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Abstract

We develop a framework to study optimal sector-specific taxation, where each agent chooses

an occupation by comparing her skill di↵erential with the tax burden di↵erential across sectors.

Because skills are not perfectly transferable, the Diamond-Mirrlees theorem (according to which

the second-best entails production e�ciency) fails: social welfare can be increased by inducing

some agents to join the sector in which their productivity is not the highest. At the optimum,

income taxes balance the marginal losses from inter-sector migration with the marginal gains

from tailoring tax schedules to the distribution of productivities in each sector (“tagging”). A

calibrated model indicates that sector-specific taxation generates substantive welfare gains when

skill transferability decreases with income, as it enables the government to increase average taxes

on high earners with large wage premia.
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1 Introduction

The sharp rise in income inequality experienced by advanced economies in the last forty years

has spurred intense research on how skills a↵ect remuneration in di↵erent sectors of the economy.

Recent empirical contributions document large di↵erences on how various sectors/occupations a↵ect

inequality measures. For instance, Bell and Van Reenen (2014) show that the financial sector is

responsible for most of the increase in the income share held by the top one percent in the UK.1

A recent study by Bloom et al. (2016) based on a rich data set of administrative records confirms

that the increase of income inequality in the US in the last three decades is primarily driven by an

increase in the dispersion of compensation across firms and occupations. In contrast, pay di↵erences

within firms have remained virtually unchanged.2

The dynamics of compensation across di↵erent quantiles of the income distribution also vary

significantly across sectors: in finance, for instance, the increase in compensation has been primarily

concentrated at the very top.3 As documented by Kaplan and Rauh (2010) and Bakija et al (2012),

occupations in real state and legal services also experienced a significant growth in top incomes,

whereas top incomes in manufacturing, transportation and construction grew at a more moderate

rate.

These empirical observations accord with a renewed interest on taxation policies that discrim-

inate according to the sector where income is generated.4 One notable example is the so called

“bonus tax” in the UK, according to which the bonuses received by financial employees would be

taxed at a higher rate than wage income.5 Similar proposals, involving, for instance, a di↵erent

tax treatment of CEO pay or special tax schedules for certain sectors (such as finance or man-

ufacturing) are often debated in the US. At the root of these policy proposals is the belief that

certain sectors exceedingly remunerate occupation-specific skills. This may be due to technological

reasons, labor market frictions, or economic rents stemming from imperfections in competition and

regulation (which are typically out of the scope of the tax authority).6

It is perhaps surprising that, notwithstanding their natural appeal, policies advocating for dif-

ferential taxation across sectors receive little support from the optimal taxation literature. At the

heart of the matter lies the celebrated theorem of Diamond and Mirrlees (1971), which shows that,

1For similar evidence for the US and France, see, respectively, Bakija et al (2012) and Godechot (2012).
2See also Guvenen and Kuruscu (2012).
3See Philippon and Reshef (2012) for evidence for the US, and Denk (2015) for 18 European countries.
4Many countries engage in such policies. Algeria, for example, levies a corporate income tax of 25% on trade

activities and services, and 19% on manufacturing, construction and tourism. Other countries employing sector-

specific income taxes include Morocco, Tunisia, Luxembourg and Israel. The use of sector-specific sales taxes is even

more common; France is a notable example for its very fine sectoral classification (resulting in many tax regimes).
5The bonus tax was levied in the 2009/10 tax year in the UK. This tax made employers in the financial sector

pay a 50% tax rate for any (pay-for-performance) bonus paid to employees in excess of 25000 pounds. Proposed as

a one-o↵ event in the aftermath of the financial crisis, this tax collected 2.3 billion pounds.
6See Philippon and Reshef (2012) for a discussion of this point centered in the US financial sector.



when the government can levy di↵erentiated (possibly nonlinear) taxes on all factors (input and

output), the economy should lie at the production e�cient frontier. Strikingly, at the optimum,

distortions in consumption induced by income taxation do not translate into distortions in produc-

tion. This result has important implications for the design of tax systems. For instance, it provides

an intellectual justification for opposing the taxation of intermediate goods, as well as for the use of

di↵erential sales taxes, or sector-specific income tax regimes. Di↵erential taxation would create a

wedge between productivities and wages across sectors, thus leading to distortions in the allocation

of labor across sectors and undesirable violations of production e�ciency.

One key assumption of the Diamond-Mirrlees theorem is that skills are perfectly transferable

across sectors. In this paper, we provide a framework for studying optimal di↵erential taxation in

settings where the degree of skill transferability is heterogeneous across individuals and occupa-

tions.7 As our results show, this realistic feature has important implications for the optimality of

production e�ciency, and the design of income tax schedules.

Our analysis embeds a Mirrleesian taxation problem into an occupational choice model à la Roy

(1951), where the agents’ productivities are sector-specific. Agents compare wage levels and the tax

burden across occupations, and then choose which sector to work in, along with their labor supply.

To isolate the impact of taxation on the production side of the economy, we assume that the goods

produced in di↵erent sectors are perfect substitutes. The technology in each sector is described

by a representative firm with a linear production function, which rules out general equilibrium

e↵ects or externalities across sectors. Accordingly, in our model, the notion of production e�ciency

coincides with that of occupational-choice e�ciency: Agents should join the sector in which they

are most productive. The government wishes to implement a second best redistributive tax system

à la Mirrlees (1971) using a rich set of sector-specific taxes. We allow the government’s objective

to be Ralwsian or concave Utilitarian.

We start with the general case in which the government can use sector-specific non-linear income

tax schedules. The government can observe the income and the sector chosen by each individual,

but cannot control the individual’s choice of labor supply or of sector of employment. Accordingly,

the government maximizes welfare subject to the usual intensive-margin incentive constraints asso-

ciated with the choice of labor supply by each individual, as well as an extensive-margin incentive

constraint associated with the occupational choice by each individual. The multi-dimensionality

of each agent’s productivity plays a key role in the extensive margin constraint, as the agent’s

occupational choice is determined by how the agent skill di↵erential across sectors compares to the

di↵erence in the tax burden across sectors.

Our first contribution is to develop a methodology for solving multi-dimensional screening prob-

lems governed by intensive-margin (labor supply) and extensive-margin (sector choice) decisions.

Namely, we proceed by first solving a primal problem, where the occupational choice rule (which

7There is diverse empirical evidence documenting that skill transferability across sectors decreases with income,

and varies from sector to sector. See, for example, Bakija et al (2012) and Dent (2015), among others.
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determines the sector choice as a function of the worker’s productivity profile) is held fixed, and

the tax system is chosen to maximize welfare subject to implementing that occupational choice rule

(as well as satisfying the intensive-margin incentive constraints). Next, we solve a dual problem,

where the tax schedule in a given sector is held fixed, and the tax schedule in the other sector (as

well as the occupational choice rule) are chosen to maximize welfare.8

The solution to the primal problem delivers a Mirrlees tax formula generalized to a multi-

sector economy with endogenous occupational choice and multi-dimensional types. As in Mirrlees

(1971), Diamond (1998), and Saez (2001), the tax schedule balances e�ciency and redistributive

considerations. E�ciency concerns are captured by elasticity (or behavioral) e↵ects, that measure

how individuals adjust labor supply in response to higher marginal taxes. Redistributive concerns

are captured by direct (or mechanical) e↵ects, that measure how an increase in the marginal tax in

a given income bracket increases tax collection in all higher income brackets. Our characterization

reveals how the government optimally balances intensive-margin distortions in labor supply across

sectors, as a function of the occupational choice rule to be implemented.

In turn, the solution to the dual problem delivers an Euler equation that determines the optimal

allocation of workers across sectors. At the optimum, the marginal loss in tax revenue due to the

migration of workers across sectors equalizes the marginal gains from tailoring tax schedules to the

distribution of productivities in each sector (“tagging”). Importantly, when skills are imperfectly

transferable across sectors and income taxes are sector-specific, the Diamond-Mirrlees theorem fails:

Social welfare is increased by assigning some agents to a sector di↵erent from the one in which they

are most productive. A similar conclusion holds in the (perhaps more realistic) scenario where the

government is not able to tax labor income using a sector-specific schedule, but can levy di↵erent

sales taxes across sectors. Our analysis then implies the failure of the Atkinson-Stiglitz theorem

(according to which, when preferences over consumption and leisure are separable, as they are

in our economy, the second-best can be implemented with zero sales taxes). Therefore, the use of

di↵erential taxation across sectors is strictly needed to implement the welfare-maximizing outcome.

The key to these results lies in how the tax system a↵ects the informational costs of redistri-

bution. Di↵erential taxes allow the government to relax the incentive constraints of high-ability

agents whose skills are poorly transferable, at the cost of allocating some low-ability agents to a

sector di↵erent from the one in which they are most productive. In particular, at the production

e�cient outcome, by appropriately increasing taxes in some sector, the planner can obtain a first-

order reduction in the informational costs of redistribution by incurring only second-order losses in

total output.

The trade-o↵ between reducing the informational rents of high-earners and inducing skill mis-

allocation among low-earners is key to assessing which sector should be favored at the optimum.

Our analysis identifies two independent (but related) conditions guaranteeing that one sector (let

8In Section 6, we discuss how this methodology can be applied to other settings, such as nonlinear pricing by a

multi-product monopolist and managerial compensation with multiple career options.
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us say, sector a) should be favored at the optimum. To describe these conditions, let us identify the

degree of skill transferability of a worker with the loss of wage per hour as he moves away from his

most productive sector. Similarly, we say that sector a is more skill intensive than sector b if the

former sector has relatively more high-earners than the latter, under the assumption that workers

choose the sector where they are most productive (i.e., production e�ciency prevails).

Let sector a be the sector in which the degree of skill transferability is the lowest among low-

productivity workers and the highest among high-productivity ones, and assume both sectors are

equally skill-intensive. At the optimum, taxes in sector a should be lower than in sector b, inducing

workers to migrate from the latter sector to the former. Intuitively, tilting the tax system in favor

of sector a (by making the tax burden in sector b heavier than in sector a) entails (i) a lower

opportunity cost from the migration of low-productivity agents away from the sector in which they

are most productive, and (ii) higher gains in tax collection from high-ability agents remaining in

the sector in which they are most productive. This is the skill transferability motive for di↵erential

taxation.

Alternatively, let both sectors have the same degree of skill transferability at all productivity

levels, but assume that sector b is more skill-intensive than sector a. Once again, at the optimum,

taxes should be higher in sector b than in sector a, inducing certain workers to migrate from the

former sector to the latter. Intuitively, favoring sector a rather than b entails (i) a lower mass

of low-productivity agents migrating to the sector in which they are least productive, and (ii) a

higher volume of high-productivity agents paying larger taxes in the sector in which they are most

productive. This is the skill intensity motive for di↵erential taxation.

We quantitatively assess the e↵ects discussed above by calibrating our model using data on wages

and industry classification from the US Current Population Survey (CPS). To generate conservative

estimates on the gains from di↵erential taxation, we construct two large sectors: manufacturing

and services. The manufacturing sector aggregates traditional industries, while the services sector

contains finance, banking, legal and business services, as well as technology-intensive activities

characterized by large returns to occupation-specific skills. We interpret the wage data as generated

by a (sub-optimal) uniform tax system where production e�ciency prevails, and construct di↵erent

scenarios regarding the degree of skill transferability in the manufacturing and services sectors.

Our analysis delivers three main lessons: First, the welfare gains from di↵erential taxation can be

large (of the order of 1.5% of GDP). Moreover, most of these gains are due to the skill transferability

motive: Accordingly, the services sector (displaying the lowest degree of skill transferability at

the top) faces the largest tax burden. With a more complex tax system and a finer sectorial

classification (involving more than two sectors), the importance of the skill intensity motive for

di↵erential taxation is expected to be higher.

Second, sales taxes (or, equivalently, payroll taxes) are able to generate roughly half of the

welfare gains from sector-specific income tax schedules. This result suggests that the welfare gains

from “simple” tax systems, while non-negligible, are far from the levels delivered by fully optimal
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sector-specific income taxation.

Third, we document the incidence of production ine�ciencies and the shape of optimal marginal

tax schedules. We show that di↵erential taxation can increase significantly the average tax rate

faced by high earners in occupations with large wage premia.

The rest of the paper is organized as follows. Below, we close the introduction by briefly

reviewing the most pertinent literature. Section 2 previews the main themes of our analysis through

a simple discrete-type example. Section 3 presents the continuum-type version of our model. Section

4 characterizes the optimal tax system under di↵erential taxation, and discusses implications for

production e�ciency. Section 5 quantifies these results by means of a calibration exercise. Section

6 discusses a few extensions and concludes.

1.1 Related literature

Our paper contributes to the literature on optimal taxation in the tradition of Mirrlees (1971). Our

analysis is directly related to fundamental results in this literature. First, Diamond and Mirrlees

(1971) show that the second-best optimum exhibits production e�ciency in a general equilibrium

setting where the government can use (linear) taxes on all inputs and outputs, and firms can be

taxed in a lump-sum fashion.9 In turn, Atkinson and Stiglitz (1976) show that di↵erentiated sales

taxes across goods are detrimental to welfare, when the government can use a non-linear income tax

schedule and preferences are weakly separable between consumption and leisure.10 These results

were first challenged by Naito (1999), who considers a two-sector model in which two goods are

produced using skilled and unskilled labor in di↵erent intensities. Naito shows that a tax/subsidy

on one good, implicitly creating a subsidy to low-skilled labor, is always desirable provided the

government can use a non-linear income tax. This indirect form of wage subsidy (as opposed to

a subsidy on total labor income) allows the government to ease redistribution without a↵ecting

incentive constraints. This result comes from the fact that the high skilled individuals cannot

e↵ectively claim the low skilled wage. Later, Saez (2004) discusses this assumption and argues that,

in the long run, individuals choose their occupation (say, skilled or unskilled). As a consequence,

the optimality of production e�ciency and of uniform sales taxes is restored.

In turn, Saez (2002) derives the optimal tax system in a setting where labor supply responses

involve an intensive margin (high or low-paying occupations) as well as an extensive margin (par-

ticipation into the labor force). One important assumption in Saez (2002, 2004) is that all workers

are equally productive in all occupations, but di↵er in their tastes for each occupation (including

tastes for not working). By contrast, in the spirit of Roy (1951), we assume that workers have het-

erogenous skills across occupations (extensive margin), and make intensive-margin choices within

occupation (i.e., hours of work).

9See Hammond (2000) for a generalization of this result that allows for asymmetric information about workers’

skills and nonlinear taxation.
10See Boadway (2012) for a unified treatment of these results.
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Rothschild and Scheuer (2013) consider a two-sector Roy model with endogenous wages (as

workers are paid their marginal product of labor in a constant-returns technology) and assume

that taxation is uniform across sectors (as the income tax schedule is the same across sectors

and sales taxes are not considered). In turn, Rothschild and Scheuer (2016) consider an economy

where agents can work in a traditional sector (where private and social returns coincide) or in a

rent-seeking sector (which imposes a negative externality on the traditional sector). The theme of

these papers is how general equilibrium e↵ects (determining relative wages), or externalities across

sectors, shape the optimal tax system in a world with cross-sector migration and imperfect tagging

(uniform taxation). Ales et al. (2015) consider an economy with a continuum of sectors, but where

agents are endowed with a one-dimensional productivity type. They restrict attention to uniform

taxation and simulate their model to assess the impact of technical change (which a↵ects relative

wages across sectors) on the optimal income tax schedule. In contrast to these contributions, our

model allows for sector-specific taxation (in the form of income or sales taxes), but abstracts from

general equilibrium e↵ects (as technology is linear in our model) and externalities across sectors.

Another related contribution is Scheuer (2014), who considers an economy where agents have

one-dimensional skills and choose between being workers or entrepreneurs (with the latter choice

involving a setup cost that enters additively in the agents’ utility function). This simple structure

of heterogeneity implies that production e�ciency is optimal when the government can tax the

incomes from wages and profits di↵erently. This feature eliminates the tension between “tagging”

gains and ine�ciency losses that is at the core of our work.11

Our paper is also related to the literature on “tagging”, initiated by Akerlof (1978) and further

developed by Cremer et al. (2010) and Mankiw and Weinzierl (2010), in the context of optimal

non-linear income taxation. The idea of “tagging” is that the government can increase e�ciency

and redistribute more by conditioning income taxes on observable characteristics, such as age, sex,

or height. A fundamental di↵erence with respect to our paper is that, in this literature, the tagging

variable is exogenous (agents cannot respond by changing sex, age, or height). In contrast, in our

economy, workers are able to migrate across sectors in response to di↵erential taxation (i.e., the

tagging variable is endogenous).

Allowing for endogenous occupational choice naturally leads to a multi-dimensional screening

problem. Solving such problems is often challenging, as one cannot determine from the outset the

direction in which incentive constraints bind (see Rochet and Choné (2003), and the references

therein). In our setting, the multi-dimensionality of workers’ productivity only a↵ects sector-choice

(extensive-margin) decisions. This allows us to employ the primal-dual approach described above,

bringing considerable tractability to the analysis.

As our analysis reveals, the multi-dimensionality of workers’ types has important implications

11See also Scheuer and Werning (2016) for the analysis of optimal taxation in economies with extensive and intensive

margins as well as for a discussion of how the Mirrlees (1971) problem can be recast as a special case of Diamond

and Mirrlees (1971). In this paper, as well as in all other papers cited above, taxation is uniform across sectors.
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for the design of optimal tax systems. Other recent studies share a similar view: Choné and

Laroque (2010) study the optimality of negative marginal taxes in a model where workers have a bi-

dimensional type comprising a skill level and an outside option that is responsible for participation

in the labor force. Golosov et al. (2013) study optimal non-linear income and capital taxes in

a model where individuals di↵er both in their skills and in their time preferences. Jacquet and

Lehmann (2016) study optimal income taxation when agents are heterogeneous in their skills and

behavioral elasticities.

2 Preamble: An Illustrative Example

In order to introduce the main ideas in the simplest possible way, this section studies di↵erential

taxation in a stylized discrete-type example. Consider a unit-mass continuum of agents and two

sectors indexed by j 2 {a, b}. We identify the type of each agent with the pair (n
a

, n
b

) describing

the agent’s productivity in each of the two sectors. The utility of an agent with type (n
a

, n
b

)

working h
j

hours in sector j and paying t dollars in taxes is h
j

n
j

� t �  (h
j

), where  (h) is the

disutility of labor (which, in this example, we assume to be quadratic, i.e.,  (h) = h2/2).

The agents’ types are independently drawn from a distribution with probability mass function

f satisfying

f(n, n� "
a

) = p
a

, f(n� "
b

, n) = p
b

, f(n̄, n̄� �
a

) = q
a

, f(n̄� �
b

, n̄) = q
b

,

where 0 < n � "
j

 n < n � �
j

 n̄ for j 2 {a, b}. Figure 1 depicts the support of f . That is,

an agent with sector-j productivity equal to n (alternatively, n̄) loses "
j

(alternatively, �
j

) dollars

per hour if he works in sector k 6= j. We refer to �"
j

(alternatively, ��
j

) as the degree of skill

transferability among low-productivity (alternatively, high-productivity) agents in sector j. For

convenience, we assume that the two sectors have equal sizes in case all agents work in the sector

in which their productivity is the highest, i.e., p
j

+ q
j

= 1
2 for j = a, b. We refer to q

j

/p
j

as the

skill intensity of sector j, that is, the ratio between high and low productivity agents in sector j

that obtains when all agents choose the sector in which their productivity is the highest.

The social planner designs a budget-balanced income tax system to maximize the utility of the

worst-o↵ agent in the economy (i.e., the planner’s objective function is Ralwsian). Agents compare

productivity levels and the tax burden across sectors and then choose (a) which sector to work in

and (b) the number of hours to supply in the chosen sector.

Foreshadowing the analysis in the next sections, we shall proceed in two steps. In the first step,

we fix which types work in each sector (i.e., the occupational choice rule) and compute the tax

system that maximizes social welfare among all tax systems that induce agents to sort themselves

over the two sectors according to the given occupational choice rule. In the second step, we compare

welfare across occupational choice rules.
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Let us consider first the occupational choice rule according to which types (n, n � "
a

) and

(n̄, n̄� �
a

) work in sector a and types (n� "
b

, n) and (n̄� �
b

, n̄) work in sector b. This rule respects

production e�ciency, as the labor supply of each agent is employed in the sector in which the agent

is most productive.

Under the optimal tax system satisfying production e�ciency, the “high” types (n̄, n̄� �
a

) and

(n̄� �
b

, n̄) supply labor at the first-best level. The government’s ability to tax these individuals is

constrained by their ability to mimic the “low” types (n, n� "
a

) and (n� "
b

, n). In the typical case

where the only binding incentive constraints are the ones regarding the provision of labor supply

within each sector, a sector-j high type obtains the informational rent

u
j

(n̄) = u
j

(n) +  (h
j

(n))�  
⇣n

n̄
h
j

(n)
⌘

, (1)

where the schedules u
j

(·) and h
j

(·) describe the indirect utility and the labor supply of individuals

working in sector j = a, b. This rent originates in the ability of the most productive agents to

generate the same income as the least productive ones by working less, thus economizing on the

disutility of labor. As a result, the rent for these most productive agents equals the utility of the

least productive agents working in the same sector, augmented by a term that equals the di↵erential

in the disutility of labor from generating the same income as the least productive agents. In order to

reduce these rents and foster redistribution from the most productive agents to the least productive

ones, the government taxes the labor income of the least productive agents so as to induce them to

work less. At the optimum, the government thus distorts the labor supplied by the least productive

agents downwards relative to the first-best level. We denote by �
e

the social welfare achieved by

the optimal tax system under production e�ciency.

Let us now consider the occupational choice rule according to which types (n, n�"
a

), (n�"
b

, n)

and (n̄, n̄� �
a

) work in sector a, and type (n̄� �
b

, n̄) works in sector b. A tax system implementing

such a rule is said to favor sector a (see Figure 1 for an illustration).12

Relative to the production e�ciency benchmark, this occupational choice rule moves type (n�
"
b

, n) from sectors b to a. While this assignment entails an opportunity cost of "
b

per hour of work

(which corresponds to the productivity loss from having this type working in the “wrong” sector),

it allows the government to increase tax collection from high-productivity agents working in sector

b (whose type is (n̄� �
b

, n̄)).

To understand why, note that, at the Ralwsian optimum, type (n̄� �
b

, n̄) has to be indi↵erent

between (i) working on sector b with productivity n̄, and (ii) migrating to sector a and working

with productivity n̄� �
b

. In case he decides to migrate, the best that this type can do is to mimic

agents with productivity n. The optimal tax system leaves type (n̄ � �
b

, n̄) perfectly indi↵erent

between these two options:

u
b

(n̄) = u
a

(n) +  (h
a

(n))�  

✓

n

n̄� �
b

h
a

(n)

◆

. (2)

12Analogously, we say that a tax system favors sector b when the only type to work in sector a is (n̄, n̄� �a).
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Figure 1: The shaded points describe the support of agent’s productivity pairs. Under production

e�ciency, types above the 45-degree line work in sector b, while those below it work in sector a.

When the tax system favors sector a, all types below the dotted curve work in sector a.

As the comparison with equation (1) reveals, the ability to mimic agents whose productivity is n is

hindered by the fact that skill is not perfectly transferable across sectors (i.e., �
b

> 0). As a result,

the government is able to levy higher taxes from type (n̄� �
b

, n̄) than under production e�ciency

(and the more so the higher is �
b

).

Of course, this reduction in the informational costs of redistribution comes at the cost of mis-

allocating the hours of work provided by type (n � "
b

, n). Moreover, this misallocation cost is

decreasing in �"
b

, which is the degree of skill transferability among low-productivity agents in

sector b. Denoting by �
j

the social welfare achieved by the optimal tax system that favors sector

j and recalling that �
e

is social welfare under the optimal tax system consistent with production

e�ciency, we then have the following result:

Result 1 (Production Ine�ciency) Production e�ciency fails at the optimum whenever the

degree of skill transferability among low-productivity agents in some sector is su�ciently small.

Formally, for any j, k 2 {a, b}, k 6= j, any �
k

> 0, there exists "̂ such that �
j

> �
e

if and only if

"
k

< "̂.

The proof for both this result and the next one are in the Supplementary Material. Intuitively,

the optimal tax system exhibits production ine�ciency whenever favoring some sector (and there-

fore reducing the informational costs of redistribution) entails low costs in terms of skill misalloca-

tion. As our analysis in the next sections reveals, the analog of this condition in the continuum-type

case has little bite, and production ine�ciency is a robust (or “generic”) feature of the second-best.

In case production ine�ciency prevails, which sector should be favored? The trade-o↵ discussed

above is key to answering this question. To see why, let both sectors be equally skill intensive, but
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assume that sector a simultaneously exhibits the lowest degree of skill transferability among low-

productivity agents (i.e., "
a

> "
b

) and the highest among high-productivity agents (i.e., �
a

< �
b

).

In this case, welfare is greater by inducing low-productivity agents in sector b to migrate to sector

a, relative to the opposite migration pattern. The reason is that favoring sector a, rather than

b, entails (i) lower opportunity costs of skill misallocation for each low-productivity agent that

migrates, and (ii) higher gains in tax collection from each high-ability agent that stays in the

unfavored sector. This is the skill transferability motive for di↵erential taxation.

Another possibility is that both sectors enjoy the same degree of skill transferability for all

productivity levels, but a sector, let us say a, is less skill-intensive than the other ( qa
pa

< qb
pb
). In

this case, taxes should be lower in sector a than in sector b. The reason is that favoring sector

a, as opposed to favoring b, entails (i) a lower mass of low-productivity agents migrating to their

least-productive sector, and (ii) a higher mass of high-productivity agents paying large taxes in

their most productive sector. This is the skill intensity motive for di↵erential taxation.

This discussion is summarized in the next result.

Result 2 (Sectorial Bias) Social welfare is higher by favoring sector j rather than sector k 6= j,

that is, �
j

> �
k

, whenever one of the following mutually exclusive conditions hold:

1. Sector j enjoys the lowest degree of skill transferability among low-productivity agents and the

highest among high-productivity agents (that is, "
j

> "
k

and �
j

< �
k

), and both sectors are

equally skill-intensive (that is, qj

pj
= qk

pk
).

2. Sector j is less skill-intensive than sector k (that is, qj

pj
< qk

pk
), and both sectors enjoy the

same degree of skill transferability among low and high productivity agents (that is, "
j

= "
k

and �
j

= �
k

).

Of course, the case for favoring sector j is only strengthened if the skill transferability motive

("
j

> "
k

and �
j

< �
k

) and the skill intensity motive ( qj
pj

< qk
pk
) are present simultaneously. By

contrast, it is a priori unclear which sector should be favored if the degree of skill transferability is

uniformly greater in some sector (e.g., "
a

> "
b

and �
a

> �
b

), or if the skill transferability motive and

the skill intensity motive point in di↵erent directions (e.g., "
j

> "
k

and �
j

< �
k

, but qj

pj
> qk

pk
). In

these cases, the welfare level attained from favoring either sector depends on the magnitudes of the

“informational cost” and “skill misallocation” e↵ects discussed above, and a quantitative analysis

is needed to assess the sectorial bias at the optimum. This often occurs in the continuum-type

case, where the bivariate distribution of skills is unlikely to satisfy stringent order relations across

all productivity levels. We shall come back to this important issue in Section 5, where we simulate

our model using US income data. Before doing so, we first extend the model to a continuum of

types.

11



3 Model and Preliminaries

3.1 Set-up

We consider an economy with a unit-mass continuum of agents and two sectors indexed by j 2
{a, b}.13 The goods produced in the two sectors are assumed to be perfect substitutes, and their

prices are normalized to one. Each agent chooses which sector to work in and the number of hours

(or e↵ort) to supply in the chosen sector. The productivity of an agent in sector j 2 {a, b} is

denoted by n
j

2 N ⌘ (n, n), where n > 0, n 2 R++ [ {+1} and n > n. An agent’s type is thus

given by the vector n ⌘ (n
a

, n
b

) describing the agent’s productivity in each of the two sectors.

Each agent’s type is an independent draw from a distribution F with support N ⌘ N2. We

assume that F is absolutely continuous with respect to the Lebesgue measure and denote by F
j

its

marginal distribution with respect to the j-dimension (with bounded density f
j

). The conditional

distributions are denoted by F
j|k

, for j, k 2 {a, b}, j 6= k (with bounded density f
j|k

).

An agent with productivity n
j

supplying h
j

2 R+ hours in sector j 2 {a, b} produces n
j

h
j

units

of e↵ective labor. The income generated by this agent is then y
j

= w
j

n
j

h
j

, where w
j

2 R+ is the

wage per unit of e↵ective labor.

The government taxes labor income according to the (possibly) non-linear sector-specific tax

schedule T
j

(y
j

). For simplicity, we assume that each agent’s utility is quasilinear in consumption

so that the utility of an agent of type n supplying h
j

hours in sector j is given by

w
j

h
j

n
j

� T
j

(w
j

h
j

n
j

)�  (h
j

) , (3)

where  (h) is the disutility of labor, which we assume takes the isoelastic form  (h) = h
1
⇠ , with

⇠ 2 (0, 1). The elasticity of labor supply with respect to wages is then equal to ⇠/(1� ⇠), which is

increasing in ⇠.

The production side in each sector is described by a representative neoclassical firm with linear

technology:

X
j

= F
j

(L
j

) = L
j

,

where X
j

is the amount of good-j produced and where L
j

is the amount of e↵ective labor hired by

the firm. Firm j’s profits are then equal to

⇡
j

= (1� w
j

� ⌧
j

)L
j

, (4)

where ⌧
j

is the sales tax rate on good j.14 The wage ratesw ⌘ (w
a

, w
b

), the agents’ labor supply, and

the labor demand from the representative firms are all simultaneously determined in equilibrium,

as explained below.

13In the Supplementary Material we extend the analysis model to an arbitrary (finite) number of sectors.
14In an alternative interpretation, ⌧j is a payroll tax levied on employers on sector j. For consistency, we shall

favor the sales tax interpretation.
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3.2 Taxation equilibrium

The occupational choice of each agent is described by the occupational choice rule C : N ! {a, b}.
This rule specifies for each type n = (n

a

, n
b

) 2 N the sector in which the agent works. In turn,

the labor supply schedules h
j

: N
j

! R+ determine the amount of labor supplied by the agents

working in sector j as a function of their sector-j productivity, with the domain N
j

of each function

h
j

denoting the set of productivity levels of those agents working in sector j.15 For future reference,

for any set N
j

⇢ N, we denote by N̄
j

the closure of the set, with N̄ = [n, n].

Hereafter we will refer to an allocation as a triple (C, h
a

, h
b

). Next, we define a tax system

T ⌘ {T
a

, T
b

, ⌧
a

, ⌧
b

} as a collection of sector-specific income tax schedules T
j

: R+ ! R along with

sector-specific sales taxes (or, alternatively, subsidies) ⌧
j

2 R. An allocation (C, h
a

, h
b

) is said to

be implementable at the wage rates w if there exists a tax system T such that the following four

conditions jointly hold.

The first condition is a consistency property requiring that the domain N
j

of each labor supply

function h
j

coincides with the set of productivity levels of those agents working in sector j, as

determined by the occupational choice rule C. That is,

N
a

= {n
a

2 N : 9n
b

2 N such that C(n
a

, n
b

) = a}

and symmetrically for sector b.

The second condition is the usual incentive compatibility condition on the intensive margin of

labor supply. To describe this condition, let

ũ
j

(n
j

) ⌘ max
h

{w
j

hn
j

� T
j

(w
j

hn
j

)�  (h)} for all n
j

2 N, (5)

and

u
j

(n
j

) ⌘ w
j

h
j

(n
j

)n
j

� T
j

(w
j

h
j

(n
j

)n
j

)�  (h
j

(n
j

)) for all n
j

2 N
j

. (6)

This condition then requires that u
j

(n
j

) = ũ
j

(n
j

) for all n
j

2 N
j

. In order to relate labor supply

schedules and marginal taxes, it is convenient to consider the first-order condition associated with

(5), which has to be satisfied at any interior point where the schedule T
j

is di↵erentiable:

w
j

n
j

[1� T 0

j

(w
j

h
j

(n
j

)n
j

)] =  0(h
j

(n
j

)) (7)

The third condition is an incentive compatibility condition on the extensive margin of occupa-

tional choice. It requires that each agent working in sector j would not be strictly better o↵ by

working in sector k 6= j:

C(n) = j ) ũ
j

(n
j

) � ũ
k

(n
k

) for all n 2 N.

15Because, if an agent works in sector j, his productivity in sector k 6= j does not a↵ect his utility function, the

schedules hj do not depend on nk for k 6= j.
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Finally, the forth and final condition requires that by employing the e↵ective labor

L
j

=

ˆ
{n:C(n)=j}

h
j

(n
j

)n
j

dF (n
a

, n
b

),

each firm j = a, bmaximizes profits (4). We incorporate the above four conditions into the definition

of a taxation equilibrium.

Definition 1 (Taxation Equilibrium) A taxation equilibrium E ⌘ (C, h
a

, h
b

, T ,w) consists of an

allocation (C, h
a

, h
b

), a tax system T , and a pair of wage rates w such that the following conditions

jointly hold:

1. The allocation (C, h
a

, h
b

) is implementable at the wage rates w by the tax system T ;

2. The tax system T satisfies the government budget constraint, i.e.,

X

j2{a,b}

ˆ
{n:C(n)=j}

(T
j

(w
j

h
j

(n
j

)n
j

) + ⌧
j

h
j

(n
j

)n
j

) dF (n
a

, n
b

) � B, (8)

where B is the exogenous government budget requirement.

It is convenient to define the indirect utility of an agent with type n under the taxation equi-

librium E ⌘ (C, h
a

, h
b

, T ,w) as

U(n; E) ⌘ u
C(n)(nC(n)) = max

j2{a,b}

{ũ
j

(n
j

)} ,

where the schedules ũ
j

and u
j

are given by (5) and (6), respectively.

The government chooses a taxation equilibrium E ⌘ (C, h
a

, h
b

, T ,w) to maximize a given welfare

function. We focus on two common specifications. The first is a Ralwsian objective, which consists

in the utility of the worst-o↵ individual:

�R [U(·; E)] ⌘ min
n2N

{U(n; E)} .

The second welfare function is a generalized Utilitarian one, which consists in a concave transfor-

mation of the agents’ utilities:

�CU [U(·; E)] ⌘
ˆ
n2N

� (U(n; E)) dF (n),

where � is a strictly increasing and weakly concave function reflecting the government preferences

for redistribution.

We will use the index x = R (alternatively, x = CU) to refer to the Ralwsian (alternatively,

Concave Utilitarian) welfare objective. We will say that a taxation equilibrium is x-optimal if it

solves the respective x-problem and refer to the tax system associated with an x-optimal taxation

equilibrium as an x-optimal tax system. For future reference, we define the indicator function 1CU

x

,

which equals zero if x = R, and one if x = CU .
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3.3 Implementability

The next lemma characterizes the set of implementable allocations for given wage rates.

Lemma 1 (Implementability) The allocation (C, h
a

, h
b

) is implemented at the wage rates w by

the tax system T only if the following conditions jointly hold:

1. For every j 2 {a, b}, wages are given by w
j

= 1� ⌧
j

.

2. For every j 2 {a, b}, the income schedule y
j

(n
j

) ⌘ w
j

h
j

(n
j

)n
j

is nondecreasing over N
j

.

Moreover, the indirect utility schedule u
j

(n
j

) is Lipschitz continuous over N
j

with derivative

equal to

u0
j

(n
j

) =  0 (h
j

(n
j

))
h
j

(n
j

)

n
j

for almost every n
j

2 N
j

. (9)

3. The occupational choice rule C can be described by an absolutely continuous and weakly in-

creasing threshold function c : N ! N̄ such that C(n
a

, n
b

) = a if n
b

< c(n
a

) and C(n
a

, n
b

) = b

if n
b

> c(n
a

).16 Furthermore, the threshold function c is such that c(n
a

) = n if C(n
a

, n
b

) = b

for all n
b

2 N , c(n
a

) = n if C(n
a

, n
b

) = a for all n
b

2 N , and otherwise solves u
a

(n
a

) =

u
b

(c(n
a

)).

Conversely, suppose the allocation (C, h
a

, h
b

), along with the wage rates w and the tax system T ,

satisfy the properties in parts 1-3 above. Then there exists a tax system T 0 such that the allocation

(C, h
a

, h
b

) is implemented at the wage rates w by the tax system T 0.

Part 1 shows that, because the technology is linear, labor markets clear if, and only if, the

marginal product of labor in each sector, net of sales taxes, equals its marginal cost to the firm.

Accordingly, sales taxes a↵ect equilibrium wages in a one-to-one fashion. Part 2 is the standard

characterization of incentive compatibility on the intensive margin. The envelope condition (9)

relates the agents’ indirect utilities to their utility-maximizing labor supply in each sector.

Part 3, in turn, o↵ers a convenient characterization of the extensive margin of occupational

choice. It establishes that any occupational choice rule can be described by a continuous and

nondecreasing threshold function c that maps n
a

into the sector-b productivity threshold c(n
a

)

such that an agent with type n = (n
a

, c(n
a

)) 2 N is indi↵erent between working in one sector

or the other. We refer to the graph of c as the locus of indi↵erent types. Because the payo↵

from working in a given sector strictly increases with the agent’s productivity in that sector, the

threshold c(n
a

) is strictly increasing at any interior point (i.e., at any point where c(n
a

) 2 N).

This function is instrumental in describing the distribution of productivities in each sector of the

economy.

16Recall that N̄ denotes the closure of the set N , i.e., N̄ = [n, n̄].
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3.4 Distribution of Productivities

A key feature of the model is that the distribution of productivities within each sector is endogenous

(as agents choose in which sector to work in response to the tax system). It is convenient to describe

these distributions in terms of the threshold function c associated with the occupational choice rule

C. In order to do so, we choose sector labels in the following way. We call sector a the sector for

which there is a productivity threshold n00

a

2 N such c(n
a

) = n̄ for all n
a

� n00

a

. In words, all agents

whose sector-a productivity is above n00

a

work in sector a, irrespective of their sector-b productivity.

If no sector satisfies this property, the choice of labels is arbitrary.17 It is also convenient to define

the threshold n0

a

2 N̄ such that c(n
a

) > n if and only if n
a

> n0

a

.18 We will then say that the

occupational choice rule C is admissible if its associated threshold function c is absolutely continuous

and strictly increasing over a set (n0

a

, n00

a

), equal to n for all n
a

< n0

a

and equal to n̄ for all n
a

> n00

a

.

For such an admissible rule, what is the mass of agents working in sector a whose productivity

does not exceed n
a

? As illustrated in Figure 2, this mass corresponds to the probability of the

shaded area below the locus of indi↵erent types and to the left of n
a

. This is given by

G
a

(n
a

|c) ⌘
ˆ

na

n

ˆ
c(ña)

n

f(ñ
a

, ñ
b

)dñ
b

dñ
a

=

ˆ
na

n

f
a

(ñ
a

)F
b|a

(c(ñ
a

)|ñ
a

)dñ
a

,

with density g
a

(n
a

|c) ⌘ f
a

(n
a

)F
b|a

(c(n
a

)|n
a

). An analogous expression determines the mass of

agents working in sector b whose productivity does not exceed n
b

, denoted by G
b

(n
b

|c). When we

evaluate this function at n
b

= c(n
a

), we obtain the probability of the shaded area to the left of

the locus of indi↵erent types and below c(n
a

), as illustrated in Figure 2. The density of G
b

(n
b

|c) is
denoted by g

b

(n
b

|c).

3.5 Characterization Procedure

We now describe how to find the x-optimal taxation equilibria, both for x = R and x = CU .

The characterization below proceeds in two steps. In the first step, we fix an arbitrary admissible

occupational choice rule C and find the taxation equilibrium that maximizes the government x-

objective among those that implement C. We refer to this problem as the primal problem:

Px

1 (C) : max
(ha,hb,T ,w)

�x [U(·; (C, h
a

, h
b

, T ,w))] s.t. (C, h
a

, h
b

, T ,w) is a taxation equilibrium.

Clearly, the x-optimal taxation equilibrium Ex = (Cx, hx
a

, hx
b

, T x,wx) must be such that the quadru-

ple (hx
a

, hx
b

, T x,wx) solves Px

1 (Cx).

In the second step, we complete the characterization by considering a dual of problem to Px

1 (C).
In this dual problem, which we call Px

2 (ha), we fix some implementable sector-a labor supply

17For example, consider the threshold function c(n) = n. In this case, no sector satisfies the property described

above, and the choice of labels is arbitrary.
18We let n0

a = n if {na 2 N : c(na) = n} = ?.
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Figure 2: The threshold function and its induced distributions of productivities. The shaded area

corresponds to the set of types whose sector-a productivity is smaller or equal to n
a

and whose

sector-b productivity is smaller or equal to c(n
a

). The dotted lines illustrate the sets of types

associated with the densities g
a

(n
a

|c) and g
b

(c (n
a

) |c), respectively.

schedule h
a

and find the taxation equilibrium that maximizes the government’s x-objective among

those that implements h
a

:

Px

2 (ha) : max
(C,hb,T ,w)

�x [U(·; (C, h
a

, h
b

, T ,w))] s.t. (C, h
a

, h
b

, T ,w) is a taxation equilibrium.

Clearly, the x-optimal taxation equilibrium Ex = (Cx, hx
a

, hx
b

, T x,wx) must be such that the

quadruple (Cx, hx
b

, T x,wx) solves Px

2 (h
x

a

). As a consequence, the x-optimal taxation equilibrium

Ex must satisfy the necessary optimality conditions associated to both problems Px

1 and Px

2 .

3.6 Production E�ciency

We conclude this section by defining production e�ciency. The definition below adapts the usual

definition to the environment studied in this paper.

Definition 2 (Production E�ciency) The equilibrium E = (C, h
a

, h
b

, T ,w) exhibits production

e�ciency if and only if, holding fixed the labor supply of each agent (as specified by the equilibrium

E), there exists no reallocation of agents across sectors that yields a higher aggregate output. This

is the case if and only if the threshold function c associated with the equilibrium occupational choice

rule C is such that c(n
a

) = n
a

for all n
a

2 N .

This definition is thus the standard one;19 simply notice that, in this economy, fixing the supply

of inputs and changing their usage across firms/sectors is equivalent to holding fixed the labor

19For a textbook treatment, see chapter 5 of Mas-Colell, Whinston and Green (1995).
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supply (i.e., hours of work) of each individual and changing his occupation.

4 Optimal Di↵erential Taxation

We study first optimal di↵erential taxation when the government is able to employ sector-specific

income tax schedules. It should come as no surprise that the ability to tailor income taxes to

occupational choice renders sales taxes redundant.

Remark 1 (E↵ective Tax Schedules) Let E = (C, h
a

, h
b

, T ,w) be a taxation equilibrium. There

exists another taxation equilibrium Ê = (C, h
a

, h
b

, T̂ , ŵ) implementing the same allocation (C, h
a

, h
b

)

and producing the same payo↵s under Ê such that, for j = a, b,

1. the income tax schedules satisfy T̂
j

(y) = ⌧
j

y + T
j

((1� ⌧
j

) y),

2. sales taxes and wages are given by ⌧̂
j

= 0 and ŵ
j

= 1.

Hereafter, we refer to (T̂
a

, T̂
b

) as the “e↵ective tax schedule” of the tax system T .

Intuitively, if the government has enough flexibility in designing sector-specific income tax

schedules, it can then always replicate the e↵ects of sales taxes with appropriately chosen income

taxes. As a consequence, it is without loss of optimality to consider taxation equilibria where

⌧
a

= ⌧
b

= 0. To lighten notation, we thus drop the wage pair w from the description of taxation

equilibria, and write the latter as E = (C, h
a

, h
b

, T ), with the implicit understanding thatw = (1, 1).

Below, we will thus characterize x-optimal taxation equilibria in terms of their e↵ective tax

schedules (and drop the qualification “e↵ective” to lighten the exposition). For simplicity, and

following the literature, we will abstract from bunching and corner solutions; that is, we will

restrict attention to economies in which the optimality conditions described below identify income

schedules y
j

(n
j

) that are nondecreasing and such that y
j

(n
j

) > 0 for all n
j

2 N
j

(equivalently,

h
j

(n
j

) > 0 for all n
j

2 N
j

).

4.1 Optimal marginal tax rates

Ley � denote the multiplier associated with the government budget constraint (8) and denote by

m
j

(n
j

) ⌘ �0 (u
j

(n
j

)) /� the ratio of social marginal utility of all individuals with productivity n
j

working in sector j to the marginal value of public funds for the government. The next proposition

derives a necessary condition for problem Px

1 (C), showing how to compute x-optimal marginal tax

rates implementing an admissible occupational choice rule C.

Proposition 1 (Generalized Mirrlees Formula) Let c be the threshold function corresponding

to the admissible occupational choice rule C. The x-optimal tax system implementing the choice
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rule C satisfies the following generalized Mirrlees formula for almost any n
a

� n0

a

:

⇠
T 0

a

(y
a

(n
a

))

1� T 0

a

(y
a

(n
a

))
n
a

g
a

(n
a

|c)
| {z }

Ea(na)

+ ⇠
T 0

b

(y
b

(c(n
a

)))

1� T 0

b

(y
b

(c(n
a

)))
c(n

a

)g
b

(c(n
a

)|c)1
�

n
a

 n00

a

 

| {z }

Eb(c(na))

=

ˆ
n

na

⇥

1� 1CU

x

m
a

(ñ
a

)
⇤

dF (ñ
a

, c(ñ
a

))

| {z }

D(na)

, (10)

together with the occupational choice constraint

c0 (n
a

) =
h
a

(n
a

) [1� T 0

a

(y
a

(n
a

))]

h
b

(c (n
a

))
⇥

1� T 0

b

(y
b

(c (n
a

)))
⇤ (11)

for all n
a

2 (n0

a

, n00

a

).

Proposition 1 generalizes the Mirrlees formula to a multi-sector economy with endogenous oc-

cupational choice and multi-dimensional types. To obtain some intuition, suppose the government

were to increase marginal taxes in sectors a and b by one dollar at income levels y
a

(n
a

) and y
b

(c(n
a

)),

for some n
a

2 (n0

a

, n00

a

). This perturbation has two e↵ects. The first one is the “direct e↵ect”, D(n
a

),

represented by the integral on the right-hand-side of (10). This e↵ect captures the additional tax

revenue collected from all agents in sectors a and b whose incomes are above y
a

(n
a

) and y
b

(c(n
a

)),

respectively. Note that, for such agents, the change in tax schedules is equivalent to the introduction

of a lump-sum tax equal to one dollar, given that, for such agents, labor supply is una↵ected by the

local increase in the marginal tax rates at the lower income levels. When the planner’s objective is

Ralwsian, the direct e↵ect thus coincides with the total measure of those agents in sector a whose

productivity exceeds n
a

and of those agents in sector b whose productivity exceeds c(n
a

) (which is,

simply, 1� F (n
a

, c(n
a

))). When, instead, the planner’s objective is concave Utilitarian, the gains

of raising this extra money from such agents must be discounted by the reduction in these agents’

utility, as captured by the terms m
j

(n
j

) = �0 (u
j

(n
j

)) /�.

The second e↵ect is the “elasticity e↵ect”, which accounts for the intensive-margin distortions

at the income levels y
a

(n
a

) and y
b

(c(n
a

)) that result from the higher marginal tax rates. This

e↵ect corresponds to the sum of the terms E
a

(n
a

) and E
b

(c(n
a

)) in the left-hand-side of (10). To

understand these terms, note that the densities of those agents working in sector a with productivity

n
a

and of those agents working in sector b with productivity c(n
a

) are given by g
a

(n
a

|c) and

g
b

(c(n
a

)|c), respectively. Next note that the terms ⇠ T

0

1�T

0

n in E
a

(n
a

) and E
b

(c(n
a

)) capture the loss

in tax revenues from those agents whose incomes are y
a

(n
a

)) and y
b

(c(n
a

)), due to the reduction in

these agents’ labor supply.20 Figure 3 illustrates the e↵ects discussed above by indicating the sets

of agents a↵ected by each of these e↵ects.

20See Saez (2001) for an interpretation of the terms ⇠ T 0

1�T 0 n in terms of behavioral elasticities.
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Figure 3: The sets of types a↵ected by the elasticity and direct e↵ects from the generalized Mirrlees

formula (10).

In turn, the incentive compatibility constraint (11) describes how marginal taxes relate to the

slope of the threshold function c. For agents with types (n
a

, c(n
a

)) 2 N to remain indi↵erent as

to which sector to work in, the ratio of marginal net incomes (with respect to productivity) across

sectors has to equal c0 (n
a

), as implied by the characterization of Lemma 1. Combined with this

condition, the generalized Mirrlees formula (10) then determines the marginal tax rates (and hence

the labor supply) along the locus of indi↵erent types. Because the labor supply (and utility) of

any agent whose type does not belong to this locus coincides with that of some type belonging to

this locus, Proposition 1 delivers a complete characterization of the x-optimal taxation equilibrium

implementing the choice rule C.

4.2 Optimal occupational choice rule

We now turn to the dual problem Px

2 (ha), where the side-a labor supply schedule h
a

is held fixed,

and the side-b labor supply h
b

(or, equivalently, the occupational choice rule C) is chosen to maximize

the planner’s x-objective. This is the subject of the next proposition. Let "
yb(nb

) ⌘ y0
b

(n
b

)n
b

/y
b

(n
b

)

denote the elasticity of income with respect to productivity, in sector b.

Proposition 2 (Occupational Choice) The x-optimal tax system implementing the side-a labor

supply schedule h
a

satisfies the following integral-form Euler equation at every point n
a

2 (n0

a

, n00

a

):

1CU

x

W
b

(c(n
a

)) = R
b

(c(n
a

)) +M
a

(n
a

) + E
b

(c(n
a

))(1� T 0

b

(y
b

(c(n
a

)))y
b

(c(n
a

))
| {z }

continuity correction: �
b

(c(n
a

))

(12)

where

W
b

(c(n
a

)) ⌘
ˆ

c(na)

c(n0

a)
m

b

(n
b

)
⇥

1� T 0

b

(y
b

(n
b

))
⇤

y
b

(n
b

)dG
b

(n
b

|c) (13)
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is the “welfare e↵ect”,21

R
b

(c(n
a

)) ⌘
ˆ

c(na)

c(n0

a)

⇥

1� T 0

b

(y
b

(n
b

))"
yb(nb

)
⇤

y
b

(n
b

)dG
b

(n
b

|c) (14)

is the “revenue collection e↵ect”,

M
a

(n
a

) ⌘
naˆ

n

0

a

[T
a

(y
a

(ñ
a

))� T
b

(y
b

(c(ñ
a

)))] c(ñ
a

)f(ñ
a

, c(ñ
a

))dñ
a

(15)

is the “migration e↵ect”, and E
b

(c(n
a

)) is the elasticity e↵ect defined in (10).

The proof in the Appendix provides a formal analysis of the dual problem Px

2 (ha), and employs

variational techniques to establish the necessity of the Euler equation. To help intuition, we present

below an heuristic derivation for Condition (12).

Heuristic Derivation of the Euler Equation. To understand the Euler equation (12),

consider a particular class of incremental tax reforms, which we call payroll tax reforms. Such

reforms consist in introducing a new payroll tax that withholds a fraction ↵ > 0 of the sector-b

agents’ income and taxes the residual income (1�↵)y
b

according to the original income tax schedule

T
b

. Formally, an ↵-payroll-tax reform (for short, an ↵-reform) applied to all income levels up to

y
b

(c(n
a

)) = c(n
a

)h
b

(c(n
a

)), for some n
a

2 (n0

a

, n00

a

), implies the following e↵ective tax schedule in

sector b:

T↵

b

(y) ⌘
(

↵y + T
b

((1� ↵)y) if y < y
b

(c(n
a

))

T
b

(y) if y � y
b

(c(n
a

)).
(16)

Now, let (C, h
b

, T ) be a solution to the dual problem Px

2 (ha), where ha is an implementable labor

supply schedule. To simplify the exposition, let us consider the case where C(n, n) = a.22 Optimality

implies that no incremental payroll tax reform increases the government’s x-objective. Accordingly,

let T
b

be the sector-b tax schedule under the tax system T , and consider “perturbing” T
b

by means

of an ↵-payroll-tax reform up to income level y
b

(c(n
a

)) = c(n
a

)h
b

(c(n
a

)), for some n
a

2 (n0

a

, n00

a

).

Under the e↵ective tax schedule T↵

b

, the utility that any agent with sector-b productivity equal to

n
b

obtains from supplying h
b

< y
b

(c(n
a

))/n
b

hours of labor in sector b is equal to

h
b

n
b

�  (h
b

)� T↵

b

(h
b

n
b

) = (1� ↵)h
b

n
b

�  (h
b

)� T
b

((1� ↵)h
b

n
b

) . (17)

As one can see from (17), the utility that any such agent obtains under the ↵-payroll-tax reform

T↵

b

is the same as the utility that an agent with sector-b productivity equal to (1 � ↵)n
b

would

have obtained under the original tax schedule T
b

. This implies that, for ↵ small enough, under the

21Recall that mj (nj) ⌘ �0 (uj(nj)) /� is the ratio of social marginal utility of all individuals with sector-j produc-

tivity nj working in sector j to the marginal value of public funds for the government.
22Recall that this means that n0

a = n. The heuristic derivation can be easily adapted for the case where C(n, n) = b

(i.e., to n0

a > n).
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↵-payroll tax reform T↵

b

, the indirect utility u↵
b

of each agent with sector-b productivity equal to

n
b

is given by23

u↵
b

(n
b

) ⌘

8

<

:

u
b

((1� ↵)n
b

) if n
b

2
⇣

c(n0

a)
1�↵

, c(n
a

)
⌘

u
b

(n
b

) if n
b

> c(n
a

).
(18)

where u
b

is the indirect utility function under the original tax schedule T
b

. As a consequence, the

occupational choice rule under the perturbed schedule T↵

b

, which we denote by C↵, can be described

by a threshold function c↵ that is a linear transformation

c↵(ñ
a

) =
1

1� ↵
c(ñ

a

) (19)

of the threshold rule c under the original schedule T
b

, for any ñ
a

< n
a

.

Remarkably, as we show below, the Euler equation (12) accounts for the gains and losses of

↵-payroll-tax reforms up to income level y
b

(c(n
a

)). Hereafter, we discuss each of these e↵ects.

• Welfare e↵ect. The first e↵ect is the impact of the reform on the agents’ utility. From

(18), it is easy to see that, at ↵ = 0, the marginal e↵ect of an ↵-reform up to income level

y
b

(c(n
a

)) on the indirect utility of any agent whose sector-b productivity is n
b

< c(n
a

) is

equal to �n
b

u0
b

(n
b

). When the government’s objective is concave-utilitarian, the importance

assigned to this e↵ect, adjusted for the shadow cost of raising money, is given by

�m (n
b

)u0
b

(n
b

)n
b

= �m (n
b

)
⇥

1� T 0

b

(y
b

(n
b

))
⇤

y
b

(n
b

),

where the equality follows from the incentive-compatibility constraint (9) along with the fact

that at any point of di↵erentiability of the tax schedule T
b

, the optimal choice of labor supply

must satisfy the first-order condition (7). Integrating the expression above for all n
b

< c(n
a

)

leads to the welfare e↵ect W
b

(c(n
a

)) in the Euler equation, as defined in (13). In the case of

a Ralwsian objective, this e↵ect is zero, given that the e↵ect of tax reforms on the indirect

utility of all agents but the worst-o↵ individuals is disregarded by the planner.

• Revenue collection e↵ect. The second e↵ect is the impact of the reform on the tax revenues

collected by the government. From the definition of the perturbed tax system in (16), it is

easy to see that, under the ↵-reform, the tax revenue collected from each agent working in

sector b with productivity n
b

2 (c(n0

a

)/(1� ↵), c(n
a

)) is given by

↵n
b

h↵
b

(n
b

) + T
b

((1� ↵)n
b

h↵
b

(n
b

)) (20)

= ↵n
b

h
b

((1� ↵)n
b

) + T
b

((1� ↵)n
b

h
b

((1� ↵)n
b

)) ,

where h↵
b

is the sector-b labor supply schedule under T↵

b

, and where the equality in (20) follows

from the fact that the labor supply of each such agent under the schedule T↵

b

coincides with

23That ↵ is small guarantees that agents whose sector-b productivity is above c(na) continue to prefer generating

incomes y(nb) > y(c(na)) to generating incomes y < y(c(na)) and that agents with productivity nb < c(na) prefer

generating income yb((1� ↵)nb) to any other income.
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Figure 4: The figure illustrates the types a↵ected by the welfare, revenue collection, migration,

and continuity correction e↵ects discussed in the main text. The dotted curve corresponds the

occupational choice rule under the ↵-payroll tax reform.

the labor supply of an agent with productivity (1 � ↵)n
b

under the original schedule T
b

.

Di↵erentiating the right-hand-side in (20) with respect to ↵ and evaluating the expression at

↵ = 0, we obtain that the marginal e↵ect of the reform on the revenues collected from each

agent whose sector-b productivity is n
b

< c(n
a

) is equal to

⇥

1� T 0

b

(y
b

(n
b

)"
yb(nb

)
⇤

y
b

(n
b

).

Integrating the expression above for all n
b

< c(n
a

) leads to the revenue collection e↵ect

R(c(n
a

)) in the Euler equation, as defined in (14).

• Migration e↵ect. The third e↵ect accounts for the fact that agents change occupation

in response to the tax reform. After di↵erentiating equation (19) with respect to ↵ and

evaluating the derivative at ↵ = 0, we obtain that the occupational choice rule shifts at

a rate c (ñ
a

), at each productivity level ñ
a

< n
a

in response to an incremental ↵-reform.

Accordingly, for any ñ
a

< n
a

, the mass of agents whose sector-a productivity is ñ
a

and

who change occupations is given by c(ñ
a

)f(ñ
a

, c(ñ
a

)). As a consequence, the impact on tax

revenues from the migration of these agents is equal to

[T
a

(y
a

(ñ
a

))� T
b

(y
b

(c(ñ
a

)))] c(ñ
a

)f(ñ
a

, c(ñ
a

)).

Integrating the above expression for all ñ
a

< n
a

leads to the migration e↵ect in the Euler

equation, as defined in (15).
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• Continuity correction. Finally, consider the last term in the right-hand side of the Euler

equation (12), �
b

(c(n
a

)). As can be seen from equation (18), an ↵-reform leads to a sector-

b indirect utility schedule that has a (single) discontinuity point at c(n
a

). Indeed, u↵
b

(·) is

continuous at any n
b

2 (c(n0

a

)/(1� ↵), c(n
a

)) and at any n
b

> c(n
a

), but

lim
nb!c(na)�

u↵
b

(n
b

) = u
b

((1� ↵)c(n
a

)) < u
b

(c(n
a

)) = lim
nb!c(na)+

u↵
b

(n
b

),

for any ↵ > 0. Accordingly, for an ↵-reform to lead to an implementable allocation, it has to

be coupled with transfers to sector-b agents with productivities in a neighborhood of c(n
a

),

so as to restore the continuity of the indirect utility schedule. For incremental ↵-reforms (i.e.,

↵ ⇡ 0) only sector-b agents with productivity c(n
a

) need to receive such transfers. In order

to reduce the indirect utility of those agents whose sector-b productivity is equal to c(n
a

) to

its “continuity level” lim
nb!c(na)� u↵

b

(n
b

), the planner charges a lump-sum tax to such agents

equal to the extra taxes that these agents would pay were they subject to the reform. This

lump-sum charge is the term �
b

(c(n
a

)) in the right-hand side of the Euler equation (12).

It is equal to the product of (a) the elasticity e↵ect E
b

(c(n
a

)) (capturing the foregone tax

revenues per unit of marginal-tax increase) and (b) the change in marginal taxes that such

agents would face were they also subject to the reform. At ↵ ⇡ 0, the change in marginal

taxes faced by such agents is approximated (up to second-order e↵ects) by their variation in

indirect utility, which is equal to [1� T 0

b

(y
b

(c(n
a

)))] y
b

(c(n
a

)), as shown in the derivation of

the Welfare e↵ect.

Figure 4 illustrates the sets of types a↵ected by each of the e↵ects discussed above. Note that the

welfare, revenue collection, and continuity correction e↵ects account for net impact of perturbing

the sector-b tax schedule on the utilities and tax revenues from sector-b agents. As such, taken

together, these e↵ects measure the marginal gain of better tailoring the taxation of sector-b agents

to the distribution of productivities on that sector (tagging). The marginal gains from tagging, at

the optimum, equalize the marginal losses due to the migration of agents across sectors (as captured

by the migration e↵ect).

4.3 On the optimality of production ine�ciency

Using the characterization in the previous two propositions, we can now establish two key properties

of optimal taxation equilibria. To this end, the following definition is instrumental.

Definition 3 (Non-generic Distributions) The distribution of productivities F is non-generic

if there exists � > 0 such that

f
a

(n)F
b|a

(n|n) = �f
b

(n)F
a|b

(n|n) for almost every n 2 N. (21)

The distribution F is generic if the above property does not hold.
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Note that symmetric distributions, i.e., those for which F (n
a

, n
b

) = F (n
b

, n
a

), are non-generic

(as they satisfy the Condition in (21) with � = 1). Equipped with this definition, we can state the

following proposition.

Proposition 3 (Equilibrium Properties) Let E = (C, h
a

, h
b

, T ) be any x-optimal taxation equi-

librium. The following properties hold under E.

1. If the distribution of productivities F is generic, then production e�ciency fails: there exists

a subset of N (of positive Lebesgue measure) such that

c(n
a

) 6= n
a

.

2. The marginal tax collection vanishes at the top of the distribution, in each sector:

lim
nj!n

T 0

j

(y
j

(n
j

))g
j

(n
j

|c) = 0 (22)

for j = a, b.

Part 1 establishes that production ine�ciency is a robust feature of optimal taxation equilibria.

Intuitively, the densities f
j

(n)F
j|k

(n|n), for j, k 2 {a, b} k 6= j, capture the informational costs of

redistribution in the two sectors.24 Whenever such costs di↵er across the two sectors, the plan-

ner can improve upon any equilibrium satisfying production e�ciency by distorting occupational

choice away from c(n) = n. Doing so yields a first-order reduction in the informational costs of

redistribution and only a second-order e�ciency loss from the misallocation of talent across the

two sectors (as the migration e↵ect is zero under the e�cient occupational choice rule). At the

optimum, the planner then distorts occupational choice up to the point where the marginal losses

in tax revenue due to the migration e↵ect are equalized to the marginal gains from tailoring the

tax schedule in each sector to the endogenous distribution of talent (tagging), as required by the

Euler equation (12).25

Turning to Part 2, the result in the proposition says that, under any x-optimal taxation equilib-

rium, marginal tax collection vanishes at the top. This is either because top earners face vanishing

marginal tax rates (which happens when the support of the productivity distribution is bounded,

i.e. n̄ < 1, and the density is bounded away from zero in a neighborhood of (n̄, n̄)), or because the

density of top earners vanishes (when n̄ = 1, marginal taxes do not necessarily vanish at the “top”,

but (22) necessarily holds). The result thus extends familiar findings on the taxation of top earners

24These terms are the continuum-types analogs of the combination of the skill-transferability and and skill-intensity

e↵ects in the discrete type model of Section 2.
25Note that when the c.d.f. F has full support over the type space [n, n̄]2, as assumed here, the continuum-type

analog of the condition in Result 1 (namely, that there are low types su�ciently close to the 45-degree line) always

holds. In this sense, aside from knife-edge cases such as distributions F that are symmetric around the 45-degree

line, the genericity condition in Definition 3 and the condition in Result 1 in the discrete-type model coincide.
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(e.g., Mirrlees (1971), Diamond and Mirrlees (1971), Saez (2002), among others) to the economy

with multi-dimensional productivity and endogenous occupational choice under examination here.

In particular, when n̄ < 1, Proposition 3 reveals that distortions in occupational choice do not

translate into distortions in labor supply for those agents at the top of the income distribution in

each of the two sectors.

Before exploring the quantitative implications of the above characterization, we shall briefly

discuss the case where sales taxes are the only instrument the government can employ to di↵erenti-

ate taxes across sectors. As we shall see in Section 5, this exercise is useful to inform policy-makers

on what percentage of the welfare gains from di↵erential taxation can be obtained by simple in-

struments such as sales taxes.

4.4 Sales Taxes under Uniform Income Taxation

The results above are developed under the assumption that the government can employ sector-

specific income tax schedules. While this possibility appears plausible (e.g., business owners face a

di↵erent tax schedule than employees whose income comes through wages26), it is worth extending

the above results to settings in which the government is unable to use sector-specific income tax

schedules, so that T
a

= T
b

. In this case, the tax treatment of the two sectors can di↵er only

through the sales taxes ⌧
a

and ⌧
b

, which we now reintroduce (recall that these taxes play no role

when income taxation is allowed to be sector-specific).

Consider an agent with type (n
a

, n
b

) facing the tax system T = {T, T, ⌧
a

, ⌧
b

}, which features

uniform income taxation. For this agent to be indi↵erent between working in one sector or the

other, the maximal utility the agent can derive from working in either sector must be equalized,

that is,

max
h

{(1� ⌧
a

)hn
a

� T ((1� ⌧
a

)hn
a

)�  (h)} = max
h

{(1� ⌧
b

)hn
b

� T ((1� ⌧
b

)hn
b

)�  (h)}

where we used the fact that w
j

= 1 � ⌧
j

. As inspecting the problems above reveals, this occurs if

and only if (1� ⌧
a

)n
a

= (1� ⌧
b

)n
b

. Therefore, whenever income taxation is uniform, the threshold

function is linear and given by27

c(n
a

) =
1� ⌧

a

1� ⌧
b

n
a

. (23)

The converse is also true: Whenever the occupational choice rule of an equilibrium E is described

by a linear threshold function, there exists a taxation equilibrium featuring uniform income taxation

that implements the same allocation as in E and yields the same utility to all agents. The reason is

that, whenever the threshold function is linear (e.g., c(n
a

) = n
a

), the e↵ective tax schedules must

satisfy the relation

T̂
a

(y) = (1� )y + T̂
b

(y) ,

26See also the discussion in the Introduction about the use of sector-specific income taxation across countries.
27Consistently with the analysis in the previous section, we continue to assume that sector a is the one for which

there exists a n00

a such that c(na) = n̄ for all na � n00

a . This is equivalent to assuming that ⌧a < ⌧b.
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as implied by the indi↵erence condition u
a

(n
a

) = u
b

(c(n
a

)).28 Such e↵ective taxes can be generated,

for example, by the tax system T̂ = {T̂
b

, T̂
b

, 1� , 0}, which features uniform income taxes.

The equivalence between linear threshold functions and uniform income taxes (with possibly

di↵erentiated sales taxes) greatly simplifies the task of finding the optimal tax system. Regarding

the primal problem Px

1 (C), Proposition 1 applies, as one only needs to set c(n
a

) according to

(23). In turn, to solve the dual problem Px

2 (ha), one only needs to maximize welfare over the

linear coe�cient that describes the threshold function. The result of this simple one-dimensional

optimization problem is presented in the next proposition.

Proposition 4 (Occupational Choice: Sales Taxes) Suppose the government is constrained

to tax labor income homogeneously across sectors. The x-optimal tax system implementing the labor

supply schedule h
a

satisfies the following condition

lim
nb!n̄

�

1CU

x

·W
b

(n
b

)�R
b

(n
b

)
 

= lim
na!n̄

1�⌧b
1�⌧a

M
a

(n
a

) (24)

where W
b

, R
b

, and M
b

are, respectively, the welfare, the revenue collection, and the migration e↵ects

defined in Proposition 2, evaluated at the occupational choice rule (23).

The formula in (24) is closely related to the general Euler condition (12) of Proposition 2. The

intuition for this formula can thus be obtained by considering ↵-payroll tax reforms similar to

those considered above, but now applied to all individuals in sector b. The reason why the welfare,

revenue collection, and migration e↵ects must now be evaluated over all sector-b productivity levels

is the limited flexibility of the government’s tax instruments under uniform income taxation. In

particular, the fact that sales taxes impact uniformly all income levels precludes the possibility

of restricting the ↵-payroll reform to a subset of the income levels in sector b. As a result, (24)

displays no continuity correction, given that any ↵-payroll-tax reform up to the highest income level

generates no discontinuities in the schedule of indirect utilities.

As in the case of sector-specific income taxes, production e�ciency generically fails under x-

optimal taxation equilibria. Once again, the reason is that talent is not perfectly transferable across

sectors. Therefore, a small departure from production e�ciency typically generates first-order gains

in tax collection, while entailing only second-order losses in production. This contrasts with the

Atkinson-Stiglitz theorem, according to which, when preferences over consumption and leisure are

separable, as they are in our economy, the second-best can be implemented with zero sales taxes.

The x-optimal tax system under uniform income taxation is in general welfare-inferior to the

x-optimal tax system with sector-specific income taxation. The next section assesses quantitatively

the magnitude of this discrepancy.

28Indeed, because c(na) = na, it follows that, at any (na,na) 2 N,

max
h

n

hna � T̂a(hna)�  (h)
o

= max
h

n

hna � T̂b (hna)�  (h)
o

The right-hand side can be rewritten as maxh

n

hna �
h

(1� )hna + T̂b (hna)
i

�  (h)
o

, which implies the result.
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5 Numerical Illustration

In this section, we develop optimal policy simulations calibrated to the U.S. economy. Our goal

is threefold. First, we quantitatively assess the welfare gains from sector-specific taxation relative

to a uniform tax system where production e�ciency prevails. Second, we evaluate the welfare

impact from employing sector-specific income taxes relative to the case where only sales taxes (or,

equivalently, payroll taxes) can di↵er across sectors, therefore assessing the welfare costs generated

by simpler tax systems. Third, we complement our analytical results by studying the incidence of

production ine�ciencies, and the shape of marginal and average tax schedules.

5.1 Constructing the Distribution of Skills

We use data from the Current Population Survey (CPS) on wages and industry classification. In line

with the tax practices followed by many countries, we assign industries to either one of the following

two sectors: manufacturing and services. The manufacturing sector (indexed by a) comprises

natural extraction, utilities, construction, transportation and all manufacturing industries. The

services sector (indexed by b) comprises trade, the financial and banking industry, legal and business

services, real state, arts, sports, and technology-intensive activities characterized by large returns to

occupation-specific skills. Because these sectors are large and heterogenous, our analysis produces

a conservative estimate of the gains from sector-specific taxation. A finer classification together

with a more complex tax system can only magnify the welfare e↵ects discussed below.29

We interpret the wage data as generated by a (sub-optimal) uniform tax system where pro-

duction e�ciency prevails. As such, each agent chooses the sector in which his productivity is

the highest. We refer to this productivity as the e↵ective productivity of an agent. We follow the

literature in assuming a constant wage-elasticity of labor supply equal to 0.25. We then employ

standard methods (as in Saez (2001)) to obtain the distribution of e↵ective productivities using as

inputs (i) the workers’ earnings data, and (ii) the U.S. schedule of marginal tax rates. We denote

by Ĝ the estimated distribution of e↵ective productivities. As sector a�liation is observed in the

data, we denote by ⌧
j

(n) the fraction of agents with e↵ective productivity n working on sector j.

Estimating the distribution of e↵ective productivities in each sector is not enough to recover

the bi-dimensional skill distribution F , which is needed for computing the optimal tax system.30

Crucially, we cannot directly estimate the distribution of each agent’s lowest productivity (which

we call latent productivity), since we do not observe the earnings that an agent would have obtained

had he worked in the sector where his productivity is the lowest.

We deal with this problem by constructing alternative scenarios on how latent productivities

are distributed. In this respect, notice that, for an agent with e↵ective productivity n, his latent

productivity belongs to the support [n, n]. We then denote by H
k

(·|n) the distribution of the

29For further details on the data and the definition of sectors, see the Supplementary Material.
30This observation echoes the non-identification results of the Roy model discussed in Heckman and Honoré (1990).
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latent productivity in sector k conditional on the e↵ective productivity in sector j 6= k being equal

to n. In our simulations, we discretize the support of productivities by imposing a uniform grid.

Productivity levels are indexed in increasing order by ! 2 ⌦ ⌘ {1, . . . , |⌦|}. As such, ñ(!) is the

!th lowest productivity in the grid. For its flexibility, we use the binomial c.d.f. to parametrize the

conditional distributions of latent productivities. Accordingly, for any !  !̂,

H
k

(ñ(!)|ñ(!̂)) =
!

X

i=1

 

!̂

i

!

p
j

(!̂)i(1� p
j

(!̂))!̂�i.

Because the expected value of a random variable distributed according to H
k

(ñ(!)|ñ(!̂)) equals

p
j

(!̂)ñ(!̂), the parameter p
j

(!̂) 2 [0, 1] is a natural measure of the degree of skill transferability,

as defined in the discrete example of Section 2. Specifically, p
j

(!̂) is the (average) fraction of the

e↵ective productivity ñ(!̂) that sector-j agents can transfer to sector k. When p
j

(!̂) is close to

zero, sector-j agents are essentially unproductive as they move to sector k, and the opposite is true

when p(!̂) is close to one.

We employ the structure above to construct four scenarios:

Scenario 1 (high skill transferability) p
j

(!) = 0.9 for all ! 2 ⌦ and j 2 {a, b}.

In Scenario 1, all agents in either sector retain 90% of their productive capacity as they move

away from the sector in which their productivity is the highest. This scenario thus captures an

economy similar to those considered by Diamond and Mirrlees, where skills are perfectly transferable

across sectors. In light of the Diamond and Mirrlees Theorem, under Scenario 1, one should expect

sector-specific taxation to produce modest welfare gains relative to uniform taxation.

Scenario 2 (low skill transferability) p
j

(!) = 0.1 for all ! 2 ⌦ and j 2 {a, b}.

In Scenario 2, all agents in either sector lose 90% of their productive capacity as they move away

from the sector in which their productivity is the highest. This scenario thus captures an economy

similar to those studied in the tagging literature initiated by Akerlof (1978), where migration across

“tags” is not feasible (which is equivalent to skills being perfectly untransferable). In this context,

di↵erential taxation is expected to improve significantly welfare only when the skill intensity is

su�ciently di↵erent across sectors (recall the discussion on the skill intensity motive from Result 2

in Section 2).

Scenario 3 (high-low skill transferability) p
j

(!) = 0.9 if Ĝ (ñ(!)) < 0.5, and p
j

(!) = 0.1

otherwise, for j 2 {a, b}.

Inspired by Result 1 from the discrete-type example, Scenario 3 combines the two scenarios

above so as to illustrate the potential gains from production ine�ciency. It makes the (arguably,

extreme) assumption that low-ability agents have a degree of skill transferability 0.9, while high-

ability agents have a degree of skill transferability of 0.1 (with a discontinuous change at the
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Figure 5: The figure depicts average latent productivities in Scenario 4. The dashed curve depicts

the average latent productivity (in sector b) of an agent whose e↵ective productivity is n
a

. The thick

curve depicts the average latent productivity (in sector a) of an agent whose e↵ective productivity

is n
b

(thus mapping the Y axis into the X axis). The dotted line is the 45-degree line.

median skill level). This scenario captures in a stark way an economy in which agents of di↵erent

productivity face di↵erent degrees of skill transferability. In the parlance of Section 2, this is an

economy in which the skill transferability motive calls for sector-specific taxation.

Scenario 4 (smoothly decreasing skill transferability) p
j

(!) = ↵
j

� �
j

(! � 1) for all ! 2 ⌦

and j 2 {a, b}, where ↵
a

> ↵
b

and �
a

< �
b

.

In Scenario 4, skill transferability is heterogeneous across agents and across sectors. In line with

recent empirical evidence, we make the plausible assumption that the degree of skill transferability

smoothly declines with earnings (in which case the percentage losses on earnings due to sectorial

migration are the highest at the top of the income distribution).31 As the services sector comprises

industries with high returns to occupation-specific skills (such as banking, finance and business and

legal services), we assume that it exhibits the lowest degree of skill transferability at the top, and

the highest at the bottom of the income distribution. Accordingly, we let ↵
a

< ↵
b

and �
a

< �
b

.

Figure 5 describes for Scenario 4 the expected latent productivity as a function of e↵ective

productivities (being therefore the continuum-type analog to Figure 1 in the Illustrative Example

of Section 2). That sector b has a lower degree of skill transferability at the top than sector a is

reflected in the fact that the thick curve is farther to the diagonal than the dashed curve for high

values of n
b

. Conversely, that sector b has a greater degree of skill transferability at the bottom

than sector a is reflected in the fact that the dashed curve is farther from the diagonal than the

thick curve for low values of n
a

.32

31For evidence of this point on the finance and banking sector, see Bell and Van Reenen (2014) and Dent (2015).

More generally, the labor literature finds that the percentage wage losses from switching sectors are greatest for

workers with higher incomes (see for example Neal (1995)). This reflects the fact that larger incomes come with

longer tenures, during which workers accumulate sector-specific (typically untransferable) human capital.
32To have a sense of magnitudes, the degree of skill transferability is 90% (resp., 95%) in sector a (resp., b) for the

bottom e↵ective skill, and 60% (resp., 45%) in sector a (resp., b) for the top e↵ective skill.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

sector-specific income taxes 0.96% 0.76% 1.98% 1.42%

sector-specific sales taxes 0.40% 0.17% 0.72% 0.75%

sales tax ⌧
b

(⌧
a

⌘ 0) 4.6% 4.2% 5.3% 10.8%

Table 1. In the top two rows, the percentage welfare gains achieved by the optimal tax system

relative to uniform taxation. In the bottom row, the optimal sales tax in sector b

when income taxes are uniform and ⌧
a

is normalized to zero.

In light of the skill transferability motive from Section 2, we should expect the manufacturing sector

to be favored by the optimal tax system under Scenario 4.

Equipped with the conditional distributions of latent productivities, we can readily recover the

bi-dimensional distribution F . Letting !
a

,!
b

2 ⌦ and denoting by ĝ the probability mass function

associated with Ĝ, it follows that

F (ñ(!
a

), ñ(!
b

)) = Ĝ(ñ(!
k

)) +

!j
X

i=!k+1

H
k

(ñ(!
k

)|ñ(i)) ĝ(ñ(i))⌧
j

(ñ(i)),

where we choose indexes so that !
j

⌘ max {!
a

,!
b

} and !
k

⌘ min {!
a

,!
b

}. The formula above

decomposes the probability F (ñ(!
a

), ñ(!
b

)) into two terms: The first term is the probability that

the e↵ective probability is less than ñ(!
k

). The second term is the probability that an agent works

on sector j, enjoys an e↵ective probability between ñ(!
k

) and ñ(!
j

), and has a latent productivity

smaller than ñ(!
k

). This decomposition allows us to express the c.d.f. F in terms of the c.d.f.’s

Ĝ and {H
a

(·|n) , H
b

(·|n)} at any productivity pair (ñ(!
a

), ñ(!
b

)). Employing the results from the

previous section, we use this distribution to compute the Ralwsian-optimal tax system. Under this

welfare objective, the percentage gains in welfare can be conveniently interpreted also as percentage

variations in total tax collection.

5.2 Results

The impact of sector-specific taxation on welfare is moderate when the degree of skill transferability

is high across all income levels in both sectors, as considered in Scenario 1. In the case where income

tax schedules can di↵er across sectors, these gains amount to 0.96%, and to 0.40% when only sales

taxes are sector-specific (see Table 1). The reason for such a limited impact is that the migration

e↵ect is large when the distribution of productivities F concentrates most mass around the 45-

degree line. As a result, the optimal di↵erential tax schedules are close to uniform. Scenario 1,

therefore, supports the conclusions of the Diamond-Mirrlees theorem when skill transferability is

imperfect but high.

The welfare gains from sector-specific taxation are even smaller in Scenario 2, where skill trans-

ferability is low across all income levels in both sectors. In this scenario, the migration e↵ect is
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Figure 6: The figure depicts the optimal occupational choice rules in Scenario 4. The dashed line

corresponds to the case where only sales taxes are sector-specific, and the thick curve to the case

where income taxes are sector-specific.

small, and most welfare gains from di↵erential taxation arise from the government’s ability to tailor

marginal taxes to the distributions of productivities (under production e�ciency) among agents in

each sector. However, because we purposely considered two large sectors, these distributions are

rather similar. In the parlance of Section 2, the skill intensity does not vary much across sectors.

As a result, the gains from sectorial taxation are limited, and optimal taxes are close to uniform.33

We conjecture that by expanding the number of sectors, the gains from di↵erential taxation are

likely to increase, as the shape of informational rents should di↵er across sectors.

Scenario 3, where skill transferability sharply decreases with income, exhibits the highest gains

from sectorial taxation. When sector-specific income taxation is possible, the welfare gains of

moving from the existing tax code to the optimal one are close to 2%. Interestingly, only a third of

these gains are realized by sector-specific sales taxes. This highlights the importance of non-linear

instruments in tailoring marginal taxes to di↵erent income levels.

The last scenario is likely to be the most realistic, as skill transferability decreases smoothly

with income in both sectors (but more markedly in the services sector). In this scenario, di↵erential

income taxation yields welfare gains of 1.42%, while di↵erential sales taxes of 0.75%. These results

indicate that “simplicity” is not costless: Another 0.67 percentage point in welfare gains could be

obtained by employing income taxes that are sector-specific (therefore almost doubling the welfare

gains from sector-specific sales taxes).

In scenario 4, the optimal tax system favors the manufacturing sector, as reflected by the

occupational choice rule being uniformly above the 45-degree line (and sales taxes satisfying ⌧
b

>

⌧
a

) - see Figure 6.34 Moreover, most of the migration from services to manufacturing occurs at

33More precisely, the distribution of productivities (under uniform taxation) in the services sector is slightly more

right-skewed than that on manufacturing (see the Supplementary Material for further details). This property implies

the services sector is overtaxed (e.g., the optimal sales tax sets ⌧b > ⌧a).
34Note that, conditional on the optimal tax schedule favoring sector a, the distributions of latent productivities in

sector a do not a↵ect the optimal tax system (since no agent in manufacturing migrates to services). As such, the

welfare results from Table 1 and the tax schedules discussed below are robust to other choices of Ha(·|nb).
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Figure 7: The figure depicts marginal tax schedules. The dotted curve refers to the the uniform-

taxation benchmark. The full (resp., dashed) curves refer to the services (resp., manufacturing)

sector in the optimal tax system under Scenario 4.

intermediate or low skill levels. This occurs because, at skills close to the top, latent productivities

are so low (see Figure 5 for the schedule of average latent productivities) that few agents actually

migrate (i.e., the area between the threshold function and the 45-degree line contains a small mass

of agents when n
b

is close to the top).

This result is expected in light of the discussion in Section 2: Because the services sector has a

lower (resp., higher) degree of skill transferability at the top (resp., bottom) of the skill distribution

than the manufacturing sector, the skill transferability motive for di↵erential taxation calls for

taxing more heavily the services sector. By favoring the manufacturing sector, the government

collects high taxes from high-income agents in the services sector while generating small production

losses from the misallocation of talent among low-income agents.

The schedules of marginal taxes in both sectors illuminate the logic behind the optimal tax

system. Figure 7 depicts the optimal marginal tax schedules in both sectors, as well as the optimal

marginal taxes when taxation is uniform across sectors. It is interesting to note that, relative

to the uniform-taxation benchmark, marginal taxes in the services sector are higher for agents

with income ranging from $50,000 to $120,000, and (weakly) smaller for agents earning more than

$120,000. The reason is simple: Because of migration to manufacturing, the distribution of income

in the services sector contains a smaller proportion of agents with incomes between $50,000 and

$120,000. As a result, the government can set higher marginal tax rates at these income levels

while incurring distortions in labor supply which are lower than under uniform taxation.

This implies that the level of taxes faced by high-income individuals in the services sector

is higher than under uniform taxation. Because the degree of skill transferability is decreasing

with income, these agents are the ones to lose the most (in terms of productivity) from changing

occupation so as to avoid high taxes (as illustrated in Figure 5). As a result, the marginal rates

faced by these agents are lower at the optimum than in the uniform taxation benchmark. This
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Figure 8: The figure depicts average tax schedules. The dotted curve refers to the the uniform-

taxation benchmark. The full (resp., dashed) curves refer to the services (resp., manufacturing)

sector in the optimal tax system under Scenario 4.

increases e�ciency while generating high tax collection (as high-income agents in the services sector

are taxed mostly in a “lump-sum” fashion).

In turn, the marginal taxes on the manufacturing sector are smaller than those in both the

services sector and the uniform-taxation benchmark. At low or intermediate income levels (let us

say, less than $120,000) this results from the migration of low-ability agents from the services to

the manufacturing sector, which magnifies the welfare costs of distorting the provision of labor

in the manufacturing sector. At high-income levels (e.g., higher than $120,000), low marginal

taxes in the manufacturing sector are the welfare-maximizing way of implementing the optimal

occupational choice rule, which exhibits a highly steep threshold function. Such low marginal tax

rates help discouraging high-ability agents from migrating to the services sector (as their degree of

skill transferability is higher than that of similar-skilled agents in services).

Interestingly, the marginal taxes on the services sector increase after $200,000, converging rela-

tively fast to its asymptotic level (which coincides with the asymptotic level of the uniform taxation

benchmark). By contrast, the marginal taxes on the manufacturing sector keep decreasing after

$200,000, and are constant at zero for very high incomes. These results follow from the fact that

almost all very-high-income earners (above $200,000) are in the services sector. In turn, the income

distribution in the manufacturing sector, which contains few very high earners, is akin to a bounded

distribution. This explains why marginal taxes are zero at the very top of the manufacturing sector

when income tax schedules are sector-specific.

Finally, Figure 8 displays the optimal average tax schedules in both sectors, as well as the op-

timal average taxes when taxation is uniform across sectors. Relative to the uniform benchmark,

sector-specific income taxes enable the government to increase the average tax rate by approxi-

mately 10% at income levels around $120,000 in the services sector (containing a large fraction of
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finance and legal professionals). Di↵erential taxation also leads to a significant reduction in the av-

erage tax rate paid by individuals in the manufacturing sector. The ability to significantly change

the average tax incidence across sectors and income levels underscores the potential of sectorial

taxation to generate welfare improvements.

Needless to say, the policy prescriptions derived above should not be taken at face value. We

view this numerical exercise primarily as an illustration of the methods of this paper. Incorporating

in the simulations other margins that are important in reality (such as tax evasion and avoidance,

to name a few) is likely to bring further insights.

Relatedly, the optimal sector-specific tax system derived above takes as given the joint distri-

bution of skills. In the long-run, it is likely that agents, facing di↵erent tax burdens across sectors,

adjust their human capital investments in response to the tax system (e.g., by reducing investments

to acquire skills that are little transferable across sectors). Incorporating this “long-run” margin

in the analysis is an interesting direction of future research.

6 Discussion and Conclusions

Summary. This paper studies di↵erential taxation in a setting where workers’ skills are not

perfectly transferable across sectors/occupations. We show how properties of optimal taxation

equilibria can be identified by first considering a primal problem where the occupational choice

rule (describing the allocation of agents across sectors) is held fixed, and where the government

chooses a tax system to maximize welfare subject to implementing that occupational choice rule.

Next, we consider a dual problem, where the labor supply of a given sector is held fixed, and where

the government chooses a tax system, along with an occupational choice rule, to maximize welfare

subject to implementing that labor supply schedule.

The primal-dual approach described above generates a number of insights. First, it delivers

a generalized Mirrlees formula that determines how the government optimally balances intensive-

margin distortions in labor supply across sectors, for any desired occupational choice rule. Second,

it yields an Euler equation that summarizes all the trade-o↵s faced by the planner in choosing

the optimal occupational choice rule. The formula shows how, at the optimum, the marginal

revenue losses from further distorting the allocation of workers across sectors (through an increase

in marginal taxes is some sectors) come from the dissipation of tax revenues due to the migration

of workers across sectors. The marginal gains, in turn, come from better tailoring the tax schedule

in each sector to its endogenous distribution of talent (tagging). These results imply failure of the

Diamond-Mirrlees theorem: Social welfare can be increased by inducing certain agents to work in

a sector in which their productivity is not the highest (i.e., production e�ciency is violated at the

second-best).

We next quantify the welfare gains of di↵erential taxation. First, we show that these gains can

be substantive under the empirically plausible assumption that the degree of skill transferability
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of agents decreases with income. Second, we show that “simpler” tax systems (involving uniform

income taxes but di↵erential sales or payroll taxes) leave a sizable portion of these gains unrealized.

Third, we document the incidence of production ine�ciencies and the tax collection gains that

di↵erential taxation generates from high earners in occupations with large wage premia.

k-Sector Extension. In the Supplementary Material, we extend the analysis to economies with

k sectors. We show how the primal-dual approach described above can be extended to yield useful

formulas also in these richer settings. First, we show how the occupational choice rule can be con-

veniently described by a collection of absolutely continuous and nondecreasing threshold functions

c ⌘ (c
jl

)
j,l2K,l 6=j

, one for each pair of sectors j, l, l 6= j, such that an agent with productivity type

n = (n1, n2, ..., n
k

) 2 [n, n̄]k is induced to join sector j if, and only if, for all l 6= j, n
l

< c
jl

(n
j

).

Next, we consider a primal problem analogous to the one in the two-sector model where the

occupational choice rule is held fixed and where the government maximizes welfare subject to a

budget constraint, and to the requirement that the tax system implement the given occupational

choice rule. The solution to this primal problem delivers a multi-sector generalization of the formula

in Proposition 1 above.

We then proceed by solving a dual problem in which the labor supply in one sector is held fixed

and where the government maximizes welfare subject to the budget constraint and the requirement

that the resulting tax equilibrium be consistent with the labor supply schedule in that sector.

The solution to this dual problem yields an Euler equation analogous to the one in Proposition 2.

Interestingly, despite the complexity of the environment, these formulas are remarkably similar to

those in the two-sector model. In particular, the Euler equation describing the optimal occupational

choice rule balances the same revenue collection, welfare, migration, and continuity correction

e↵ects as the simple formula in Proposition 2. It can be derived heuristically from the same type

of ↵-payroll tax reforms considered above. However, migration in these richer economies is more

intriguing, for it involves migration from the sector in which the reform takes place to each other

sector in the economy. The key trick in solving such complex problems is a change in measure that

permits one to express the endogenous talent distribution in all but one sector of the economy as

a function of the talent distribution in the remaining sector. As we explain below, we expect these

techniques will be useful also in other multi-dimensional screening problems. The k-sector model

can also be fruitfully applied in quantitative exercises that extend the analysis of Section 5 to more

than two sectors.

Other Applications. Our analysis is conducted in the context of a multi-sector economy where

workers choose their occupation by comparing their productivity di↵erential across sectors with the

corresponding di↵erential in the tax system. One alternative, and equally appealing, application

of our results pertains to the design of tax systems in a federation of states. In this application,

the type of each worker describes his productivity in the di↵erent member states. That a worker’s

productivity varies across geographical areas may reflect technological, cultural, and linguistic dif-
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ferences across member states. After observing the tax schedules and the wages in each member

state, workers decide where to locate themselves, taking into account their di↵erences in produc-

tivities.35 The planner’s problem studied in this paper (be it Ralwsian or concave Utilitarian)

coincides with the problem of a federal authority designing the tax system of each of its member

states so as to maximize aggregate welfare over the entire federation. Our results can then be

directly applied to this problem and imply that di↵erential tax treatments across member states

are a robust feature of the optimal centralized tax system.36

Another application of the techniques developed in the present paper pertains to the design

of optimal tax systems in economies with a large informal sector. Economies plagued by a large

degree of informality in the labor market display a somewhat extreme form of di↵erential taxation:

Workers in the formal sector face income taxes, while workers in the informal sector are able to

evade such taxes. Yet, wages in both sectors are a↵ected by sales taxes (and other forms of indirect

taxation), which are typically easier to enforce than income taxes.37 The techniques in Sections

4 and 4.4 above can be adapted to study the optimal combination of income and sale taxes in

economies with an informal sector.38

The design of dual tax systems, where corporate and wage incomes are taxed di↵erently, consti-

tute yet another natural application of our results. Similarly to the problem examined in the present

paper, the choice by many workers between employment and self-employment is often based on the

comparison between the productivity di↵erential and the di↵erential in the tax burden across the

two regimes. More broadly, the study of the interplay between tax enforceability and occupational

choice, and its implications for the design of optimal tax systems, is a fascinating topic for future

research.

Finally, the techniques developed in this paper can be applied to other multi-dimensional screen-

ing problems in which agents face rival choices. Consider first the application to nonlinear pricing

by a multi-product monopolist with rival product lines (for instance, a car dealer designing price-

quality schedules for various car categories, such as sport and family cars). Given their preferences

for each product line and the price-quality schedules o↵ered by the seller, buyers choose which

type of car to buy, and then, select, within the chosen category, the desired model (identified by a

35See Kleven et al. (2013, 2014) and the references therein for empirical studies of how workers respond to

di↵erential taxation by migrating from one state to another.
36For models of competing tax authorities, see Hamilton and Pestieau (2005), and the references therein. In

these models, it is typically assumed that workers are (i) equally productive in the various member states, and (ii)

heterogenous in their mobility cost, which determines their location choice. In this setup, the centralized optimum

always exhibits production e�ciency. By contrast, the richer heterogeneity considered in the present paper reveals

that di↵erential taxation is a robust feature of centralized optimal tax systems.
37Indeed, that sales taxes are easier to enforce than income taxes is widely recognized as a justification for the

heavy reliance on such taxes (as well as other modes of indirect taxation) in underdeveloped economies.
38See also Best et al. (2015) and the references therein for other examples of economies in which governments

optimally sacrifice production e�ciency to boost tax revenues when their ability to enforce tax collection is limited.
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combination of price and quality).39

Another application is the design of managerial compensation schemes with rival career paths.

In this multi-dimensional extension of La↵ont and Tirole (1986), each manager chooses between

di↵erent career paths as a function of his productivity in each path and its respective performance-

pay schedule. In designing the remuneration in each career, the firm has to trade-o↵ the profit

losses from misallocating managers across tasks with the reductions in informational rents that

di↵erential compensation schemes make possible.

Both the nonlinear pricing and the managerial compensation applications can be studied with

the primal-dual approach of this paper. The solution to the primal and dual problems deliver

analogs of the generalized Mirrlees formula and the Euler equation, which can be used to derive

properties of optimal contracts when agents face exclusive choices and have multi-dimensional

private information.

39See Calzolari and Denicolò (2013, 2015) and Choné and Linnemer (2015) for recent contributions to the literature

on price discrimination under adverse selection and exclusive contracting.
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7 Appendix: Omitted Proofs

Proof of Lemma 1. Necessity. We first establish that, for the allocation (C, h
a

, h
b

) to be imple-

mented at the wage rates w by the tax system T , the properties in parts 1-3 must jointly hold.

That wages must satisfy the condition in part (1) for the labor market to clear follows directly from

the fact that the production function exhibits constant returns to scale.

Next, consider the properties in part 2. For any j = a, b, let û
j

(y;n
j

) ⌘ y�T
j

(y)� (y/(w
j

n
j

))

denote the utility that an agent with sector-j productivity n
j

obtains from generating income y in

sector j. Because the function satisfies the strict increasing di↵erence property, the correspondence

ŷ
j

(n
j

) = argmax
y

{y � T
j

(y)�  (y/(w
j

n
j

))} must be nondecreasing over N̄ in the strong set order

sense. Because N̄ is compact, this means that ŷ
j

(n
j

) is bounded over N̄ . Next note that û
j

(y;n
j

)

is di↵erentiable over N̄ . Because ŷ
j

(n
j

) is bounded over N̄ , û
j

(y;n
j

) is equi-Lipschitz continuous

over ŷ
j

(N̄)⇥N̄ , with ŷ
j

(N̄) denoting the range of ŷ
j

(·). Standard envelope theorems (e.g., Milgrom

and Segal (2002)) then imply that the value function

ũ
j

(n
j

) ⌘ max
h

{w
j

hn
j

� T
j

(w
j

hn
j

)�  (h)} = max
y

{û
j

(y;n
j

)} = max
y2ŷj(N)

{û
j

(y;n
j

)}

must be Lipschitz continuous over N with derivative equal to

ũ0
j

(n
j

) =  0

✓

y
j

(n
j

)

w
j

n
j

◆

y
j

(n
j

)

w
j

n2
j

for almost every n
j

2 N , where y
j

: N ! ŷ
j

(N) is an arbitrary selection from the correspondence

ŷ
j

(·). Using the fact that, for any n
j

2 N
j

,

h
j

(n
j

) =
y
j

(n
j

)

w
j

n
j

along with the fact that u
j

(n
j

) = ũ
j

(n
j

) for all n
j

2 N
j

, we then have that the properties in Part

2 are necessary.

Finally, consider the properties in part 3. That the occupational choice rule C must satisfy

these properties follows directly from the fact that each ũ
j

(·) is Lipschitz continuous and strictly

increasing over N along with the fact that the payo↵ ũ
j

(n
j

) that each agent obtains from joining

each sector j and then choosing his labor supply optimally is independent of his productivity in

any other sector.

Su�ciency. Now suppose that (C, h
a

, h
b

), along with the wage rates w and the tax system T ,

satisfies all the properties in parts 1-3 in the lemma. Then let T̂ be any tax system such that, for

all j = a, b, (a) ⌧̂
j

= ⌧
j

, (b) T̂
j

(y) = T
j

(y) for all y such that y = w
j

n
j

h
j

(n
j

) for some n
j

2 N
j

, and

(c) T̂
j

(y) = Q 2 R++ for all y such that there exists no n
j

2 N
j

such that y = w
j

n
j

h
j

(n
j

). It is

easy to see that there exists Q 2 R++ large enough such that, for any j = a, b, any n
j

2 N ,

argmax
y

⇢

y � T̂
j

(y)�  

✓

y

w
j

n
j

◆�

⇢
�

y : y = w
j

n0

j

h
j

(n0

j

), n0

j

2 N
j

 

.
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That the allocation (C, h
a

, h
b

) is implemented at the wage rates w by the tax system T̂ then

follows from the following facts. Employing the e↵ective labor

L
j

=

ˆ
{n:C(n)=j}

h
j

(n
j

)n
j

dF (n)

is profit maximizing for each firm j = a, b, given that the wages w satisfy the condition in part (1)

and that the production function exhibits constant returns to scale. For each type n joining sector

j 2 {a, b} (i.e., for which C(n) = j), the labor supply h
j

(n
j

) satisfies the incentive compatibility

condition on the intensive margin: u
j

(n
j

) = ũ
j

(n
j

). This follows from the fact that y
j

(n
j

) =

w
j

h
j

(n
j

)n
j

is nondecreasing over N
j

along with the fact that the equilibrium payo↵ satisfies the

envelope condition

u
j

(n
j

) = u
j

(n0

j

) +

ˆ
nj

n

0

j

 0 (h
j

(x))
h
j

(x)

x
dx

for any pair n
j

, n0

j

2 N
j

and the fact that, for any y for which there exists no n
j

2 N
j

such that

y = w
j

n
j

h
j

(n
j

), T̂
j

(y) = Q.

Lastly, that the occupational choice rule C satisfies the incentive compatibility condition on the

extensive margin follows from the fact that, for any n any j 2 {a, b} C(n) = j only if ũ
j

(n
j

) � ũ
l

(n
l

)

all l 6= j. This follows directly from the threshold structure of C along with the fact that each ũ
j

(·)
is strictly increasing, any j = a, b. Q.E.D.

Proof of Remark 1. Under the original tax system T , wages are given by w
j

= 1 � ⌧
j

. Faced

with these wages, under the original tax system, the optimal choice of e↵ective labor ĥ = nh for

an agent with sector-j productivity n
j

who chooses to work in sector j is given by

argmax
ĥ

n

(1� ⌧
j

)ĥ�  (ĥ/n
j

)� T
j

⇣

(1� ⌧
j

)ĥ
⌘o

.

Under the new tax system T̂ , wages are equal to ŵ
j

= 1, j = a, b, and the optimal choice of e↵ective

labor by the same agent working in sector j is given by

argmax
ĥ

n

ĥ�  (ĥ/n
j

)� T̂
j

(ĥ)
o

= argmax
ĥ

n

ĥ�  (ĥ/n
j

)� ⌧
j

ĥ� T
j

⇣

(1� ⌧
j

)ĥ
⌘o

.

It is then easy to see that the original allocation (C, h
a

, h
b

) can be implemented under the wages

ŵ = (1, 1) by the new tax system T̂ . It is also easy to see that all agents’ payo↵s (as well as the

government’s tax income) under Ê are the same as under E . Q.E.D.

Proof of Proposition 1. First, note that, because u
a

and u
b

are Lipschitz continuous and strictly

increasing, for almost every n
a

2 N such that c(n
a

) 2 N , condition u0
a

(n
a

) = u0
b

(c(n
a

))c0(n
a

) must

hold. Using Conditions (7) and (9), we then have that, for almost every n
a

2 N such that (i)

c(n
a

) 2 N and (ii) T
a

(y
a

(n
a

)) and T
b

(y
b

(c(n
a

))) are di↵erentiable, Condition (11) must hold.
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Let us now consider the government’s problem. It consists in choosing labor supply schedules

h
a

: N
a

! R+, h
b

: N
b

! R+ along with tax schedules T
a

: R+ ! R and T
b

: R+ ! R so as to

maximize its x-objective:40

1CU

x

ˆ
Na

�(u
a

(n
a

))dG
a

(n
a

|c) + 1CU

x

ˆ
Nb

�(u
b

(n
b

))dG
b

(n
b

|c) + [1� 1CU

x

]u
a

(n0

a

),

where

u
j

(n
j

) = h
j

(n
j

)n
j

�  (h
j

(n
j

))� T
j

(n
j

h
j

(n
j

)) for every n
j

2 N
j

, j = a, b

subject to (i) the budget constraint:ˆ
Na

T
a

(n
a

h
a

(n
a

))dG
a

(n
a

|c) +
ˆ
Nb

T
b

(n
b

h
b

(n
b

)))dG
b

(n
b

|c) � B,

(ii) the labor-supply incentive-compatibility constraints:

u0
a

(n
a

) =  0 (h
a

(n
a

))
h
a

(n
a

)

n
a

for almost every n
a

2 N
a

, (25)

u0
b

(n
b

) =  0 (h
b

(n
b

))
h
b

(n
b

)

n
b

for almost every n
b

2 N
b

, (26)

(iii) the occupational-choice incentive-compatibility constraints:41

h
b

(c(n
a

)) = J
c

[n
a

]h
a

(n
a

), for all n
a

2 (n0

a

, n00

a

), (27)

where

J
c

[n
a

] ⌘
�

c(n
a

)/
�

n
a

· c0(n
a

)
��

⇠

,

and (iv) the monotonicity constraints:

y
j

(n
j

) = h
j

(n
j

)n
j

nondecreasing over N
j

, j = a, b.

As mentioned in the main text, hereafter, we proceed by abstracting from the monotonicity con-

straints (iv), which is consistent with the practice commonly followed in the literature.

Using the fact that (a) for any n
a

2 (n0

a

, n̄),

T
a

(n
a

h
a

(n
a

))) = h
a

(n
a

)n
a

�  (h
a

(n
a

))� u
a

(n
a

),

along with the fact that (b) for n
b

2 N
b

, h
b

(n
b

) = J
c

[c�1(n
b

)]h
a

(c�1(n
b

)) and u
b

(n
b

) = u
a

(c�1(n
b

)),

it follows that

T
b

(n
b

h
b

(n
b

)) = h
b

(n
b

)n
b

�  (h
b

(n
b

))� u
b

(n
b

)

= J
c

[c�1(n
b

)]h
a

(c�1(n
b

))n
b

�  
�

J
c

[c�1(n
b

)]h
a

(c�1(n
b

))
�

� u
a

(c�1(n
b

)).

40Note that, in case of a Ralwsian objective, i.e., for x = R, the lowest-utility agent is always an agent whose

sector-a productivity is n0

a.
41To see that the occupational-choice incentive-compatibility constraint takes the form in (27), recall that, for

almost every na 2 N such that c(na) 2 N , u0

a(na) = u0

b(c(na))c
0(na). Next, use (25) and (26), along with the fact

that  0(h) = ⇠h⇠�1, to arrive at (27).
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Using the definition of the density

g(n
a

|c) = g
a

(n
a

|c) + c0 (n
a

) g
b

(c (n
a

) |c)

= f
a

(n
a

)F
b|a

(c(n
a

)|n
a

) + c0 (n
a

) f
b

(c(n
a

))F
a|b

(n
a

|c(n
a

)),

we can then rewrite the government’s problem as that of choosing functions u
a

: N
a

! R, h
a

:

N
a

! R+ so as to maximize
ˆ
Na

�

1CU

x

�(u
a

(n
a

))g(n
a

|c) + [1� 1CU

x
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a

(n0
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)
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a

(28)

subject to the budget constraint
ˆ
Na

�
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a

(n
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)n
a

�  (h
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(n
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))� u
a

(n
a

)] f
a

(n
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)F
b|a

(c(n
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)|n
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)
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(29)

+

ˆ
Na

�

[J
c
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a

]h
a

(n
a

)c(n
a

)�  (J
c

[n
a

]h
a

(n
a

))� u
a

(n
a

)] c0(n
a

)f
b

(c(n
a

))F
a|b

(n
a

|c(n
a

))
 

dn
a

,

� B

and the IC constraints

u0
a

(n) =  0 (h
a

(n
a

))
h
a

(n
a

)

n
a

for almost every n
a

2 N
a

.

This is a standard optimal control problem with control variable h
a

and state variable u
a

. The

Hamiltonian associated to this problem is:

H = 1CU

x

�(u
a

(n
a

))g(n
a

|c) + [1� 1CU

x

]f
a

(n
a

)u
a

(n0

a

)

+ �
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[h
a

(n
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)n
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�  (h
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(n
a

))� u
a

(n
a
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(n
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a

)|n
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c
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]h
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(n
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)c(n
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)�  (J
c
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]h
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(n
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))� u
a
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a

)} c0(n
a

)f
b

(c(n
a

))F
a|b

(n
a

|c(n
a

))

+ µ(n
a

) ·  0 (h
a

(n
a

))
h
a

(n
a

)

n
a

� �B,

where � is the Lagrange multiplier associated to the common budget constraint (29) and where µ

is the co-state variable associated with the law of motion of u
a

. The transversality conditions are:

µ(n0

a

) = µ(n̄) = 0. (30)

From the Pontryagin Maximum Principle,

µ0(n
a

) = � @H

@u
a

=
⇥

�� 1CU

x

�0(u
a

(n
a

))
⇤

g(n
a

|c). (31)

Integrating the right-hand side of (31) and using the transversality condition (30) we have that

µ(n
a

) = ��
ˆ

n

na

⇥

1�m
a

(ñ
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)1CU

x

⇤

g(ñ
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|c)dñ
a

, (32)
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where we used the definition of

m
a

(n
a

) ⌘ �0 (u
a

(n
a

))

�
.

Furthermore, for any n
a

such that h
a

(n
a

) > 0, the following first order condition must hold:

@H

@h
a

= �
⇥

n
a

�  0 (h
a

(n
a

))
⇤

f
a

(n
a

)F
b|a

(c(n
a

)|n
a

)+

�
�

J
c

[n
a

]c(n
a

)�  0 (J
c

[n
a

]h
a

(n
a

)) J
c

[n
a

]
 

c0(n
a

)f
b

(c(n
a

))F
a|b

(n
a

|c(n
a

))+

µ(n
a

)
 0 (h

a

(n
a

)) +  00 (h
a

(n
a

))h
a

(n
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)

n
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Combining (32) with (33) and using the definitions of the densities
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))F
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we obtain that:
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Recall the first-order condition
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where y
a
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a

) = n
a

h
a

(n
a

). Hence, for any n
a

> n00

a

= c�1(n̄), the optimality condition (34) can be

rewritten as the usual Mirrlees condition
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where we also used the fact that, for n
a

> c�1(n̄), g
a

(n
a

|c) = f
a

(n
a

). Next, consider any n
a

2
(n0
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a

). Using the fact that J
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)), equation (34) can be rewritten as
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Replacing (11) into (36) and using again the fact that J
c
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]h
a
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) = h
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)), we then have that,
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Combining the results establishes equation (10). Q.E.D.

Proof of Proposition 2. Fix the sector-a labor supply schedule h
a

(with domain N
a

). The

planner’s problem is as in the proof of Proposition 1, except that the control policies are now (i)

the threshold function c : N ! N̄ defining the occupational choice rule, with c continuous over

N , strictly increasing over (n0

a

, n00

a

) for some n00
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 n̄, and such that c(n
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) = n for all n
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 n0

a

and c(n
a

) = n̄ for all n
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! R+, and the tax

schedules T
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: R+ ! R, j = a, b.

The planner’s problem can be conveniently rewritten by letting
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denote the value the planner assigns to the utility of an agent whose sector-j productivity is n
j

,

adjusted for the opportunity cost or raising funds from the agent, where � is the multiplier associated

with the government’s budget constraint. The planner’s problem can then be reformulated as

consisting in choosing a threshold function c : N ! N̄ satisfying the properties above, along with

a sector-b labor supply schedule h
b

: N
b

! R+, and a pair of utility functions u
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u
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subject to the incentive compatibility constraints for labor supply
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and the occupational choice constraint

h
b

(c(n
a

)) = J
c

[n
a

]h
a

(n
a

),

for all n
a

2 (n0

a

, n00

a

) where n00

a

= c�1(n̄).

Using the fact that, for any n
b

2 int (N
b

),

h
b

(n
b

) = J
c

[c�1(n
b

)]h
a

(c�1(n
b

)), (42)
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along with the change in variables n
b
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), we have that the planner’s objective can be rewritten
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where, for any n
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The planner’s problem can then be thought of as choosing (i) a scalar u
a
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), and (ii) an

absolutely continuous function c : N ! N̄ , strictly increasing over (n0
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, n00

a

) for some 0  n0

a

and

n00

a

 n̄ and satisfying c(n
a

) = 0 if n
a

 n0

a

and c(n
a

) = n̄ if n
a

� n00

a

, so as to maximize (44).

Given u
a

(n0

a

), because h
a

: (n0

a

, n̄) ! R+ is fixed, the function u
a

: (n0

a

, n̄) ! R is then uniquely

determined by (40). The labor supply schedule h
b

: N
b

! R+, and the utility schedule u
b

: N
b

! R
are then given by (42) and (43), respectively. Finally, the tax schedules in the two sectors are given

by

T
j

(n
j

h
j

(n
j

))) = h
j

(n
j

)n
j

�  (h
j

(n
j

))� u
j

(n
j

), j = a, b.

As a first step, let us fix the scalar u
a

(n0

a

) — and hence the entire utility function u
a

: (n0

a

, n̄) ! R
— as well as the thresholds n0

a

and n00

a

and then look at the optimality conditions for the threshold

function c : [n0

a

, n00

a

] ! N̄ . To ease the exposition, let R̃x

b

: R3 ! R be the function defined by

R̃x

b

(n
a

, c, J) ⌘ 1CU

x

� (u
a

(n
a

)) + � {Jh
a

(n
a

)c�  (Jh
a

(n
a

))� u
a

(n
a

)} , (45)

and denote by @R̃x

b

/@n
a

, @R̃x

b

/@c, and @R̃x

b

/@J its partial derivatives. Then, for any n
a

2 [n0

a

, n̄],

let J : R3 ! R be the function defined by

J(n, c, c0) =
⇣ c

nc0

⌘

⇠

, (46)

and note that, for n
a

2 (n0

a

, n00

a

), J(n
a

, c(n
a

), c0(n
a

)) = J
c

[n
a

] = (c(n
a

)/ (n
a

· c0(n
a

)))⇠ . Hereafter,

we then denote by J
n

, J
c

, and J
c

the partial derivatives of J with respect to n, c and c0, respectively.

Finally, note that the densities

g
a

(n
a

|c) ⌘ f
a

(n
a

)F
b|a

(c(n
a

)|n
a

) =

ˆ
c(na)

n

f(n
a

, x)dx (47)

and

g
b

(c(n
a

)|c) = f
b

(c(n
a

))F
a|b

(n
a

|c(n
a

)) =

ˆ
na

n

f(x, c(n
a

))dx (48)

depend on the entire function c only through the value that this function takes at n
a

. In other

words, g
a

(n
a

|c) and g
b

(c(n
a

)|c) can be thought of as functions of n
a

, and c(n
a

). This means that

the optimality conditions for the threshold function c can be obtained as a solution to a calculus

of variations problem with control c and objective

n

00

aˆ

n

0

a

h

Rx

a

(n
a

) g
a

(n
a

|c) + R̃x

b

�

n
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, c(n
a

), J(n
a

, c(n
a

), c0(n
a
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�

· c0(n
a

) · g
b

(c(n
a

)|c)
i

dn
a

+[1�1CU

x

]u
a

(n0

a

).
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Dropping the arguments from R̃x

b

and J to facilitate the writing, we then have that, at any

n
a

2 (n0

a

, n00

a

), the point-wise Euler equation of this problem is given by

Rx

a

(n
a

) f(n
a

, c(n
a

)) +
@R̃x

b

@c
c0(n

a

)g
b

(c(n
a
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b
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J
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)g
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b

c0(n
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)
@
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b
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a
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=
d
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"
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b
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a
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b

g
b

(c(n
a

)|c)
#

. (49)

Use (48) to note that the fourth term of the left-hand-side of (49) can be developed as follows:

R̃x

b
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a

)
@

@c
[g

b

(c(n
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)|c)] = R̃x
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@
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f(x, c(n
a

))dx

◆
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b
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b
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a
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f(n
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, c(n
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=
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h
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b

g
b
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a

)|c)
i

�
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b
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a

g
b

(c(n
a

)|c)� R̃x

b

f(n
a

, c(n
a

)). (50)

Substituting (50) into (49) and simplifying, we can rewrite the point-wise Euler equation (49)

as follows

h
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a

(n
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)� R̃x

b

i

f(n
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, c(n
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b
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)g
b

(c(n
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#

. (51)

Multiplying both sides of (51) by c(n
a

) and rearranging terms, we obtain that

h
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Next, note that, for any n
a

2 (n0

a

, n00

a

),

J
c

= J
c
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a

, c(n
a

), c0(n
a

)) = ⇠

✓
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)

n
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⇠�1 1
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)
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J
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n
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)

n
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.

Note that the expressions above are always well-defined, as c0(n
a

) > 0 for all n
a

2 (n0

a

, n00

a

) (by

virtue of (11)).

Replacing these expressions into the right-hand side of (52), we obtain that for any n
a

2 (n0

a

, n00

a

),
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the right-hand side of the Euler equation becomes

d
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"
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Substituting (53) into (52), we then have that, for any n
a

2 (n0

a

, n00

a

), the Euler equation becomes
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Integrating (54) from n0

a

to n
a

2 (n0

a

, n00

a

) we then obtain that
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a

)g
b

(c(ñ
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where we have highlighted the dependence of R̃x

b

and of J on ñ
a

to avoid possible confusion.

Consider the second term in the right-hand side of (55). This term is zero if n0

a

= n, as in this

case
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g
b

(c(n
a

)|c) = lim
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f
b
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))F
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(n
a
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)) = 0,

and all remaining terms are bounded. When n0

a

> n, the optimal choice of n0

a

implies that the

following transversality condition holds:
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)
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g
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which is exactly the second term in the right-hand side of (55).

We now express each term in (55) as a function of the income tax schedules. By definition of
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The second term in (55) is obtained by di↵erentiating (45) with respect to c, which yields
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a

= �

ˆ
na

n

0

a

y
b

(c(ñ
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where the last equality follows from changing the variable of integration from ñ
a

to n
b

(using the

relation n
b

= c(n
a

)).

The third term in (55) is obtained by totally di↵erentiating (45) with respect to n
a

, which gives
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where the last two equalities use (9), and (11). Changing again the variables of integration using

the relation n
b

= c(n
a

), we then obtain that the third term in (55) is equal to

ˆ
na

n

0

a

 

dR̃x

b

(ñ
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a

)g
b

(c(ñ
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Finally, the right-hand-side in (55) is obtained by di↵erentiating (45) with respect to J which

yields
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�⇠J(n
a

)
@R̃x

b

(n
a

)

@J
g
b

(c(n
a

)|c)c(n
a

) = �⇠�y
b

(c(n
a

))T 0

b

(y
b

(c(n
a

)))g
b

(c(n
a

)|c)c(n
a

)

= ⇠
T 0

b

(y
b

(c(n
a

)))

1� T 0

b

(y
b

(c(n
a

)))
c(n

a

)g
b

(c(n
a

)|c) ·
�

(1� T 0

b

(y
b

(c(n
a

))))y
b

(c(n
a

)
 

. (58)

48



Substituting (56)-(58) into (55) and rearranging yields (12). Q.E.D.

Proof of Proposition 3 The proof has two parts, each establishing the result in the corre-

sponding part of the proposition.

Part 1. We establish the result by showing that, when the distribution is generic, a taxation

equilibrium sustaining production e�ciency (that is, inducing an e�cient occupational choice) fails

to satisfy the necessary optimality conditions, as implied by (12), over a positive measure set of

types. To see this, first use (11) to observe that, in any equilibrium sustaining production e�ciency,

h
a

(n) = h
b

(n) = h(n) for all n 2 N. Then use (9) and (11) to verify that, in any such equilibrium,

T
a

(y) = T
b

(y) = T (y) and hence u
a

(n) = u
b

(n) = u(n) for all n 2 N .

Next, observe that, for production e�ciency to be optimal, the Euler equations in Proposition

2 must hold for each sector. Using the symmetry properties described above, we can rewrite these

equations, for any n 2 N, as follows:
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where we used the fact that n0

a

= n0

b

= n (which also implies that g
a

(n|c) = g
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(n|c) = 0), along

with the fact that, for all n 2 N, c(n) = n, m
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Note that the Lagrange multiplier on the planner’s budget constraint is the same in both equa-

tions. The two Euler equations (59) and (60) define two linear di↵erential equations in g
b

(n|c)
and g

a

(n|c), respectively. Because the usual Lipschitz conditions hold (as implied by Lemma 1),

the Picard-Lindelof theorem implies that each of these equations has a unique solution satisfying

some associated boundary condition g
j

(n|c) = g̊
j

, for n > n. Because the di↵erential equations

defined by (59) and (60) are homogenous, their solutions must satisfy g
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.
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for all n 2 N , we then conclude that, for production e�ciency to be optimal, we have that for all
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As a consequence, for any generic F , any x-optimal taxation equilibrium entails production

ine�ciency for a positive-measure subset of types.

Part 2 . Consider the calculus of variations problem described in the proof of Proposition 2 with

objective function (44). The optimal choice of n00

a

implies that the following transversality condition

holds:
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By the arguments in the proof of Proposition 2, this condition is equivalent to
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) is strictly increasing and positive, it then follows that condition (22) has to hold

for sector b. Finally, that condition (22) holds for sector a follows from the Mirrlees formula (10),

after setting the indicator function to zero. Q.E.D.

Proof of Proposition 4. Note that, with uniform labor income taxation and our convention

about the labeling of the two sectors (which consists in assuming that ⌧
a

 ⌧
b

), n0

a

= n. In deriving

the optimality conditions below, for convenience we will set the sale tax in sector b to ⌧
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= 0. Once

these conditions are identified, we will show how they can be expressed for arbitrary combinations
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and ⌧
b

.
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a

(n) � 0, along with a sale subsidy ⌧
a

 0
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n
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u
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(n
a
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naˆ
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(ñ
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)
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(61)

is determined by (9) and where the densities under the occupational choice rule corresponding to

the sale tax ⌧
a

are given by

g
a

(n
a

|c) = f
a

(n
a

)F
b|a

((1� ⌧
a

)n
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)|n
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) (62)
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and

g
b

(n
b

|c) = f
b

(n
b

)F
a|b

((1� ⌧
a

)�1n
b

)|n
b

). (63a)

Note that in writing the above program, we used the fact that, for any n
a

2
⇣

n, n

1�⌧a

⌘

, (i) c(n
a

) =

(1 � ⌧
a

)n
a

, (ii) h
b

(c(n
a

)) = h
b
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a

)n
a
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a

(n
a

), and (iii) y
b

(c(n
a

)) = c(n
a

)h
b

(c(n
a

)) = (1 �
⌧
a

)n
a

h
a

(n
a

). We also used the fact that, once u
a

(n) and ⌧
a

are chosen, because h
a

is given, the

common labor income tax schedule T is then given by
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a

)n
a

h
a
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a
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a

)n
a

h
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(n
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)�  (h
a
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a

))� u
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)

for all n
a

2 N . To put it di↵erently, once u
a

(n) is chosen, di↵erent choices of the sale tax ⌧
a

translate into di↵erent common income tax schedules T while leaving the sector-a e↵ective tax

schedule
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(y
a
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y
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fixed, for any level of e↵ective income y = y
a

(n
a

) = n
a

h
a

(n
a

), n
a

2 N
a

. This also means that the

budget constraint in the above program can be rewritten as
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a
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while for any n
a

2
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where � is the Lagrangian multiplier associated with the government’s budget constraint. The

Lagrangian for the above program then becomes
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n
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Fixing u
a

(n), we then have that the first order condition with respect to ⌧
a

is

d
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a
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n
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The latter condition can be rewritten as
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Consider the first term in (67) and note that it is equal to
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) for all n
a

� n
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along with (62).

Next, consider the third term in (67) and use (63a) to note that

d

d⌧
a

{(1� ⌧
a

)g
b

((1� ⌧
a

)n
a

|c)} = � d

dn
a

[n
a

g
b

((1� ⌧
a

)n
a

|c)] + n
a

f (n
a

, (1� ⌧
a

)n
a

) .

The the third term in (67) is thus equal to
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Now observe that
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where the first equality follows from integration by parts, whereas the third equality follows from

the fact that g
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)n|c) = 0 along with the fact that

d

dn
a

h

R̂x

b

(n
a

; c)
i

=
⇥

1CU

x

�0 (u
a

(n
a

))� �
⇤

u0
a

(n
a

)

+ �
⇥

h0
a

(n
a

)n
a

(1� ⌧
a

) + h
a

(n
a

) (1� ⌧
a

)�  0 (h
a

(n
a

))h0
a

(n
a

)
⇤

.

We conclude that the third term in (67) is thus equal to
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Finally, consider the fourth term in (67). Di↵erentiating (65) with respect to ⌧
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, we can show

that this term is equal to

ˆ n
1�⌧a

n

dR̂x

b

(n
a

; c)

d⌧
a

(1� ⌧
a

)g
b

((1� ⌧
a

)n
a

|c)dn
a

(70)

= ��
ˆ n

1�⌧a

n

h
a

(n
a

)n
a

(1� ⌧
a

)g
b

((1� ⌧
a

)n
a

|c)dn
a

.

Substituting (68), (69) and (70) into (67) and simplifying, we obtain that the optimality con-
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dition can be rewritten as
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we then have that (71) can be rewritten as
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Using (9), we can then rewrite the first integral in (72) as follows:
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where y
a
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a

) = n
a

h
a
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a

) is the e↵ective labor supply by an agent working in sector a with produc-
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a

.

Likewise, we can rewrite the second integral in (72) as follows:
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We conclude that (72) can be rewritten as
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Changing the variable of integration to n
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Using the definition of “welfare e↵ect”, “revenue collection e↵ect”, and “migration e↵ects” we have

that (76) can be rewritten as
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where the functionals above are evaluated at the threshold function c(n
a

) = (1� ⌧
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.

Finally, after reintroducing ⌧
b

by eliminating the normalization to ⌧
b

= 0, and replacing 1�⌧a
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n
a

for (1� ⌧
a
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a

, we obtain the formula in the proposition. Q.E.D.
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