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Abstract

This paper aims to present and compare statistical modeling methods adapted for shares
as dependent variables. Shares are characterized by the following constraints: positivity
and sum equal to 1. Four types of models satisfy this requirement: multinomial logit models
widely used in discrete choice models of the econometric literature, market-share models from
the marketing literature, Dirichlet covariate models and compositional regression models
from the statistical literature. We highlight the properties, the similarities and the differences
between these models which are coming from the assumptions made on the distribution of
the data and from the estimation methods. We prove that all these models can be written
in an attraction model form, and that they can be interpreted in terms of direct and cross
elasticities. An application to the automobile market is presented where we model brand
market-shares as a function of media investments in 6 channels in order to measure their
impact, controlling for the brands average price and a scrapping incentive dummy variable.
We propose a cross-validation method to choose the best model according to different quality
measures.

Keywords: Multinomial logit; Market-shares models; Compositional data analysis; Dirich-
let regression.

1 Introduction

A large number of fields are concerned by the analysis of share data. Our primary motivation
for studying this type of data comes from marketing where there is an interest for modeling
market-shares, see for example Cooper and Nakanishi [7]. In political economy, Elff [8]
studies voting behaviors and analyzes the relationship between the shares of political parties
and their policy positions in different groups of voters. In geology, Solana-Acosta and Dutta
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2 2 MODELS FOR EXPLAINING SHARES

[39] are interested in the lithologic composition of sandstone according to whether it is quartz,
feldspar or rock fragments. For environmental planning purposes, land use models focus on
what are the proportions of different types of uses (forest, agriculture, urban, etc...) on a
given piece of land, see for example Chakir et al. [6].

This paper aims to present statistical modeling methods adapted for share data as depen-
dent variable (e.g. market-shares), which are characterized by the following constraints: they
are positive and sum up to 1. By definition shares are “compositional data”: a composition
is a vector of parts of some whole which carries relative information. For a composition of
D parts, if D− 1 parts are known the Dth part is simply 1 minus the sum of the D− 1 other
parts. Indeed, D-compositions lie in a space called the simplex SD, not in the Euclidean
space RD. Because of these constraints, classical regression models cannot be used directly.

There are four main types of models which incorporate the constraints of this kind of data:
multinomial logit models are very frequent in the econometric literature, market-share models
in the marketing literature, Dirichlet covariate models and compositional regression models
in the statistical literature. We highlight the properties and the differences between these
models which are coming from the assumptions made on the distribution of the data and from
the estimation methods. We prove that all these models can be written in an attraction model
form, and we derive the direct and cross elasticities formula to interpret their parameters.
We also show that the market-shares models can be expressed in a compositional way.

An application to the automobile market is presented where we model brands market-
shares as a function of media investments in 6 channels (TV, press, radio, outdoor, digital,
cinema) in order to measure their impact, controlling for the brands average price and a
scrapping incentive dummy variable. We propose a cross-validation method to choose the
best model according to different quality measures adapted to shares data.

The present paper is organized as follows: the four models adapted to model shares data
are presented in Section 2, and theoretically compared in detail in Section 3. Section 4
presents an application to an automobile market data set, along with an empirical compar-
ison of the models in terms of cross-validated goodness-of-fit measures, and an example of
elasticity interpretation. Finally, last section concludes on the findings and on directions to
be investigated.

2 Models for explaining shares

2.1 Notations

In order to compare the four different models, the notations are standardized in Table 1
depending on whether the variables are considered in volume or in share, in the left or in
the right part of the regression equation, and if they are alternative and/or observation de-
pendent. For example, in the case we use for illustration, the dependent variable is the sales
of vehicles observed across time; among the explanatory we have media investments, price
(depends on brands and on time) and scrapping incentive (depends only on time). The sales
can be considered in volume (number of sales) or in share (market-shares). Similarly, media
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investments in volume correspond to the amount of euros spent, in share it corresponds to
the so-called “shares-of-voice” in marketing.

C() denotes the closure operation which transforms volumes into shares:

C(y1, . . . , yD) =

(
y1∑D
j=1 yj

, . . . ,
yD∑D
j=1 yj

)

Variable Volumes Shares
(absolute values) (relative values)

Dependent Njt St = (S1t, . . . , SDt) = C(N1t, . . . , NDt)

Explanatory (observation and
component characteristic)

Xjt Zt = (Z1t, . . . , ZDt) = C(X1t, . . . , XDt)

Explanatory (observation char-
acteristic only)

Wt

General notations
D Number of components (3 in the application)
j, l,m = 1, . . . , D Index of components (brands in the application)
T Number of observations (123 in the application)
t = 1, . . . , T Index of observations (time in the application)
K,KX ,KW Number of explanatory variables / of type X / of type W
k = 1, . . . ,K Index of explanatory variables (by default)
k = 1, . . . ,KX Index of explanatory variables of type X
κ = 1, . . . ,KW Index of explanatory variables of type W
sj Theoretical mean share (expected value of Sj)
Notations for the application
C Number of media channels (6 in the application)
c = 1, . . . , C Index of media channels
Mcjt Media investment in channel c at time t for brand j
Pjt Average price at time t of brand j
It Scrapping incentive dummy at time t

Table 1: Notations

2.2 Multinomial logit models

In econometrics, Multinomial logit (MNL) models are widely used to model discrete choices
of individuals, i.e. to model the probability that an individual i chooses an alternative j, us-
ing individual data. Sometimes this data are aggregated using a group variable (time, space,
age-group, etc) and then the counts for each alternative and the covariates are recorded in
each group. We are going to describe how an individual-level MNL model can be adapted
to aggregated data, provided that the explanatory variables are either describing the alter-
natives (and are constant for all decision makers in a group) or are group characteristics.
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2.2.1 Discrete choice model: a random utility model for individual data

Multinomial logit models (MNL) are usually widely known by statisticians because they are
a generalization of the famous binary logistic regression model. MNL is a particular case
of discrete choice models, used to explain and predict polytomous, discrete or qualitative,
response variable (a finite set of mutually exclusive and collectively exhaustive alternatives)
by a set of explanatory variables1.

In econometrics, random utility models are based on the idea that decision makers are
choosing the alternative that maximizes their utility. For an introduction to utility in econo-
metrics, see for example McFadden [27]. Thus, the probability for decision maker i to choose
alternative j at choice situation t is defined as:

pijt = P(Choiceit = j) = P[Uijt ≥ Uilt, ∀ l 6= j] (1)

where Choiceit is the variable of choice of individual i at choice situation t, and Uijt is the
utility associated to alternative j for decision maker i at choice situation t.

Random utility models decompose the utility Uijt as a sum of a deterministic part Vijt
and a random part εijt:

Uijt = Vijt(Xt) + εijt

where X is a set of explanatory variables for the deterministic part of the utility.

If error terms are extreme-value (Gumbel) distributed, the computations of probabilities
from (1) (Koppelman and Bhat [20]) have a closed form leading to the Multinomial Logit
model (also called random coefficient logit model)

pijt =
exp(Uijt)∑D
l=1 exp(Uilt)

(2)

which can be estimated by maximum likelihood (using the density of the multinomial distri-
bution) on individual-level data.

2.2.2 Conditional logit model: alternative-specific explanatory variables

If explanatory variables only characterize alternatives (and not individuals), MNL is called
“conditional logit model”. If alternative characteristics do not change across decision makers,
the conditional logit model can be expressed in an aggregated way, using count data instead
of individual data, which means that only the numbers of individuals who have chosen each
alternative are needed instead of the individual choices. This is the case for our illustration
data: it allows us to estimate the market-share (probability) of a brand depending on the
characteristics of this brand relatively to the characteristics of other brands in competition.

1See Koppelman and Bhat [20]
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The expected share of alternative j at choice situation t (e.g. market-share of brand j at
time t) corresponds actually to the probability of j to be chosen by an individual, and is
expressed as

sjt = E(Sjt|Xt) =
exp(aj +

∑K
k=1 bkXkjt)∑D

l=1 exp(al +
∑K
k=1 bkXklt)

(3)

with aD = 0 for identifiability reasons.

2.2.3 Estimation by maximum likelihood for aggregated data

The multinomial distribution is a generalization of the binomial distribution. For N inde-
pendent individuals who choose exactly one of D alternatives, with each alternative having
a given probability to be chosen, the multinomial distribution gives the probability of any
particular combination of numbers of choices for the various alternatives: (N1, . . . , ND) ∼
MN (N ; s1, . . . , sD), where N =

∑D
j=1Nj , such that:

E(Nj) = Nsj ; V ar(Nj) = Nsj(1− sj) ; Cov(Nj , Nl) = −Nsjsl

If the explanatory variables characterizing the alternatives do not change across individ-
uals (for example the price of the vehicle j is the same for all households i), then the utility
for alternative j, and thus the probability to choose the alternative j, will be the same for all
individuals i. Therefore, the log-likelihood is only function of the counts Njt of individuals
for each alternative.

In the aggregated case, it is needed to observe several choice situations t in order to
estimate the model, that is to have a group variable. It could be a time variable, a space
variable or an age group variable for example. In our illustrative application, choice situations
will be months of observation. The corresponding log-likelihood (up to a constant) that has
to be maximized is:

logL =

T∑
t=1

D∑
j=1

Njt log(sjt) =

 T∑
t=1

D∑
j=1

Njt(Xjtb)

−
 T∑
t=1

Nt log

 D∑
j=1

exp(Xjtb)


with Xjtb =

∑K
k=1 bkXkjt.

Implementation in R: the package “mclogit” developped by Martin Elff [9] allows to
fit conditional logit models with count data, using the Fisher-scoring/IWLS algorithm2.

2.3 Market-share models

Market-share models were developed in the 80’s, mainly by Cooper and Nakanishi [7]. The
aim is to model market-shares of D brands using their marketing factors (price, advertising)
as explanatory variables, with aggregated data (not individual-level but market-level data).

2For details on IWLS algorithm, see for example Green [13].
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2.3.1 Attraction models

Market-share models are similar to an aggregated version of the Multinomial Logit model
(MNL). The concept of “attractivity” of a brand is central in this literature, and is comparable
to the “utility” concept in discrete choice models. The specification of the attractivity of
brand j is an expression of the explanatory variables describing brand j. The market-
share of brand j is defined as its relative attractivity compared to competitors, i.e. as its
attractivity divided by the sum of attractivities of all the brands of the market.

0 < Sjt =
Ajt∑D
l=1Alt

< 1

with Ajt the attractivity of firm j at observation t such that Ajt > 0.

Two main market-share models exist. One is referred to as MNL in this literature (we
call it “MNL-type” to distinguish from MNL of section 2.2) because of the similarity between
the expected share in equation (3) and the observed share expressed below. The other one
is called MCI (Multiplicative Competitive Interaction model). The only difference between
them is the functional form of explanatory variables: the log-linearized MCI takes the log(X)

as explanatory, whereas the log-linearized MNL-type takes directly the X. In the subsequent
expressions of the models, the attractivities will involve a multiplicative random part.

MNL-type model:

Ajt = exp(aj +

K∑
k=1

bkXkjt + εjt)

Sjt =
Ajt∑D
l=1Alt

=
exp(aj +

∑K
k=1 bkXkjt + εjt)∑D

l=1 exp(al +
∑K
k=1 bkXklt + εlt)

where exp(εjt) is the multiplicative random component.

MCI model:

Ajt = exp(aj)

K∏
k=1

Xbk
kjtνjt

Sjt =
Ajt∑D
l=1Alt

=
exp(aj +

∑K
k=1 bk logXkjt + εjt)∑D

l=1 exp(al +
∑K
k=1 bk logXklt + εlt)

where νj = exp(εjt) is the multiplicative random component.

With this specification X should be quantitative and strictly positive (marketing actions)
in order to respect Ajt > 0.
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General MCI attraction model (GMCI): introduced by Cooper and Nakanishi,
it combines both types of explanatory variables.

Ajt = exp(aj + εjt)

K∏
k=1

fk(Xkjt)
bk and Sjt =

Ajt∑D
l=1Alt

where exp(εjt) is the multiplicative random component and with fk a monotonic transfor-
mation of Xk such that fk(.) > 0. If all fk are the identity function (resp. the exponential
function), it corresponds to the MCI model (resp. the MNL-type model).

2.3.2 Estimation by OLS or GLS

The estimation method proposed by Nakanishi and Cooper [30] relies on a log linearization
that they call “log-centering transformation” which is actually the log ratio between a share
Sjt and the geometric mean of all shares at observation t, S̃t, also called CLR (centered
log-ratio) transformation in the CODA literature.

MNL-type model

log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk(Xkjt −Xkt) + (εjt − εt)

MCI model

log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk log

(
Xkjt

X̃kt

)
+ (εjt − εt)

where dl = 1 if l = j, 0 otherwise (brand dummy). St is the arithmetic mean of Sjt.

It is suggested to use a GLS estimation instead of an OLS estimation due to the poten-
tial heteroscedasticity and/or correlation of error terms (if observations are time periods for
example). But as Cooper and Nakanishi [7] said, we found that the GLS procedure, which
is quite heavy in terms of implementation for this kind of models, does not give empirically
better results than the OLS procedure.

Implementation in R: the function lm() allows to fit a linear model on the log-centered
model by ordinary least square.

2.4 Dirichlet covariate models

The Dirichlet distribution is the distribution of a composition obtained as the closure of a
vector of D independent gamma-distributed variables with the same scale parameter. Thus,
it is a distribution adapted for variables lying in the simplex. Campbell and Mosimann [5]
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developed Dirichlet covariate models to explain a compositional dependent variable, supposed
to be Dirichlet distributed, by classical (non-Dirichlet) covariates.

2.4.1 Dirichlet distribution

Let S = (S1, . . . , SD) ∼ D(α1, . . . , αD) where Sj > 0 and
∑D
j=1 Sj = 1, αj > 0 and∑D

j=1 αj = α0. α0 is called the precision parameter (when this value increases, the con-
centration around the expected value increases, the variance and covariance decrease). The
density function is defined by:

f(S) =

(
Γ(α0)∏D
j=1 Γ(αj)

)
D∏
j=1

S
αj−1
j

with Γ the Euler Gamma function.

Moreover,

E(Sj) =
αj
α0

; V ar(Sj) =
αj(α0 − αj)
α2
0(α0 + 1)

; Cov(Sj , Sl) = − αjαl
α2
0(α0 + 1)

An alternative parametrization can be considered, using the parameters µj = E(Sj) to
account for the expected values of the shares, and φ = α0 to account for the precision. The
correspondence between this parametrization and the previous one is based on the fact that
αj = µjφ and α0 = φ.

The negative covariance structure of the Dirichlet distribution was criticized by Aitchison
[1] but actually Campbell and Mosimann [5] show that this is not true for Dirichlet covariate
models, contrary to the simple Dirichlet distribution. Thus, each observation indexed by t
follows a different Dirichlet distribution. The fact that the negative correlation happens
between the shares of a same Dirichlet distribution does not imply that the vectors of shares
coming from different Dirichlet distributions are negatively correlated. Indeed the formula
of generalized covariance proves that:

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov[E(X|Z),E(Y |Z)]

Thus, if the covariance between the conditional expected values of two vectors of shares is
positive and larger than the negative expected value of the conditional covariance between
these two shares, then the unconditional covariance between the two shares can be positive3.

In addition, Brehm et al. [4] show in a simulation study that the strong independence
between the initial gamma-distributed variables (before closure) is not a problem: the Dirich-
let covariate model successfully fits data with or without strong independence of variables
before closure.

3The same argument can be used for the Multinomial model.
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2.4.2 Dirichlet covariate model

Two parametrizations exist for the Dirichlet regression model. The first one is the “common
parametrization” and the second one is the “alternative parametrization”4.

Common parametrization Under the common parametrization, the parameters of
the Dirichlet distribution, the αj ’s, are allowed to depend on the explanatory variables Xk.

log(αj) = aj +

K∑
k=1

bkjXkj

Each component is allowed to have different explanatory variables (a different number of ex-
planatory variables and/or explanatory variables which take different values for the different
components), but for the sake of simplicity X denotes explanatory variables for all compo-
nents. In this parametrization, α0 =

∑D
j=1 αj can be interpreted as a precision parameter.

Alternative parametrization Under the alternative parametrization, the regression
is defined by two equations:

log

(
µj

1− µj

)
= aj +

K∑
k=1

bkjXk ; log(φ) = γ0 +

K∑
k=1

γkZk

However, the alternative parametrization does not allow to use different explanatory vari-
ables for each component, thus the common parametrization is preferred in our illustrative
application and this is why we use it.

2.4.3 Estimation by maximum likelihood

As explained in Hijazi and Jernigan [16], “a different Dirichlet distribution is modeled for ev-
ery value of the explanatory variables, resulting in a conditional Dirichlet distribution”. The
conditional distributions St|Xt are mutually independent: St|Xt ∼ D(α1(Xt), . . . , αD(Xt))

with unknown parameters.
Thus, the log-likelihood to maximize is:

logL(S|α(X)) =

T∑
t=1

log Γ

 D∑
j=1

αj(Xt)

− D∑
j=1

log Γ(αj(Xt)) +

D∑
j=1

(αj(Xt)− 1) logSjt


Implementation in R: the package “DirichReg” created by Maier [24] allows to fit Dirichlet
model based on the common or alternative parametrization, by maximum likelihood.

4See Hijazi and Jernigan [16].
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2.5 Compositional models

Compositional data analysis was developed in the 80’s by John Aitchison [1]. Since the 90’s,
a group of researchers is particularly active in the domain and has developed a large math-
ematical framework for this literature (see for example V. Pawlowsky-Glahn, J.J. Egozcue,
J.A. Martin Fernandez, K. Hron).

First applications were made on geological data, with the objective to analyze the com-
position of a rock sample in terms of the relative presence of different chemical elements.
More generally, CODA aims to analyze relative information between the components (parts)
of a composition where the total of the components is not relevant or is not of interest.

Let us remind that a composition S is a vector of D shares Sj potentially coming from
the closure of D positive numbers Nj and belonging to the simplex SD:

S = (S1, . . . , SD) = C(N1, . . . , ND) ∈ SD with Sj > 0 and
D∑
j=1

Sj = 1

2.5.1 The log-ratio transformation approach

Compositional data analysis is based on the log-ratio transformation of compositions in order
to obtain coordinates which can be represented in a RD−1 Euclidean space. Then, classical
methods suited for data in the Euclidean space can be used on coordinates.

Three main transformations are developed: the ALR (additive log-ratio), the CLR (cen-
tered log-ratio) and the ILR (isometric log-ratio) transformations, each of them having spe-
cific advantages. We will need to use the simplex inner product (associated to a norm and a
distance) called the Aitchison inner product and given by

< S1, S2 >=
1

D

D∑
j=1

D∑
l=1

log
S1j

S1l
log

S2j

S2l
.

ALR Additive log-ratio transformation It is the first transformation proposed by
Aitchison in 1986.

alr(S) =

(
log

S1

SD
, . . . , log

SD−1
SD

)
= y = (y(1), . . . , y(D−1))

Its inverse transformation is given by: Sl = alr−1(y(l)) = exp(y(l))

1+
∑D−1

l′=1
exp(y(l′))

for l = 1, . . . , D−1

and SD = 1
1+

∑D−1

l′=1
exp(y(l′))

.

ALR is isomorphic but not isometric from the simplex endowed with the Aitchison ge-
ometry to the Euclidean space RD−1 with the canonical inner product. This means that the
Aitchison distance between two compositions is not equal to Euclidean distance between the
corresponding points in RD−1.
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CLR Centered log-ratio transformation

clr(S) =

(
log

S1

S̃
, . . . , log

SD

S̃

)
= y = (y(1), . . . , y(D))

with S̃ the geometric mean of the D components.
Its inverse transformation is given by: S = clr−1(y) = C(exp(y(1)), . . . , exp(y(D))), that is
Sl = clr−1(y(l)) = exp(y(l))∑D

l′=1
exp(y(l′))

.

CLR is isometric but the covariance matrix of the CLR data is singular.

ILR Isometric log-ratio transformation It consists in a projection of components
in an orthonormal basis of SD in order to obtain D − 1 orthonormal coordinates.

Let {v1, . . . ,vD−1} be an arbitrary orthonormal basis in RD−1, then el = clr−1(vl), l =

1, . . . D− 1 represent an orthonormal basis in the simplex SD. Considering the D× (D− 1)

matrix V with columns vl = clr(el), l = 1, . . . D − 1, ILR coordinates are defined as:

ilr(S) = clr(S)V = log(S)V = y = (y(1), . . . , y(D−1))

Its inverse transformation is given by: S = ilr−1(y) = C(exp(yVT )).
ILR is isometric with full rank covariance matrix, but the interpretability of coordinates can
be lost if the chosen ILR transformation does not have meaningful log-ratios5.

Example A particular ILR transformation that could be used is the following:

y(l) =

√
D − l

D − l + 1
log

Sl

(
∏D
l′=l+1 Sl′)

1
D−l

, l = 1, . . . , D − 1

y(1) contains all the relative information of part S1 to the parts S2, . . . , SD.
If D = 3 for example, it leads to y(1) =

√
2
3 log S1√

S2S3
=
√

2
3 logS1− 1√

6
(logS2 + logS3) and

y(2) =
√

1
2 log S2

S3
= 1√

2
(logS2 − logS3).

Thus, V =


√

2
3 0

− 1√
6

1√
2

− 1√
6
− 1√

2

.

2.5.2 CODA regression models

CODA regroups different tools for analyzing compositions: graphical tools (ternary diagrams,
biplots), analytic tools (compositional PCA) and compositional regression models.

5The Sequential Binary Partition is a way to obtain meaningful log-ratios. See Pawlowsky-Glahn and Buccianti
[32].
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Compositional regression models are of different types depending on whether the response
variable and/or the explanatory variables are compositional. In our application case, the
response variable is a composition (market-shares of D brands) and the explanatory variables
describe each brand (e.g. media investments for each brand). The corresponding CODA
regression model considers explanatory variables as compositions too (e.g. market-shares are
explained by relative media investments).
CODA models can be expressed either in terms of the initial compositional observations in
the simplex or alternatively in terms of the corresponding transformations: the coordinates
in Euclidean space. The second presentation has the advantage to look like a classical linear
model but its connection with the original data is obscured by the transformation. On the
other side, the first presentation in terms of the original share data is obscured by the simplex
operations involved in the model equation.

Linear CODA model in the simplex (expressed in compositions):

St = a

K⊕
k=1

Zkt � Bk ⊕ εt (4)

with S,a,Zk, ε ∈ SD6 and Bk ∈ RD×D such that row and column sums are equal to zero7.

⊕ is the perturbation operation, equivalent to the addition operation in the simplex:

x⊕ y = C(x1y1, . . . , xDyD) with x,y ∈ SD

� is the power transformation, equivalent to the multiplication operation in the simplex:

λ� x = C(xλ1 , . . . , xλD) with λ ∈ R,x ∈ SD

� is the compositional matrix product, equivalent to the matrix product in the simplex:

x � B = C
(∏D

j=1 x
bj1
j , . . . ,

∏D
j=1 x

bjD
j

)
with B ∈ RD×D,x ∈ SD

Linear CODA model in the Euclidean space (expressed in ilr coordinates):

ilr(St)
(l) = y(l) = α(l) +

K∑
k=1

D−1∑
l′=1

β
(l)
kl′ × ilr(Zkt)

(l′) + ε
(l)
t ∀ l ∈ 1, . . . , D − 1

ε(l) ∼ N (0, σ2) ; l: index of S’s ILR coordinates ; l′: index of Z’s ILR coordinates.

6Note that the dependent composition and the explanatory compositions can be of different dimensions: S ∈
SD, Zk ∈ Sd, resulting in a matrix of parameters Bk ∈ RD×d

7Under these conditions, B � Z is a linear transformation with respect to Aitchison geometry and an endo-
morphism on the simplex SD (See Kynclova et al. [22]). Thus the model (4) is a linear model in the simplex.
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2.5.3 Estimation of CODA model

After log-ratio transformation, the estimation is usually made with the OLS method, sepa-
rately on the D − 1 CODA models expressed in coordinates8.

Then, the estimated model can be expressed in the simplex using the inverse transformation,
to transform α into a, β into b, ilr(S) into S and ilr(Z) into Z:

â = ilr−1(α̂(1), . . . , α̂(D−1)) = C(exp(α̂VT ))

B̂D×D = VD×(D−1) · β̂(D−1)×(D−1) ·VT
(D−1)×D

Ŝ = ilr−1(ŷ(1), . . . , ŷ(D−1)) = C(exp(ŷVT ))

with β = [βl′,l] =


β
(1)
1 . . . β

(D−1)
1

. . . β
(l)
l′ . . .

β
(1)
D−1 . . . β

(D−1)
D−1

, and B = [bm′,m] =

 b1,1 . . . b1,D

. . . bm′,m . . .

bD,1 . . . bD,D

 where

bm′,m is the parameter corresponding to the impact of Zm′ on Sm.

Implementation in R: the packages “compositions” [41] and “robCompositions” [40]
allow to transform compositional data, to fit the compositional model by OLS on the coor-
dinates and to back transform the results in compositions. Van den Boogaart and Tolosana-
Delgado [42] wrote a book for analysing compositional data with R.

2.6 Alternative models

In the literature, some articles mix compositional data analysis and aggregated choice mod-
els. In Bechtel [2] and Fry and Chong [11], the shares are specified according to a nested
multinomial logit model which does not embody the IIA property (see section 3.2). They
use an additive log-ratio transformation of their model (ALR) as can be found in the com-
positional analysis, in order to be able to estimate the model by OLS or GLS.

Some authors propose to transform compositional data to directional data by the square
root transformation mapping the simplex into the unit hypersphere. Wang et al. [44] further
use classical regression models for the polar coordinates, whereas Scealy and Welsh [36] use
the additive Kent regression model.

3 Theoretical comparison of share models

This section aims to highlight the similarities and differences of the four presented models
from a theoretical perspective. Because these models are deeply linked with the type of ap-
plications they have been proposed for, the following comparison refers not only to statistical

8The orthonormality of coordinates allows us to estimate the D − 1 models separately.
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properties, but also to econometric and marketing properties.

First of all, Table 2 summarizes the distributional assumptions, the estimation methods,
the properties and the complexity of each model. These items are subsequently discussed in
detail. Then, we derive the expressions of direct and cross elasticities for the four models,
and we highlight the fact that GMCI can be expressed in a CODA way. Finally, the problem
of zero observations is addressed.
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3.1 Distributional assumptions

The distribution of the dependent variable is different across models as one can see in Table
2. Indeed, in the MNL model the dependent variable is a vector of positive numbers Nj
which follow a multinomial distribution. In the other three models the dependent variable
is directly the vector of shares Sj which are Dirichlet distributed in the case of DIR and
Gaussian in the simplex distributed for GMCI and CODA (the coordinates are Gaussian in
the transformed space). Note that the MNL model of section 2.2 differs from the MNL-type
model of section 2.3 by its underlying distributional assumptions.

MNL and Dirichlet models belong to the family of GLM (Generalized linear models):
see Peyhardi et al. [34] for MNL and Maier [24] for Dirichlet. GMCI and CODA models
belong to the family of transformation models (TRM) in which a classical linear model is
postulated in the transformed space.

The “intercept only” model: If the models are defined with only intercepts as ex-
planatory variables, the fitted shares are not the same across the four models. CODA and
GMCI models yield the center of the compositional data, that is the closed vector of geo-
metric means of each component, while MNL and DIR models yield the arithmetic means of
components (weighted in the case of MNL). However, the geometric mean which is coherent
with the simplex geometry is more adapted than the arithmetic mean to summarize shares
data, as shown in Figure 1. This is an argument in favor of CODA and GMCI models.

Figure 1: Arithmetic and geometric means of a compositional data set in a ternary diagram

3.2 Properties

We discuss here whether the properties that are clearly established for a given model are
valid for the other models.

Independence of irrelevant alternatives and subcompositional coherence
In the econometric literature, an important question which is often discussed is whether or
not a model satisfies the IIA (Independence from Irrelevant Alternatives) property. IIA is
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an axiom of decision theory which means that the ratio of shares of an alternative j with
respect to an alternative l only depends on characteristics of j and l and is not affected by
the presence or absence of irrelevant alternatives. Actually, there is no difference whether
the third alternative is irrelevant or not: even if the third alternative can indeed change
the choice situation, it will not impact in the model the ratio of shares of the first two
alternatives. This property allows to simplify the models but it is not always realistic (see
the famous red bus - blue bus example of McFadden [27]). Without cross-effects, MNL,
GMCI and Dirichlet models satisfy IIA.

In the CODA literature, the subcompositional coherence property (see Pawlowsky-Glahn
[33]) means that the results of an analysis made on a subcomposition (i.e. remove some
alternatives) should not contradict the results of the analysis made on the whole composition.
This is coming from the fact that the Compositional Data Analysis (CODA) is based on the
use of log-ratios. However, if we look at the forthcoming equation (6), we can see that the
market-share of brand j is determined by the explanatory variables of all the brands.

In the econometrics literature, it is considered that IIA can be a severe limitation of
MNL models and a lot of models (for example nested logit, GEV) have been developed in
the framework of individual and agregated choice models to overcome this limitation (Bechtel
[2], Fry et Chong [11], Hossain [17], Koppelman [19]).

Scale Invariance Scale invariance is mentioned in the CODA literature as a desirable
property and CODA regression satisfies it (Pawlowsky-Glahn [33]). Scale invariance means
that if the count data is multiplied by a constant, it does not affect the estimation results. It
is known that scale-invariant functions of a composition are necessarily functions of log-ratios
log(xj/xl) (reference) and reversely. All models that we have described satisfy this property.

Permutation invariance Permutation invariance corresponds to invariance through a
permutation of the components of a composition and is a desirable property. It is clearly
satisfied by all the described models.

Perturbation invariance Perturbation invariance corresponds to coherence when per-
forming a change of units possibly different for each component of a composition: coherence
corresponds here to the fact that the inverse perturbation of the results obtained on the
perturbed data should correspond to the results obtained on the original data. For exam-
ple, we can model brand market-shares in terms of sales volumes or in terms of sales values
(that is sales volumes perturbed by the vector of prices). The estimated market-shares and
parameters from the “volume” model should be equal to those of the “value” model after
perturbation by the vector of prices. This property is satisfied by CODA regression and
GMCI (as it uses the CLR transformation which is coherent with CODA principles). We
can show empirically that it is not satisfied by MNL and Dirichlet.
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3.3 Attraction and cross effects

GMCI models are presented using the notion of attraction (or attractivity). This presentation
is somehow comparable to the utility presentation of random utility models in individual
choice models of Section 2.2: what corresponds to attraction in the MNL model would be
the numerator of (2), that is the exponential of the utility function.

We show here that a similar attraction presentation can be done for Dirichlet and CODA,
even when the application background does not lead to an intuitive notion of “attraction”.

Attraction form of the Dirichlet model (under the common parametrization)

E(Sjt|Xt) =
αjt∑D
l=1 αlt

=
exp(aj +

∑K
k=1 bkjXkjt)∑D

l=1 exp(al +
∑K
k=1 bklXklt)

=
Ajt∑D
l=1Alt

⇔ ADIRjt = exp

(
aj +

K∑
k=1

bkjXkjt

)
(5)

Attraction form of the CODA model First, we express the expression of the
market-share of brand j in the CODA model9:

St = at

K⊕
k=1

Zkt � Bk ⊕ εt = C

(
a1 ·

K∏
k=1

D∏
l=1

Xbkl1
klt · ε1t, . . . , aD ·

K∏
k=1

D∏
l=1

XbklD
klt · εDt

)

Thus,

Sjt =
aj ·

∏K
k=1

∏D
l=1X

bklj
klt · εjt∑D

m=1 am ·
∏K
k=1

∏D
l=1X

bklm
klt · εmt

=
Ajt∑D

m=1Amt
(6)

=
exp

(
log(aj) +

∑K
k=1

∑D
l=1 bklj log(Xklt) + log(εjt)

)
∑D
m=1 exp

(
log(am) +

∑K
k=1

∑D
l=1 bklm log(Xklt) + log(εmt)

) (7)

⇔ ACODAjt = aj ·
K∏
k=1

D∏
l=1

X
bklj
klt · εjt = exp

(
log(aj) +

K∑
k=1

D∑
l=1

bklj log(Xklt) + log(εjt)

)
(8)

Note that taking the composition of X as explanatory variable in (6) actually corresponds
to take the log(X) in the CODA attraction model under the exponential form (7).

Cross effects & number of parameters The dependence of the attractivity on
other alternative characteristics corresponds to the existence or not of cross effects. Note

9Here the market-share Sjt is expressed as a function of Xklt directly and not as a function of Zklt because
Sjt is obtained by a closure operation (dividing by the denominator), thus it can be shown that the explanatory
variables can be used in “volumes” as they are closed at the end.
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that in the usual MNL, GMCI and Dirichlet models, the attractivity Ajt is a function of the
explanatory variables characterizing alternative j only. In the CODA model, the attractivity
depends automatically on all alternative characteristics. This is why CODA is the most
complex model with the higher number of parameters.

It is not possible to estimate all the cross effects in the MNL model (see So and Kuhfeld
[38]). Cross effects can be estimated in the GMCI model (see Cooper and Nakanishi [7])
and in the Dirichlet models but the number of parameters dramatically increases. CODA is
relatively parsimonious in the sense that it allows to estimate all cross effects with a relatively
lower number of parameters than the other models ((D − 1) × (D − 1) versus D × D for
others), thanks to the constraints on the B matrix of parameters.

It is interesting to see that using the same dependent and explanatory variables, the
complexity is totally different from a model to another. For example (as in our application,
see Section 4), if the number of components (shares) of the dependent variable is D = 3,
explained by KX = 7 compositions of size D = 3 and KW = 1 time-dependent variable,
the numbers of estimated parameters are the following: 11 for MNL, 13 for GMCI, 27
for DIR and 32 for CODA. With 32 parameters, the CODA model reflects all the cross-
effects between shares whereas the DIR and the GMCI models would require 69 parameters
(D(1 + D ×KX + KW )). Note also that the number of parameters increases dramatically
with the number of components (brands), especially in the CODA model. For example if D
becomes equal to 5 (with KX and KW fixed), the numbers of parameters become 15, 17, 45,
and 120. This is a serious limitation for the CODA model.

3.4 Elasticities

In econometrics, explanatory variable impact is often measured through elasticities. The
elasticity of a dependent variable Y to an explanatory variable X is the infinitesimal impact
on Y , in percentage of Y , of an infinitesimal change ofX, in percentage ofX.Mathematically,
it can be seen as the logarithmic derivative of Y with respect to the logarithm of X. The
elasticity of the market-share of brand j to the explanatory variable k of brand j is:

e
Xkj
Sj

=
∂Sj/Sj

∂Xkj/Xkj
=

∂ logSj
∂ logXkj

Elasticities in MNL, GMCI and DIR models Expressions for elasticities are
developed for the MNL and GMCI models in the literature (Cooper and Nakanishi [7]).

The log-linearized MCI, which takes the log of X as explanatory, leads to decreasing
elasticity of market-share Sj with respect to Xkj , and is particularly well adapted for price
in our example whereas log-linearized MNL-type takes directly the X and leads to increasing
elasticity until a certain saturation level and decreasing elasticity after that level, particularly
well adapted for advertising effects (see Cooper and Nakanishi [7]).

The expressions of elasticities in the GMCI model and in the MNL-type model are re-
spectively eXkjSj

= bk(1 − Sj) and eXkjSj
= bk(1 − Sj)Xkj . We claim that, due to the similar

attraction presentation of the Dirichlet model (5) and the MNL model, the elasticities in



20 3 THEORETICAL COMPARISON OF SHARE MODELS

these models can be derived from the ones of the MNL-type model.

Elasticities in the CODA model In the CODA literature people usually interpret
parameters estimates in the transformed model and it turns out to be complex: Hron et al.
[18] choose particular transformations so as to simplify this interpretation. We show that it
is possible to interpret the CODA parameters in terms of elasticities. Actually, the CODA
model has the same shape than the fully extended GMCI model (with all cross-effects, see
Cooper and Nakanishi [7]), the only difference relies on the assumptions made on the data
and the estimation of the parameters (constraints in the CODA framework) which allow to
take into account the relative information of the explanatory variables. Thus, the elasticity
in CODA can be derived from equation (6):

ESSjt =
aj ·

∏K
k=1

∏D
l=1X

bklj
klt∑D

m=1 am ·
∏K
k=1

∏D
l=1X

bklm
klt

:=
NUM

DEN

where ES = ilr−1(E(ilr(X)) is the expectation in the simplex.
We can derive from the previous equation the elasticity of the market-share of brand j

to the explanatory variable k of brand l,Xkl, making the distinction between two cases:

• If the composition of Xk is used as an explanatory variable:

eXklESSj =
∂ logESSj
∂ logXkl

= bklj −
∑D
m=1 bklm ×NUM

DEN
= bklj −

D∑
m=1

bklmESSm

• If the composition of log(Xk) is used as an explanatory variable:

eXklESSj =
∂ logESSj
∂ logXkl

=

(
bklj −

D∑
m=1

bklmESSm

)
/ log(Xkl)

The elasticity of Sj to Xkl depends on the parameter corresponding to the effect of
Xkl on Sj (bklj), but also on parameters corresponding to the effects of Xkl on the other
market-shares (bklm) and on all market-shares Sm, ∀ m = 1, . . . , D.

Table 3 summarizes direct and cross estimated elasticities for the four considered models.
A distinction is made whether the concerned explanatory variable is used directly as X or
as logX (but in both cases, the elasticity is computed with respect to X). Note that the
elasticity depends on S and/or X, which vary among observations t = 1, . . . , T . Thus we
can be interested in the elasticity for a precise observation (e.g. at time period t) or in the
average elasticity over all observations.

3.5 Compositional form of GMCI

The use of a log-ratio transformation for estimating purpose is similar to the GMCI approach
but it does not correspond exactly to the CODA model that we present in this paper.
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Model Direct elasticities Cross elasticities
MNL, GMCI, DIR for
non-logged var. (X) ê

Xkj
Sj

= b̂k(1− Sj)Xkj êXklSj
= −b̂kSlXkl

MNL, GMCI, DIR for
logged var. (logX) ê

Xkj
Sj

= b̂k(1− Sj) êXklSj
= −b̂kSl

CODA for non-logged
var. (X) ê

Xkj
Sj

= b̂kjj −
∑D
m=1 Smb̂kjm êXklSj

= b̂klj −
∑D
m=1 Smb̂klm

CODA for logged var.
(logX) ê

Xkj
Sj

=
b̂kjj−

∑D
m=1 Smb̂kjm

log(Xkj)
êXklSj

=
b̂klj−

∑D
m=1 Smb̂klm

log(Xkl)

In this table, S are the observed shares.

Table 3: Direct and cross estimated elasticities

Wang et al. [43] propose a CODA regression model for the case when both dependent and
explanatory variables are compositional which is simpler than the one we present: instead of
having a matrix of parameters for each compositional explanatory variable, the model has a
unique real parameter for all components of the explanatory composition. This model does
not include cross effects between components contrary to our CODA model.

Actually Wang et al.’s model is exactly similar to the MCI model proposed by Cooper and
Nakanishi in 1988 [7], except that Wang et al. use ILR coordinates while CLR coordinates
are used in the MCI model.

From this correspondence we derive a compositional form for the GMCI model:

St = a

K⊕
k=1

bk � Zkt ⊕ εt (9)

⇔ Sjt =
aj ·

∏K
k=1X

bk
kjt · εjt∑D

l=1 al ·
∏K
k=1X

bk
klt · εlt

=
exp(log aj +

∑K
k=1 bk logXkjt + log εjt)∑D

l=1 exp(log al +
∑K
k=1 bk logXklt + log εlt)

Equation (9) highlights the similarities and differences between GMCI and CODAmodels:
in place of the Bk matrix in Equation (4) of the CODA model, we now have a single bk
parameter in the GMCI model.

3.6 Treatment of zero observations

Zeros are often an issue with share data. For GMCI, Dirichlet and CODA models, zeros can-
not be tolerated because of the presence of the log transformation of shares in the likelihood.
Many solutions to this problem have been considered, depending on the nature of zeros.
Among the main ones, let us mention amalgamation of components (Pawlowsky-Glahn et
al. [33]), ratio-preserving zero replacement (Martin-Fernadez et al. [25]) and conditional
modelling for the CODA literature. Several transformations have been proposed for this
problem, for example (Smithson and Verkuilen [37]) in the Dirichlet model . Wang et al.
[43] and Scealy and Welsh [36] use a square root transformation together with models on the
hypersphere. Fry et al. [10] compare their performance for the case of economic micro-data.
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4 Empirical comparison of share models

In the above sections, we have presented four models adapted to model shares dependent
variables which are based on different assumptions. In this section we propose a way to
determine which one of these four models is the most adapted for a particular case study.
After presenting the application and the data of our illustrative example, a cross-validation
process is proposed in order to compute quality measures adapted for shares models on the
four types of models. Finally, we compare the interpretation of the parameters of the four
models in terms of elasticities.

4.1 Application and data

The main objective of this application is to understand the impact of media investments
(relative or absolute values) on market-shares (the response variable is compositional) con-
trolling for other factors like price and scrapping incentive. In each model specification the
interest is on the marginal impact of each canal of media on relative sales, that is on the
elasticities of market-shares to media investments by channel.

We focus here on the B segment10 of the automobile market, which represents half of the
sales in France in terms of volume. More precisely, following the subcompositional coherence
property of CODA, we focus on 3 brands of this segment: Renault, Nissan and Dacia (D = 3).

The studied period runs from June 2005 to August 2015. This period is characterized by
the birth of Dacia on the French automobile market, a low-cost brand belonging to Renault,
at the beginning of 2005. It is also characterized by the economic crisis which has hurt the
French automobile market a lot from 2008 to 2012 (at least). The French government tried
to help this market setting up a scrapping incentive11 which has “artificially” boosted the
sales during 2009 and 2010. Note that Dacia increased a lot its market-share during the
crisis thanks to its low price. These facts have to be kept in mind in order to understand
the evolution of market-shares, and it justifies the use of a scrapping incentive dummy as
control variable.

The four methods are applied to an automobile market data set coming from Renault
containing for each brand of the B segment the sales volume in units Njt, the catalog price in
euros Pjt, the media investments by canal in euros Mcjt (TV, press, radio, outdoor, digital,
cinema), and the periods of scrapping incentive It (dummy variable), monthly from June
2005 to August 2015 (T = 123 periods of observation).

The ternary diagram allows to represent compositions of 3 components in the simplex.
Figure 2 represents for example the annual market-shares of Dacia, Nissan and Renault from
2005 to 2014. We can see easily that Dacia increases its market-share easily at the expense

10Segments of the automobile market are determined according to the size of the chassis. Segment B corresponds
to small mainstream vehicles like the Renault Clio which is the most famous of this segment in France.

11A scrapping incentive is an incentive given by a government to promote the replacement of old vehicles with
modern vehicles.
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of Renault from 2005 to 2010.

Figure 2: Ternary diagram of annual market-shares of Dacia, Nissan and Renault

According to the marketing literature, it is preferable to use the logarithm of price in-
stead of the raw price12. Indeed, for our four models, using the log of price instead of the
price gives best in-sample fits. The media investments have to be considered with a lag with
respect to sales. Statistically in this application, a lag of 4 months gave the best results on
the 4 models13. When media investments at time t are equal to zero, we replace them by 1
euro, which is a very small amount compare to the non-zero investments.

Table 4 summarizes the four models which are fitted in order to model brands market-
shares Sjt as a function of media investments of brands Mcjt (C = 6), the log of the average
brand price logPjt, and the scrapping incentive dummy It (during years 2009 and 2010).

4.2 A cross-validation comparison

A cross-validation process is used to compute out-of-sample goodness-of-fit measures (pre-
sented in the next subsection) on the four considered models, in order to avoid overfitting
effect due to the fact that the considered models do not have the same number of parameters.

1. Randomly draw a sub-sample of 100 observations among 123, resulting in 81% (100)
in-sample observations and 19% (23) out-of-sample observations

2. Fit the 4 models to the sub-sample, store the fitted parameters

3. Apply the 4 models to the out-of-sample observations, store the fitted values of the
shares

4. Compute the quality measures using the out-of-sample predicted share values

12The reason of that is linked to the shape of the elasticity of market-shares to the price (see 3.4). Moreover, to
keep the market shares equal, the logged variables have to increase in the same proportion while the non-logged
variables have to increase by the same amount

13Later on, we consider using an adstock function, which is a cumulative function of actual and past investments.
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Name Model
MNL Estimation by ML using the Njt

E(Sjt|Mt, Pt, It) =
exp(aj +

∑C
c=1 bcMcjt + bP logPjt + bIjIt)∑D

l=1 exp(al +
∑C
c=1 bcMclt + bP logPlt + bIlIt)

with a1 = bI1 = 0 for identifiability reasons
GMCI Estimation by OLS on the CLR coordinates

Sjt =
exp(aj +

∑C
c=1 bcMcjt + bP logPjt + bIjIt + εjt)∑D

l=1 exp(al +
∑C
c=1 bcMclt + bP logPlt + bIlIt + εlt)

CLR coordinates:

log
(
Sjt

S̃t

)
= a1 +

∑D
j′=2 a

′
j′dj′ +

∑C
c=1 bc(Mcjt −Mct)

+bP log
(
Pjt

P̃t

)
+ bI1It +

∑D
l=2 b

′
IlItdl + (εjt − εt)

DIR Estimation by ML using the Sjt (common parametrization)

E(Sjt|Mt, Pt, It) =
exp(aj +

∑C
c=1 bcjMcjt + bPj logPjt + bIjIt)∑D

l=1 exp(al +
∑C
c=1 bclMclt + bPl logPlt + bIlIt)

logαjt = aj +
∑C
c=1 bcjMcjt + bPj logPjt + bIjIt

CODA Estimation by OLS on the (D − 1) ILR coordinates separately

St = a
⊕C

c=1 Mct � Bc ⊕ log Pt � bP ⊕ It � bI ⊕ εt

⇔ Sjt =
aj ·

∏D
l=1

∏C
c=1M

bclj
cjt · logP

bPlj
jt · bItIj · εjt∑D

m=1 am ·
∏D
l=1

∏C
c=1M

bclm
cmt · logP bPlmmt · bItIm · εmt

ILR coordinates:

ilr(St)
(l) = α(l) +

∑C
c=1

∑D−1
l′=1 β

(l)
cl′ ilr(Mct)

(l′)

+
∑D−1
l′=1 β

(l)
Pl′ilr(logPt)

(l′) + β
(l)
I It + ε

(l)
t

Table 4: Fitted models to explain brand market-shares
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5. Iterate 100 times steps 1 to 4

6. Compute the average quality measures using the out-of-sample predicted share values
over the 100 iterations

N.B.: Here we want to have an efficient model all along the studied period, the aim is
not to have a good predictive model for the future. Moreover the presented models are not
taking into account the potential auto-correlation of error terms. That is the reason why the
cross-validation is made on randomly drawn samples and not on a split of the studied period
according to time.

4.3 Quality measures

The out-of-sample accuracy of the 4 models is compared according to a list of different
indicators adapted to shares that we found in the literature. Two categories of measures are
detailed: the R2-type measures which are based on the notion of explained variability, and
the distance-type measures which evaluate how far are the fitted values from the true values.

R2 based on total variability (R2T) The CODA literature proposes a R2 directly
adapted to compositional data (see Hijazi [15], Monti et al. [28]). It uses the measure of
the total variability of a set of compositions, based on the variance of log-ratios. In terms
of interpretation, it is similar to the classical R2: it measures the proportion of the total
variation explained by the model.

R2
T =

totvar(Ŝ)

totvar(S)

with totvar(S) = 1
2D

∑D
j=1

∑D
l=1 var(log

Sj
Sl

). This measure is always positive but is not
guaranteed to be lower than 1. Note that for the “intercept only” model, R2

T equals zero for
all models because there is no variability in Ŝ.

R2 based on Aitchison distance (R2A) Another R2 measure can be found in the
CODA literature, based on the Aitchison distance between the observed compositions and
the fitted compositions on one hand, and on the Aitchison distance between the observed
compositions and the center of the data (closed geometric means of components) on the other
hand (see Hijazi [15], Monti et al. [28]).

R2
A = 1− CSSE

CSST
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with CSST =
∑T
t=1 d

2
A(St,g) ; CSSE =

∑T
t=1 d

2
A(St, Ŝt). g is the closed vector of

geometric means of each component over observations t, and

dA(St, Ŝt) =

√√√√ D∑
j=1

(
log

Sjt
g(Sj)

− log
Ŝjt

g(Ŝj)

)2

=

√√√√ 1

D

D∑
j=1

D∑
l>j

(
log

Sjt
Slt
− log

Ŝjt

Ŝlt

)2

However, this R2 measure can be misleading because it has a large variability and it can
take negative values. Note that for the “intercept only” model, R2

A equals zero for CODA
and GMCI models because Ŝ = g(S).

Kullback-Leibler divergence (KL) The Kullback-Leibler divergence is used as a
goodness-of-fit measure or as a prediction accuracy measure (see Haaf et al. [14]). It is a
sum of the log-ratios between the observed values and the fitted values of the shares, weighted
by the observed value. The log-ratio allows to take into account the relative error, and the
weight emphasizes the importance of large errors in large shares.

KL(S, Ŝ) =

T∑
t=1

D∑
j=1

log

(
Sjt

Ŝjt

)
Sjt

A compositional version of this measure is defined as follows (Martin-Fernandez et al.
[26], Palarea et al. [31]):

KLC(S, Ŝ) =
D

2

(
KL(0D,S	 Ŝ) +KL(0D, Ŝ	 S)

)
=
D

2

T∑
t=1

log
(

(St/Ŝt) · (Ŝt/St)
)

where 0D = (1/D, . . . , 1/D) the compositional zero (center of the simplex SD), and (St/Ŝt)

the arithmetic mean of shares ratios
(
S1t

Ŝ1t
, · · · , SDt

ŜDt

)
for observation t.

The KLC measure is indeed well adapted to shares data because for the “intercept only”
model, this measure of divergence is lower for models which predict the geometric means of
the shares (CODA and GMCI models) than for models which predict the arithmetic means
(MNL and DIR models), and it is well known that the geometric mean is more adapted to
summarize compositional data than the arithmetic mean.

Other quality measures can be used for share data. See for example Kumar [21], Qua-
grainie [35], Leeflang and Reuyl [23], Naert and Weverbergh [29], Ghosh et al. [12].

Table 5 presents the out-of-sample average quality measures for our four models. For each
measure, the best model is in bold. The out-of-sample average quality measures suggest that
DIR seems to be the most adapted model to fit our data (27 parameters). However, according
to the R2 based on total variability (R2T), CODA (32 parameters) is better than the Dirichlet
model. The GMCI model and the MNL model without cross-effects are almost systematically
the worst models, certainly due to their simplicity and low number of parameters.
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MNL GMCI DIR CODA
Mean SD Mean SD Mean SD Mean SD

R2T 0.425 0.164 0.462 0.179 0.622 0.224 0.647 0.227
R2A 0.196 0.270 0.155 0.325 0.373 0.235 0.084 0.433
KL 0.465 0.101 0.480 0.121 0.392 0.166 0.501 0.168

KLC 0.139 0.034 0.137 0.032 0.117 0.071 0.134 0.034
RMSE 0.059 0.008 0.061 0.009 0.052 0.008 0.063 0.011

Table 5: Out-of-sample quality measures

4.4 Interpretation of parameters

The fitted parameters of the presented models can be interpreted in terms of elasticities. As
an example, the direct elasticities of market-shares of the 3 considered brands are computed
for the TV channel, for the 123 observed periods, and the average is presented in the Table
6. It corresponds to the average relative impact on the market-share of brand j, Sj , when
the investment in TV of brand j increases by 1%.

MNL GMCI DIR CODA
DACIA 0.0019 0.0028 -0.0068 -0.0046
NISSAN 0.0101 0.0152 0.0389 -0.0022

RENAULT 0.0058 0.0088 0.0145 -0.0038

Table 6: Average direct elasticities for TV investments

We observe that elasticities are not the same across models, and can even be of opposite
sign. For example, the DIR model concludes that, on average over the period 2005-2015, if
Nissan increases its TV investment by 10%, it will increase its market-share by 0.4%, whereas
in CODA, it will have a slightly negative impact. The CODA model, which includes all cross
effects, suggests that the impacts of TV investments of Dacia, Nissan and Renault tend to
cancel each other. However, all models agree on the fact that Nissan has the highest TV’s
elasticities (in bold in the table).

5 Conclusion

Because of the constraints of shares data, classical regression models cannot be used directly.
In this paper we present in detail four models adapted to model a composition of shares
as dependent variable, using explanatory variables which are characteristics of each com-
ponent or of observations: the aggregated multinomial logit model (MNL), the generalized
multiplicative competitive interaction model (GMCI), the Dirichlet model (DIR) and the
linear compositional regression model (CODA). These four models are coming from differ-
ent literatures and application fields, and use different estimating methods. We express all
models in attraction model form and derive the direct and cross elasticities. We also prove
that GMCI can be written in a compositional way. In our case, we use this kind of models



28 5 CONCLUSION

to understand the impact of media investments by channel on brand market-shares in the
automobile market, controlling for price and scrapping incentive.
We highlight the similarities and the differences of these models. The MNL model requires
the volume data whereas the others only need the shares data. MNL and DIR are GLM
estimated by maximum likelihood and centered on the arithmetic means, whereas GMCI
and CODA are transformation models estimated by OLS, centered on the geometric means.
MNL and GMCI models without cross-effects are very simple and parsimonious models but
fail to capture the variability of the data in our application. The CODA model is the most
complex model but it manages to estimate all cross effects with a relative parsimony, com-
pared to other models thanks to constraints on parameters, resulting in a good fitting quality.
The DIR model is very flexible and it successfully fits the data with less parameters than
the CODA model. All these models are implemented in R, and can be interpreted in terms
of elasticities.
Finally, we propose a method based cross-validation in order to determine the best model for
a particular case study. We compare the models in terms of out-of-sample average quality
measures adapted for shares data. In our application, the Dirichlet model gives the best
out-of-sample results, followed by the CODA model.

We intend to focus in further work on the interpretability of the different models. More
precisely, direct and cross elasticities have to be deeply interpreted in order to check that the
models make sense for the considered application, and to be able to use them to help decision
making in practice. Concerning our particular application, the observations are over time.
Thus, the potential auto-correlation of error terms should be tested and taken into account
if necessary. Moreover, as we measure the impact of media investments on market-shares,
considering “adstock function” of media investments instead of punctual media investments
might be more relevant. Adstock functions are often used in the marketing literature, they
are cumulative value of past and present advertising expenditures, corresponding to the
“carry-over effect” over time. Furthermore, the introduction of random coefficients can be
discussed. Such models are considered by Berry, Levinsohn and Pakes [3] in the aggregated
MNL framework in econometrics. It seems easy to implement for GMCI and CODA models,
but we did not find it in the Dirichlet framework.
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