn)),
G(M) for Bn(τ)+1 and for Bn(τ)+2, and for all the future blocks solved

38In that case a fork has started so the reward for solving Bn is G(M−1) which is lower
than G(M). This makes the deviation even less profitable.

56



after τBn(τ)+2
, since on the equilibrium path all miners mine on the chain

including Bn(τ)+2. In addition, m earns S from double-spending.

Hence, the net benefit of following the equilibrium strategy rather than
deviating is S −max{1{m=m(Bn)};1{[m=m(Bn(τ))]

⋂
[p(Bn(τ))=p(Bn)]}}G(M).

ii) Suppose that either zm occurs before τ(Bn(τ)+2) or zm occurs after τ(Bn(τ)+2)
but m does not solve Bn(τ)+2. To write m’s payoff, we will distinguish
the two events when needed.

If m deviated and chained Bn(τ+1) to Bn, his payoff is

N o
m(τ(Bn))G(M) +G(M)

+ Pr(zm > τ(Bn(τ)+2))E[

∫ zm

τBn(τ)+2

dNm(t)G(M)dt|zm > τ(Bn(τ)+2)].

(17)

m earns G(M) for all the blocks solved up to τ(Bn), for Bn(τ)+1 (since
it is on the original chain), and for blocks solved after τ(Bn(τ)+2) if
zm > τ(Bn(τ)+2).

Ifm = m(Bn(τ)) and Bn(τ) is chained to p(Bn), ifm deviated and chained
Bn(τ)+1 to Bn(τ), his payoff is

N o
m(τ(p(Bn)))G(M) + 2G(M)

+ Pr(zm > τ(Bn(τ)+2))E[

∫ zm

τBn(τ)+2

dNm(t)G(M)dt|zm > τ(Bn(τ)+2)].

(18)

m’s fork has succeeded and he earns G(M) on all blocks solved up to
p(Bn) on the original chain, plus on Bn(τ) and Bn(τ)+1.

If m played the equilibrium strategy and chained Bn(τ)+1 to p(Bn), his
payoff is

- if zm occurs first,

N o
m(τ(p(Bn)))(G(M − 1) +G(1)) + 1{m=m(Bn)}G(M − 1) +G(1).

In that case, m has created a one-block-long fork as long as the
original chain when he is hit by his liquidity shock. Therefore, he
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earns G(M − 1) +G(1) for all the blocks he solved on the original
chain up to τ(p(Bn)). He also earns G(M − 1) for Bn if he solved
it and G(1) for Bn(τ)+1.

- if Bn(τ)+2 is solved by another miner before zm,

N o
m(τBn)G(M)+G(0)+E[

∫ zm

τBn(τ)+2

dNm(t)G(M)dt|zm > τ(Bn(τ)+2)].

m’s fork fails, therefore he earns G(M) for all the blocks he solved
on the original chain up to τ(Bn) and for the blocks solved after
τ(Bn(τ)+2).

Since G(M − 1) = G(M),39 gains earned by m on all blocks solved up
to τ(Bn) are the same in the two events above. Hence m’s payoff if he
played the equilibrium strategy when he does not solve Bn(τ)+2 is:

N o
m(τBn)G(M)+Pr(zm > τ(Bn(τ)+2))E[

∫ zm

τBn(τ)+2

dNm(t)G(M)dt|zm > τ(Bn(τ)+2)].

(19)

Hence, the net benefit of following the equilibrium strategy rather than
deviating when m does not solve Bn(τ)+2 is the difference between (19)
and the max of (17) and (18), that is,

−
{
G(M) + (1{[m=m(Bn(τ))]∩[p(Bn(τ))=p(Bn)]} − 1{m=m(Bn)})G(M)

}
.

Overall, m always follows the equilibrium strategy (including when he
solved Bn) iff

Pr[m = m(Bn(τ)+2)|m = m(Bn(τ)+1)][S −G(M)]

> (1− Pr[m = m(Bn(τ)+2)|m = m(Bn(τ)+1)])2G(M)

⇔ S >
G(M)(2− Pr[m = m(Bn(τ)+2)|m = m(Bn(τ)+1)])

Pr[m = m(Bn(τ)+2)|m = m(Bn(τ)+1)]
.

Remark that Pr(m = m(Bn(τ)+2)|m = m(Bn(τ)+1)) is just the probability
that at any time m solves the next block, which we denote γ(m, τ).

39Again, allowing for G(M − 1) < G(M) only makes the condition under which the
equilibrium exists more intricate.
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Proof of part b)

As earlier, Bn is the last block solved on the original chain. Suppose that
at time τ , miner m has just created a one-block-long fork as long as the
original chain by solving Bn(τ) that is chained to Bn’s parent, p(Bn). The
relevant choice for m at τ is between chaining his next block to Bn(τ) (the
equilibrium strategy) and chaining it to Bn (the only relevant deviation).
The reasoning is analogous to the proof of Proposition 4 part a), hence we
only sketch it here.

i) Suppose that the next event is zm.

If m deviated and chained his block to Bn, the original chain remains
the only active chain and m’s payoff is

G(0) +N o
m(τ(Bn))G(M),

where the first term is the reward for Bn(τ).

If, instead, m followed the equilibrium strategy and chained his block to
Bn(τ) his payoff is

G(1) +N o
m(τ(p(Bn)))[G(M − 1) +G(1)] + 1{m=m(Bn)}G(M − 1),

where the first term is the reward for Bn(τ). Since G(M − 1) + G(1) =
G(M) and G(1) = 0, this deviation is not strictly profitable.

ii) Suppose the next event is that m solves Bn(τ)+1.

Ifm deviated and chained his block to Bn, the original chain remains the
only active chain and Bn(τ) becomes orphaned. Therefore, m’s expected
payoff is

N o
m(τ(Bn))G(M) +G(M) + E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]

+ S(τ(Bn(τ)+1))− L(τ(Bn(τ)+1)),

where the second term is the reward forBn(τ)+1. As earlier, L(τ(Bn(τ)+1)),
is the expected loss due to one of m’s blocks solved after τ(Bn(τ)+1) be-
coming orphaned. S(τ(Bn(τ)+1)) is the expected benefit from m spot-
ting a double-spending opportunity after τ(Bn(τ)+1). Note that both
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L(τ(Bn(τ)+1)) and S(τ(Bn(τ)+1)) are conditional on m’s information at
τ . For instance, if m already had a double-spending opportunity, then
L(τ(Bn(τ)+1)) = S(τ(Bn(τ)+1)) = 0.

If insteadm played the equilibrium strategy and chainedBn(τ)+1 toBn(τ),
the chain including Bn(τ) and Bn(τ)+1 becomes the longest one, and all
miners hereafter chain their blocks to it. Thus m’s expected payoff is at
least equal to

N o
m(τp(Bn))G(M) + 2G(M) + E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+2)]

+ S(τ(Bn(τ)+2))− L(τ(Bn(τ)+2)),

where the second term is the reward for Bn(τ)+1 and Bn(τ)+2. This payoff
is higher by S if m has the double-spending opportunity (the only case
on the equilibrium path).

Since 1{m=m(Bn)} ≤ 1, m prefers to follow the equilibrium strategy.

Proof of part c)

The reasoning is analogous to the proof of Proposition 4 part b), and we
only sketch it here. Bn is the last block on the original chain.

1. First consider the case in which there is no fork of two consecutive
blocks solved by the same miner and longer than the original chain. For
any miner m who does not have the double-spending opportunity, the
only two relevant choices are to chain his block to Bn (the equilibrium
strategy) and to create a fork and try solving two blocks in a row (the
only relevant deviation). As in the proof of Proposition 1, we can
restrict attention to the cases where the next event is that m is hit by
a liquidity shock, or solves a block.

- Suppose the next event is zm. If m followed the equilibrium strat-
egy, his payoff isN o

m(zm)G(M) (if there is no fork), orN o
m(zm)(G(M−

1) +G(1)) = N o
m(zm)G(M) (if a fork has started). If m deviated,

his payoff is at most equal to N o
m(zm)G(M).

- Suppose the next event is that m solves Bn(τ)+1.
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If m followed the equilibrium strategy and chained Bn(τ)+1 to Bn,
his expected payoff is

(N o
m(τBn) + 1)G(M) + E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)]

+ S(τ(Bn(τ)+1))− L(τ(Bn(τ)+1)).

If m deviated and chained Bn(τ)+1 to p(Bn), his expected payoff is[
N o
m(τ(p(Bn)) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+2)) + Pr(m = m(Bn(τ)+2))

]
G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)G(M)dt|zm ≥ τ(Bn(τ)+1)] + S(τ(Bn(τ)+1))− L(τ(Bn(τ)+1)).

Since

N o
m(τBn) ≥ N o

m(τp(Bn)) + 1{m=m(Bn)} Pr(Bn = p(Bn(τ)+2)),

m’s expected payoff is larger if he followed the equilibrium strategy
than if he deviated.

2. Consider the case in which there is a fork starting with two blocks
consecutively solved by the same miner and longer than the original
chain. If that fork occurred because one miner exploited a double-
spending opportunity, we are in the same situation as in Proposition
1, and there is no profitable deviation from mining the longest chain.

If that fork occurred for other reasons (off the equilibrium path), a
new fork could still occur because of a double-spending opportunity in
the future. In that case there is no profitable deviation (in particular,
trying to create a fork by solving two blocks in a row is dominated by
the equilibrium strategy), as shown in the first part of c).

QED

Proof of Proposition 7

Let τ f be the time at which the nth block is solved on the original chain.
Hence, Bn(τf ) is the nth block on the original chain. We say that a chain
“conforms” to technology C if every block on that chain solved after τ f is
mined with technology C. We call “C-chain” the chain that contains Bn(τf ),
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conforms to C, and preexists all other chains containing Bn(τf ) and conform-
ing to C. NC

m(τ) is the number of blocks solved by m up to τ on the C-chain.
Our candidate equilibrium strategy specifies the following:

a) For every τ < τ f , miners chain their block to the last block on the original
chain.

b) For every τ ≥ τ f , miners choose C = 0 and chain their block to the last
block on the chain that contains Bn(τf ), conforms to C = 0, and preexists
all other chains containing Bn(τf ) and conforming to C = 0. If such a
chain does not exist, miners choose C = 0 and chain their block to Bn(τf ).

We consider each case in turn.

a) Suppose τ < τ f . Then using the same reasoning as in Proposition 1, a
deviation is not profitable.

b) Suppose τ ≥ τ f . As in the proof of Proposition 1, it is sufficient to
compare payoffs when m solves the next block, Bn(τ)+1.
If miner m played the equilibrium strategy, that is, chose C = 0 and
chained his block to the last block on the 0-chain, or to Bn(τf ), his payoff
is

N0
m(τ)(1 + bm(0))G(M) + (1 + bm(0))G(M)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)(1 + bm(0))G(M)dt|zm ≥ τ(Bn(τ)+1)]

The first term is m’s rewards from blocks solved on the 0-chain up to τ .
The second term is the reward from solving Bn(τ)+1, and the last term is
the expected value of solving future blocks on the 0-chain.
If instead, miner m deviated and chained his block to another block than
the last one on the 0-chain, using any technology C, his payoff is

N0
m(τ)(1 + bm(0))G(M) + (1 + bm(C))G(1)

+ E[

∫ zm

τ(Bn(τ)+1)

dNm(t)(1 + bm(0))G(M)dt|zm ≥ τ(Bn(τ)+1)]

Hence, the only difference between m’s payoff if he deviates and his equi-
librium payoff is the reward from solving block Bn(τ)+1. This reward is
(1 + bm(C))G(1) = 0 if he deviates and (1 + bm(0))G(M) > 0 if he plays
the equilibrium strategy. It follows that a deviation is not profitable.
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A symmetric argument sustains the equilibrium in which all miners choose
C = 1.

QED

Proof of Proposition 8

We use the same notation as in the proof of Proposition 7 for the C-chain.
To define our equilibrium strategies, we need to introduce the following

condition, which we will derive explicitly in the proof:

Condition 3 For τ ≥ τ f , ωτ is such that for m > K

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)− (1 + b)G(M −K)) ≤

Pr(zm = τ ′)

{
(N0

m(τ)−N0
m(τ f ))(1 + b)(G(M −K)−G(M −K − 1))

−(N1
m(τ)−N1

m(τ f ))(G(K + 1)−G(K)))

}
,

(20)

and for m ≤ K

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)−G(M −K)) ≥

Pr(zm = τ ′)

{
(N0

m(τ)−N0
m(τ f ))(G(M −K + 1)−G(M −K))

−(N1
m(τ)−N1

m(τ f ))(G(K)−G(K − 1)))

}
. (21)

Our candidate equilibrium strategy specifies the following:

a) Before the hard fork: If τ < τ f , miners chain their block to the last block
on the original chain.

b) At the hard fork or after: If τ = τ f , or if τ > τ f , and Condition 3 holds,
miners m ≤ K choose C = 1 and chain their block to Bn(τf ) if the 1-chain
does not exist, and chain their block to the last block solved on the 1-
chain otherwise, while miners m > K choose C = 0 and chain their block
to Bn(τf ) if the 0-chain does not exist, and chain their block to the last
block on the 0-chain otherwise.

c) After the hard fork off-path: Suppose τ > τ f and Condition 3 does
not hold. Let ∆ω ≡ ωτ \ ωτf (i.e., ∆ω contains the history of the game
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between τ f and τ). Then for every τ ′ ≥ τ , all miners play the strategy
prescribed after history ωτ ′\∆ω that is defined in b). In playing strategies
defined in b), miners consider that the 0-chain and the 1-chain are defined
with respect to history ωτ ′ \∆ω.

We need to prove that a miner does not have a profitable one-shot devi-
ation from σ∗. We hereafter consider each of the cases above in turn.

Proof of part a): Before the fork

Following the reasoning of the proof of Proposition 1, there is no prof-
itable deviation. In particular, it is not profitable for any miner m ≤ K to
choose C = 1 before τ f since any block solved with C = 1 will, by definition,
not belong to the 1-chain and yield a reward of 0. Also, note that unlike in
the proof of Proposition 3, miners’ actions before τ f cannot after the condi-
tion under which the hard fork occurs.

Proof of part b): at or after the fork

i) Consider first a deviation by a miner m > K.

Any deviation other than chaining to the last block on the 1-chain is
ruled out by similar arguments as in Proposition 1. Hence check that
m prefers to mine blocks on the 0-chain, rather than on the 1-chain.
As earlier, this one-shot deviation affects m’s payoff only if the next
stopping time τ ′, corresponds to two possible events: either m solves his
block, or zm occurs.

- Suppose miner m solves a block at τ ′, i.e., Nm(τ ′) − Nm(τ) = 1.
If Condition 3 is still true at τ ′, since every miner, including m,
reverts to the equilibrium strategy from τ ′ on, the only impact
of the deviation is that m earns G(K) for block Bn(τ ′) instead of
(1 + b)G(M −K) under the equilibrium strategy. If Condition 3 is
not true at τ ′, given c), the impact of the deviation is that m earns
0 for block Bn(τ ′) instead of (1+b)G(M−K) under the equilibrium
strategy and loses all rewards for blocks solved between τ f and τ ′.
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- Suppose miner m is hit by a liquidity shock at τ ′, i.e., zm = τ ′.
Then his payoff under the deviation is

(N0
m(τ)−N0

m(τ f ))(1 + b)G(M −K − 1) + (N1
m(τ)−N1

m(τ f ))G(K + 1)

+N0
m(τ f )(1 + b)G(M)

instead of

(N0
m(τ)−N0

m(τ f ))(1 + b)G(M −K) + (N1
m(τ)−N1

m(τ f ))G(K)

+N0
m(τ f )(1 + b)G(M)

under the equilibrium strategy.40 It follows that there is no profitable
deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)− (1 + b)G(M −K)) ≤

Pr(zm = τ ′)

{
(N0

m(τ)−N0
m(τ f ))(1 + b)(G(M −K)−G(M −K − 1))

−(N1
m(τ)−N1

m(τ f ))(G(K + 1)−G(K)))

}
,

which is exactly inequality (20) in Condition 3.

ii) Consider next a deviation by a miner m ≤ K. A symmetric reasoning
yields that there is no profitable deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)−G(M −K)) ≥

Pr(zm = τ ′)

{
(N0

m(τ)−N0
m(τ f ))(G(M −K + 1)−G(M −K))

−(N1
m(τ)−N1

m(τ f ))(G(K)−G(K − 1)))

}
,

which is exactly (21) in Condition 3.

Next, see that at τ = τ f , NC
m(τ) = NC

m(τ f ) for all miners. Inequality (20) is
then written:

(1 + b)G(M −K) ≥ G(K)⇔ b ≥ G(K)

G(M −K)
− 1.

40Note that we used the assumption that ∀K, G(M) = G(M − K) + G(K) to write
down miner m’s payoff from blocks solved before τf .
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Similarly, inequality (21) is then written:

G(K) ≥ G(M −K)⇔ K ≥ M

2
.

Furthermore, if miners adhere to the equilibrium strategy, then miners
m ≤ K always mine the 1-chain so that if K ≥ M

2
, inequality (21) in Condi-

tion 3 is true at any τ ≥ τ f . Given that miners m > K stick to the 0-chain,
if b ≥ G(K)

G(M−K)
− 1, inequality (20) is always verified after τ f . Hence, for

τ ≥ τ f , Condition 3 holds on the equilibrium path.

Proof of part c): After the fork off-path

Suppose ωτ is as described in c). Then given that all other players play
the equilibrium, m’s payoff from adhering to the equilibrium strategy is as
in b) above. Following the same logic as in the proof of b), other deviations
can be ruled out.

QED

Proof of Proposition 9

By construction, D ≥ 1 since 1
D

is the probability to solve the problem at
each trial. If the total computing capacity

∑
i∈M hi was lower than 1/X, it

would not be feasible to have one block solved every X units of time. To
ensure D ≥ 1 with Equation (3), we impose the technical constraint that∑

i∈M

hi ≥ 1/X. (22)

Substituting (4), each miner’s program (12) is written

max
hm

hm∑
i∈M hi

λmX
G(M)− cmhm

λm
,

which yields the following first order condition:(∑
i∈M hi

)
− hm(∑

i∈M hi
)2 G(M)

X
= cm. (23)
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See first that miner m’s participation constraint is∑
i∈M

hi ≤
G(M)

cmX
. (24)

Evaluated at equilibrium, (23) yields(∑
i∈M

h∗i

)
− h∗m =

X

G(M)
cm

(∑
i∈M

h∗i

)2

(∑
i∈M

h∗i

)
− cm

X

G(M)

(∑
i∈M

h∗i

)2

= h∗m. (25)

Summing over miners

M

(∑
i∈M

h∗i

)
−

(∑
i∈M

ci

)
X

G(M)

(∑
i∈M

h∗i

)2

=

(∑
i∈M

h∗i∈

)

(M − 1)

(∑
i∈M

h∗i

)
=

(∑
i∈M

ci

)
X

G(M)

(∑
i∈M

h∗i

)2

(M − 1)∑
i∈M ci

G(M)

X
=
∑
i∈M

h∗m

∑
i∈M

h∗i =
G(M)

X

M − 1∑
i∈M ci

,

which is exactly (14) in Proposition 9. Into participation constraint (24),
this yields (M − 1)cm ≤

∑
i∈M ci. Next, substituting (14) into (25)

h∗m =

(
G(M)

X

M − 1∑
i∈M ci

)
− cm

X

G(M)

(
G(M)

X

M − 1∑
i∈M ci

)2

.

h∗m =

(
G(M)

X

M − 1∑
i∈M ci

)(
1− cm

X

G(M)

G(M)

X

M − 1∑
i∈M ci

)
h∗m =

G(M)

X

M − 1∑
i∈M ci

(
1− cm

M − 1∑
i∈M ci

)
,

which is exactly (13) in Proposition 9. Last, replacing h∗m into miner m’s
objective function, one obtains that his equilibrium profit is

G(M)

λmX

(
1− (M − 1)cm∑

i∈M ci

)2

.
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