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Abstract

In this paper, we consider a symmetric contest game in which
agents compete to increase their share of a risky rent. We show that
a symmetric equilibrium always exists, and that it is unique under
constant or decreasing absolute risk aversion. We then exhibit inter-
pretable conditions so that increases in risk and risk aversion decrease
equilibrium e¤orts in this strategic game.
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1 Introduction

Many economic, political and social situations can be described as contests
in which agents compete by expending valuable resources to win a rent (or a
prize, a privilege etc.).1 The manner in which the rent is distributed among
the agents can vary depending on the contest. The classical example of
political lobbying is a good illustration of this variability. Consider the case
of �rms exerting lobbying e¤orts to in�uence government decisions. In some
situations, the rent is indivisible and the winner takes all, for instance when
the goal is to obtain a monopoly position. In other situations, for instance
when �rms compete for free licences or subsidies provided by the government,
the rent is often shared between the competing �rms.2

Moreover, the rent is risky in many situations. Typically, the lobbyists�
bene�t is imperfectly known because it could depend on future economic
and political conditions. Consider the rent-seeking activity of polluting �rms
aiming for free pollution emission permits (Hanley and MacKenzie 2010,
Rode 2014). The future value of these permits is generally unknown at the
time of the grandfathering allocation process by the government, and hence it
is risky. Similarly, contests in the form of advertising or marketing campaigns
designed to increase market share are a¤ected by future market uncertainty.
As further illustrations, consider agents within an organization competing
for a �xed budget, the allocation of import quota licenses among competing
importers or the division of rents between the members of a cartel. All these
situations may be viewed as contests for a share of a risky rent (Long and
Vousden 1987).
Motivated by these examples, we analyze a strategic game in which risk-

averse agents contest for shared and risky rents. We consider only the sym-
metric game. We �rst derive su¢ cient conditions ensuring that this game
does not have asymmetric equilibria. We also prove that a symmetric equi-
librium always exists, and that it is unique if the agents� utility function

1The theory of contests and its applications have attracted considerable attention since
the pionneering works of Tullock (1967) and Krueger (1974). For a recent comprehensive
review of this literature, see Konrad (2009). For a more technical survey of the theory
of contests and its various applications, see Corchón (2007) and Long (2013). For a
collection of papers on contests, see Congleton and Hillman (2015). For a review of the
growing experimental literature, see Dechenaux et al. (2015).

2We notice that share contests go back to market share attraction models that were
prominent in the old marketing and operations research literature (Konrad 2009, page 5).
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displays constant or decreasing absolute risk aversion. We then show that,
compared to a riskless situation, the introduction of a risk on rent always
leads to lower equilibrium e¤ort. Finally, we show that the equilibrium e¤ort
decreases i) if the agents�common level of risk aversion increases or ii) if the
riskiness of the rent increases and a certain regularity condition is met.
The rest of the paper is organized as follows. The remainder of the Intro-

duction brie�y relates our work to the existing literature on risky contests.
Section 2 introduces the model and notations. Section 3 studies the equilib-
rium properties of the model. Section 4 examines the e¤ects of risk aversion
and risk on equilibrium e¤orts. Finally, Section 5 provides a short conclusion.

1.1 Related literature

Only a few papers have examined the e¤ect of risk and risk aversion in
strategic contest models (Hillman and Katz 1984, Skaperdas and Gan 1995,
Konrad and Schlesinger 1997, Treich 2010, Cornes and Hartley 2003 and
2012). However, in all these papers, risk stems from the probabilistic nature
of the contest, not from the rent itself (see Remark 1 below). Indeed, in these
models, agents compete to increase their respective probabilities of winning
the rent through a lottery mechanism. In other words, the rent is riskless,
but the rent allocation process is risky. In contrast, in our model, agents
compete to increase their respective share of a risky rent. That is, the risk
arises only from the risky nature of the rent, not from the rent allocation
process.3

As far as we know, Long and Vousden (1987) is the only paper to have
introduced risk on a shared rent in a contest with risk-averse agents. However,
their model di¤ers from ours on two main issues. First, they do not consider
a risky rent, but instead a risky share of the rent. In this sense, they still
consider a probabilistic allocation rule of a risk-free rent, as in the rest of the
literature. Second, Long and Vousden assume that the e¤orts are separable
from the utility function (see, e.g., their equation (2)). This assumption
essentially means that the e¤ort and the rent are not commensurable.4 While

3A few papers (Harstad 1995, Wärneryd 2003) consider a risky rent. However, they
assume that agents are risk neutral agents and instead focus on asymmetric information
about the value of the rent.

4See also Öncüler and Croson (2005) who make a similar separability assumption.
Relatedly, Schroyen and Treich (2016) examine various types of contests which di¤er de-
pending on whether the e¤ort or the rent are separable within the utility function.
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technically convenient, this assumption is unusual in the literature (see the
references above) since most strategic contest models assume that the utility
function of risk-averse contestants is nonseparable in the rent and the cost
of e¤ort.

2 Model

We consider a symmetric contest game in which n identical risk-averse agents
compete for a share of a divisible and risky rent. Agents expend simultane-
ously and independently e¤orts at a constant and equal unitary cost, nor-
malized to 1 for simplicity. Let xi denote agent i�s e¤ort level, and let x�i
denote the strategy pro�le of all agents but i. The share of the rent awarded
to agent i, pi, is given by the following contest success function (CSF):

pi(xi; x�i) =

(
�(xi)

�(xi)+
Pn
j 6=i �(xj)

if (xi; x�i) 6= (0; 0)
1=n if (xi; x�i) = (0; 0);

(1)

where �(:) is the impact function, common to all agents, which measures
the impact of an agent�s e¤ort in the contest. We assume that the impact
function has the following properties:

Assumption 1 (A.1) �(:) is twice di¤erentiable and satis�es �(0) = 0,
�0(x) > 0 and �00(x) � 0 for x > 0:
The functional form in (1) with the associated assumptions in (A.1) is

common in the literature on contests. A special case is �(x) = xm, with
0 < m � 1, which was �rst introduced by Tullock (1980).
We also assume that all agents are risk-averse expected utility maximizers

with a common concave utility function, u(:), which satis�es the following
properties:

Assumption 2 (A.2) u(:) is thrice di¤erentiable and satis�es u0(w) > 0
and u00(w) � 0 for all w.
Several utility functions possess these properties. An example is the neg-

ative exponential utility function u(w) = � exp(��w) with � > 0. This
utility function displays constant absolute risk aversion (CARA), that is,
A(w) � �u00(w)

u0(w) = �. Another example is the power utility function u(w) =
w1�


1�
 with 
 6= 1 and 
 > 0. This utility function has constant relative risk
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aversion (CRRA) and displays decreasing absolute risk aversion (DARA),
namely, A0(w) < 0.
Finally, we assume that the contested rent is risky and its value ev has the

following properties:

Assumption 3 (A.3) ev is a random variable with support contained in
the interval [v; v], where 0 < v < v.

Therefore, given a strategy pro�le (xi; x�i), the payo¤ of agent i is given
by

Ui(xi; x�i) = E[u(pi(xi; x�i)ev � xi)]; (2)

where E[:] is the expectation with respect to the risky rent ev, the only random
variable in our model.
Let Xi = [0;1) denote the strategy set of agent i, where i 2 I =

f1; 2; :::; ng. For a given quadruple 
 = fn; �; u; evg, the so-called �risky
contest�described by (1) and (2) together with (A.1), (A.2) and (A.3) de-
�nes an n-player simultaneous-move game �(Xi;
)i2I . All parameters are
common knowledge. The equilibrium concept we use throughout is that of
pure-strategy equilibrium.

Remark 1: Contest games under risk aversion The contest game
under risk aversion commonly considered in the literature (see the references
in Section 1.1) has the following payo¤ function:

Ui(xi; x�i) = pi(xi; x�i)u(v � xi) + (1� pi(xi; x�i))u(�xi): (3)

In (3), pi(xi; x�i) is interpreted as the probability that agent i obtains the
rent v. In that model, the rent is riskless, but the rent allocation process is
risky. In contrast, in our model, pi(xi; x�i) is interpreted as the share of a
risky rent ev obtained by agent i. Therefore, for given agents�e¤orts, the rent
allocation process is deterministic. Risk stems only from the uncertainty over
the realization of the random variable ev. Note that both models are identical
under risk neutrality (that is, u00(w) = 0) and when v = E[ev].
Remark 2: Cournot games Consider a standard Cournot oligopoly

game with (uncertain) inverse demand D(
P

i qi; ev), output qi and cost func-
tion c(qi). The risk-averse �rm thus maximizes:

E[u(D(
X
i

qi; ev)qi � c(qi))]:
5



The study of this game dates back to Leland (1972). Now, underD(Q; v) = v
Q

and c(:) = ��1(:), observe that this game is strategically equivalent to our
risky contest game. The isomorphism between Cournot and contest games
has been noted by Menezes and Quiggin (2010).

3 Equilibrium properties

Given the speci�cation of the CSF in (1), we can rewrite agent i�s payo¤ as
follows:

Ui(xi; x�i) = E
h
u
�

�(xi)
�(xi)+b�i

ev � xi�i if (xi; x�i) 6= (0; 0); (4)

where b�i =
Pn

j 6=i �(xj), while Ui(0; 0) = E [u (ev=n)]. First, note that
(xi; x�i) = (0; 0) cannot be an equilibrium. Indeed, xi = 0 is not the best
response to x�i = 0 since Ui(xi; 0) = E[u (ev � xi)] > Ui(0; 0) for any xi > 0
small enough.5 Therefore, we can concentrate on the case where x�i 6= 0 for
all i 2 I.
For a given b�i > 0, the �rst-order conditions for the maximization of (4)

with respect to xi are

@Ui
@xi

= E

��
�0(xi)b�i

(�(xi) + b�i)
2ev � 1�u0� �(xi)

�(xi) + b�i
ev � xi�� = 0; i 2 f1; 2; :::; ng:

(5)
The second-order conditions are written as

@2Ui
@x2i

= E

�
�00(xi) (�(xi) + b�i) b�i � 2(�0(xi))2b�i

(�(xi) + b�i)
3 evu0� �(xi)

�(xi) + b�i
ev � xi��

+E

"�
�0(xi)b�i

(�(xi) + b�i)
2ev � 1�2 u00� �(xi)

�(xi) + b�i
ev � xi�# < 0; i 2 f1; 2; :::; ng.

Note that under (A.1), (A.2) and (A.3), the second-order conditions are
satis�ed such that Ui is strictly concave in xi � 0 for any given b�i > 0.
Therefore, the existence of a pure-strategy equilibrium is equivalent to the

5More generally, if x�i = 0, the expected payo¤of agent i approaches E[u(ev)] as xi ! 0.
Thus, agent i�s best response does not exist for x�i = 0.
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case where the system of the �rst-order conditions (5) has a solution x� =
(x�1; x

�
2; :::; x

�
n).

We start by a technical condition under which the system of �rst-order
conditions (5) can only have symmetric solutions.6

Proposition 1 Let H(x; v) = ln [u0(v�(x)� x)]. If @2H(x;v)
@x@v

< 0, the risky
contest cannot have asymmetric equilibria.

Note that the above condition is ful�lled, for example, for u CARA.
Indeed, if u(x) = � exp(��x), then H(x; v)=ln[�� � (v�(x)� x)] and

@2H(x; v)

@x@v
= ���0(x) < 0:

The above condition is also satis�ed under u CRRA and � strictly concave.
Indeed, if u(w) = w1�


1�
 and �
00 < 0, we have

@2H(x; v)

@x@v
= 


x�0(x)� �(x)
(x� v�(x))2 < 0:

From now on, we focus on symmetric equilibria only. We �rst show that a
symmetric equilibrium always exists.

Proposition 2 The risky contest has a symmetric equilibrium.

Proof : Let f(x) denote any of the �rst-order conditions in (5) evaluated
at the symmetric solution x1 = x2 = ::: = xn = x > 0. Omitting the
i-subscript, f(x) can be written as follows:

f(x) = E

�
(�(x)ev � 1)u0�ev

n
� x
��

= 0; (6)

where �(x) = n�1
n2

�0(x)
�(x)

. Note that limx�!0 f(x) = +1 since limx�!0�(x) =

+1. Note also that �
0(x)
�(x)

� 1
x
under our assumptions on �. Accordingly,�(x)

can be made small enough, and thus f(x) negative, for x large enough. This
implies that f(x) = 0 has a solution x� > 0 that, given the strict concavity
of the expected payo¤ function, is an interior symmetric equilibrium of the
game.�
We then prove the uniqueness of the symmetric equilibrium under com-

mon assumptions on the utility function.
6The proof of this Proposition is presented in the Appendix.
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Proposition 3 The symmetric equilibrium of the risky contest is unique for
u CARA or u DARA.

Proof : The symmetric equilibrium is unique if the following single cross-
ing property is satis�ed: f(x) = 0 =) f 0(x) < 0 where f is de�ned as in (6).
We have

f 0(x) = E

�
(�0(x)ev)u0�ev

n
� x
��
� E

�
(�(x)ev � 1)u00�ev

n
� x
��
:

Note that

E

�
(�0(x)ev)u0�ev

n
� x
��

< 0

since �0(x) < 0 under � concave. Thus, it is su¢ cient to show that

E

�
(�(x)ev � 1)u0�ev

n
� x
��

= 0 =) �E
�
(�(x)ev � 1)u00�ev

n
� x
��

� 0:

Note that

�E
�
(�(x)ev � 1)u00�ev

n
� x
��

= E

�
(�(x)ev � 1)u0�ev

n
� x
�
A

�ev
n
� x
��
;

where A(:) = �u00(:)
u0(:) is the degree of absolute risk aversion. Under CARA,

A(:) is a constant so that

E

�
(�(x)ev � 1)u0�ev

n
� x
�
A

�ev
n
� x
��

= 0:

Thus, we have

E

�
(�(x)ev � 1)u00�ev

n
� x
��

= 0

under CARA, and the su¢ cient condition for uniqueness is satis�ed.
Under DARA, A( v

n
�x) is decreasing in v. Now consider two cases. When

v � 1
�(x)

, then

(�(x)v � 1)u0
�v
n
� x
�
A
�v
n
� x
�
� (�(x)v � 1)u0

�v
n
� x
�
A

�
1

n�(x)
� x
�
:
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When v � 1
�(x)

, the previous inequality is also veri�ed. Therefore we always
have

E

�
(�(x)ev � 1)u0�ev

n
� x
�
A

�ev
n
� x
��

� E
�
(�(x)ev � 1)u0�ev

n
� x
�
A

�
1

n�(x)
� x
��

= 0:

Thus, we have

�E
�
(�(x)ev � 1)u00�ev

n
� x
��

� 0

under DARA.�
From the above analysis, we can conclude that for the common CARA or

CRRA utility functions the risky contest has a symmetric equilibrium, and
that it is the unique equilibrium in the class of all pure-strategy equilibria of
the game.

4 The e¤ects of risk and risk aversion

In this section, we examine the e¤ects of risk aversion and of the riskiness of
the rent on equilibrium e¤ort levels in the risky contest.

4.1 Comparison with risk neutrality and certainty

From the above conditions, the equilibrium of the risky contest x� can be
characterized by the following implicit solution:

� (x�)

�0 (x�)
=
n� 1
n2

E
�evu0 � ev

n
� x�

��
E
�
u0
� ev
n
� x�

�� : (7)

Under risk neutrality, the symmetric equilibrium, denoted xRN ; is thus char-
acterized by

�
�
xRN

�
�0 (xRN)

=
n� 1
n2

E[ev]:
Note that under (A.1), the function �(x)

�0(x) is equal to 0 at x = 0; moreover,
this function is strictly increasing in x, so that it can cross n�1

n2
E[ev] only once.

As a result, the symmetric equilibrium xRN is unique under risk neutrality.
We now have the following Proposition.
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Proposition 4 In the risky contest, the symmetric equilibrium e¤ort un-
der risk aversion is lower than the symmetric equilibrium e¤ort under risk
neutrality, that is, x� < xRN .

Proof : Using the de�nition of the covariance and after simpli�cation, we
can rewrite (7) as follows:

�(x�)

�0(x�)
=
n� 1
n2

E [ev] + COV �ev; u0 � evn � x���
E
�
u0
� ev
n
� x�

�� : (8)

Hence x� < xRN if and only if the covariance term is negative. This is true
under risk aversion, since u0( v

n
� x) decreases when v increases.�

Thus, we �nd that risk introduces an additional covariance term into the
characterization of the equilibrium condition. This term can be interpreted
as a risk premium associated with rent-seeking e¤ort, and is negative if and
only if the agent is risk-averse.
We now consider the certainty case. Note that if the rent is risk-free

and of value v, the symmetric equilibrium under certainty, denoted xC ; is
characterized by

�(xC)

�0(xC)
=
n� 1
n2

v:

Hence, if the value of the risk-free rent is greater than or equal to the expected
value of the risky rent, that is, E[ev] � v, we obviously have xRN � xC . Using
the previous result, we can directly compare the equilibrium under a risk-free
rent with that under a risky rent.

Proposition 5 If E[ev] � v, then the symmetric equilibrium e¤ort in the
risky contest is lower than the symmetric equilibrium e¤ort under certainty,
that is, x� < xC.

Note that the previous results do not require the assumption of a unique
equilibrium under risk aversion. Since the equilibrium under risk neutrality
or under certainty is unique, the result indeed shows that any equilibrium
under risk aversion (whether unique or not) is below the unique equilibrium
under risk neutrality or under certainty.
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4.2 The e¤ect of more risk aversion

We now examine the e¤ect of more risk aversion on equilibrium e¤orts. To
do so, we compare the equilibria between two contests di¤ering only in terms
of the common degree of risk aversion of the agents participating in each
contest. We obtain the following Proposition.

Proposition 6 Assume that x� (resp. bx) is the unique symmetric equilib-
rium of a risky contest with a utility function u (resp. bu). Assume also thatbu is more risk-averse than u. Then, we have bx � x�.
Proof : Consider the implicit solution (7). Note that the right-hand side is

strictly positive at x� = 0 and therefore crosses the left-hand side from above.
Thus, we only have to show that the termE[evu0( ev

n
�x)]=E[u0( ev

n
�x)] decreases

with risk aversion. Let bu(:) � T (u(:)). As is usual in the comparative
statics of risk aversion, we examine the e¤ect of an increasing and concave
transformation T (:) (Pratt 1964). We thus want to show that

E
�evu0 � ev

n
� x
�
T 0
�
u
� ev
n
� x
���

E
�
u0
� ev
n
� x
�
T 0
�
u
� ev
n
� x
��� � E

�evu0 � ev
n
� x
��

E
�
u0
� ev
n
� x
�� :

We now introduce the following probability density function:

m(v) =
d(v)u0

�
v
n
� x
�

E
�
u0
� ev
n
� x
�� ;

where d(v) is the probability density function of the random variable ev. Then
the previous inequality can be simply rewritten

bE �evT 0 �u � ev
n
� x
���

bE �T 0 �u � ev
n
� x
��� � bE [ev] ;

where bE is the expectation operator taken with respect to the probability
density function m(v). Observe �nally that this last inequality holds if and
only if COV [ev; T 0(u( ev

n
� x))] � 0, namely if and only if T 0(u( v

n
� x)) is

decreasing in v. This is always true under T concave.�
This last Proposition is thus a generalization of Proposition 4 to the

common notion of increased risk aversion. The result seems intuitive. In our
game, an increase in an agent�s e¤ort, the other agents� e¤orts remaining
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�xed, increases her share of the risky rent. Yet, from portfolio theory, we
know that an increase in risk aversion reduces the share invested in net risky
assets (Pratt 1964). Following this insight from portfolio theory, more risk
aversion should thus naturally decrease the e¤ort in our game. Note, however,
that the negative e¤ect of risk aversion holds at the equilibrium of the game
and thus does not rely on the assumption that the other agents�e¤ort is kept
�xed.

4.3 The e¤ect of more risk

We have just shown that more risk aversion induces lower e¤orts at equi-
librium. We next examine the e¤ect of more risk on the rent. It turns out
that this case needs an additional condition to sign the comparative statics
analysis.

Proposition 7 Assume that x� (resp. x��) is the unique symmetric equilib-
rium of a risky contest with rent ev (resp. ev0). Assume also that ev0 is more
risky than ev. Then, we have x�� � x� if and only if�

v

n
� n

n� 1
�(x)

�0(x)

��
�
u000( v

n
� x)

u00( v
n
� x)

�
� 2:

Proof : We have to show that f(x) = E[(�(x)ev � 1)u0( ev
n
� x)] decreases

when ev becomes more risky. As is usual in the comparative statics of in-
creasing risk (Rothschild and Stiglitz 1970), this is equivalent to showing
that

g(v) = (�(x)v � 1)u0(v
n
� x)

is concave in v. We have

g0(v) = �(x)u0(
v

n
� x) + (�(x)v � 1)

n
u00(

v

n
� x)

and

g00(v) = 2
�(x)

n
u00(

v

n
� x) + (�(x)v � 1)

n2
u000(

v

n
� x):

Therefore, g(v) is concave if and only if�
�(x)v � 1
�(x)n

��
�
u000( v

n
� x)

u00( v
n
� x)

�
� 2
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which, by using �(x) = n�1
n2

�0(x)
�(x)

, yields the result.�
The condition in the above Proposition places no restriction on the prob-

ability distribution of the rent but combines restrictions on the functional
forms of u and �. Note that this condition holds for all � when u000 = 0.7

However, this last restriction on the utility function is very strong. The
weaker restriction u000 � 0; coined �prudence�(Kimball 1990),8 is more com-
mon in the literature. Using the above result, we can now derive a simple
su¢ cient condition for the comparative statics analysis of risk that only relies
on a property of the utility function.

Corollary Assume u000 � 0. If �wu000(w)
u00(w) � 2 for all w, then x�� � x�:

Proof: From the concavity of �, we know that �(x)
�0(x) � x. This implies

that
v

n
� n

n� 1
�(x)

�0(x)
� v

n
� x;

and therefore�
v

n
� n

n� 1
�(x)

�0(x)

� 
�
u000
�
v
n
� x
�

u00
�
v
n
� x
� ! � �v

n
� x
��
�
u000( v

n
� x)

u00( v
n
� x)

�
� 2

under u000 � 0. The result in Proposition 7 concludes the proof.�
Given a CRRA utility function (which has u000 � 0), that is, u(w) =

(1 � 
)�1w1�
 with 
 > 0, the condition �wu000(w)
u00(w) � 2 for all w simpli�es to


 < 1: It may thus appear unexpected that the condition assumes that agents
are not �too�risk-averse to ensure that they decrease their e¤orts when the
rent becomes more risky. However, this result is not very surprising given
previous results in the literature. Indeed, referring again to portfolio theory,
an increase in risk has been shown to not necessarily decrease risk taking
(Rothschild and Stiglitz 1971). In fact, Hadar and Seo (1990) obtained a
similar condition on the utility function, that is, �wu

000(w)
u00(w) � 2; to sign the

comparative statics of more risk in the standard portfolio model.

7This is simply because the left hand side of the inequality condition in Proposition 7
is equal to 0 under u000 = 0. Equivalently, it is easy to see from (7) that, when the utility
function is quadratic (implying u000 = 0), the right hand side always decreases with the
variance of the risk.

8Sometimes this condition is also called downside risk aversion (Menezes et al. 1980).
Note that DARA implies prudence.
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Moreover, note that the condition above means that �relative prudence�
is positive and lower than 2. Therefore, the result identi�es in fact a condition
on relative prudence, and not one on relative risk aversion. Intuitively, there
are two e¤ects (see the computation of g00(v) above). On the one hand, risk
aversion decreases e¤orts, as shown in Proposition 4. This is a �risk aversion
e¤ect�, simply because an increase in risk decreases risk taking. But there
is also a �prudence e¤ect�, in the sense that risk also increases the marginal
utility of e¤ort. Indeed, when the rent is more risky, each agent has an
additional incentive to exert e¤ort under prudence. The intuition is that it is
relatively more bene�cial for a prudent agent to secure an increasing portion
of a valuable rent under more risky conditions. Our result above thus re�ects
the tension between these two e¤ects, a risk aversion e¤ect and a prudence
e¤ect.

5 Conclusion

This paper has examined a contest with a shared risky rent. This model
can be interpreted as a general model of �markets for in�uence� (Menezes
and Quiggin 2010), with applications to marketing, advertising or lobbying.
Our analysis delivers a simple message: risk-averse agents exert less e¤orts
when they become (more) risk-averse or when the rent becomes (more) risky.
Importantly, our model di¤ers from the standard probabilistic contest game
usually considered in the literature. Nevertheless, the main insight does not
di¤er much. Indeed, it has been shown that risk aversion and risk tend
to decrease e¤ort in the standard contest model (Treich 2010, Cornes and
Hartley 2012).
We must add, however, that the e¤ect of risk in our model depends on a

condition on the third derivative of the agents�utility function. Thus, there is
an additional force beyond risk aversion, coined the �prudence e¤ect�, which
leads to increased e¤orts under risky conditions (see Section 4.3). Moreover,
we have examined the case with only concave impact functions (see A.1),
thus introducing a common but severe constraint on the contest technology.
Under convex impact functions, the message above must be quali�ed, or even
reversed. More precisely, risk-averse agents can be shown to exert greater
e¤orts under special conditions when the rent becomes more risky.9 Finally,

9This result is available upon request to the corresponding author.
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we should mention that an important limitation of our analysis is that we
have considered only a symmetric game.

6 Appendix

Proof of Proposition 1. The proof follows from the proof of Proposition 3.1
in Corchón (2007). Rearranging terms, (5) can be written as follows:

�0(xi)b�i

(�(xi) + b�i)
2 =

E
h
u0
�

�(xi)
�(xi)+b�i

ev � xi�i
E
hevu0 � �(xi)

�(xi)+b�i
ev � xi�i :

Let xm = mini2I xi and xM = maxi2I xi: If the solution is not symmetric, then
xm < xM : Since �0(xm)b�m > �0(xM)b�M and �(xm) + b�m = �(xM) + b�M ,
we have

�0(xm)b�m

(�(xm) + b�m)
2 >

�0(xM)b�M

(�(xM) + b�M)
2 ;

which in turn implies

E
hevu0 � �(xm)

�(xm)+b�m
ev � xm�i

E
h
u0
�

�(xm)
�(xm)+b�m

ev � xm�i <
E
hevu0 � �(xM )

�(xM )+b�M
ev � xM�i

E
h
u0
�

�(xM )
�(xM )+b�M

ev � xM�i :
But this last inequality is not possible if the function 	(x) =

E[evu0(�(x)B
ev�x)]

E[u0(�(x)B
ev�x)]

is decreasing in x for any B > 0. We have

	0(x) =
E
h
(�

0(x)
B
ev � 1)evu00(:)iE hu0 ��(x)

B
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Similarly to the proof of Proposition 6, we now introduce the following prob-
ability density function

m(v) =
d(v)u0

�
�(x)
B
ev � x�

E
h
u0
�
�(x)
B
ev � x�i ;
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where d(v) is the probability density function of the random variable ev. With
this new probability density function, we can rewrite the equality above as

	0(x) = COV

24ev;��0(x)
B
ev � 1� u00

�
�(x)
B
ev � x�

u0
�
�(x)
B
ev � x�

35
= COV

�ev; d
dx
ln

�
u0
� ev
B
�(x)� x

���
:

Without loss of generality, we can normalize B to 1. Denoting H(x; v) =
ln [u0(v�(x)� x)], the covariance is thus negative if and only if @

2H(x;v)
@x@v

< 0,
which concludes the proof.�

7 References

Congleton, R., Hillman, A.: Companion to the Political Economy of Rent
Seeking. Edward Elgar Publishing (2015)
Corchón, L.: The theory of contests: a survey. Review of Economic

Design 11, 69-100 (2007)
Cornes, R., Hartley, R.: Risk aversion, heterogeneity and contests. Public

Choice 117, 1-25 (2003)
Cornes, R., Hartley, R.: Risk aversion in symmetric and asymmetric

contests. Economic Theory 51, 247-275 (2012)
Dechenaux, E., Kovenock D., Sheremeta, R.: A survey of experimen-

tal research on contests, all-pay auctions and tournaments. Experimental
Economics 18, 609�669 (2015)
Hadar, J., Seo T.K.: The e¤ects of shifts in a return distribution on

optimal portfolios. International Economic Review 31, 721-36 (1990).
Hanley, N., MacKenzie, I.A.: The e¤ects of rent seeking over tradable

pollution permits. The B.E. Journal of Economic Analysis & Policy 10, 56
(2010)
Hillman, A., Katz, E.: Risk-averse rent seekers and the social cost of

monopoly power. Economic Journal 94, 104-110 (1984)
Harstad, R.: Privately informed seekers of an uncertain rent. Public

Choice 83, 81-93 (1995)
Kimball, M.: Precautionary savings in the small and in the large. Econo-

metrica 58, 53-73 (1990)

16



Konrad, K.: Strategy and dynamics in contests. Oxford: Oxford Univer-
sity Press (2009)
Konrad, K., Schlesinger, H.: Risk aversion in rent-seeking and rent-

augmenting games. Economic Journal 107, 1671-1683 (1997)
Krueger, A.: The Political Economy of the Rent-Seeking Society. Amer-

ican Economic Review 64, 291-303 (1974)
Leland, H.E.: Theory of the �rm facing uncertain demand. American

Economic Review 3, 278-91 (1972)
Long, N.V.: The theory of contests: A uni�ed model and review of the

literature. European Journal of Political Economy 32, 161-181 (2013)
Long, N.V., Vousden, N.: Risk-averse rent seeking with shared rents.

Economic Journal 97, 971-85 (1987)
Menezes, C., Geiss, C., Tressler, J.: Increasing downside risk. American

Economic Review 70, 921-32 (1980)
Menezes, F.M., Quiggin, J: Markets for in�uence. International Journal

of Industrial Organization 28, 307-10 (2010)
Öncüler, A., Croson, R.: Rent-seeking for a risky rent: A model and ex-

perimental investigation. Journal of Theoretical Politics 17, 403-429 (2005)
Pratt, J.: Risk aversion in the small and in the large. Econometrica 32,

122-136 (1964)
Rode, A: Rent-seeking over tradable emission permits: Theory and evi-

dence. Mimeo (2014)
Rothschild, M., Stiglitz, J.: Increasing risk: I. A de�nition. Journal of

Economic Theory 2, 225-243 (1970)
Rothschild, M., Stiglitz, J.: Increasing risk: II. Its economic consequences.

Journal of Economic Theory 3, 66-84 (1971)
Schroyen, F., Treich, N.: The power of money: Wealth e¤ects in contests.

Games and Economic Behavior, forthcoming (2016)
Skaperdas, S., Gan, L.: Risk aversion in contests. Economic Journal 105,

951-962 (1995)
Treich, N.: Risk aversion and prudence in rent seeking games. Public

Choice 145, 339-349 (2010)
Tullock, G.: E¢ cient rent seeking. In Buchanan, J., Tollison, R., Tullock,

G. (eds.), Toward a Theory of the Rent-Seeking Society, 97�112 (1980)
Tullock, G.: The Welfare Costs of Tari¤s, Monopolies, and Theft. West-

ern Economic Journal 5, 224-232 (1967)
Wärneryd, K.: Information in con�icts. Journal of Economic Theory

110, 121-136 (2003)

17


