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France.

1



Analytic Solutions and Complete Markets 2

Abstract

We study the Heston model for pricing European options on stocks with stochas-
tic volatility. This is a Black-Scholes-type equation whose spatial domain for the
logarithmic stock price x ∈ R and the variance v ∈ (0,∞) is the half-plane H =
R× (0,∞). The volatility is then given by

√
v. The diffusion equation for the price

of the European call option p = p(x, v, t) at time t ≤ T is parabolic and degenerates
at the boundary ∂H = R × {0} as v → 0+. The goal is to hedge with this option
against volatility fluctuations, i.e., the function v 7→ p(x, v, t) : (0,∞) → R and its
(local) inverse are of particular interest. We prove that ∂p

∂v (x, v, t) 6= 0 holds almost
everywhere in H× (−∞, T ) by establishing the analyticity of p. To this end, we are
able to show that the Black-Scholes-type operator, which appears in the diffusion
equation, generates a holomorphic C0-semigroup in a suitable weighted L2-space
over H. We show that the C0-semigroup solution can be extended to a holomor-
phic function in a complex domain, by establishing some new a priori weighted
L2-estimates over certain complex “shifts” of H for the unique holomorphic exten-
sion. These estimates depend only on the weighted L2-norm of the terminal data
over H.

2010 Mathematics Subject Classification: Primary 91B25, 35B65;
Secondary 91G80, 35K65.

Key words: Heston model; stochastic volatility;
Black-Scholes equation; European call option;
degenerate parabolic equation; terminal value problem;
holomorphic extension; analytic solution



Analytic Solutions and Complete Markets 3

1 Introduction

For several decades, simple market models have been very important and useful products

of numerous mathematical studies of financial markets. Several of them have become very

popular and are extensively used by the financial industry (F. Black and M. Scholes

[6], S. L. Heston [23], and J.-P. Fouque, G. Papanicolaou, and K. R. Sircar

[17] to mention only a few). These models are usually concerned with asset pricing in a

volatile market under clearly specified rules that are supposed to guarantee “fair pricing”

(e.g., arbitrage-free prices in T. Björk [5]).

Assets are typically represented by stocks, securities (e.g., bonds), and their deriva-

tives (such as options on stocks and similar contracts). An important role of a derivative

is to assess, reduce or eliminate the volatile behavior of a particular asset (or an entire

portfolio). A common way to achieve this objective is to add a derivative on the volatile

asset to the portfolio containing this asset. This procedure, called hedging, is closely

connected with the problem of market completion (M. Romano and N. Touzi [42],

M. H. A. Davis [10]). There have been a number of successful attempts to obtain a

market completion by (call or put) options on stocks. The pricing of such options in-

volves various kinds of the Black-Scholes-type equations. These attempts are typically

based on probabilistic, analytic, and numerical techniques, some of them including even

explicit formulas, cf. Y. Achdou and O. Pironneau [1, Chapt. 2]. The basic principle

behind all Black-Scholes-type models is that the model must be arbitrage-free , that

is, any arbitrage opportunity must be excluded which is possible only if the option price

is a stochastic process that is a martingale (T. Björk [5]). Îto’s formula then yields

an equivalent linear parabolic equation which will be the object of our investigation, cf.

M. H. A. Davis [10]. Throughout our present work we study the Heston model of

pricing for European call options on stocks with stochastic volatility (S. L. Heston

[23]) by abstract analytic methods coming from partial differential equations (PDEs, for

short) and functional analysis.

In our simple market, described by the Heston stochastic volatility model

(Heston model, for short), market completion by a European call option on the stock

has the following meaning: The basic quantities are the maturity time T (called also

the exercise time), 0 < T < ∞, at which the stock option matures; the real time t,

−∞ < t ≤ T ; the time to maturity τ = T − t ≥ 0, 0 ≤ τ < ∞; the spot price of stock

S = St > 0 at time t ≤ T ; the (stochastic) variance of the stock market V = Vt > 0 at

time t ≤ T ;
√
V is associated with the (stochastic) volatility of the stock market; the strike

price (exercise price) K ≡ const > 0 of the stock option at maturity, a European call or

put option; a given (nonnegative) payoff function ĥ(S, V ) = (S−K)+ at time t = T (i.e.,

τ = 0) for a European call option; and the (call or put) option price U = U(S, V, t) > 0 at

time t, given the stock price S and the variance V . In the derivation of S. L. Heston’s

model [23], which is a system of two stochastic differential equations for the pair (Xt, Vt),
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Îto’s formula yields a diffusion equation for the unknown option price U = U(S, V, t) > 0

at time t which depends only on the stock price St and the variance Vt at time t. This

allows us to view the relative logarithmic stock price x = ln(St/K) ∈ R, R = (−∞,∞),

and the variance v = Vt ∈ (0,∞) as a pair of independent variables in the open half-plane

H
def
= R × (0,∞) ⊂ R

2. Consequently, the option price p = p(x, v, t) = U(S, V, t) is a

function of (x, t) ∈ R × (−∞, T ] and v ∈ (0,+∞) with the terminal value at maturity

time t = T given by

(1.1) p(x, v, T ) = (S −K)+ = K (ex − 1)+ for (x, v) ∈ H .

The option price p = p(x, v, t) ≡ pτ (x, v), where τ = T − t ≥ 0, is (uniquely) determined

by a unique, risk neutral martingale measure ([10, 42]), which yields a stochastic process

(pτ )τ≥0. Applying Îto’s formula to this process, one concludes that, equivalently to the

probabilistic expectation formula for p(x, v, t), this option price can be calculated directly

from a partial differential equation of parabolic type with the terminal value condition

(1.1). Thus, given the (relative logarithmic) stock price x ∈ R at a fixed time t ∈ (−∞, T ],

the function p̃x,t : v 7→ p(x, v, t) yields the (unique) option price for every v ∈ (0,+∞).

According to I. Bajeux-Besnainou and J.-Ch. Rochet [3, p. 12], the characteristic

property of a complete market is that p̃x,t : (0,+∞) → R+ is injective (i.e., one-to-one),

which means that any particular option value p = p̃x,t(v) cannot be attained at two

different values of the variance v ∈ (0,+∞). We take advantage of this property to give

an alternative definition of a complete market using differential calculus rather than

probability theory, see our Definition 5.3 in Section 5. This is a purely mathematical

problem that we solve in this article for the Heston model, with a help from [3, Sect. 5]

and the work by M. H. A. Davis and J. Ob lój [11]; see Section 5 below, Theorem 5.2.

There are several other stochastic volatility models, see, e.g., those listed in [17,

Table 2.1, p. 42] and those treated in [17, 27, 36, 43, 48], that are already known to

allow or may allow market completion by a European call option. However, the rigorous

proofs of market completeness (and their methods) vary from model to model; cf. T.

Björk [5]. Some of them are more probabilistic (R. M. Anderson and R. C. Rai-

mondo [2] with “endogenous completeness” of a diffusion driven equilibrium market, I.

Bajeux-Besnainou and J.-Ch. Rochet [3], J. Hugonnier, S. Malamud, and E.

Trubowitz [25], D. Kramkov and S. Predoiu [31], and M. Romano and N. Touzi

[42]), others more analytic (PDEs), e.g., in M. H. A. Davis [10], M. H. A. Davis and

J. Ob lój [11], and P. Takáč [46].

In the derivation of S. L. Heston’s model [23], Îto’s formula yields the following

diffusion equation

(1.2)

(

∂

∂t
+ A

)

U(S, V, t) = 0 for S > 0, V > 0, t < T .
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We call A the Black-Scholes-Îto operator for the Heston model; it is defined by

(1.3)

(AU)(S, V, t)
def
=

V ·
(

1

2
S2 ∂

2U

∂S2
(S, V, t) + ρσ S

∂2U

∂S ∂V
(S, V, t) +

1

2
σ2 ∂

2U

∂V 2
(S, V, t)

)

+ (r − q)S
∂U

∂S
(S, V, t) + [κ(θ − V ) − λ(S, V, t)]

∂U

∂V
(S, V, t) − r U(S, V, t)

for S > 0, V > 0, and t < T ,

with the following additional quantities (constants) as given data: the risk free rate of

interest r ∈ R; the dividend yield q ∈ R; the instantaneous drift of the stock price returns

r − q ≡ − qr ∈ R; the volatility σ > 0 of the stochastic volatility
√
V ; the correlation

ρ ∈ (−1, 1) between the Brownian motions for the stock pricing and the volatility; the

rate of mean reversion κ > 0 of the stochastic volatility
√
V ; the long term variance θ > 0

(called also long-run variance or long-run mean level) of the stochastic variance V ; the

price of volatility risk λ(S, V, t) ≥ 0, in [23] chosen to be linear, λ(S, V, t) ≡ λV with a

constant λ ≡ const ≥ 0.

We assume a constant risk free rate of interest r and a constant dividend yield q;

hence, r − q = − qr is the instantaneous drift of the stock price returns . All three

quantities, r, q, and qr, may take any real values; but, typically, one has 0 < r ≤ q < ∞
whence also qr ≥ 0. We refer the reader to the monograph by J. C. Hull [26, Chapt. 26,

pp. 599–607] and to S. L. Heston’s original article [23] for further description of all

these quantities.

The diffusion equation (1.2) is supplemented first by the following dynamic boundary

condition as V → 0+,

(1.4)

(

∂

∂t
+ B

)

U(S, 0, t) = 0 for S > 0, t < T .

The boundary operator B is the trace of the Black-Scholes-̂Ito operator A as V → 0+; it

corresponds to the Black-Scholes operator with zero volatility:

(1.5)

(BU)(S, 0, t)
def
=

(r − q)S
∂U

∂S
(S, 0, t) + κθ

∂U

∂V
(S, 0, t) − r U(S, 0, t)

for S > 0, V = 0, and −∞ < t < T .

The original Heston boundary conditions in [23],

(1.6)



















U(0, V, t) = 0 for V > 0;

lim
S→∞

∂

∂S
(U(S, V, t) − S) = 0 for V > 0;

lim
V→∞

(U(S, V, t) − S) = 0 for S > 0,
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at all times t ∈ (−∞, T ), seem to be “economically” motivated. Mathematically, one

may attempt to motivate them by the asymptotic behavior of the solution UBS(S, t) ≡
UBS(S, V0, t) to the Black-Scholes equation, for S > 0 and t ≤ T , where the variance

V0 = σ2
0 > 0 is a given constant determined from the constant volatility σ0 > 0. What we

mean are the following boundary conditions ,

(1.7)



















UBS(0, V, t) = 0 for V > 0;

lim
S→∞

∂

∂S
(UBS(S, V, t) − S) = 0 for V > 0;

lim
V→∞

(UBS(S, V, t) − S) = 0 for S > 0,

at all times t ∈ (−∞, T ). Roughly speaking, the difference U(S, V, t) − UBS(S, V, t) be-

comes asymptotically small near the boundary. The terminal condition as t → T− for

both solutions, U and UBS, is the payoff function ĥ(S, V ) = (S −K)+ for S > 0,

U(S, V, T ) = UBS(S, V, T ) = (S −K)+ .

The solution UBS(S, t) of the Black-Scholes equation has been calculated explicitly in

the original article by F. Black and M. Scholes [6]; see also J.-P. Fouque, G.

Papanicolaou, and K. R. Sircar [17, §1.3.4, p. 16].

Finally, the diffusion equation (1.2) is supplemented also by the following terminal

condition as t → T−, which is given by the payoff function ĥ(S, V ) = (S −K)+,

(1.8) U(S, V, T ) = (S −K)+ for S > 0, V > 0 .

The terminal-boundary value problem for eq. (1.2) with the boundary conditions (1.4)

and (1.6), as it stands, poses a mathematically challenging problem, in particular, due to

the degeneracies in the diffusion part of the operator A: Some or all of the coefficients

of the second partial derivatives tend to zero as S → 0+ and/or V → 0+, making the

diffusion effects disappear on the boundary {(S, 0) : S > 0}, cf. eq. (1.5).

This article is organized as follows. We begin with a rigorous mathematical formu-

lation of the Heston model in Section 2. We make use of weighted Lebesgue and Sobolev

spaces originally introduced in P. Daskalopoulos and P. M. N. Feehan [8] and [9,

Sect. 2, p. 5048] and P. M. N. Feehan and C. A. Pop [15]. An extension of the

problem from the real to a complex domain is formulated in Section 3. Our main results,

Proposition 4.1 and Theorem 4.2, are stated in Section 4. Before giving the proofs of these

two results, in Section 5 we present an application of them to S. L. Heston’s model [23]

for European call options in Mathematical Finance. There we also provide an affirmative

answer (Theorem 5.2) to the problem of market completeness as described in M. H. A.

Davis and J. Ob lój [11]. Our contribution to market completeness is also an alternative

definition for a market to be complete (Definition 5.3) which is based on classical concepts

of differential calculus (I. Bajeux-Besnainou and J.-Ch. Rochet [3, p. 12]) rather
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than on probability theory. In addition, we discuss the important Feller condition in

Remark 5.4 and also mention another application to a related model in Remark 5.5. The

proofs of our main results from Section 4 are gradually developed in Sections 6 through

8 and completed in Section 9. Finally, Appendix A contains some technical asymptotic

results for functions from our weighted Sobolev spaces, whereas Appendix B is concerned

with the density of certain analytic functions in these spaces.

2 Formulation of the mathematical problem

In this section we introduce S. L. Heston’s model [23, Sect. 1, pp. 328–332] and formulate

the associated Cauchy problem as an evolutionary equation of (degenerate) parabolic

type.

2.1 Heston’s stochastic volatility model

We consider the Heston model given under the risk neutral measure via equations

(1) − (4) in [23, pp. 328–329]. The model is defined on a filtered probability space

(Ω,F , (Ft)t>0,P), where P is the risk neutral probability measure, and the filtration satis-

fies the usual conditions. Recalling that St denotes the stock price and Vt the (stochastic)

variance of the stock market at (the real) time t ≥ 0, the unknown pair (St, Vt)t>0 satisfies

the following system of stochastic differential equations,

(2.1)







dSt

St

= − qr dt +
√

Vt dWt ,

dVt = κ (θ − Vt) dt + σ
√

Vt dZt ,

where (Wt)t>0 and (Zt)t>0 are two Brownian motions with the correlation coefficient ρ ∈
(−1, 1), a constant given by d〈W,Z〉t = ρ dt. This is the original Heston system in [23].

If Xt = ln(St/K) denotes the (natural) logarithm of the scaled stock price St/K

at time t ≥ 0, relative to the strike price K > 0, then the pair (Xt, Vt)t>0 satisfies the

following system of stochastic differential equations,

(2.2)

{

dXt = −
(

qr + 1
2
Vt

)

dt +
√

Vt dWt ,

dVt = κ (θ − Vt) dt + σ
√

Vt dZt .

Following [11, Sect. 4], let us consider a European call option written in this market

with payoff ĥ(ST , VT ) ≡ ĥ(ST ) ≥ 0 at maturity T > 0, where ĥ(S) = (S − K)+ for all

S > 0. As usual, for x ∈ R we abbreviate x+ def
= max{x, 0} and x− def

= max{−x, 0}. We set

h(X, V ) ≡ h(X) = K (eX−1)+ for all X = ln(S/K) ∈ R, so that h(X) = ĥ(S) = ĥ(KeX)

for X ∈ R. Hence, if the instant values (Xt, Vt) = (x, v) ∈ H are known at time t ∈ (0, T ),
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where H = R × (0,∞) ⊂ R
2, the arbitrage-free price Ah

t of the European call option at

this time is given by the expectation formula (with respect to the risk neutral probability

measure P)

(2.3)
Ah

t (x, v) = e−r(T−t)
EP

[

ĥ(ST ) | Ft

]

= e−r(T−t)
EP [h(XT ) | Ft]

= e−r(T−t)
EP [h(XT ) | Xt = x, Vt = v] .

It is justified in [11] and [46] that Ah
t = p(Xt, Vt, t) where p solves the (terminal value)

Cauchy problem

(2.4)







∂p

∂t
+ Gt p− rp = 0 , (x, v, t) ∈ H× (0, T ) ;

p(x, v, T ) = h(x) , (x, v) ∈ H ,

with Gt being the (time-independent) infinitesimal generator of the time-homogeneous

Markov process (Xt, Vt); cf. A. Friedman [19, Chapt. 6] or B. Øksendal [39, Chapt. 8].

Indeed, first, eq. (1.2) is derived from eqs. (2.2) and (2.3) by Îto’s formula, then the

diffusion equation (2.4) is obtained from eq. (1.2) using

S = Kex ,
dS

dx
= S , V = v ,

p(x, v, t) = U(S, V, t) ,
∂p

∂x
(x, ξ, t) = S

∂U

∂S
(S, v, t) ,

∂2p

∂x2
(x, ξ, t) = S

∂U

∂S
(S, v, t) + S2 ∂

2U

∂S2
(S, v, t)

=
∂p

∂x
(x, ξ, t) + S2 ∂

2U

∂S2
(S, v, t) .

Hence, the function p : (x, v, t) 7→ p(x, v, T − t) verifies a linear Cauchy problem of the

following type, with the notation x = (x1, x2) ≡ (x, v) ∈ H,

(2.5)























∂p

∂t
−

2
∑

i,j=1

aij(x, t)
∂2p

∂xi ∂xj

−
2
∑

j=1

bj(x, t)
∂p

∂xj

− c(x, t) p

= f(x, t) for (x, t) ∈ H× (0, T ) ;

p(x, 0) = u0(x) for x ∈ H ,

with the function f(x, t) ≡ 0 on the right-hand side, the initial data u0(x) = u0(x, v) =

p(x, v, T ) = h(x) at t = 0, and the coefficients

a(x, v, t) =
v

2

(

1 ρσ
ρσ σ2

)

∈ R
2×2
sym ,

b(x, v, t) =

(

− qr − 1
2
v

κ (θ − v) − λ(x, v, T − t)

)

∈ R
2 , c(x, v, t) = −r ∈ R ,
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where the variable x = (x1, x2) ∈ R
2 has been replaced by (x, v) ∈ H ⊂ R

2. We have

also replaced the meaning of the temporal variable t as real time (t ≤ T ) by the time

to maturity t (t ≥ 0), so that the real time has become τ = T − t. According to S. L.

Heston [23, eq. (6), p. 329], the unspecified term λ(x, v, T − t) in the vector b(x, v, t)

represents the price of volatility risk and is specifically chosen to be λ(x, v, T−t) ≡ λv

with a constant λ ≥ 0.

Next, we eliminate the constants r ∈ R and λ ≥ 0, respectively, from eq. (2.5) by

substituting

(2.6) p∗(x, v, t)
def
= e−r(T−t) U(S, V, T − t) for p(x, v, t) ,

which is the reduced option price, and replacing κ by κ∗ = κ + λ > 0 and θ by θ∗ =
κθ
κ+λ

> 0. Hence, we may set r = λ = 0. Finally, we introduce also the re-scaled variance

ξ = v/σ > 0 for v ∈ (0,∞) and abbreviate θσ
def
= θ/σ ∈ R. These substitutions will have

a simplifying effect on our calculations later. Eq. (2.5) then yields the following initial

value problem for the unknown function u(x, ξ, t) = p∗(x, σξ, t):

(2.7)







∂u

∂t
+ Au = f(x, ξ, t) in H× (0, T ) ;

u(x, ξ, 0) = u0(x, ξ) for (x, ξ) ∈ H ,

with the function f(x, ξ, t) ≡ 0 on the right-hand side and the initial data u0(x, ξ) ≡ h(x)

at t = 0, where the (autonomous linear) Heston operator A, derived from eq. (2.5),

takes the following form,

(Au)(x, ξ)
def
= − 1

2
σξ ·

(

∂2u

∂x2
(x, ξ) + 2ρ

∂2u

∂x ∂ξ
(x, ξ) +

∂2u

∂ξ2
(x, ξ)

)

+
(

qr + 1
2
σξ
)

· ∂u
∂x

(x, ξ) − κ(θσ − ξ) · ∂u
∂ξ

(x, ξ)

(2.8)

≡ − 1

2
σξ · (uxx + 2ρ uxξ + uξξ)

+
(

qr + 1
2
σξ
)

· ux − κ(θσ − ξ) · uξ for (x, ξ) ∈ H.

Recall θσ = θ/σ. We prefer to use the following asymmetric “divergence” form of A,

(Au)(x, ξ) = − 1

2
σξ ·

[

∂

∂x

(

∂u

∂x
(x, ξ) + 2ρ

∂u

∂ξ
(x, ξ)

)

+
∂2u

∂ξ2
(x, ξ)

]

+
(

qr + 1
2
σξ
)

· ∂u
∂x

(x, ξ) − κ(θσ − ξ) · ∂u
∂ξ

(x, ξ)

(2.9)

≡ − 1

2
σξ ·

[

(ux + 2ρ uξ)x + uξξ

]

+
(

qr + 1
2
σξ
)

· ux − κ(θσ − ξ) · uξ for (x, ξ) ∈ H.
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The boundary operator defined in eq. (1.5) transforms the left-hand side of

eq. (1.4) into the following (logarithmic) form on the boundary ∂H = R× {0} of H:

(2.10)

e−rτ

(

∂

∂τ
+ B

)

U(S, 0, τ)
∣

∣

∣

τ=T−t
= −

(

∂

∂t
+ B

)

u(x, 0, t)

= − ∂u

∂t
(x, 0, t) − qr

∂u

∂x
(x, 0, t) + κθσ

∂u

∂ξ
(x, 0, t)

for x ∈ R and 0 < t < ∞.

The remaining boundary conditions (1.6) become

(2.11)



























u(−∞, ξ, t)
def
= lim

x→−∞

(

u(x, ξ, t) −Kex−r(T−t)
)

= 0 for ξ > 0;

lim
x→+∞

[

e−x · ∂

∂x

(

u(x, ξ, t) −Kex−r(T−t)
)

]

= 0 for ξ > 0;

lim
ξ→∞

(

u(x, ξ, t) −Kex−r(T−t)
)

= 0 for x ∈ R,

at all times t ∈ (0,∞).

In the next paragraph we give a definition of A as a densely defined, closed linear

operator in a Hilbert space.

2.2 Weak formulation in a weighted L2-space

Now we formulate the initial-boundary value problem for eq. (1.2) with the boundary

conditions (1.4) and (1.6) in a weighted L2-space. In the context of the Heston model,

similar weighted Lebesgue and Sobolev spaces were used earlier in P. Daskalopoulos

and P. M. N. Feehan [8] and [9, Sect. 2, p. 5048] and P. M. N. Feehan and C. A. Pop

[15]. To this end, we wish to consider the Heston operator A, defined in eq. (2.9) above,

as a densely defined, closed linear operator in the weighted Lebesgue space H ≡ L2(H;w),

where the weight w : H → (0,∞) is defined by

(2.12) w(x, ξ)
def
= ξβ−1 e−γ|x|−µξ for (x, ξ) ∈ H,

and H = L2(H;w) is the complex Hilbert space endowed with the inner product

(2.13) (u, w)H ≡ (u, w)L2(H;w)
def
=

∫

H

u w̄ ·w(x, ξ) dx dξ for u, w ∈ H .

Here, β, γ, µ ∈ (0,∞) are suitable positive constants that will be specified later, in Sec-

tion 6 (see also Appendix A). However, it is already clear that if we want that the weight

w(x, ξ) tends to zero as ξ → 0+, we have to assume β > 1. Similarly, if we want that

the initial condition u0(x, ξ) = K(ex − 1)+ for (x, ξ) ∈ H belongs to H, we must require

γ > 2.
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We prove in Section 6, §6.1, that the sesquilinear form associated to A,

(u, w) 7→ (Au, w)H ≡ (Au, w)L2(H;w) ,

is bounded on V ×V , where V denotes the complex Hilbert space H1(H;w) endowed with

the inner product

(2.14)

(u, w)V ≡ (u, w)H1(H;w)
def
=

∫

H

(ux w̄x + uξ w̄ξ) · ξ ·w(x, ξ) dx dξ

+

∫

H

u w̄ ·w(x, ξ) dx dξ for u, w ∈ H1(H;w) .

In particular, by Lemmas A.2 and A.3 in the Appendix (Appendix A), every function

u ∈ V = H1(H;w) satisfies also the following (natural) zero boundary conditions ,

ξβ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx −→ 0 as ξ → 0+ ,(2.15)

ξβ e−µξ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx −→ 0 as ξ → ∞ ,(2.16)

and

e−γ|x| ·
∫ ∞

0

|u(x, ξ)|2 · ξβ e−µξ dξ −→ 0 as x → ±∞ .(2.17)

(We are no longer using the letter V for variance; it has been replaced by the re-scaled

variance ξ = v/σ > 0.) The following additional vanishing boundary conditions are

determined by our particular realization of the Heston operator A with the domain V =

H1(H;w), cf. (2.20) below:



















ξβ ·
∫ +∞

−∞

uξ(x, ξ) · w̄(x, ξ) · e−γ|x| dx −→ 0 as ξ → 0+ ;

ξβ e−µξ ·
∫ +∞

−∞

uξ(x, ξ) · w̄(x, ξ) · e−γ|x| dx −→ 0 as ξ → ∞ ,

(2.18)

e−γ|x| ·
∫ ∞

0

(ux + 2ρ uξ) w̄(x, ξ) · ξβ e−µξ dξ −→ 0 as x → ±∞ ,(2.19)

for every function w ∈ V . The validity of these boundary conditions on the boundary

∂H = R × {0} of the half-plane H = R × (0,∞) ⊂ R
2 (i.e., as ξ → 0+) and as ξ → ∞

is discussed below, in §2.4. They guarantee that A is a closed, densely defined linear

operator in the Hilbert space H which possesses a unique extension to a bounded linear

operator V → V ′, denoted by A : V → V ′ again, with the property that there is a

constant c ∈ R such that A + c I is coercive on V . Consequently, every function v ∈ V

from the domain D(A) ⊂ H of A, D(A) = {v ∈ V : Av ∈ H}, must satisfy not only

(2.15), (2.16), and (2.17) (thanks to v ∈ V ), but also the boundary conditions (2.18) and
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(2.19) (owing to v ∈ D(A)). A detailed discussion of all boundary conditions is provided

in §2.4 below. The coercivity of A + c I on V will be proved in Section 6, §6.2.

The sesquilinear form (u, w) 7→ (Au, w)H is used in the Hilbert space definition of the

linear operator A by the following procedure. For any given u, w ∈ H1(H;w)∩W 2,∞(H),

we use eq. (2.9) to calculate the inner product

(Au, w)H ≡ (Au, w)L2(H;w) =

σ

2

∫

H

[(ux + 2ρ uξ) · w̄x + uξ · w̄ξ] · ξ ·w(x, ξ) dx dξ

+
σ

2

∫

H

[

(ux + 2ρ uξ) w̄ · ξ · ∂xw(x, ξ) + uξ · w̄ · ∂ξ
(

ξ ·w(x, ξ)
)]

dx dξ

− σ

2

∫ ∞

0

(ux + 2ρ uξ) w̄ · ξ ·w(x, ξ) dξ
∣

∣

∣

x=+∞

x=−∞

− σ

2

∫ +∞

−∞

uξ · w̄ · ξ ·w(x, ξ) dx
∣

∣

∣

ξ=∞

ξ=0

(2.20)

−
∫

H

[

−
(

qr + 1
2
σξ
)

ux + κ(θσ − ξ) uξ

]

· w̄ ·w(x, ξ) dx dξ

=
σ

2

∫

H

(ux · w̄x + 2ρ uξ · w̄x + uξ · w̄ξ) · ξ ·w(x, ξ) dx dξ

+
σ

2

∫

H

[

− γ sign x · (ux + 2ρ uξ) w̄ · ξ + (β − µξ) uξ · w̄
]

w(x, ξ) dx dξ

− σ

2

[

lim
x→+∞

(

e−γ|x| ·
∫ ∞

0

(ux + 2ρ uξ) w̄ · ξβ e−µξ dξ

)

− lim
x→−∞

(

e−γ|x| ·
∫ ∞

0

(ux + 2ρ uξ) w̄ · ξβ e−µξ dξ

)]

+
σ

2

[

lim
ξ→0+

(

ξβ ·
∫ +∞

−∞

uξ · w̄ · e−γ|x| dx

)

− lim
ξ→∞

(

ξβ e−µξ ·
∫ +∞

−∞

uξ · w̄ · e−γ|x| dx

)]

−
∫

H

( − qr ux + κθσ uξ) · w̄ ·w(x, ξ) dx dξ

+

∫

H

(

1
2
σ ux + κuξ

)

w̄ · ξ ·w(x, ξ) dx dξ ,

where we now impose the vanishing boundary conditions (2.18) and (2.19).

Hence, the sesquilinear form (2.20) becomes

(Au, w)H =
σ

2

∫

H

(ux · w̄x + 2ρ uξ · w̄x + uξ · w̄ξ) · ξ ·w(x, ξ) dx dξ

+
σ

2

∫

H

(1 − γ sign x) ux · w̄ · ξ ·w(x, ξ) dx dξ

+

∫

H

(

κ− γρσ sign x− 1
2
µσ
)

uξ · w̄ · ξ ·w(x, ξ) dx dξ

(2.21)

+ qr

∫

H

ux · w̄ ·w(x, ξ) dx dξ +
(

1
2
βσ − κθσ

)

∫

H

uξ · w̄ ·w(x, ξ) dx dξ .
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All integrals on the right-hand side converge absolutely for any pair u, w ∈ V ; see the

proof of our Proposition 6.1 below. In what follows we use the last formula, eq. (2.21),

to define the sesquilinear form (2.20) in V × V . Of course, in the calculations above we

have assumed the boundary conditions in (2.18) and (2.19).

We make use of the Gel’fand triple V →֒ H = H ′ →֒ V ′, i.e., we first identify the

Hilbert space H with its dual space H ′, by the Riesz representation theorem, then use

the imbedding V →֒ H, which is dense and continuous, to construct its adjoint mapping

H ′ →֒ V ′, a dense and continuous imbedding of H ′ into the dual space V ′ of V as well.

The (complex) inner product on H induces a sesquilinear duality between V and V ′; we

keep the notation ( · , · )H also for this duality.

2.3 The Cauchy problem in the real domain

Let us return to the initial value problem (2.7). The letter T stands for an arbitrary

(finite) upper bound on time t. The latter, t, can still be regarded as time to maturity.

Definition 2.1 Let 0 < T < ∞, f ∈ L2((0, T ) → V ′), and u0 ∈ H. A function

u : H× [0, T ] → R is called a weak solution to the initial value problem (2.7) if it has the

following properties:

(i) the mapping t 7→ u(t) ≡ u( · , · , t) : [0, T ] → H is a continuous function, i.e.,

u ∈ C([0, T ] → H);

(ii) the initial value u(0) = u0 in H;

(iii) the mapping t 7→ u(t) : (0, T ) → V is a Bôchner square-integrable function, i.e.,

u ∈ L2((0, T ) → V ); and

(iv) for every function

φ ∈ L2((0, T ) → V ) ∩W 1,2((0, T ) → V ′) →֒ C([0, T ] → H) ,

the following equation holds,

(2.22)

(u(T ), φ(T ))H −
∫ T

0

(

u(t), ∂φ
∂t

(t)
)

H
dt +

∫ T

0

(Au(t), φ(t))H dt

= (u0, φ(0))H +

∫ T

0

(f(t), φ(t))H dt .

The following remarks are in order:

First, our definition of a weak solution is equivalent with that given in L. C. Evans

[12, §7.1], p. 352. We are particularly interested in the solution with the initial value
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u0(x, ξ) = K (ex − 1)+ for (x, ξ) ∈ H, cf. eq. (1.8). Clearly, we have u0 ∈ H if and only if

γ > 2, β > 0, and µ > 0.

W 1,2((0, T ) → V ′) denotes the Sobolev space of all functions φ ∈ L2((0, T ) → V ′)

that possess a distributional time-derivative φ′ ∈ L2((0, T ) → V ′). The norm is defined

in the usual way; cf. L. C. Evans [12, §5.9]. The properties of V ≡ H1(H;w) justify the

notation V ′ = H−1(H;w).

The continuity of the imbedding

L2((0, T ) → V ) ∩W 1,2((0, T ) → V ′) →֒ C([0, T ] → H)

is proved, e.g., in L. C. Evans [12, §5.9], Theorem 3 on p. 287.

2.4 The Heston operator and boundary conditions

We have seen in our definition of the sesquilinear form (2.21) in paragraph §2.2 that the

boundary conditions (2.18) and (2.19) are necessary for performing integration by parts

to obtain the sesquilinear form (2.21). They should be valid for every weak solution

u : H× [0, T ] → R of the initial value problem (2.7) at a.e. time t ∈ (0, T ), and for every

test function w ∈ V . A natural way to satisfy these conditions is to estimate the absolute

value of the integrals from above by Cauchy’s inequality and then impose or verify the

following boundary conditions,


















ξβ ·
∫ +∞

−∞

|uξ(x, ξ)|2 · e−γ|x| dx ≤ const < ∞ as ξ → 0+ ;

ξβ e−µξ ·
∫ +∞

−∞

|uξ(x, ξ)|2 · e−γ|x| dx ≤ const < ∞ as ξ → ∞+ ,

(2.23)

e−γ|x| ·
∫ ∞

0

|ux + 2ρ uξ|2 · ξβ e−µξ dξ ≤ const < ∞ as x → ±∞ ,(2.24)

together with (2.15), (2.16), i.e.,


















ξβ ·
∫ +∞

−∞

|w(x, ξ)|2 · e−γ|x| dx −→ 0 as ξ → 0+ ;

ξβ e−µξ ·
∫ +∞

−∞

|w(x, ξ)|2 · e−γ|x| dx −→ 0 as ξ → ∞ ,

(2.25)

and (2.17) for w in place of u. In other words, we have

• (2.23) and (2.25) ⇒ (2.18) whereas (2.24) and (2.17) ⇒ (2.19).

Indeed, by Lemma A.2, the latter boundary conditions, (2.25), are satisfied for every test

function w ∈ V . Similarly, (2.17) holds by Lemma A.3. We stress that only the boundary

conditions in (2.23) and (2.24) are imposed ; they do not follow from u ∈ V .
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Two of these boundary conditions on the boundary ∂H = R×{0} of the half-plane

H = R× (0,∞) ⊂ R
2 limit from above the growth of the solution u(x, ξ) at an arbitrarily

low volatility level
√
ξ, i.e., as the variance ξ → 0+.

From now on, we use exclusively formula (2.21) to define the linear operator A :

V → V ′ that appears in the sesquilinear form (2.20) obtained directly for the Heston

operator (2.9). This means that we no longer need the boundary conditions in (2.23) and

(2.24) (or in (2.18) and (2.19)) imposed on u ∈ V .

We refer the reader to the recent work by P. M. N. Feehan [13], Appendix B,

§B.1, pp. 57–58, for numerous interesting properties of A.

Remark 2.2 (Coercivity conditions.) It is important to remark at this stage of our

investigation of the Heston operator A that, in order to ensure the coercivity of A + c I

on V , one has to assume the well-known Feller condition ([16, 20]),

(2.26) 1
2
σ2 − κθ < 0 .

However, Feller’s condition (2.26) is not sufficient for obtaining the desired coerciv-

ity. We need to guarantee also

c′1 = 1
2
σ

[

(κ

σ
− γ |ρ|

)2

− γ(1 + γ)

]

≥ 0 ;

cf. ineq. (6.15) in the proof of Proposition 6.2 below. That is, we need to assume

(2.27) κ ≥ σ
(

γ |ρ| +
√

γ(1 + γ)
)

(> σγ(|ρ| + 1) ) .

The last inequality is an additional condition to Feller’s condition, 1
2
σ2 − κθ < 0,

both of them requiring the rate of mean reversion κ > 0 of the stochastic volatility in

system (2.1) to be sufficiently large. This additional condition is caused by the fact that

W. Feller [16] considers only an analogous problem in one space dimension (ξ ∈ R+),

so that the solution u = u(ξ) is independent from x ∈ R. In particular, if the initial

condition u0 = u( · , · , 0) ∈ H for u(x, ξ, t) permits us to take γ > 0 arbitrarily small, then

inequality (2.27) is easily satisfied, provided Feller’s condition 1
2
σ2 − κθ < 0 is satisfied.

However, if we wish to accommodate also initial conditions of type u0(x, ξ) = K (ex− 1)+

for (x, ξ) ∈ H, then we are forced to take γ > 2 to ensure that u0 ∈ H. ⊓⊔

We will see in Section 4 that the initial value problem (2.7) has a unique weak

solution u : H× [0, T ] → R. Recall that, by eq. (1.8), we are particularly interested in the

solution with the initial value u0(x, ξ) = K (ex − 1)+ for (x, ξ) ∈ H. We are not able to

show that even this particular solution satisfies Heston’s boundary conditions (1.4) and

(2.11). However, the asymptotic boundary conditions in (2.11) are taken into account by

the choice of function spaces H and V . Heston’s boundary operator (2.10) assumes the

existence of traces of certain functions of (x, ξ) as ξ → 0+ which have to satisfy a partial

differential equation derived from (1.4). In conditions (2.17) and (2.25) we assume only

that some of the functions in the boundary operator (2.10) do not blow up too fast as

ξ → 0+.
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3 The complex domain: Preliminaries and notation

We complexify the real space-time domain H× (0,∞) as follows:

We denote by

(3.1) X
(r) def

= R + i(−r, r) ⊂ C

the complex strip of width 2r, r ∈ (0,∞), which consists of all (complex) numbers z =

x + iy ∈ C whose imaginary part, y = ℑm z, is bounded by |y| < r, while the real

part, x = ℜe z, may take any value x ∈ R (see Figure 1). This is the complexification

of the variable x ∈ R. The remaining two independent variables, ξ, t ∈ (0,∞), will be

complexified by angular domains with the vertex at zero. We denote by

(3.2) ∆ϑ
def
= {ζ = ̺eiθ ∈ C : ̺ > 0 and θ ∈ (−ϑ, ϑ)}

the complex angle of angular width 2ϑ, ϑ ∈ (0, π/2) (Figure 2). Notice that the standard

logarithm ζ 7→ z = log ζ is a conformal mapping from the angle ∆ϑ onto the strip X(ϑ).

Now, given any ϑξ, ϑt ∈ (0, π/2), we complexify ξ as ζ = ξ+iη ∈ ∆ϑv
, so that ξ = ℜe ζ > 0,

and t as t = α + iτ ∈ ∆ϑt
, whence α = ℜe t > 0, thus stressing that we allow for complex

time t ∈ ∆ϑt
in accordance with the usual notation for holomorphic C0-semigroups. The

half-plane H = R× (0,∞) is naturally imbedded into the complex domain

(3.3) V
(r) def

= X
(r) × ∆arctan r ⊂ C

2 , r ∈ (0,∞) .

x ∈ R

iy ∈ iR

r(α)

r(α)

z = x + iy ∈ C

Figure 1. Strip X(r) = R + i(−r, r)) for r = r(α), α > 0.
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ξ ∈ (0,+∞)

iη ∈ iR

ζ = ξ + iη ∈ Cϑ(α)

ϑ(α)

Figure 2. Angle ∆ϑ.

αT

iτ

T ′0

τ

Figure 3. Σ(α)(ν0).

αT

iy

κ0 · min{α, T ′}

−κ0 · min{α, T ′}
T ′0

y

Figure 4. Γ
(T ′)
T (κ0, ν0).

In order to give a plausible lower estimate on the space-time domain of holomorphy

(i.e., the domain of complex analyticity) of a weak solution u to the homogeneous initial

value problem (2.7) with f ≡ 0, we introduce a few more subsets of C2×C (cf. P. Takáč

et al. [45, p. 428] or P. Takáč [46, pp. 58–59]):
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The two constants κ0, ν0 ∈ (0,∞) used below will be specified later (in Theorem 4.2);

0 ≤ α < ∞ is an arbitrary number. First, we set

V
(κ0α) = X

(κ0α) × ∆arctan(κ0α)(3.4)

=
{

(z, ζ) = (x + iy, ξ + iη) ∈ C
2 :

|y| < κ0α and | arctan(η/ξ)| < κ0α, ξ > 0
}

,

Σ(α)(ν0) = {t = α + iτ ∈ C : ν0|τ | < α} = α + i
(

−ν−1
0 α , ν−1

0 α
)

(3.5)

(Figure 3), and for 0 < T ′ ≤ T ≤ ∞, we introduce the following complex parabolic

domain,

(3.6) Γ
(T ′)
T (κ0, ν0) =

⋃

α∈(0,T )

[

V
(κ0·min{α,T ′}) × Σ(α)(ν0)

]

⊂ C
2 × C

(Figure 4). Additional properties of this domain will be presented later, in Section 8,

eq. (8.1).

In order to get a better picture of the domain Γ
(T ′)
T (κ0, ν0) ⊂ C

2 × C, it is worth to

notice that the mapping (z, ζ, t) 7−→ (z, log ζ, log t) maps Γ
(T ′)
T (κ0, ν0) diffeomorphically

onto the set of all complex triples

(z, ζ ′, t′) = (x + iy, ξ′ + iη′, α′ + iτ ′) ≡ (x, ξ′, α′) + i(y, η′, τ ′) ∈ C
2 × C ≃ R

3 × R
3 ,

such that 0 < α = ℜe t = eα
′ · cos τ ′ < T together with

|y| < κ0α , |η′| < arctan(κ0α) , and |τ ′| < arctan(1/ν0) .

In particular, there is no restriction on x and ξ′ in the plane (x, ξ′) ∈ R
2, while α′ =

log |t| ∈ R. These claims follow from simple calculations using ζ = eξ
′ ·eiη′ and t = eα

′ ·eiτ ′ .

4 Main result

Our main result, Theorem 4.2, gives the analyticity (more precisely, a holomorphic ex-

tension to a complex domain) of a unique weak solution to the homogeneous initial value

problem (2.7) with f ≡ 0 in H× (0, T ). Such a weak solution exists and is unique by the

following classical result (Proposition 4.1) that summarizes a pair of standard theorems

for abstract parabolic problems due to J.-L. Lions [37, Chapt. IV], Théorème 1.1 (§1,

p. 46) and Théorème 2.1 (§2, p. 52). For alternative proofs, see also e.g. L. C. Evans [12,

Chapt. 7, §1.2(c)], Theorems 3 and 4, pp. 356–358, J.-L. Lions [38, Chapt. III, §1.2],

Theorem 1.2 (p. 102) and remarks thereafter (p. 103), A. Friedman [18], Chapt. 10,

Theorem 17, p. 316, or H. Tanabe [47, Chapt. 5, §5.5], Theorem 5.5.1, p. 150.
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Proposition 4.1 Let ρ, σ, θ, qr, and γ, be given constants in R, ρ ∈ (−1, 1), σ > 0,

θ > 0, and γ > 0. Assume that κ ∈ R is sufficiently large, such that both inequalities,

(2.26) (Feller’s condition) and (2.27) are satisfied. Next, let us choose β ∈ R such that

1 < β ≤ 2κθ/σ2. Set µ = (κ/σ) − γ |ρ| (> 0). Let 0 < T < ∞, f ∈ L2((0, T ) → V ′),

and u0 ∈ H be arbitrary. Then the initial value problem (2.7) (with u0 ∈ H) possesses a

unique weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

in the sense of Definition 2.1. Moreover, this solution satisfies also u ∈ W 1,2((0, T ) → V ′)

and there exists a constant C ≡ C(T ) ∈ (0,∞), independent from f and u0, such that

(4.1)

sup
t∈[0,T ]

‖u(t)‖2H +

∫ T

0

‖u(t)‖2V dt +

∫ T

0

∥

∥

∂u
∂t

(t)
∥

∥

2

V ′
dt

≤ C

(

‖u0‖2H +

∫ T

0

‖f(t)‖2V ′ dt

)

.

Finally, if u0 : H → R defined by u0(x, ξ) = K (ex − 1)+, for (x, ξ) ∈ H, should

belong to H, one needs to take γ > 2.

The proof of this proposition is given towards the end of Section 6. All what we

have to do in this proof is to verify the boundedness and coercivity hypotheses for the

sesquilinear form (2.21) in V × V which are assumed in J.-L. Lions [37, Chapt. IV, §1],

inequalities (1.1) (p. 43) and (1.9) (p. 46), respectively.

Our main result is the following theorem which provides an analytic extension of

the weak solution u to the initial value problem (2.7) from the real domain H× [0, T ] to

a complex domain Γ
(T ′)
T (κ0, ν0) defined in (3.6).

Theorem 4.2 Let ρ, σ, θ, qr, and γ, be given constants in R, ρ ∈ (−1, 1), σ > 0, θ > 0,

and γ > 0. Assume that β, γ, κ, and µ are chosen as specified in Proposition 4.1 above.

Then the constants κ0, ν0 ∈ (0,∞) and T ′ ∈ (0, T ] can be chosen sufficiently small and

such that the (unique) weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

of the homogeneous initial value problem (2.7) (with f ≡ 0 and u0 ∈ H) possesses a

unique holomorphic extension

ũ : Γ
(T ′)
T (κ0, ν0) → C

to the complex domain Γ
(T ′)
T (κ0, ν0) ⊂ C

3 with the following properties: There are some

constants C0, c0 ∈ R+ such that
∫ ∞

0

∫ +∞

−∞

|ũ (x + iy, ξ(1 + iω), α + iτ)|2 ·w(x, ξ) dx dξ ≤ C0 ec0α · ‖u0‖2H(4.2)
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for every α ∈ (0, T ] and for all y, ω, τ ∈ R satisfying

(4.3) max{|y|, | arctanω|} < κ0 · min{α, T ′} and ν0|τ | < α .

Consequently, for any T0 ∈ (0, T ′], the domain Γ
(T ′)
T (κ0, ν0) contains the Cartesian

product

X
(κ0T0) × ∆κ0T0 ×

[

(T0, T ) + i
(

− T0

ν0
, T0

ν0

)]

and the estimate in (4.2) is valid for every α ∈ [T0, T ] and for all y, ω, τ ∈ R such that,

independently from α,

(4.4) max{|y|, | arctanω|} < κ0T0 and ν0|τ | < T0 .

The proof of this theorem takes advantage of results from Sections 7 and 8, and

Appendix B. It is formally completed at the end of Section 9.

5 An application to Mathematical Finance

This section is concerned with an application of our main result, Theorem 4.2 (Section 4),

to S. L. Heston’s stochastic volatility model [23] for European call options described in

Section 2. Our goal will be to provide an affirmative answer to the problem of market

completeness in Mathematical Finance as described in M. H. A. Davis and J. Ob lój

[11]. We recall that the model is defined on a filtered probability space (Ω,F , (Ft)t>0,P),

where P is the risk neutral probability measure. Since an equivalent martingale measure

P
∗ is not unique, the market is incomplete. The reader is referred to M. H. A. Davis

[10], J. C. Hull [26], J. Hull and A. White [27], A. L. Lewis [36], E. M. Stein

and J. C. Stein [43], and J. B. Wiggins [48] for additional important work on this

subject. We closely follow the approach in [11, Sect. 3] labeled “martingale model” for

market completeness. Two more interesting papers on market completeness, written and

circulated independently and simultaneously, deserve to be mentioned: J. Hugonnier,

S. Malamud, and E. Trubowitz [25] and F. Riedel and F. Herzberg [41]. They

are based on the existence of an Arrow-Debreu equilibrium and its implementation as

a Radner equilibrium. It is shown or assumed that in this setup, allocation and prices

are analytic functions of the state and time variables. The remaining arguments taking

advantage of analytic entries in the parabolic problem are similar to ours; cf. [41, §2.3,

p. 403].

An extensive account of various stochastic volatility models for European call options

and possible market completion by such options is given in P. Takáč [46, Sect. 8, pp.

74–83]. Therefore, we restrict the discussion below to the Heston model [23, Sect. 1]

which seems to be very popular. An important basic feature of this model is the explicit
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form of its solution [23, pp. 330–331], eqs. (10) – (18). We apply our main analyticity

result, Theorem 4.2, to the Heston model. Another frequently used stochastic volatility

model is the so-called “ 3/2 model” investigated in S. L. Heston [24], P. Carr and J.

Sun [7], A. Itkin and P. Carr [28], and in the monographs by J. Baldeaux and E.

Platen [4] and A. L. Lewis [36]. After a suitable transformation of variables, it seems

to be possible to treat the 3/2 model by mathematical tools similar to those we use in

our present work.

We will answer the question of market completeness by investigating some qual-

itative properties (such as analyticity) of the (unique) weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

to the initial value problem (2.7) obtained in our Theorem 4.2. Let us recall the Heston

operator A defined in formula (2.8).

The coefficients of the linear operator A are independent of time t and x ∈ R, and

their dependence on ξ ∈ (0,∞) is very simple (linear). As a natural consequence, the

domain Γ
(T ′)
T (κ0, ν0) of the holomorphic extension ũ of the weak solution u obtained in

our Theorem 4.2 is simpler than in the corresponding result obtained in P. Takáč [46,

Theorem 3.3, pp. 58–59] for uniformly elliptic operators with variable analytic coefficients.

Remark 5.1 It seems to be likely that one may allow both, the correlation coefficient

ρ ≡ ρ(x, ξ, t) and the volatility of volatility σ ≡ σ(x, ξ, t) to depend on the variables x,

ξ, and t, provided this dependence is analytic, with all partial derivatives bounded, and

both functions ρ and σ bounded below and above by some positive constants.

Last but not least, we would like to mention that negative values of the correlation

coefficient ρ ∈ (−1, 1) are not unusual in a volatile market: asset prices tend to decrease

when volatility increases ([17, p. 41]).

⊓⊔

The market completion by a European call option has been obtained in M. H. A.

Davis and J. Ob lój [11, Proposition 5.1, p. 56] based on the validity of a more general

analyticity result [11, Theorem 4.1, p. 54]. However, the main hypothesis in this theorem

is the analyticity of the solution p(x, v, t) = p(x, v, T − t) of the parabolic problem (2.5) in

the domain H× (0, T ). (Warning: We use the symbol p to denote the function (x, v, t) 7→
p(x, v, T − t), not the complex conjugate of p.) Of course, the initial condition h(x) =

K (ex−1)+, x ∈ R, is not analytic. Nevertheless, in our Theorem 4.2 we have established

the analyticity result missing in [11] (Theorem 4.1, p. 54). Consequently, all conclusions in

[11] on market completion, that are based on the validity of Theorem 4.1 ([11, p. 54]), are

valid for the Heston model. In Heston’s model with a European call option, the notion

of a complete market is rigorously defined in [11, Definition 3.1, p. 52] as follows (in
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probabilistic and measure-theoretic terms): Every contingent claim can be replicated by a

self-financing trading strategy in the stock and bond (contingent claims can be perfectly

hedged against risks). This is the case for Heston’s model, by Corollary 4.2 (p. 54) and

Proposition 5.1 (p. 56) in [11]. We now briefly sketch how the analyticity of the solution

u(x, ξ, t) in H × (0, T ) facilitates market completion. We keep the notation u(x, ξ, t) for

a weak solution to problem (2.7) which is the specific form of problem (2.5) for Heston’s

model. The relation between the solution p(x, v, t) = p(x, v, T − t) of the parabolic

problem (2.5) and the weak solution u(x, ξ, t) to the initial value problem (2.7) is obvious,

i.e., p(x, v, t) = u(x, ξ, t) = u(x, v/σ, t), by means of the substitutions v = σξ with the

new independent variable ξ ∈ R+ and θσ = θ/σ ∈ R, and by replacing the constants κ

and θ, respectively, by κ∗ = κ + λ > 0 and θ∗ = κθ
κ+λ

> 0. Hence, we may set r = λ = 0

in eq. (2.5). Conversely, let p : H × (0, T ) → R : (x, v, t) 7→ p(x, v, t) denote the unique

solution of the (terminal value) Cauchy problem (2.4). We set u(x, ξ, t) = p(x, σξ, T − t)

for all (x, ξ) ∈ H and t ∈ (0, T ), so that u : [0, T ] → H is the (unique) weak solution

of the initial value problem (2.7) used in Section 4, Theorem 4.2. By the main result of

this article, Theorem 4.2, function u : H × (0, T ) → R can be (uniquely) extended to a

holomorphic function in the domain Γ
(T ′)
T (κ0, ν0) ⊂ C

2 × C. Consequently, the Jacobian

matrix

G(x, ξ, t) =

(

1 , 0
∂u
∂x

(x, ξ, t) , ∂u
∂ξ

(x, ξ, t)

)

of the mapping (x, ξ) 7→ (x, u(x, ξ, t)) : H ⊂ R
2 → R

2 possesses determinant detG(x, ξ, t)

= ∂u
∂ξ

(x, ξ, t) with a holomorphic extension to Γ
(T ′)
T (κ0, ν0). The determinant detG being

(real) analytic in all of H × (0, T ), its set of zeros is either Lebesgue negligible (i.e., of

zero Lebesgue measure) or else it is the whole domain H × (0, T ) (cf. S. G. Krantz

and H. R. Parks [33, p. 83]). Hence, it suffices to examine detG in an arbitrarily small

neighborhood of a single “central” point.

Finally, we can apply Proposition 5.1 (and its proof) from [11, p. 56] to conclude

that a European call option in Heston’s model (2.1) completes the market :

Theorem 5.2 Assume that κ > 0 is sufficiently large, such that at least the Feller condi-

tion (2.26) is satisfied; cf. Proposition 4.1. Assume that the payoff function h(x) = ĥ(Kex)

is not affine, that is, h′′(x) = 0 does not hold for every x ∈ R. Then the stochastic volatil-

ity model (2.1) with a European call option yields a complete market.

Under quite different sufficient conditions, a related result on market completeness

is established in M. Romano and N. Touzi [42, Theorem 3.1, p. 406]: A single Eu-

ropean call option completes the market when there is stochastic volatility driven by one

extra Brownian motion (under some additional assumptions; see [42, pp. 404–407]). The

inequality detG(x, ξ, t) = ∂u
∂ξ

(x, ξ, t) 6= 0 (more precisely, ∂u
∂ξ

(x, ξ, t) > 0) plays also there
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a decisive role. An earlier result in P. Takáč [46, Theorem 8.5, p. 82] covers an alter-

native stochastic volatility model from J.-P. Fouque, G. Papanicolaou, and K. R.

Sircar [17, §2.5, p. 47], eqs. (2.18) – (2.19). The parabolic partial differential operator

(i.e., the Îto operator) in this model is uniformly parabolic and, consequently, mathemat-

ically entirely different from the degenerate Îto operator in the Heston model. Our main

analyticity result, Theorem 4.2 (Section 4), is specialized to cover Heston’s model and,

consequently, does not seem to be directly applicable to the stochastic volatility models

in [17, 27, 36, 43, 48].

Based on the result in Theorem 5.2 above, combined with those in I. Bajeux-

Besnainou and J.-Ch. Rochet [3, p. 12], we suggest the following (alternative) ana-

lytic definition of a complete market , at least in the case of Heston’s model:

Definition 5.3 There is a set N ⊂ H× (0,∞) ⊂ R
2 ×R of zero Lebesgue measure such

that the mapping πt : (x, v) 7→ (x, p(x, v, t)) : H ⊂ R
2 → R

2 is a local diffeomorphism at

every point (x0, v0, t) ∈ [H× (0,∞)] \N.

Equivalently, for every t ∈ (0,∞), the set Nt = {(x, v) ∈ H : (x, v, t) ∈ N} ⊂ R
2

has zero Lebesgue measure and at the point (x0, v0) ∈ H \Nt, the Jacobian matrix

J(x0, v0, t) =

(

1 , 0
∂p
∂x

(x, v, t) , ∂p
∂v

(x, v, t)

)

∣

∣

∣

∣

∣

(x,v)=(x0,v0)

of the mapping πt is regular which means that det J(x0, v0, t) = ∂p
∂v

(x, v, t)
∣

∣

(x,v)=(x0,v0)
6= 0.

The property ∂p
∂v

(x0, v0, t) 6= 0 allows us to apply the local implicit function theorem

to conclude that, by fixing (x0, t), we obtain an open neighborhood (v0 − δ, v0 + δ) of

v0 ∈ (0,∞) (0 < δ < ∞ small enough) such that either ∂p
∂v

(x0, · , t) > 0 (which is the

case in [3, 42]), or else ∂p
∂v

(x0, · , t) < 0 holds throughout (v0 − δ, v0 + δ). Hence, the

function p(x0, · , t) : (v0 − δ, v0 + δ) → R is either strictly monotone increasing or else

strictly monotone decreasing. This means that, in a small (open) neighborhood of v0, one

can perfectly hedge against small volatility fluctuations, expressed through the variance

v = (volatility)2 satisfying |v − v0| < δ, by a European call option p(x0, v, t) priced near

the value of p(x0, v0, t). Merely the local implicit function theorem has to be envoked.

Remark 5.4 (i) We stress that our Theorem 4.2 (Section 4) allows to consider any

payoff function h ∈ H, h(x, v) ≡ h(x) = ĥ(Kex) for x ∈ R, in particular. This is

a significant advantage over the corresponding result in P. Takáč [46, Theorem 3.3,

p. 59] which allows only for a payoff function h ∈ L2(R). The hypothesis that the payoff

function h : R → R is not affine is technical and comes from the proof of Proposition

5.1 in [11, Eq. (5.2), p. 57]. It excludes a solution u(x, ξ, t) with the partial derivative
∂u
∂x

(x, ξ, t) ≡ const(ξ, t) ∈ R independent from x ∈ R.
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(ii) The Feller condition (2.26) (cf. [16, 20]) is needed to guarantee the unique

solvability and well-posedness of the initial value problem (2.7). This condition was

discovered in W. Feller [16] for the corresponding parabolic problem in the variables

(ξ, t) ∈ (0,∞)2 only. If this condition is violated, a suitable boundary condition on the

behavior of the solution u(ξ, t) needs to be imposed as ξ → 0+. Feller’s result [16]

explains why we are able to prove the well-posedness of problem (2.7) with practically no

boundary boundary conditions as ξ → 0+ or ξ → ∞, except for (2.23) and (2.25) and

the requirement that u( · , · , t) ∈ H together with (2.24) and (2.17) for every t ∈ [0, T ].

Notice that the last three conditions are easily satisfied by a regular solution, thanks to

β > 1 and γ > 2. Our additional condition on the size of κ > 0, i.e., κ large enough,

comes from the facts that we have to deal with a solution u(x, ξ, t) depending also on the

additional space variable x ∈ R and our underlying function space H is the Hilbert space

H = L2(H;w) with a special weight w(x, ξ).

Remark 5.5 The “ 3/2 stochastic volatility model” [4, 7, 24, 28, 36] mentioned at the

beginning of this section requires some major changes in technical details used in our

present work, although we believe that similar mathematical tools can still be applied.

For instance, the weight function w(x, ξ) defined in (2.12) and the sesquilinear form

(Au, w)H defined in (2.21) will have to be changed significantly.

6 The Heston operator in the real domain

At the end of this section we prove Proposition 4.1 by verifying the boundedness and

coercivity hypotheses (in §6.1 and §6.2, respectively) for the sesquilinear form (2.21) in

V × V assumed in J.-L. Lions [37, Chapt. IV, §1], inequalities (1.1) (p. 43) and (1.9)

(p. 46), respectively.

Our boundedness and coercivity results for the Heston operator A : V → V ′ make

use of five lemmas stated and proved in the Appendix (Appendix A). Recall that β > 0,

γ > 0, and µ > 0 are constants in the weight w(x, ξ) which is defined in eq. (2.12).

6.1 Boundedness of the Heston operator

In this paragraph we verify the boundedness of the sesquilinear form (2.21) in V × V .

This property is equivalent to A being bounded as a linear operator from V to V ′.

Proposition 6.1 (Boundedness.) Let β, γ, µ, ρ, σ, θ, qr, and κ be given constants in

R, β > 1, γ > 0, µ > 0, −1 < ρ < 1, σ > 0, and θ > 0. Then there exists a constant

C ∈ (0,∞), such that, for all pairs u, w ∈ V , we have

(6.1) |(Au, w)H | ≤ C · ‖u‖V · ‖w‖V .
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Proof. For any given u, w ∈ V , we apply Cauchy’s inequality to the right-hand side

of eq. (2.21) to estimate the inner product

|(Au, w)H | ≤
σ

2

∫

H

[

(|ux| + 2|ρ| |uξ|) · |w̄x| + |uξ| · |w̄ξ|
]

· ξ ·w(x, ξ) dx dξ

+
1

2

∫

H

[

(1 + γ)σ |ux| + (|2κ− µσ| + 2γρσ) |uξ|
]

· |w̄| · ξ ·w(x, ξ) dx dξ

+

∫

H

(

|qr| |ux| +
∣

∣

1
2
βσ − κθσ

∣

∣ |uξ|
)

· |w̄| ·w(x, ξ) dx dξ .

(We abbreviate θσ
def
= θ/σ ∈ R.)

With the abbreviations of the five integrals below,

A1 =

∫

H

(|ux| + 2|ρ| |uξ|)2 · ξ ·w(x, ξ) dx dξ ,

B1 =

∫

H

|wx|2 · ξ ·w(x, ξ) dx dξ ,

A2 =

∫

H

|uξ|2 · ξ ·w(x, ξ) dx dξ , B2 =

∫

H

|wξ|2 · ξ ·w(x, ξ) dx dξ ,

J =

∫

H

(|ux| + |uξ|)2 · ξ ·w(x, ξ) dx dξ

≤ 2

∫

H

(|ux|2 + |uξ|2) · ξ ·w(x, ξ) dx dξ ,

we thus obtain

|(Au, w)H | ≤
σ

2

[

(A1B1)
1/2 + (A2B2)

1/2
]

+
1

2
· max

{

(1 + γ)σ, |2κ− µσ| + 2γρσ
}

· J1/2

(
∫

H

|w|2 · ξ ·w(x, ξ) dx dξ

)1/2

+ max
{

|qr|,
∣

∣

1
2
βσ − κθσ

∣

∣

}

· J1/2

(
∫

H

|w(x, ξ)|2
ξ

·w(x, ξ) dx dξ

)1/2

.

With the help of these abbreviations and the Cauchy-type elementary inequality

(A1B1)
1/2 + (A2B2)

1/2 ≤ (A1 + A2)
1/2 · (B1 + B2)

1/2 ,

which is equivalent with
[

(A1B2)
1/2 − (A2B1)

1/2
]2 ≥ 0 ,

the last inequality above yields

|(Au, w)H | ≤
σ

2
(A1 + A2)

1/2 · (B1 + B2)
1/2

+ M1

(
∫

H

(

|ux|2 + |uξ|2
)

· ξ ·w(x, ξ) dx dξ

)1/2

×
[

∫

H

(

∣

∣

∣

∣

w(x, ξ)

ξ

∣

∣

∣

∣

2

+ |w|2
)

· ξ ·w(x, ξ) dx dξ

]1/2

,
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with the constant

M1
def
= 2 · max

{

1
2
(1 + γ)σ,

∣

∣κ− 1
2
µσ
∣

∣+ γρσ, |qr|,
∣

∣

1
2
βσ − κθσ

∣

∣

}

> 0 .

With the help of the Cauchy inequality

4|ρ| |ux| · |uξ| ≤ 4|ux|2 + |ρ|2 |uξ|2 ,

whence

(|ux| + 2|ρ| |uξ|)2 + |uξ|2 = |ux|2 + 4|ρ| |ux| · |uξ| + (1 + 4|ρ|2) |uξ|2

≤ 5|ux|2 + (1 + 5ρ2)|uξ|2 ≤ 6
(

|ux|2 + |uξ|2
)

,

by |ρ| < 1, this inequality yields

A1 + A2 ≤ 6

∫

H

(

|ux|2 + |uξ|2
)

· ξ ·w(x, ξ) dx dξ

and, consequently, also

|(Au, w)H | ≤
(
∫

H

(

|ux|2 + |uξ|2
)

· ξ ·w(x, ξ) dx dξ

)1/2

×
{

σ

2

√
6

(
∫

H

(

|wx|2 + |wξ|2
)

· ξ ·w(x, ξ) dx dξ

)1/2

+ M1

[

∫

H

(

∣

∣

∣

∣

w(x, ξ)

ξ

∣

∣

∣

∣

2

+ |w|2
)

· ξ ·w(x, ξ) dx dξ

]1/2






.

Applying the Sobolev and Hardy inequalities (A.11) and (A.16) to this estimate we deduce

that there exists a constant C ∈ (0,∞), such that the estimate in (6.1) holds for all pairs

u, w ∈ V . Here, we recall that, by Remark A.6, the norm ‖w‖♯V defined in the Hilbert

space V by eq. (A.20) is equivalent with the original norm ‖w‖V defined by eq. (2.14).

Proposition 6.1 is proved.

6.2 Coercivity in the real domain

We wish to investigate the Heston operator A as a densely defined, closed linear operator

in the weighted Lebesgue space H = L2(H;w).

We investigate the coercivity of the linear operator A in V = H1(H;w). In fact, we

will show that the coercivity property holds for A + 1
2
c′2 I in place of A, where c′2 > 0

is a suitable constant (large enough) specified at the end of this paragraph. As a trivial

consequence, the linear operator −
(

A + 1
2
c′2 I
)

is dissipative in H. For establishing the

coercivity, hypotheses (2.26) and (2.27) described in Remark 2.2 are crucial.
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We use the sesquilinear form from eq. (2.21) to verify the coercivity of the linear

operator A in the Hilbert space V :

2 · ℜe(Au, u)H = J1 + J2 + · · · + J5 ≡

σ

∫

H

[ux · ūx + ρ (uξ · ūx + ux · ūξ) + uξ · ūξ] · ξ ·w(x, ξ) dx dξ

+
σ

2

∫

H

(1 − γ sign x) (ux · ū + ūx · u) · ξ ·w(x, ξ) dx dξ

+

∫

H

(

κ− γρσ sign x− 1
2
µσ
)

(uξ · ū + ūξ · u) · ξ ·w(x, ξ) dx dξ

(6.2)

+ qr

∫

H

(ux · ū + ūx · u) ·w(x, ξ) dx dξ

+
(

1
2
βσ − κθσ

)

∫

H

(uξ · ū + ūξ · u) ·w(x, ξ) dx dξ .

All integrals on the right-hand side converge absolutely for any u ∈ V , by the proof of

Proposition 6.1 above.

Proposition 6.2 (Coercivity.) Let ρ, σ, θ, qr, and γ be given constants in R, ρ ∈
(−1, 1), σ > 0, θ > 0, and γ > 0. Assume that β, γ, κ, and µ are chosen as specified in

Proposition 4.1. Then there exists a constant c′2 ∈ (0,∞) such that the following G̊arding

inequality

(6.3) 2 · ℜe(Au, u)H ≥ σ (1 − |ρ|) · ‖u‖2V − c′2 · ‖u‖2H

is valid for all u ∈ V .

Proof. Let us consider eq. (6.2) with an arbitrary u ∈ V . The first integral on the

right-hand side of eq. (6.2) is estimated from below by Cauchy’s inequality

uξ · ūx + ux · ūξ = 2 · ℜe(uξ · ūx) ≤ 2|uξ| · |ūx| ≤ |ux|2 + |uξ|2,

J1
σ

≡
∫

H

[ux · ūx + ρ (uξ · ūx + ux · ūξ) + uξ · ūξ] · ξ ·w(x, ξ) dx dξ

≥
∫

H

[

|ux|2 − |ρ| (|ux|2 + |uξ|2) + |uξ|2
]

· ξ ·w(x, ξ) dx dξ(6.4)

= (1 − |ρ|)
∫

H

(|ux|2 + |uξ|2) · ξ ·w(x, ξ) dx dξ

= (1 − |ρ|)
(

‖u‖2V − ‖u‖2H
)

.
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The second integral in eq. (6.2), J2, consists of two different parts that we treat by

integration-by-parts as follows, using the following simple formulas,

∂

∂x
w(x, ξ) = − γ ξβ−1 e−γ|x|−µξ · sign x = − γ · sign x ·w(x, ξ) ,

∂

∂ξ
w(x, ξ) = (β − 1) ξβ−2 e−γ|x|−µξ − µ ξβ−1 e−γ|x|−µξ

= (β − 1 − µξ) ξβ−2 e−γ|x|−µξ =

(

β − 1

ξ
− µ

)

·w(x, ξ) ,

∂

∂ξ
(ξ ·w(x, ξ)) =

∂

∂ξ

(

ξβ e−γ|x|−µξ
)

= β · ξβ−1 e−γ|x|−µξ − µ ξβ e−γ|x|−µξ = (β − µξ) ·w(x, ξ) .

Consequently, the first part of the integral in 2J2/σ in eq. (6.2), becomes

∫

R

(ux ū + ūx u) · e−γ|x| dx =

∫

R

(|u|2)x · e−γ|x| dx

= |u(x, ξ)|2 · e−γ|x|
∣

∣

∣

x=+∞

x=−∞
+ γ

∫

R

|u(x, ξ)|2 · sign x · e−γ|x| dx

= γ

∫

R

|u(x, ξ)|2 · sign x · e−γ|x| dx

for almost every ξ ∈ (0,∞), with a help from Lemma A.3. Integrating this equality with

respect to ξ ∈ (0,∞) and the measure ξβ e−µξ dξ, we arrive at

(6.5)

∫

H

(ux ū + ūx u) · ξ ·w(x, ξ) dx dξ

= γ

∫

H

|u(x, ξ)|2 · sign x · ξ ·w(x, ξ) dx dξ .

Recall that w(x, ξ) = ξβ−1 e−γ|x|−µξ. Similarly, we get

∫

R

(ux ū + ūx u) · sign x · e−γ|x| dx

= −
∫ 0

−∞

(ux ū + u ūx) eγx dx +

∫ ∞

0

(ux ū + u ūx) e−γx dx

= −
∫ 0

−∞

(|u|2)x · eγx dx +

∫ ∞

0

(|u|2)x · e−γx dx

= − |u(x, ξ)|2 eγx
∣

∣

∣

∣

0

−∞

+ γ

∫ 0

−∞

|u(x, ξ)|2 eγx dx

+ |u(x, ξ)|2 e−γx

∣

∣

∣

∣

∞

0

+ γ

∫ ∞

0

|u(x, ξ)|2 e−γx dx

= − 2|u(0, ξ)|2 + γ

∫ ∞

−∞

|u(x, ξ)|2 e−γ|x| dx .
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Integrating this equality with respect to ξ ∈ (0,∞) and the measure ξβ e−µξ dξ, we arrive

at

(6.6)

∫

H

(ux ū + u ūx) · sign x · ξ ·w(x, ξ) dx dξ

= − 2

∫ ∞

0

|u(0, ξ)|2 ξβ e−µξ dξ + γ

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ .

Finally, we combine the identities in (6.5) and (6.6) to obtain

2J2
σ

≡
∫

H

(1 − γ sign x) (ux · ū + ūx · u) · ξ ·w(x, ξ) dx dξ

= 2γ

∫ ∞

0

|u(0, ξ)|2 ξβ e−µξ dξ − γ2

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ(6.7)

+ γ

∫

H

|u(x, ξ)|2 · sign x · ξ ·w(x, ξ) dx dξ .

In order to treat the third integral in eq. (6.2), we need to calculate
∫ ∞

0

(uξ · ū + ūξ · u) · ξβ e−µξ dξ =

∫ ∞

0

(|u|2)ξ · ξβ e−µξ dξ

= |u(x, ξ)|2 · ξβ e−µξ
∣

∣

∣

ξ=∞

ξ=0
−
∫ ∞

0

|u(x, ξ)|2 · (β − µξ) ξβ−1 e−µξ dξ .

Integrating first this equality with respect to x ∈ (−∞,∞) and the measure e−γ|x| dx,

then applying the vanishing trace results (2.15) and (2.16), we arrive at

J3 ≡
∫

H

(

κ− γρσ sign x− 1
2
µσ
)

(uξ · ū + ūξ · u) · ξ ·w(x, ξ) dx dξ

= −
(

κ− 1
2
µσ
)

∫

H

|u(x, ξ)|2 · (β − µξ)w(x, ξ) dx dξ(6.8)

+ γρσ

∫

H

|u(x, ξ)|2 · sign x · (β − µξ)w(x, ξ) dx dξ .

The fourth integral in eq. (6.2) is treated analogously to the second one. It suffices

to replace β by β − 1 in the equality (6.5) which then yields

(6.9)

J4
qr

≡
∫

H

(ux ū + ūx u) ·w(x, ξ) dx dξ

= γ

∫

H

|u(x, ξ)|2 · sign x ·w(x, ξ) dx dξ .

Finally, the last integral in eq. (6.2) is treated analogously to the third one,

(6.10)

J5
1
2
βσ − κθσ

≡
∫

H

(uξ · ū + ūξ · u) ·w(x, ξ) dx dξ

= −
∫

H

|u(x, ξ)|2 ·
(

β − 1

ξ
− µ

)

·w(x, ξ) dx dξ .
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We collect the second through fifth integrals, cf. eq. (6.2),

J2 + . . . J5 = γσ

∫ ∞

0

|u(0, ξ)|2 ξβ e−µξ dξ

+
[

− 1
2
σγ2 + µ

(

κ− 1
2
µσ
)]

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ

+
[

1
2
σγ − µγρσ

]

∫

H

|u(x, ξ)|2 · sign x · ξ ·w(x, ξ) dx dξ

+
[

− β
(

κ− 1
2
µσ
)

+ µ
(

1
2
βσ − κθσ

)]

∫

H

|u(x, ξ)|2 ·w(x, ξ) dx dξ

+ [βγρσ + γqr]

∫

H

|u(x, ξ)|2 · sign x ·w(x, ξ) dx dξ

− (β − 1)
(

1
2
βσ − κθσ

)

∫

H

|u(x, ξ)|2
ξ

·w(x, ξ) dx dξ ,

whence

J2 + . . . J5 ≥
{[

µκ− 1
2
σ(γ2 + µ2)

]

− σγ
∣

∣

1
2
− µρ

∣

∣

}

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ(6.11)

+ {[βµσ − κ(β + µθσ)] − γ |βρσ + qr|} ‖u‖2H

+ (β − 1)
(

κθσ − 1
2
βσ
)

∫

H

|u(x, ξ)|2
ξ

·w(x, ξ) dx dξ

≡ c1

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ + c2 · ‖u‖2H

+ c3

∫

H

|u(x, ξ)|2
ξ

·w(x, ξ) dx dξ ,

where the constants

c1
def
=
[

µκ− 1
2
σ(γ2 + µ2)

]

− σγ
∣

∣

1
2
− µρ

∣

∣ ,

c2
def
= [βµσ − κ(β + µθσ)] − γ |βρσ + qr| ,

c3
def
= (β − 1)

(

κθσ − 1
2
βσ
)

,

are estimated from below as follows:

c1 ≥ c′1
def
= µκ− 1

2
σ(γ2 + µ2) − σγ

(

1
2

+ µ |ρ|
)

,(6.12)

c2 > −∞ ,(6.13)

c3 =
β − 1

σ

(

κθ − 1
2
βσ2

)

≥ 0 .(6.14)

The constant c3 ∈ R is nonnegative thanks to Feller’s condition, 1
2
σ2 − κθ < 0, provided

we choose β ∈ R such that 1 < β ≤ 2κθ/σ2. The sign of the constant c2 does not matter
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as it stands as a coefficient with the norm ‖u‖H . Finally, in order to guarantee c′1 ≥ 0,

we first choose µ > 0 such that this value of µ maximizes the function

µ 7→ c′1 ≡ c′1(µ) = µκ− 1
2
σ(γ2 + µ2) − σγ

(

1
2

+ µ |ρ|
)

= 1
2
σ

[

−
(

µ− κ

σ
+ γ |ρ|

)2

+
(κ

σ
− γ |ρ|

)2

− γ(1 + γ)

]

,

that is, µ = (κ/σ) − γ |ρ|, provided κ > σγ|ρ|. With this value of µ, we have to satisfy

c′1 = 1
2
σ

[

(κ

σ
− γ |ρ|

)2

− γ(1 + γ)

]

≥ 0 ,

that is, ineq. (2.27).

Finally, applying inequalities (6.12), (6.13), and (6.14) to the right-hand side of

eq. (6.11), and inequality (6.4) to eq. (6.2), we obtain

2 · ℜe(Au, u)H ≥ σ (1 − |ρ|)
(

‖u‖2V − ‖u‖2H
)

+ c′1

∫

H

|u(x, ξ)|2 · ξ ·w(x, ξ) dx dξ + c2 ‖u‖2H(6.15)

+ c3

∫

H

|u(x, ξ)|2
ξ

·w(x, ξ) dx dξ ≥ σ (1 − |ρ|) ‖u‖2V − c′2 ‖u‖2H ,

where c′2 = σ (1 − |ρ|) + |c2| > 0 is a constant.

Consequently, the linear operator A + 1
2
c′2 I is coercive in V and −

(

A + 1
2
c′2 I
)

is

dissipative in H. More precisely, ineq. (6.15), when combined with our definitions of

equivalent norms in V = H1(H;w), yields the G̊arding inequality in (6.3).

The proof of Proposition 6.2 is complete.

Remark 6.3 (Feller’s condition.) Feller’s condition 1
2
σ2 − κθ < 0 and our choice of

β ∈ R such that 1 < β ≤ 2κθ/σ2 guarantee c3 ≥ 0 in the proof of Proposition 6.2 above.

In addition, to guarantee also

c′1 = 1
2
σ

[

(κ

σ
− γ |ρ|

)2

− γ(1 + γ)

]

≥ 0 ,

we need to assume ineq. (2.27). ⊓⊔

Proof of Proposition 4.1. In Propositions 6.1 and 6.2 above we have verified the

boundedness and coercivity hypotheses for the linear operator A : V → V ′ required in

J.-L. Lions [37, Chapt. IV], Théorème 1.1 (§1, p. 46) and Théorème 2.1 (§2, p. 52).

Consequently, these well-known results from [37, Chapt. IV] yield the desired conclusion

of Proposition 4.1 on the existence and uniqueness of a weak solution to the initial value

problem (2.7). Finally, the energy estimate (4.1) can be found in L. C. Evans [12,

Chapt. 7, §1.2(b)], Theorem 2, p. 354.
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7 The Heston operator in the complex domain

In the first paragraph of this section, §7.1, we apply the classical theory of sectorial opera-

tors as infinitesimal generators of holomorphic semigroups of bounded linear operators in

the complex Hilbert space H = L2(H;w). This theory provides a (unique) holomorphic

extension of the unique weak solution u : H × [0, T ] → R of the initial value problem

(2.7) with f ≡ 0, obtained in Proposition 4.1, to the complex domain H × ∆ϑ′ that is

holomorphic in the time variable t ∈ ∆ϑ′ . To obtain a holomorphic extension of u to the

complex domain V(r) = X(r) × ∆arctan r ⊂ C
2 in the space variables (x, ξ), that has been

defined in eq. (3.3) for r ∈ (0,∞), we first replace the (possibly nonsmooth) initial data

u0 ∈ H by an entire function u0,n : C
2 → C; n = 1, 2, 3, . . . , constructed in §7.2, such that

u0,n|H ∈ H, ineq. (7.6) is valid, and the sequence ‖u0,n|H − u0‖H → 0 as n → ∞. Given

such initial data u0|H ∈ H, where u0 : C
2 → C is an entire function satisfying ineq. (7.6),

the main result of the entire section, Proposition 7.1 proved in §7.2, provides a (unique)

holomorphic extension of the solution u to the complex domain X(r)×∆arctan r×∆ϑ′ ⊂ C
3 ;

hence, in all its variables (x, ξ, t), provided the initial values (at t = 0) are holomorphic in

the complex domain V(r) = X(r) × ∆arctan r ⊂ C
2. The case of general initial data u0 ∈ H

will be postponed until Section 9 where we let the analytic initial data u0,n|H converge

to arbitrary initial data u0 in H as n → ∞. Finally, the convergence of the (unique)

holomorphic extensions to a smaller domain

Γ
(T ′)
T (κ0, ν0) ⊂ V

(r) × ∆ϑ′

of the corresponding weak solutions un : H× [0, T ] → R of the initial value problem (2.7)

with f ≡ 0 and the initial data u0,n|H ∈ H, obtained in Proposition 4.1, to a holomorphic

function u : Γ
(T ′)
T (κ0, ν0) : C will be established in the next section (Section 8). This

argument will help us to complete the proof of our main result (Theorem 4.2).

Next, we define a few function spaces for functions on V(r) ⊂ C
2. We denote

by L2,∞(V(r)) the Banach space of all complex-valued, Lebesgue measurable functions

u : V(r) → C, such that, for each pair y, ω ∈ R with |y| < r and |ω| < r, the following

integral converges,

(7.1)

∫ ∞

0

∫ +∞

−∞

|u (x + iy, ξ(1 + iω))|2 ·w(x, ξ) dx dξ < ∞ ,

and the norm

(7.2)

‖u‖L2,∞(V(r))
def
=

ess sup
|y|<r, |ω|<r

(
∫ ∞

0

∫ +∞

−∞

|u (x + iy, ξ(1 + iω))|2 ·w(x, ξ) dx dξ

)1/2

< ∞ .

It is well-known that L2,∞(V(r)) is a vector space and ‖ · ‖L2,∞(V(r)) defines a norm on it;

cf. P. Takáč [46, Sect. 5]. It is easy to verify that L2,∞(V(r)) is a Banach space. We
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denote by H2(V(r)) the Hardy space of all holomorphic functions u : V(r) → C such that

u ∈ L2,∞(V(r)). It is well-known that H2(V(r)) is a closed vector subspace of L2,∞(V(r)).

We refer to E. M. Stein and G. Weiss [44, Chapt. III] for basic theory of Hardy spaces;

the most relevant results about H2(V(r)) can be found in [44, Chapt. III], §2, pp. 91–101,

and §6.12, pp. 127–128.

The problem of analyticity (holomorphic extension) of a weak solution to the ho-

mogeneous Cauchy problem (2.7) (with f ≡ 0) can be split into two parts, analyticity

in time and analyticity in space; see §7.1 and §7.2 below, respectively. Since the partial

differential operator A : V → V ′ in eq. (2.7) is independent from time t, analyticity in the

time variable t follows from the well-known theory of analytic C0-semigroups as described

below.

7.1 Analyticity in the complex time variable t

Our results from the previous section (Section 6) on the boundedness and coercivity of

the linear operator A : V → V ′ in eq. (2.7) show that A is a sectorial operator in the

complex Hilbert space H. More precisely, the linear operator −
(

A + 1
2
c′2 I
)

in H possesses

a bounded inverse, by the Lax-Milgram theorem, and ineq. (6.3) implies that there are

constants ϑ ∈ (0, π/2) and Mϑ ∈ (0,∞), such that

‖
(

λ I + 1
2
c′2 + A

)−1 ‖L(H→H) ≤ Mϑ/|λ|(7.3)

holds for all λ = ̺eiθ ∈ C with ̺ > 0 and θ ∈
(

− 1
2
π − ϑ, 1

2
π + ϑ

)

.

Consequently, −
(

A + 1
2
c′2 I
)

is the infinitesimal generator of a holomorphic semigroup of

uniformly bounded linear operators
{

e−c′2t/2 e−tA : t ∈ R+

}

in H, i.e.,

(7.4) ‖e−tA‖L(H→H) ≤ M ′
ϑ′ e(c

′

2/2)·ℜe t holds for all t ∈ ∆ϑ′ ,

where ϑ′ ∈ (0, ϑ) is arbitrary and M ′
ϑ′ ∈ (0,∞) is a suitable constant depending on ϑ′; see,

e.g., Theorem 5.7.2 in H. Tanabe [47], §5.7, p. 161, combined with [47, Theorem 5.7.6],

§5.7.4, p. 179. This means that the strongly continuous mapping t 7→ e−c′2t/2 e−tA of R+

into the Banach algebra of all bounded linear operators on H (endowed with the operator

norm ‖ ·‖L(H→H)) can be extended uniquely to a holomorphic mapping in a complex angle

∆ϑ′ of angular width 2ϑ′, defined in (3.2), ϑ′ ∈ (0, π/2) small enough, 0 < ϑ′ < ϑ < π/2.

Hence, the unique weak solution u : H × [0, T ] → R of the initial value problem

(2.7) with f ≡ 0, obtained in Proposition 4.1, extends uniquely to the complex domain

H × ∆ϑ′ and is holomorphic in the time variable t ∈ ∆ϑ′ . Furthermore, by ineq. (7.4)

above, the following estimate holds for any initial condition u0 ∈ H,

(7.5) ‖u( · , · , t)‖H = ‖e−tAu0‖H ≤ M ′
ϑ′ e(c

′

2/2)·ℜe t ‖u0‖H for all t ∈ ∆ϑ′ .
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7.2 The Cauchy problem in the complex domain

Given an initial condition u0 ∈ H, in the Appendix (Appendix B) there is a sequence of

entire functions u0,n : C
2 → C; n = 1, 2, 3, . . . , with u0,n|H ∈ H, constructed such that

‖u0,n|H − u0‖H −→ 0 as n → ∞ .

An important property of each function u0,n : C
2 → C is the following decay inequality:

Given any numbers r ∈ (0,∞) and ϑ ∈ (0, π/2), for each n = 1, 2, 3, . . . , there exists a

constant An ≡ An(r, ϑ) ∈ (0,∞) such that

|u0,n(x + iy, ξ + iη)| ≤ An e−(x2+ξ)/4(7.6)

whenever z = x + iy ∈ X
(r) and ζ = ξ + iη ∈ ∆ϑ ,

where the right-hand side is in H = L2(H;w).

To begin with, let us fix an arbitrary index n ∈ N; N
def
= {1, 2, 3, . . . }, for which we

abbreviate u0 ≡ u0,n with u0|H ∈ H. Hence, throughout this paragraph we assume that

either u0 : C
2 → C is an entire function or at least u0 : X(r) × ∆ϑ → C is a holomorphic

function that satisfies an analogue of (7.6) with a constant A0 ≡ A0(r, ϑ) ∈ (0,∞):

|u0(x + iy, ξ + iη)| ≤ A0 e−(x2+ξ)/4(7.7)

whenever z = x + iy ∈ X
(r) and ζ = ξ + iη ∈ ∆ϑ .

To simplify our hypotheses and notation, we take r ∈ (0,∞) arbitrary and ϑ = arctan r ∈
(0, π/2), so that X(r)×∆ϑ = V(r) ⊂ C

2 is the complex domain V(r) = X(r)×∆arctan r ⊂ C
2

that has been defined in eq. (3.3). The general case of u0 ∈ H will be treated in the next

section (Section 8).

We formulate the corresponding analyticity result for such an initial condition u0 as

the following special case of Theorem 4.2:

Proposition 7.1 Let ρ, σ, θ, qr, and γ be given constants in R, ρ ∈ (−1, 1), σ > 0,

θ > 0, and γ > 0. Assume that β, γ, κ, and µ are chosen as specified in Proposition 4.1.

Finally, let us assume that u0 : V(r) → C is a holomorphic function that satisfies a bound

similar to (7.7),

|u0(x + iy, ξ + iη)| ≤ A0 e−(x2+ξ)/4(7.8)

whenever z = x + iy ∈ X
(r) and ζ = ξ + iη ∈ ∆arctan r ,

where r ∈ (0,∞) is some number and A0 ≡ A0(r) ∈ (0,∞) is a constant.

Then the (unique) weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )
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of the homogeneous initial value problem (2.7) (with f ≡ 0 and this u0) possesses a unique

holomorphic extension ũ : V(r′) × ∆ϑ′ → C to the complex domain V(r′) × ∆ϑ′ ⊂ C
3,

where r′ ∈ (0, r] and ϑ′ ∈ (0, π/2) are some constants. Furthermore, there are additional

constants C0, c0 ∈ R+ such that

∫ ∞

0

∫ +∞

−∞

|ũ (x + iy, ξ(1 + iω), t)|2 ·w(x, ξ) dx dξ

≤ C0 ec0·ℜe t ·
∫ ∞

0

∫ +∞

−∞

|u0 (x + iy, ξ(1 + iω))|2 ·w(x, ξ) dx dξ

(7.9)

for every t ∈ ∆ϑ′ and for all y, ω ∈ R such that |y| < r′ and |ω| < r′.

Before giving the proof of this proposition, we make a few important remarks: The

proof hinges upon the fact that if the holomorphic extension ũ : V(r′) × ∆ϑ′ → C of a

weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

of the homogeneous initial value problem (2.7) exists, then it must satisfy the following

initial value problem with complex partial derivatives:

(7.10)







∂ũ

∂t
+ (Ãũ)(z, ζ, t) = 0 in V

(r′) × ∆ϑ′ ;

ũ(z, ζ, 0) = u0(z, ζ) for (z, ζ) ∈ V
(r′) ,

where the complex partial differential operator Ã is given by

(Ãũ)(z, ζ) = − 1

2
σζ ·

[

∂

∂z

(

∂ũ

∂z
(z, ζ) + 2ρ

∂ũ

∂ζ
(z, ζ)

)

+
∂2ũ

∂ζ2
(z, ζ)

]

+
(

qr + 1
2
σζ
)

· ∂ũ
∂z

(z, ζ) − κ(θσ − ζ) · ∂ũ
∂ζ

(z, ζ)

(7.11)

≡ − 1

2
σζ ·

[

(ũz + 2ρ ũζ)z + ũζζ

]

+
(

qr + 1
2
σζ
)

· ũz − κ(θσ − ζ) · ũζ

for (z, ζ) ∈ V
(r′) = X

(r′) × ∆arctan r′ .

This operator has been obtained from the Heston operator (2.9) by the natural complex-

ification of the variables x and ξ as z = x + iy and ζ = ξ + iη, respectively, with the

imaginary parts y, η ∈ R. However, to establish the conclusion of Proposition 7.1, we

need to choose the imaginary parts y, η ∈ R such that |y| < r′ and η = ξω with |ω| < r′,

where y and ω are fixed, while x and ξ are the independent variables, (x, ξ) ∈ H. Hence,

we have to investigate the function

(7.12)
v : (x, ξ, t) 7−→ v(x, ξ, t) ≡ v

(iω+ω∗)
(iy+z∗) (x, ξ, t)

def
= ũ

(

x + iy + z∗, ξ(1 + iω + ω∗), t
)

: H× ∆ϑ′ → C
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with the complexified space variables

(7.13)
z + z∗ = x + iy + z∗ = x + x∗ + i(y + y∗) ,

ζ + ζ∗ = ξ(1 + iω) + ζ∗ = ξ(1 + iω + ω∗) .

Here, z∗, ω∗ ∈ C are complex numbers with sufficiently small absolute values, such that

(7.14) iy + z∗ ∈ X
(r′) and 1 + iω + ω∗ ∈ ∆arctan r′ ,

which guarantees that the argument of the function ũ in eq. (7.12) above stays in V(r′)×∆ϑ′

for all (x, ξ, t) ∈ H × ∆ϑ′ . Small complex perturbations (z∗, ω∗) ∈ C
2 are needed to cal-

culate partial derivatives of the function ũ(z, ζ, t) with respect to the real and imaginary

parts of its arguments (z, ζ) ∈ V(r′). The complex differentiability (yielding the holomor-

phy) with respect to the time variable t ∈ ∆ϑ′ has been treated in the previous paragraph

(§7.1).

A simple application of the chain rule,

∂v

∂x
(x, ξ, t) =

∂ũ

∂z
(z + z∗, ζ + ζ∗, t) and

∂v

∂ξ
= (1 + iω + ω∗)

∂ũ

∂ζ
,

shows that the function v : H × ∆ϑ′ → C defined in eq. (7.12) must be a weak solution

to the following initial value problem with real partial derivatives:

(7.15)







∂v

∂t
+
(

A(iω+ω∗)v
)

(x, ξ, t) = 0 in H× ∆ϑ′ ;

v(x, ξ, 0) = u0 (x + iy + z∗, ξ(1 + iω + ω∗)) for (x, ξ) ∈ H ,

where the real partial differential operator A(iω+ω∗) is given by

(

A(iω+ω∗)v
)

(x, ξ) =

− 1

2
(1 + iω + ω∗)σξ·

[

∂

∂x

(

∂v

∂x
(x, ξ) +

2ρ

1 + iω + ω∗
· ∂v
∂ξ

(x, ξ)

)

+
1

(1 + iω + ω∗)2
· ∂

2v

∂ξ2
(x, ξ)

]

+
[

qr + 1
2
(1 + iω + ω∗)σξ

]

· ∂v
∂x

(x, ξ)

− κ

1 + iω + ω∗
[θσ − (1 + iω + ω∗)ξ] · ∂v

∂ξ
(x, ξ)

≡ − 1

2
σξ ·

[

((1 + iω + ω∗)vx + 2ρ vξ)x + (1 + iω + ω∗)−1vξξ
]

+
[

qr + 1
2
(1 + iω + ω∗)σξ

]

· vx − κ
[

(1 + iω + ω∗)−1θσ − ξ
]

· vξ
for (x, ξ) ∈ H.
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Consequently, recalling the definition of A in eq. (2.9), we have

(7.16)

(

A(iω+ω∗)v
)

(x, ξ) = (Av)(x, ξ)

− σ

2
(iω + ω∗)ξ ·

(

vxx − (1 + iω + ω∗)−1vξξ
)

+
σ

2
(iω + ω∗)ξ · vx +

iω + ω∗

1 + iω + ω∗
κθσ · vξ for (x, ξ) ∈ H.

It is important to note that the linear operator A(iω+ω∗) : V → V ′ does not depend on

y ∈ R or z∗ ∈ C. However, it does depend on ω ∈ R and ω∗ ∈ C; more precisely, it

depends on the sum iω + ω∗.

To derive the sesquilinear form associated to A(iω+ω∗),

(7.17) (v, w) 7→
(

A(iω+ω∗)v, w
)

H
,

we apply the same methods as for obtaining eq. (2.21) associated to A. We thus arrive at

(

A(iω+ω∗)v, w
)

H
= (Av, w)H

+
σ

2
(iω + ω∗)

∫

H

(

vx · w̄x − (1 + iω + ω∗)−1vξ · w̄ξ

)

· ξ ·w(x, ξ) dx dξ

− σ

2
(iω + ω∗)

∫

H

[

γ sign x · vx w̄ · ξ

+ (1 + iω + ω∗)−1(β − µξ) vξ · w̄
]

w(x, ξ) dx dξ

+
σ

2
(iω + ω∗)

∫

H

vx w̄ · ξ ·w(x, ξ) dx dξ

+
iω + ω∗

1 + iω + ω∗
κθσ

∫

H

vξ w̄ ·w(x, ξ) dx dξ ,

where we have taken advantage of the vanishing boundary conditions (2.18) and (2.19)

with the pair of functions (v, w) in place of (u, w), while performing integration-by-parts

on the second summand on the right-hand side of eq. (7.16); cf. also eqs. (2.15), (2.16),

and (2.17).

Finally, the sesquilinear form (7.17) becomes

(

A(iω+ω∗)v, w
)

H
= (Av, w)H

+
σ

2
(iω + ω∗)

∫

H

(

vx · w̄x − (1 + iω + ω∗)−1vξ · w̄ξ

)

· ξ ·w(x, ξ) dx dξ(7.18)

+
σ

2
(iω + ω∗)

∫

H

(1 − γ sign x) vx · w̄ · ξ ·w(x, ξ) dx dξ

+
σ

2
· iω + ω∗

1 + iω + ω∗
µ

∫

H

vξ · w̄ · ξ ·w(x, ξ) dx dξ

− iω + ω∗

1 + iω + ω∗

(

1
2
βσ − κθσ

)

∫

H

vξ · w̄ ·w(x, ξ) dx dξ .
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All integrals on the right-hand side converge absolutely for any pair u, w ∈ V , in anal-

ogy with eq. (2.21). In what follows we use the last formula, eq. (7.18), to define the

sesquilinear form (7.17) in V × V .

The following two results, respectively, are analogues of Propositions 6.1 and 6.2 with

similar proofs. Here, the sesquilinear form from eq. (7.18) replaces that from (2.21). We

use the former to verify the boundedness and coercivity of the linear operator A(iω+ω∗) :

V → V ′ in the Hilbert space V = H1(H;w). The details of these proofs are left to an

interested reader.

Proposition 7.2 (Boundedness.) Let β, γ, µ, ρ, σ, θ, qr, and κ be given constants in

R, β > 1, γ > 0, µ > 0, −1 < ρ < 1, σ > 0, and θ > 0. Then, given any number

r ∈ (0,∞), there exists a constant C∗ ∈ (0,∞), such that, for all numbers ω ∈ (−r, r)

and ω∗ ∈ C with |ω∗| ≤ 1/2, and for all pairs u, w ∈ V , we have

(7.19)
∣

∣

(

A(iω+ω∗)u, w
)

H

∣

∣ ≤ C∗ · ‖u‖V · ‖w‖V .

In our next proposition, the number r ∈ (0,∞) has to be sufficiently small, unlike

in the analogous Proposition 6.2 where it is arbitrary.

Proposition 7.3 (Coercivity.) Let ρ, σ, θ, qr, and γ be given constants in R, ρ ∈
(−1, 1), σ > 0, θ > 0, and γ > 0. Assume that β, γ, κ, and µ are chosen as specified

in Proposition 4.1. Then there exist constants r ∈
(

0, 1
2

]

and c′′2 ∈ (0,∞) such that the

following G̊arding inequality

(7.20) 2 · ℜe
(

A(iω+ω∗)u, u
)

H
≥ σ

2
(1 − |ρ|) · ‖u‖2V − c′′2 · ‖u‖2H

is valid for all ω ∈ (−r, r) and ω∗ ∈ C with |ω∗| ≤ r, and for all u ∈ V .

Now we are ready to prove Proposition 7.1.

Proof of Proposition 7.1. It is obvious that we must find a method how to solve

the initial value problem (7.15) with a conclusion similar to that provided in paragraph

§7.1 for the initial value problem (2.7) with f ≡ 0, thanks to Propositions 6.1 and 6.2 for

the linear operator A : V → V ′. Notice that the initial condition in problem (7.15) reads

(7.21) v(x, ξ, 0) = v0(x, ξ)
def
= u0 (x + iy + z∗, ξ(1 + iω + ω∗)) for (x, ξ) ∈ H .

Thus, we must first adapt these two propositions to the linear operator A(iω+ω∗) : V → V ′

for any fixed numbers y, ω ∈ R with |y| < r′ and |ω| < r′, and for any fixed complex

numbers z∗, ω∗ ∈ C with sufficiently small absolute values, such that (7.14) holds. It

suffices to do this for some r′ ∈ (0, r] small enough. Hence, the couple (z + z∗, ζ + ζ∗)
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from eq. (7.13) that appears also as the argument of the function u0 in eq. (7.21) above

stays in V(r′) ⊂ V(r) for all (x, ξ) ∈ H, thanks to 0 < r′ ≤ r.

In analogy with Propositions 6.1 and 6.2 (boundedness and coercivity, respectively)

for the operator A : V → V ′, Propositions 7.2 and 7.3 (Appendix A) for the operator

A(iω+ω∗) : V → V guarantee that A(iω+ω∗) is a sectorial operator in the Hilbert space

H, provided |ω| < r′ and |ω∗| is small enough. Hence, − A(iω+ω∗) is the infinitesimal

generator of a holomorphic semigroup of bounded linear operators
{

e−tA(iω+ω∗)
: t ∈ R+

}

in H, i.e.,

(7.22) ‖e−tA(iω+ω∗)‖L(H→H) ≤ M ′′
ϑ′′ e(c

′′

2/2)·ℜe t holds for all t ∈ ∆ϑ′′ ,

where ϑ′′ ∈ (0, ϑ) is arbitrary and M ′′
ϑ′′ , c′′2 ∈ (0,∞) are suitable constants depending on

ϑ′′, but independent from the particular choice of ω ∈ R or ω∗ ∈ C such that |ω| < r′

and |ω∗| is small enough. This semigroup provides the (unique) holomorphic extension

v : ∆ϑ′′ → H of the (unique) weak solution

v ≡ v
(iω+ω∗)
(iy+z∗) ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

to the initial value problem (7.15). The uniqueness guarantees that this solution depends

on the fixed data y, ω ∈ R and z∗, ω∗ ∈ C only through the sums iy + z∗ and iω + ω∗, as

so do the operator A(iω+ω∗) (which, in fact, is independent from y and z∗) and the initial

condition (7.21). Indeed, let yj, ωj ∈ R and z∗j , ω
∗
j ∈ C satisfy (7.14) for both j = 1, 2,

i.e.,

(7.23) iyj + z∗j ∈ X
(r′) and 1 + iωj + ω∗

j ∈ ∆arctan r′ .

Consider the corresponding (unique) weak solution

v(j) ≡ v
(iωj+ω∗

j )

(iyj+z∗
j
) ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

to the initial value problem (7.15) together with its (unique) holomorphic extension v(j) :

∆ϑ′′ → H; j = 1, 2. The initial condition (7.21) is given by

v(j)(x, ξ, 0) = v
(j)
0 (x, ξ)

def
= u0

(

x + iyj + z∗j , ξ(1 + iωj + ω∗
j )
)

(7.24)

for (x, ξ) ∈ H .

Consequently, if

iy1 + z∗1 = iy2 + z∗2 and iω1 + ω∗
1 = iω2 + ω∗

2 ,

then v
(1)
0 = v

(2)
0 in H and, therefore, the uniqueness for problem (7.15) forces v(1)(x, ξ, t) ≡

v(2)(x, ξ, t) for (x, ξ, t) ∈ H× ∆ϑ′′ . This uniqueness result allows us to give the following

(correct) definition of a function ũ : V(r′) × ∆ϑ′′ → C by the formula

ũ
(

x + iy + z∗, ξ(1 + iω + ω∗), t
)

def
= v

(iω+ω∗)
(iy+z∗) (x, ξ, t)(7.25)

for all (x, ξ) ∈ H and for all t ∈ ∆ϑ′′ .
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Notice that it suffices to take z∗ = ω∗ = 0 and arbitrary numbers y, ω ∈ R with |y| < r′

and |ω| < r′ to define ũ.

The function

t 7→ v
(iω+ω∗)
(iy+z∗) (x, ξ, t) : ∆ϑ′′ → C

being holomorphic, by §7.1, it is obvious that also ũ : V(r′) ×∆ϑ′′ → C is holomorphic in

the time variable t ∈ ∆ϑ′′ . Furthermore, the estimate in (7.9) follows immediately from

inequality (7.22) by taking C0 = M ′′
ϑ′′ > 0 and c0 = c′′2/2 > 0.

Taking advantage of the differentiability of the coefficients of the partial differential

operator A(iω+ω∗) in eq. (7.16), we observe that if the initial data u0 ∈ L2,∞(V(r)) are C∞-

smooth (in the real-variable sense) then also the (unique) solution ũ( · , · t) : V(r′) → C

to the initial value problem (7.15) is C∞-smooth in H, by Theorem 19 and Corollary (to

Theorem 19) in A. Friedman [18, Chapt. 10], on p. 321 and p. 322, respectively.

Now we take advantage of the holomorphic data v0 in the initial condition (7.21)

with respect to the small complex parameters (z∗, ω∗) ∈ C
2 in order to show that, for

each fixed t ∈ ∆ϑ′ , the function ũ( · , · t) : V(r′) → C is holomorphic. To this end we first

realize that the initial data v0 in (7.21), which depend on the real parameters x∗ = ℜe z∗,
y∗ = ℑm z∗, α∗ = ℜeω∗, and β∗ = ℑmω∗, are continuously differentiable (i.e., C1-smooth

in the real-variable sense) with respect to these parameters. We wish to prove that the

same is true of each function v
(iω+ω∗)
(iy+z∗) with respect to the parameters x∗, y∗, α∗, β∗ ∈ R.

In order to be able to apply well-known results from D. Henry [22, Chapt. 3, §4]

on the continuous dependence and differentiability of the solution v
(iω+ω∗)
(iy+z∗) with respect to

parameters, we rewrite the initial value problem (7.15) equivalently as

(7.26)







∂w

∂t
+
(

A(iω+ω∗)w
)

(x, ξ, t) = −
(

A(iω+ω∗)v0
)

(x, ξ) in H× ∆ϑ′ ;

w(x, ξ, 0) = 0 for (x, ξ) ∈ H ,

where

w(x, ξ, t) ≡ w
(iω+ω∗)
(iy+z∗) (x, ξ, t)

def
= v

(iω+ω∗)
(iy+z∗) (x, ξ, t) − v0(x, ξ, t) ≡(7.27)

ũ
(

x + iy + z∗, ξ(1 + iω + ω∗), t
)

− u0

(

x + iy + z∗, ξ(1 + iω + ω∗)
)

is the new unknown function of (x, ξ, t) ∈ H× ∆ϑ′ . It is easy to see that the function

−
(

A(iω+ω∗)v0
)

(x, ξ) = − (Ãu0)
(

x + iy + z∗, ξ(1 + iω + ω∗)
)

of (z∗, ω∗) ∈ C is holomorphic, for |z∗| and |ζ∗| small enough; hence, C1-smooth with

respect to the real parameters x∗ = ℜe z∗, y∗ = ℑm z∗, α∗ = ℜeω∗, and β∗ = ℑmω∗. By

Henry’s theorem [22, Theorem 3.4.4, pp. 64–65], the unknown function w
(iω+ω∗)
(iy+z∗) (x, ξ, t)
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possesses the same C1-smoothness property, for every fixed t ∈ ∆ϑ′ . Next, we apply the

Cauchy-Riemann operators

∂

∂z̄∗
def
=

1

2

(

∂

∂x∗
+ i

∂

∂y∗

)

and
∂

∂ω̄∗

def
=

1

2

(

∂

∂α∗
+ i

∂

∂β∗

)

to both sides of eq. (7.26) (differentiation with respect to parameters), thus concluding

that both derivatives,

∂

∂z̄∗
w

(iω+ω∗)
(iy+z∗) (x, ξ, t) and

∂

∂ω̄∗
w

(iω+ω∗)
(iy+z∗) (x, ξ, t) ,

are the (unique) weak solutions of the initial value problem (7.26) with the zero initial

data. Thus, both derivatives must vanish identically for all (z∗, ω∗) ∈ C with |z∗| and |ζ∗|
small enough. Consequently, the difference ũ( · , · t)− u0 : V(r′) → C is holomorphic, and

so is the function ũ( · , · t) : V(r′) → C , as claimed. D. Henry provides an alternative

proof of analyticity in his [22, Corollary 3.4.5, p. 65] that employs an analytic implicit

function theorem via Lemmas 3.4.2 and 3.4.3 in [22, pp. 63–64].

To complete our proof of Proposition 7.1, we apply the classical Hartogs’s theorem

on separate analyticity (see, e.g., S. G. Krantz [32, Theorem 1.2.5, p. 32] and remarks

around) to conclude that the function ũ : V(r) × ∆ϑ′′ → C , defined by the formula in

eq. (7.25), is holomorphic not only separately in the variables (z, ζ) ∈ V(r′) and t ∈ ∆ϑ′′ ,

but also jointly in (z, ζ, t) in its entire domain.

8 L2-bounds in the complex domain

In order to give a plausible lower estimate on the space-time domain of holomorphy (i.e.,

the domain of complex analyticity) of a weak solution u to the homogeneous initial value

problem (2.7) with f ≡ 0, we introduce a few more subsets of C2 × C (cf. P. Takáč et

al. [45, p. 428] or P. Takáč [46, pp. 58–59]):

The two constants κ0, ν0 ∈ (0,∞) used below will be specified later (in the proof of

Theorem 4.2); 0 ≤ α < ∞ is an arbitrary number. First, we recall the definitions of the

complex sets V(κ0α) ⊂ C
2, Σ(α)(ν0) ⊂ C, and Γ

(T ′)
T (κ0, ν0) ⊂ C

2 × C given in Section 3,

eqs. (3.4), (3.5), and (3.6), respectively.

Let us introduce the function χ(s)
def
= min{s, 1} for s ∈ R+

def
= [0,∞); hence, it’s

derivative is given by χ′(s) = 1 for 0 ≤ s ≤ 1 and χ′(s) = 0 for 1 < s < ∞. Since the

x-section of Γ
(T ′)
T (κ0, ν0) is independent from x ∈ R, if κ0T

′ < π/2, setting

Γ̂
(T ′)
T (κ0, ν0)

def
=
{

(y, ζ, t) = (y, ξ + iη, α + iτ) ∈ R× C× C :

0 < α < T together with |y| < κ0T
′χ
(

α
T ′

)

, ξ > 0 ,

| arctan(η/ξ)| < κ0T
′χ
(

α
T ′

)

, and ν0|τ | < T ′χ
(

α
T ′

)

}

,

(8.1)
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we may identify Γ
(T ′)
T (κ0, ν0) ≃ R× Γ̂

(T ′)
T (κ0, ν0).

The most important part of the proof of Theorem 4.2 is the a priori estimate in

(4.2). It is proved in the following proposition. An example of a holomorphic extension

ũ : V(r) × ∆ϑ′ → C to a complex domain containing Γ
(T ′)
T (κ0, ν0) ⊂ C

3 is given in

Proposition 7.1, provided κ0, ν
−1
0 , and T ′ ∈ (0, T ] are small enough.

Proposition 8.1 Let ρ, σ, θ, qr, and γ be given constants in R, ρ ∈ (−1, 1), σ > 0,

θ > 0, and γ > 0. Assume that β, γ, κ, and µ are chosen as specified in Proposition 4.1.

Then, given any numbers r ∈ (0,∞) and ϑ′ ∈ (0, π/2), the constants κ0, ν
−1
0 ∈ (0,∞)

and T ′ ∈ (0, T ] can be chosen sufficiently small, such that

Γ
(T ′)
T (κ0, ν0) ⊂ V

(r) × ∆ϑ′

and there exist some constants C0, c0 ∈ R+ with the following property:

If u0 : V(r) → C is a holomorphic function that satisfies the bound (7.8) in Propo-

sition 7.1 and if ũ : V(r) × ∆ϑ′ → C is the holomorphic extension of the (unique) weak

solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

of the homogeneous initial value problem (2.7) (with f ≡ 0 and this u0) that has been

obtained in Proposition 7.1, then the estimate in (4.2) holds with the constants C0 = 1

and c0 = c′2 ∈ R+ from Proposition 6.2, for every α ∈ (0, T ] and for all y, ω, τ ∈ R

satisfying (4.3), depending on α. depending on α.

Before giving the proof of this proposition, we first observe that the holomorphic

extension ũ(z, ζ, t) must be unique, by uniqueness of the holomorphic extension in each

of the variables z, ζ, t ∈ C. Consequently, the remarks following the statement of Propo-

sition 7.1 apply also in the setting of our Proposition 8.1. The holomorphic extension

ũ : Γ
(T ′)
T (κ0, ν0) → C of a weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

of the homogeneous initial value problem (2.7) must satisfy the following initial value

problem with complex partial derivatives; cf. (7.10):

(8.2)







∂ũ

∂t
+ (Ãũ)(z, ζ, t) = 0 in Γ

(T ′)
T (κ0, ν0) ;

ũ(z, ζ, 0) = u0(z, ζ) for (z, ζ) = (x, ξ) ∈ H ,

where the complex partial differential operator Ã is given by eq. (7.11) and ũ ∈ H2(V(r)).
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Proof of Proposition 8.1. In order to establish the estimate in (4.2), we need to

control the behavior of the holomorphic extension ũ(z, ζ, t) of the solution u(x, ξ, t) at

every point

(z, ζ, t) = (x + iy, ξ(1 + iω), α + iτ) ∈ Γ
(T ′)
T (κ0, ν0)

by the initial condition u0 : H → C defined only at points (x, ξ, 0) ∈ H×{0} = R×(0,∞)×
{0}. Given any such two points, (x, ξ, 0) and (z, ζ, t), we connect them by the following

piecewise linear path parametrized by the real time s ∈ [0, ℜe t], i.e., by 0 ≤ s ≤ α:

Given any point

(z, ζ, t) = (x + iy, ξ(1 + iω), α + iτ) ∈ Γ
(T ′)
T (κ0, ν0) ,

we set

y0 =
T ′

min{α, T ′} y , ω0 = tan

(

T ′

min{α, T ′} arctanω

)

, and φ =
τ

α
.

Thus, conditions (4.3) are equivalent with

(8.3) max{|y0|, | arctanω0|} < κ0T
′ and |φ| < ν−1

0 .

Fixing (y0, ω0, φ) ∈ R
3 as in (8.3) above, we recall χ(s)

def
= min{s, 1} for s ∈ R+

def
= [0,∞)

and define the path

ς ≡ ςx,ξ : [0, T ] → {(x, ξ, 0)} ∪ Γ
(T ′)
T (κ0, ν0) :

s 7−→
(

x + iχ(s/T ′)y0, ξ (1 + iχ(s/T ′)ω0) , (1 + iφ)s
)

.(8.4)

= (x, ξ, s) + i
(

χ(s/T ′)y0, χ(s/T ′)ω0, φs
)

.

The numbers y, ω, φ ∈ R are related to (z, ζ, t) by φ = τ
α

, y = ℑm z, and ω = ℑm ζ
ℜe ζ

. For

s = 0 and s = α = ℜe t we get the points (x, ξ, 0) and (z, ζ, t), respectively.

Next, we define the function v : H× [0, T ] → C by the values of ũ on the image of

the path ς,

(8.5) v(x, ξ, s)
def
= ũ

(

x + iχ
(

s
T ′

)

y0, ξ
(

1 + iχ
(

s
T ′

)

ω0

)

, (1 + iφ)s
)

, (x, ξ, s) ∈ H× [0, T ] .

We calculate

∂v

∂s
(x, ξ, s) = (1 + iφ)

∂ũ

∂t
+

i

T ′
· χ′
(

s
T ′

)

(

∂ũ

∂z
y0 +

∂ũ

∂ζ
ξω0

)

,(8.6)

∂v

∂x
(x, ξ, s) =

∂ũ

∂z
,(8.7)

∂v

∂ξ
(x, ξ, s) =

(

1 + iχ
(

s
T ′

)

ω0

) ∂ũ

∂ζ
.(8.8)
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We prefer to use the complex form (7.11) of the (time-independent) Heston operator

(2.9). Hence, according to the initial value problem (8.2),

v ∈ C([0, T ] → H) ∩ L2((0, T ) → V )

is a weak solution of the following initial value problem,

(8.9)







∂v

∂s
+ (Â(s)v)(x, ξ, s) = 0 in H× (0, T ) ;

v(x, ξ, 0) = u0(x, ξ) for (x, ξ) ∈ H ,

where the (time-dependent) partial differential operator Â(s) is given by

(Â(s)v)(x, ξ)
def
= (1 + iφ) (Ãũ)(z, ζ) − i

T ′
· χ′
(

s
T ′

)

(

∂ũ

∂z
y0 +

∂ũ

∂ζ
ξω0

)

= − 1

2
(1 + iφ)σξ·

[

(

1 + iχ
(

s
T ′

)

ω0

) ∂2v

∂x2
+ 2ρ

∂2v

∂x ∂ξ
(x, ξ)

+
(

1 + iχ
(

s
T ′

)

ω0

)−1 ∂2v

∂ξ2
(x, ξ)

]

+ (1 + iφ)
[

qr + 1
2

(

1 + iχ
(

s
T ′

)

ω0

)

σξ
] ∂v

∂x
(x, ξ)

− (1 + iφ)κ
[

θσ
(

1 + iχ
(

s
T ′

)

ω0

)−1 − ξ
] ∂v

∂ξ
(x, ξ)

− i

T ′
· χ′
(

s
T ′

)

[

y0
∂v

∂x
+
(

1 + iχ
(

s
T ′

)

ω0

)−1
ξω0

∂v

∂ξ

]

= (1 + iφ) · (Av)(x, ξ)

− i

2
(1 + iφ)σξ · χ

(

s
T ′

)

ω0

[

∂2v

∂x2
−
(

1 + iχ
(

s
T ′

)

ω0

)−1 ∂2v

∂ξ2

]

+
i

2
(1 + iφ) · χ

(

s
T ′

)

ω0

[

σξ
∂v

∂x
(x, ξ) + 2κθσ

(

1 + iχ
(

s
T ′

)

ω0

)−1 ∂v

∂ξ
(x, ξ)

]

− i

T ′
· χ′
(

s
T ′

)

[

y0
∂v

∂x
+
(

1 + iχ
(

s
T ′

)

ω0

)−1
ξω0

∂v

∂ξ

]

which yields the following formula,

(Â(s)v)(x, ξ) = (1 + iφ) · (Av)(x, ξ)

− i · y0
T ′

· (L1(s)v)(x, ξ) − i · ω0

T ′
· (L2(s)v)(x, ξ)(8.10)

+
i

2
(1 + iφ)σ ω0 · (L3(s)v)(x, ξ) + i(1 + iφ)κθσ ω0 · (L4(s)v)(x, ξ) ,
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where we have abbreviated

(L1(s)v)(x, ξ)
def
= χ′

(

s
T ′

)

· ∂v
∂x

(x, ξ) ,(8.11)

(L2(s)v)(x, ξ)
def
= χ′

(

s
T ′

) (

1 + iχ
(

s
T ′

)

ω0

)−1
ξ
∂v

∂ξ
(x, ξ) ,(8.12)

(L3(s)v)(x, ξ)
def
= − χ

(

s
T ′

)

ξ

[

∂2v

∂x2
−
(

1 + iχ
(

s
T ′

)

ω0

)−1 ∂2v

∂ξ2
− ∂v

∂x

]

, and(8.13)

(L4(s)v)(x, ξ)
def
= χ

(

s
T ′

) (

1 + iχ
(

s
T ′

)

ω0

)−1 ∂v

∂ξ
for (x, ξ) ∈ H .(8.14)

We insert eq. (8.10) into (8.9), thus arriving at

∂v

∂s
(x, ξ, s) = − (1 + iφ) · (Av)(x, ξ)

+ i · y0
T ′

· (L1(s)v)(x, ξ) + i · ω0

T ′
· (L2(s)v)(x, ξ)(8.15)

− i

2
(1 + iφ)σ ω0 · (L3(s)v)(x, ξ) − i(1 + iφ)κθσ ω0 · (L4(s)v)(x, ξ)

for (x, ξ, s) ∈ H× (0, T ).

In Propositions 6.1 and 6.2 above we have verified the boundedness and coercivity

hypotheses for the linear operator A : V → V ′ defined by sesquilinear form in eq. (2.21).

Estimates analogous to those used in the proof of Proposition 6.1 show that all linear

operators Lj(s) : V → V ′; j = 1, 2, 3, 4, are uniformly bounded for s ∈ [0, T ] and ω0 ∈ R,

i.e., there is a constant L ∈ (0,∞) such that

(8.16)
∣

∣(Lj(s)v, w)H
∣

∣ ≤ L · ‖v‖V ‖w‖V holds for all v, w ∈ V

and for all s ∈ [0, T ] and all ω0 ∈ R; j = 1, 2, 3, 4. Here, we have used the definition of

χ(s) = min{s, 1} and
∣

∣1 + iχ
(

s
T ′

)

ω0

∣

∣ ≥ 1.

In order to obtain the upper bound (4.2) for the integral on the left-hand side,

∫ ∞

0

∫ +∞

−∞

|ũ (x + iy, ξ(1 + iω), α + iτ)|2 ·w(x, ξ) dx dξ

=

∫ ∞

0

∫ +∞

−∞

|v(x, ξ, s)|2w(x, ξ) dx dξ = ‖v( · , · , s)‖2H ,

cf. eq. (8.5), we first take the time derivative of the second integral above, then apply
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eq. (8.15):

d

ds
‖v( · , · , s)‖2H =

∫

H

(

∂v

∂s
v̄ + v

∂v̄

∂s

)

w(x, ξ) dx dξ

= −
∫

H

(

(Av)(x, ξ) v̄ + v (Av)(x, ξ)
)

w(x, ξ) dx dξ

− iφ

∫

H

(

(Av)(x, ξ) v̄ − v (Av)(x, ξ)
)

w(x, ξ) dx dξ

+ i
y0
T ′

∫

H

(

(L1(s)v)(x, ξ) v̄ − v (L1(s)v)(x, ξ)
)

w(x, ξ) dx dξ

+ i
ω0

T ′

∫

H

(

(L2(s)v)(x, ξ) v̄ − v (L2(s)v)(x, ξ)
)

w(x, ξ) dx dξ

− i

2
σω0

∫

H

(

(1 + iφ)(L3(s)v)(x, ξ) v̄ − (1 − iφ)v (L3(s)v)(x, ξ)
)

w(x, ξ) dx dξ

− iκθσω0

∫

H

(

(1 + iφ)(L4(s)v)(x, ξ) v̄ − (1 − iφ)v (L4(s)v)(x, ξ)
)

w(x, ξ) dx dξ .

We estimate the integrals on the right-hand side above as follows. First, we take advantage

of the coercivity of A : V → V ′ expressed in terms of the G̊arding inequality (6.3). Second,

we employ the boundedness of A, i.e., ineq. (6.1). Third, we employ the boundedness of

Lj(s), i.e., ineq. (8.16). Consequently, we arrive at

d

ds
‖v( · , · , s)‖2H =

∫

H

(

∂v

∂s
v̄ + v

∂v̄

∂s

)

w(x, ξ) dx dξ

≤ − σ (1 − |ρ|) · ‖v‖2V + c′2 · ‖v‖2H(8.17)

+ 2C|φ| ‖v‖2V + 2L
|y0|
T ′

‖v‖2V + 2L
|ω0|
T ′

‖v‖2V
+ L |1 + iφ| σ|ω0| ‖v‖2V + 2L |1 + iφ|κθσ |ω0| ‖v‖2V .

To estimate the coefficients on the right-hand side above, we recall the conditions on

(y0, ω0, φ) ∈ R
3 required in (8.3). In order to estimate the ratio ω0/T

′ in a simple way,

let us take the constants κ0 ∈ (0,∞) and T ′ ∈ (0, T ] small enough, such that κ0T
′ ≤ π/4.

The function x 7→ x−1 tan x being strictly monotone increasing on (0,∞), with the limit

equal to 1 as x → 0+, we employ condtition (8.3) to obtain

|ω0|
T ′

<
κ0

κ0T ′
· tan(κ0T

′) ≤ κ0 ·
tan(π/4)

π/4
=

4κ0

π
< 2κ0 .

Then ineq. (8.17) yields

d

ds
‖v( · , · , s)‖2H ≤ − σ (1 − |ρ|) · ‖v‖2V + c′2 · ‖v‖2H

+
(

2Cν−1
0 + 2Lκ0 + 4Lκ0

)

‖v‖2V(8.18)

+
(

L(1 + ν−1
0 )σ · 2κ0T

′ + 2L(1 + ν−1
0 )κθσ · 2κ0T

′
)

‖v‖2V
= − σ (1 − |ρ|) · ‖v‖2V + c′2 · ‖v‖2H + C̃ ‖v‖2V ,
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where C̃ ∈ (0,∞) is a constant,

C̃
def
=
(

2Cν−1
0 + 2Lκ0 + 4Lκ0

)

+
(

L(1 + ν−1
0 )σ · 2κ0T

′ + 2L(1 + ν−1
0 )κθσ · 2κ0T

′
)

= 2Cν−1
0 + 6Lκ0 + 2L(1 + ν−1

0 )(σ + 2κθσ) · κ0T
′ .

Here, the constants κ0, ν
−1
0 ∈ (0,∞) and T ′ ∈ (0, T ] can be chosen sufficiently small, such

that

Γ
(T ′)
T (κ0, ν0) ⊂ V

(r) × ∆ϑ′

holds together with 0 < C̃ ≤ σ (1 − |ρ|).
Then ineq. (8.18) yields

d

ds
‖v( · , · , s)‖2H ≤ c′2 · ‖v‖2H for s ∈ (0, T ) .

The desired inequality (4.2) now follows by taking C0 = 1, c0 = c′2, and s = α.

The proof of Proposition 8.1 is complete.

9 End of the proof of the main result

In this section we finally finish the proof of Theorem 4.2. We will make use of the

holomorphic approximation and the a priori estimates established in the previous two

sections, Sections 7 and 8.

For a given function u0 ∈ H = L2(H;w), a sequence of entire (holomorphic) func-

tions

ũ0,n : C
2 → C ; n = 1, 2, 2, . . . ,

is constructed in Appendix B (§ B.2), whose restrictions to the complex domain X(r)×∆ϑv

belong to H2(X(r) × ∆ϑv
) and satify

‖ũ0,n|H − u0‖H −→ 0 as n → ∞ ;

cf. § B.2, properties (i), (ii), and (iii). In paragraph §7.2, for every fixed n = 1, 2, 3, . . . ,

we have used the function ũ0,n as the initial data for the initial value problem (7.10),

(9.1)







∂ũn

∂t
+ Ãũn = 0 for (x, ξ, s) ∈ H× (0, T ) ;

ũn

(

x + iy, ξ(1 + iω), 0
)

= ũ0,n

(

x + iy, ξ(1 + iω)
)

for (x, ξ) ∈ H .

Recall that Ã stands for the natural complexification of the Heston operator A defined in

eq. (7.11). More precisely, this initial value problem has been solved by general theory of
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holomorphic semigroups for fixed values of y, ω ∈ R such that |y| < r and | arctanω| < ϑv.

In paragraph §7.1 we have proved that the unique weak solution

t 7−→
[

(x, ξ) 7→ ũn

(

x + iy, ξ(1 + iω), t
)]

: [0, T ] → H

to problem (9.1) possesses a holomorphic extension with respect to time t to an angle ∆ϑt
,

for some ϑt ∈ (0, π/2). Furthermore, in paragraph §7.2 (Proposition 7.1) we have proved

that, for every t ∈ ∆ϑt
, the solution ũn( · , · , t) : X(r) × ∆ϑv

−→ C is a holomorphic

function that belongs to H2(X(r) × ∆ϑv
). Consequently, the function ũn : X(r) × ∆ϑv

×
∆ϑt

−→ C is holomorphic in all its variables.

Now let us recall the time-dependent path ς from (8.4),

ς ≡ ςx,ξ : [0, T ] → {(x, ξ, 0)} ∪ Γ
(T ′)
T (κ0, ν0) :

s 7−→
(

x + iχ(s/T ′)y0, ξ (1 + iχ(s/T ′)ω0) , (1 + iφ)s
)

.

= (x, ξ, s) + i
(

χ(s/T ′)y0, χ(s/T ′)ω0, φs
)

,

where the numbers y0, ω0, φ ∈ R obey conditions (8.3),

max{|y0|, | arctanω0|} < κ0T
′ and |φ| < ν−1

0 ,

with some constants κ0, ν
−1
0 ∈ (0,∞) and T ′ ∈ (0, T ] small enough, such that also

κ0T
′ ≤ min{r, ϑv} and ν−1

0 ≤ tanϑt .

Here, 0 < ϑv, ϑt < π/2 are some given numbers. In the previous section (Section 8),

Proposition 8.1, we have shown that along this path, ς ≡ ςx,ξ, whose value at each

s ∈ [0, T ] is viewed as a function of the pair (x, ξ) ∈ H, the H-norm of the function

(x, ξ) 7−→ vn(x, ξ, s) : H× [0, T ] → C , defined by (8.5),

vn(x, ξ, s)
def
= ũn

(

x + iχ
(

s
T ′

)

y0, ξ
(

1 + iχ
(

s
T ′

)

ω0

)

, (1 + iφ)s
)

,

(x, ξ, s) ∈ H× [0, T ] ,

is uniformly bounded with the bound depending solely on the norm ‖ũ0,n|H‖H , the time

interval length T > 0, and the constant c′2 > 0 in inequality (6.3).

Next, we take advantage of the fact that we treat homogeneous linear parabolic

problems, (2.7) (with f ≡ 0) in the real domain H×(0, T ), and its natural complexification

(7.10) in the complex domain V(r′) × ∆ϑ′ . Consequently, given any indices m,n ∈ N, the

difference ũn − ũm : V(r′) × ∆ϑ′ → C is a holomorphic function that obeys the parabolic

equation in problem (7.10). Hence, we may apply our crucial a priori estimate (4.2) in

Proposition 8.1 to the difference ũn − ũm, thus obtaining
∫ ∞

0

∫ +∞

−∞

|ũn (x + iy, ξ(1 + iω), α + iτ)

− ũm (x + iy, ξ(1 + iω), α + iτ)|2 ·w(x, ξ) dx dξ(9.2)

≤ ec
′

2α ·
∫ ∞

0

∫ +∞

−∞

|ũn(x, ξ, 0) − ũm(x, ξ, 0)|2 ·w(x, ξ) dx dξ

= ec
′

2α · ‖u0,n − u0,m‖2H
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for every α ∈ (0, T ] and for all y, ω, τ ∈ R satisfying conditions (4.3),

max{|y|, | arctanω|} < κ0 · min{α, T ′} and ν0|τ | < α ,

depending on α.

It follows from ũ0,n|H → u0 in H as n → ∞, that {ũ0,n|H}∞n=1 is a Cauchy sequence

in H. By ineq. (9.2), also the functions

wn(x, ξ)
def
= ũn

(

x + iy, ξ(1 + iω), α + iτ
)

, (x, ξ) ∈ H ,(9.3)

form a Cauchy sequence {wn}∞n=1 in H, uniformly for all choices of α+iτ ∈ C and y, ω ∈ R

satisfying 0 < α ≤ T and conditions (4.3), that is to say, for

(9.4) max{|y|, | arctanω|} < κ0 · min{α, T ′} and ν0|τ | < α ≤ T .

Such numbers α+ iτ ∈ C and y, ω ∈ R being fixed, let w
def
= limn→∞ wn be the limit in H

of this Cauchy sequence. In analogy with eq. (9.3), we set

ũ
(

x + iy, ξ(1 + iω), α + iτ
)

def
= w(x, ξ) , (x, ξ) ∈ H .(9.5)

Then ũ : Γ
(T ′)
T (κ0, ν0) → C is a complex-valued, Lebesgue measurable function that

satisfies the following inequality, by letting m → ∞ in ineq. (9.2),
∫ ∞

0

∫ +∞

−∞

|ũn (x + iy, ξ(1 + iω), α + iτ)

− ũ (x + iy, ξ(1 + iω), α + iτ)|2 ·w(x, ξ) dx dξ(9.6)

≤ ec
′

2α ·
∫ ∞

0

∫ +∞

−∞

|ũn(x, ξ, 0) − u0(x, ξ)|2 ·w(x, ξ) dx dξ

= ec
′

2α · ‖u0,n − u0‖2H
for all choices of α + iτ ∈ C and y, ω ∈ R satisfying conditions (9.4) above.

A trivial consequence of (9.6) and (9.4) is that the sequence of functions ũn :

Γ
(T ′)
T (κ0, ν0) → C; n = 1, 2, 3, . . . , converges in the complex domain Γ

(T ′)
T (κ0, ν0) to the

function ũ : Γ
(T ′)
T (κ0, ν0) → C locally in the L2-topology. Since ũn is holomorphic in

Γ
(T ′)
T (κ0, ν0), it can be expressed by the Cauchy integral formula for polydiscs (S. G.

Krantz [32], Theorem 1.2.2 (p. 24), or F. John [29], Chapt. 3, Sect. 3(c), eq. (3.22c),

p. 71). From this formula we deduce by standard limiting arguments using ineq. (9.6) that

also the limit function ũ is expressed by the same Cauchy integral formula for polydiscs.

It follows that also ũ is holomorphic in Γ
(T ′)
T (κ0, ν0), as desired. Obviously, Proposition 8.1

guarantees that ũ satisfies ineq. (4.2).

To derive the relation of ũ to problem (2.7) (with f ≡ 0) in the real domain H×(0, T ),

let us take y = ω = τ = 0 in ineq. (9.6). Letting n → ∞ we observe that the function

û : (x, ξ, t) 7−→ ũ(x, ξ, t) : H× (0, T ) → C(9.7)
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is a weak solution to the Cauchy problem (2.7) (with f ≡ 0). However, the initial value

problem (2.7) (with f ≡ 0) possesses a unique weak solution

u ∈ C([0, T ] → H) ∩ L2((0, T ) → V ) ,

by a pair of standard theorems for abstract parabolic problems due to J.-L. Lions [37,

Chapt. IV], Théorème 1.1 (§1, p. 46) and Théorème 2.1 (§2, p. 52) (for alternative proofs,

see also e.g. L. C. Evans [12, Chapt. 7, §1.2(c)], Theorems 3 and 4, pp. 356–358, J.-L.

Lions [38, Chapt. III, §1.2], Theorem 1.2 (p. 102) and remarks thereafter (p. 103), A.

Friedman [18], Chapt. 10, Theorem 17, p. 316, or H. Tanabe [47, Chapt. 5, §5.5],

Theorem 5.5.1, p. 150).

Hence, we have û = u in H × (0, T ), thus proving that ũ : Γ
(T ′)
T (κ0, ν0) → C is a

holomorphic extension of u.

The proof of Theorem 4.2 is complete.

A Appendix: Trace, Sobolev’s, and

Hardy’s inequalities

Our boundedness and coercivity results for the Heston operator A : V → V ′ make use of

the following five lemmas: Recall that V = H1(H;w) and β > 0, γ > 0, and µ > 0 are

constants in the weight w(x, ξ) which is defined in eq. (2.12).

Lemma A.1 (A pointwise trace inequality.) Let β > 0, γ > 0, and µ > 0. Then the

following inequality holds for every function u ∈ V and at almost every point x ∈ R,

(A.1)
∂

∂ξ

(

ξβ e−µξ |u(x, ξ)|2
)

≤ 1

µ
|uξ(x, ξ)|2 · ξβ e−µξ + β |u(x, ξ)|2 · ξβ−1 e−µξ

for almost every ξ ∈ (0,∞).

Furthermore, for a.e. x ∈ R we have the limits

lim
ξ→0+

(

ξβ · |u(x, ξ)|2
)

= 0 and(A.2)

lim
ξ→∞

(

ξβ e−µξ · |u(x, ξ)|2
)

= 0 .(A.3)

Proof. The following partial derivatives exist almost everywhere in H; we first

calculate

∂

∂ξ

(

ξβ e−µξ|u(x, ξ)|2
)

= (uξ ū + u ūξ) · ξβ e−µξ + β |u(x, ξ)|2 · ξβ−1 e−µξ − µ |u(x, ξ)|2 · ξβ e−µξ ,
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then apply the Cauchy inequality

uξ ū + u ūξ = 2 · ℜe(uξ ū) ≤ 2|uξ| · |u| ≤ µ−1 |uξ|2 + µ |u|2

to estimate

∂

∂ξ

(

ξβ e−µξ |u(x, ξ)|2
)

≤ 1

µ
|uξ|2 · ξβ e−µξ + β |u(x, ξ)|2 · ξβ−1 e−µξ .

This proves ineq. (A.1).

Recall that u ∈ V . Integrating the right-hand side of the last inequality with respect

to the measure e−γ|x|−µξ dx dξ over H = R × (0,∞) we infer that, for a.e. x ∈ R, both

integrals below converge,

(A.4)

∫ ∞

0

|uξ(x, ξ)|2 · ξβ e−µξ dξ < ∞ and

∫ ∞

0

|u(x, ξ)|2 · ξβ−1 e−µξ dξ < ∞ .

Let x ∈ R be such a point. The right-hand side of ineq. (A.1) is integrable with respect to

the Lebesgue measure dξ over (0,∞), and so is the positive part φ+(ξ) = max{φ(ξ), 0}
of the partial derivative

ξ 7−→ φ(ξ)
def
=

∂

∂ξ

(

ξβ e−µξ |u(x, ξ)|2
)

.

Thus, the existence of the limit in (A.2),

lim
ξ→0+

(

ξβ · |u(x, ξ)|2
)

= L0(x) for a.e. x ∈ R ,

is deduced from

(A.5) L0(x)
def
= lim inf

ξ→0+

(

ξβ · |u(x, ξ)|2
)

and the following inequality, obtained by integrating ineq. (A.1) and valid for all 0 < ξ′ <

ξ′′ < ∞,

(ξ′′)β e−µξ′′ |u(x, ξ′′)|2 − (ξ′)β e−µξ′ |u(x, ξ′)|2 def
=
[

ξβ e−µξ |u(x, ξ)|2
]ξ=ξ′′

ξ=ξ′
(A.6)

≤ 1

µ

∫ ξ′′

ξ′
|uξ(x, ξ)|2 · ξβ e−µξ dξ + β

∫ ξ′′

ξ′
|u(x, ξ)|2 · ξβ−1 e−µξ dξ .

By similar reasoning, one derives the existence of the limit in (A.3),

lim
ξ→∞

(

ξβ e−µξ · |u(x, ξ)|2
)

= L∞(x) for a.e. x ∈ R ,

from

(A.7) L∞(x)
def
= lim inf

ξ→∞

(

ξβ e−µξ · |u(x, ξ)|2
)

.

Finally, both limits, L0(x) and L∞(x), are nonnegative and finite, by the integrability

properties of uξ(x, · ) and u(x, · ) stated in (A.4). Moreover, the second integral in (A.4)

forces L0(x) = L∞(x) = 0, thanks to
∫ δ

0
ξ−1 dξ =

∫∞

1/δ
ξ−1 dξ = ∞ for any δ > 0.

Lemma A.1 has the following global analogue with a similar proof.
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Lemma A.2 (A trace inequality.) Let β > 0, γ > 0, and µ > 0. Then the following

inequality holds for every function u ∈ V ,

∂

∂ξ

(

ξβ e−µξ

∫

R

|u(x, ξ)|2 · e−γ|x| dx

)

(A.8)

≤ 1

µ

∫

R

|uξ(x, ξ)|2 · ξβ e−γ|x|−µξ dx + β

∫

R

|u(x, ξ)|2 · ξβ−1 e−γ|x|−µξ dx

for almost every ξ ∈ (0,∞).

Furthermore, the limits in (2.15) and (2.16) are valid.

Proof. We integrate both sides of ineq. (A.1) with respect to the measure e−γ|x| dx

over R to obtain ineq. (A.8).

Since u ∈ V , the right-hand side of ineq. (A.8) is integrable with respect to the

Lebesgue measure dξ over (0,∞), and so is the positive part φ+(ξ) = max{φ(ξ), 0} of

the partial derivative

ξ 7−→ φ(ξ)
def
=

∂

∂ξ

(

ξβ e−µξ

∫

R

|u(x, ξ)|2 · e−γ|x| dx

)

.

Thus, the existence of the limit in (2.15),

lim
ξ→0+

(

ξβ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx

)

= L0 ,

is deduced from

(A.9) L0
def
= lim inf

ξ→0+

(

ξβ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx

)

and the following inequality, obtained by integrating ineq. (A.8) and valid for all 0 < ξ′ <

ξ′′ < ∞, cf. (A.6):

(ξ′′)β e−µξ′′
∫

R

|u(x, ξ′′)|2 · e−γ|x| dx− (ξ′)β e−µξ′
∫

R

|u(x, ξ′)|2 · e−γ|x| dx

def
=

[

ξβ e−µξ

∫

R

|u(x, ξ)|2 · e−γ|x| dx

]ξ=ξ′′

ξ=ξ′

≤ 1

µ

∫ ξ′′

ξ′

∫

R

|uξ(x, ξ)|2 · ξβ e−γ|x|−µξ dx dξ

+ β

∫ ξ′′

ξ′

∫

R

|u(x, ξ)|2 · ξβ−1 e−γ|x|−µξ dx dξ .

By similar reasoning, one derives the existence of the limit in (2.16),

lim
ξ→∞

(

ξβ e−µξ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx

)

= L∞ ,
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from

(A.10) L∞
def
= lim inf

ξ→∞

(

ξβ e−µξ ·
∫ +∞

−∞

|u(x, ξ)|2 · e−γ|x| dx

)

.

Again, as in our proof of Lemma A.1 above, both limits, L0 and L∞, are nonnegative

and finite, by the integrability properties of u ∈ V . Moreover, u ∈ H forces L0 = L∞ = 0,

thanks to
∫ δ

0
ξ−1 dξ =

∫∞

1/δ
ξ−1 dξ = ∞ for any δ > 0.

Our second trace result, Lemma A.3 below, is a simple analogue in the x-direction

of Lemma A.2 above. Its proof is analogous to that of Lemma A.2 and is left to the

reader; cf. A. Kufner [34].

Lemma A.3 (Another trace inequality.) Let β > 0, γ > 0, and µ > 0. Then the limits

in (2.17) hold for every function u ∈ V .

We take advantage of the trace results in Lemmas A.1 and A.2 to derive the following

embedding lemma.

Lemma A.4 (A Sobolev-type inequality.) Let β > 0, γ > 0, and µ > 0. Then the

following Sobolev-type inequality holds for every function u ∈ V ,

∫

H

|u(x, ξ)|2 · ξβ e−γ|x|−µξ dx dξ ≤
(

2

µ

)2 ∫

H

|uξ(x, ξ)|2 · ξβ e−γ|x|−µξ dx dξ

+
2β

µ

∫

H

|u(x, ξ)|2 · ξβ−1 e−γ|x|−µξ dx dξ .

(A.11)

Proof. It suffices to verify the following inequality:

(A.12)

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ ≤
(

2

µ

)2 ∫ ∞

0

|uξ(ξ)|2 · ξβ e−µξ dξ

+
2β

µ

∫ ∞

0

|u(ξ)|2 · ξβ−1 e−µξ dξ

holds for an arbitrary function u ∈ W 1,2
loc (0,∞) such that

∫ ∞

0

|uξ(ξ)|2 · ξβ e−µξ dξ < ∞ and(A.13)

lim
ξ→0+

(

ξβ · |u(ξ)|2
)

= lim
ξ→∞

(

ξβ e−µξ · |u(ξ)|2
)

= 0 .(A.14)

The boundary conditions in (A.14) are justified by Lemma A.1.
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Indeed, we begin with the identities

µ

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ = −
∫ ∞

0

|u(ξ)|2 · ξβ (e−µξ)ξ dξ

= − |u(ξ)|2 · ξβ e−µξ
∣

∣

∣

ξ=∞

ξ=0
+

∫ ∞

0

(

|u(ξ)|2 · ξβ
)

ξ
e−µξ dξ(A.15)

=

∫ ∞

0

(|u(ξ)|2)ξ · ξβ e−µξ dξ + β

∫ ∞

0

|u(ξ)|2 · ξβ−1 e−µξ dξ

=

∫ ∞

0

(uξ ū + u ūξ) · ξβ e−µξ dξ + β

∫ ∞

0

|u(ξ)|2 · ξβ−1 e−µξ dξ ,

by the zero trace conditions (A.14). We apply Cauchy’s inequality,

uξ ū + u ūξ = 2 · ℜe(uξ ū) ≤ 2 · |uξ ū| ≤ 2
µ
|uξ|2 + µ

2
|u|2 ,

to the integral

∫ ∞

0

(uξ ū + u ūξ) · ξβ e−µξ dξ

≤ 2

µ

∫ ∞

0

|uξ(ξ)|2 · ξβ e−µξ dξ +
µ

2

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ .

We estimate the last line in (A.15) by this inequality, thus arriving at

µ

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ

≤ 2

µ

∫ ∞

0

|uξ(ξ)|2 · ξβ e−µξ dξ +
µ

2

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ ,

+ β

∫ ∞

0

|u(ξ)|2 · ξβ−1 e−µξ dξ .

The desired inequality (A.12) follows.

Finally, we integrate ineq. (A.12) with u replaced by ũ ≡ u(x, · ) ∈ W 1,2
loc (0,∞)

(for almost every fixed x ∈ R) with respect to the measure e−γ|x| dx over R to obtain

ineq. (A.11).

Now we are ready to prove the following Hardy inequality.

Lemma A.5 (A Hardy-type inequality.) Let β > 1, γ > 0, and µ > 0. Then the

following Hardy-type inequality holds for every function u ∈ V ,

∫

H

∣

∣

∣

∣

u(x, ξ)

ξ

∣

∣

∣

∣

2

· ξβ e−γ|x|−µξ dx dξ ≤ 8

(β − 1)2

∫

H

|uξ(x, ξ)|2 · ξβ e−γ|x|−µξ dx dξ

+
2µ2

(β − 1)2

∫

H

|u(x, ξ)|2 · ξβ e−γ|x|−µξ dx dξ .

(A.16)
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Proof. It suffices to verify the following inequality:

(A.17)

∫ ∞

0

∣

∣

∣

∣

u(ξ)

ξ

∣

∣

∣

∣

2

· ξβ · e−µξ dξ ≤ 8

(β − 1)2

∫ ∞

0

|uξ(ξ)|2 · ξβ · e−µξ dξ

+
2µ2

(β − 1)2

∫ ∞

0

|u(ξ)|2 · ξβ · e−µξ dξ

holds for an arbitrary function u ∈ W 1,2
loc (0,∞) such that

(A.18)

∫ ∞

0

|uξ(ξ)|2 · ξβ e−µξ dξ < ∞ and

∫ ∞

0

|u(ξ)|2 · ξβ e−µξ dξ < ∞ .

The integrability hypotheses in (A.18) are valid for u replaced by the restricted function

ũ ≡ u(x, · ) ∈ W 1,2
loc (0,∞) for a.e. fixed x ∈ R; the first one by u ∈ V and the second one

by the previous lemma, Lemma A.4.

Inequality (A.17) is obtained easily from the standard weighted Hardy inequality

([21, Theorem 330, pp. 245–246]),

(A.19)

∫ ∞

0

∣

∣

∣

∣

f(ξ)

ξ

∣

∣

∣

∣

2

· ξβ dξ ≤
(

2

β − 1

)2 ∫ ∞

0

∣

∣

∣

∣

df

dξ

∣

∣

∣

∣

2

· ξβ dξ ,

where β > 1 and f ∈ W 1,2
loc (0,∞) satisfies limξ→∞ f(ξ) = 0, as follows: We first replace

the function f by the product f(ξ) = u(x, ξ) · e−µξ/2, then estimate the partial derivative

f ′(ξ) =
∂

∂ξ

(

u(x, ξ) · e−µξ/2
)

= uξ(x, ξ) · e−µξ/2 − µ

2
u(x, ξ) · e−µξ/2

=
(

uξ(x, ξ) +
µ

2
u(x, ξ)

)

· e−µξ/2

by

|f ′(ξ)|2 =

∣

∣

∣

∣

∂

∂ξ

(

u(x, ξ · e−µξ/2
)

∣

∣

∣

∣

2

≤ 2

[

|uξ(x, ξ)|2 +

(

µ

2

)2

|u(x, ξ)|2
]

· e−µξ

and insert it into ineq. (A.19), thus arriving at ineq. (A.17). Here, the hypothesis f ∈
W 1,2

loc (0,∞) is satisfied, thanks to u ∈ V , whence even
∫∞

0
|f ′(ξ)|2 · ξβ dξ < ∞ , with a

help from (A.18). Hypothesis limξ→∞ f(ξ) = 0 follows from the trace result (A.3) in

Lemma A.1.

The proof is completed by integrating ineq. (A.17) with u replaced by ũ ≡ u(x, · ) ∈
W 1,2

loc (0,∞) (for a.e. x ∈ R) with respect to the measure e−γ|x| dx over R to obtain

ineq. (A.16).

Recall that any function u ∈ V = H1(H;w) satisfies the hypotheses of Lemmas A.4

and A.5 above.
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Remark A.6 Owing to the Sobolev- and Hardy-type inequalities (A.11) and (A.16)

proved in Lemmas A.4 and A.5, with 1 < β < ∞, the following inner product defines an

equivalent norm on the Hilbert space V :

(A.20) (u, w)♯V
def
= (u, w)V + (u, w)♭V for u, w ∈ V ,

where

(u, w)♭V
def
=

∫

H

u(x, ξ)

ξ
· w̄(x, ξ)

ξ
· ξ ·w(x, ξ) dx dξ

+

∫

H

u w̄ · ξ ·w(x, ξ) dx dξ

(A.21)

=

∫

H

u w̄

(

ξ +
1

ξ

)

w(x, ξ) dx dξ for u, w ∈ V .

This fact is used in paragraphs §6.1 and §6.2. ⊓⊔

B Appendix: Density of entire functions

in H = L2(H;w)

As we have already suggested in paragraph §7.2, we wish to approximate an arbitrary

initial condition u0 ∈ H = L2(H;w) by a sequence of entire functions, u0,n : C
2 → C;

n = 1, 2, 3, . . . , such that their restrictions u0,n|H to H = R× (0,∞) satisfy

‖u0,n|H − u0‖H −→ 0 as n → ∞ .

Below, we construct rather simple entire (holomorphic) functions u0,n : C
2 → C; n =

1, 2, 3, . . . , with this property, by using standard results about Hermite and Laguerre

functions. The reader is referred to the monographs by A. N. Kolmogorov and S. V.

Fomin [30, Chapt. VII, §3.7, pp. 395–396] and N. N. Lebedev [35, Chapt. 4], §4.9, pp.

60–61 and §4.17, pp. 76–78, for details and proofs.

B.1 Hermite and Laguerre functions in the complex domain

In our approximation procedure below, we first take advantage of the (complex) Hilbert

space H = L2(H;w) being the tensor product of the Hilbert spaces H1 = L2(R;w1) and

H2 = L2(R+;w2), with the weights

(B.1) w1(x)
def
= e−γ|x| and w2(ξ)

def
= ξβ−1 e−µξ for (x, ξ) ∈ H,

i.e., H = H1 ⊗ H2, as defined in M. Reed and B. Simon [40, Chapt. II, §4], pp. 49–54.

All general properties of a tensor product of two Hilbert spaces that we use below can be
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found there. Thus, both H1 and H2 are weighted Lebesgue L2-spaces with the weighted

Lebesgue measures w1(x) dx and w2(x) dξ, respectively.

In order to keep our approximation procedure simple, we take advantage of the

density of the weighted Lebesgue L2-spaces as follows: L2(H) is densely and continuously

imbedded into H, L2(R) into H1, and L2(R+) into H2. This claim is an easy consequence

of the fact that all weights, w(x, ξ) = w1(x) ·w2(ξ), w1(x), and w2(ξ) are bounded.

We use a standard approximation method in H1 by Hermite functions , h(x) =

p(x) exp
(

− 1
2
x2
)

, where p(x) is a polynomial obtained by a linear combination of Hermite

polynomials Hn(x); n = 0, 1, 2, . . . . We refer to N. N. Lebedev [35, §4.9, pp. 60–61]

for a common definition of Hermite polynomials and their basic properties. In particular,

Hn(x) is a polynomial of degree n ≥ 0 and the Hermite functions

hn(x) = Hn(x) exp
(

− 1
2
x2
)

of x ∈ R ; n = 0, 1, 2, . . . ,

form an orthonormal basis in L2(R), by N. N. Lebedev [35, §4.13, pp. 65–66]. Fur-

thermore, an arbitrary linear combination of these functions, h(x) = p(x) exp
(

− 1
2
x2
)

,

where p(x) is a polynomial, can be extended uniquely to an entire function h̃(z) =

p(z) exp
(

− 1
2
z2
)

of the complex variable z = x + iy ∈ C. Finally, given any r > 0

and δ > 0, there is a constant Cr,δ,p ∈ (0,∞), depending only on r, δ, and the polynomial

p, such that the following inequalities hold for all z = x + iy, z∗ ∈ C with |y| ≤ r and

|z∗| ≤ δ:

|h̃(x + iy + z∗)| = |p(x + iy + z∗)| · exp
(

− 1
2
· ℜe[(x + iy + z∗)2]

)

= |p(x + iy + z∗)| · exp
(

− 1
2
· ℜe

[

(x + iy)2 + 2 (x + iy)z∗ + (z∗)2
])

(B.2)

≤ |p(x + iy + z∗)| · exp
(

− 1
2
·
[

x2 − y2 − 2 (|x| + |y|) |z∗| − |z∗|2
])

≤ Cr,δ,p · exp
(

− 1
2
x2 + 2δ |x|

)

.

Consequently, the square of the L2(R)-norm of the function x 7→ h̃(x + iy + z∗) : R → C

is uniformly bounded, provided |y| ≤ r and |z∗| ≤ δ are satisfied:

∫ +∞

−∞

|h̃(x + iy + z∗)|2 dx ≤ C2
r,δ,p ·

∫ +∞

−∞

exp
(

− x2 + 4δ |x|
)

dx ≡ const2r,δ,p < ∞ .

A Hermite polynomial based expansion has already been applied to Black-Scholes and

Merton type models for European option prices, e.g., in the recent work by D. Xiu [49].

Analogously, in H2 we use Laguerre functions , ℓ(ξ) = q(ξ) exp
(

− 1
2
ξ
)

, where q(ξ)

is a polynomial obtained by a linear combination of Laguerre polynomials Ln(ξ); n =

0, 1, 2, . . . . We refer to N. N. Lebedev [35, §4.17, pp. 76–78] for a common definition of

Laguerre polynomials and their basic properties. In particular, Ln(ξ) is a polynomial of

degree n ≥ 0 and the Laguerre functions

ℓn(ξ) = Ln(ξ) exp
(

− 1
2
ξ
)

of ξ ∈ R+ ; n = 0, 1, 2, . . . ,
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form an orthonormal basis in L2(R+), by N. N. Lebedev [35, §4.21, pp. 83–84]. Fur-

thermore, an arbitrary linear combination of these functions, ℓ(ξ) = q(ξ) exp
(

− 1
2
ξ
)

,

where q(ξ) is a polynomial, can be extended uniquely to an entire function ℓ̃(ζ) =

q(ζ) exp
(

− 1
2
ζ
)

of the complex variable ζ = ξ(1+ iω) ∈ C. Finally, given any ϑv > 0 and

δ > 0, there is a constant Cϑv ,δ,q ∈ (0,∞), depending only on ϑv, δ, and the polynomial

q, such that the following inequalities hold for all ζ = ξ(1 + iω), ζ∗ ∈ C with ξ ∈ R+,

| arctanω| ≤ ϑv, and |ζ∗| ≤ δ:

|ℓ̃(ξ(1 + iω) + ζ∗)| = |q(ξ(1 + iω) + ζ∗)| · exp
(

− 1
2
· ℜe[ξ(1 + iω) + ζ∗]

)

(B.3)

≤ |q(ξ(1 + iω) + ζ∗)| · exp
(

− 1
2
· (ξ − |ζ∗|)

)

≤ Cϑv ,δ,q · exp
(

− 1
4
ξ
)

.

Consequently, the square of the L2(R+)-norm of the function ξ 7→ ℓ̃(ξ(1 + iω) + ζ∗) :

R+ → C is uniformly bounded, provided | arctanω| ≤ ϑv and |ζ∗| ≤ δ are satisfied:

∫ +∞

0

|ℓ̃(ξ(1 + iω) + ζ∗)|2 dξ ≤ C2
ϑv,δ,q ·

∫ +∞

0

exp
(

− 1
2
ξ
)

dξ = 2C2
ϑv ,δ,q < ∞ .

Summarizing the properties of the Hermite and Laguerre functions, we observe that

the product functions

emn(x, ξ)
def
= hm(x) ℓn(ξ) of (x, ξ) ∈ H ; m,n = 0, 1, 2, . . . ,

form an orthonormal basis in L2(H) ([40, Chapt. II, §4]).

B.2 Approximation of the initial conditions
(Galërkin’s method)

We have just shown that, given any initial condition u0 ∈ H = L2(H;w), there is a

sequence of entire (holomorphic) functions

u0,n(z, ζ) = Pn(z, ζ) exp

(

− 1

2
(z2 + ζ)

)

, (z, ζ) ∈ C
2 ; n = 1, 2, 3, . . . ,

with the restrictions u0,n|H in the tensor product L2(H) = L2(R)⊗L2(R+) →֒H = H1⊗H2,

such that:

(i) Pn : C
2 → C is a polynomial with complex coefficients.

(ii) The restrictions u0,n|H of u0,n to H = R× (0,∞) satisfy

‖u0,n|H − u0‖H −→ 0 as n → ∞ .
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(iii) There is a constant Kn ≡ KPn
∈ (0,∞), depending on Pn, r, and ϑv, 0 < r < ∞

and 0 < ϑv < π/2, but independent from y, ω ∈ R in z = x + iy, ζ = ξ(1 + iω) ∈ C

and z∗, ζ∗ ∈ C with |y| < r, | arctanω| < ϑv, and max{|z∗|, |ζ∗|} < δ, such that
∫

H

|u0,n (x + iy + z∗, ξ(1 + iω) + ζ∗)|2 dx dξ ≤ Kn ≡ const < ∞

whenever |y| < r, | arctanω| < ϑv, and max{|z∗|, |ζ∗|} < δ .

An analogous estimate remains valid in the weighted Lebesgue space H if the

standard Lebesgue measure dx dv is replaced by the weighted Lebesgue measure

w(x, v) dx dv, thanks to 0 < w(x, v) ≤ const < ∞.

Notice that the estimate in (iii) above follows from
∫

H

|u0,n (x + iy + z∗, ξ(1 + iω) + ζ∗)|2 dx dξ

=

∫ ∞

0

∫ ∞

−∞

|Pn (x + iy + z∗, ξ(1 + iω) + ζ∗)|2

× exp
(

−ℜe[(x + iy + z∗)2 + ξ(1 + iω) + ζ∗]
)

dx dξ

(B.4)

≤
∫ ∞

0

∫ ∞

−∞

|Pn (x + iy + z∗, ξ(1 + iω) + ζ∗)|2 · exp
(

− (x2 − y2) − ξ
)

× exp
(

2|x + iy| · |z∗| + |z∗|2 + |ζ∗|
)

dx dξ

≤
∫ ∞

0

∫ ∞

−∞

|Pn (x + iy + z∗, ξ(1 + iω) + ζ∗)|2 · exp
(

− x2 − ξ
)

× exp
(

r2 + 2(|x| + r)δ + δ2 + δ
)

dx dξ

≤ Kn ≡ const < ∞
whenever |y| < r, | arctanω| < ϑv, and max{|z∗|, |ζ∗|} < δ .

As an obvious consequence of properties (i), (ii), and (iii) we obtain that u0,n :

X(r) × ∆ϑv
→ C is a holomorphic function in both its variables (z, ζ) and belongs to the

Hardy space H2(X(r) × ∆ϑv
).
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