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Abstract

We develop a theoretical model that describes risk-averse farmers’ decisions when
facing production risk due to uncertain weather conditions and when irrigation water
can be traded on a market. We focus on the role of initial water allocations granted
to irrigated farms at the start of the season. The presence of water markets makes the
future water price uncertain and hence the value of initial water allocations uncertain.
We analyze the properties of this background risk and study how initial water allocations
impact farmers’ land allocation decisions between an irrigated crop and a non-irrigated
crop, both characterized by random expected net returns. We then extend the model
by permitting irrigation water to be traded ex-ante at a known price (forward market).
Finally, we illustrate our main theoretical findings using simulations. Assumptions made
on the distributions of the random variables were chosen to be representative of the
situation of irrigated farms located in the Murray-Darling Basin in Australia, where a
water market has been in place for several decades.
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1 Introduction

In regions where water is scarce and rainfall is erratic, irrigated farms face production risk due

to the uncertainty of future water availability. To help farmers manage this uncertainty, some

countries (e.g., Australia, Chile, the United States) have developed water trading schemes.

Water markets have been shown to increase overall welfare by permitting the reallocation of

water between low-value and high-value uses (e.g., Vaux and Howitt, 1984; Garrido, 1998)

and to improve efficiency in risk sharing (e.g., Lefebvre, Gangadharan and Thoyer, 2012).

The price of water on the market depends on both demand for, and supply of, irrigation

water, and is thus volatile. Price volatility not only adds to the uncertainty of future water

availability but also makes the value of farmers’ water rights uncertain. More precisely, the

uncertain value of water allocations granted to farmers generates a background risk that is

going to impact their production choices if farmers are risk-averse (Eichner and Wagener,

2012). In this article we develop a theoretical model to study how the level of initial water

allocations (coupled with the uncertain water price) affects risk-averse farmers’ production

decisions.

We consider a risk-averse farmer who receives an initial allocation of water that can be

physically used for the production of an irrigated crop or sold on a competitive market. This

allocation is regularly revised by water authorities so that, at the beginning of the season,

the farmer does not know with certainty the total amount of water that will be available

over the entire irrigation season. This uncertainty translates into an uncertain price of water

allocations which itself makes the return of the irrigated crop risky. In our setting, the

farmer can allocate part of his/her land to a non-irrigated crop, which is also characterized

by a random return (due for example - but not restricted - to weather uncertainty). In this

model, a farmer’s decision about the allocation of land between two risky crops can be seen

as a portfolio decision of a risk-averse agent owning an initial (uncertain) wealth and having

the possibility of investing in two (possibly correlated) risky assets, which is a setting similar
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to Eichner and Wagener (2012, hereafter EW).1

We follow EW in assuming that farmers’ preferences are characterized by a utility function

defined over the mean and variance of their random wealth. Under some assumptions about

the form of farmers’ risk preferences we show, in the same vein as EW, how the level of

initial allocations impacts farmers’ allocation of land between the irrigated crop and the non-

irrigated crop. Next, we extend EW’s analysis by studying the implementation of a forward

market for water allocations. The possibility of trading water forward at a certain price offers

farmers a new option for managing the risk brought about by the uncertainty about the price

of water and hence can modify farmers’ land allocation decisions.

Finally, we run simulations to illustrate our main analytical findings. Distributions of the

random variables and levels of the parameters of interest were chosen based on conditions

observed in the Murray-Darling Basin (MDB) in Australia. The MDB, which covers about

14% of Australia’s land mass, is the main source of irrigated agricultural production in the

country and hosts one of the most active water markets in the world. The research question,

the underlying assumptions about the sources of risk, and the timing of farmers’ decisions

were primarily motivated by the functioning of the market for water allocations in the MDB.

Water allocations can be seen as temporary water rights. They correspond to the actual

volume (or allocation) of water assigned to the farmer on the basis of his water entitlements

(or permanent water rights). Water allocations are announced at the beginning of the season

and revised regularly based on water storage levels and expected inflows. The trading of

water allocations is used as a short-term risk management tool by farmers in the MDB and,

in some years, more than 30% of announced water allocations are traded (Zuo, Nauges and

Wheeler, 2015). The level of the water allocations (expressed as a percentage of the nominal

quantity of water entitlement) and their price can vary substantially across years and within

a season, especially in times of drought or when storage levels are low. A forward market for

1The impact of a background risk in wealth on financial decisions such as the portfolio problem has received
considerable attention in the finance and insurance literature, both in the expected utility framework and in
the mean-variance context. See e.g. Tsetlin and Winkler (2005), Jiang, Ma and An (2010), Li (2011) and
Eeckhoudt and Gollier (2013) for a survey.
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water allocations was launched in the MDB in 2014.

Section 2 describes how our article relates to and contributes to the existing literature.

Section 3 describes the farmer’s risk preferences and the theoretical decision model where

the main choice variable is land allocation between the irrigated and non-irrigated crops. In

Section 4, we focus on the role of initial allocations granted to the farmer at the beginning of

the season. We first discuss the characteristics of the background risk induced by these initial

water allocations and the uncertainty of future water prices. Second, we show how initial

allocations impact the farmer’s optimal land use decision. Section 5 extends the theoretical

model to allow for forward trading at the start of the season. Section 6 provides an illustration

of our main theoretical findings using simulations, and Section 7 concludes.

2 Related literature

The literature describing the behavior of risk-averse firms in the presence of uncertainty

dates back to the 1970s and the work of Baron (1970) and Sandmo (1971). Our article

relates primarily to studies that have investigated the production decisions of risk-averse

agents in the presence of uncertainty and regulatory instruments (market-based policies).

In this literature however, the main focus has been on pollution quotas or emissions taxes

and the impact of uncertainty and risk aversion on firms’ polluting emissions and compliance

levels (e.g., Ben David et al., 2000; Baldursson and von der Ferh, 2004, 2012).2 One exception

for the agricultural sector is Babcock (1990) who studied the production decisions of farmers

facing marketing quotas.

Our article also relates to the literature on the design of quota systems in general, and

the dependence of market outcomes on initial allocations in the presence of uncertainty and

risk aversion, in particular. This dependence was proved in Baldursson and von der Ferh

(2004) in a theoretical setting. The authors showed that risk-averse firms with small initial

2These articles differ in terms of the source of the uncertainty faced by the agents: pollution permit prices
in Ben David et al. (2000); total number of polluting firms or firm’s level of pollution in Baldursson and von
der Ferh (2004); and input and/or output prices in Baldursson and von der Ferh (2012).
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quota holdings are expected to overinvest in abatement technology, while those with large

initial quota holdings are expected to underinvest.3

Other related articles include Hahn and Stavins (2011) which listed six conditions under

which the final allocation of permits (after trade has occurred) and the permit price are not

independent of the initial allocation of permits,4 and Fowlie and Perloff (2013) who empirically

tested the independence property using data from the Southern California’s Regional Clean

Air Incentives Market (RECLAIM).

As far as we know, the role of initial allocations in the context of water markets has not

been addressed in the literature. Recent analyses of water markets have tended to study

farmers’ decisions in terms of water trading using different modeling approaches (see, for

example, Ranjan and Shogren, 2006, using a non-expected utility framework and Cristi, 2007,

using a consumption-based asset pricing model). Calatrava and Garrido (2005) studied how

the variability in profits (caused by the uncertainty of water allocated to the farm) is modified

when a market for water is put in place, and showed that risk exposure is reduced for market

users, whether they participate as sellers or buyers. In Lefebvre, Gangadharan and Thoyer

(2012) data from laboratory experiments were used to study the impact of differentiated

water rights (high and low priority rights, the former being served first when water is scarce)

on cost effectiveness and risk management properties of water markets in the presence of

transaction costs.

Finally, our article adds to the sparse literature investigating the production decisions of

non-risk neutral farmers in the presence of multiple risks. Among the few articles that studied

two or more risks are Coyle (1999), Isik (2002), and Serra et al. (2006). The present article

is closer in spirit to Coyle (1999) and Serra et al. (2006) who analyze farmers’ production

3There is an assumption of zero transaction costs in Baldursson and von der Ferh (2004). Montero (1997),
in a setting with transaction costs and uncertainty, showed that initial allocations have an impact on market
outcomes (equilibrium prices) and welfare even in the case of risk-neutral polluting firms which receive an
initial allocation of pollution permits that can be traded.

4The six conditions are: 1) transaction costs (such as those due to search and information or bargaining); 2)
market power; 3) uncertainty about the future price of permits (in the presence of risk aversion and transaction
costs); 4) conditional allocations of permits (e.g., conditional on output in the previous period); 5) non-cost
minimizing behavior (e.g., for public firms); and 6) differentiated regulations.
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decisions in a mean-variance framework, while allowing for non-neutral risk preferences.

3 The farmer’s decision model

3.1 A portfolio problem

We consider a farmer who has the possibility of allocating his land of size l to either an

irrigated crop or a non-irrigated crop. We denote the share of land devoted to the irrigated

production by x and the share assigned to the non-irrigated production by 1− x. Irrigation

water can be bought or sold on a competitive market at price r. From an ex-ante perspective,

the water price r is random with mean r̄ because of the uncertainty about the total amount of

irrigation water that will be available over the season. The (per hectare) net benefit of both

the irrigated crop and the non-irrigated crop are random and denoted R and ε respectively,

with means R̄ and ε̄.

Randomness in the return of the irrigated crop is mainly driven by the uncertain water

price while randomness in the return of the non-irrigated crop might be driven by variability

in weather conditions through its impact on crop yield and/or by output price variability.

Finally, we denote e0 ≥ 0 as the initial level of water allocations which is made available to

the farmer at the beginning of the growing season. The value of this initial endowment is

unknown ex-ante due to the uncertainty of the water price.

The timing of farmers’ decisions is the following: at the start of the growing season (spring,

in the context of the MDB in Australia), initial water allocations e0 granted to the farmers

are announced and the farmers decide on the land area that will be planted with the irrigated

crop (x). At that time, the quantity of irrigation water that will be available in the summer

(when the irrigated crop is in greatest need of water) and the price at which water will be

sold, are not known with certainty. The decision made in the spring about the share of land

to be irrigated (x) can thus be seen as an ex-ante decision, before the uncertainty is resolved.

In the summer, weather conditions have been observed and information on water availability

is fully revealed, so farmers no longer face any uncertainty. They have full information when
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deciding on the quantity of water used to produce the irrigated crop and on the quantity of

water traded on the market (ex-post decisions). In the following we focus only on farmers’

optimal (ex-ante) decisions in terms of land allocation (x).

The farmer’s ex-post (final) wealth, which corresponds to the sum of the net returns of

the irrigated and non-irrigated productions, plus his/her initial (certain) wealth w0, and the

value of the initial water allocations e0, is written as follows:5

w = w0 + xlR+ (1− x)lε+ re0.

Since w is linear in l, we can normalize l to 1 without any loss of generality (it is sufficient

to redefine e0 as the endowment per hectare). Hence, ex-post wealth is equivalently written:

w = w0 + xR+ (1− x)ε+ re0.

The decision problem of the farmer, i.e. how to allocate land between two risky assets

with uncertainty about its initial wealth, is akin to a standard portfolio choice problem. The

possibility of trading water on a market allows ex-post flexibility for the producer but a

strictly positive initial endowment also generates a cost in terms of risk exposure through

the introduction of an (additive) background risk potentially correlated with the two risky

activities, R and ε.

Since water is used as an input in the production of the irrigated crop, we expect a higher

water price r to induce a lower net benefit R for the irrigated production. Also, because

higher water prices are more likely to be observed in dry conditions, we expect a negative

correlation between r and ε, the net benefit of the non-irrigated crop. Hence we assume in the

following that the water price r is negatively correlated with both R and ε, with covariances

σrR < 0 and σrε < 0, respectively.

5Implicitly, the ex-post net return R of the irrigated crop can be defined as: R = maxz (pf(z, θ)− rz)x
with z, the quantity of water supplied through irrigation and sold on a competitive market at price r; f , a
production function that is assumed to be increasing and concave in z; θ, a random production shock, and p
the crop price.
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3.2 Assumptions on farmers’ preferences

Following EW, we assume that preferences over the random ex-post wealth can be represented

by a two-parameter utility function V (µ, v) where µ and v are the expected value and the

variance of the ex-post wealth, respectively. The expected ex-post wealth µ is as follows:

µ(x, e0) = w0 + xR̄+ (1− x)ε̄+ r̄e0.

By denoting Y as the final wealth in the absence of any water endowment, Y = w0 +

xR+ (1−x)ε, we rewrite µ(x, e0) = Ȳ (x) + r̄e0 with Ȳ (x) = w0 +xR̄+ (1−x)ε̄. We assume

in the following that the average return of the irrigated crop is larger than the average return

of the non-irrigated crop: R̄ > ε̄.6

The variance v of the ex-post wealth is written as:

v(x, e0) = x2vR + (1− x)2vε + e2
0vr + 2x(1− x)σεR + 2xe0σrR + 2(1− x)e0σrε,

where vi is the variance of i for i = R, ε, r. Denoting the covariance σrY (x) = xσrR+ (1−

x)σrε (which is < 0 given our assumptions about correlations), and denoting the variance of

Y as vY (x) = x2vR + (1− x)2vε + 2x(1− x)σεR, we obtain:

v(x, e0) = vY (x) + e2
0vr + 2e0σrY (x).

It is easy to check that the variance is a quadratic convex function of x as ∂2v
∂x2 = v′′Y (x) =

2vR−ε > 0 where vR−ε is the variance of R− ε.7

Let us now turn to assumptions about farmers’ risk preferences. First, we assume that V

is a C3 function with

Vµ > 0, Vv < 0, Vµµ < 0, Vvµ > 0.

The fact that Vv < 0 and Vµµ < 0 reflects that preferences are characterized by risk

aversion (while risk neutrality would correspond to Vv = 0).8 We denote the marginal rate

6This condition implies that the expected wealth µ is increasing in the land share x devoted to the irrigated
crop.

7For now we leave the sign of σ′rY (x) = σrR − σrε unspecified but, in the following, most of the time we
use the assumption that the water price r is more (negatively) correlated with R than with ε: σ′rY (x) =
σrR − σrε < 0.

8The assumption Vvµ > 0 is the analogue of prudence in the expected utility framework.
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of substitution between µ and v by

α(µ, v) = −Vv
Vµ

> 0

which is the mean-variance counterpart of the Arrow-Pratt measure of absolute risk aversion.

We assume both decreasing absolute risk aversion (DARA) preferences (αµ < 0) and variance

vulnerability (αv > 0). Under DARA preferences the marginal willingness to pay for a

reduction in variance decreases when expected wealth raises. Variance vulnerability means

here that the marginal willingness to pay for a reduction in variance, α, is increasing as final

wealth becomes more volatile. When these two conditions are met, the agent is said to be

risk vulnerable (Eichner, 2008).

Finally, to ensure second-order conditions in optimization programs, we consider that

V (µ, v) is quasi-concave or equivalently that:

ααµ + αv > 0

as demonstrated by Eichner (2008).9

3.3 Farmers’ optimal land use decision

The farmer chooses the land allocation x such as to maximize his (mean-variance) utility of

final wealth:

max
x

U(x, e0) ≡ V (µ(x, e0), v(x, e0)).

For an interior solution x∗ ∈ (0, 1), the first-order condition is written:

∂U(x∗, e0)

∂x
= Vµ

∂µ

∂x
+ Vv

∂v

∂x
= 0

or equivalently

∂µ

∂x
/
∂v

∂x
= α(µ, v). (1)

Condition (1) indicates that the portfolio frontier (or transformation curve) with slope

∂µ
∂x/

∂v
∂x must be tangent to an indifference curve with slope α at the optimum. In what follows,

9As shown by Lajeri-Chaherli (2002), this condition together with DARA preferences (αµ < 0) is equivalent
to the concept of proper risk aversion, which is more demanding than risk vulnerability.
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we disregard the analysis of corner solutions and we assume that the second-order condition

∂2U(x∗,e0)
∂x2 ≤ 0 is satisfied.10

Since ∂µ
∂x = R̄− ε̄ > 0, it follows from (1) that necessarily ∂v

∂x > 0 at the optimum. Hence,

(1) can be rewritten as:

∂µ

∂x
= α

∂v

∂x
. (3)

At the optimum, the marginal benefit of x, which is measured by the marginal impact of

x on the mean wealth (∂µ∂x > 0), is equal to its marginal cost, which here corresponds to

the marginal increase in variance of wealth ( ∂v∂x) times the marginal willingness to pay for a

reduction in variance (α).

This result confirms that, in the presence of risk aversion, the initial allocation e0 impacts

the ex-ante choice x∗, which is in line with Hahn and Stavins (2011)’s result that the property

of the outcome being independent of the initial endowment does not hold in the presence of

risk aversion.11

4 The impact of initial water allocations

Providing an initial endowment of water e0 to the farmer introduces a background risk that

impacts his/her ex-ante decisions. We first describe the characteristics of this background

risk and then we show how these allocations impact the farmer’s optimal land use decision.

4.1 Fairness and desirability of the background risk

Contrary to EW, the background risk in our model is always fair as

∂µ

∂e0
= r̄ > 0,

10We actually prove in Appendix A that

∂2U(x∗, e0)

∂x2
≤ 0⇔ (ααµ + αv)

(
∂v

∂x

)2

+ α
∂2v

∂x2
≥ 0. (2)

Given the convexity of the variance with respect to x, the quasi-concavity of V (µ, v) is a sufficient condition
for (2) to hold.

11A risk-neutral producer (Vv = 0 ⇒ α = 0) would choose x∗ = 1 if R̄ > ε̄ and x∗ = 0 if R̄ < ε̄. If R̄ = ε̄,
the farmer is indifferent between allocating his land to the irrigated crop and the non-irrigated crop.
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i.e., a larger initial water allocation e0 always raises the expected ex-post wealth.12

The background risk is actually a risk only when its upscaling never decreases the variance

of final wealth:

∂v

∂e0
= 2e0vr + 2σrY (x) ≥ 0,

which happens if and only if the initial endowment is large enough for a given x:

e0 ≥ ẽ0(x) ≡ −σrY (x)

vr
. (4)

When condition (4) holds, we can equivalently say that the water endowment e0 is risk

increasing. If the opposite condition holds, the initial water endowment is said to be risk

decreasing.13

The background risk will be said to be undesirable if its marginal impact on utility is

negative. The marginal effect of the initial endowment e0 on utility is:

∂U(x, e0)

∂e0
= Vµ

∂µ

∂e0
+ Vv

∂v

∂e0

= Vµ

(
∂µ

∂e0
− α ∂v

∂e0

)
which holds for any x including x∗ due to the envelope theorem. The background risk created

by the water endowment is thus undesirable if and only if

∂µ

∂e0
≤ α ∂v

∂e0
, (5)

which allows the following proposition, which holds for any x including x∗, to be established:

Proposition 1 The fair background risk created by the water endowment e0 is undesirable

if and only if it is sufficiently risk increasing ( ∂v∂e0 ≥
r̄
α > 0).

We are able to show that, at the optimum x = x∗(e0), low values of e0 are risk reducing

and large values are risk increasing, with ambiguity in between (see Appendix B).

12EW focus on unfair background risks, as does most of the literature.
13Note that assuming σ′rY (x) = σrR − σrε < 0 implies that the threshold level ẽ0(x) is larger when x rises.

In other words, a larger land share devoted to the irrigated crop implies that the water endowment is more
often risk decreasing.
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4.2 Impact of the initial allocations on farmers’ land use choices

Following EW, differentiating (1) with respect to e0 and using the second-order condition

allows us to establish that:

∂x∗

∂e0

s
=

(
−αµ

∂µ

∂e0

)
︸ ︷︷ ︸

ME

+

(
−αv

∂v

∂e0

)
︸ ︷︷ ︸

VE

+

(
− α
∂v
∂x

∂2v

∂x∂e0

)
.︸ ︷︷ ︸

CE

(6)

As shown in (6), the marginal impact of e0 on the optimal allocation of land can be

decomposed into three terms: a mean effect (ME); a variance effect (VE); and a correlation

effect (CE). These are discussed in turn.

1. The mean effect (ME): it is always positive under DARA preferences (αµ < 0) since the

background risk is fair ( ∂µ∂e0 = r̄ > 0). Intuitively, increasing e0 implies a larger positive

background wealth and hence, under DARA preferences, it is optimal for the farmer to

take more risk by allocating more land to the (riskier) irrigated crop.

2. The variance effect (VE): under variance vulnerability (αv > 0), the sign of the variance

effect is positive when e0 is risk decreasing and negative when e0 is risk increasing.

3. The correlation effect (CE): at the optimum x∗ is risk increasing ( ∂v∂x > 0) and we have

∂2v

∂x∂e0
= 2σ′rY (x∗) = 2 (σrR − σrε) ,

σrR < 0 and σrε < 0. Hence, when the water price is more negatively correlated with R

than with ε (σrR − σrε < 0), the correlation effect is positive and pushes x∗ up.14 The

intuition is the following: an increase in e0 raises the background risk which induces

the risk-averse agent to diversify his portfolio by investing more in the asset that is

more negatively correlated with the background risk, in our case the irrigated crop (if

we assume σrR < σrε < 0).

14Conversely, if the water price were more negatively correlated with the non-irrigated crop, then the
correlation effect would be negative. It would be zero if σrR = σrε.

12



When e0 is risk decreasing at the optimum, the overall effect is positive since all three

components push x∗ up. When e0 is risk increasing, the variance effect is negative and the

sign of the combined effect is ambiguous.15

These findings are summarized in the following proposition.

Proposition 2 Under the assumption that the water price is more negatively correlated with

the return of the irrigated crop, an increase in the background risk (induced by a larger water

endowment) induces the farmer to increase the share of irrigated land (x):

(i) when the water endowment is risk decreasing at the optimum; or

(ii) when the water endowment is risk increasing at the optimum, if and only if the correlation

effect and the mean effect are strong enough to outweigh the variance effect (i.e. CE +

ME > −V E > 0).

5 Introducing the possibility of forward trading

In this section we investigate how a farmer’s land allocation decision is impacted if the farmer

has the possibility of buying or selling all, or a portion of, his initial water endowment on a

forward market. The theoretical model described in the preceding section is extended and

includes two ex-ante decisions, i.e. decisions made by the farmer at the start of the growing

season before the uncertainty is resolved: (1) how much land to allocate to the irrigated crop

(xf ) and (2) the quantity of water to be traded (either bought or sold) on the forward market

(y).

15Reinterpreting Proposition 4 in EW, it is possible to show that when e0 is undesirable and when preferences
exhibit properness, then the negative variance effect always outweighs the positive mean effect. Indeed,
multiplying both sides of (5) by −αµ > 0 (DARA preferences) and adding −αv ∂v

∂e0
to both sides of the

inequality, we obtain:

−αµ
∂µ

∂e0
− αv

∂v

∂e0
≤ −(αµα+ αv)

∂v

∂e0
≤ 0.

The last component of the inequality follows from the quasi-concavity of V (αµα+αv > 0) and from ∂v
∂e0

> 0.

13



5.1 Farmers’ ex-post wealth

With forward trading, the farmer can trade a quantity of water ex-ante at a known and fixed

market price rf , so his ex-post (final) wealth is:

wf = w0 + xfR+ (1− xf )ε− rf (y − e0) + ry, (7)

where y is the post-trade water endowment. The initial endowment e0 now only generates

a non-random wealth effect, its value being the certain price rf , except of course when the

farmer decides not to intervene on the forward market (y = e0). The farmer can manage his

exposure to the risk r through his choice of both xf and y (the farmer can choose to be a

buyer if y > e0 or a seller if y < e0).

We denote µf the expectation of final wealth under forward trading, which is written:

µf (xf , y) = w0 + rfe0 + xf R̄+ (1− xf )ε̄+ y(r̄ − rf )

= µ(xf , y) + rf (e0 − y) .

The expected wealth µf with forward trading is equal to the expected wealth µ without

forward trading where e0 is replaced by y, plus an additional term rf (e0 − y) that is positive

if the producer is a seller and negative if he/she is a buyer.

The variance of the final wealth vf is written as the variance v without forward trading

except that the initial endowment e0 is being replaced by the post-trade endowment y:

vf (xf , y) = xf
2vR + (1− xf )2vε + y2vr + 2xf (1− xf )σεR + 2xfyσrR + 2(1− xf )yσrε

= v(xf , y).

Note that the introduction of the forward market enlarges the decision set of the farmer.

As a consequence, the farmer’s utility is weakly increasing at the optimum compared to the

situation without forward trading and the farmer can always reach his/her former utility level

by not intervening on the forward market.
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5.2 A farmer’s optimal decisions on land use and forward trading

With forward trading, the problem for a risk-averse farmer is to maximize his/her utility

U(xf , y; e0) ≡ V (µf (xf , y), vf (xf , y)) over two decision parameters: the share of land allo-

cated to the irrigated crop (xf ); and the quantity of water traded ex-ante on the forward

market (y). Whenever it exists, an interior solution (x∗f , y∗) is characterized by the two

following first-order conditions:

∂µf
∂xf
∂vf
∂xf

= α(µf , vf ) =

∂µf
∂y

∂vf
∂y

. (8)

Second-order conditions hold under proper risk aversion and provided correlation is not too

strong as shown in Appendix C.16

As in the situation without forward trading, the optimal choice of xf is such that the

farmer faces a trade-off between an increase in expected wealth (
∂µf
∂xf

= R̄ − ε̄ > 0) and an

increase in the variance of wealth (
∂vf
∂xf

> 0). Similarly for the optimal choice in terms of

trading on the forward market y∗,
∂µf
∂y = r̄ − rf and

∂vf
∂y have the same sign but this sign

depends on whether r̄ − rf is positive or negative.

When anticipations are biased upwards (rf > r̄), the farmer chooses y to equate his/her

marginal benefit in terms of a reduction in the variance of wealth with its marginal cost in

terms of expected wealth losses. Conversely, when anticipations are biased downwards, an

increase in y leads to a marginal benefit in terms of expected wealth and a marginal cost in

terms of increased variance. Lastly, when anticipations are not biased (rf = r̄), the post-

trade water endowment y∗ is chosen such that the variance of wealth is minimized, i.e.
∂vf
∂y = 0.

In what follows, we discuss conditions under which the farmer is a net buyer or a net seller

on the forward market. If we assume that U(xf , y) is concave in (xf , y), then it is possible

16Under risk neutrality (Vv = 0), only expected wealth matters and we straightforwardly obtain that when
anticipations are pessimistic with respect to r̄, i.e. biased upwards (rf > r̄), it is optimal to sell e0 ex-ante.
On the contrary, when anticipations are optimistic, i.e. biased downwards (rf < r̄), it is optimal to buy as
much water as possible ex-ante and to re-sell it ex-post. And when anticipations are unbiased (rf = r̄) forward
trading is of no interest and y∗ is indeterminate.
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to derive a simple condition upon which it is optimal to sell or buy on the forward market.

Consider the first-order derivative with respect to y and evaluated at y = e0:

dU

dy

∣∣∣∣
y=e0

s
=
∂µf
∂y

∣∣∣∣
y=e0

−
[
α(µf , vf )

∂vf
∂y

]
y=e0

dU

dy

∣∣∣∣
y=e0

s
= (r̄ − rf )− α∗

∂v(xf
∗, e0)

∂e0

where α∗ ≡ α(µ(xf
∗, e0), v(xf

∗, e0)) because xf
∗ is optimal if y = e0.

Given concavity, if dU
dy

∣∣∣
y=e0

> 0, then y∗ > e0 necessarily and the producer will be a buyer

on the forward market. Conversely, if dU
dy

∣∣∣
y=e0

< 0, then y∗ < e0 and the producer will be a

seller.

Proposition 3 If rf < r̄ − α∗
∂v(xf

∗,e0)
∂e0

then the producer is a net buyer on the forward

market. If rf > r̄ − α∗ ∂v(xf
∗,e0)

∂e0
then the producer is a net seller on the forward market. If

rf = r̄ − α∗ ∂v(xf
∗,e0)

∂e0
then the producer is not active on the forward market.

Intuitively, under risk neutrality, the position on the forward market, whether buyer or

seller, only depends on whether r̄−rf is positive or negative. By contrast, under risk aversion,

being a buyer or a seller also affects the variance of final wealth. Locally at y = e0, this effect

depends on whether the water endowment is risk increasing or risk decreasing. In the case

of risk increasing allocations ( ∂v∂e0 > 0), risk aversion gives incentives to become a seller on

the forward market. It follows that it is only if anticipations are sufficiently pessimistic, i.e.

biased downward so that rf < r̄ − α∗ ∂v∂e0 , that it is optimal to act as a buyer when e0 is risk

increasing. With unbiased expectations, a risk-averse producer will be a seller when ∂v
∂e0

> 0.

Conversely, when e0 is risk decreasing, then risk aversion more often makes the producer a

buyer. With unbiased expectations, a risk-averse farmer will be a buyer when ∂v
∂e0

< 0.

5.3 The impact of initial water allocations

We now turn to the comparative statics of the solution (x∗f , y∗) with respect to the initial

water endowment e0. First, note that the possibility of forward trading makes the initial
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allocation of water e0 always desirable because its value is no longer random.17

Deriving the system of first-order conditions (8) and rearranging, we obtain (cf. Appendix

D):

dx∗f
de0

s
= Uye0Uxy − Uxe0Uyy

s
= (r̄ − rf ) (σrε − σrR)︸ ︷︷ ︸

indirect correlation effect

+
(
R̄− ε̄

)
vr︸ ︷︷ ︸

direct mean effect

. (9)

The marginal impact of e0 on decision x∗f can be decomposed into a direct mean effect and

an indirect correlation effect, which allows the following proposition to be derived.

Proposition 4 An increase in the initial endowment e0 always induces the farmer to take

more risk in land use if and only if anticipations are either unbiased or optimistic or not too

pessimistic, i.e. rf ≤ r̄ + (R̄−ε̄)vr
(σrε−σrR) .

To understand this result intuitively, first consider that anticipations are unbiased. When

r̄ = rf , y∗ only aims at minimizing the variance and consequently the initial water allocation

whose value is non-random does not impact the marginal utility of y (Uye0 = 0). Hence,

only the positive direct effect −Uxe0Uyy
s
=
(
R̄− ε̄

)
vr remains in (9) and is explained by the

fact that raising e0 also raises the marginal utility of xf (Uxe0
s
= R̄ − ε̄ > 0). Intuitively, a

farmer with a larger e0 gets richer and, with DARA preferences, will find it optimal to take

more risk. This positive direct effect is similar to the mean effect identified in the absence of

forward trading (see Proposition 2).

Regarding the indirect effect (r̄ − rf ) (σrε − σrR), the intuition is the following. Suppose

that r̄ > rf , then being richer (through an increase in e0) stimulates the investment in y

that leads to a positive expected return, but at the expense of raising the background risk.

Concerning the correlation effect in Proposition 2, it is optimal to diversify the portfolio

by investing more in the asset that is more strongly negatively correlated with r, i.e. in xf

because σrε−σrR > 0. Conversely, when r̄ < rf , the indirect effect is negative since a positive

17Using the envelope theorem,

dU

de0
=

∂V

∂µf

∂µf
∂e0

=
∂V

∂µf
rf > 0, ∀e0.
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expected return can be obtained by selling some of the initial allocation, thereby reducing

the size of the background risk. It is only if anticipations are sufficiently pessimistic that the

indirect effect outweighs the positive direct effect.

Similarly, in Appendix D, we prove that:

dy∗

de0

s
= Uxe0Uxy − Uye0Uxx

s
=
(
R̄− ε̄

)
(σrε − σrR) + (r̄ − rf ) vR−ε.

Hence, a similar result to Proposition 4 holds for y∗, except that the condition is now:

rf ≤ r̄ +
(R̄− ε̄) (σrε − σrR)

vR−ε
.

The sign of the direct mean effect (r̄ − rf ) vR−ε depends on whether anticipations make it

worthwhile to invest or to disinvest in the water allocation. The indirect correlation effect(
R̄− ε̄

)
(σrε − σrR) is positive indicating that being richer due to an increase in e0 pushes xf

up and, by complementarity because of the correlation effect σrε − σrR > 0, gives incentives

to increase y.

Finally, using the first-order conditions (8), we are also able to show that the ex-ante

optimal production choice x∗f and the post-trade water endowment y∗ are linearly dependent

(cf. Appendix E). This linear dependence contrasts with the situation without forward

trading where the relationship between land use and water endowment was typically non-

linear.

5.4 Comparison of optimal land use with and without forward trading

We discuss whether the introduction of forward trading induces the farmer to take more risk

in terms of land use compared to the situation without forward trading. This could be the case

because the essence of forward trading is to manage the risk brought about by the initial water

endowment e0. Formally, we would like to compare x∗(e0) ∈ arg maxx V (µ(x, e0), v(x, e0))

with x∗f (e0) ∈ arg maxxf maxy V (µ(xf , y) + rf (e0 − y) , v(xf , y)). Unfortunately, there is no

general result in that perspective and the comparison remains an empirical issue. Nevertheless
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we can express the comparison result as the outcome of two potentially conflicting forces as

made clear below.

From (7), let us rewrite the final wealth as follows:

wf = w′0 + xfR+ (1− xf )ε+ ry

which is similar to the final wealth without forward trading, except that y replaces e0 (size

of the background risk) and that the non-random wealth is now w′0 = w0 + rf (e0 − y). For a

given post-trade allocation y, there are thus the two possibilities described below.

Consider first that the producer is a net buyer (y > e0) on the forward market. Compared

with the case without forward trading, he/she optimally chooses a lower non-random wealth

w′0 < w0 in exchange for a larger size for the background risk. Under DARA preferences, we

know that a lower non-random wealth would induce the producer to take less risk (wealth

effect). But under the conditions of Proposition 2 and assuming that the variance effect is

dominated by the mean and the correlation effects, a larger background risk would induce

the producer to take more risk, i.e. to increase the share of land allocated to the irrigated

crop. There is thus some ambiguity with respect to the impact of the buyer’s strategy on

the optimal choice with respect to xf depending on the relative magnitude of the wealth and

background risk effects.

Actually a similar trade-off exists when the producer is a net seller (y < e0). He/she

optimally chooses a higher non-random wealth w′0 > w0 in exchange for a lower size for the

background risk. Once again, there is ambiguity with respect to the impact on the optimal

choice for xf because, on the one hand, under DARA, a higher non-random wealth induces

the producer to take more risk while, on the other hand, according to Proposition 2, a lower

background risk may entail the producer to take less risk. To sum up, we have the following

proposition.

Proposition 5 If the farmer is a seller and if the background risk effect induces the farmer

to take more risk, then the forward market pushes xf up. If the farmer is a buyer and
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if the background risk effect induces the farmer to take less risk, then the forward market

diminishes xf . Otherwise, there is ambiguity and the outcome depends on the sign and the

relative magnitude of the wealth effect and the background risk effect.

If we assume further that U(xf , y; e0) is concave in (xf , y), then we can prove that when-

ever the forward market allows the marginal cost of xf expressed as α ∂v
∂xf

to be reduced,

then the farmer takes more risk with forward trading. To see this, denote ŷ(xf ) the opti-

mal post-trade endowment for a given land use xf . It is given implicitly by the first-order

condition:

∂µf (xf , ŷ(xf ))

∂y
= α(µf (xf , ŷ(xf )), vf (xf , ŷ(xf )))

∂v(xf , ŷ(xf ))

∂y
. (10)

For the sake of notation, we denote α̂∗ the value of α(µf (xf , ŷf (xf )), v(xf , ŷ(xf ))) when xf

is set equal to x∗(e0), the optimal share of irrigated land in the absence of forward trading.

Computing the first-order condition with respect to xf and evaluating it at xf = x∗(e0),

we obtain:

dU

dxf

∣∣∣∣
xf=x∗(e0)

s
=
∂µf
∂xf

∣∣∣∣
xf=x∗(e0)

− α̂∗∂v(x∗(e0), ŷ(x∗(e0)))

∂xf
. (11)

As
∂µf
∂x = ∂µ

∂x = R̄ − ε̄ whatever x and making use of the first-order condition (3) in the

absence of forward trading, we can rewrite (11) as the difference between the marginal cost

of land use x without and with forward trading:

dU

dxf

∣∣∣∣
xf=x∗

s
= α∗

∂v(x∗(e0), e0)

∂xf
− α̂∗

∂v(x∗(e0), ŷf (x∗(e0)))

∂xf

It follows that, by concavity, if dU
dxf

∣∣∣
xf=x∗(e0)

> (<)0, then this implies that x∗f > (<)x∗. We

conclude that the ability of forward trading to push x up depends on whether water trading

is able to decrease the marginal cost of x.18

18The ambiguity remains even in the case of unbiased expectations (r̄ = rf ). In that situation, we have
α∗ > α̂∗ because µ(x∗, e0) = µf (xf

∗, y∗), v(x∗, e0) < v(xf
∗, y∗) as y∗ minimizes the variance in that case and

because αv > 0. We also have that ∂2v/∂x∂y = 2(σrR − σrε) < 0. Hence, it is only if ŷ(x∗(e0)) > e0 that we
can conclude that x∗f > x∗.
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6 Illustrative simulations: the case of the MDB in Australia

In this section we use simulated data to quantify the impact of initial water allocations on a

farmer’s land allocation decisions between an irrigated crop and a non-irrigated crop under

conditions experienced in the MDB in Australia. We compare land allocation decisions with

and without forward trading, and under both normal and dry conditions. Prices of water

allocations are higher and yields and net benefits are lower in dry years compared to average

(or normal) years.19

6.1 Choice of distributions and parameters

We chose cotton as the irrigated crop and dry-land wheat as the non-irrigated crop under

normal conditions but irrigated wheat and dry-land wheat under dry conditions because

water-intensive crops such as cotton and rice are not usually grown in dry years.20 Our

model includes three non-independent random variables: r, the water price; R, the net

benefit per hectare for the irrigated crop; and ε, the net benefit per hectare for the non-

irrigated crop. The distribution of the price of water allocations was calibrated using water

trading data produced by the Australian National Water Commission (NWC). The NWC

database contains records of thousands of individual water trades (volume, price and date

of the transaction) in the MDB, from August 2007 until June 2010. From these data, an

average water price could be calculated weekly (weights equal to the volume traded in each

transaction were used to calculate the average). We calibrated the distribution of water

prices using the entire series for the normal conditions scenario since it encompasses episodes

of both lower-than-average and higher-than-average rainfall. For the dry conditions scenario,

calibration was based on the first half of the period from August 2007 to June 2009 which

was characterized by sustained lower-than-average rainfall. Data analysis and statistical tests

19At the start of the season farmers are informed about water storage in dams and the initial water allocation
also provides an indication of whether dry or normal conditions are expected over the season. So it is reasonable
to assume that farmers, when making their land allocation decisions, know whether a dry or a normal season
is more likely to prevail.

20When a drought prevails, the price of water allocations is high and cotton farmers are usually better off
not producing and selling their water allocations instead.

21



Table 1: Parameters for the distribution of r, R and ε
Variable Dry conditions Normal conditions

r Lognormal (mean = 5.91; std dev = 0.42) Lognormal (mean = 5.57; std dev = 0.61)
R Beta (2; 3.3) with bounds (-1,000; 1,200) Beta (1; 1.3) with bounds (0; 4,500)
ε Beta (2; 3.3) with bounds (-500; 240) Beta (2; 3.3) with bounds (70; 1,200)

r: price of water allocations (AUD/ML).

R: net return of the irrigated crop (AUD/ha).

ε: net return of the non-irrigated crop (AUD/ha).

showed that a two-parameter log-normal distribution provided a good fit of the water price

series.

Beta distributions are used to describe net returns of the irrigated and non-irrigated

crops. Shape parameters, lower and upper bounds of each of the four beta distributions

(cotton and dry-land wheat in normal conditions and irrigated wheat and dry-land wheat

in dry conditions) were determined based on reports on MDB farms’ performance published

by the Australian Bureau of Agricultural and Resource Economics (ABARE) for the dry

conditions scenario and the New South Wales Department of Primary Industries for the

normal conditions scenario.21 Table 1 provides a summary of the distributions and parameters

chosen for the two scenarios.

The three random variables are not independent: R depends on r (since r is the price of

one essential input) and we expect these two random variables to be negatively correlated.

We set the Spearman rank correlation coefficient at ρ1(r,R) = −0.3. If uncertainty in the

non-irrigated activity is mainly driven by rainfall patterns, we expect the net benefit per

21Beta and log-normal distributions are commonly used to describe distributions of crop yields, which are
often assumed to be skewed (Babcock and Hennessy, 1996). However, there is not much discussion in the
literature on the distribution of agricultural net returns. We chose the beta distribution based on official
statistics for crop farms from the MDB, reporting margins for various crops. Using data from the ABARE
survey of MDB irrigation farms in 2006-2007, Hughes, Mackinnon, and Ashton (2009) estimated net returns
per hectare for various crops and reported quartiles of their respective distributions. Estimated returns per
hectare are defined as farm cash receipts less estimated unit costs and hence can be compared to the net
benefit per unit of land used in our model. These estimates were used to calibrate the beta distributions of
the net returns of irrigated wheat and dry-land wheat under the dry conditions scenario, since 2006-2007 was
characterized by a severe drought and historical low water allocations. For the normal conditions scenario,
we used estimations of gross margins reported by the New South Wales Department of Primary Industries
for (irrigated) cotton and dry-land wheat; available at http://www.dpi.nsw.gov.au/content/agriculture/farm-
business/budgets (accessed 25 March 2017).
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Table 2: Average values of the main parameters, 50 draws
Parameter Dry conditions Normal conditions

R̄ -181 1,936
ε̄ -223 351
r̄ 403 315
σR 351 1,056
σε 124 190
σr 174 209
σεR 2,595 10,530
σrR -18,298 -60,685
σrε -4,452 -7,526

hectare of the non-irrigated activity (ε) to be lower (due to a lower yield) when rainfall is

scarce and hence when r is high. We thus also expect a negative correlation between ε and

r. We set the Spearman rank correlation at ρ2(ε, r) = −0.2. In order to generate pairs

of random variables with some degree of dependence, we follow the procedure described in

Johnson and Tenenbein (1981); see Appendix F for greater details.22

For both the normal and dry conditions scenarios, our simulation results are averages

calculated over 50 draws of the following set of parameters: R̄, ε̄, r̄, σε, σR, σr, σεR, σrR and

σrε. Average values for these parameters under the dry and normal conditions are shown in

Table 2.23

In order to simulate our theoretical model, values also need to be chosen for the following

parameters:

• Initial farmer’s wealth: we set initial wealth (w0) at 5,000,000 AUD. This corresponds

to the (farm average) total value of capital in fiscal year 2007-2008 for the irrigated

broadacre farms in the MDB (Ashton, Hooper, and Oliver, 2010).

• Total farm land: we set total land (L) at 2,000 hectares. This corresponds to the average

area operated on broadacre irrigated farms in the MDB in fiscal year 2007-2008 (Ashton

and Oliver, 2011).

22This approach was used in Babcock and Hennessy (1996) to simulate price and crop yields.
23The results were almost unchanged when we increased the number of draws to 100 or 150.
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• Initial water allocation: we set initial allocations (e0) at 2 megaliters (ML where 1ML

equals 1 million liters) per hectare in the dry conditions scenario and at 3 ML per hectare

in the normal conditions scenario. These figures were chosen based on the average water

use for pastures and cereal crops in the MDB as reported by the Australian Bureau of

Statistics.24

Under the above assumptions, the value of the initial water allocations (calculated using

the average water price) represents 32% of the farmer’s initial wealth under dry conditions

and 38% under normal conditions, which reflects the fact that the risk borne by farmers due

to the uncertain water price is important relative to the non-random part of their wealth.

Finally we need to specify the mean-variance function. We chose a functional form for

V such that all assumptions made in the theoretical section are satisfied: Vµ > 0, Vv < 0,

Vµµ < 0, Vvµ > 0, αµ < 0, and αv > 0. Under these assumptions, farmers are characterized

by DARA preferences and variance vulnerability. We assume:25

V (µ, v) = − 1

µ4 − 500v2
.

6.2 Simulation results

We varied the level of initial water allocations (e0) from 0 to 5 ML/ha (in steps of 0.1 ML).

For each level of e0 we searched for the proportion of land allocated to the irrigated crop (x)

that maximized the mean-variance utility function. In each case we checked that the utility

function satisfied the concavity condition.

In Figure 1a we show how the optimal land allocated to the irrigated crop (x∗) varied for

different levels of the initial water allocation (e0) with and without forward trading under

normal conditions. Similarly, Figure 1b shows how the optimal land allocation to the irrigated

crop varied under dry conditions. We assumed unbiased expectations on the forward market.

24See http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4618.0main+features62011-12, accessed 20 April
2016.

25We tried a number of values for the γ parameter and selected the one such that all the above theoretical
assumptions about farmers’ preferences were satisfied and which permitted finding an optimal solution in
terms of the land allocated to the irrigated crop.
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Under normal conditions and without forward trading (dotted line in Figure 1a), the optimal

share of irrigated land increased with the level of initial water allocations up to a level e0 =3.3

ML/ha and followed a very moderate decreasing trend for higher levels of water allocations.

The share of irrigated land was close to 65% when water allocations were at their maximum

(e0 =5 ML/ha). Initial water allocations were found to be risk-increasing in 95% of the

cases (see condition (4)) so the impact of the initial endowment on the share of irrigated

land depended on the relative magnitude of the correlation effect (CE), mean effect (ME)

and variance effect (VE) as described in Proposition 2. As shown in Figure 2a, the variance

effect (VE) outweighed the correlation effect (CE) and the mean effect (ME) for values above

e0 =3.3, which explains the (moderate) decreasing trend in the share of irrigated land for

initial water allocations greater than 3.3 ML/ha.

Under dry conditions and without forward trading (dotted line in Figure 1b), the share

of irrigated land increased for water allocations up to e0 =0.7 ML/ha, decreased for values

of e0 above 0.8 ML/ha and below 1.6 ML/ha, and followed an upward trend for values above

e0 =1.6 ML/ha. Similarly to the normal conditions scenario, the initial endowment was

risk-increasing in almost all cases (94%) so the (positive or negative) impact of the initial

water allocations on the share of irrigated land was driven by the relative magnitude of the

correlation, mean, and variance effects. As shown in Figure 2b, the variance effect outweighed

the mean and correlation effects for values of e0 = above 0.8 ML/ha and below 1.6 ML/ha.

Above 1.6 ML/ha, the correlation effect followed a sharply increasing trend: the increase in

the initial water endowment increased the background risk and induced the farmer to allocate

more land to the irrigated crop because it was more strongly negatively correlated with the

background risk than the rain-fed crop.

The possibility of forward trading induced the farmer (whose anticipations are unbiased)

to allocate more land to the irrigated crop when the level of initial water allocations increased

under both normal and dry conditions, which confirms Proposition 4. In most cases, the

possibility of forward trading increased the share of irrigated land compared to the situation
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with no forward market. When the level of water allocations was set at 5 ML/ha, the optimal

share of irrigated land with forward trading was about 20-25% above the optimal share of

irrigated land without any forward trading.

Finally, we calculated the risk premium (RP); that is, the amount of money that the

farmer was willing to pay to avoid any risk (in our case, to make the variance of the final

wealth equal to zero). The risk premium (RP) is such that:

V (µ, v) = V (µ−RP, 0).

In Figures 3a and 3b we show the average risk premium (expressed as a percentage of mean

wealth) calculated at the optimum for each level of initial water allocations under normal

and dry conditions, respectively. Under both normal and dry conditions, the risk premium

increased with the initial water endowment when forward trading was not permitted (dotted

lines). It was relatively moderate for small levels of initial water allocations (e0 lower than

1.5 ML/ha): around 6-7% of mean wealth under normal conditions without forward trading

and almost zero under dry conditions. The risk premium increased significantly for values

of initial water allocations above 1.5 ML/ha to reach 30% (of mean wealth) under normal

conditions and 44% under dry conditions, when the level of initial water allocations was at

its maximum (5 ML/ha). The introduction of forward markets (plain lines in Figures 3a and

3b) made the risk premium almost constant over all levels of initial water allocations.

7 Conclusion

This article provides some new insights into risk-averse farmers’ behavior when farmers face

production risk due to the uncertainty of future weather and when irrigation water can be

traded on a market. Water markets have been shown to improve the efficiency of resource

and risk sharing when water is scarce but in this article we focus instead on the role of initial

water allocations as a background risk (induced by the uncertainty about the market price

of water). We consider a risk-averse farmer who grows an irrigated crop and a non-irrigated
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crop and receives an initial water endowment at the start of the season. In this context, the

expected net returns of the two crops are unknown ex-ante because of the uncertain amount

of irrigation water and rainfall that will be available over the season; these random net returns

are also likely to be correlated with the background risk. We show that risk-averse farmers’

decisions about land allocation between the irrigated and non-irrigated activities depend on

whether the background risk is decreasing or increasing at the optimum, and on the relative

magnitude of three effects (labelled mean, variance, and correlation effects). These findings

are similar to those established by EW for a risk-averse agent owning a portfolio with two risky

assets in the presence of a background risk. However the background risk is fair in our setting,

which differs from EW’s framework. We then extend the model to allow farmers to trade

water ex-ante (at the start of the season) at a known price. Our theoretical findings show

that the impact of the initial water endowment on land allocation decisions is ambiguous

in most cases and depends on whether farmers’ anticipations are unbiased, pessimistic or

optimistic. To illustrate our main theoretical findings and get a sense of the magnitude of

the effects, we ran simulations that are representative of conditions experienced by irrigated

farms located in the MDB in Australia. We distinguished two sets of conditions: normal (or

average) conditions and dry conditions. Under dry conditions, water prices were higher on

average and yields of both the irrigated and the non-irrigated crops were lower than under

average conditions. We specified a mean-variance utility function that has properties which

are in line with the assumptions made in the theoretical section. We were able to show how

the share of irrigated land varied with the level of initial water allocations under both normal

and dry conditions, with and without forward trading. We were also able to quantify the risk

premium farmers are willing to pay to avoid the variability of their final wealth.

Our theoretical results are derived under the assumption that farmers make decisions

considering only the first two moments of the distribution of their wealth (mean and variance).

The mean-variance framework was chosen in order to be able to derive analytical results but

we are aware that this assumption might be strong since there is empirical evidence that
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farmers are sensitive to downside risk in some situations;26 see for example Kim et al. (2014)

for rice farmers in Korea, and Zuo, Nauges and Wheeler (2015) for Australian farmers.

Another caveat of our analysis is that simulations with forward trading are made under

the assumption that farmers have unbiased expectations about the future water price, which

might be another strong assumption.

Finally, our theoretical model shows how initial water allocations impact risk-averse farm-

ers’ land use decisions. An interesting avenue for future research would be to study the

regulator’s choice of the initial water allocations to be granted to the farmers so that social

welfare is maximized. The latter should not only account for the impact on farmers’ wealth

but should also include the costs and benefits for the environment of the chosen level of

water allocations and subsequent farmers’ decisions in terms of land allocation and quantity

of irrigation water used.
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Appendix

A Second-order condition

Deriving the first-order condition

∂U(x∗, e0)

∂x
= Vµ

∂µ

∂x
+ Vv

∂v

∂x
= 0 (12)

we obtain:

∂2U(x∗, e0)

∂x2
= Vµµ

(
∂µ

∂x

)2

+ 2Vµv
∂µ

∂x

∂v

∂x
+ Vv

∂2v

∂x2
+ Vvv

(
∂v

∂x

)2

=
∂µ

∂x

(
Vµµ

∂µ

∂x
+ Vµv

∂v

∂x

)
+
∂v

∂x

(
Vµv

∂µ

∂x
+ Vvv

∂v

∂x

)
+ Vv

∂2v

∂x2
. (13)

From α = −Vv/Vµ, we deduce that:

αµ = −(αVµµ + Vµv)/Vµ

αv = −(αVµv + Vvv)/Vµ.

Replacing in (13) and using (12), we get

∂2U(x∗, e0)

∂x2
= −Vµ (ααµ + αv)

(
∂v

∂x

)2

+ Vv
∂2v

∂x2

= −Vµ

[
(ααµ + αv)

(
∂v

∂x

)2

+ α
∂2v

∂x2

]
.

Hence, ∂2U(x∗,e0)
∂x2 ≤ 0 is equivalent to (ααµ + αv)

(
∂v
∂x

)2
+ α ∂

2v
∂x2 ≥ 0.

B Risk-increasing vs. risk-decreasing initial allocations

We study the case of e0 being risk increasing (or risk decreasing) at the optimum. When

x = x∗(e0), condition (4) can be rewritten as:

∂v

∂e0
= 2e0vr + 2σrY (x∗(e0)) ≥ 0⇔ e0 ≥ −

σrY (x∗(e0))

vr
(> 0). (14)

The sign of ∂v
∂e0

is the outcome of two conflicting forces. On the one hand, because r is

random (vr > 0), its volatility increases the variance of wealth with a magnitude that depends
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on e0. On the other hand, because there is a negative correlation between the background

risk and the remaining wealth Y , an increase in the size of the background risk also reduces

the variance of wealth.

Also, observe that:

∂v

∂e0

∣∣∣∣
e0=0

= 2σrY (x∗(0)) < 0

and

lim
e0→∞

∂v

∂e0
= +∞

because σrY (x∗(e0)) = σrRx
∗(e0) + σrε(1 − x∗(e0)) is bounded from above and below. It

follows that in the neighborhood of e0 = 0 the initial allocation is risk decreasing. On the

contrary, when e0 is sufficiently large, the initial allocation is risk increasing. More precisely,

the following result is established:

Proposition 6 Denote e0 the lowest (positive) root of the continuous function h(e0) ≡ e0 +

σrY (x∗(e0))
vr

. Then, e0 ∈ (−σrε
vr
,−σrR

vr
) and

(i) when e0 ∈ (0, e0), e0 is risk decreasing, and

(ii) when e0 >
−σrR
vr

, e0 is risk increasing.

Proof: Introducing σrY (x∗(e0)) = σrRx
∗(e0) + σrε(1− x∗(e0)) in (14), we get:

∂v

∂e0
≥ 0⇔ x∗ ≤ vre0 + σrε

σrε − σrR
.

Then if e0 > −σrR
vr

> 0, we have vre0+σrε
σrε−σrR > 1 and it follows that on this range ∂v

∂e0
> 0 (part

(ii)). Similarly, if e0 ∈ (0,−σrε
vr

), then vre0+σrε
σrε−σrR < 0 and consequently by continuity ∂v

∂e0
< 0

for e0 ∈ (0, e0) (part (i)).

This confirms that low values of e0 are risk reducing and large values are risk increasing.

In between, there is ambiguity depending on the number of roots for h(e0). In particular,

if there is a unique root, namely e0, then the initial allocation is risk reducing up to the
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threshold e0, and then risk increasing above.27 Otherwise, there is an odd number of roots

and e0 is alternately risk increasing and risk decreasing on the range (e0,
−σrR
vr

).

C Second-order conditions under forward trading

From the first-order conditions

∂U(x∗f , y
∗; e0)

∂xf
= Vµ

∂µf
∂xf

+ Vv
∂vf
∂xf

∂U(x∗f , y
∗; e0)

∂y
= Vµ

∂µf
∂y

+ Vv
∂vf
∂y

we get by derivation:

∂2U(x∗f , y
∗; e0)

∂x2
f

= Vµµ

(
∂µf
∂xf

)2

+ Vvv

(
∂vf
∂xf

)2

+ 2Vµv
∂µf
∂xf

∂vf
∂xf

+ Vv
∂2vf
∂x2

f

= −Vµ

[
(ααµ + αv)

(
∂vf
∂xf

)2

+ α
∂2vf
∂x2

f

]
≤ 0

using the same reasoning as in Appendix A and under quasi-concavity of V and convexity of

variance w.r.t. xf . Similarly, we get:

∂2U(x∗f , y
∗; e0)

∂y2
= −Vµ

[
(ααµ + αv)

(
∂vf
∂y

)2

+ α
∂2vf
∂y2

]
≤ 0.

Also,

∂2U(x∗f , y
∗; e0)

∂y∂xf
= Vµµ

∂µf
∂xf

∂µf
∂y

+ Vµv
∂µf
∂xf

∂vf
∂y

+ Vvv
∂vf
∂xf

∂vf
∂y

+ Vµv
∂µf
∂y

∂vf
∂xf

+ Vv
∂2vf
∂xf∂y

and using the first-order conditions, this simplifies into

∂2U(x∗f , y
∗; e0)

∂y∂xf
= (Vµµα+ Vµv)α

∂vf
∂xf

∂vf
∂y

+ (Vµvα+ Vvv)
∂vf
∂xf

∂vf
∂y

+ Vv
∂2vf
∂xf∂y

= −Vµ
[
(ααµ + αv)

∂vf
∂xf

∂vf
∂y

+ α
∂2vf
∂xf∂y

]
recalling that αµ = −(αVµµ + Vµv)/Vµ and αv = −(αVµv + Vvv)/Vµ.

27It is easy to check that there is a unique root if and only if h(e0) is strictly increasing, given that h(0) < 0
and lime0→∞ h(e0) = +∞. Using (14), we get h′(e0) = 1 + σrR−σrε

vr

∂x∗

∂e0
assuming the derivative ∂x∗

∂e0
exists.

This indicates that there is a unique root to h(e0) if and only if x∗ is decreasing or does not increase too
quickly with e0, i.e. ∂x∗

∂e0
< vr

σrε−σrR
.
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Finally, we have by denoting ∆ = ααµ + αv,

∂2U(xf , y; e0)

∂x2
f

∂2U(xf , y; e0)

∂y2
−
(
∂2U(xf , y; e0)

∂y∂xf

)2

= V 2
µ

[
∆

(
∂vf
∂xf

)2

+ α
∂2vf
∂x2

f

][
∆

(
∂vf
∂y

)2

+ α
∂2vf
∂y2

]
− V 2

µ

[
∆
∂vf
∂xf

∂vf
∂y

+ α
∂2vf
∂xf∂y

]2

= α∆V 2
µ

((
∂vf
∂xf

)2 ∂2vf
∂y2

+

(
∂vf
∂y

)2 ∂2vf
∂x2

f

− 2
∂vf
∂xf

∂vf
∂y

∂2vf
∂xf∂y

)
(15)

+α2V 2
µ

[
∂2vf
∂x2

f

∂2vf
∂y2

−
(
∂2vf
∂xf∂y

)2
]
.

We now show that the variance vf is convex in xf and y. First, we have
∂2vf
∂y2 = 2vr > 0 and

∂2vf
∂x2
f

= 2vR−ε > 0. Moreover,

∂2vf
∂x2

f

∂2vf
∂y2

−
(
∂2vf
∂xf∂y

)2

= 4vR−εvr − 4 (σrR − σrε)2

= 4vR−εvr(1− ρ2
r,R−ε) > 0

where ρr,R−ε = cov(r,R − ε)/√vR−εvr denotes the coefficient of correlation between r and

R − ε. It follows that (15) is positive provided that
∂2vf
∂xf∂y

= 2(σrR − σrε) < 0 is not too

strongly negative or equivalently for not too large correlations between the water price and

the net returns R and ε.

D Comparative statics

Denoting the partial derivatives as Ui = ∂U/∂i and Uij = ∂2U/∂i∂j for i, j ∈ {xf , y, e0}, the

system (8) can be rewritten as follows:

Ux = Vµ
∂µf
∂x

+ Vv
∂v

∂x
= 0 (16)

Uy = Vµ
∂µf
∂y

+ Vv
∂v

∂y
= 0 (17)

The total derivative of the system is:

dx∗f
de0

=
1

∆
(Uye0Uxy − Uxe0Uyy) (18)

dy∗

de0
=

1

∆
(Uxe0Uxy − Uye0Uxx) (19)
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where ∆ = UxxUyy − (Uxy)
2 > 0 (second-order condition).

Derivating (16) with respect to e0, we obtain:

Uxe0 = Vµµ
∂µf
∂x

∂µf
∂e0

+ Vµv
∂v

∂x

∂µf
∂e0

. (20)

Using (16), we have
∂µf
∂x = α and replacing in (20), together with

∂µf
∂e0

= rf , we get:

Uxe0 = rf
∂v

∂x
(αVµµ + Vµv)

= −αµVµrf
∂v

∂x
> 0.

Using a similar reasoning, we get for Uye0 at the optimum:

Uye0 = −αµVµrf
∂v

∂y

the sign of which depends on the sign of ∂v
∂y or equivalently on the sign of

∂µf
∂y = r̄ − rf .

Derivating (16) with respect to y, we can compute Uxy :

Uxy =

(
Vµµ

∂µf
∂y

+ Vµv
∂v

∂y

)
∂µf
∂x

+

(
Vµv

∂µf
∂y

+ Vvv
∂v

∂y

)
∂v

∂x
+ Vv

∂2v

∂x∂y

= (αVµµ + Vµv)
∂v

∂y

∂µf
∂x

+ (αVµv + Vvv)
∂v

∂y

∂v

∂x
+ Vv

∂2v

∂x∂y

by using (17). By noting that αVµµ+Vµv = −αµVµ and αVµv +Vvv = −αvVµ and using (17),

we obtain:

Uxy = −αµVµ
∂v

∂y

∂µf
∂x
− αvVµ

∂v

∂y

∂v

∂x
+ Vv

∂2v

∂x∂y

= − (ααµ + αv)Vµ
∂v

∂y

∂v

∂x
+ Vv

∂2v

∂x∂y

= −Vµ
(

(ααµ + αv)
∂v

∂y

∂v

∂x
+ α

∂2v

∂x∂y

)
the sign of which is ambiguous.

We can deduce from this formula the expression of Uxx by replacing y by x and the

expression of Uyy by substituting x with y :

Uxx = −Vµ

(
(ααµ + αv)

(
∂v

∂x

)2

+ α
∂2v

∂x2

)

Uyy = −Vµ

(
(ααµ + αv)

(
∂v

∂y

)2

+ α
∂2v

∂y2

)
.
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Both expressions are negatively valued under the assumption of quasi-concavity of V (., .).

Now taking all these expressions and replacing in (18), we get:

dx∗f
de0

s
= Uye0Uxy − Uxe0Uyy

s
= αµVµrf

∂v

∂y
Vµ

(
(ααµ + αv)

∂v

∂y

∂v

∂x
+ α

∂2v

∂x∂y

)
− αµVµrf

∂v

∂x
Vµ

(
(ααµ + αv)

(
∂v

∂y

)2

+ α
∂2v

∂y2

)
s
= αµVµrf

∂v

∂y
Vµ

(
α
∂2v

∂x∂y

)
− αµVµrf

∂v

∂x
Vµ

(
α
∂2v

∂y2

)
s
= αµVµrfVµ

(
∂µf
∂y

∂2v

∂x∂y
−
∂µf
∂x

∂2v

∂y2

)
Recall that αµ < 0, so that

dx∗f
de0

s
=
∂µf
∂x

∂2v

∂y2
−
∂µf
∂y

∂2v

∂x∂y
s
=
(
R̄− ε̄

)
vr + (r̄ − rf ) (σrε − σrR) .

Using symmetry, we deduce that:

dy∗

de0

s
=
∂µf
∂y

∂2v

∂x2
−
∂µf
∂x

∂2v

∂x∂y
s
= (r̄ − rf ) vR−ε +

(
R̄− ε̄

)
(σrε − σrR) .

E Linear dependence between the ex-ante optimal production
choice and the post-trade water endowment

Proposition 7 For interior solutions, the ex-ante optimal production choice x∗f and the post-

trade water endowment y∗ are linearly dependent with slope k :

dx∗f
dy∗

= k ≡
(R̄− ε̄)vr + (r̄ − rf ) (σrε − σrR)

(R̄− ε̄) (σrε − σrR) + (r̄ − rf ) vR−ε
(21)

Proof: From (8), we have

R̄− ε̄
v′Y (x∗f ) + 2y∗σ′rY (x∗f )

=
r̄ − rf

2y∗vr + 2σrY (x∗f )

Recall that σrY (x) = xσrR+(1−x)σrε and vY (x) = x2vR+(1−x)2vε+2x(1−x)σεR. Hence,

replacing and rearranging, we obtain that

x∗f =

[
(R̄− ε̄)vr + (r̄ − rf ) (σrε − σrR)

(R̄− ε̄) (σrε − σrR) + (r̄ − rf ) vR−ε

]
y∗ +

(R̄− ε̄)σrε + (r̄ − rf ) (vε − σεR)

(R̄− ε̄) (σrε − σrR) + (r̄ − rf ) vR−ε
.
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In the presence of forward trading, this relationship is affine. From (21), it is straightfor-

ward to establish that the slope is positive whenever rf is sufficiently small or large while it is

negative for intermediary values.28 In particular, when anticipations are not biased (rf = r̄),

the post-trade water endowment y∗ is chosen such that the variance of wealth is minimized,

i.e.
∂vf
∂y = 2y∗vr + 2σrY (x∗f ) = 0. We thus get a positive affine relationship between x∗f and y∗,

with slope:

k =
vr

σrε − σrR
> 0.

Hence, independently of the initial allocation e0, there is some complementarity between the

risky land use choice and the post-trade water allocation choice.

F Simulation of dependent random variables

The procedure described below allows us to generate pairs of dependent random variables

(r,R) and (r, ε) with levels of dependence ρ1 and ρ2 respectively. We start by generating

two random variables r and R, where r and R follow a lognormal and a beta distribution,

(Fr(r) and FR(R)) respectively, with some degree of (positive) dependence between the two

variables. Following Johnson and Tenenbein (1981), let

U = U ′

and

V = c1U
′ + (1− c1)V ′

where U ′ and V ′ are identically independently distributed random variables with any com-

mon density function g(t), and c1 is a constant in the interval (0,1). We follow Babcock and

Hennessy (1996) and choose the standard normal distribution for g(t). Different values for

28More precisely, we have k ≥ 0 iff rf ∈ [0, r1] ∪ [r2,∞) where r1 =

min
(
r̄ + (R̄−ε̄)(σrε−σrR)

vR−ε
, r̄ + (R̄−ε̄)vr

(σrε−σrR)

)
> r̄ as σrε > σrR by assumption and r2 =

max
(
r̄ + (R̄−ε̄)(σrε−σrR)

vR−ε
, r̄ + (R̄−ε̄)vr

(σrε−σrR)

)
> r1. Conversely, k < 0 iff rf ∈ (r1, r2).
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the constant c1 yield different levels of dependence when dependence is measured by Spear-

man’s rank correlation coefficient, ρ1 (see Johnson and Tenenbein, 1981, for values of c1 and

corresponding correlation coefficient for different specifications of g(t)). Let r′ = H1(U) and

R′ = H2(V ) where H1(u) and H2(v) are the distribution functions of U and V , respectively.

It follows that:

r = F−1
r (r′) = F−1

r (H1(U))

and

R = F−1
R (R′) = F−1

R (H2(V ))

are positively correlated with Spearman’s rank correlation coefficient ρ1 depending on the

constant c1 chosen. For negatively correlated variables, R should be calculated as follows:

R = F−1
R (1−R′) = F−1

R (1−H2(V )).

We then propose repeating the same procedure to generate net returns for the non-

irrigated activity. Considering a random variable W and a constant c2 (and corresponding

Spearman’s rank correlation ρ2), we have

W = c2U
′ + (1− c2)W ′

and

ε = F−1
ε (ε′) = F−1

ε (H3(W )),

where W ′ is identically independently distributed standard normal variable and ε′ = H3(W )

is the marginal of W .
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Figure 1a: Optimal share of irrigated land under normal conditions (%) 

 

 

Figure 1b: Optimal share of irrigated land under dry conditions (%) 
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Figure 2a: Mean, variance, and correlation effects under normal conditions 

 

 

 

Figure 2b: Mean, variance, and correlation effects under dry conditions 
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Figure 3a: Optimal risk premium under normal conditions (% of mean wealth) 

 

 

Figure 3b: Optimal risk premium under dry conditions (% of mean wealth) 
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