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1 Introduction

Empirical models of vertical bargaining power rely critically on estimates of how consumers

respond to changes in prices in the downstream, or consumer, market. Typically, these

models address retail purchases from only one category at a time (Villas-Boas and Zhao

2005; Villas-Boas 2007), whereas consumers tend to buy products by the shopping basket

(Manchanda, Ansari, and Gupta 1999; Kwak, Duvvuri, and Russell 2015). Within a single

category, the choices �di¤erent brands, for example �are plausibly all substitutes for each

other. When buying multiple categories at a time, however, the purchase is likely to consist

of a mix of substitutes and complements. In a theoretical treatment of this setting, Horn

and Wolinksy (1988) show that when wholesale prices are negotiated between suppliers and

downstream buyers, di¤erences in how consumers respond to price changes can alter the

nature of the bargaining outcome qualitatively for the upstream �rms. While the potential

for a complex pattern of substitutability and complementarity among items in the shop-

ping basket may be relatively inconsequential if the items are from di¤erent manufacturers,

the implications for vertical relationships between retailers and manufacturers cannot be ig-

nored. In this research, we examine the importance of complementarity among retail grocery

products for bargaining power between retailers and manufacturers.

With the global consolidation of food production in fewer and fewer hands, some manu-

facturers may be responsible for items in several categories in a typical shopping basket. We

argue that this observation may have important implications for the balance of bargaining

power between manufacturers and retailers in the food supply chain. Namely, when down-

stream �rms sell complementary goods, an upstream supplier has less bargaining power than

if products downstream are substitutes because the cost of not arriving at an agreement is

higher for the supplier. Why? Because retailers are interested in category sales and manu-

facturers are interested in selling only their brands. When a retailer cannot sell a particular

brand, it will sell another, while if a manufacturer selling to multiple retailers loses a distrib-

ution contract, the lost sales cannot be replaced as easily. If the manufacturer sells items in
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substitute categories �ketchup and mustard, for instance �the e¤ect may not be substantial

as lost sales can be regained elsewhere. However, if the manufacturer sells complementary

goods �potato chips and dip, for instance �the e¤ect of losing sales from a dropped brand

in one category will be ampli�ed by losses in the other. Therefore, the opportunity cost of

arriving at an agreement, which is manifest in the di¤erence between the current and dis-

agreement pro�ts, is higher for the manufacturer than the retailer. Because retail bargaining

power is the mirror of manufacturer power, we expect retailer bargaining power to be higher

when goods are complements.

It is well understood that complementarity a¤ects pricing strategies among retailers

downstream. Rhodes (2015) and Smith and Thomassen (2012) argue that internalizing cross-

product pricing e¤ects on the intra-retailer margin with complementarity leads to lower retail

prices as retailers have an incentive to drive volume rather than margin. On the other hand,

Richards and Hamilton (2016) show that complementarity on the inter-retailer margin is

associated with anti-competitive e¤ects and is a source of market power for retailers. How-

ever, none of these studies focus on vertical relationships between multi-product retailers

and manufacturers.

The increasing prevalence of highly granular data on consumer purchases, whether from

frequent shopper cards or from household panel data sets, both highlights the importance

of examining shopping-basket purchases, and makes structural models of multi-product pur-

chasing behavior possible. By observing purchases on each shopping-occasion basis, we have

a better understanding of how consumers combine products in a shopping list. Namely, pre-

vious research shows that consumers tend to make multiple discrete purchases (Dube 2004,

2005; Richards, Pofahl, and Gomez 2012) and tend to purchase some pairs of products at

the same time, for reasons other than traditional price-based complementarity reasons (Song

and Chintagunta 2007; Mehta 2007). In this paper, we develop a new model of retail demand

that explicitly recognizes the importance of these two features of consumer-level purchase

behavior.
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Our demand model is of the multi-variate logit (MVL) class, in which consumers are

assumed to make discrete choices among baskets of items. Because each item can reside in

one of many di¤erent baskets, the choices cannot be described by a traditional logit model.

Russell and Peterson (2000) show how the auto-logistical model from spatial econometrics

(Besag 1974) can be used in a shopping-basket model environment to consistently estimate

demand elasticities that include a full-range of possibilities, from complementarity to substi-

tutability, and independence in demand. Further, because the estimating model assumes a

closed-form, Kwak, Duvvuri, and Russell (2015) show that it can be used to inform a wide

range of practical issues in structural demand modeling. For this paper, we demonstrate

how the implicit assumption of strict-substitutability from more usual logit models of de-

mand can impart signi�cant bias to bargaining power estimates in an environment in which

demand relationships are likely to be more general.

Structural models of vertical relationships between retailers and manufacturers are, by

now, reasonably well understood. Assuming Bertrand-Nash rivalry among downstream re-

tailers, the solution to the Nash bargaining problem between retailers and manufacturers

yields a single parameter that describes the share of the total margin that is appropriated by

either the manufacturer or the retailer, depending on the relative bargaining strength of ei-

ther party (Draganska, Klapper, and Villas-Boas 2010).1 While others investigate structural

factors that may in�uence the degree of bargaining power possessed by either side (Meza

and Sudhir 2010; Haucap et al. 2013; Bonnet and Bouamra-Mechemache 2016), the role

of demand-interrelationships among downstream retailers is not well understood, despite

the clear theoretical importance it plays in the likely outcome of any negotiation (Bulow

et al. 1985; Binmore, Rubinstein and Wolinsky 1986; Horn and Wolinsky 1988).2 In this

paper, we show that the structure of demand, namely whether products are substitutes or

1Misra and Mohanty (2006) develop a similar approach to modeling vertical relationships in which prices
are the result of a Nash bargaining equilibrium, and show that their model �ts the data better than existing
empirical models in two di¤erent grocery categories.

2Iyer and Villas-Boas (2003) and Feng and Lu (2013a,b) apply a Nash bargaining model to vertical
relationships in a supply-chain context.
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complements, can have dramatic e¤ects on estimated bargaining-power parameters.3

We test our hypothesis using data on multi-category soft drink purchases among house-

holds in France. While a discrete-choice model of category incidence would restrict all pairs

of categories to be substitutes, we �nd that complementarity is more common than subti-

tutability at the brand level. When we condition equilibrium wholesale prices on our MVL

demand estimates, we �nd that complementarity is associated with less manufacturer bar-

gaining power and greater retail bargaining power. When products sold by one manufacturer

are complements downstream, the disagreement pro�t, which is the amount earned if the

parties fail to agree, is lower with complementarity than under strict substitutability. Lower

disagreement pro�t implies a higher opportunity cost of agreeing. As a result, manufactur-

ers are essentially more keen to arrive at a negotiated solution, so their bargaining power is

lower. Our �ndings have broader implications for vertical relationships in any other indus-

try in which powerful suppliers sell complementary products through oligopoly downstream

retailers.

Our research contributes to both the theoretical literature on vertical relationships be-

tween suppliers and retailers, and the empirical literature on the nature of bargaining power

in those relationships. While Horn and Wolinsky (1988) identify the mechanism that is

likely to in�uence bargaining power in vertical relationships when products interact in the

downstream market, their model is highly stylized, as it is framed in terms of an upstream

duopoly and downstream duopoly �rms. Our model, however, is able to accommodate more

general oligopoly relationships among �rms both upstream and downstream. In terms of the

empirical bargaining power literature, we show how the single-category model of Draganska,

Klapper, and Villas-Boas (2010) can be extended to a more general, multi-category demand

framework, and show that doing so can have dramatic e¤ects on the nature of the equilibrium

bargaining solution that results.

In the next section, we describe our multi-category demand model, and how it is able to

3Dukes, Gal-Or, and Srinivasan (2006) show that di¤erences among retailers can be important in in�u-
encing bargaining power in the vertical channel. Our empirical model captures retailer heterogeneity.
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capture complementarity in household-level beverage purchases. The Nash bargaining power

model is presented in the third section, where we show how our core hypotheses regarding

complementarity and bargaining power are tested. We describe the data from our French

soft-drink example in the fourth section, and present some stylized facts that suggest how

a shopping-basket approach is both appropriate and necessary in data such as ours. We

present and interpret the demand and pricing model results in a �fth section, while the

�nal section concludes, and o¤ers some implications for settings beyond our retail grocery

example.

2 Empirical Model of Multi-Category Pricing

2.1 Overview

We examine the role of complementarity in bargaining power using a structural model of

multi-category retail demand, and vertical pricing relationships between beverage manu-

facturers and retailers in France. Our model is innovative in that the demand component

describes relationships among beverages found in a typical shopping-basket, unlike most

conventional analyses in this area (Draganska, Klapper, and Villas-Boas 2010). Our demand

model is multi-category in nature in that it recognizes the fact that items are purchased

through a discrete-choice data generating process, but will nearly as often be complemen-

tary as they are substitutes with other items in the basket. When a retailer sells items from

the same manufacturer that are likely to be complements, the implications for bargaining

power in the vertical channel may be dramatic. Our model is structural in that we estimate

equilibrium pricing relationships in the vertical channel, conditional on the structure of re-

tail demand (Villas Boas 2007; Bonnet and Dubois 2010; Bonnet and Bouamra-Mechemache

2016) across multiple product categories.
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2.2 Model of Multi-Category Demand

We develop our empirical model of multi-category choice and local-content demand from

a single utility function, in the sense that consumers are assumed to maximize utility in

choosing which categories to buy from on each trip to each store, r = 1; 2; :::; R. For clarity,

we suppress the store subscript until we describe the equilibrium vertical pricing game below.

Consumers h = 1; 2; 3; :::; H in our model select items from among i = 1; 2; 3; :::; I categories,

ciht; in assembling a shopping basket, or bundle, bht = (c1ht; c2ht; c3ht; :::; cIht) on each trip,

t. De�ne the set of all possible bundles bht 2 B and the set of categories i; j 2 I: We focus

on purchase incidence, or the probability of choosing items from a particular category on

each trip to the store, and regard the brand of the chosen item as an attribute of the choice.

We assume consumers purchase only one brand within each category in order to remain

consistent with the literature. We further assume consumers choose categories in order

to maximize utility, Uht; and follow Song and Chintagunta (2006) in writing their utility in

terms of a discrete, second-order Taylor series approximation to an arbitrary utility function.

Utility is written as:

Uht(bht) = Vht(bht) + "ht (1)

=
X
i2I
�ihtciht +

X
i2I

X
j2I
�ijhcihtcjht + "ht;

where �iht is the baseline utility for category i earned by household h on shopping trip t , ciht

is a discrete indicator that equals 1 when category i is purchased, and is 0 otherwise, "ht is

an error term that is Gumbel distributed, and iid across households and shopping trips, and

�ijh is a household-speci�c parameter that captures the degree of interdependence in demand

between categories i and j, such that if �ijh < 0; the categories are substitutes, if �ijh > 0,

the categories are complementary, and if �ijh = 0; the pair of categories are independent in

demand. For example, we would expect to �nd �ijh > 0 for ketchup and hamburger, but

�ijh < 0 for ketchup and bbq sauce, and �ijh = 0 for ketchup and laundry detergent. In order

to ensure that the model is identi�ed, it is necessary that all �ii = 0 and that symmetry be
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imposed on the matrix of cross-purchase e¤ects such that �ijh = �jih;8i; j; h (Besag 1974,

Cressie 1993, Russell and Petersen 2000).

The probability that a household purchases in a given category on a purchase occasion,

or category incidence, depends on both perceived need, and marketing activities from the

brands in the category (Bucklin and Lattin 1992, Russell and Petersen 2000). Because

we seek to examine demand relationships, and pricing behavior, at the brand-and-retailer

level, however, we extend the usual MVL speci�cation to consider the demand for speci�c

items within each category. We then capture interactions in a parsimonious way through

the interaction terms given in (1).4 Therefore, we write baseline utility for each brand (k),

retailer (r), and category (i) as:

�ikrht = �ikr + �ihXikr + 
iZh; (2)

where �ikr are �xed e¤ects that control for the particular brand, k; that is purchased from

retailer, r, in category i, Xik is a matrix of category-speci�c marketing mix elements for each

brand, and Zh is a matrix of household attributes.5 Household attributes a¤ect perceived

need, as measured by the rate at which a household consumes products in the category,

which when combined with the frequency of category-purchase, determines the amount on

hand (INVh). We infer household inventory using methods that are standard in this lit-

erature (Bucklin and Lattin 1992). Namely, we calculate the category-consumption rate

for each household by calculating their total purchases over the sample period, and divide

by the total number of days in the data set. We then initialize inventory at the average

consumption-rate at the start of the time-period for each household, and increment inven-

tory upward with purchases, and downward each day by the average consumption rate. Need

is also determined by more fundamental household factors such as the size of the household

(HHh), income level (INCh), and education (EDUh). Any state dependence in demand

4Conceptually, a fully-nested version of the MVL would be preferably, but proved to be empirically
intractable.

5One brand each in the fruit juice and iced tea categories was o¤ered in only one retailer, so brand e¤ects
could not be identi�ed separately from retailer e¤ects.
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is assumed to be captured by the inventory variable as it re�ects intertemporal changes in

consumption behavior. Marketing mix elements at the brand-category level include the price

of the individual items in each category (pikr), and an indicator of whether the item was on

promotion during the purchase occasion at a particular retailer (PRikr).6

Each of the variables entering (2) represent sources of observed heterogeneity, whether at

the item (brand / category / retailer) (Xikr) or household (Zh) levels. However, there is also

likely to be substantial unobserved heterogeneity in household preferences and in attributes

of the item that may a¤ect incidence. Therefore, we capture unobserved heterogeneity in

item preference by allowing for randomly-distributed category-interactions (�ijh) and item-

level price-response (�pih). Formally, therefore, we estimate:

�pih = �pi0 + �pi1�i1; vi1 � N(0; �1); 8i; (3)

�ijh = �ij0 + �ij1�2; v2 � N(0; �2);

for the price-element of the marketing-mix matrix, and for each of the ij category-interaction

parameters. By allowing for a general pattern of correlation among these parameters (Singh,

Hansen, and Gupta 2005), we capture a primary source of coincident demand among cate-

gories. In other words, if households tend to be correlated in terms of their price sensitivity,

then allowing for co-movements in demand due to price responsiveness will remove some ele-

ment of randomness from the error term, leaving less variation to be explained by other fac-

tors. This extension to the MVL model, by incorporating random parameters into both the

marketing-mix and category-interaction parameters is called the random-parameters MVL

model, or RP-MVL.

With the error assumption in equation (1), the conditional probability of purchasing in

each category assumes a relatively simple logit form. Following Kwak, Duvvuri, and Russell

(2015), we simplify the expression for the conditional incidence probability by writing the

cross-category purchase e¤ect in matrix form, where: �h = [�1h;�2h; :::;�Nh] and each �ih
6The promotion indicator is inferred from the prices paid by each household. If the price paid is less

than 90% of the previous price paid for that item, and the price rises back to the previous level on the next
purchase occasion, then we infer that the purchase was made on promotion.
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represents a column vector of the I � I cross-e¤ect �h matrix which is de�ned as:

�h =

26666664
0 �12h �13h ::: �1Ih
�21h 0 ::: �2Ih
�31h �32h 0 ::: �3Ih
: : : ::: :
: : : ::: :
�I1h �I2h �I3h ::: 0

37777775 ; (4)

so that the conditional utility of purchasing an item in category i is written as:

Uht(cikrhtjcjkrht) = �0htbht +�0ihbht + "ht; (5)

for the items i; k; r in the basket vector bht: Conditional utility functions of this type po-

tentially convey important information, and are more empirically tractable that the full

probability distribution of all potential assortments (Moon and Russell 2008), but are lim-

ited in that they cannot describe the entire matrix of substitute relationships in a consistent

way, and are not econometrically e¢ cient in that they fail to exploit the cross-equation re-

lationships implied by the utility maximization problem. To see this more clearly, we derive

the estimating equation implied by the Gumbel error-distribution assumption, conditional

on the purchases made in all other categories, cjht: With this conditional assumption, the

probability of purchasing an item from category i = 1 is written as:

Pr(c1krht = 1jcjkrht) =
[exp(�1krht +�

0
1hbht)]

c1krht

1 + exp(�1krht +�01hbht)
; (6)

and bht represents the basket vector. Estimating all I of these equations together in a system

is one option, or Besag (1974) describes how the full distribution of bht choices are estimated

together.

Assuming the �h matrix is fully symmetric, and the main diagonal consists entirely of

zeros, then Besag (1974) shows that the probability of choosing the entire vector bht is

written as:

Pr(bht) =
exp(�0htbht +

1
2
b0ht�hbht)X

bht2B

[exp(�0htbht +
1
2
b0ht�hbht)]

; (7)
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where Pr(bht) is interpreted as the joint probability of choosing the observed combination

of categories from among the 2I potentially available from I categories.7 Assuming the

elements of the main diagonal of � is necessary for identi�cation, while the symmetry as-

sumption is required to ensure that (7) truly represents a joint distribution, a multi-variate

logistic distribution, of the category-purchase events. Essentially, the model in (7) represents

the probability of observing the simultaneous occurrence of I discrete events �a shopping

basket �at one point in time. And, due to the iid assumption of the logit errors associated

with each basket choice, the model in (7) implicitly assumes that the baskets are subject

to the independence of irrelevant alternatives (IAA), but the categories within the basket

are allowed to assume a more general correlation structure (Kwak, Duvvuri, and Russell

2015). Aggregating (7) over households then produces an expression for the probability of

purchasing each basket, and each component brand, category, retailer combination captured

by each basket.

Given the similarity of the choice probabilities to logit-choice probabilities, it is perhaps

not surprising that the form of the elasticity matrix is also similar. Given the probability

expression above, the marginal e¤ect of a price change in brand k, category i; and retailer

r, on the own-probability of purchase is written as:

@ Pr(cikr)

@pikr
= �pih Pr(cikr)(1� Pr(cikr)); (8)

where �pih is the household-speci�c marginal utility of income for an item in category i,

and Pr(cikr) includes all baskets that contain the speci�c i; k; r item: Similarly, the marginal

e¤ect of a change in the price of an item in a di¤erent category (j), of a di¤erent brand (l)

in the same store on the probability of purchasing an item in category i, when the items are

7The practical limitations of describing 2I choices are somewhat obvious. Recently, others have developed
ways to either reduce the dimensionality of the bht vector, or of estimating it more e¢ ciently. Kwak,
Duvvuri, and Russell (2015) focus on "clusters" of items within conventional category de�nitions, while
Moon and Russel (2008) project the bht vector into household-attribute space, so only 2 parameters are
estimated. Kamakura and Kwak (2012) use the random-sampling approach of McFadden (1978) to reduce
the estimation burden while leaving the size of the problem intact. Because our problem is well-described
with only a small number of categories (4), we estimate the MVL model in its native form.
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in the same baskets is given by:

@ Pr(cikr)

@pjlr
= ��pih Pr(cikr) Pr(cjlr); (9)

and the marginal e¤ect of change in the price of an item that may be in the same category,

and of the same brand, but in a di¤erent store is:

@ Pr(cikr)

@piks
= ��pih Pr(cikr) Pr(ciks) (10)

for all products not in the same store. With these expressions, we can estimate an entire

matrix of price responses, for all items with respect to all other items, whether they are from

the same brand, category, and store, or if they di¤er entirely.

In the absence of unobserved heterogeneity, the MVL model is estimated using maximum

likelihood in a relatively standard way. However, because we allow a range of parameters to

vary across panel observations, the likelihood function no longer has a closed form. Therefore,

the model is estimated using simulated maximum likelihood (SML, Train 2003), using r =

1; 2; 3::::R simulations. De�ne a set of indicator variables zk that assume a value of 1 if basket

k is chosen and 0 otherwise, so the likelihood function for a panel over h cross-sections and

t shopping occasions per household yields a simulated likelihood function written as (Kwak,

Duvvuri, and Russel 2015):

Lh(bht) =
1

R

RX
r=1

Y
t

Y
k

(Pr(bht = b
k
ht)

zk ; (11)

where the joint distribution function for all possible baskets is given in (7). We then take

the log of (11), sum over all households, and maximize with respect to all parameters:

LLF (�;�;
;�) =
PH

h=1 log Lh(bht): To increase the e¢ ciency of the SML routine, the

simulated draws follow a Halton sequence with 50 draws.

The MVL is powerful in its ability to estimate both substitute and complimentary rela-

tionships in a relatively parsimonious way, but su¤ers from the curse of dimensionality. That

is, with N products, the number of baskets is N2 � 1, so the problem quickly becomes in-

tractable for anything more then a highly stylized description of the typical shopping basket.
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Therefore, we restrict our attention to four categories that are likely to exhibit a pattern

of both substitute and complementary relationships. Other methods have been developed

in order to explicitly address the problem of dimensionality inherent in shopping-basket de-

mand estimation (Kamakura and Kwak 2012), but have not yet proven to be as amenable

to estimation in panel-scanner data as the RP-MVL.

To this point, the development of the MVL model is relatively standard. However, in our

application we are interested not only in the magnitude of each of the �ij parameters (drop-

ping the household subscripts for clarity), but how a consumer�s willingness to substitute

(or complement) between categories a¤ects equilibrium prices charged by retailers in each

category, and how the resulting margins are divided between retailers and manufacturers.

We use the parameter estimates from the RP-MVL model above to condition equilibrium

pricing behavior by retailers, and their bargaining power relative to manufacturers in the

vertical channel using the Nash bargaining model developed in the next section.

3 Bargaining Power Model

In this section, we describe the empirical model used to estimate the e¤ect of complementarity

on brand-level bargaining power. For this purpose, we use the vertical Nash-in-Nash model

developed by Misra and Mohandy (2006) and Draganska, Klapper, and Villas-Boas (2010).

Our model di¤ers from either of these studies, however, in that we explicitly account for the

e¤ect of complementarity. Horn and Wolitzky (1988) show that complementarity is likely

to be critical in in�uencing the level of bargaining power possessed by either side because

downstream-substitution patterns a¤ect the disagreement pro�t earned by each party should

negotiations fail. Disagreement pro�t, in turn, depends upon how much the market share

of each product would rise if the object of the negotiation is dropped from the product line-

up. With strict-substitute demand models, the notion that market share will rise if another

product is dropped is a given as it is enforced, mathematically.

With complementary products, however, the e¤ect is not as straightforward. If I am a
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retailer, and negotiations fail with my pasta-sauce supplier, I will still sell pasta-sauce from

another supplier (substitute product). If I also sell pasta from this same pasta-sauce supplier

(a complementary product), then the supplier�s loss in sales is magni�ed by the complemen-

tary relationship between pasta and sauce, but I continue to sell pasta from another supplier.

The disagreement pro�t for the retailer, therefore, is higher in the complementarity case than

it is when products are constrained to be strict substitutes, so retailer bargaining power is

expected to be higher. Ultimately, however, the complexity of the relationships involved in

any given shopping basket means that the implications of complementarity for bargaining

power is an empirical question. In this section, we describe how the Nash-in-Nash bargaining

power model applies to the case of shopping-basket shoppers.

We characterize the marketing channel as consisting of several, multi-product retailers,

and our several, multiple-product suppliers that sell to each of our sample retailers. We

assume retailers arrive at a Nash equilibrium in horizontal competition, pricing as if they were

Bertrand-Nash competitors selling di¤erentiated products. Following recent developments

in the empirical literature on vertical relationships, we then assume the supplier achieves a

Nash bargaining solution (Horn and Wolinsky 1988) with each of the retailers independently,

and estimate the resulting bargaining power parameter that divides the total margin (from

marginal production cost to retail price) between the supplier and retailers according to

their relative negotiating abilities (Draganska, Klapper, and Villas-Boas 2010). We begin by

solving for the optimal margin values, and then solve for the Nash bargaining solution.

Beginning with the retailer decision, and suppressing time period index (t) for clarity,

retailer g sets a price for each item under a maintained assumption of Nash rivalry to solve

the following problem: �g = maxpj
PJg

j=1(pj � crj � wj)Msj; g = 1; 2; :::; G; where M is

total market demand, wj is the wholesale price, crj are unit retailing costs, sj is the market

share de�ned above, and retailer g sells a total of Jg products. Marginal retailing costs are

assumed to be constant in volume, and a function of input prices, which is plausible given the

share of store-sales accounted for by any individual product. The solution to this problem
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is written in matrix notation as: mg= p� cr�w = �(
g � sp)�1s; where mg is a vector of

retail margins, p is a J � 1 vector of prices, w is a J � 1 vector of wholesale prices, cr is a

J � 1vector of retailing costs (estimated as a linear function of retailing input prices), s is a

J � 1 vector of market shares, sp is a J � J matrix of share-derivatives with respect to all

retail prices, 
g is a retail ownership matrix, with each element equal to 1 if the row item

and column item are sold by the same retailer, and 0 otherwise, and � indicates element-

by-element multiplication. Equilibrium retail prices, therefore, are determined by demand

interrelationships at the retail level in Bertrand-Nash rivalry.

If retail prices are assumed to be determined by the Bertrand-Nash game played among

retailers, and marginal production costs determined by the engineering relationships that

govern the cost of making each item, then the allocation of the total margin (from retail

prices to marginal production costs) depends on how the wholesale price (wj) is determined.

Wholesale prices, in turn, are assumed to be determined by a Nash bargaining process

(Horn and Wolinksy 1988; Draganska, Klapper, and Villas-Boas 2010). In a Nash bargaining

solution, the allocation of the total margin between wholesalers and retailers depends on two

elements: (1) the disagreement pro�t that results when negotiations fail and the product

is not sold, and (2) the bargaining power parameter, which is a function of the inherent

bargaining position of the two players. The disagreement pro�t term re�ects the fact that

if a product is not sold, the sales, and pro�ts, of all the other items sold by the retailer,

or manufacturer, are a¤ected by the nature of the demand interrelationships each face.

Draganska, Klapper, and Villas-Boas (2010) solve for the equilibrium relationship between

wholesale and retail prices by maximizing the Generalized Nash product in wholesale prices

for product j:

GN = (�gj (wj)� d
g
j (m

g
j ))

�j(�fj (wj)� dwj (mw
j ))

(1��j); (12)

where wj is the wholesale price, dwj (m
w
j ) is the disagreement pro�t to the supplier for product

j, which depends on the supplier�s margin, mw
j ; and d

g
j (m

g
j ) is the disagreement pro�t to the

retailer for failing to arrive at an agreement to sell the same product. In this expression,
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�j is the bargaining power parameter, which allocates the share of pro�t to the retailer

(�j) and the wholesaler (1 � �j) from the trade of product j. The �rst-order condition to

maximizing the Generalized Nash product is (dropping the product subscript and arguments

of the disagreement pro�t):

@GN

@w
= �(�g � dg)(��1)@�

g

@w
(�f � df )(1��) + (1� �)(�g � dg)�(�f � df )��@�

f

@w
= 0: (13)

This expression simpli�es to give the equilibrium relationship between retail and wholesale

prices as a function of their respective disagreement pro�ts, and the relative bargaining power

parameter:

�

�
(�f � df )@�

g

@w

�
+ (1� �)

�
(�g � dg)@�

f

@w

�
= 0: (14)

Because retail prices are assumed �xed at the BN solution, the derivatives @�
g

@w
= @�f

@w
=Ms

so this simpli�es to: (�g � dg) =
�
1��
�

�
(�f � df ): Stacking over all item-pro�ts provides a

simple solution in matrix notation that de�nes the equilibrium bargaining power parameter,

and the margins for each item:

mf =

�
1� �
�

�
[
f � S]�1[
g � S]mg; (15)

where 
f is the J�J manufacturer ownership matrix (with element = 1 if the manufacturer

owns product j and zero otherwise), mf is the manufacturer margin, and S is the matrix

that de�nes the incremental pro�t between when a product is sold, and when it is not (see

Draganska, Klapper, and Villas-Boas 2010 for details on its construction). Substituting the

expression for retail margins (mg) above, and solving for the total margin gives:

p� cf � cr = �
�
1� �
�

[
f � S]�1[
g � S] + I
�
[
g � sp]�1s(p); (16)

for the �nal estimating equation, where cf is a vector of manufacturing costs, estimated as

a linear function of manufacturing input prices.

In our empirical application, we recognize that bargaining power is likely to vary by each

retailer-manufacturer dyad in the data. Therefore, we allow the � parameter to be randomly
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distributed over the entire category-retailer-brand sample (�j = �j0 + �j1�3; v3 � N(0; �3))

so that bargaining power re�ects any factors that may in�uence the relative strength of

each player�s position. Importantly, however, allowing � to vary randomly also means that

we are able to recover a value for the bargaining power parameter for every observation in

the data set. In this way, we use a supplementary regression to test whether bargaining

power is higher or lower for products that are complements for other products. Determining

whether an item is a complement or substitute is not straightforward because the notion

of complementarity is de�ned dyad-by-dyad, yet we seek a summary measure for each item

in our data set. Therefore, we use the matrix S to determine whether each product is a

net complement or net substitute over all other items in the store. That is, if removing the

item from the product lineup reduces the demand for all other products, then it must be

primarily a complement, and vice versa. We then de�ne a variable measuring the extent

of the impact of removing each item on the demand for all other items (COMPj) that

captures the complementary (COMPj < 0) or substitute (COMPj > 0) status of the item

in question.

Given that the bargaining power estimation routine already controls for the identity of

the retailer and other factors, we test our core hypothesis using a straightforward regression

model in which bargaining power is estimated as a linear function of the complementarity

variable, and an interaction term between complementarity and time such that:

^

�j = �0 + �1COMPj + �2COMPj � t+ �; (17)

where
^

�jis the �tted-value from the random-parameter function described above, � is an iid

random variable, COMP � t is the complementarity variable interacted with a time variable,

and �i are parameters to be estimated.

In this model, our maintained hypothesis is supported if �1 < 0, as this implies that

retailers tend to have more bargaining power for complementary products than they do for

substitute products (recall that the COMP variable is negative-valued as it is measured as

the e¤ect on other product shares if the product is removed), and manufacturers, of course,

16



have less. Based on the theoretical insight of Horn and Wolinsky (1988), we attribute

this outcome to the exercise of market power in allocating the transaction surplus between

the buyer and the seller due to the fact that goods are complements. When retailers sell

complementary goods, and manufacturers are able to internalize the e¤ects of selling their

products through multiple retailers, then manufacturers�bargaining power will be lower for

that set of complementary items. Similarly, if �1 > 0 then suppliers earn higher margins

on complementary products, as the degree of bargaining power shifts to suppliers when

products are complements, contrary to the Horn and Wolinsky (1988) model. Further, if

�2 < 0 then any complementarity-premium earned by retailers erodes over time, and, by

de�nition, suppliers bene�t over time.

4 Data and Identi�cation Strategy

In this section, we describe the French soft-drink data and how we identify the parameters of

both the demand model, and the bargaining power model. Our data are from a large-scale

French consumer panel maintained by Kantar TNS Worldpanel for the year 2013. The panel

is designed to be representative of all French households, so contains observations from all

regions, urban and rural, and draw households from across all socioeconomic strata. We

draw a random sample of 330 households from the panel, who recorded a total of 29,026

transactions in 2013. As a household panel, the Kantar data includes information on the

speci�c item that was purchased, the package attributes, howmuch was paid, where and when

it was purchased, and a large set of household socioeconomic and demographic attributes.

Due to the dimensionality issues associated with the MVL model described above, we

focus on four sub-categories within the soft-drink category: colas, fruit juices, iced teas, and

combine all other soft drinks into an "other" category. In order to ensure that the MVL

model is empirically tractable, we also focus on sales through the top 4 retailers, and 4 brands

in each category that represented both a relatively large amount of volume in the category,
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and a presence in as many retailers as possible.8 Focusing on as many of the same brands

across retailers as possible is desirable for identi�cation as we capture as much cross-sectional

variation in margin behavior as possible. Although this 4 � 4 � 4 design may seem more

restrictive than is normally the case in other shopping-basket demand models, it is necessary

in our case because we need to be able to isolate speci�c retail-manufacturer pairs from the

demand model through the bargaining-power estimation process.

We identify complementary relationships among items in the 4 sub-categories by specif-

ically choosing products that are often combined in typical shopping-basket purchases.

Whether from a demand for variety, purchasing for multiple use occasions, buying for mul-

tiple consumers within the buying household, umbrella branding by manufacturers, or some

other source, we observe a substantial number of multi-purchase occasions that can be de-

scribed as evidence of, at least, incidental complementarity if not complete price comple-

mentarity. In table 1, the sample-shares of each item-combination are shown in the bottom

15 rows. The data in this table shows that purchases of fruit-juice-only are most common

(31%), while combinations of juice-and-other (13.4%) and cola-juice-and-other (10.5%) are

also common. Importantly, no item combination is null so that each interaction parameter

in the MVL model has su¢ cient choice-variation to be, at least in theory, identi�ed.

[table 1 in here]

Soft drinks represent an ideal opportunity to examine our research question as bever-

ages are frequently consumed within the household, consumers tend to exhibit a demand

for variety in their soft drink purchases, and, on the supply side, several manufacturers

produce product lines across many of the sub-categories that are the focus of our analysis.

For instance, the Coca Cola company not only produces their namesake brand in the cola

sub-category, but Minute Maid in the juice sub-category, Nestea in the iced tea sub-category,

and Powerade in the Other category. Further, because of the importance of national brands

in the soft-drink category, our data include a number of brands that are o¤ered by the same

8Note that this strategy means that the 4 brands are not always the same in all retailers in each category.
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manufacturer through all 4 retailers. Because of our focus on bargaining power, variation in

pricing and margins for the same brand across retailers is necessary in order to identify di¤er-

ences in bargaining power associated with manufacturer-retailer dyads. Moreover, national

brands are a critical element of our model as umbrella branding can be a primary source of

purchase complementarity (Richards, Yonezawa, and Winter 2015; Erdem and Chang 2012;

Erdem and Sun 2008). If complementarity at the end-user level represents an important

source of downstream bargaining power, then it should be manifest in purchases by retailers

in this category, if any. The data in table 1 also summarize the market share of each retailer,

and each of our focus brands. Clearly, Retailer 1 is substantially larger than the other 3

retailers, particularly Retailers 3 and 4. Other than Brand 1 in the cola category, there

does not appear to be any dominant brands in either of the 4 sub-categories, but su¢ cient

variation to identify both the demand model, and the disagreement-pro�t element of the

bargaining power model.

In terms of the pricing model, we use input price indices from the French National

Institute for Statistics and Economic Studies to estimate the marginal cost function. For

each category, we �rst de�ne an index of "primary input" prices, that is, water and sugar

or sugar substitutes for cola, water and fruit for fruit juice, water and tea prices for tea,

and an average of all content-input prices for the other category. We also create an index of

packaging prices by averaging the price indices for aluminum, plastic, and glass. Next, we

include an index of wages in the beverage industry to account for the labor content of items

in each category. We also calculated an index of energy prices from gasoline, and electricity,

but they were found to be statistically insigni�cant, in any combination, so were excluded

from the �nal model. In the pricing model, we aggregated the data by category, brand,

and retailer across all household purchases. These averages were weighted by the volume of

purchase to arrive at an average price across all participating households. From the data

presented in table 2, the resulting average prices contain su¢ cient variation to identify any

variation in retail pricing over time, and over brands o¤ered by di¤erent retailers. We also
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impute a promotion variable at the household level by measuring the di¤erence in price

for the same brand at the same retailer from one week to the next. Any price di¤erence

that is larger than -10%, and remains for 1 week, is de�ned as a temporary price reduction,

or a promotion. Table 2 presents summary statistics for all input prices, item prices, and

promotional activity.

[table 2 in here]

In the demand model, prices are likely to be endogenous (Villas-Boas and Winer 1999).

That is, at the household level, the error term for each demand equation contains some

information that the retailer observes in setting equilibrium prices: advertising, in-store dis-

plays, preferred shelf-space, or a number of other factors that we do not observe in our data.

Therefore, we estimate the demand model using the control function method (Petrin and

Train 2010). Essentially, the control function approach consists of using the residuals from

a �rst-stage instrumental variables regression as additional variables on the right-side of the

demand model. Because the residuals from the instrumental variables regression contain

information on the part of the endogenous price variable that is not explained by the in-

struments, they have the e¤ect of removing the correlated part from the demand equation.

Because input prices are expected to be correlated with retail prices, and yet independent

of demand, our �rst-stage control function regression uses the set of input price variables

as instruments. We also include brand and retailer �xed-e¤ects in order to account for any

endogenous e¤ects that are unique to each item. Although these variables should represent

e¤ective instruments, whether they are weak in the sense of Staiger and Stock (1997) is

evaluated on the basis of the F-test that results from the �rst-stage instrumental variables

regression.9 In this case, the F-statistic is 65:4, which is much larger than the threshold of

10:0 suggested by Staiger and Stock (1997). Therefore, we conclude that our instruments

are not weak.

We can also draw some stylized facts from our demand data. Our interest in studying

9Detailed results from the �rst-stage instrumental variables regression are available from the authors.
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the structural e¤ects of complementarity on bargaining power follows from a simple obser-

vation: In our soft-drink data, when items from di¤erent categories are purchased together,

consumers appear to be willing to pay a signi�cant price-premium for either product, relative

to their respective category averages (�gure 1). That is, if a consumer purchases only a fruit

juice, they would be willing to pay more for the same fruit juice if they also purchased at

least one item from another category.10 While there are many factors that may explain this

di¤erence, it is suggestive of a pattern that consumers are willing to pay more for items when

combined in a shopping basket, than when purchased alone.11 Whether this represents a

greater demand for complementary items remains to be determined by estimating the MVL

model described above, and calculating equilibrium prices for complementary items.

[�gure 1 in here]

5 Results and Discussion

In this section, we �rst present the results from estimating several versions of the MVL

shopping-basket model, and then the estimates from the Nash bargaining-equilibrium model.

All bargaining-power estimates are conditioned on the preferred speci�cation for demand,

in order to ensure that our estimates are consistent across all of the models used. Because

we are able to use these estimates to derive a vector of bargaining-power estimates across

each category-retailer-brand observation, we then present the results from a supplementary

regression of bargaining power on the extent of complementarity associated with each item.

In this way, we are able to test our primary hypothesis regarding the relationship between

complementarity and bargaining power.

10The di¤erences are statistically signi�cant at the 5% level for the juice, iced tea, and other categories,
and at 15% for the cola category.
11We considered the possibility that this observation was due to the fact that single-category purchases

are likely to involve greater quantities, and hence lower unit prices. However, consumers in our sample
purchased greater quantities only during multi-category shopping trips for 2 of the 4 categories.
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5.1 Demand Model Results

Our demand-model estimates are shown in tables 3 and 4 below. Table 3 presents the

structural estimates for each baseline-utility model, while table 4 presents the full set of

interaction parameters, estimated from the same model. In each case, we compare the

estimates from a �xed coe¢ cient version of the MVL model to one that takes unobserved

heterogeneity explicitly into account by including random coe¢ cients for both the marginal

utility of income, and the category-interaction parameters. A likelihood ratio (LR) test

comparing the �xed and random-coe¢ cient versions of the model yields a test-statistic value

of 186:2, whereas the critical Chi-square value at 5% and 7 degrees of freedom is 14:07, so

we interpret the results from the preferred, random-coe¢ cient version of the model.

[table 3 in here]

Comparing the estimates between the two models also shows the extent of bias from not

accounting for unobserved heterogeneity, as the marginal utility of income, for example, is

nearly 1/3 as large in the random-coe¢ cient relative to the �xed-coe¢ cient model.12 Among

the other parameters of interest in the demand model, note that inventory has a strong,

negative e¤ect on the probability that a shopping basket contains each category, except in

the case of fruit juice. Because fruit juice is the least storable of any category included here,

this result is intuitive. Further, promotion generally has a strong, positive e¤ect on demand

in each category but tea. Although an interaction term between price and promotion could

not be identi�ed in our data, it is likely the case that promoting tea caused the demand curve

to rotate, or become more elastic, su¢ cient to cause the net e¤ect on category-demand to

become negative. In each case, the control function parameter was statistically signi�cant,

which implies that endogeneity is an important feature of our data. Of more interest with

this model, however, is the sign and signi�cance of utility-interactions among categories.

Based on the estimates in table 4, we conclude that there are signi�cant interaction ef-

12Note that we restrict the marginal utility of income to be equal across all categories as, logically, this
parameter is an attribute of household preferences and should not vary across categories.
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fects associated with purchasing items from di¤erent categories together in the same shopping

basket. In fact, because each mean-estimate is positive, these results suggest that comple-

mentarity is rather the rule than the exception. Because the scale parameter associated with

4 of the 6 interaction-pairs are negative, however, many of the point-estimates for speci�c

items will indeed be negative in total. This is particularly true for the Cola, Fruit Juice in-

teraction parameter, and the Fruit Juice, Other interaction parameter, which show relatively

large scale estimates. In general, the statistical signi�cance of these interaction parameters

suggests that models that do not allow for utility-interaction among category purchases are

fundamentally mis-speci�ed as complementarity is likely to be important. Our interest in

this paper, however, does not lie in identifying complementarity per se, but rather its impact

on equilibrium pricing, and bargaining power. We examine these e¤ects in the next section.

[table 4 in here]

5.2 Bargaining Power Results

Our empirical bargaining power model is structural in nature in the sense that describes how

the total margin (retail price less production and distribution cost) is allocated between the

manufacturer and retailer, and the bargaining power parameter is identi�ed by variation in

the rate at which changes in cost are passed-through to the retail level. Estimates from the

base bargaining power model, and a �xed-coe¢ cient alternative, are shown in table 5. Similar

to our approach in evaluating the importance of unobserved heterogeneity for the demand

model, we conduct a LR speci�cation test in order to determined the preferred form of the

pricing model. Using the results in table 5, the Chi-squared LR statistic is 1; 180:2, while the

critical value is 3:84 with on degree of freedom. Consequently, we reject the �xed coe¢ cient

version and interpret the bargaining power estimates allowing for random variation of the

bargaining power parameter. From a practical perspective, allowing � to vary over time by

retailer also allows us to identify factors that may or may not be associated with variation

in market power over time.
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[table 5 in here]

The bargaining-power estimates are found after controlling for variation in input prices,

and retailer-�xed e¤ects. Interpreted at the mean of the � point-estimates, we �nd that

retailers earn approximately 2=3 of the total margin across all of our sample beverage cate-

gories.13 This �nding is somewhat surprising, given the importance of large, multi-national

beverage manufacturers such as Coca Cola and Pepsico, but re�ects the fundamental eco-

nomics of selling through oligopoly retail channels. Although net margins in the retailing

industry may be traditionally low, these �ndings suggest that retailers still earn a relatively

large share of the price-cost margin, but much of these rents are absorbed by the �xed costs

of retailing.

5.3 Bargaining Power and Complementarity

The point estimate in table 5, however, does not tell us anything about the relationship be-

tween bargaining power and complementarity. Ailawadi, et al. (2010), however, argue that

explaining variation in bargaining power is an important insight that needs to come out of

the vertical relationships literature. Therefore, we present the results from a supplementary

regression of bargaining power on a measure of complementarity, and retailer �xed e¤ects,

in table 6. Our primary hypothesis concerns the empirical relationship between bargaining

power and complementarity. Complementarity means that retailers, who internalize pric-

ing externalities from selling products that are related in demand, earn lower margins on

complementary products (Rhodes 2015; Zhou 2014) relative to items that are substitutes

in demand. Therefore, retailers�disagreement pro�t is lower for complementary products.

Manufacturers negotiate with retailers�incentives �rmly in mind, so complementarity should

imply more retailer bargaining power, and lower manufacturer power, relative to the usual

substitute-products case.

We investigate this question in table 6, in which we estimate a model that shows how � to

13Note, however, that this does not mean that retailers earn fully 2=3 of the pro�t as manufacturers earn
some of the disagreement pro�t according to equation (15), depending on the re-allocation of demand.
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varies over retailers, and with the degree of complementarity. In this table, Model 1 considers

the possibility that retailers� bargaining power erodes over time, while Model 2 removes

the time-decay e¤ect. Model 3 includes a binary indicator (Cat �Mfg) that captures the

e¤ect of manufacturers that sell items in multiple categories. From the estimates reported

in this table, we �nd support for our hypothesis. Namely, because the COMP variable

is continuously valued, and negative for a product that complements others, these results

suggest that complementary products are associated with a share of the total margin that is

approximately 28% greater from the retailers�perspective, ceteris paribus. Said di¤erently, if

an item is complementary with other items, then that item is associated with a share of the

total margin that is almost one-third higher for the retailer compared to a di¤erent item that

tends to substitute for others. Although we allowed for the possibility that retailer bargaining

power also erodes over time, we failed to reject the null hypothesis of no time-dependency

over time. Although it is likely that bargaining power does change over a longer time-

series, a one-year time period is not su¢ cient to capture changes in retailer-manufacturer

relationships in our data.

[table 6 in here]

The estimates in table 6 also show that Retailers 2 and 3 appear to be slightly more

successful in bargaining with the set of manufacturers in our data compared to Retailer

1. While we cannot disclose the identity of the retailers, Retailers 2 and 3 are far larger,

measured by sales, relative to Retailer 1, so a high degree of bargaining power is perhaps to

be expected. This �nding also suggests that there is a substantial component of the variation

in bargaining power that is due to di¤erences in size, managerial e¤ectiveness, product-mix,

geographical distribution or other factors that a¤ect performance in the vertical channel.

Manufacturers may also o¤er items across-categories, whether complementary or not.

There are two possible e¤ects on their bargaining power: First, if a manufacturer o¤ers a

number of "must have" national brands in key categories, then it may be the case that

manufacturer barganing power rises if it controls brands in a number of categories. Second,
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a manufacturer may o¤er a "full line forcing" or bundling arrangement in order to ensure

that the retailer provides its brands as wide of coverage as possible. Ho, Ho, and Mortimer

(2012) �nd that such an arrangement in the video rental industry is responsible for lower

wholesale prices, and, often, lower supplier pro�ts. When we estimate a version of the

bargaining power model in which we control for both complementarity and a binary indicator

for multi-category presence (Model 3), we �nd empirical support for the �ndings of Ho, Ho,

and Mortimer (2012).14 That is, a multi-category presence is associated with higher retailer

bargaining power, so it appears as though manufacturers in the soft drink industry are willing

to give up value in order to secure broad coverage for all their brands.

The analysis in tables 6, however, concerns only the exogenous part of bargaining power,

or the � parameter that divides the share of the total margin into the part earned by the

retailer, and the part earned by the manufacturer. How the level of each margin varies

with complementarity, however, is also of interest. We o¤er some evidence in that regard in

table 7. In this table, we calculate the implied total, retail, and manufacturer margins, as

well as the prices received by the retailer. The �ndings in this table show that the positive

relationship between complementarity and retailer bargaining power appears to be driven

largely by two categories �colas and fruit juice �while bargaining power in the other two

categories is more equally shared. From the summary statistics in table 1, it is clear that

the majority of shopping baskets that contain soft drinks consist of some combination of

colas and fruit juices. Therefore, if complementarity is indeed an important in�uence on

the balance of negotiating power between retailers and manufacturers, it is likely to involve

these two categories. Further, total margins in the cola and fruit juice categories appear

to be substantially smaller for items that have a complementary relationship with others

relative to those that have a substitute relationship, even when, in the case of fruit juice,

the average retail price is higher. This �nding suggests that retailers and manufacturers are

willing to take smaller margins on items that drive tra¢ c to other, more pro�table categories.

14The speci�c estimates are available from the authors upon request.
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Nonetheless, this table shows that bargaining power, and margins, di¤er considerably among

categories.

[table 7 in here]

Our �ndings are critical to outcomes for vertical relationships in the food industry, but are

also relevant to a broad class of retailer-manufacturer relationships. Because food is typically

purchased from multi-product retailers, in combinations that include many di¤erent pairs

of complements and substitutes, the supermarket case represents an ideal context in which

to investigate our research question. But, many types of manufacturers sell complemen-

tary items into oligopolistic retail channels, whether the context is computer accessories and

hardware (Dell, Lenovo), sporting goods and accessories or apparel (Adidas, Specialized),

or farm equipment and data services (John Deere, New Holland). In each case, retailers

have expanded over time to take advantage of the incentives inherent in multi-product re-

tailing �generally de�ned as economies of scope and scale �but there has been no research

to this point that identi�es bargaining power as an additional explanation for the expan-

sion of multi-category retailers. In fact, as retailers begin to sell through multiple channels,

including online, bricks-and-mortar, and print-catalogue, the complementarity inherent in

cross-channel selling may further manifest in even higher retailer margins through the mech-

anism we identify.

6 Conclusion and Implications

In this paper, we investigate the role of complementarity in in�uencing the relative bargaining

power between retailers and manufacturers in a vertical channel. Based on theoretical models

of bargaining in a vertical channel, with multi-product retailers and manufacturers (Horn

and Wolinsky 1988) we expect that the nature of demand relationships in the downstream

market are critically important to how bargaining power manifests in the share of the price-

cost margin earned by each party. Namely, we expect downstream complementarity to be

associated with higher levels of retailer bargaining power as manufacturers�disagreement
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pro�t is lower if products are purchased together by consumers in the retail market. Lower

disagreement pro�t means that manufacturers have an incentive to reach agreements to

sell complementary products through their retail partners, and retailers negotiate with this

understanding in mind.

We test our hypothesis using a new model of shopping-basket demand that accounts for

both the discrete nature of category-level purchases, and the complementarity associated

with combining items from several categories on each trip to the store. The MVL model

is able to capture the observation that some pairs of items from di¤erent categories tend

to be purchased together, even when they are not complements in the traditional sense

of bread-and-better, or ketchup-and-hamburger. We apply the MVL model to a sample

household-level data from four soft-drink categories purchased by French households in the

2013 calendar year, focusing on purchases made by households at the top four retail chains,

buying the top four brands sold across all retailers.

We �nd that selling complementary product pairs is associated with roughly 9% greater

retailer margin-share than would otherwise be the case. That is, retailers are able to enhance

their bargaining power relative to manufacturers by selling complementary products across

categories. When entering negotiations, retailers understand that manufacturers have to

o¤er a broad array of items across di¤erent categories in order to extend their brand appeal.

Knowing the pressures faced by manufacturers, retailers negotiate accordingly, and are able

to extract greater rents in the vertical channel by leveraging the fundamental economics of

multi-product selling.

Our �ndings are likely relevant to other markets in which retail complementarity is im-

portant. As brands expand across related categories, and even related channels, retailers will

be able to take advantage of the fact that manufacturers need to be omni-present in order

to stay in the minds of consumers. Whether in the technology, sports, industrial equipment,

or other markets, retailers share a common attribute of being the primary means by which

manufacturers are able to reach consumers �consumers who prefer to purchase goods from
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one outlet.

Our research is not without limitations. First, we focus our empirical analysis on a single

super-category of items, namely soft drinks. Future research that extends our approach to

data from other food categories, or even other categories of non-food products, would be

valuable. Second, our analysis is restricted to the particular context of French retailing. For

our results to generalize beyond the French context, the nature of bargaining relationships

between manufacturers and retailers would have to be at least similar. Third, our �ndings

are also limited to the European case where anti-trust restrictions to not shape retailer-

manufacturer bargaining, as the Robinson-Patman Act does, at least nominally, in the U.S.

Given the weakness of the Robinson-Patman law, however, it would be of real interest to

use the approach described here to examine the e¤ectiveness of the law itself (Luchs et al.

2010).
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Table 1. Summary of Sample Shares
Retailers / Brands Baskets

Variable Mean Std. Dev. Variable Mean Std. Dev.

Retailer 1 0.353 0.478 Cola Only 0.088 0.284
Retailer 2 0.278 0.448 Fruit Juice Only 0.310 0.462
Retailer 3 0.190 0.393 Iced Tea Only 0.014 0.119
Retailer 4 0.179 0.384 Other Soft Drink Only 0.082 0.275
Brand 1, Category 1 0.300 0.458 Cola and Juice 0.098 0.297
Brand 2, Category 1 0.031 0.172 Cola and Tea 0.005 0.068
Brand 3, Category 1 0.001 0.030 Cola and Other 0.055 0.229
Brand 4, Category 1 0.022 0.147 Juice and Tea 0.017 0.130
Brand 1, Category 2 0.171 0.377 Juice and Other 0.134 0.340
Brand 2, Category 2 0.071 0.257 Tea and Other 0.008 0.090
Brand 3, Category 2 0.044 0.204 Cola, Juice, and Tea 0.017 0.130
Brand 4, Category 2 0.004 0.063 Cola, Juice, and Other 0.105 0.307
Brand 1, Category 3 0.074 0.261 Cola, Tea, and Other 0.005 0.073
Brand 2, Category 3 0.013 0.115 Juice, Tea, and Other 0.028 0.164
Brand 3, Category 3 0.003 0.055 Cola, Juice, Tea, and Other 0.032 0.177
Brand 4, Category 3 0.065 0.476
Brand 1, Category 4 0.066 0.248
Brand 2, Category 4 0.059 0.237
Brand 3, Category 4 0.046 0.209
Brand 4, Category 4 0.016 0.125
Note: Brand and retailer identities cannot be disclosed.
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Table 2. Summary of Soft Drink Pricing Data
Variable Units Mean Std. Dev. Min. Max. N

Aluminum Price Index 93.800 4.989 86.700 102.400 3328
Plastic Price Index 106.300 0.332 105.700 106.900 3328
Glass Price Index 104.967 0.661 103.500 105.700 3328
Sugar Price Index 147.106 7.636 134.100 158.500 3328
Gasoline Price Index 113.156 2.265 110.300 118.000 3328
Electricity Price Index 115.331 4.921 107.300 121.300 3328
Sugar Substitute Price Index 104.588 0.700 103.510 106.010 3328
Fruit Price Index 2.578 0.115 2.433 2.778 3328
Tea and Co¤ee Price Index 114.602 1.001 112.600 116.000 3328
Bottled Water Price Index 110.010 0.533 108.500 110.800 3328
Beverage Industry Wage Index 110.650 0.415 110.000 111.100 3328
Cola Price Euros / liter 0.891 0.245 0.295 1.808 3328
Fruit Juice Price Euros / liter 1.855 0.538 0.756 3.333 3328
Iced Tea Price Euros / liter 0.918 0.221 0.226 2.500 3328
Other Soft Drink Price Euros / liter 1.106 0.405 0.212 9.909 3328
Cola Promotion % 0.060 0.238 0.000 1.000 3328
Fruit Juice Promotion % 0.052 0.222 0.000 1.000 3328
Iced Tea Promotion % 0.064 0.244 0.000 1.000 3328
Other Soft Drink Promotion % 0.070 0.255 0.000 1.000 3328
Note: Input prices used to form indices in the �nal estimated model. Promotion indicators calcu-

lated using price-reduction threshold of 10%.
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Table 4. Interaction Parameters from MVL
Fixed Coe¢ cient Random Coe¢ cient
Estimate t-ratio Estimate t-ratio

Cola, Fruit Juice 48.4471* 78.4467 59.2950* 96.0119
Scale -13.8800* -49.5913
Cola, Tea 97.7647* 251.6550 45.9108* 118.1784
Scale -8.4682* -99.9394
Cola, Other 76.0721* 177.6280 42.6219* 99.5219
Scale -1.0608* -3.9993
Fruit Juice, Tea 89.2720* 271.4451 73.5761* 223.7192
Scale 21.6681* 5.1517
Fruit Juice, Other 63.3418* 165.5473 77.2406* 201.8725
Scale -18.9383* -37.2703
Tea, Other 40.8367* 95.1759 36.4701* 84.9990
Scale 3.2041 1.5656
Note: A single asterisk indicates signi�cance at a 5% level.
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Table 5. Estimates of Bargaining Power Models
Fixed Parameter Random Parameter
Estimate t-ratio Estimate t-ratio
Non-Random Parameter Estimates

Primary Input 0.0070* 53.9231 0.0072* 22.4375
Packaging 0.0091* 2.7447 0.0093* 2.3990
Beverage Wages 0.0103* 3.3497 0.0104* 2.9408
Retailer 1 0.0312 1.5598 0.0326* 6.0222
Retailer 2 0.0118 0.5878 0.0180* 3.5757
Retailer 3 0.1752* 8.7722 0.1616* 32.9165

Random Parameter Estimates
� 0.9929 1.0608 0.6776* 173.6314

Standard Deviation of Parameters
�� N.A. N.A. 1.0817* 199.9353

Variance of Regression
� 0.3847* 226.2765
LLF -1728.61 -1138.53
AIC 1.0431 0.6884
Note: A single asterisk indicates signi�cance at a 5% level.

Estimated with simulated maximum likelihood.
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in
in
g
P
ow
er
by
C
om
pl
em
en
ta
ri
ty
R
eg
im
e

T
ot
al
M
ar
gi
n

R
et
ai
l
M
ar
gi
n

M
fg
.
M
ar
gi
n

R
et
ai
l
P
ri
ce

B
ar
g.
P
ow
er

C
ol
as

N
ot
C
om
p

0.
54
01

0.
33
66

0.
20
36

0.
99
33

0.
64
35

C
om
p

0.
45
67

0.
31
18

0.
14
49

0.
84
51

0.
68
57

Fr
ui
t
Ju
ic
e

N
ot
C
om
p

0.
66
20

0.
41
49

0.
24
71

1.
84
94

0.
64
44

C
om
p

0.
55
17

0.
37
02

0.
18
15

1.
89
80

0.
73
13

Ic
ed
T
ea
s

N
ot
C
om
p

0.
48
69

0.
31
47

0.
17
22

0.
92
30

0.
65
86

C
om
p

0.
57
13

0.
34
79

0.
22
33

0.
91
34

0.
63
77

O
th
er
s

N
ot
C
om
p

0.
56
15

0.
35
05

0.
21
10

1.
16
56

0.
62
65

C
om
p

0.
56
13

0.
34
88

0.
21
25

1.
08
66

0.
62
61

N
ot
e:
M
ar
gi
ns
ca
lc
ul
at
ed
us
in
g
es
ti
m
at
es
in
ta
bl
e
5.
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