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1 Introduction

Since the seminal works of Debreu (1959) and Arrow (1964), the theory of competitive

equilibrium in complete markets with rational agents has offered an elegant framework

with sharp implications: agents should share risk perfectly and only aggregate risk should

be priced (Borch (1962)). This theory led to a cornerstone of financial economics: the

consumption-based capital asset-pricing model (Rubinstein (1976), Lucas (1978), Breeden

(1979)). However, many empirical studies based on field data rejected this model (see, e.g.,

the surveys by Campbell (2003) and Ludvigson (2013)).

Is the theory rejected because real-world asset markets are imperfect and incomplete

(Grossman and Stiglitz (1980), Geanakoplos and Polemarchakis (1986))? Is it rejected

because it is difficult to measure risk in the field (Rietz (1988), Julliard and Ghosh (2012))?

Or is it rejected because human cognition and preferences do not conform to the standard

rational-choice paradigm (DeBondt and Thaler (1985), Shiller (2000))? It is important to tell

which of these three explanations is at play, because they have very different implications for

the study of financial markets: the first one calls for better models of market imperfections,

the second one for better empirical measures of risk, and the third one for alternative models

of human decision making. However, disentangling these three explanations using field data

is difficult because of measurement and identification issues.

We investigate these explanations using laboratory experiments in which markets are

complete and the level of individual and aggregate risk is controlled. In that context,

any deviation from rational-choice competitive equilibrium can be attributed to either

noncompetitive or imperfectly rational behavior. We design our experiments so that the

two hypotheses that participants are competitive and that they are rational can be tested

without making parametric assumptions on preferences. In our simple setting, with two

equiprobable states of nature and complete markets, without specifying preferences we can

identify if actions are first-order stochastically dominated, and also if they are second-order

stochastically dominated.

Our experimental market is designed to emulate the competitive-equilibrium framework:

we elicit supply and demand schedules from participants, which we can then aggregate, and

cross to determine market-clearing prices. We implement two within-subject experimental

treatments. The first treatment dimension is related to risk: there is aggregate risk in some

replications but not in others. This enables us to test the theoretical prediction that a risk

premium should arise if and only if there is aggregate risk. The second treatment dimension

is related to the market mechanism: the price is set by market clearing in some replications

whereas it is drawn at random in others, in the spirit of Becker et al. (1964). Comparing the

market-clearing and random-price treatments enables us to test, and reject, the hypothesis
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that participants behave noncompetitively.

We ran the experiment with 220 students at Toulouse University. There were thirteen

cohorts. Each cohort participated in a session consisting of eight independent replications of

the experimental market. Participants’ compensation was a linear function of their gains in

two randomly drawn replications. Payment per participant varied from e5 to e120, with an

average of e85.84. This is a significant amount relative to the average participant’s monthly

budget of e646.

At the individual level, we observe deviations from rationality: Around 25% of the

participants’ actions are first-order stochastically dominated.1 Such irrational actions lead to

noisy prices in small markets. Yet, simulations based on our experimental data show that, as

the number of participants grows large, market-clearing prices converge to equilibrium: when

there is no aggregate risk, the market-clearing price of the stock converges to its expected

dividend, whereas when there is aggregate risk there is a risk premium.

To reconcile these market- and individual-level findings, we develop and test a random-

choice model of bounded rationality in the spirit of Luce (1959) and McKelvey and Palfrey

(1995, 1998). In this model, the probability that an agent selects an action is increasing in her

utility from that action.2 Our random-choice model is nonparametric in that it does not rely

on parametric specifications of the agents’ preferences: the only assumptions are that agents’

utility is lower when they take first-order or second-order stochastically dominated actions

than when they take nondominated actions. Our random-choice model predicts that, as the

number of participants grows large, individual deviations from rationality should average out

and aggregate outcomes should converge to equilibrium. This is in line with our experimental

findings. Our random-choice model also predicts that dominated actions (“mistakes”) should

be less frequent than nondominated ones, and that large mistakes should be less frequent

than small ones. Again, this is in line with our experimental findings.

In order to quantify allocative efficiency in our experimental market, we then structurally

estimate the special case of our random-choice model arising for CRRA utility and logit

weighting. We find that around 80% of participants are better off participating in the

market than staying in autarky, whereas the remaining 20% are worse off. The latter are

frequently buyers purchasing too many shares of the stock at too high prices.

Related Literature Our work is in line with the seminal analyses of Bossaerts and Plott

(2004) and Bossaerts et al. (2007),3 with four key differences.

1Dominated actions, however, become less frequent with experience, a sign of learning.
2It is in general difficult to bring this type of model to the data, especially in the context of continuous

double auctions. In our simple experimental setting, however, agents actions are just the quantity offered or
demanded at any given price, which lends itself to random-choice modeling.

3Whereas our theoretical framework is static, Bossaerts et al. (2015), Asparouhova et al. (2016), and
Crockett et al. (2019) offer interesting analyses of equilibrium market dynamics.
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First, whereas Bossaerts and Plott (2004) and Bossaerts et al. (2007) study a continuous

double auction, we strive to emulate as closely as possible the competitive-equilibrium

framework. Eliciting supply and demand schedules and crossing them to determine market-

clearing prices enables us to test the theory, estimate model parameters, run simulations,

and compute counterfactuals.

Second, whereas Bossaerts and Plott (2004) and Bossaerts et al. (2007) consider a

three-state three-asset environment, in which they study diversification, we only consider

a two-state two-asset environment. This enables us to to avoid the difficulties associated

with the design of experimental markets in which several assets are traded simultaneously

(Bossaerts et al. (2002) and Asparouhova et al. (2024).) Moreover, focusing on the case

of equiprobable states enables us obtain sharp theoretical implications without making

parametric assumptions on participants’ preferences.

Third, whereas Bossaerts and Plott (2004) and Bossaerts et al. (2007) consider markets

in which there is always aggregate risk, we also consider a treatment in which there is no

aggregate risk but individual endowments are risky. This enables us to test the hypothesis

that, in complete markets with no aggregate risk, agents should bear no risk in equilibrium,

which should give rise to risk-neutral pricing.

Fourth, whereas Bossaerts et al. (2007) model an individual trader’s demand function

as the sum of a mean-variance optimal demand and of a noise term to capture unobserved

heterogeneity in preferences, we use a random-choice model to capture bounded rationality.

The random-choice model allows for a large class of preferences, such as expected utility with

arbitrary curvature or rank-dependent expected utility. In our simple experimental design,

the random-choice model imposes structure on the distribution of individual decisions, which

we confront to the experimental data.

Our analysis is also in line with the study of Crockett et al. (2021), who show that

aggregation pathologies in financial markets become less frequent as participants’ preferences

become more heterogeneous. Instead of manipulating preference heterogeneity as in Crockett

et al. (2021), we vary the number of participants. This enables us to show that aggregate

outcomes converge to equilibrium as the number of participants grows large.

Fattinger (2021) uses our experimental framework to study how ambiguity affects asset

pricing. He extends our design to include an asset with an ambiguous dividend and studies

how ambiguity affects supply and demand schedules, as well as the price of the asset.

The present paper is also related to the experimental literature studying the consequences

of risk aversion for economic and financial decisions. Holt and Laury (2002) observe lottery

choices consistent with risk aversion. Experimental findings also suggest that risk aversion is

prevalent in private-value auctions (Goeree et al. (2002)), asymmetric matching-penny games
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(Goeree et al. (2003)), and one-shot matrix games (Goeree and Holt (2004)). The majority

of participants in Holt and Laury (2002) have estimated relative risk aversion between 0.15

and 0.97. Estimates of the same order of magnitude have been found by Goeree et al.

(2002, 2003) and Goeree and Holt (2004). Our estimates are consistent with these findings,

although they are obtained in a very different economic environment.

Several interesting experimental studies focus on investment-allocation decisions (see,

e.g., Kroll et al. (1988), Kroll and Levy (1992), and Magnani et al. (2022)). In contrast

with these analyses, our paper studies how investment decisions determine market-clearing

prices, as well as the pricing and allocative efficiency of market outcomes.

Finally, our finding that participation in financial markets can be detrimental to welfare

is related to the findings of Barber and Odean (2000, 2001) that overconfidence can lead to

damageable excessive trading (see also Biais et al. (2005)).

The paper is organized as follows. Section 2 presents our experimental design. Section 3

derives the testable implications of rational-choice competitive equilibrium. Section 4 offers

a first analysis of our experimental data. Section 5 develops a random-choice model and

confronts its implications with our experimental data. Section 6 concludes. Proofs are in

the Appendix. The instructions for the experiment, as well as a robustness check, are in the

Online Appendix.

2 Experimental Design

We design our experimental financial market so as to study asset pricing, risk sharing, and

allocative efficiency in a setting in which the predictions from rational-choice competitive

equilibrium can be tested without imposing parametric restrictions on preferences.

Assets There are two equiprobable states of nature, ω = u, d, and two nonredundant

assets, a stock and a bond. Hence markets are complete. We restrict our attention to

equiprobable states so that theoretical predictions can be derived with minimal assumptions

on preferences.4 One unit of the bond pays 1 in each state of nature. One share of the

stock pays 120 in state u and 0 in state d. To implement complete markets in our two-state

experimental setting, it is enough to consider a single market on which the stock is traded

for the bond; i.e., we take the bond as the numéraire.5 We denote by S the price of the stock

in units of bond.

4As discussed in Section 3, our predictions are based on first-order stochastic dominance, representing the
choices of agents who prefer more to less consumption, and second-order stochastic dominance, representing
the choices of risk-averse agents.

5The mapping between our experimental setting and the underlying complete-market environment is
made explicit in Appendix A.1.
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Endowments Participants’ endowments come from initial holdings of the stock and of the

bond, and from additional state-contingent income. Participants can receive three types of

endowments:

1. Type 1 participants initially receive 5 shares of the stock and no bond. Their additional

income is 0 in state u and 360 in state d. Thus their endowments are 600 in state u

and 360 in state d.

2. Type 2 participants initially receive no share of the stock and 310 bonds. Their

additional income is 0 in state u and 240 in state d. Thus their endowments are

310 in state u and 550 in state d.

3. Type 3 participants initially receive no share of the stock and 310 bonds. They receive

no additional income. Thus their endowment is 310 in both states u and d.

We consider two treatments that enable us to test sharp predictions of the theory, as

explained in Section 3. In Treatment I, if the number of participants is even, there are only

Type 1 and Type 2 participants, in equal numbers; whereas, if the number of participants is

odd, there is one additional Type 3 participant. This treatment corresponds to a situation

with no aggregate risk: the sum of individual endowments is the same in state u as in state

d. Type 1 and Type 2 participants can fully hedge, by trading 2 shares each.6

In Treatment II, if the number of participants is even, there are only Type 1 and Type

3 participants, in equal numbers; whereas, if the number of participants is odd, there is one

additional Type 3 participant. This treatment corresponds to a situation with aggregate

risk: the sum of individual endowments is larger in state u than in state d.

Participants do not know that there are two treatments. In any replication of the

experiment, they are only informed of their own endowments and of the distribution of

the dividend. As emphasized by Bossaerts and Plott (2004), this is in line with the standard

competitive-equilibrium model, in which agents only rely on prices and rational expectations

about the distribution of asset payoffs.

Supply, Demand, and Prices We design our experimental financial market to closely

emulate the competitive-equilibrium model, in which each agent states how much she is

willing to sell or buy at each price, and the price is set to clear the market.

To simplify the task of participants in the experiment, we restrict Type 1 participants to

supply, and Type 2 and 3 participants to demand, nonnegative quantities of the stock. This

does not affect the equilibrium when all agents are competitive and risk-averse. A further

6If Type 1 participants sell 2 shares at price S, then their payoff in state u is (5−2)×120+2×S, which is
equal to their payoff in state d, (5−2)×0+2×S+360. If Type 2 participants buy 2 shares at price S, then
their payoff in state u is 2× 120− 2× S +310, which is equal to their payoff in state d, 2× 0− 2× S +550.
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simplification of the experiment is that participants are restricted to trade quantities no

larger than 4. These restrictions forbid short selling and borrowing, which, anyhow, do not

arise in equilibrium when agents are risk-averse.

Participants are asked which quantity of the stock they are willing to sell or to buy at

every point of a price grid. In our baseline experiment, the price grid ranges from 52 to

62 with unit increments. In our robustness experiment, the price grid ranges from 20 to 70

with increments of 5 units.7 These ranges include the expected value of the dividend, 60,

and allow for a discount to arise in compensation for risk. Whereas the price grid is discrete,

we allow participants to supply or demand any quantity of the stock in the interval [0, 4].

Thus participants can fine-tune their supply or demand, which enables them to equate to

the price their marginal willingness to sell or to buy.

Once supply and demand schedules have been elicited, it would seem natural to simply

aggregate and cross them to determine the market-clearing price. Two difficulties arise,

however. First, the discreteness of the price grid may prevent the market from clearing.

Second, participants may behave strategically and try to manipulate the price. To address

these issues, we consider the two following mechanisms:

1. In the call-market mechanism, the price is set to minimize the gap between supply

and demand.8 This is in line with the call-market mechanism in Smith et al. (1982),

McCabe et al. (1992), or Plott and Pogorelskiy (2017). The main difference is that,

in these studies, participants submit schedules of limit orders, whereas in the present

one they submit supply or demand schedules. Unlike those generated by limit-order

schedules, the supply and demand schedules we elicit need not be monotone.9 As

mentioned above, because we consider a discrete price grid, at the price minimizing

the gap between supply and demand, there is typically rationing. To make sure that

this consideration does not affect the participants’ choices, the experimenter supplies

or demands the quantity of stock needed to clear the market. Thus participants’

orders are fully executed. In practice, the additional supply or demand injected in

the market by the experimenter averaged to 6.52% of the quantity traded during the

call sessions. This way of handling potential mismatch between supply and demand is

most conducive to participants behaving as predicted by the competitive model.10

7We design the robustness experiment to study whether our results still hold when the stakes are larger
than in the baseline experiment. Indeed, because trading can occur at prices farther away from the expected
value of the dividend, the cost of mistakes is larger in the robustness than in the baseline experiment.

8In the very few instances in which several prices minimized the gap between supply and demand, we
drew one of them at random.

9In the standard competitive-equilibrium model too, demand functions may be nonmonotone, when
wealth effects are stronger than substitution effects.

10Using instead a rationing rule may have induced strategic behavior. For example, participants facing
prorata rationing could be tempted to inflate their demand.
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2. In the random-price mechanism, the price is randomly drawn from the price grid,

all prices being equiprobable. As in the call mechanism, participants’ orders are

fully executed. This mechanism is in line with the Becker et al. (1964) mechanism,

the difference being that participants in our random-price mechanism can trade any

quantity of the stock in [0, 4].

At the beginning of each replication of the experiment, all participants are told which

mechanism will be used to set the price. Strategic considerations could affect participants’

behavior when they know that the price will be set to minimize the gap between supply and

demand, but not when they know that the price will be randomly set. Therefore, comparing

actions in the two mechanisms enables us to test whether participants are competitive or

noncompetitive.

Implementation Our experiment includes 220 subjects, 141 for the baseline and 79 for

the robustness sessions. All subjects were students enrolled in the first year of Toulouse

University’s master in finance.11 There were eight cohorts in the baseline and five in the

robustness experiment. All cohorts participated in eight replications of the experiment,

lasting overall one and a half hour.12 Treatment I with no aggregate risk and Treatment II

with aggregate risk alternated during the eight replications. Also, for half of the cohorts,

prices were randomly set in the first four replications, whereas prices were set to minimize

the gap between supply and demand in the last four replications. For the other cohorts it

was the other way round, with random pricing in the last four replications. The details of

the experimental sessions are documented in Table 1 for the baseline sessions and in Table

OA.1 in the Online Appendix for the robustness sessions.

In each cohort, two of the eight replications were randomly drawn at the end of the

experiment, one from the replications in which the price was set to minimize the gap between

supply and demand and one from those in which the price was randomly set. As announced

at the start of the experiment, participants received the sum of their final earnings in these

two replications, divided by ten. The average individual payment was e85.84, the minimum

was e5, and the maximum e120. For comparison, we ran an anonymous survey among

the participants, asking them their monthly budget (including all expenses: housing, food,

leisure, ...). The average was e646. Thus the amount participants could make in the lab

and its variability were significant relative to their budget in the field.13

11These students came from different backgrounds. The majority studied management and had very
little exposure to microeconomics or financial theory. Some studied economics and had greater exposure to
microeconomics, but not to financial theory. Others studied engineering or mathematics.

12For one cohort, an operational problem prevented us from collecting the data in the last replication.
13Bossaerts and Plott (2004) compare participants’ behavior in experimental financial markets in the US

and in Bulgaria. The experimental design is the same in the two countries but monetary incentives are much
stronger in Bulgaria. They find qualitatively similar results in the US and in Bulgaria. In both countries
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In the baseline experiment, 68 participants were Type 1 sellers during all replications,

68 participants alternated between being Type 2 or Type 3 buyers, and 5 participants were

Type 3 buyers during all replications. In the robustness experiment, 38 participants were

Type 1 sellers, 38 participants alternated between being Type 2 or Type 3 buyers, and 3

were Type 3 buyers during all replications. The instructions for our experiment are provided

in the Online Appendix. The experiment was programmed on z-Tree (Fischbacher (2007)).

3 Testable Implications of Competitive Equilibrium

under Rational Choice

3.1 Individual Behavior

If lottery A is first-order stochastically dominated by lottery B, an agent whose preferences

are strictly increasing in state-contingent wealth prefers B to A. The corresponding class of

preferences is very large. It includes expected utility or rank-dependent expected utility

(Quiggin (1982)) with the only requirement that utility increases in wealth, or Fréchet

differentiable utility with increasing local utility functions (Machina (1982)). We shall refer to

agents with preferences in this class as FOSD agents. As explained below, our experimental

setting generates clear predictions for such agents. This enables us to experimentally test

the predictions from theory under mild restrictions on participants’ preferences.

We also examine the implications of agents’ preferences towards risk. An agent is

risk-averse if she prefers any lottery to a mean-preserving spread of that lottery. Conversely,

an agent is risk-loving if she prefers a mean-preserving spread of any lottery to that lottery.

In addition to risk aversion, for our equilibrium analysis we also rely on second-order risk

aversion (Segal and Spivak (1990)). For a small bet, the premium required by an agent

exhibiting second-order risk aversion is proportional to the square of the size of that bet.

Intuitively, this means that the agent is almost risk-neutral for small bets.

In our simple setting with two equiprobable states, the lotteries faced by the agents can

be expressed in terms of means and standard deviations, and this formulation facilitates the

comparison of the lotteries in terms of first-order stochastic dominance. Let W T (ω, q, S) be

the final wealth in state ω of a Type T agent trading a quantity q at price S. Because the

two states are equiprobable, her expected final wealth is

µT (q, S) ≡ 1

2
[W T (u, q, S) +W T (d, q, S)], (1)

with standard deviation

σT (q, S) ≡ 1

2
|W T (u, q, S)−W T (d, q, S)|. (2)

there is a risk premium. The main difference is that the risk premium is larger in Bulgaria.
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So, when W T (u, q, S) > W T (d, q, S),

W T (u, q, S) = µT (q, S) + σT (q, S) and W T (d, S) = µT (q, S)− σT (q, S),

and, when W T (u, q, S) < W T (d, q, S),

W T (u, q, S) = µT (q, S)− σT (q, S) and W T (d, q, S) = µT (q, S) + σT (q, S).

Thus the lottery faced by a Type T agent trading a quantity q at price S is

LT (q, S) ≡
(
µT (q, S) + σT (q, S),

1

2
;µT (q, S)− σT (q, S),

1

2

)
. (3)

In turn, this implies that, if µT (q, S) > µT (q′, S) but σT (q, S) = σT (q′, S), then LT (q, S)

first-order stochastically dominates LT (q′, S).14

Type 1 For a Type 1 agent, selling 2 + χ shares and selling 2 − χ shares lead to equally

volatile final wealth for all χ ∈ (0, 2]. However, when the price S of the stock is strictly lower

than its expected dividend of 60, selling 2 + χ shares leads to a lower expected final wealth

than selling 2− χ shares. The reverse holds when S is strictly higher than 60. By (3), this

implies that supplying 2+χ shares is first-order stochastically dominated by supplying 2−χ

shares for a Type 1 agent when S < 60, whereas the reverse holds when S > 60. Moreover,

if a Type 1 agent is risk-loving or risk-neutral, it is optimal for her to supply 4 shares at any

price S > 60 and 0 share at any price S < 60. Indeed, these extreme trades are those that

induce the most volatile final wealth and the highest expected final wealth.

What if the price S of the stock is equal to its expected dividend of 60? At this price,

a Type 1 agent is perfectly hedged if she exactly sells 2 shares. Any other trade generates

volatile final wealth and the same expected wealth. Thus, a risk-averse Type 1 agent finds

it optimal to exactly supply 2 shares at S = 60. In contrast, a risk-loving Type 1 agent

prefers to take as much risk as possible at S = 60, which can be achieved, indifferently, by

supplying 0 or 4 shares. Finally, a risk-neutral Type 1 agent is indifferent between all trades

in [0, 4] at S = 60. Together, these considerations lead to our first implication, whose proof

is in Appendix A.2.

Implication 1 The following holds:

(i) An FOSD Type 1 agent does not supply more than 2 shares at S < 60, nor supplies

less than 2 shares at S > 60. Moreover, if she is risk-loving or risk-neutral, then she

supplies 0 share at S < 60 and 4 shares at S > 60.

14First-order stochastic dominance obtains because the states u and d are equiprobable. For arbitrary
probabilities, first-order stochastic dominance does not always obtain. Hence, equiprobability is crucial to
obtain sharp testable implications. This is the reason why we use this feature in our experimental design.
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(ii) A risk-averse (respectively, risk-loving) Type 1 agent supplies 2 shares (respectively, 0

or 4 shares) at S = 60. A risk-neutral Type 1 agent is indifferent between all trades in

[0, 4] at S = 60.

To illustrate this implication, Panel A of Figure 1 depicts possible supply functions of

Type 1 agents in the price-quantity plane. The relevant quantities q are between 0 and 4,

and, in the baseline experiment, the relevant prices S are between 52 and 62. There are

four quadrants determined by the horizontal line q = 2 and the vertical line S = 60. It

follows from Implication 1 that the North-West and South-East quadrants are dominated

for an FOSD Type 1 agent. Moreover, a risk-averse Type 1 agent’s supply function must go

through the point (60, 2).

Type 2 Following the logic we used for Type 1 agents, we obtain a symmetric implication

for Type 2 agents.

Implication 2 The following holds:

(i) An FOSD Type 2 agent does not demand less than 2 shares at S < 60, nor demands

more than 2 shares at S > 60. Moreover, if she is risk-loving or risk-neutral, then she

demands 4 shares at S < 60 and 0 share at S > 60.

(ii) A risk-averse (respectively, risk-loving) Type 2 agent demands 2 shares (respectively, 0

or 4 shares) at S = 60. A risk-neutral Type 2 agent is indifferent between all trades in

[0, 4] at S = 60.

This implication is illustrated in Panel B of Figure 1, which mirrors Panel A.

Type 3 In contrast with Type 1 and Type 2 agents, a Type 3 agent starts with a risk-free

initial endowment. As a result, trading increases her exposure to risk. Therefore, no

prediction arises from first-order stochastic dominance arguments only. Nevertheless, as

shown in Appendix A.2, we obtain the following weaker implication, illustrated in Panel C

of Figure 1.

Implication 3 A risk-averse Type 3 agent demands 0 share at S ≥ 60, and a risk-loving

Type 3 agent demands 4 shares at S < 60.

3.2 Market Outcomes

Equilibrium outcomes at the market level depend on the treatment, i.e., on whether there

is no aggregate risk, as in Treatment I, or there is aggregate risk, as in Treatment II. If all

participants are FOSD second-order risk-averse agents, clear theoretical predictions obtain.
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Treatment I In Treatment I, there are N Type 1 participants, N Type 2 participants,

and possibly one Type 3 participant. By Implications 1–3, if all participants are risk-averse,

at S = 60 every Type 1 participant supplies 2 shares, every Type 2 participant demands 2

shares, and every Type 3 participant demands 0 share. As a result, S = 60 is an equilibrium

price, and the corresponding trading volume is 2N .

Is it the only equilibrium? At price S > 60, by Implication 1, aggregate supply by

FOSD Type 1 participants is at least 2N . Thus, by Implications 2–3, S > 60 can be an

equilibrium price only if at that price all Type 2 participants demand 2 shares. Now, if Type

2 participants are second-order risk-averse, then, for every small enough χ > 0, buying 2

shares at S > 60 is dominated by buying 2 − χ shares (Segal and Spivak (1990)). Indeed,

relative to the safe lottery obtained when buying 2 shares, buying 2−χ shares adds a small

gamble with positive expected payoff, which second-order risk-averse Type 2 participants

are willing to accept. Consequently, there cannot exist an equilibrium with a price strictly

above 60, and a symmetric argument rules out an equilibrium with a price strictly below 60.

These remarks yield our fourth implication, proved in Appendix A.2.

Implication 4 In Treatment I, if all participants are FOSD second-order risk-averse agents,

the equilibrium is unique and such that S = 60, Type 1 participants sell 2 shares, Type 2

participants buy 2 shares, and the Type 3 participant, if any, does not trade.

In Treatment I, aggregate wealth is constant across states. Thus, in equilibrium, risk-

averse agents perfectly hedge their risk exposure and the price of the stock is simply equal to

its expected dividend, so that there is no risk premium.15 When participants are expected-

utility maximizers with strictly concave differentiable utility functions, this is an instance

of the mutuality principle (Borch (1962)). In our simple experimental design, it obtains as

soon as participants exhibit second-order risk aversion.

Treatment II In Treatment II, there are only Type 1 and Type 3 participants. Now,

by Implication 1, at any price S ≥ 60, a risk-averse FOSD Type 1 participant supplies at

least 2 shares, and, by Implication 3, a risk-averse Type 3 participant demands 0 share.

Thus there exists no equilibrium such that S ≥ 60. Nevertheless, if all participants are

FOSD risk-averse agents, then their preferences are monotone and convex in state-contingent

wealth, and standard equilibrium-existence results apply.16 As shown in Appendix A.2, this

15Whereas the equilibrium analysis underlying Implication 4 is conducted in a perfect market, with con-
tinuous prices, it also applies in our experimental setting with a discrete price grid, because the equilibrium
price S = 60 belongs to the price grid.

16Uniqueness of equilibrium is not guaranteed in general, but if participants are risk-averse expected utility
maximizers with relative risk aversion at most equal to 1, then substitution effects dominate income effects
and the equilibrium is unique. This is because this condition ensures that the aggregate excess-demand
function for state-contingent wealth satisfies the gross-substitute property (Mas-Colell et al. (1995, Example
17.F.2 and Proposition 17.F.3)).
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yields the following implication.

Implication 5 In Treatment II, if all participants are FOSD risk-averse agents, then there

exists an equilibrium such that S < 60 and the quantity traded per agent is lower than 2.

The gap between the stock’s expected dividend of 60 and its equilibrium price S is the

risk premium requested by risk-averse agents to bear aggregate risk.

4 Experimental Findings

This section describes supply, demand, and prices in our experiment, tests for competitive

behavior and rationality, and studies the impact of market size and learning. We focus on our

baseline experiment; results from our robustness experiment are similar and are presented

in the Online Appendix.

4.1 Descriptive Results

4.1.1 Aggregate Outcomes

To shed light on aggregate supply and demand in our experimental financial markets,

we aggregate the individual supply and demand schedules from all Type 1 and Type 2

participants in Treatment I, and from all Type 1 and Type 3 participants in Treatment

II. It is legitimate to aggregate across cohorts because, in a competitive setting, individual

demand or supply should be independent of the number and characteristics of other market

participants. We show below that the hypothesis that participants behave competitively

cannot be rejected.

Panel A of Figure 2 depicts aggregate demand and supply in Treatment I, divided by

the number of participants and replications to facilitate the interpretation. Demand is

approximately decreasing and supply is approximately increasing. The price minimizing the

gap between supply and demand is 60, which is the equilibrium price predicted by theory

for competitive risk-averse agents. Moreover, at that price, average trading volume per

participant is very close to 2 shares, which is again in line with the predictions of the theory

for competitive risk-averse agents (see Implication 4).

Panel B of Figure 2 depicts aggregate demand and supply in Treatment II. Supply is

not very different from its counterpart in Panel A. This is expected, as Type 1 participants

face the same environment in both treatments and do not know which treatment is applied.

In contrast, as predicted by theory for risk-averse agents, demand at price S ≥ 60 is lower

than in Panel A—although it does not drop to zero, which is consistent with some Type

3 participants being risk-loving or making mistakes. As a result, the price minimizing the

gap between supply and demand is lower than the expected dividend of 60 and the average
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trading volume per participant is less than 2 shares. These results are in line with the

predictions of the theory for competitive risk-averse agents (see Implication 5).

The results for the robustness experiment are offered in Figure OA.1 in the Online

Appendix and are consistent with the baseline experiment.

4.1.2 Individual Decisions

To describe individual behavior, we compute, for each participant, the average supply or

demand schedules across the various replications. Figure 3 plots these individual schedules

depending on the type of participant and on the treatment. We observe a large heterogeneity

across participants. In the following, we study if this heterogeneity can be attributed to

differences in preferences among rational competitive agents, or to differences in strategic

behavior, or to deviations from rationality.

4.2 Test of Strategic Behavior

To test for strategic behavior, we compare behavior when the price is set to minimize the gap

between supply and demand and behavior when the price is set randomly. In the latter, by

construction, agents’ actions cannot affect the price so there is no scope for strategic behavior.

Figure 4 depicts aggregate supply and demand in the two mechanisms, in Treatment I and

Treatment II. Aggregate supply and demand schedules are similar in the two mechanisms

and the figure does not suggest strategic over- or under-bidding.

To formally establish the absence of strategic behavior in our data, we propose a test

based on individual behavior. We regress the quantity supplied or demanded by an individual

on the indicator variable taking the value 1 when the price is set randomly and 0 otherwise.

We run a panel regression with individual and period fixed effects and standard errors

clustered at the individual level. We control for the proposed price and for the treatment

(aggregate versus no aggregate risk). The results are in Table 2.

Table 2 shows that the dummy for random pricing is insignificant. This indicates that

individual behavior does not vary with the mechanism. We can thus conclude that strategic

considerations are absent from our experiment, so that our experimental market emulates a

competitive market.

Table 2 also shows that individual demand schedules shift downward when there is

aggregate risk, consistently with competitive rational choice theory. Indeed, as illustrated

in Panels B–C of Figure 1, FOSD risk-averse buyers tend to bid lower quantities when

participating as Type 3 agents, i.e., in Treatment II with aggregate risk, than as Type 2

agents, i.e., in Treatment I without aggregate risk. This result is present both without

time fixed effects (the coefficient of the aggregate-risk dummy is significantly negative) and
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with time fixed effects.17 As a placebo test, we focus on sellers’ supply schedules. By

design, sellers’ asset endowment and additional incomes are constant across treatments.

Rational choice theory thus predicts that their propensity to trade should be the same

across treatments. Table 2 is consistent with this prediction: sellers’ supply schedules are

not affected by the absence or presence of aggregate risk.

4.3 Test of Imperfect Rationality

When there is no aggregate risk, Implications 1–2 offer sharp predictions for rational supply

and demand behavior at the individual level: supplying more than 2 shares at S < 60, or

less than 2 shares at S > 60, is first-order stochastically dominated for a Type 1 agent;

symmetrically, demanding less than 2 shares at S < 60, or more than 2 shares at S > 60, is

first-order stochastically dominated for a Type 2 agent.

To test whether individual behavior conforms with first-order stochastic dominance, we

compute the frequency of dominated and nondominated actions at prices other than 60

for Type 1 and 2 participants.18 As mentioned above, 68 participants in our experimental

financial markets were Type 1 sellers, and each participated in eight replications of the

market. For each of these participants and for each replication, we compute the proportion

of dominated actions across the ten relevant prices in the price grid, i.e., across all prices from

52 to 62 except 60. We then compute, for each replication, the average of this proportion

across the 68 participants. The solid line in Panel A of Figure 5 plots this average. Dashed

lines represent the 10% confidence intervals. Panel B of Figure 5 offers a similar plot for the

68 Type 2 buyers.19

Inspecting Panel A in Figure 5, one sees that, for sellers, the average proportion of

first-order stochastically dominated actions starts around 35% in the first replication, and

declines to 25% in the last replication. This proportion is always significantly lower than

50%, so we reject the pure-noise hypothesis that participants select randomly and uniformly

any quantity between 0 and 4. But the proportion of FOS dominated actions is significantly

larger than zero, so we reject the rational-choice hypothesis. Similarly, Panel B in Figure 5

shows that, for buyers, the frequency of dominated actions starts from slightly less than 35%

in the first replication and then steadily declines to less than 25% in the last replication.

Again, both purely noisy and perfectly rational choices are rejected. Thus participants

are not perfectly rational but learn to make more rational choices as they become more

17In this latter case, we test the null hypothesis that the quantity does not change with the change of
endowments in the aggregate-risk treatment; i.e., we test that the difference between the sum of odd-period
fixed effects and the sum of even-period fixed effects has mean zero. For buyers, the null hypothesis of no
treatment effect is rejected with a p-value smaller than 1%.

18 At price 60 or for Type 3 participants, there are no first-order stochastically dominated actions.
19First-order stochastically dominated actions can be detected without making parametric assumptions

on preferences only for Type 2, not for Type 3.
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experienced. The results for the robustness experiment are offered in Figure OA.2 in the

Online Appendix and are consistent with the baseline experiment.

We also display in Panel C of Figure 5 the evolution of the proportion of small and

large mistakes. We define a small (respectively, large) mistake as an action in the first-order

stochastically dominated quadrants illustrated in Panels A–B of Figure 1 that differs from

2 by less (respectively, more) than one unit.20 Panel C of Figure 5 shows that both large

and small mistakes tend to decrease with experience, consistent with learning. It also shows

that large mistakes are less likely to occur than small ones.

Further statistical evidence is offered in Table 3. This table displays estimates for probit

regressions in which the dependent variable is the indicator that an action is first-order

stochastically dominated.21 We control for participants’ ID fixed effects. The main

explanatory variable of interest is a proxy for a participant’s experience, equal to the number

of replications in which she has already participated.

The regression constant in column (1) of Table 3 is significantly negative. Together with

the fact that the coefficient of the number of replications is also negative, this confirms that

participants are more likely to select nondominated than dominated actions. Indeed, the

constant being negative indicates that, given the probit regression model, the probability

that the action is first-order stochastically dominated is lower than 50% already in the first

replication of the experiment. However, this constant is also not very negative, indicating

that many deviations from rational choice are observed.

Table 3 also confirms that the proportion of first-order stochastically dominated actions

decreases with experience. In all our specifications, the coefficient on the experience variable

is indeed significantly negative, which suggests that subjects learn to select nondominated

actions over time.

Another explanatory variable of interest is the indicator that the replication involved

random pricing, added in column (3) of Table 3. Its estimated coefficient is not significantly

different from zero, consistent with the hypothesis that participants behave in the same way

in the call and the random mechanisms, as already discussed above.

To further analyze learning in our experiment, the fourth specification in column (4) of

Table 3 involves three additional regressors. First, the indicator that the price was previously

20As mentioned above, in Treatment II we cannot identify buyers’ first-order stochastically dominated
actions. So in Figure 5 we consider replications of Treatment I only.

21 Our data include a total of 12,287 observations: one per participant, per replication, and per price,
except that for one replication the data was lost because of a technical problem. We focus on Type 1 and
Type 2 participants and on prices different from 60, because these are the cases in which we can identify
first-order stochastically dominated actions. This leaves us with 8,110 observations (this corresponds to
68×8×10+68×4×10 = 8, 160 observations, minus the data we lost, five Type 1 participants placing orders
at ten prices, which yields 8, 160−50 = 8, 110 observations). We further drop 520 observations corresponding
to the eight participants who never selected a dominated action. We thus end up with 7,590 observations.
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selected as a market-clearing price is not significant, suggesting that participants do not pay

more attention to prices at which they previously transacted. The two next variables are

designed to capture different types of adaptive learning (Camerer and Ho (1999)). The

indicator that the participant already selected a dominated action at that price displays a

coefficient that is significantly positive, suggesting inertia in mistakes.22 The indicator that

the participant previously selected a dominated action at that price and incurred a loss as

a result is not significant, suggesting past underperformance does not deter from selecting

dominated actions.23

Despite the introduction of these regressors, the coefficient of the number of replications

to which a subject has already participated remains significantly negative. This indicates

that familiarity with the experimental setting helps subjects avoid dominated actions.

4.4 Market Size and Efficiency

Aggregate outcomes obtained when pooling all participants are close to competitive

equilibrium and rational choice, but individual actions deviate from rationality. To analyze

how market aggregation transforms individual mistakes into equilibrium outcomes, we

study how the number of participants in a market influences the efficiency of prices and

allocations. We focus on Treatment I with no aggregate risk, for which Implication 4 states

the equilibrium price is equal to the expected dividend of 60.

We simulate markets by bootstrapping. For a market of size 2N , we resample the original

data set with replacement by randomly selecting the supply or demand schedules in one

replication for N Type 1 sellers and N Type 2 buyers. For each N , we create 1, 000 simulated

markets in which we aggregate demand and supply schedules to compute the market-clearing

price. To document the impact of the number of market participants on pricing efficiency,

Figure 6 plots the distribution of market-clearing prices when N varies from 5 to 80, and

correspondingly the total number of participants in a market varies from 10 to 160.

When the market size is small, the distribution of market-clearing prices across the eleven

prices in the grid is quite flat, even though the mode is at S = 60. This indicates that noise in

individual demand and supply schedules translates into frequent pricing inefficiencies. When

the market size increases, the distribution of the market clearing price becomes more and

more concentrated around S = 60. To illustrate, consider what happens when the number of

participants goes from 10 to 160. For 10 participants, the frequency with which the market

clears at S = 60 is less than 15%. For 160 participants, that frequency rises to 50%.

22This is in contrast with the Law of Simulated Effect, according to which participants stop playing
suboptimal actions when comparing them to counterfactuals.

23This is in contrast with the Law of Actual Effect, according to which agents adjust their behavior based
on past realized outcomes.
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To study the impact of the number of participants on allocative efficiency, we also use

the bootstrap simulated markets, and we rely on the implication from theory that, without

aggregate risk, risk averse participants should be fully hedged in equilibrium, i.e., they should

trade 2 shares. To measure allocative efficiency, we compute, for each participant in each

simulated market, the absolute difference between the quantity traded and 2. We then

average this absolute difference across market participants. Figure 7 plots the distribution

of this measure of allocative efficiency in our simulated markets when the number of market

participants varies from 10 to 160. In equilibrium, this measure should be zero. If it is

larger than zero, this indicates that risk sharing is imperfect and that risk-averse market

participants are leaving gains from trade on the table.

Figure 7 shows that, for all the quartiles considered, the amount of unexploited gains

from trade decreases with the number of market participants. For 10 market participants,

the median of our measure of allocative efficiency in the simulated markets is above 0.25,

more than 12.5% of the optimal trade, i.e., 2. By contrast, for 160 participants, that median

is close to 0. Therefore, participants’ trades deviate from 2, but less so when the number of

market participants is large.

In the next section, we propose and estimate a random-choice model of individual

behavior that is consistent with these observations on price and allocative efficiency.

5 A Random-Choice Model: Theory and Tests

The above reported findings are puzzling. On the one hand, aggregate outcomes are in

line with the implications of rational choice in competitive markets. On the other hand, a

large fraction of individual actions are inconsistent with rational choice. The latter suggests

the prevalence of bounded rationality, the former that individual boundedly rational choices

somehow add up to “rational” aggregate outcomes. To reconcile these findings, we propose a

bounded-rationality model of individual choice along the lines of Luce (1959)’s random-choice

model, derive its theoretical predictions, and confront them to the data. We finally use this

framework to quantify allocative efficiency in our experimental financial markets.

5.1 The Model

As in Luce (1959), we assume that, instead of deterministically selecting an optimal action,

each participant randomly chooses among available actions, putting larger probability on

actions yielding higher utility.24

24In our competitive setting, agents only need to condition on the price, and need not form expectations
about the actions of the others. Hence, our framework is simpler than the quantal response equilibrium, in
which “[p]layers choose among strategies [...] based on their relative expected utility [...] and assume other
players do so as well.” (McKelvey and Palfrey (1995, p. 6)).
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For every participant i of type T , let UT
i (q, S) be her utility of trading quantity q at

price S. The function is defined for all admissible quantities, q ∈ [0, 4], and prices, S ∈ S ≡
{52, . . . , 62}. We assume that UT

i (q, S) is continuous in q for all S.

We want to specify the distribution of actions so that the probability that participant i

selects quantity q at price S is increasing in UT
i (q, S). To do so, we consider a continuous

weight function ΦT
i : RS → R such that the density of a quantity schedule (q(S))S∈S ∈ [0, 4]S

is given by

fUT
i ,ΦT

i
((q(S))S∈S) ≡

ΦT
i ((U

T
i (q(S), S))S∈S)∫ 4

0
. . .

∫ 4

0
ΦT

i ((U
T
i (qS, S))S∈S) dq52 . . . dq62

. (4)

This formulation is very general and allows for correlation between a participant’s quantity

choices at different prices. For each S ∈ S, we denote by fUT
i ,ΦT

i ,S the corresponding marginal

pdf. For any quantities q, q′ ∈ [0, 4], fUT
i ,ΦT

i ,S(q) > fUT
i ,ΦT

i ,S(q
′) if and only if UT

i (q, S) >

UT
i (q

′, S). We thus have the property that, at any given price, quantities delivering a higher

utility are more likely to be selected.

Finally, we assume that, from the experimenter’s viewpoint, for every type T , the utility

functions UT
i and the weight functions ΦT

i of the N participants of type T are realizations

of iid random elements (ŨT
i , Φ̃

T
i )

N
i=1 with common distribution PT , and that, given their

realized characteristics (UT
i ,Φ

T
i ), these participants draw their quantity schedules according

to fUi,Φi
independently. Thus the quantity schedules of participants of type T are iid random

vectors q̃Ti with a common distribution QT = PT ⊗ fUT ,ΦT .

5.2 Theoretical Predictions and Tests

This subsection studies financial market outcomes when agents make their decisions using the

random-choice model. It helps explaining how the prevalence of mistakes that we observe in

the data at the individual level is consistent with the experimental validity of predictions from

competitive equilibrium theory at the aggregate level. It then shows that the random-choice

model generates distributions of mistakes that are in line with our experimental findings.

All the proofs are provided in Appendix A.3.

5.2.1 A Convergence Theorem

Focusing on Treatment I, with no aggregate risk, we show that suitably normalized aggregate

experimental market outcomes, both in terms of prices and quantities, converge to the

competitive equilibrium outcome when the number of participants goes to infinity.

Theorem 1 In Treatment I, if all participants are FOSD risk-averse and behave according

to the random-choice model, then, with probability 1, when the number of participants goes
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to ∞, the market-clearing price of the stock converges to 60 and the average per-participant

trade converges to 2.

Theorem 1 rationalizes the empirical findings for Treatment I presented in Section 4.

When participants are FOSD risk-averse agents who behave according to the random-choice

model, individual behavior is noisy and involves dominated actions. Yet, as the number of

participants grows large, the aggregate outcome converges to the rational-choice competitive-

equilibrium outcome. In particular, the price minimizing the gap between supply and

demand eventually settles down to the expected value of the stock’s dividend and the average

quantity traded by each participant at that price converges to the full-hedge trade.

The proof of Theorem 1 relies on two observations, relying on the discussion in Section

3.1, in particular formula (3) and Implications 1 and 2:

1. First, at S = 60, trading 2−χ and 2+χ yield the same utility for Type 1 and Type 2

agents, and that utility is decreasing in χ for risk-averse agents. Correspondingly, the

distribution of the quantities supplied or demanded by a risk-averse Type 1 or Type

2 participant at S = 60 is symmetric around 2, with a mode at 2. The strong law of

large numbers then implies that the empirical average per-participant trade at price

S = 60 converges to 2 with probability 1 as the number of participants goes to infinity.

The gap between the average quantity supplied or demanded thus converges to zero.

2. Second, at S ̸= 60, for Types 1 or Type 2 FOSD agents, the utility from trading 2−χ

is strictly larger or strictly lower than the utility from trading 2 + χ. Consequently,

the distribution of the quantities supplied or demanded is asymmetric. Moreover, the

distributions for Type 1 sellers and Type 2 buyers are skewed in opposite ways. The

strong law of large numbers then implies that, with probability 1, when the number of

participants becomes large enough, the gap between the average quantity supplied or

demanded is larger than zero.

Together, these two observations imply that, in Treatment I, as the number of participants

goes to infinity, the price minimizing the gap between supply and demand eventually settles

down to S = 60, and the average per-participant trade converges to 2.

5.2.2 Asymptotic Properties of the Distribution of Mistakes

We now turn to the distribution of first-order stochastically dominated actions, or mistakes.

According to Implications 1 and 2, such mistakes can be identified in Treatment I for FOSD

Type 1 and 2 participants at prices S ̸= 60. We establish two large-sample implications of

our random-choice model that shed light on our previous empirical findings. We first show

that dominated actions in any quantity interval on one side of q = 2 tend to be less frequent
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than nondominated actions in the symmetric interval on the other side of q = 2. We next

show that smaller mistakes tend to be more frequent than larger ones. For conciseness, we

focus on the supply behavior of Type 1 participants at prices S < 60; the other cases lead

to similar predictions.

Implication 1 states that, at prices S < 60, supplying less than 2 shares first-order

stochastically dominates supplying more than 2 shares for Type 1 agents. Therefore, the

random-choice model implies that, at price S < 60, Type 1 agents will more often choose to

trade less than 2 shares than more than 2 shares, i.e.,

fŨ1
1 ,Φ̃

1
1,S

(2− χ) > fŨ1
1 ,Φ̃

1
1,S

(2 + χ), χ ∈ (0, 2].

This implies

FŨ1
1 ,Φ̃

1
1,S

(2 + x̄)− FŨ1
1 ,Φ̃

1
1,S

(2 + x) < FŨ1
1 ,Φ̃

1
1,S

(2− x)− FŨ1
1 ,Φ̃

1
1,S

(2− x̄), 0 ≤ x < x̄ ≤ 2,

where FŨ1
1 ,Φ̃

1
1,S

is the cdf corresponding to fŨ1
1 ,Φ̃

1
1,S

. That is, the probability, under the

random-choice model, that i selects a quantity in the nondominated interval [2− x, 2− x] is

higher than the probability that she selects a quantity in the dominated interval [2+x, 2+x],

symmetric with respect to 2. The following convergence result is then a consequence of the

Glivenko–Cantelli theorem.

Theorem 2 In Treatment I, if all Type 1 participants are FOSD and behave according to

the random-choice model, then, for all S < 60 and ∆x ≡ x− x ∈ (0, 2), when the number of

participants goes to ∞, with probability 1 the fraction of Type 1 trades in any nondominated

interval [2− x, 2− x] ⊂ [0, 2) is larger than in the dominated interval [2 + x, 2 + x] ⊂ (2, 4].

Similar implications hold at any price S > 60 and for Type 2 participants. Theorem

2 implies that, in a large population of FOSD Type 1 agents who behave according to the

random-choice model, the distribution of supply tends to be asymmetric around q = 2 at

any price S ̸= 60, and, more generally, in any two symmetric intervals of a given length on

both sides of q = 2. This implies that nondominated actions, on one side of q = 2, should

be more frequent than dominated actions, on the other side of q = 2. This implication is in

line with what we observe in our experiment, as illustrated in Figure 2.

Table 4 offers a formal test of the implications of Theorem 2. Panel A shows that we

can reject the hypothesis that actions are equally likely to be dominated or not. Instead,

the test favors the hypothesis that dominant actions are more likely than dominated ones.

This shows that the distribution of actions is asymmetric. These results obtain when using

all the data, as well as when focusing on quantities close to 2 or far from 2.

At price S = 60, the random-choice model implies (irrespective of whether agents are

risk-averse or not) that the distribution of quantities is symmetric around its mean of 2,
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because, for each χ ∈ (0, 2], trading a quantity 2 + χ leads to the same lottery over final

wealth as trading a quantity 2− χ. This leads to the following corollary.

Corollary 1 In Treatment I, if all Type 1 participants behave according to the random-choice

model, then, at S = 60 and for each ∆x = x−x ∈ (0, 2), with probability 1, when the number

of participants goes to ∞, these Type 1 participants empirically select as often quantities in

any interval [2− x, 2− x] ⊂ [0, 2) as in the symmetric interval [2 + x, 2 + x] ⊂ (2, 4].

A similar implication holds for Type 2 participants. Table 4, Panel B shows that, at

price S = 60 we cannot reject the hypothesis that quantity offers in the interval (0, 1) are as

likely as quantity offers in the symmetric interval (3, 4), and similarly for the intervals [1, 2)

and (2, 4]. This is consistent with the symmetry property of the empirical distribution of

actions established in Corollary 1

Finally, we explore the distribution of mistakes under the random-choice model. Again,

we focus on the supply behavior of Type 1 participants at prices S < 60. Consider two

possible quantity choices 4 ≥ q > q > 2. At any price S < 60, selling q or q shares is

a mistake from the perspective of an FOSD Type 1 agent. However, selling q is a worse

mistake. Indeed, as shown in the proof of Implication 1, selling q shares leads to a final

wealth equal to that obtained by selling q shares, minus a positive constant (60− S)(q− q),

plus a zero-mean lottery (
−60(q − q),

1

2
; 60(q − q),

1

2

)
.

Hence at price S < 60, FOSD risk-averse Type 1 agents get more utility from trading q than

from trading q. The random-choice model then implies they should select q more often than

q. Our final result then follows along the same lines as Theorem 2.

Theorem 3 In Treatment I, if all Type 1 participants are FOSD and behave according to the

random-choice model, then, for all S < 60 and ∆x ≡ x− x ∈ (0, 2), with probability 1, when

the number of participants goes to ∞, the fraction of Type 1 trades in any “small mistake”

interval [2 + x, 2 + x] is larger than in the “large mistake” interval [2 + x+ η, 2 + x+ η].

Again, similar implications hold at any price S > 60 and for Type 2 participants. This

is consistent with the evidence presented in Panel C of Figure 5: small mistakes (supplying

a quantity in (2, 3] for a Type 1 participant at a price S < 60) are empirically more frequent

than large mistakes (supplying a quantity in (3, 4] at the same price). We offer a formal

nonparametric test of the implications of Theorem 3 in Table 4, Panel A. Small mistakes

(dominated actions near q = 2) appear significantly more frequent than large mistakes

(dominated actions far from q = 2).
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5.3 Quantifying Allocative Efficiency

In this section, we quantify the gains from trade in our experimental market. To do so, we

rely on a structural estimation of the special case of our random-choice model with constant

relative risk aversion and logit weighting.

5.3.1 Random Choice with Constant Relative Risk Aversion and Learning

Model Specification First, we assume that every participant i’s preferences over state-

contingent wealth have an expected-utility representation, for a Bernoulli utility function

with constant relative risk aversion γi,

ui(W ) =

{
W 1−γi−1

1−γi
if γi ̸= 1

ln(W ) if γi = 1
.

The expected utility of participant i of type T for given price S and quantity q writes as

EUT
i (q, S) ≡

1

2
[ui(W

T (u, q, S)) + ui(W
T (d, q, S))].

Next, we assume that participant i chooses quantities according to a logistic random-choice

model, as in the quantal-response model of McKelvey and Palfrey (1995, 1998), for a

multiplicative logit weight function with payoff responsiveness λi,n in the nth replication

of the experiment,

Φi,n((EUS)S∈S) ≡
∏
S∈S

exp(λi,nEUS).

That is, the quantity choices of every participant i of type T are independent across prices

and the marginal pdf of her quantity choices at price S is given by

fEUT
i ,Φi,n,S(q(S)) =

exp(λi,nEUT
i (q(S), S))∫ 4

0
exp(λi,nEUT

i (q, S)) dq
.

Finally, to capture potential learning effects while allowing for heterogeneity across subjects’

payoff responsiveness, we assume that every participant i’s payoff responsiveness in the nth

replication of the experiment is of the form

λi,n = λi + δi(n− 1).

Parameter λi captures the participant i’s payoff responsiveness in the first replication,

whereas parameter δi captures the speed at which she learns to make more rational choices.

Estimation We estimate by maximum likelihood the parameters (γi, λi, δi) for each seller

i of Type 1 and for each buyer i potentially switching from Type 2 to Type 3, using 88

observations (8 periods×11 prices).25 We also estimate the model under the constraint that

25To estimate the model, we discretize the choice of quantities in [0, 4], using intervals of 0.05 length, as
well as the choice of (γi, λi, δi) in [−0.2, 3]× [0, 50]× [−5, 5], using intervals of 0.1 length.
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δi = 0 (no learning), and again under the constraints that λi = ∞ and δi = 0 (perfectly

rational behavior).26

We report the average and quartiles of the distribution of parameters across participants

in Table 5. The average and median coefficients of relative risk aversion in the unconstrained

model are 0.61 and 0.80, respectively, consistent with the estimates obtained in the literature

(see, for instance, Holt and Laury (2002)). The median payoff responsiveness is 0.70,

also in line with previous estimates (see, for instance, Rogers et al. (2009)). The average

responsiveness is much higher, due to the fact that 25% of participants appear to be close

to perfect rationality, with a payoff responsiveness higher than 50. The median learning

parameter is 0.10, in line with previous estimates (Rogers et al. (2009)). The first and the

third quartiles of the distribution are 0.0 and 5.0, respectively, indicating large differences

in participants’ ability to learn.

We use a likelihood-ratio test to compare the goodness of fit of the constrained models,

without learning and with perfect rationality, to the one of the unconstrained model with

imperfect rationality and learning. We reject perfect rationality (p-value < 0.01) as well as

the absence of learning (p-value = 0.016). This is in line with the results obtained without

parametric assumption on preferences and choices.

Overall, heterogeneity among participants is significant, as shown by the relatively large

discrepancy between the first and the third quartiles of parameter estimates. This indicates

major differences across participants’ risk aversion, rationality, and speed of learning. We

also find positive correlation across participants between initial payoff responsiveness λi and

speed of learning δi, as their correlation coefficient is equal to 0.34 (p-value < 0.01). Hence

participants who initially tend to play nondominated actions more often than others also

tend to learn faster than others. This suggests that both dispositions may be driven by a

common factor.

5.3.2 Allocative Efficiency

Relying on the above presented CRRA-logit model and estimates, we compute several

counterfactuals and use them to quantify allocative efficiency in our experimental market.

1. Given the estimated relative risk aversion of participant i, we compute the optimal

supply or demand schedule of this participant, which we denote by (q∗i (S))S∈S . In

general, this optimal schedule differs from the schedule actually posted by participant

i in the experiment, which we denote by (qi(S))S∈S .

2. For each S, we also compute EUi(q
∗
i (S), S), the expected utility of participant i from

26In the estimation, we implement an infinite payoff responsiveness by setting λi = 50. As a robustness
check, we also tried an upper bound of 1,000 for λi; this did not significantly affect the log-likelihood.
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trading her optimal quantity q∗i (S) at price S, and EUi(qi(S), S), the expected utility

of this agent from trading at price S according to the schedule she actually posted.

3. Given participants’ optimal demand schedules in market m (corresponding to one

trading round for one cohort), we can compute the theoretical price that would have

cleared that market had they submitted their optimal schedules, which we denote by

S∗
m. In general, this theoretical price differs from the price that actually cleared market

m in the experiment, which we denote by Sm.

Based on these constructs, we first compute the proportion of participants who were not

worse off participating in the market. To conduct this analysis, we focus on participants with

nonnegative estimated coefficients of risk aversion. In marketm we compute EUi(qi(Sm), Sm),

the expected utility of participant i in that cohort at the price Sm that prevailed in that

market. We then compare this expected utility to its autarky counterpart, EUi(0), which

corresponds to no trade and is thus independent of the price of the stock. We classify

participant i, in that cohort, as not being made worse off by participating in the market if

EUi(qi(Sm), Sm) ≥ EUi(0). (5)

For every marketm, we compute the proportion Πm(Sm) of participants i who satisfy (5). To

disentangle what stems from the price and what stems from individual decisions at a given

price, we also evaluate that proportion at the rational competitive price S∗
m that would

clear the market given the optimal schedules (q∗i (S))S∈S of participants in that market. For

each market m, we compute Πm(Sm) and Πm(S
∗
m). Then we compute the average of these

proportions across markets. Notice that, by construction, the function Πm is unaffected by

increasing transformations of participants’ expected utility.

Our empirical results on the proportion of participants who were not made worse off by

participating in the market are presented in Table 6. In Treatment I, by construction, all

trades at the rational competitive price S∗
m = 60 make risk-averse agents weakly better off

than in autarky. So in Treatment I, Πm(S
∗
m) = 100%. Actual prices, however, differ from

60. Indeed, in Treatment I, the average price in the experiment was 59.06. For these actual

prices, some participants were worse off participating in the market, because they traded too

much. As a result, the proportion Πm(Sm) was lower than 100%. For Type 1 participants,

it was 89%, whereas, for Type 2 participants, it was 92%.

In Treatment II, there is aggregate risk and the price factors in a risk premium. Hence

the rational competitive price varies with participants’ risk aversion. On average, in our

experiments, the rational competitive price in Treatment II was 58.61, but the actual price

set in the experiments was lower, on average equal to 57.26. The proportion of Type

1 participants not made worse off by participating in the market was not very different
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from that in Treatment I: evaluated at the rational competitive price benchmark, it was

97%, whereas, at the lower price actually set in the experiments, it was 86%. For Type 3

participants, by contrast, the proportion of participants not made worse off by participating

in the market was much lower: evaluated at the benchmark rational competitive price it was

42%, and at the price actually set in the experiment it was 59%. This is because, for Type 3

participants, autarky is relatively attractive as they start with a riskless endowment. When

these agents buy too much, and at prices that are too high, they end up with lower expected

utility than in autarky.

Second, for participants who were not worse off participating in the market, we compute

the fraction of potential gains from trade that they actually reaped. For participant i, at

price S, the fraction of potential gains from trade actually reaped is

Ψi(S) ≡
EUi(qi(S), S)− EUi(0)

EUi(q∗i (S), S)− EUi(0)
.

The numerator in this fraction is the difference between the expected utility from the

participant’s actual trade at price S and her autarky utility, whereas the denominator is the

difference between the expected utility from the participant’s optimal trade at price S and her

autarky utility. Because we focus on participants who were not worse off participating in the

market, the numerator is positive. Moreover, Ψi(S) ∈ [0, 1] as EUi(q
∗
i (S), S) ≥ EUi(qi(S), S)

by definition, and Ψi(S) = 1 when participant i fully realizes all potential gains from trade

at price S. Notice that, by construction, the function Ψm is unaffected by increasing affine

transformations of participants i’s expected utility. As above, we compute the fraction for

each participant in each market, both at the benchmark rational competitive price and at

the price that actually cleared that market in the experiment. Then we compute the average

of that fraction across participants and markets.

Our empirical results on the fraction of potential gains from trade actually reaped are also

presented in Table 6. In Treatment I, Type 1 participants not made worse off by participating

in the market would have realized 81% of the gains from trade if the price had been equal

to the benchmark rational competitive price of 60, and they realized 80% of the gains from

trade at the prices actually set in the experiment. The corresponding percentages for Type

2 participants are 82% and 85%, respectively.

In Treatment II, Type 1 participants not made worse off by participating in the market

would have realized 80% of the gains from trade if the price had been equal to the benchmark

rational competitive price, and they realized 76% of the gains from trade at the prices actually

set in the experiment. For Type 3 participants, the fraction of the gains from trade realized

was much lower. At the benchmark rational competitive price (which was on average 58.61)

they would have realized 31% of the potential gains from trade. At the prices actually set in

the experiment (which was on average 57.26), they realized 43% of the potential gains from
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trade. Again, these low gains from trade reflect suboptimal demand schedules that induced

excessive trades.

6 Conclusion

This paper experimentally tests rational-choice competitive equilibrium in complete financial

markets. Our experiment is designed to closely emulate standard competitive equilibrium.

Individual supply and demand schedules are elicited. In the benchmark market structure,

supply and demand curves are aggregated, and crossed to set market-clearing prices.

Comparing this benchmark to a setting in which the price is randomly set, we test,

and cannot reject, the hypothesis that participants behave competitively. Moreover, the

experiment is designed so that first-order and second-order stochastic dominance yield precise

testable implications on individual behavior and market outcomes that hold for a very large

class of preferences.

We find that around 25% of individual participants’ actions are first-order stochastically

dominated. Yet, when pooling all data, aggregate experimental outcomes are consistent with

the predictions of rational-choice competitive equilibrium. Aggregate supply and demand

cross at the expected dividend level when there is no aggregate risk, and at a lower price

when there is aggregate risk, indicating the presence of a risk premium.

We develop a random-choice model, in the spirit of Luce (1959) and McKelvey and

Palfrey (1995, 1998), that reconciles the apparently contradictory findings obtained at the

aggregate and individual levels. Our random-choice model implies that individual deviations

from rationality should average out as the number of market participants grows large, so

that aggregate outcomes should converge to equilibrium. Simulations, based on bootstrapped

experimental data, confirm that market clearing prices converge to equilibrium as the number

of participants increases.

The random-choice model also implies that dominated actions should be less frequent

than nondominated ones, and large mistakes less frequent than small ones. Our experimental

data is in line with these predictions. Structural estimation of the special case of our

random-choice model arising for CRRA utility and logit weighting enables us to quantify

allocative efficiency. We find that around 80% participants are better off participating in

the market than staying in autarky, whereas the remaining 20% are worse off.

In the end, our study suggests that, at the aggregate level, the predictions from

rational choice competitive equilibrium can be quite robust to individual deviations from

rationality. Therefore, we conjecture that market imperfections and incompleteness, rather

that investors’ irrationality, may drive empirical rejections of rational-choice competitive

equilibrium asset pricing theory in the field. Extensions of the analysis to more complex
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settings and more comprehensive datasets would be useful to challenge and qualify this

conjecture.

References

Arrow, Kenneth (1964) “The Role of Securities in the Optimal Allocation of Risk-Bearing,”

Review of Economic Studies, 31(2), 91–96.

Asparouhova, Elena, Peter Bossaerts, and John Ledyard (2024) “Price Formation in

Multiple, Simultaneous Continuous Double Auctions, with Implications for Asset Pricing,”

Mimeo, University of Utah.

Asparouhova, Elena, Peter Bossaerts, Nilanjan Roy, and William Zame (2016) ““Lucas”’ in

the Laboratory,” Journal of Finance, 71(6), 2727–2780.

Barber, Brad M. and Terrance Odean (2000) “Trading is Hazardous to Your Wealth: The

Common Stock Investment Performance of Individual Investors,” Journal of Finance,

55(2), 226–232.

(2001) “Boys Will Be Boys: Gender, Overconfidence, and Common Stock

Investment,” Quarterly Journal of Economics, 116(1), 261–292.

Becker, Gordon M., Morris H. DeGroot, and Jacob Marschak (1964) “Measuring Utility by

a Single-Response Sequential Method,” Behavioral Science, 9(3), 226–232.

Biais, Bruno, Denis Hilton, Karine Mazurier, and Sébastien Pouget’ (2005) “Judgemental
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Appendix

A.1 The Underlying Complete-Market Environment

Consider a one-period complete-market environment with two states of nature ω = u, d and

two assets, a stock paying a dividend D(ω) in state ω, with D(u) > 1 > D(d) and a bond

paying 1 in each state. An agent initially holds a portfolio θ0 ≡ (θ0,s, θ0,b) of stocks and

bonds, and receives an additional income I(ω) in state ω. In the market, the agent can trade

to her final holdings of stocks and bonds, θ1 ≡ (θ1,s, θ1,b). Given security prices (ps, pb), the

agent’s budget constraint is ps(θ1,s − θ0,s) + pb(θ1,b − θ0,b) ≤ 0. The agent maximizes her

utility from state-contingent final wealth

W (ω) ≡ I(ω) +D(ω)θ1,s + θ1,b, ω = u, d. (A.1)

Assuming that the agent’s utility is increasing with respect to her final wealth in each state,

her budget constraint must be binding:

θ1,b = θ0,b −
ps
pb

(θ1,s − θ0,s). (A.2)

Substituting (A.2) into (A.1) yields

W (ω) = I(ω) + θ0,b +D(ω)θ0,s +

[
D(ω)− ps

pb

]
(θ1,s − θ0,s), ω = u, d. (A.3)

Thus the only factor that affects the agent’s final wealth in state ω, beyond her initial

endowment I(ω) + θ0,b + θ0,sD(ω), is the product of her net trade in the stock, θ1,s − θ0,s, by

the profit margin on this trade, equal to the difference between the dividend and the price of

the stock relative to that of the bond, D(ω)− ps
pb
. Therefore, because there are only two states

of nature, the simple market structure in our experimental setting, in which participants can

only trade the stock for the bond, implements a complete market structure. Letting S ≡ ps
pb

and q ≡ |θ1,s − θ0,s|, applying (A.3) to Type 1, Type 2, and Type 3 participants yields

(A.4)–(A.5), (A.7)–(A.8), and (A.9)–(A.10), respectively.

A.2 Testable Implications of the Rational-Choice Model

Proof of Implication 1. By (A.3), if a Type 1 agent sells q shares at price S, then her

final wealth levels in states u and d are

W 1(u, q, S) = 600 + (S − 120)q, (A.4)

W 1(d, q, S) = 360 + Sq. (A.5)

By (1)–(2) and (A.4)–(A.5),

µ1(q, S) = 480 + (S − 60)q and σ1(q, S) = 60 |q − 2|. (A.6)
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(i) It follows from (A.6) along with our preliminary observations that, for each χ ∈ (0, 2],

L1(2−χ, S) first-order stochastically dominates L1(2+χ, S) if S < 60, whereas L1(2+χ, S)

first-order stochastically dominates L1(2 − χ, S) if S > 60. This yields the first statement

in (i). As for the second statement in (i), observe from (A.4)–(A.5) that, if S < 60 and

0 ≤ q < q ≤ 2, then

W 1(u, q, S)−W 1(u, q, S) = (60− S)(q − q) + 60(q − q)

W 1(d, q, S)−W 1(d, q, S) = (60− S)(q − q)− 60(q − q).

Hence L1(q, S) is equal to L1(q, S), plus a positive constant (60−S)(q−q), plus a zero-mean

lottery (−60(q − q), 1
2
; 60(q − q), 1

2
). Thus, at S < 60, an FOSD risk-loving or risk-neutral

Type 1 seller prefers the lottery L1(0, S) to any lottery L1(q, S), q ∈ (0, 4], and similarly, at

S > 60, she prefers the lottery L1(4, S) to any lottery L1(q, S), q ∈ [0, 4). This yields the

second statement in (i).

(ii) By (A.6), at S = 60, a Type 1 agent is perfectly hedged if she sells 2 shares, as

σ1(2, 60) = 0. More generally, if 0 ≤ |q−2| < |q′−2| ≤ 2, then L1(q′, 60) is a mean-preserving

spread of L1(q, 60). Hence it is uniquely optimal for a risk-averse Type 1 agent to supply

exactly 2 shares at S = 60. By contrast, a risk-loving Type 1 agent finds it optimal to

supply 0 or 4 shares. Finally, a risk-neutral Type 1 agent is indifferent between supplying

any quantities in [0, 4] at price S = 60. The result follows. ■

Proof of Implication 2. By (A.3), if a Type 2 agent sells q shares at price S, then her

final wealth levels in states u and d are

W 2(u, q, S) = 310 + (120− S)q, (A.7)

W 2(d, q, S) = 550− Sq. (A.8)

The proof then proceeds along similar lines as for Implication 1. The result follows. ■

Proof of Implication 3. By (A.3), if a Type 3 agent sells q shares at price S, then her

final wealth levels in states u and d are

W 3(u, q, S) = 310 + (120− S)q = 310 + (60− S)q + 60q, (A.9)

W 3(d, q, S) = 310− Sq = 310 + (60− S)q − 60× q. (A.10)

Hence L3(q, S) is equal to Type 3 agent’s safe endowment of 310, plus a constant (60−S)q,

plus a zero-mean lottery (−60q, 1
2
; 60q, 1

2
). The proof then proceeds along similar lines as

for Implications 1–2. The result follows. ■

Proof of Implication 4. That there exists an equilibrium in which S = 60 and the

N Type 1 and Type 2 participants all trade 2 shares, whereas the Type 3 participant, if
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any, trades 0 share, follows from Implications 1–3 for risk-averse agents. Now, suppose, by

way of contradiction, that there exists an equilibrium with price S > 60. By Implication

1, FOSD Type 1 participants collectively supply at least 2N shares at S, whereas FOSD

Type 2 participants collectively demand at most 2N shares at S, and the risk-averse Type

3 participant, if any, demands 0 share at S. Hence, it must be that each Type 1 and Type

2 agent trades exactly 2 shares at S. Hence, for every Type 2 participant i with utility

V 2
i (W (u),W (d)) over state-contingent wealth, it must be that, for each χ ∈ (0, 2],

V 2
i (550− 2S, 550− 2S) > V 2

i (310 + (2− χ)(120− S), 550− (2− χ)S)

= V 2
i (550− 2S + χ(S − 120), 550− 2S + χS) (A.11)

by (A.7)–(A.8). Now, the lottery (S − 120, 1
2
;S, 1

2
) has positive mean as S > 60. Hence,

because participant i is assumed to be second-order risk-averse, it follows from Segal and

Spivak (1990, Proposition 1) that, for χ > 0 small enough,

V 2
i (550− 2S + χ(S − 120), 550− 2S + χS) > V 2

i (550− 2S, 550− 2S),

in contradiction to (A.11). Thus there exists no equilibrium with price S > 60. A symmetric

argument rules out an equilibrium with price S < 60. The result follows. ■

Proof of Implication 5. An equilibrium exists when all participants are FOSD risk-averse

agents. Now, by Implication 1, FOSD Type 1 agents supply at least 2 shares at any price

S ≥ 60, whereas, by Implication 3, risk-averse Type 3 participants demand 0 share at any

such price. Thus any equilibrium features a price S < 60. The result follows. ■

A.3 Theoretical Predictions of the Random-Choice Model

Proof of Theorem 1. The proof consists of two steps.

Step 1 Consider first what happens at price S = 60, at which every Type 1 participant

i supplies a random quantity q̃1i (60) given her characteristics (Ũ1
i , Φ̃

1
i ). By Implication 1, as

any such i is risk-averse, it is uniquely optimal for her to supply 2 shares at this price. That

is, Ũ1
i (2, 60) > Ũ1

i (q, 60) for all q ∈ [0, 4] \ {2}. By (4), this implies that

fŨ1
i ,Φ̃

1
i ,60

(2) > fŨ1
i ,Φ̃

1
i ,60

(q), q ∈ [0, 4] \ {2}.

That is, fŨ1
i ,ϕ̃

1
i ,60

reaches its unique maximum at 2, which is thus the mode of the distribution

of q̃1i (60). Now, consider two possible quantity choices, q ≡ 2 − χ and q ≡ 2 + χ, where

0 < χ ≤ 2. When S = 60, q and q give rise to the same lottery. As a result, Ũ1
i (q, 60) =

Ũ1
i (q, 60) and thus, as above,

fŨ1
i ,Φ̃

1
i ,60

(2− χ) = fŨ1
i ,Φ̃

1
i ,60

(2 + χ), 0 < χ ≤ 2.
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That is, the pdf fŨ1
i ,Φ̃

1
i ,60

is symmetric around its mode. We conclude that

Ef
Ũ1
i
,Φ̃1

i
,60
[q̃1i (60)] =

∫ 4

0

qfŨ1
i ,Φ̃

1
i ,60

(q) dq = 2

and, therefore,

EQ1 [q̃1i (60)] =

∫
Ef

Ũ1
i
,Φ̃1

i
,60
[q̃1i (60)]P

1(d(Ũ1
i , Φ̃

1
i )) = 2

for all i. Because Type 1 participants’ quantity schedules (q̃1i )i≥1 are iid, the strong law of

large numbers yields

lim
N→∞

1

N

N∑
i=1

q̃1i (60) = 2 (A.12)

with probability 1. The same reasoning for Type 2 participants yields

lim
N→∞

1

N

N∑
i=1

q̃2i (60) = 2 (A.13)

with probability 1. It follows from (A.12)–(A.13) that

lim
N→∞

1

N

∣∣∣∣∣
N∑
i=1

[q̃2i (60)− q̃1i (60)]

∣∣∣∣∣ = 0 (A.14)

with probability 1.

Step 2 Suppose, by way of contradiction, that, with positive probability, the empirical

market-clearing price of the stock does not converge to 60 as N goes to ∞. Then, because

the price grid S is finite, there exists a price S ̸= 60 such that, with positive probability,

S ∈ argmin
S′∈S

1

Ñk

∣∣∣∣∣∣
Ñk∑
i=1

[q̃2i (S
′)− q̃1i (S

′)]

∣∣∣∣∣∣ (A.15)

for all k ≥ 1 along a random subsequence (Ñk)k≥1. It follows from (A.14)–(A.15) that

lim
k→∞

1

Ñk

∣∣∣∣∣∣
Ñk∑
i=1

[q̃2i (S)− q̃1i (S)]

∣∣∣∣∣∣ = 0 (A.16)

with positive probability. Because Type 1 and Type 2 participants’ quantity schedules (q̃1i )i≥1

and (q̃2i )i≥1 are iid, the strong law of large numbers yields, for each T = 1, 2,

lim
k→∞

1

Ñk

Ñk∑
i=1

q̃Ti (S) = EQT [q̃T1 (S)] =

∫ 4

0

qEPT [fŨT
1 ,Φ̃T

1 ,S(q)] dq (A.17)

with probability 1, where the second equality follows from Fubini’s theorem. Thus, by

(A.16)–(A.17), we have∫ 4

0

qEP1 [fŨ1
1 ,Φ̃

1
1,S

(q)] dq =

∫ 4

0

qEP2 [fŨ2
1 ,Φ̃

2
1,S

(q)] dq. (A.18)
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Suppose first that S < 60 and consider two quantity choices, q ≡ 2 − χ and q ≡ 2 + χ,

where 0 < χ ≤ 2. As S < 60, it follows from the arguments leading to Implications 1–2 that

selling q (respectively, buying q) first-order stochastically dominates selling q (respectively,

buying q) for an FOSD Type 1 (respectively, an FOSD Type 2) participant. As a result,

Ũ1
1 (q, S) > Ũ1

1 (q, S) and Ũ2
1 (q, S) < Ũ2

1 (q, S) and thus, as above,

fŨ1
1 ,Φ̃

1
1,S

(2− χ) > fŨ1
1 ,Φ̃

1
1,S

(2 + χ), 0 < χ ≤ 2, (A.19)

fŨ2
1 ,Φ̃

2
1,S

(2− χ) < fŨ2
1 ,Φ̃

2
1,S

(2 + χ), 0 < χ ≤ 2. (A.20)

for any two pairs of characteristics (Ũ1
1 , Φ̃

1
1) and (Ũ2

1 , Φ̃
2
1) of the FOSD participant 1 of Type 1

and Type 2, respectively. Integrating (A.19)–(A.20) over (Ũ1
1 , Φ̃

1
1) and (Ũ2

1 , Φ̃
2
1) with respect

to P1 and P2, respectively, and computing average quantities under EP1 [fŨ1
1 ,Φ̃

1
1,S

(q)] and

EP1 [fŨ2
1 ,Φ̃

2
1,S

(q)] then yields∫ 4

0

qEP1 [fŨ1
1 ,Φ̃

1
1,S

(q)] dq < 2 <

∫ 4

0

qEP2 [fŨ2
1 ,Φ̃

2
1,S

(q)] dq,

in contradiction to (A.18). A similar contradiction can be derived if S > 60. We conclude

that, with probability 1, the empirical market-clearing price of the stock converges to 60 as

N goes to ∞. As the price grid S is finite, this implies that the empirical market-clearing

price of the stock is constant and equal to 60 as soon as N ≥ N0((Ũ
1
i , Φ̃

1
i , Ũ

2
i , Φ̃

2
i )i≥1), where

N0((Ũ
1
i , Φ̃

1
i , Ũ

2
i , Φ̃

2
i )i≥1) < ∞ depends on the sample paths of the participants’ characteristics.

It then follows from Step 1 that the empirical average per-participant trade converges to 2

with probability 1 as N goes to ∞. Hence the result. ■

Proof of Theorem 2. Define, for 0 ≤ x < x ≤ 2,

Λ1
S(x, x)

= EP1

[
FŨ1

1 ,Φ̃
1
1,S

(2− x)− FŨ1
1 ,Φ̃

1
1,S

(2− x) + FŨ1
1 ,Φ̃

1
1,S

(2 + x)− FŨ1
1 ,Φ̃

1
1,S

(2 + x)
]
. (A.21)

We have Λ1
S(x, x) = 0 for all x ∈ [0, 2) and

∂Λ1
S

∂x
(x, x) = EP1

[
fŨ1

1 ,Φ̃
1
1,S

(2− x)− fŨ1
1 ,Φ̃

1
1,S

(2 + x)
]
> 0

for all x ∈ (x, 2]. Hence Λ1
S(x, x) > 0 for any such x and x, and thus, by continuity and

compactness,

inf
x∈[0,2−∆x]

Λ1
S(x, x+∆x) > 0 (A.22)

for all ∆x ∈ (0, 2). Now, let F̂ 1
S,N be the empirical distribution of the quantities selected by

N Type 1 participants at price S, defined by

F̂ 1
S,N(x) ≡

1

N

N∑
i=1

1{q̃1i (S)≤x}, x ∈ [0, 4],
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and, for all 0 ≤ x < x ≤ 2, let Λ̂1
S,N(x, x) be the empirical excess frequency of Type 1

participants who select quantities in [2− x, 2− x] rather than in [2 + x, 2 + x] at price S in

a sample of N Type 1 participants,

Λ̂1
S,N(x, x) ≡ F̂ 1

S,N(2− x)− F̂ 1
S,N(2− x) + F̂ 1

S,N(2 + x)− F̂ 1
S,N(2 + x). (A.23)

Now, the random variables (q̃1i (S))i≥1 are iid, with common cdf EP1

[
FŨ1

1 ,Φ̃
1
1,S

]
. Thus

P
[
lim

N→∞

∥∥∥F̂ 1
S,N − EP1

[
FŨ1

1 ,Φ̃
1
1,S

]∥∥∥
∞

= 0
]
= 1 (A.24)

by the Glivenko–Cantelli theorem, where ∥ · ∥∞ is the sup sorm. Because, by (A.21) and

(A.23), we have ∣∣∣Λ̂1
S,N(x, x)− Λ1

S(x, x)
∣∣∣ ≤ 4

∥∥∥F̂ 1
S,N − EP1

[
FŨ1

1 ,Φ̃
1
1,S

]∥∥∥
∞

for all 0 ≤ x < x ≤ 2, we conclude from (A.24) that

P

[
lim

N→∞
sup

x∈[0,2−∆x]

∣∣∣Λ̂1
S,N(x, x+∆x)− Λ1

S(x, x+∆x)
∣∣∣ = 0

]
= 1 (A.25)

for all ∆x ∈ (0, 2). Finally, we have

inf
x∈[0,2−∆x]

Λ̂1
S,N(x, x+∆x) ≥ inf

x∈[0,2−∆x]
Λ1

S(x, x+∆x)

− sup
x∈[0,2−∆x]

∣∣∣Λ̂1
S,N(x, x+∆x)− Λ1

S(x, x+∆x)
∣∣∣

for all N , and thus

P

[
lim

N→∞
inf

x∈[0,2−∆x]
Λ̂1

S,N(x, x+∆x) > 0

]
≥ P

[
inf

x∈[0,2−∆x]
Λ1

S(x, x+∆x) > lim
N→∞

sup
x∈[0,2−∆x]

∣∣∣Λ̂1
S,N(x, x+∆x)− Λ1

S(x, x+∆x)
∣∣∣]

= 1,

where the equality follows from (A.22) and (A.25). Hence the result. ■

Proof of Corollary 1. This follows along the same lines as the proof of Theorem 2, using

the fact that Λ1
60(x, x) = 0 for 0 ≤ x < x ≤ 2 by symmetry of the pdf fŨ1

1 ,Φ̃
1
1,60

around 2.

Hence the result. ■

Proof of Theorem 3. This follows along the same lines as the proof of Theorem 2. Hence

the result. ■
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Figure 1: Theoretical Predictions on Individual Supply and Demand

Figure 1 shows which quadrants are first-order stochastically dominated and examples of Type 1’s supply,

and Type 2’s and Type 3’ demands. The predictions for risk-averse and risk-loving or -neutral agents are

also indicated.
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Figure 2: Aggregate Supply and Demand

Figure 2 illustrates the aggregate demand and supply schedules in our two treatments. There were 68 Type

1 sellers and 68 Type 2 buyers in Treatment I with no aggregate risk, and 68 Type 1 sellers and 73 Type

3 buyers in Treatment II with aggregate risk. We average the quantity supplied by sellers or demanded by

buyers at each price across the four replications of the same treatment. We use the standard deviation across

all observations of a subject’s type in the same treatment to compute the 90% confidence intervals.
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Figure 3: Individual Supply and Demand Schedules

Figure 3 illustrates the average demand and supply schedules submitted by participants depending on their

type and on the treatment. There were 68 Type 1 sellers and 68 Type 2 buyers in Treatment I with no

aggregate risk, and 68 Type 1 sellers and 73 Type 3 buyers in Treatment II with aggregate risk. We average

the quantity supplied by sellers or demanded by buyers at each price across the four replications of the

same treatment. Each line in grey corresponds to the demand or supply of one subject. Supply or demand

schedules of a few subjects are highlighted in blue, red, or black.
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Figure 4: Aggregate Supply and Demand in Call and Random Mechanisms

Figure 4 illustrates the aggregate demand and supply schedules in our experiments in four cases, defined by

the interaction between the treatment (no aggregate risk versus aggregate risk) and the determination of the

price (call versus random mechanism). We average the quantity supplied by sellers or demanded by buyers

at each price across the two replications of the same case.
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Figure 5: Frequency of First-Order Stochastically Dominated Actions

Figure 5 illustrates the evolution of deviations from first-order stochastic dominance by Type 1 sellers and

Type 2 buyers. An action is first-order stochastically dominated for a Type 1 participant (respectively, a

Type 2 participant) if she supplies a quantity q > 2 at a price S < 60 or a quantity q < 2 at a price S > 60

(respectively, if she demands a quantity q < 2 at a price S < 60 or a quantity q > 2 at a price S > 60). For

each subject and each replication, we compute the proportion of first-order stochastically dominated actions

for each relevant price. Panels A and B show, for each replication, the average of this proportion across

the 68 subjects of Types 1 and 2, respectively. Panel C shows the evolution of the proportion of small and

large mistakes, where a small (respectively, a large) mistake is defined as a quantity supplied or demanded

in a dominated quadrant that differs from 2 by less (respectively, more) than one unit. We use the standard

deviation across all observations of each type to compute the 90% confidence intervals.
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Figure 6: Distribution of Market-Clearing Prices in Simulated Markets

Figure 6 illustrates the impact of an increase in the number of participants on the distribution of market-

clearing prices in Treatment I with no aggregate risk. We simulate markets by bootstrapping. For a market

of size 2N , we resample the original dataset with replacement by randomly selecting the supply or demand

schedule in one replication for N Type 1 sellers and N Type 2 buyers. For each N and each of the 1, 000

simulated markets, we aggregate demand and supply schedules to compute the market-clearing price.
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Figure 7: Distribution of Allocative Efficiency in Simulated Markets

Figure 7 illustrates the impact of an increase in the number of participants on allocative efficiency. Allocative

efficiency is nonparametrically measured as the absolute difference between the quantity traded by a market

participant and the quantity traded in equilibrium, averaged across market participants. We focus on

Treatment I with no aggregate risk in which FOSD and risk aversion entails that market participants should

be fully hedged in equilibrium and trade a quantity of 2. The measure of allocative efficiency is thus
1

2N

∑
i |qi − 2|, which should be zero in equilibrium. The figure shows the average of this measure for the

different numbers of participants 2N . We report the average within quartiles defined across the 1, 000

simulated markets. We simulate markets by bootstrapping. For a market of size 2N , we resample the

original dataset with replacement by randomly selecting the supply or demand schedule in one replication

for N Type 1 sellers and for N Type 2 buyers. For each N and each of the 1, 000 simulated markets, we

aggregate demand and supply schedules to compute the market-clearing price. Each market participant

trades the quantity bid or offered at the market-clearing price.
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Table 1: Experimental Protocol

Our baseline experiment consists of eight sessions and includes in total 141 subjects who participate in

eight replications. We alternate Treatment I in odd replications, consisting of Type 1 sellers and Type 2

buyers—plus possibly one Type 3 buyer when there is an odd number of subjects—and corresponding to no

aggregate risk (“no AggR”), and Treatment II in even replications, consisting of Type 1 sellers and Type 3

buyers and corresponding to aggregate risk (“AggR”). For cohorts A, C, E and G, the first four replications

involve random pricing, whereas in the last four replications the price is set to minimize the gap between

supply and demand. For the other cohorts, in the first four replications prices are set to minimize the gap

between supply and demand, whereas in the last four replications there is random pricing. Subjects are

not informed of the treatment but they know which mechanism is used to set the price. Column “# part.”

indicates the number of participants in each session.

Round
Session # part. 1 2 3 4 5 6 7 8

A 19
Random Minimize gap Supply - Demand

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

B 11
Minimize gap Supply - Demand Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

C 19
Random Minimize gap Supply - Demand

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

D 19
Minimize gap Supply - Demand Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

E 20
Random Minimize gap Supply - Demand

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

F 20
Minimize gap Supply - Demand Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

G 15
Random Minimize gap Supply - Demand

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

H 18
Minimize gap Supply - Demand Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR
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Table 2: Aggregate Risk, Random Mechanism, and Individual Demand and
Supply Schedules

Table 2 reports the estimates of a panel regression capturing the impact of the individual endowment and

of random pricing on the quantity supplied and demanded, denoted by Qsell and Qbuy, respectively. The

explanatory variables are the price at which the quantity is demanded or supplied, an indicator that the

replication involved aggregate risk, and an indicator that the replication involved random pricing. We exclude

observations of Type 3 buyers who do not switch type in Treatment I with no aggregate risk. In columns (2)

and (4), we include time fixed effects, thus excluding the redundant indicator that the replication involved

aggregate risk. All regressions include participants’ ID fixed effects. Standard errors are clustered by ID.

The symbols ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively, and t-statistics

appear in parentheses.

Quantity demanded or supplied
Qsell Qsell Qbuy Qbuy

(1) (2) (3) (4)
Price 0.0368∗∗∗ 0.0582∗∗∗ 0.0187 −0.0451∗∗∗

(8.70) (5.21) (1.48) (−4.54)

Aggregate Risk 0.0073 −0.4081∗∗∗

(0.21) (−3.26)

Random Pricing 0.0405 0.0421 −0.0336 −0.0549
(0.66) (0.70) (−0.54) (−0.86)

# obs 5, 929 5, 929 5, 929 5, 929
R2 0.8260 0.8292 0.7622 0.7719
Time FE no yes no yes
Test that the sum of Odd periods FE equals the sum of Even periods FE
F-stat 0.10 11.83 ***
t-stat 0.32 −3.44***
p-value 0.7523 0.0010
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Table 3: Probit Regressions

The dependent variable is an indicator that the action is first-order stochastically dominated. Regressions are

estimated over 7,590 actions (see Footnote 21), by the 128 participants for whom we can identify dominated

actions and who chose at least one dominated action. The explanatory variables include the number of

replications in which the subject participated at the moment of the choice, an indicator that the replication

involved random pricing, an indicator that trading already took place at that price, an indicator that the

subject selected a dominated action at that price, and an indicator that this dominated action led to a

loss-making trade. Standard errors are clustered by participant ID. Regressions (2)–(4) include participants’

ID fixed effects. The symbols ***, **, and * indicate significance at 1%, 5%, and 10% level, respectively,

and t-statistics appear in parentheses.

First-order stochastically dominated action
(1) (2) (3) (4)

Number of replications −0.338∗∗∗ −0.0610∗∗∗ −0.0605∗∗∗ −0.0758∗∗∗

(−2.82) (−4.57) (−4.60) (−5.33)

Random pricing 0.0448 0.0473
(0.93) (0.97)

Trading already took place at that price −0.0793
(−1.21)

Subject selected dominated action at that price 0.6941∗∗∗

(3.93)

Dominated action led to loss-making trade −0.2750
(−1.52)

Constant −0.375∗∗∗

(−7.70)

# obs 7, 590 7, 590 7, 590 7, 590
Pseudo R2 0.0025 0.11 0.11 0.13
Participant fixed effects no yes yes yes
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Table 4: Distribution of Actions and Associated Tests

This table displays the distribution of actions. Panel A refers to actions at prices different from 60. The

proportion of actions that are first-order stochastically dominated and nondominated is calculated. For Type

1 participants, for example, nondominated actions correspond to selling a quantity q < 2 at prices S < 60:

in this quadrant, the bound is 0, nondominated actions far from q = 2 are 0 < q ≤ 1 and those that are near

q = 2 are 1 < q < 2). The total number of actions is 1,360 in odd replications and 680 in even replication

(except the 8th one for which it is 630 due to a technical issue that induced a data loss). Panel B corresponds

to actions at a price of 60 at which there is no first-order stochastically dominated actions. The total number

of actions is 136 in odd replications and 68 in even replication (except the 8th one for which it is 63 due to

a technical issue that induced a data loss). In both panels, p-values are based on the binomial distribution

with probability 0.5 under the null hypothesis. The number of trials correspond to the 8 replications, and

the number of successes for H1 to the number of replications in which the data conforms with H1.

Panel A Nondominated actions Dominated actions
(Price S ̸= 60) (1) (2) (3) (4) (5) (6) (7)
Replication Bound Far from q = 2 Near q = 2 q = 2 Near q = 2 Far from q = 2 Bound

1 171 252 282 196 203 172 84
2 49 135 153 113 119 86 25
3 157 220 269 254 214 136 110
4 51 127 157 139 108 63 35
5 155 173 324 314 200 130 64
6 53 100 169 154 111 66 27
7 215 176 326 322 175 76 70
8 75 83 157 161 87 45 22

Nonparametric tests p-value under H0
Dominant vs dominated Hypothesis H1 Successes H1 Trials (equally likely)

All Prob[(1)+(2)+(3)] > Prob[(5)+(6)+(7)] 8 8 0.39%
Far from q = 2 Prob[(2)] > Prob[(6)] 8 8 0.39%
Near q = 2 Prob[(3)] > Prob[(5)] 8 8 0.39%
Bound Prob[(1)] > Prob[(7)] 8 8 0.39%

Large vs Small Prob[(5)] > Prob[(6)] 8 8 0.39%

Panel B q < 2 q > 2
(Price S = 60) (1) (2) (3) (4) (5) (6) (7)
Replication Bound Far from q = 2 Near q = 2 q = 2 Near q = 2 Far from q = 2 Bound

1 19 18 22 37 19 18 3
2 3 9 8 14 17 10 7
3 11 14 15 29 27 23 17
4 5 8 9 15 20 9 2
5 9 7 25 37 25 24 9
6 5 7 9 19 21 4 3
7 14 12 18 38 31 14 9
8 6 8 12 19 10 7 1

Nonparametric tests p-value under H0
q < 2 vs q > 2 Hypothesis H1 Successes H1 Trials (equally likely)

All Prob[(1)+(2)+(3)] > Prob[(5)+(6)+(7)] 2 8 10.94%
Far from q = 2 Prob[(2)] > Prob[(6)] 2 8 10.94%
Near q = 2 Prob[(3)] > Prob[(5)] 2 8 10.94%
Bound Prob[(1)] > Prob[(7)] 5 8 21.88%
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Table 5: Estimations of Random-Choice Models of Financial Markets

We assume that every participant i has a Bernoulli utility function with constant relative risk aversion γi and

chooses a quantity q at price S in the nth replication with density
exp(λi,nEUT

i (q,S))∫ 4
0
exp(λi,nEUT

i (x,S)) dx
, where EUT

i (q, S) is

the expected utility of her future wealth conditional on trading a quantity q and λi,n = λi+ δi(n− 1). Table

5 reports the descriptive statistics of the model’s estimates on 141 participants. In Model (2), we impose

δi = 0. In Model (3), participants choose the quantity that maximizes their expected utility. Because the

models are nested, the goodness of fit of a constrained model θc relative to the unconstrained model θ0

is evaluated via the likelihood ratio LR = −2[ℓ(θ̂0) − ℓ(θ̂c)], where ℓ is the log-likelihood of the model’s

estimation. Under the null hypothesis, the probability distribution of the log-likelihood-ratio statistic used

to test nested models is approximated by a χ2-squared distribution with degrees of freedom equal to the

difference between the numbers of parameters in the two models.

(1) Unconstrained model

Mean Std Dev Q1 Q2 Q3

γ 0.61 0.51 0.0 0.8 1
λ 16.98 22.29 0.1 0.7 50.0
δ 1.58 2.84 0.0 0.1 5.0

logL -371 46 -385 -374 -358

(2) Constrained model with δ = 0 (no learning)

Mean Std Dev Q1 Q2 Q3
γ 0.51 0.55 -0.1 0.5 0.9
λ 18.54 22.79 0.1 1.4 50.0

logL -374 44 -386 -376 -353
Goodness of fit relative to the unconstrained model
LR -5.79
p-value 0.0161

(3) Constrained model with λ → ∞ (perfect rationality)

Mean Std Dev Q1 Q2 Q3
γ 0.24 0.55 -0.1 -0.1 0.4

logL -1,248 199 -1,370 -1,337 -1,224
Goodness of fit relative to the unconstrained model
LR -1,753.81
p-value 0.0000
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Table 6: Allocative Efficiency

This table offers various statistical measures of allocative efficiency. Πm(S) is the proportion of risk-averse
participants in a cohort m whose trades translate in an increase in individual welfare compared to autarky,
measured at a price S that is either the theoretical equilibrium price S∗

m or the realized price Sm. Ψm(S)
is the average fraction of the gains from trade extracted by these participants. We exclude observations of
Type 3 buyers who do not switch type in Treatment I with no aggregate risk. The average and the standard
deviation of the realized price are computed across the different cohorts of participants. The first column
corresponds to statistics computed on all types, the second to Type 1 sellers, the third to Type 2 buyers
(who are at risk before trading), and the fourth to Type 3 buyers (who are not at risk before trading).

Replications
No aggregate risk (Treatment I) All types Type 1 sellers Type 2 buyers Type 3 buyers

Theoretical price S∗
m 60.00 60.00 60.00 NA

Πm(S∗
m) 100% 100% 100% NA

Ψm(S∗
m) 81% 81% 82% NA

Average realized price Sm 59.06 59.06 59.06 NA
Standard deviation of Sm 2.79 2.79 2.79 NA
Πm(Sm) 89% 89% 92% NA
Ψm(Sm) 83% 80% 85% NA

Replications
Aggregate risk (Treatment II) All types Type 1 sellers Type 2 buyers Type 3 buyers

Theoretical price S∗
m 58.61 58.61 NA 58.61

Πm(S∗
m) 77% 97% NA 42%

Ψm(S∗
m) 69% 80% NA 31%

Average realized price Sm 57.26 57.26 NA 57.26
Standard deviation of Sm 2.98 2.98 NA 2.98
Πm(Sm) 78% 86% NA 59%
Ψm(Sm) 68% 76% NA 43%
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Online Appendix

OA.1 Instructions for the Experiment

	 1	

INSTRUCTIONS	
	
You	are	going	to	participate	in	an	economic	experiment.	Various	research	organizations	
have	provided	 funds	 for	conducting	 this	research.	 If	you	 follow	the	 instructions	below	
and	make	good	decisions,	you	can	earn	a	significant	amount	of	money	that	will	be	paid	
to	you	in	cash	after	the	experiment.	
In	 this	 experiment,	 you	 can	 trade	 a	 risky	 asset.	 The	 dividend	 offered	 by	 this	 asset	 is	
determined	by	a	coin	toss.	Heads	indicates	that	the	dividend	is	120	ECU	(Experimental	
Currency	Unit),	and	Tails	indicates	that	the	dividend	is	0	ECU.	The	coin	toss	represents	
the	risk	that	exists	in	the	economic	environment.	
	
There	are	11	potential	prices:	20,	25,	30,	35,	40,	45,	50,	55,	60,	65,	et	70	ECU.	If	you	hold	
assets,	we	will	ask	you	what	quantity	you	would	like	to	sell	at	each	potential	price.	If	you	
do	not	hold	assets,	we	will	ask	you	what	quantity	you	would	like	to	buy	at	each	potential	
price.	You	can	choose	any	quantity	between	0	and	4,	included	(within	the	technical	limit	
of	8	decimal	figures).	
	
We	will	 start	 by	 organizing	 4	market	 sessions	 in	 which	 the	 transaction	 price	 will	 be	
determined	by	minimizing	the	distance	between	the	aggregate	supply	(sum	of	all	offers	
to	sell)	and	demand	(sum	of	all	offers	to	buy).	We	will	then	organize	4	market	sessions	
in	 which	 the	 transaction	 price	 will	 be	 randomly	 determined,	 all	 prices	 being	 equally	
likely.	
	
For	 each	 of	 these	 8	market	 sessions,	 you	 will	 start	 by	 being	 informed	 of	 your	 initial	
endowment	 of	 assets	 and	 of	 ECU	 and	 of	 your	 potential	 additional	 income	 (that	 also	
depends	on	the	economic	environment,	i.e.,	of	the	result	of	the	coin	toss).	
	
Then,	at	the	end	of	each	of	the	8	market	sessions,	we	will	compute	your	final	wealth	that	
will	depend	on	your	initial	endowments	(in	assets	and	in	ECU),	on	your	offer	to	buy	or	
sell,	on	the	transaction	price,	on	the	value	of	the	dividend	distributed	by	the	risky	asset	
and	on	the	potential	additional	income	determined	by	the	coin	toss.		
	
The	 positions	 in	 assets	 and	 ECU	 are	 not	 transferred	 from	 session	 to	 session.	 The	
different	market	 sessions	 are	 independent:	 you	 start	 each	market	 session	with	 a	 new	
situation	and	new	endowments,	and	a	new	coin	toss	will	be	done.	
		
Example	1:	 You	 start	with	 3	 units	 of	 the	 risky	 asset,	 no	ECU.	 You	will	 also	 receive	 an	
additional	 income	 of	 100	 ECU	 if	 Heads	 comes	 up,	 and	 300	 ECU	 if	 Tails	 comes	 up.	
Suppose	that	the	transaction	price	(whether	determined	randomly	or	by	minimizing	the	
distance	between	supply	and	demand)	 is	65	ECU	and	that,	at	 this	price,	you	offered	to	
sell	2.5	units	of	the	asset.	
If	Heads	comes	up,	your	final	wealth	is:	
	 Proceeds	from	asset	sale:		 2.5	x65																						=	162.5	
	 +	Dividends	on	asset	holdings:		 (3	–	2.5)	x120=		 +	60	
	 +	Additional	income	if	Heads:		 	 +	100	
	 Total	if	Heads:	 	 =	322.50	ECU	
If	Tails	comes	up,	your	final	wealth	is:	
	 Proceeds	from	asset	sale:	 2.5	x65																						=	162.5	
	 +	Dividends	on	asset	holdings:		 (3	–	2.5)	x0	=		 +	0	
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	 +	Additional	income	if	Tails:		 	 +	300	
	 Total	if	Tails:	 	 =	462.50	ECU	
	
	
	
Example	2:	You	start	with	no	risky	asset	and	300	ECU.	You	will	also	receive	an	additional	
income	of	120	ECU	if	Heads	comes	up,	and	190	ECU	if	Tails	comes	up.	Suppose	that	the	
transaction	 price	 (whether	 determined	 randomly	 or	 by	 minimizing	 the	 distance	
between	supply	and	demand)	 is	55	ECU	and	 that,	 at	 this	price,	you	offered	 to	buy	1.5	
units	of	the	asset.	
If	Heads	comes	up,	your	final	wealth	is:	
	 Initial	endowment	in	ECU:	 	 300	
	 -	Cost	of	purchase:	 1.5	x55	=		 -		82.5	
	 +	Dividends	on	asset	holdings:	 1.5	x120	=		 +	180	
	 +	Additional	income	if	Heads:		 	 +	120	
	 Total	if	Heads:		 	 =		517.5	ECU	
If	Tails	comes	up,	your	final	wealth	is:	
	 Initial	endowment	in	ECU:	 	 300	
	 -	Cost	of	purchase:	 1.5	x55	=		 -		82.5	
	 +	Dividends	on	asset	holdings:		 1.5	x0	=		 +					0	
	 +	Additional	income	if	Tails:		 	 +	190	
	 Total	if	Tails:		 	 =	407.5	ECU	
	
In	order	to	pay	you,	we	will	randomly	select	one	of	the	first	4	market	sessions	and	one	of	
the	 last	 4	market	 sessions.	We	will	 pay	 you	 the	 sum	of	 the	 final	wealth	 you	 obtained	
during	 the	 two	 selected	 sessions	 at	 the	 exchange	 rate	 of	 10	 ECU	 =	 1	 €.	 For	 example,	
suppose	that	your	final	wealth	is	210	ECU	at	market	session	1,	430	ECU	at	session	2,	70	
ECU	at	session	3,	140	ECU	at	session	4,	380	ECU	at	session	5,	540	ECU	at	session	6,	80	
ECU	at	session	7,	et	20	ECU	at	session	8.	Suppose	that	we	randomly	select	sessions	3	and	
6.	We	will	pay	you:	(70	+	540)	ECU	x	0.1	€/ECU	=	61€.	
	
In	each	of	the	8	market	sessions,	we	will	ask	you	to	fill	 in	a	table	indicating	how	many	
units	of	the	asset	you	would	like	to	buy	or	sell	at	each	potential	prices.	As	an	indication,	
you	will	find	at	the	bottom	of	the	page,	a	table	showing	your	final	wealth	in	each	of	the	
two	potential	states	of	the	economy	(Heads	or	Tails)	for	various	quantities	traded.	Recall	
that	you	can	choose	to	trade	any	quantity	between	0	and	4,	even	if	this	quantity	is	not	
indicated	in	the	table.	
	 	

50



	 3	

	
	

	
	

51



	 4	

	
	
	
	
	
	 	

52



	 5	

PRACTICE	QUESTIONNAIRE	
	
1.	 Consider	 a	market	 session	 in	which	 the	 transaction	 price	 is	 randomly	 determined.	
What	is	the	likelihood	that	the	transaction	price	equals	45?	
	

a)	1	over	9	 	 b)	1	over	10	 	 c)	1	over	11	 	 d)	1	over	12	
	
What	is	the	likelihood	that	the	transaction	price	equals	70?	
	

a)	1	over	9	 	 b)	1	over	10	 	 c)	1	over	11	 	 d)	1	over	12	
	
2.	Suppose	 that	we	 throw	a	coin	 three	 times	and	 that	we	obtain	Heads	at	each	 throw.	
What	is	the	likelihood	to	obtain	Tails	at	the	next	throw?	
	

a)	null		 b)	1	over	4	 	 c)	1	over	2	 	 d)	3	over	4	
	
3.	Suppose	that	we	throw	a	coin	four	times	and	that	we	obtain	Heads,	Tails,	Heads,	and	
Tails.	What	is	the	likelihood	to	obtain	Tails	at	the	next	throw?	
	

a)	null		 b)	1	over	4	 	 c)	1	over	2	 	 d)	3	over	4	
	
4.	Consider	 the	 table	below	that	provides	your	 final	wealth	depending	on	the	quantity	
sold	at	the	price	of	55.	Suppose	that	you	propose	to	sell	1.25	at	the	price	of	55.	Suppose	
that	the	transaction	price	is	55,	and	that	Tails	comes	up.	What	is	your	final	wealth?	
	

	
	
N.B.:	Face	stands	for	Heads,	and	Pile	stands	for	Tails.		

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4

FACE 610 594 578 561 545 529 513 496 480 464 448 431 415 399 383 366 350

PILE 370 384 398 411 425 439 453 466 480 494 508 521 535 549 563 576 590
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OA.2 Robustness Analysis: The Experiment with a
Coarse Price Grid

Table OA.1: Experimental Protocol of the Experiment with a Coarse Price Grid

Our additional experiment consists of five sessions and includes a total of 79 subjects who participated in

eight replications. There are 11 prices on the coarse price grid {20, 25, . . . , 65, 70} with a tick size of 5. We

alternated Treatment I in odd replications, consisting of Type 1 sellers and Type 2 buyers—plus possibly one

Type 3 buyer when there is an odd number of subjects—and corresponding to no aggregate risk (“no AggR”),

and Treatment II in even replications, consisting of Type 1 sellers and Type 3 buyers and corresponding

to aggregate risk (“AggR”). For cohorts K and L, the first four replications involve a random mechanism,

whereas the last four replications involve a call mechanism. For the other cohorts, the first four replications

involve a call mechanism, whereas the last four replications involve a random mechanism. Column “# part.”

indicates the number of participants in each session.

Round
Session # part. 1 2 3 4 5 6 7 8

I 17
Call Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

J 12
Call Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

K 15
Random Call

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

L 20
Random Call

no AggR AggR no AggR AggR no AggR AggR no AggR AggR

M 15
Call Random

no AggR AggR no AggR AggR no AggR AggR no AggR AggR
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Table OA.2: Distribution of Actions under the Coarse Price Grid and Associated
Tests

This table displays the distribution of actions under the coarse price grid. It is the equivalent of Table

4 corresponding to the baseline experiment. Panel A refers to actions at prices different from 60. The

proportion of actions that are first-order stochastically dominated and nondominated is calculated. For

Type 1 participants, for example, nondominated actions correspond to selling a quantity q < 2 at prices

S < 60: in this quadrant, the bound is 0, nondominated actions far from q = 2 are q ∈]0, 1] and those that

are near q = 2 are are q ∈]1, 2[). The total number of actions is 760 in odd replications and 380 in even

replication. Panel B corresponds to actions at a price of 60 at which there is no first-order stochastically

dominated actions. The total number of actions is 76 in odd replications and 38 in even replication. In

both panels, p-values are based on the binomial distribution with probability 0.5 under the null hypothesis.

The number of trials correspond to the 8 replications, and the number of successes for H1 to the number of

replications in which the data conforms with H1.

Panel A Nondominated actions Dominated actions
(Price S ̸= 60) (1) (2) (3) (4) (5) (6) (7)
Replication Bound Far from q = 2 Near q = 2 q = 2 Near q = 2 Far from q = 2 Bound

1 117 142 114 129 87 129 42
2 61 91 69 78 45 25 11
3 115 143 159 197 68 58 20
4 60 103 98 71 32 13 3
5 120 134 174 196 77 41 18
6 65 76 103 79 29 22 6
7 137 125 162 199 78 37 22
8 68 60 98 77 43 28 6

Nonparametric tests p-value under H0
Dominant vs dominated Hypothesis H1 Successes H1 Trials (equally likely)

All Prob [(1)+(2)+(3)] > Prob[(5)+(6)+(7)] 8 8 0.39%
Far from q = 2 Prob[(2)] > Prob[(6)] 8 8 0.39%
Near q = 2 Prob[(3)] > Prob[(5)] 8 8 0.39%
Bound Prob[(1)] > Prob[(7)] 8 8 0.39%

Large vs Small Prob[(5)] > Prob[(6)] 7 8 3.13%

Panel B q < 2 q > 2
(Price S = 60) (1) (2) (3) (4) (5) (6) (7)
Replication Bound Far from q = 2 Near q = 2 q = 2 Near q = 2 Far from q = 2 Bound

1 13 18 10 11 11 9 4
2 1 3 4 11 6 9 4
3 6 7 9 23 16 12 3
4 2 0 10 11 8 7 0
5 4 10 12 19 20 7 4
6 2 5 5 12 5 8 1
7 3 6 12 28 13 9 5
8 1 2 8 11 8 5 3

Nonparametric tests p-value under H0
q < 2 vs q > 2 Hypothesis H1 Successes H1 Trials (equally likely)

All Prob[(1)+(2)+(3)] > Prob[(5)+(6)+(7)] 1 8 3.13%
Far from q = 2 Prob[(2)] > Prob[(6)] 2 8 10.94%
Near q = 2 Prob[(3)] > Prob[(5)] 1 8 3.31%
Bound Prob[(1)] > Prob[(7)] 4 8 27.34%
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Figure OA.1: Aggregate Supply and Demand under the Coarse Price Grid

Figure OA.1 illustrates the aggregate demand and supply schedules in our two treatments under the “Coarse”

protocol. There were 38 Type 1 sellers and 38 Type 2 buyers in Treatment I with no aggregate risk, and 38

Type 1 sellers and 41 Type 3 buyers in Treatment II with aggregate risk. We average the quantity supplied

by the sellers or demanded by the buyers at each price across the four replications of the same treatment.
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Figure OA.2: Frequency of First-Order Stochastically Dominated Actions under
the Coarse Price Grid

Figure OA.2 illustrates the evolution of deviations from first-order stochastic nondominated actions by Type

1 sellers and Type 2 buyers in the additional sessions under the “Coarse” protocol. An action is first-order

stochastically dominated when a Type 1 participant (respectively, a Type 2 participant) sells a quantity

q > 2 at a price S < 60 or a quantity q < 2 at a price S > 60 (respectively, buys a quantity q < 2 at a

price S < 60 or a quantity q > 2 at a price S > 60). For each subject and each replication, we compute the

proportion of first-order stochastically dominated actions at each relevant price. Panels A and B show, for

each replication, the average of this proportion across the 38 subjects of Types 1 and 2, respectively. Panel

C shows the evolution of the proportion of small and large mistakes, where a small (respectively, a large)

mistake is defined as a quantity supplied or demanded in a dominated quadrant that differs from 2 by less

(respectively, more) than one unit. We use the standard deviation across all observations of each type to

compute the 90% confidence intervals.
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