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Abstract

Many important statistics in macroeconomics and finance—such as cross-sectional dispersions,

risk, volatility, or uncertainty—are second moments. In this paper, we explore a mechanism

by which second moments naturally and endogenously fluctuate over time as nonlinear trans-

formations of fundamentals. Specifically, we provide general results that characterize second

moments of transformed random variables when the underlying fundamentals are subject to

distributional shifts that affect their means, but not their variances. We illustrate the usefulness

of our results with a series of applications to (1) the cyclicality of the cross-sectional dispersions of

macroeconomic variables, (2) the dispersion of MRPKs, (3) security pricing, and (4) endogenous

uncertainty in Bayesian inference problems.
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1 Introduction

Many important statistics in macroeconomics and finance—such as cross-sectional dispersions, risk,

volatility, or uncertainty—are second moments. For example, dispersions can be measured by the

cross-sectional variance, risk by the variance across future states with an objective probability

measure, volatility by the variance of the realized path over time, and uncertainty by the variance

across unknown states with respect to a possibly subjective probability measure. The recent financial

crisis was a stark reminder that these second moments are nowhere near constant over the business

cycle and allowing them to vary can help explain the economic fluctuations during the crisis.1

In this paper, we explore a mechanism by which second moments can naturally and endogenously

fluctuate across states or time, when economically interesting variables are nonlinear transformations

of some fundamental. Specifically, we consider a general setup where there is a fundamental shock θ

whose realization is either different across economic regions or agents (dispersion), not realized yet

(risk), varies over time (volatility), or unknown to agents (uncertainty). We distinguish between the

variance of θ, which defines the second moment of the fundamental, and the variances of certain

nonlinear transformations of θ, which characterize the second moments of interest to us.

In standard stochastic business cycle models, for instance, the variables of economic interest are

commonly approximated as linear (or linearized) functions of the fundamentals. In order to use these

models to explain movements in second moments of endogenous variables one must therefore rely

on exogenous shocks to the second moments of fundamentals. Moreover, to capture the apparent

cyclicality of the second moments of these variables, the exogenous shocks to second moments need

to be correlated with the corresponding first-order shocks to fundamentals. Here, we go another

route and consider a setting where some variable of interest, y, is a convex or concave function of

the fundamental θ.2 We provide general theorems that characterize the behavior of the variance

of y as the distribution of θ shifts up or down, without changing the fundamental variance of θ.

Our framework hence provides a theoretical underpinning for a class of models where a single

“first-moment” change in fundamentals causes fluctuations in first and second moments in endogenous

variables.

Applied contribution. The usefulness of our results is illustrated in a series of four applications.

The main application is a stylized business cycle model, in which we take θ as the productivity of

distinct economic units (e.g., firms, plants, or regions). We study how aggregate, variance-preserving

shifts of the distribution of θ across these units (i.e., fluctuations in aggregate productivity) translate

into endogenous fluctuations in the cross-sectional dispersion of key macroeconomic quantities, such

as output, employment, investment, and Solow residuals. The novel feature in this application is the

focus on non-unit elasticities between factor inputs at the firm level, which is key for generating a

1See, e.g., Christiano, Motto and Rostagno (2014), Bloom (2009) and Bloom et al. (2016) for business cycle theories
based on risk or uncertainty shocks. For empirical evidence regarding the cyclicality of second moments, see, e.g.,
Bachmann, Elstner and Sims (2013), Berger and Vavra (2010), Higson, Holly and Kattuman (2002) and Kehrig (2015).

2Throughout this paper, we follow the convention that “convex” (“concave”) means weakly convex (weakly concave).
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non-linear mapping from productivities to economic activity. In line with empirical cross-sectional

patterns, the dispersions of output, employment and Solow residuals are shown to be countercyclical

when employment and capital are gross complements. A simple calibration of the input elasticity

to recent micro-data estimates suggests that this mechanism can account for a significant share

of the empirical observed cyclical variation in various dispersion measures—without the need of

introducing exogenous “volatility”-shocks.

The second application looks at a prominent proxy used by a recent literature to measure

misallocation, the marginal revenue product of capital (MRPK), and explores how it changes with

different shocks. We consider a simple model where firms face idiosyncratic borrowing constraints

and are hit by idiosyncratic productivity and financial shocks. As expected, financial shocks lead to

counter -cyclical fluctuations in the cross-sectional dispersion of MRPKs. In contrast, we show that

productivity-driven fluctuations lead to pro-cyclical dispersions whenever the elasticity of borrowing

limits to firm revenues is smaller than one.

The third application is a simple security market model where we explore how the comovement

of a security’s risk with the underlying fundamental depends on the security’s payoff profile. In

this context, we generalize the following two well-known results for a general class of underlying

risk distributions: (i) concavely increasing securities (e.g., corporate debt) have return risk that is

countercyclical to the underlying state of the corporation; and (ii) convexly decreasing securities

(e.g., European Put options) have procyclical return risk.

Our final application illustrates how uncertainty in Bayesian inference problems can vary endoge-

nously when signal structures have some degree of “non-linearity”. In particular, we study a set-up

where agents receive a signal about some non-linear transformation g(θ) of the fundamental θ. Such

non-linear transformation arises, for instance, when agents learn from financially constrained firms

about their business potential. In this setup, when θ realizes in a range where g tends to be rather

flat (e.g., firms are constrained), the signal endogenously loses some of its information content. This

way, posterior uncertainty fluctuates with the realization of the signal and is thus determined by

both, the fundamental θ and the exogenous noise in the signal itself.

Together, these applications illustrate how our results can be used to provide a unified perspective

to explain endogenous fluctuations in risk, dispersion, and uncertainty. While Application 3 is fairly

standard, Applications 1, 2, and 4 describe new perspectives on recent results in their respective

literatures. For example, Application 1 contributes to the recent literature on the cyclicality of the

dispersion of firm- or plant-level statistics.3 In particular, it complements Ilut, Kehrig and Schneider

(2016) who develop a model where asymmetries in hiring and firing based on ambiguity aversion

microfound nonlinear responses of firms to changes in productivities. These nonlinearities play a

similar role to the nonlinearities emerging in our application from a non-unit elasticity between

3The cyclicality of the dispersions of firm- or plant-level variables such as output, productivity, employment, or
investment is documented by Bachmann, Elstner and Sims (2013), Bachmann and Bayer (2013, 2014), Berger and
Vavra (2010), Bloom et al. (2016), Cui (2014), Döpke et al. (2005), Döpke and Weber (2010), Gourio (2008), Higson,
Holly and Kattuman (2002); Higson et al. (2004) and Kehrig (2015) among others.
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factor inputs in that they introduce cyclical shifts in the dispersions of firm aggregates. Application 2

contributes to recent studies on the cyclicality of misallocation of capital (see, e.g., Kehrig 2015 and

Gopinath et al. 2015), in that it discusses—based on a simple static framework with heterogeneous

borrowing constraints—under what conditions the dispersion of the marginal revenue product of

capital can be expected to be cyclical. Finally, Application 4 introduces a general result about the

cyclicality of Bayesian uncertainty when signals are nonlinear functions of the economy’s fundamental.

Theories about the cyclicality of uncertainty have recently gained attention by a number of authors

in the face of growing evidence and potential relevance of changes in uncertainty (see, e.g., van

Nieuwerburgh and Veldkamp 2006; Orlik and Veldkamp 2014; Straub and Ulbricht 2012, 2014;

Fajgelbaum, Schaal and Taschereau-Dumouchel 2017).

Theoretical contribution. To be as broadly applicable as possible, the theory part of our paper

is kept in a general and abstract form: Letting X and Y be real-valued random variables with equal

variance, we compare the variances of g(X) and g(Y ), where g is a monotone and convex or concave

function.

Our results are easiest seen in the special cases where Y is either strictly larger than X—by

which we mean the support of Y strictly exceeds the support of X without overlap—or when the

distribution of Y is simply a positive translation of the distribution of X . Then as one would

expect, the variance of g(Y ) (weakly) exceeds the variance of g(X) if g is convexly increasing or

concavely decreasing. However, these cases are quite special and may not translate well to real world

examples.4

A natural question hence is whether and when these results carry over to the general case where

the supports of X and Y are allowed to overlap and where the distributions do not have the same

parametric shape. As it turns out, the answer is less straightforward than one may think. For

instance, it is possible to construct examples where Y first-order stochastically dominates X—that

is, the cumulative distribution function of Y is strictly below the one of X—yet the variance of g(Y )

is smaller than the one of g(X), despite g being an increasing convex function (and X and Y having

equal variance).

The main theoretical result in the paper states that when Y dominates X according to the

monotone likelihood ratio property (MLRP)—that is, the ratio of the densities of Y and X is

increasing—but shares the same variance as X, then the variance of g(Y ) indeed exceeds the variance

of g(X) if g is convexly increasing or concavely decreasing.5 This gives us a precise notion of when

positive shifts in an underlying fundamental, say θ, translate into positive shifts to the second moment

of a transformed variable g(θ), namely when g is convexly increasing or concavely decreasing.

4For instance, we expect that a positive shock to the aggregate productivity of an economy would typically not
leave the exact shape of the productivity distribution unchanged, but may disproportionately affect firms at certain
points of the productivity distribution. Similarly, the cross-sectional productivity distribution is very likely to always
have some overlap.

5Analogously, it holds that the variance of g(X) exceeds the one of g(Y ) when g is concavely increasing or convexly
decreasing.
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In addition to the non-parametric characterization in our main result, we provide a simple

elementary proof for the above mentioned case where Y is a translation of X. Building on this proof,

we further extend our results to the case where X and Y are not necessarily similar in shape yet

their transformations g(X) and g(Y ) are linked via an affine-linear relation6 with Eg(Y ) > Eg(X).

It is worth noting here that our results have nothing in common with Jensen’s inequality.7

Instead, the correct analogy is to the known transformation properties of first moments. Specifically,

it is well-known that two random variables ordered by MLRP have means ordered the same way,

and this property is preserved under increasing transformations. In analogy to these known results

on first moments, our results imply that for two MLRP-ordered random variables, the order of

variances is preserved under increasing convex and decreasing concave transformations

In relation to the literature, these results substantially extend existing theoretical results on the

transformation behavior of variances under monotone concave or convex transformations. To the

best of our knowledge, the most general predecessor of our results is found in Bartoszewicz (1985).

In the above notation, Bartoszewicz (1985, Theorem 1) proves that if Y dominates X according to

first order stochastic dominance (FOSD) and a convex stochastic order (Van Zwet, 1964)8, then a

similar result to ours holds, namely that Var g(Y ) > Var g(X) for any convexly increasing function

g. Compared to Bartoszewicz (1985), our main result has the advantage that our stochastic orders

(MLRP and VarX ≤ VarY ) are in most applications easy to check while it can be hard to work

with the convex stochastic order in Bartoszewicz (1985), especially in cases where Y is of a different

parametric shape than X (i.e., Y is not a simple translation of X).

Layout. The layout of this paper is as follows: In Section 2 we first introduce the necessary

mathematical setup and then show how it can be used to prove our theoretical results. Section 3

develops the main application on cross-sectional dispersions. Section 4 contains the remainder

applications. Section 5 concludes. All formal proofs are contained in our mathematical Appendices A,

B, and C, where we prove the main results.

2 Variance transformation theorems

In this section, we present our formal results. We start out by explaining our main result in

Section 2.1, based on an MLRP stochastic order. Then, in the subsequent Section 2.2, we explore two

alternative stochastic orders and the variance transformation results they imply. In Section 2.3 we

6That is, g(Y ) = α1 + α2g(X) for real numbers α1, α2.
7Jensen’s inequality states that under a convex transformation, the mean of g(X) exceeds g applied to the mean

of X, Eg(X) > g(EX). Apart from pertaining to variances, our results also differ in that they compare statistical
measures of a transformed variable, g(X), to the same statistical measures of another transformed variable, g(Y ).
Jensen’s inequality compares a statistical measures of a transformed variable, g(X) to the transformation of the
statistical measures of the untransformed variable, X.

8The convex stochastic order that is meant here requires that F−1
X ◦ FY be convex (well-defined if FX is indeed

invertible). Notice that this is different from the MLRP.
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present two corollaries to our results. Section 2.4 presents simple parametric examples and discusses

how they fit the assumptions of our theorems.

Consider the following set-up. Let X,Y be two real-valued and univariate random variables,

defined over a probability space (Ω,A,P). Denote by FX and FY their cumulative distribution

functions. Assume that there exists a measure µ over (R,B(R)) with respect to which the distributions

of X and Y admit density functions fX and fY . Here, B(R) denotes the Borel sigma algebra.

The idea behind our results is to ask what order we can expect between Var{g(X)} and Var{g(Y )},
depending on the function g. To answer this question in a meaningful way, the assumptions we make

on the stochastic order between X and Y naturally have to involve the second or higher moments of

X and Y themselves. For example, even if we were to assume that Y lies strictly above X without

overlap in their respective supports, there is no way of ranking Var{g(X)} and Var{g(Y )} without

any information on the variances of X and Y (or other measures of dispersion). For this reason, all

of our stochastic orders will assume a weak ordering of the variances of X and Y .9

2.1 Main result: Variance transformation under MLRP

For our main result, we assume that X and Y are stochastically ordered in the following sense.

Assumption 1. (i) X is strictly dominated by Y in the sense of the MLRP; that is, fY (z)/fX(z)

is weakly increasing for all z in the support of µ, and FX 6= FY . (ii) The variance of X is less than

or equal to the variance of Y , that is, Var{X} ≤ Var{Y }, and both variances are finite and nonzero.

In part (i) of Assumption 1 we demand that X and Y are ordered by MLRP.10 To stress the

importance of MLRP, in Example 1 below we show that our results do not carry over to cases where

the random variables only obey a weaker form of stochastic order, e.g. first-order or second-order

stochastic dominance. In part (ii) of Assumption 1, we require the variances to be ordered. As our

results below will apply for increasing convex (and similarly decreasing concave) transformations, this

is the direction of the inequality we need. If Var{X} > Var{Y }, it is straightforward to construct

counterexamples where the results do not hold. However, in that case, an analogous theorem applies

for increasing concave (and decreasing convex) transformations.

Our notation is general enough to nest both continuous and discrete random variables. If µ is

equal to the Lebesgue measure on (R,B(R)), fY and fX are common density functions of continuous

distributions over R. For example, when X and Y are normally distributed with equal variance,

X ∼ N (mX , σ
2) and Y ∼ N (mY , σ

2) with mY > mX , they satisfy Assumption 1. Choosing µ to

have discrete support allows X and Y to be discrete. For example, a measure11 µ =
∑N

i=1
1
N δzi puts

equal weight on numbers {z1, . . . , zN} (assumed to be in strictly increasing order), in which case

9It is worth pointing out here that the lack of basic first or second order dominance among our stochastic orders
is coming from the fact that neither provide the right restrictions on X and Y to be able to rank Var{g(X)} and
Var{g(Y )} for simple functions g (see Example 1 below).

10An alternative common characterization of the MLRP is that FY ◦ F−1
X is (weakly) convex.

11Here, δz denotes a Dirac measure which puts point mass 1 on z ∈ R.
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Figure 1: Convex transformation of a translation

Assumption 1(i) demands that fY (zi)/fX(zi) = P{Y = zi}/P{X = zi} be weakly increasing in i.

In this discrete setup, standard formulae for the variances of discrete distributions can be used to

impose Assumption 1(ii).12

Main result We now present our main transformation result for variances. The idea behind it is

as follows. For two random variables X and Y which are stochastically ordered, we show that under

strictly convex increasing transformations g : R→ R,13

Var{X} ≤ Var{Y } ⇒ Var{g(X)} < Var{g(Y )}.

Figure 1 gives the straightforward intuition behind this result. Y exceeds X stochastically and

therefore Y most likely realizes in regions where the slope of g is larger than for most realizations of

X. This follows from the assumption that g be convex and increasing. With “on average” higher

slope for Y , even if Y and X share the same variance, g(Y ) will have a larger variance than g(X).

When X and Y are ordered according to the MLRP, we find the following result.

Theorem 1. Suppose Assumption 1 holds. Let g : R → R be a convex and strictly increasing

12Note that our definition of MLRP is well-defined, in the sense that it is independent of which measure µ one takes
to construct the densities, as long as the distributions of X and Y are both absolutely continuous with respect to
µ. For instance, in the above discrete example, introducing different weights on the numbers in the support {0, 1, 2},
merely causes proportional shifts in the densities, such that their ratios, fX(z)/fY (z), do not change.

13Throughout this paper, we use the term “strictly convex” to describe an a.e. differentiable function whose derivative
is a.e. strictly increasing. (Here, “a.e.” is with respect to the Lebesgue measure.)
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function. Then,

Var{g(X)} ≤ Var{g(Y )}, (1)

when these variances are finite. This holds with strict inequality if g is strictly convex.

To illustrate Theorem 1 consider the following example. If the support of X is strictly dominated

by the support of Y (no overlap) and there is some point z ∈ R in the gap between the two supports,

then it is straightforward to show that14

Var{g(Y )} ≥
(
g′(z)

)2
Var{Y } ≥

(
g′(z)

)2
Var{X} ≥ Var{g(X)}. (2)

The intuition behind the example is that the slope of g (which multiplies the variance) is greater

for all possible realizations of Y than it is for the realizations of X. Cleary, this example is very

sensitive to the assumption of non-overlapping supports. Still, one might wonder, why our proof of

Theorem 1 is substantially more subtle than (2). The key to see why lies in understanding that the

case where the supports of X and Y do overlap requires some notion of the slope of g being “on

average” greater for realizations of Y than for realizations of X. Because Y is not necessarily larger

than X for any possible realization—only stochastically so—we need to make sure Y dominates X

in the “right” way. The following example illustrates this point, showing that Theorem 1 in fact

fails if we relax the assumption that Y dominates X in the sense of MLRP, to the weaker notion of

first and second order stochastic dominance.

Example 1. Let µ = δ0 +δ1 +δ2, where δx is the Dirac measure with a point mass at x, and let X,Y

be given by fX(0) = 1− ε, fX(1) = 0, fX(2) = ε and fY (0) = (1− ε)/2, fY (1) = (1− ε)/2, fY (2) = ε.

Clearly, Y dominates X in the sense of both First and Second Order Stochastic Dominance (FOSD

and SOSD). Assume ε = 0.1. Then, the variances of X and Y are given by Var{X} = 0.36 and

Var{Y } = 0.4275. In particular, Var{Y } ≥ Var{X}.
Now define the convex function g(x) = max{x, λ(x− 1) + 1} with λ > 1. We can compute that

Var{g(Y )} −Var{g(X)} = 0.1575− 0.09λ.

This shows that for sufficiently large values for λ, the variance of g(X) will actually exceed the one

of g(Y ).

Example 1 considers the case where Y does not dominate X in the sense of MLRP, but rather in

the weaker senses of both FOSD and SOSD. In that case, Theorem 1 is shown to not necessarily

hold.

This example is more general: Suppose X and Y are discrete and Y has a greater mean, EX < EY .

Suppose further that both have the same right tail, that is, fX(z) = fY (z) for all z ≥ z where z

is in the support of either X or Y , and z > EY . In that case, applying a convex kink function

14For this example, we tacitly assume that g is differentiable at z.
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g(x) = max{x, λ(x− z) + 1} like before with sufficiently large λ will ultimately lead Var{g(X)} to

be greater than Var{g(Y )}. This shows that it is not enough that the distribution of Y lies “to the

right” of that of X over a subset of the support (e.g. below z); in fact, what is needed is that Y is

larger than X over the entire support. This is what is satisfied if Y MLRP-dominates X but not if

Y merely dominates X in the sense of FOSD.

We now outline the main steps in the proof of Theorem 1. The actual proof can be found in

Appendix A. For the proof, we derive the variance inequality (1) from two covariance inequalities:

Cov(X,X) ≤ Cov(Y, Y )⇒ Cov(g(X), X) ≤ Cov(g(Y ), Y )

⇒ Cov(g(X), g(X)) ≤ Cov(g(Y ), g(Y )). (3)

Both steps are similar: Only one argument in the covariances changes at a time, while the fixed

ones, e.g. X and Y in the first step, share an MLRP relationship.15 To see why these steps hold

specifically when Y MLRP-dominates X, consider the first one as an example, with X,Y continuous

random variables. Denoting by mX and mY the means of X and Y , we can write

Cov(g(Y ), Y )− Cov(g(X), X) =

∫
R
g(x)(x−mY )fY (x) dx−

∫
R
g(x)(x−mX)fX(x) dx.

The right hand side of this can be captured with a single integral and integrated by parts,

∫
R
g(x)

(
(x−mY )

fY (x)

fX(x)
− (x−mX)

)
fX(x) dx

= −
∫
R
g′(x)

∫ x

−∞

(
(z −mY )

fY (z)

fX(z)
− (z −mX)

)
fX(z) dz dx.

Interestingly, the first factor of the integrand of the interior integral (z −mY ) fY (z)
fX(z) − (z −mX) is

first positive, then negative, then positive, precisely because mY > mX and fY (z)/fX(z) increases

in z due to the MLRP. This means the enitre interior integral can only cross 0 at a given x0 ∈ R.

Convexity of g means g′ is monotone and therefore this expression is bounded below by

−g′(x0)

∫
R

∫ x

−∞

(
(z −mY )

fY (z)

fX(z)
− (z −mX)

)
fX(z) dz dx,

which, following the exact same steps backwards, is equal to g′(x0) (Cov(Y, Y )− Cov(X,X)) and

thus greater or equal to zero.

2.2 Two alternative stochastic orders

We now allow for two alternative stochastic orders and prove corresponding variance transformation

theorems. Here, our first result, Theorem 2, formally establishes a commonly used alternative to our

15In the actual proof, we utilize this commonality and prove an auxiliary result that applies to both steps.
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main result; our second result, Theorem 3, establishes a natural extension of it.

As our first alternative stochastic order, we consider the commonly used case where Y is an

affine linear function of X. In this case, the assumptions on X and Y are as follows.

Assumption 2. (i) Y is an affine-linear function of X, Y = α1X + α2, where EY > EX and

α1, α2 ∈ R. (ii) The variance of X is less than or equal to the variance of Y , that is, Var{X} ≤
Var{Y }, and both variances are finite and nonzero.

The first part of Assumption 2 demands Y to be an affine linear function of X, but with a higher

mean so as to ensure that Y is larger than X on average. The case where Y is a simple positive

translation of X, i.e. α1 = 1 and α2 > 0, is naturally covered. In fact, notice that Assumption 2(ii)

is also satisfied for this case, since under a translation, Var{Y } = Var{X}. Assumption 2(ii) is

slightly more general than that by allowing for Y to have a larger variance than X.

As our second alternative order, we consider a variation of Assumption 2, where the affine-

linear transformation assumption is not imposed on X and Y itself; but rather after applying the

transformation g : R → R to X and Y , under which one is interested in studying the variance

transformation behavior.

Assumption 3. (i) g(Y ) is an affine-linear function of g(X), that is, g(Y ) = α1 + α2g(X), with

E{g(Y )} > E{g(X)} and α1, α2 ∈ R. (ii) The variance of X is less or equal to the variance of Y ;

that is, Var{X} ≤ Var{Y }, and both variances are finite and nonzero.

The essential part of Assumption 3 is again part (i). It requires that g(Y ) and g(X) be similar

in shape, in the sense that g(Y ) is merely an affine-linear transformation of g(X).

Results under the two alternative stochastic orders We now prove that a similar result to

Theorem 1 holds under our two alternative stochastic orders. We start with the case where Y is a

simple positive affine-linear translation of X.

Theorem 2. Suppose Assumption 2 holds. Let g : R → R be a convex and strictly increasing

function. Then,

Var{g(X)} ≤ Var{g(Y )}, (4)

when these variances are finite. This holds with strict inequality if g is strictly convex.

The idea behind Theorem 2 is simple: Since g is convex, translating a distribution X to the right

increases the “average slope” g has over the support of the distribution. This increases the variance.

Clearly, when Y is not only a translation of X, but also wider, that is, α1 > 1 in Assumption 2,

this can only increase the variance of g(Y ) compared to the one of g(X). The formal proof of

Theorem 2, which is relegated to Appendix B, proceeds along these lines and studies the function

Gg,X(β1, β2) ≡ Var{g(β1 + β2X)} −Var{g(X)}, formally defined in Appendix B. The subscripts g

and X of Gg,X emphasize the dependance on g and X. Notice that by construction, Gg,X(0, 1) = 0

10



and Gg,X(α1, α2) = Var{g(Y )} − Var{g(X)}. Since Gg,X is shown to increase as we vary (β1, β2)

from (0, 1) to (α1, α2), (4) follows.

Finally, we consider the case where g(X) and g(Y ) are ordered in an affine-linear way. The same

conclusion holds there.

Theorem 3. Suppose Assumption 3 holds, with g : R→ R a convex, strictly increasing function.

Then,

Var{g(X)} ≤ Var{g(Y )}, (5)

with strict inequality if g is strictly convex.

Theorem 3 is a simple variation of Theorem 2. Rather than parametrically linking the distributions

of X and Y , it does so for g(X) and g(Y ). Hence, it is suitable for applications where it is not X

and Y that stem from a “similar” parametric class of distributions (e.g. normal distributions) but

rather g(X) and g(Y ). Example 2 illustrates this.

Example 2. Let X,Y be such that g(X) ∼ N (µg(X), σ
2
g(X)) and g(Y ) ∼ N (µg(Y ), σ

2
g(Y )), with

µg(X) < µg(Y ). The question Theorem 3 asks is what we can say about the relationship between

σ2
g(Y ) and σ2

g(X) if we know that Var{X} ≤ Var{Y }. The answer is that σ2
g(X) < σ2

g(Y ) for strictly

convex g.

Similar to the proof of Theorem 2, the idea for the proof of Theorem 3 is to study the properties

of the function Gg−1,g(X)(β1, β2) = Var{g−1(β1 + β2g(X))} −Var{X}. Again, G(0, 1) = 0, but now

it also holds by assumption that G(α1, α2) ≥ 0. To prove (5) it needs to be shown that α2 > 1,

which follows by proving that G(α1, α2) can only be larger than G(0, 1) if the second argument

increased. The formal proof is in Appendix C.

2.3 Corollaries

All three results, Theorems 1, 2, and 3, have a common straightforward corollary.

Corollary 1. Suppose either Assumption 1(i), Assumption 2(i), or Assumption 3(i) holds.

1. If Var{X} ≤ Var{Y } and g : R → R is a concave, decreasing function, then Var{g(X)} ≤
Var{g(Y )}.

2. If Var{X} ≥ Var{Y } and g : R → R is a concave, increasing function, then Var{g(X)} ≥
Var{g(Y )}.

3. If Var{X} ≥ Var{Y } and g : R → R is a convex, decreasing function, then Var{g(X)} ≥
Var{g(Y )}.

Here, all variances are assumed to be finite. The respective second inequalities hold strictly if g is

strictly convex or concave.

11



These generalizations are simple consequences of Theorems 1, 2, and 3 that can be obtained by

changing the signs of X and Y , or changing the sign of g, or both.

It is also worth noting that our results can also be combined in a straightforward manner. For

example, Theorems 1 and 2 jointly imply the following corollary.

Corollary 2. Suppose that (i) Y is an affine-linear function of a random variable Ỹ , which MLRP-

dominates X; (ii) EY > EỸ ; and (iii) Var{Ỹ } ≥ Var{Y } ≥ Var{X}. Then,

Var{g(X)} ≤ Var{g(Ỹ )}.

This corollary is one of the most general results on the behavior of variances under nonlinear

transformations. It includes the standard case where Y is a positive affine-linear shift of X, but

frees Y from the necessity of having exactly the same (shifted) shape as X.

2.4 Simple examples

Each of the three theorems has its own set of examples. Here, we go over three examples that

illustrate when which of the theorems can be applied. The examples show that Theorem 1 is

applicable in a wide range of settings since it does not require a highly special linear relationship

between X,Y or g(X), g(Y ).

Example 3. Suppose X,Y are normal distributions with equal variance and ordered means,

EY > EX. In that case, Theorems 1 and 2 apply for any convex or concave, monotone function g.

Example 4. Suppose X,Y are log-normal distributions with equal variance and ordered means,

EY > EX. In that case, Theorem 1 applies for any convex or concave, monotone function g.

Theorem 3 applies only if g is equal to log (up to scale and a constant intercept).

Example 5. Suppose X,Y are Pareto distributions with equal scale parameter or exponential

distributions. Denote by ξX , ξY their respective tail parameters. If ξX > ξY > 0, that is Y has a

fatter tail than X, then Y MLRP-dominates X and Var(Y ) > Var(X). Again, we can use Theorem 1

to rank the variances of any convex or concave, monotone function g.

For what kind of distributions does Theorem 1 not apply? Whenever X and Y have bimodel

distributions, but are linearly related as in Assumption 2 or Assumption 3, Theorem 1 does generally

not apply even though the variances of g(X) and g(Y ) are still ordered (Theorem 2 or Theorem 3).

3 Main application: Cross-sectional dispersion over the business

cycle

Recently, the cyclicality of the dispersions of macroeconomic variables has gained a renewed interest.

For example, the dispersions of plant-level output, employment growth and Solow residuals have been
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shown to be countercyclical, while investment dispersion is procyclical.16 Here we link these facts to

simple shifts in the distribution of idiosyncratic productivities after applying one of Theorems 1–3.

The key element is a CES firm-level production function with an elasticity of capital-labor substitution

different from one, which generates a non-linear mapping from firm-level productivities to production.

We consider first a stylized, partial-equilibrium model that allows for analytical results. In the

subsequent section, we enrich the model and use it to explore the quantitative implications.

3.1 Partial Equilibrium Framework

Assume there is a continuum of firms, labeled by i ∈ [0, 1], with CES production technology

yit = eaitf(kit, nit), (6)

where f(k, n) =
(
αk(σ−1)/σ + (1− α)n(σ−1)/σ

)σ/(σ−1)
. Here, ait is the realization of a firm-specific

(log) productivity shock; kit and nit are firm i’s choices for capital and labor, taken as given the

paths for interest rates {rt} and wages {Wt}; σ > 0 is the (firm-level) elasticity of substitution

between capital and labor; and α ∈ (0, 1). The investment to capital ratio, or “investment rate”,

ιit is chosen at t and the law of motion of capital is kit = (1 + ιit−1 − δ)kit−1, with depreciation

rate δ > 0. To allow for an analytical characterization, we assume (for now) that interest rates and

wages are exogenous at constant levels, rt = r > 0 and Wt = W > 0, and that the distribution of

productivities ait is independent of ait−1 and drawn from a time-varying distribution Ft.
The optimization problem of firm i in period τ is thus

viτ ≡ max
{nit,kit+1}

Eτ
∞∑
t=τ

Qt
Qτ

πit, (7)

where profits are given by

πit = yit −Wnit + (1− δ)kit − kit+1 (8)

with discount factor Qt ≡ (1 + r)−t and yit given by (6). Since labor is perfectly flexible, and the

distribution of ait is the same across i, the capital stock is the same across i; that is, kit = kt > 0 for

some {kt}. The first order condition for labor is then,

fn(1, nit/kt) = e−aitW. (9)

Notice that for σ < 1, the left-hand side is bounded above by (1− α)σ/(σ−1) so that firms with a

productivity smaller than ait ≤ − σ
σ−1 log(1− α) + logW set nit = 0 resulting in zero production. In

the following, we assume that these firms exit the market, focusing our analysis on active firms.17

16See, e.g., Bachmann, Elstner and Sims (2013), Bachmann and Bayer (2013, 2014), Berger and Vavra (2010), Bloom
et al. (2016), Cui (2014), Döpke et al. (2005), Döpke and Weber (2010), Gourio (2008), Higson, Holly and Kattuman
(2002); Higson et al. (2004) and Kehrig (2015) among others.

17This could be for instance the result of a marginal operating cost ε→ 0 that accrues when remaining active.
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Solving for nit and taking logs, (9) becomes

log nit = log kt + g(ait − w) (10)

with w ≡ logW and g(x) = log
(
fn(1, ·)−1(e−x)

)
.18 It is easy to verify that g is an increasing

function and is strictly concave (strictly convex) whenever σ < 1 (σ > 1).19

Consider the following experiment akin to an aggregate TFP shock: Suppose the distribution of

log productivities (among active firms) shifts from Ft to a distribution F t′ at time t′, which dominates

Ft according to either of Assumptions 1–3(i), but has equal dispersion: VarFt{ait} = VarFt′{ait′}.
Applying our corollary of Theorems 1–3 to (10) we have the following proposition.

Proposition 1. In the partial-equilibrium firm-dynamics model, when the cross-sectional distribution

of log productivities Ft increases to a distribution Ft′ (with equal dispersion) such that one of

Assumptions 1–3(i) holds for Ft and Ft′ , then the cross-sectional dispersions of log employment and

log output decrease if σ < 1 and increase if σ > 1.

This proposition shows that in our simple model, the cyclicality of the dispersions of log output

and log employment is entirely driven by the elasticity of substitution between labor and capital.

The intuition behind this result is as follows. Suppose σ < 1. In that case, the capital and labor are

complementary. Thus, since capital is fixed in the short run, labor adjusts relatively more to changes

in productivity when it is scarce compared to when it is abundant. The limit case of a Leontieff

production technology is especially stark: There, labor is infinitely elastic to productivity when it is

scarce, and entirely inelastic when it is abundant. This means the elasticity of labor to productivity

declines with rising productivity (or declining wages), or in other words, log nit is increasing and

concave in log ait. This then implies that when log productivities experience an upward shift as

specified in Proposition 1, the cross-sectional variance of log employment must fall. The opposite

logic applies when σ > 1.

Proposition 1 makes two statements, one about the cyclicality of the dispersion in log employment

and one about the cyclicality of the dispersion in log output. To prove the latter, note that (9) can

be rearranged to

yit =

(
W

1− α

)σ
e(1−σ)aitnit. (11)

Observe that, given the definition of g(x), x 7→ (1− σ)x+ g(x) is also an increasing function that is

strictly concave (strictly convex) whenever σ < 1 (σ > 1). Therefore the cyclicality of the dispersion

of log output is equal to the one of log employment.

What would an observer find for the behavior of the dispersion of log productivities themselves

under a shift from Ft to Ft′? Clearly, if the observer knew the true production function and firm-level

18Here, fn(1, ·)−1 is shorthand for the inverse of the function x 7→ fn(1, x).
19Here we assume for simplicity, and broadly in line with aggregate data, that real wages are fully sticky. This is

w.l.o.g. in the sense that we can always reinterpret the shift in average productivities to include the cyclical part of
wages.
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employment and capital stocks, he could recover the true shift in the productivity distribution and

find that this dispersion did not change. If, however, the observer were to compute a standard Solow

residual—as commonly done in the literature—based on a Cobb-Douglas production function with

an empirical capital share of β ∈ (0, 1) he would find

aSolowi = log yit − β log kt − (1− β) log nit.

This can be simplified to

aSolowi = σ logwt + (1− σ)ait − σ log(1− α)− β log kt + β log nit.

which proves the following result.

Proposition 2. In the partial-equilibrium firm-dynamics model, when the cross-sectional distribution

of log productivities Ft increases to a distribution Ft′ (with equal dispersion) such that one of

Assumptions 1–3(i) holds for Ft and Ft′ , the cross-sectional dispersion of Solow residuals decreases

if σ < 1.

Propositions 1 and 2 show that when σ < 1, our model exhibits the empirically correct cyclicalities

of the dispersions of log employment, log output and the Solow residuals. Several recent papers

suggest that labor and capital inputs are indeed complements, with estimated firm-level elasticities

ranging from 0.25 to 0.53 (Chirinko, Fazzari and Meyer, 1999, 2011; Raval, 2015).20 This motivates

a more serious quantitative exploration, which is what we do in the next section.

3.2 Quantitative Exploration

We now explore the quantitative potential of the mechanism, embedding it into a general equilibrium

model and allowing for persistence of ait at the firm-level.

Model. The model is a version of the one presented in the previous subsection, with the following

modifications. First, firms’ log productivities are given as the sum of an aggregate and a firm-specific

TFP component, ait = zt + εit. Both components are modeled as AR(1) processes, zt = ρzzt−1 + et

and εit = ρεεit−1 + uit with persistence parameters ρz, ρε ∈ (0, 1). The innovations {et, uit} are

mutually independent iid shocks. Denote by Gε the stationary distribution of {εit} and by Gu the

distribution of uit. Second, we now assume that firms’ production functions have decreasing returns

to scale,

yit = eaitf(kit, nit)
ν , (12)

where ν ∈ (0, 1). This ensures that the distribution of capital does not become degenerate with a

positive persistence ρε. Finally, we assume that labor Nt is supplied and state-dependent assets are

20Firm-level and plant-level elasticities of substitution are generally smaller than their analog at the macro level,
because the macro elasticity also includes shifts of production across plants and firms (e.g., Oberfield and Raval, 2014).
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traded by a representative household with preferences

E0

∞∑
t=0

βt
(

logCt − θ
1

1 + ζ
N1+ζ
t

)
(13)

and budget constraint

Ct + Et
(
Qt+1

Qt
Vt+1

)
≤WtNt + Vt, (14)

where Vt is a random variable chosen by the agent, measurable with respect to aggregate information

at time t. Vt captures the value of wealth, i.e. the number of Arrow-Debreu securities, the agent

saves for a given state at time t.. Capital does not enter the household’s budget constraint directly

as it is accumulated within firms.

Definition of Equilibrium. Given exogenous productivity shocks {zt, εit}, an equilibrium in

this economy consists of stochastic processes of aggregate quantities {Ct,Kt+1, Nt, Vt}, firm-specific

quantities {yit, kit, nit, πit, viτ}, prices {Qt,Wt}, such that (a) each firm i solves (7) with production

function (12), (b) the representative household maximizes (13) subject to (14), (c) firm i’s profits

are given by (8), aggregate capital is defined as Kt ≡
∫ 1

0 kit di, and (d) markets clear, that is,

Yt = Ct +
∫ 1

0 ιitkit di, Nt =
∫ 1

0 nit di, and Vt =
∫ 1

0 vit di.

Analytical simplification. Despite the large number of firms in the model and the presence of

idiosyncratic productivity shocks, the equilibrium is still efficient and equivalent to the outcome of a

planning problem. We formalize this in the following lemma.

Lemma 1. There is an equilibrium with aggregate quantities {Ct,Kt+1, Nt} if and only if they solve

max
{Ct,Kt+1,Nt}

E0

∞∑
t=0

βt
(

logCt − θ
1

1 + ζ
N1+ζ
t

)
(15)

Ct +Kt+1 ≤ eztF (Kt, Nt) + (1− δ)Kt

where the aggregate production function F is defined as

F (K,N) ≡ max
k(ε̃),n(ε̃,ũ)

∫∫
eρε̃+ũf(k(ε̃), n(ε̃, ũ))ν dGε(ε̃) dGu(ũ) (16)

s.t.

∫
k(ε̃) dGε(ε̃) = K,

∫∫
n(ε̃, ũ) dGε(ε̃) dGu(ũ) = N.

Lemma 1 simplifies the solution of the aggregate economy to that of a standard real business

cycle (RBC) model. The key intuition behind the lemma is that in the absence of capital adjustment

costs at the firm-level, the distribution of next period capital stocks kit+1 is independent of the

distribution of existing capital stocks kit. Thus, the allocation of next period capital stocks is entirely
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Table 1: Calibrated parameters.

Parameter Value Rationale

β 0.99 Discount factor; periods are interpreted as quarters.
δ 0.025 Yearly depreciation is 10 percent.
θ 4.29 Scaling parameter. Set so that N = 1/3 at steady state.
ζ 0.5 Frisch elasticity of labor supply is 2.

σ 0.4 Chirinko, Fazzari and Meyer (1999, 2011); Raval (2015).
α 0.71 Labor share at steady state is 0.64.
ν 0.73 Capital-output ratio at steady state is 2.5.

ρz 0.72 Persistence of HP-filtered Solow residuals.
ρε 0.8 Gilchrist, Sim and Zakraǰsek (2016).
σε 0.15 Gilchrist, Sim and Zakraǰsek (2016).

determined by current idiosyncratic firm productivities εit, and total production thus only depends

on the aggregate amount of available capital, not its distribution last period.

Calibration and simulation. We use a standard calibration of both the aggregate and the

micro-level economy. Periods are interpreted as quarters. We set the quarterly discount factor to

β = 0.99, corresponding to an equilibrium real rate of around 4%. We set depreciation to δ = 0.025

corresponding to a 10% annual depreciation rate. We normalize θ = 4.29, setting steady state

labor supply N to one third. We set ζ = 0.5, equivalent to a Frisch elasticity of labor supply of 2.

The persistence of aggregate TFP shocks, ρz, is calibrated to match the one of HP-filtered Solow

residuals. At the micro level, we calibrate α to match an aggregate steady-state labor share of

0.64, ν to match a steady-state capital-output ratio of 2.5,21 and ρε, σε according to the estimates

of Gilchrist, Sim and Zakraǰsek (2016). Finally, for the micro-level elasticity of substitution σ, we

set σ = 0.4, falling in the middle of several recent estimates. Chirinko, Fazzari and Meyer (1999,

2011) find point estimates of 0.25 and 0.40 using firm-level data, and Raval (2015) finds plant-level

estimates in the range 0.34 to 0.53. The calibration is summarized in Table 1.

We simulate the economy in three steps: First, we solve for the steady state of the model.22

Second, we simulate a log-linearized version of the RBC model to determine the first-order movements

of aggregate variables. Finally, we use the underlying definition of the aggregate production function

F to trace out the (highly nonlinear) behavior of firms at the micro level as response to the movements

of aggregate variables.

21The implied value for ν is 0.73, which is broadly in line with Barkai (2017) who documents that returns on labor
and capital amount to a combined output share of 75.5 percent.

22This requires computing the aggregate production function F at the steady state of the planning problem in
Lemma 1, which we find by approximating the idiosyncratic productivity shocks using Rouwenhorst’s method (c.f.,
Kopecky and Suen, 2010).

17



Dispersion of levels vs. dispersion of growth rates. In the partial equilibrium example

with iid idiosyncratic productivity shocks, we derived results for the dispersion of levels, e.g. the

cross-sectional variance of log employment or log output. In the data, however, many economists

have focused on the dispersions of growth rates of these variables, e.g. the cross-sectional variance of

the first difference of log employment or log output. In the context with iid shocks, any growth rate

dispersion is exactly twice the corresponding level dispersion, so all the above analytical results are

independent of which of the two approaches we use. In the following model, with non-iid shocks, we

go with the literature and focus on growth rate dispersions.23

Impulse responses. The blue lines in Figure 2 show the impulse responses of first and second

moments to a positive innovation in aggregate productivity. The innovation is normalized to lead to

a 1% increase in aggregate output. The response of first moments in Panel (a) is standard: hours,

investment, and wages increase. According to our results in the previous subsection (see (10)), the

key determinant for the cyclicality of dispersions are effective wages, e−ztWt, shown in the last plot.

As can be seen, the strong procyclical response in wages dominates the productivity shock after

around 2.5 quarters, implying that e−ztWt is countercyclical for only around 2.5 quarters.

Panel (b) shows the response of growth rate dispersions to the technology shock. On impact, the

standard deviations of first differences in log output, hours, and the firm-level Solow residual are all

countercyclical, while the standard deviation of the investment rate ιit ≡ (kit+1 − (1 + δ)kit)/kit is

procyclical on impact. Due to the short-lived response of e−ztWt, the four dispersion responses are,

however, relatively shortly lived and overshoot after around 2.5 quarters.

As is well known, the strong procyclical response of wages implied by our basic RBC model is

largely at odds with the data. In addition, there is ample evidence against technology shocks as the

driving force behind business cycles. For instance, Chari, Kehoe and McGrattan (2007) stress the

importance of labor wedges for business cycle fluctuations, in line with the idea that recessions are

demand-driven. As a short-cut to demand shocks, we simulate the economy’s response to a shock to

the labor wedge τNt , which we model in the standard way, as a wedge in the first order condition for

labor,

θCtN
ζ
t = (1− τNt )eztFN (Kt, Nt).

We choose the path for τNt to match the output response of the economy after a technology shock to

allow a direct comparison. The resulting impulse responses are depicted as green circles in Figure 2.

Naturally, the labor wedge shock yields a large response of hours and a more countercyclical response

of the effective wage e−ztWt.
24 This explains a more pronounced response of second moments in

response to the labor wedge shock.

23One exception is investment, which is frequently zero in the data (and can become negative in the model) so that
both logs and growth rates are ill-defined. To avoid this problem, we compute the dispersion of investment-to-capital
ratios, ιi,t, similar to the approach in Bachmann and Bayer (2014).

24In the presence of shocks to the labor wedge, our notation assumes that Wt is the marginal product of labor,
which no longer has to equal the observed wage (e.g. the observed wage could be sticky).
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5 10 15

0.2

0.4

0.6

0.8

1

Y

5 10 15

0

5

10

I

Response to
productivity shock

Response to
labor wedge shock

5 10 15
0

0.5

1

1.5

N

5 10 15
−0.8

−0.6

−0.4

−0.2

0

e−zW

(b) Response of growth rate dispersions.
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Figure 2: The response of the quantitative model to productivity and labor wedge shocks (% relative to steady state).
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Table 2: Correlations of dispersions with output.

correlation with cycle (log yt)

sd(d log yit) sd(d lognit) sd(d log ait) sd(ιit)

model (linearly detrended) -0.58 -0.57 -0.59 +0.72

model (high-pass filtered) -0.43 -0.43 -0.44 +0.61

data -0.45 -0.50 -0.47 +0.45

How important could this be quantitatively? The gap in GDP between average NBER booms

and recessions is 5.7%. If the entire gap is driven by fluctuations in the labor wedge, this would

correspond to a 3.6% peak-to-trough gap in employment growth dispersion. This is roughly one

third of the peak-to-trough variation in employment growth dispersion document by Ilut, Kehrig

and Schneider (2016).

Dispersion cyclicality in the model and the data. To provide a more direct comparison

between model and data, we now extend the model to exactly replicate US aggregate time series

on output, employment, consumption and investment. Using the implied time series for second

moments, we then compute the correlations of model implied second moments and compare them

with evidence on their cyclicality from the literature.

To replicate the data, we follow Chari, Kehoe and McGrattan (2007) and add government and

investment wedges to the model (see Appendix E.2 for details). Since our model does not feature

growth, we eliminate the growth trend from the data by either detrending linearly or applying a

high-pass filter with 40 years. Using the extended model, we infer a process for the aggregate shocks

that match the data perfectly and then compute the firm-level dynamics given the inferred path of

the aggregate economy. Figure 3 plots the time series for the resulting dispersion measures. Table 2

computes the implied cyclicalities and compares them to the evidence in Bachmann and Bayer

(2014). For both detrending methods, the model-implied cyclicalities are quantitatively of similar

magnitudes to the data.

Takeaway. In our main application, we have illustrated how a standard CES production function

with capital-labor complementarity generates an increasing concave relationship between log pro-

ductivity and log employment across firms. Thus, shifts in the distribution of log productivity that

preserve its variance and satisfy one of the Assumptions 1–3(i) translate into countercyclical shifts in

log employment dispersion, as well as several other variables such as log output and Solow residuals.

Quantitatively, the model-implied cyclicalities are of similar magnitude as in the data.
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Figure 3: Time series of dispersions from business cycle accounting exercise.

4 Other Applications

We now present three additional, smaller applications that illustrate the broad applicability of

our theoretical results. The first example relates the dispersion of marginal revenue products of

capital—a prominent proxy for misallocation used in the recent literature—to the nature of the

shocks that cause cyclical fluctuations. The second example revolves around risk. In particular, it

revisits the classic finance question of how the payoff profile of a security affects its payoff and return

risk. In our final example, we illustrate how posterior uncertainty can fluctuate endogenously as

soon as learning takes place over a non-linear function of the fundamental.

4.1 MRPK and the business cycle

A recent literature on misallocation following Hsieh and Klenow (2009) uses the cross-sectional

dispersion of marginal revenue products of capital (MRPK) to identify misallocation of capital

across firms. One common rationale to explain this are financial frictions, which essentially prevent

productive plants from accumulating the efficient amount of capital (e.g., Moll, 2014; Buera and

Moll, 2015; Kehrig, 2015; Gopinath et al., 2015). In this application, we explore a simple static
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setup where firms face borrowing constraints, and show how the dispersion of MRPK depends on

the distribution of productivity relative to the distribution of borrowing constraints.

Assume there is a unit interval of firms, indexed by i ∈ [0, 1]. Firms are perfectly competitive and

sell in a market with price normalized to 1. Each firm operates a production technology exhibiting

decreasing returns to scale,

Yi = AiK
α
i .

Here, Ai is firm i’s productivity and Ki is the capital rented by firm i. One way to rationalize such

a production function is that there is a fixed factor such as land or entrepreneurial labor which is

owned by the entrepreneur that runs the firm. We excluded workers from the production function

to streamline the exposition. All results go through when firms use labor from a common labor

market and labor and capital enter the production function in a Cobb-Douglas way with decreasing

returns to scale. In this sense, we interpret Ai more broadly than just firm i’s productivity: Even

when productivity itself does not improve, an increase in Ai might still happen due to a boom in

employment or hours.25 With some slight abuse of terminology, we still refer to Ai as productivity

in the following paragraphs.

The crucial ingredient to our analysis is the imposition of a borrowing constraint: Firm i can

only rent capital up to an exogenous limit Ki which may depend on i. Thus firm i solves

max
Ki≤Ki

AiK
α
i − rKi.

The MRPK of firm i may then exceed r,

MPRKi = AiK
α−1
i = r + µi,

if and only if the borrowing constraint binds, µi > 0. We can express the multiplier as

µi = max
{

0, AiK
α−1
i − r

}
which yields the following expression for the MRPK,

logMRPKi = max
{

log r, logAi − (1− α) logKi

}
.

Noticing that max{log r, ·} is a convex and weakly increasing function, the following result is an

immediate consequence of Theorem 1.

Proposition 3. The dispersion of log MRPK increases if

(i) the cross-sectional distribution of log productivities shifts up such that one of Assumptions 1–3(i)

holds without changing its variance and the shifts are orthogonal to logKi.

25Such a boom could come about due to an increase in labor supply or in aggregate demand.
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(ii) the cross-sectional distribution of log constraints shifts down such that one of Assumptions 1–3(i)

holds without changing its variance and the shifts are orthogonal to logAi.

Proposition 3 illustrates how the degree of misallocation is essentially pinned down by the relative

position of productivity and borrowing constraints. In a world with only productivity improvements,

misallocation would increase, while in a world with more relaxed borrowing constraints, misallocation

falls.

More realistically, borrowing constraints are correlated with a firm’s business conditions. For

instance, suppose that Ki is a function of each firm’s revenue, AiK
α
i , and some credit supply-driven

factor ui:

logKi = ε log(AiK
α
i ) + ui, (17)

where ε < 1/α is the elasticity of Ki to firm-revenues. In this case, the dispersion in MRPKs

increases during productivity-driven booms (or, similarly, in high-productivity sectors) if and only if

ε < 1, which could reflect, say, a lack of information by financial markets about Ai. In contrast, a

“financially-driven” crisis akin to a downward shift in the distribution of ui would unambiguously

increase the dispersion of MRPKs. The following proposition summarizes the results.

Proposition 4. Suppose Ki is given by (17).

(i) If the distribution of log productivities {logAi} shifts up such that one of Assumptions 1–3(i)

holds without changing its variance and shifts are orthogonal to ui, then Var{MRPKi} increases

(decreases) if ε < 1 (ε > 1).

(ii) If the distribution of credit factors {ui} shifts up such that one of Assumptions 1–3(i) holds

without changing its variance and shifts are orthogonal to logAi, then Var{MRPKi} decreases.

Propositions 3(i) and 4(i) provide a possible explanation for why booms can raise the degree of

misallocation as documented, e.g., by Garcia-Santana, Moral-Benito and Pijoan-Mas (2015) and

Gopinath et al. (2015) in the case of Spain between 1995 and 2007.

Numerical example. We quantify the model using a simple and very stylized numerical example

with productivities given by ai = z + εi. The cross-sectional distribution of productivities is normal

with the same (unconditional) standard deviation as in the previous subsection. The (unconditional)

standard deviation of z is set to 0.038, matching the (unconditional) standard deviation of aggregate

productivity shocks in Gilchrist, Sim and Zakraǰsek (2016). The capital share α is set equal to 0.3,

the cost of capital r is set equal to 0.05, and the elasticity of the constraint to revenues ε is set

equal to 0.8.26 Finally, we consider two scenarios for the tightness of financial constraints. In the

“healthy” baseline scenario, we set ui = ū5% where ū5% is so that a fraction of 5 percent of firms

26Since we do not have a strong prior on ε it is worth mentioning that all results discussed below are robust to the
exact choice of ε. While different values affect the level of the MRPK-dispersion, they have virtual no effect on the
cyclical changes discussed below (in percentage-terms) as long as ε < 1.
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Financial constraints

healthy tight

1σavg boom 0.98 1.50
(+21.2%) (+84.9%)

1σavg recession 0.66 1.06
(−18.3%) (+30.7%)

Table 3: Cross-sectional standard-deviation of MRPK in numerical example. All standard deviations are rescaled by
a factor of 100. The two columns display two regimes for the financial constraint: In the left (right) column, 5 (10)
percent of firms are constrained absent a productivity shock. In parentheses, we report the differences (in percent) to
the case in which aggregate productivity is at its median value and financial constraints are healthy.

are constrained in the absence of an aggregate productivity shock. In the “tight” scenario, that

is supposed to capture a negative credit supply shock, we set ui = u10%, so that a fraction of 10

percent of firms are constrained (without aggregate productivity shock).

Table 3 displays the cross-sectional standard deviation of MRPK across firms. The left column

shows the effects of a change in the average firms’ productivity when financial conditions are healthy

(5 percent of firms being constrained in the absence of a productivity shock), whereas the right

right column shows the same statistics for the case where financial conditions imply a twice-as-high

fraction of firms being constrained (without aggregate productivity shock). In both cases a one

standard deviation increase in the average productivity increases the dispersion of MRPK by roughly

20 percent. Comparing the two columns further illustrates a significant increase in the dispersion

induced by an increase in financial pressure. Compared to the baseline case, even a 1σavg reduction

in average productivity increases the dispersion by 31 percent when combined with financial pressure.

The results are broadly in line with the evidence given in Gopinath et al. (2015) who find that the

dispersion of MRPKs in Spain increased by almost 30 percent between 2000 and 2012.

4.2 Risk in financial derivatives

Our third example illustrates how the payoff profile of a security influences the cyclicality of the

risk premium associated with it. It is shown for instance that derivatives with concave increasing

payoff profiles as function of their underlying (e.g. debt contracts) have countercyclical return risk,

while derivatives with convex decreasing payoff profiles (e.g. Put options) have procyclical return

risk. The cyclicality here is determined with respect to constant-risk shifts in the underlying and

without strong distributional assumptions. While these results may not be entirely novel, viewing

them through our theoretical framework gives them a new level of generality.

The economy we study is a simple financial market setup, consisting of two periods, t = 0, 1, and

a continuum of identical traders with standard mean-variance preferences over t = 1 wealth W ,

EW − α

2
Var(W ),
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where α > 0 measures the degree of risk aversion. We assume that the agents trade a real asset

(i.e. the market portfolio) with stochastic payoff X0 in unit supply, as well as derivative assets with

stochastic payoffs Xi in zero net supply. The representative agent’s holdings of asset k ∈ {0, 1, . . . ,K}
are denoted by ak and the price of asset k is denoted by pk. This implies that t = 1 wealth is given

by

W = X0 +

K∑
k=1

ak(Xk − (1 + r)pk),

where we use r > 0 to denote the risk-free interest rate.27

Our goal in the following is to characterize equilibrium prices for a given derivative asset Xk,

whose payoff can be described as a monotone function of the market, Xk = g(X0). The starting

point for the analysis is, of course, the first order optimality condition with respect to ak, yielding

EXk − (1 + r)pk = αCov(X0, Xk).

Notice that this is almost like a Capital Asset Pricing Model (CAPM), which holds in our mean-

variance environment, only that the equation is in terms of actual payoffs rather than returns.28 We

now investigate how the “risk term” in the pricing equation, αCov(X0, Xk), behaves under changes

in X0.

Proposition 5. As we move from X0 to a random variable X ′0 such that either Assumption 1 or

Assumption 2 holds for X0 and X ′0, then the risk term in the price of asset k with monotone g

1. increases whenever g is convex,

2. decreases whenever g is concave.

The basic intuition of Proposition 5 is very much along the lines of Theorem 1: When Assumption 1

holds, the distribution X ′0 is a positive equal-variance shift of X0. Hence, when g is convex,

Var{Xk} = Var{g(X0)} must increase as we move from X0 to X ′0. This already indicates that the

covariance between X0 and Xk = g(X0) should also increase, as long as the correlation is increasing,

or at least not decreasing too fast. The logic of the formal proof of Proposition 5 in Appendix D is

similar to the proof strategy of Theorem 1, described in equation (??) above.

There are a number of well-known examples for the behavior described in Proposition 5. Perhaps

most prominently, if Xk is a Call or Put option with X0 as its underlying asset, then g would be

convex, explaining why the risk term increases for both Calls and Puts, with the difference that the

Put’s risk term is negative and rises towards zero while the Call’s is positive. In a corporate finance

context, one could think of X0 as the (random) asset side of a firm’s balance sheet and of Xk = g(X0)

a corporate debt contract. In this situation, the risk in the debt contract is countercyclical with

27To be precise, one can imagine this to be the subproblem of a full 2-period maximization problem over consumption
at both dates, t = 0, 1. Given a risk-free rate of r, the t = 1 price paid for asset k is then (1 + r)pk.

28One could easily derive the CAPM ERk − (1 + r) = αCov(X0, Rk) in our model. See Corollary 3 below.
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respect to the firm’s assets: In bad times, when the asset side is potentially below the debt’s principal

value, credit risk rises.

Finally, notice that our Proposition 5 was stated for the risk term αCov(X0, Xk) as opposed to

the risk premium ERk − (1 + r) = αCov(X0, Rk). We can derive a similar result, albeit less sharp,

for the risk premium.

Corollary 3. As we move from X0 to a random variable X ′0 such that either Assumption 1 or

Assumption 2 holds for X0 and X ′0, then the risk premium of asset k

1. increases whenever g is convexly decreasing,

2. decreases whenever g is concavely increasing.

The key observation behind Corollary 3 is that the risk premium can be expressed as

ERk − (1 + r) = (1 + r)
αCov(X0, Xk)

EXk − αCov(X0, Xk)
.

Thus, when g increases concavely (e.g. like a debt contract), then EXk rises as well as X0 moves to

X ′0, while, according to Proposition 5, αCov(X0, Xk) falls, explaining a drop in the risk premium.

A similar logic applies to the case where g is convexly increasing, for example to Put options.

Summing up, this application showed how our results can be applied to a basic asset pricing

context. We illustrated that the concavity or convexity of a derivative’s payoff structure crucially

determines the comovement of the risk inherent in the derivative with the underlying asset.

4.3 Nonlinear learning and uncertainty

Our final example is a simple Bayesian learning problem where nonlinearities in the signal structure

cause posterior uncertainty to be a function of the signal realization. In past years, such learning

problems have spurred a considerable research interest among macroeconomists, e.g. see Straub and

Ulbricht (2012, 2014), Orlik and Veldkamp (2014), Kozeniauskas, Orlik and Veldkamp (2016), and

Albagli, Hellwig and Tsyvinski (2015).

To see how the aforementioned theorems are useful to study such a problem, suppose θ is

the unknown variable an observer seeks to gather information about. She observes a signal s

about a nonlinear transformation of θ, φ = g(θ). Suppose g is increasing and concave. To fix

ideas, suppose for instance that θ defines the optimal investment level of a firm, summarizing a

firms private information regarding future business conditions. Also suppose that the firm faces

financial constraints, limiting its investments to satisfy k ≤ k. Relabeling φ = k, we then have

g(θ) = min{θ, k}, giving rise to an increasing concave mapping.29

There are two steps to the agent’s updating problem: First, she forms a posterior over the values

of φ. Then, she maps her posterior from values of φ to values of the variable of her interest, θ. In

29This example is inspired by a previous, unpublished working paper Straub and Ulbricht (2012).
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the following, we assume the agent solved her first problem and is left with a situation where the

posterior φ|s satisfies either Assumption 1, 2 or 3 above. Arguably, these are natural assumptions in

the context of a signal extraction problem. Condition (i) of Assumptions 1–3 represent a simple

monotonicity requirement, demanding that higher signal realizations correspond to higher values of

φ in the sense of the respective stochastic order. Condition (ii) is a precision requirement, demanding

that the transformation g, and the transformed variable φ itself, are such that the posterior variance

does not shrink exogenously as the agent observes higher signal realizations.

What can our Theorems tell us about the posterior belief θ|s? It is relatively straightforward

to see that, based on condition (i) of Assumptions 1–3, the first moment E{θ|s} increases with

s. However, this does not yet provide us with any information about the behavior of the second

moment. Theorem 1 implies that, in fact, the second moment, Var{θ|s} is also increasing in s.

The intuition for this application is as follows: As the agent observes a large realization of signal

s, she rationally updates that large values of φ are relatively likely. For the correspondingly large

values of θ the nonlinear function g is relatively flat, implying that the posterior variance over

φ translates into relatively large posterior variances over θ. With the interpretation of φ as firm

investments, this means that learning from financially constrained firms leads to higher uncertainty,

because financially constrained firms respond less to changes in business fundamentals, so that for

large realization of the signal (relative to the financial constraint), the signal is more likely to be

driven by signal noise.

In sum, this application illustrates how a simple nonlinear signal structure can give rise to

endogenous, signal-dependent movements in uncertainty.30

5 Conclusion

In this paper we studied the behavior of second moments under nonlinear transformations. We

showed that when a random variable shifts up, in one of three senses (MLRP, affine linear, or

affine-linear in transformed variables) but keeps the same variance, the variance of any convex

increasing or concave decreasing transformation of it necessarily increases. We see our theoretical

contribution in proving the MLRP result and providing elementary proofs in the two other settings.

The economic implications of our theoretical results were illustrated in four different settings.

The first and main application provided a (to the best of our knowledge) novel explanation for

the cyclicalities of the dispersions of macroeconomic variables; the second application extended

these insights to the cross-sectional dispersion of MRPKs which is often used to measure capital

misallocation; the third application studied the cyclicality of derivative risks; and the final application

shows how our results can be used to generate endogenously fluctuating uncertainty.

An understanding of how and why second moments move over the business cycle is directly

important for policymaking: With exogenous second moment shocks, understanding and possibly

30For alternative approaches to modeling endogenous variations in uncertainty, see, e.g., Van Nieuwerburgh and
Veldkamp (2006), Nimark (2014), Fajgelbaum, Schaal and Taschereau-Dumouchel (2017), and Senga (2016).
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mitigating the sources of these shocks becomes important. Endogenous second moment shocks,

however, may not carry any policy consequences at all. As an example, the quantitative model

in our first application is efficient and nonetheless can produce some of the cyclical properties of

cross-sectional dispersions that we see in the data. Understanding the policy implications in models

with endogenous second moments more broadly is a promising avenue for future research.

A Proof of Theorem 1

We prove Theorem 1 using a sequence of lemmas and propositions. The main proposition that we

establish below relates the difference between covariances of X and Y with some other random

variables to the difference between the covariances of g(X) and g(Y ) with the same other random

variables (Proposition 6). The advantage of proving this result as a first step is that it is “linear”,

in the sense that X and Y only enter linearly, whereas the result in Theorem 1 is quadratic. By

essentially applying Proposition 6 twice, we can then establishes Theorem 1.

A.1 Notation and Assumptions

We introduce the following notation for our proof. For any real random variable Z which admits

a density with respect to measure µ we denote by fZ the density function of Z, by FZ the right-

continuous cumulative density of Z, and by QZ : (0, 1)→ R the right-continuous quantile function,

defined as

QZ(u) = inf
x∈R
{x : FZ(x) ≥ u}.

Further, we denote by µZ the mean of Z (as long as it exists) and let qZ : (0, 1) → R, qZ(u) =

QZ(u)−µZ , be a “normalized” quantile function, as well as qZ : (0, 1)→ R, qZ(u) ≡
∫ u

0 qZ(ũ)dũ, be

an “integral” quantile function. Notice that whenever the mean of Z exists, the integral of qZ over

[0, u] exists for all u ∈ [0, 1] and qZ(0) = qZ(1) = 0, by the property of the quantile function that∫ 1
0 QZ(u)du = µZ . Furthermore, because qZ is weakly increasing from negative to positive values,

qZ is quasiconvex (i.e. u-shaped).

In the following we let ZX and ZY be two real random variables, satisfying the following

assumptions.

Assumption 4. The random variables ZX and ZY satisfy the following assumptions:

1. ZX and X are perfectly rank-correlated, that is, there exists a random variable U ∼ unif[0, 1]

that is uniformly distributed over the unit interval such that ZX = QZX
(U) and X = QX(U).

Similarly, ZY and Y are perfectly rank-correlated.

2. ZX and ZY have finite mean and nontrivial variance.

3. The ratio
qZX

(FX(x))

qZY
(FY (x))

,
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defined for values of x for which it is positive and finite, is weakly decreasing in x.

4. Let IX (IY ) denote the interval of zeros of the function x 7→ qZX
(FX(x)) (x 7→ qZY

(FY (x))).

Then, inf IX < inf IY and sup IX < sup IY .

While these assumptions appear technical at first, they will help us prove the necessary results

about covariances in the next section.

A.2 Covariances

We now state the main result of this appendix.

Proposition 6. Let ZX and ZY be two random variables satisfying Assumption 4, and X and Y

two random variables satisfying Assumption 1 (i). Let g : R→ R be a convex, strictly increasing,

continuously differentiable function. Then it holds that

Cov(X,ZX) ≤ Cov(Y,ZY )⇒ Cov(g(X), ZX) ≤ Cov(g(Y ), ZY ),

where the latter inequality is strict if g is strictly convex.

We prove the result in a sequence of smaller steps. In our first step, we prove some properties

of the function δ : supp(X) ∪ supp(Y )→ R, δ(x) = qZY
(FY (x))fY (x)− qZX

(FX(x))fX(x), which is

defined on the supports of X and Y .

Lemma 2. We have the following results about δ:

1. If x ∈ conv(IX ∪ IY ), then δ(x) ≤ 0.31

2. If x > IY and δ(x) > 0, then δ(x′) > 0 for all x′ > x.

3. If x < IX and δ(x) > 0, then δ(x′) > 0 for all x′ < x.

Proof. We treat each case in turn.

1. In this case, by the definitions of IX and IY , either δ(x) = 0—if x ∈ IX ∩ IY —or δ(x) < 0—if

x > IX or x < IY , since the normalized quantile functions qZY
and qZX

are weakly decreasing.32

2. Fix such a x > IY with δ(x) > 0, and a x′ > x in the support of X or Y . Then, δ(x′) > 0 is a

direct consequence from the following set of inequalities,

fY (x′)

fX(x′)
≥ fY (x)

fX(x)
>
qZX

(FX(x))

qZY
(FY (x))

≥ qZX
(FX(x′))

qZY
(FY (x′))

,

31Here, conv(A) denotes the convex hull of set A ⊂ R.
32Here, x > IX means x > a for all a ∈ IX . Similar for x < IY .
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where the first inequality follows from the MLRP of X and Y , the second inequality follows

from δ(x) > 0, and the third inequality follows from the fact that for x > IY the ratio in

Assumption 4.3 is positive and hence weakly decreasing. Comparing the first and last terms of

this set of inequalities, this implies δ(x′) > 0.

3. Analogously to the previous case, if x < IX , the ratio in Assumption 4.3 is positive and hence

weakly decreasing. Thus, for any x′ < x in the support of X,

fY (x′)

fX(x′)
≤ fY (x)

fX(x)
<
qZX

(FX(x))

qZY
(FY (x))

≤ qZX
(FX(x′))

qZY
(FY (x′))

,

where again we used the MLRP of X and Y and the fact that δ(x) > 0. Taken together, this

implies δ(x′) > 0.

These results turn out to be very helpful in characterizing the behavior of the function ∆ : R→ R,

∆(x) = qZY
(FY (x))− qZX

(FX(x)). Notice that, by definition of ∆,

∆(x) =

∫
(−∞,x]

δ(x̃)µ(dx̃), (18)

which is to be understood as a Lebesgue integral with measure µ, restricted to (−∞, x] (so that it

nests all three cases, where µ is continuous, discrete, or anything in between). We can characterize

∆ as follows.

Lemma 3. ∆ has limits limx→−∞∆(x) = limx→+∞∆(x) = 0. There exists a point x0 ∈ R such

that ∆(x) ≤ 0 for all x ≥ x0 and ∆(x) ≥ 0 for all x ≤ x0, with strict inequality for at least a

non-zero measure of such x.

Proof. First, note that the limits of ∆ come from the fact that qZX
and qZY

are continuous and zero

for arguments 0 and 1, and the cumulative distribution functions FX and FY have the usual limits

for x→ ±∞. Second, we prove that an x0 exists with sup{x : ∆(x) ≥ 0} ≤ x0 ≤ inf{x : ∆(x) ≤ 0}.
Suppose it did not. Then there must exist x1 < x2 with ∆(x1) < 0 < ∆(x2). As in (18) we can write

∆(x2)−∆(x1) =

∫
(x1,x2]

δ(x)µ(dx) (19)

and

∆(x1) =

∫
(−∞,x1]

δ(x)µ(dx) and 0−∆(x2) =

∫
(x2,∞)

δ(x)µ(dx). (20)

Using (19) and ∆(x2) −∆(x1) > 0, there must exist a a1 ∈ (x1, x2] such that δ(a1) > 0. On the

other hand, using (20) and ∆(x1) < 0 < ∆(x2), there must exist a0 < x1 and a2 > x2 such that

δ(a0) < 0 and δ(a2) < 0. This contradicts Lemma 2: If a1 < IX , then δ(a0) would have to be
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positive. If a1 ∈ conv(IX ∪ IY ), δ(a1) would have to be negative. And if a1 > IY , δ(a2) would have

to be positive. This proves {∆ ≥ 0} ≤ x0 ≤ {∆ ≤ 0}.
Finally, we show that there exists a non-zero measure of x such that ∆(x) 6= 0. Suppose the contrary

was true, ∆(x) = 0 for µ−almost all x. Then δ(x) must be zero µ-almost every x. This cannot be

the case given that we assumed in Assumption 4.4 that for example inf IX < inf IY . This concludes

the proof of Lemma 3.

Finally we are ready to prove Proposition 6.

Proof of Proposition 6. Notice that by Assumption 4.1 we can express covariances as integrals over

the “normalized” quantile functions,33

Cov(g(Y ), ZY )− Cov(g(X), ZX) =

∫ 1

0
qZY

(u)g(QY (u))du−
∫ 1

0
qZX

(u)g(QX(u))du.

Substituting out u for FY (x) in the first integral and FX(x) in the second one, this simplifies to

Cov(g(Y ), ZY )− Cov(g(X), ZX) =

∫
R
g(x)δ(x)µ(dx). (21)

Using integration by parts, we further rewrite this as

Cov(g(Y ), ZY )− Cov(g(X), ZX) = lim
x→∞

g(x)∆(x)− lim
x→−∞

g(x)∆(x)−
∫
R
g′(x)∆(x)dx.

We now consider each limit in turn, starting with the one for x→∞. Notice that for sufficiently

large x, g(x) > 0 and δ(x) ≥ 0, hence

lim
x→∞

|g(x)∆(x)| = lim
x→∞

∫
(x,∞)

g(x)δ(x̃)µ(dx̃) ≤ lim
x→∞

∫
(x,∞)

g(x̃)δ(x̃)µ(dx̃) = 0

where the last equality follows by the existence and finiteness of the covariances in (21). Consider

now x → −∞. Focus first on the case where g eventually turns negative for sufficiently small x.

Then,

lim
x→−∞

|g(x)∆(x)| = − lim
x→−∞

∫
(−∞,x]

g(x)δ(x̃)µ(dx̃) ≤ − lim
x→−∞

∫
(−∞,x]

g(x̃)δ(x̃)µ(dx̃) = 0,

where, again, the last equality follows by the existence and finiteness of the covariances in (21). If g

stays positive for all x, then the limit limx→−∞ g(x) exists and is finite. Hence,

lim
x→−∞

|g(x)∆(x)| =
(

lim
x→−∞

g(x)

)(
lim

x→−∞
∆(x)

)
= 0.

33For any two perfectly rank-correlated random variables Z1 = QZ1(U) and Z2 = QZ2(U) (for some common
uniform-distributed U) it holds that Cov(Z1, Z2) = E[Z1(Z2 − µZ2)] = E[QZ1(U)qZ2(U)] =

∫ 1

0
qZ2(u)QZ1(u)du.
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This proves that

Cov(g(Y ), ZY )− Cov(g(X), ZX) = −
∫
R
g′(x)∆(x)dx. (22)

A completely analogous computation establishes that

0 ≤ Cov(Y, ZY )− Cov(X,ZX) =

∫
R
xδ(x)µ(dx) = −

∫
∆(x)dx. (23)

By convexity of g, g′(x) is weakly increasing and thus

−
∫
R
g′(x)∆(x)dx ≥ −g′(x0)

∫
∆(x)dx (24)

where we used the x0 with {∆ ≥ 0} ≤ x0 ≤ {∆ ≤ 0} shown to exist in Lemma 3. Using (22) and

(23), this establishes the weak inequality Cov(g(Y ), ZY )− Cov(g(X), ZX) ≥ 0.

For the case where g′(x) is strictly increasing, notice that according to Lemma 3 ∆ 6= 0 on

a non-zero measure set and so the inequality in (24) is strict. In that case, Cov(g(Y ), ZY ) −
Cov(g(X), ZX) > 0. This proves Proposition 6.

A.3 Variances

In order to prove Theorem 1 itself, we can now apply Proposition 6 twice. This is essentially the

idea behind the following proof.

Proof of Theorem 1. Pick ZX = X and ZY = Y . Notice that Assumptions 4.1 and 4.2 are satisfied

by construction. Assumption 4.3 holds because

qZX
(FX(x))

qZY
(FY (x))

=
x− µX
x− µY

= 1 +
µY − µX
x− µY

,

which is strictly decreasing. Also, the function x 7→ qZX
(FX(x)) = x − µX has a unique zero at

x = µX which is clearly strictly less than x = µY , the unique zero of x 7→ qZY
(FY (x)) = x − µY .

Therefore, Assumption 4.4 is satisfied as well and we can apply Proposition 6. Since by assumption

Assumption 1(ii), Cov(X,X) = Var{X} ≤ Var{Y } = Cov(Y, Y ), Proposition 6 implies that

Cov(g(X), X) ≤ Cov(g(Y ), Y ),

with strict inequality if g is strictly convex.

In a second step, we apply Proposition 6 again, but this time using ZX = g(X) and ZY = g(Y ).

Again, Assumptions 4.1 and 4.2 are satisfied by construction, and Assumption 4.3 holds because

qg(X)(FX(x))

qg(Y )(FY (x))
=
g(x)− µg(X)

g(x)− µg(Y )
= 1 +

µg(Y ) − µg(X)

g(x)− µg(Y )
,

which is still strictly decreasing given that g(Y ) MLRP-dominates g(X) and hence has a larger mean.
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Assumption 4.4 is satisfied because the unique zero of x 7→ g(x) − µg(X), g
−1(µg(X)), is strictly

smaller than g−1(µg(Y )), which is the unique zero of x 7→ g(x)− µg(Y ). In sum, the conditions of

Proposition 6 are satisfied, and we obtain

Var{g(X)} = Cov(g(X), g(X)) ≤ Cov(g(Y ), g(Y )) = Var{g(Y )},

with strict inequality if g is strictly convex. This concludes the proof of Theorem 1.

B Proof of Theorem 2

In this proof, we assume without loss of generality that EX = 0 (a simple horizontal translation of

X and g establishes the general result). Also, we only proof the strict version of the theorem. The

weak version follows by replacing strict inequalities with weak ones throughout the proof.

By Assumption 2(i) and EX = 0 it follows that α1 > 0. By Assumption 2(ii) it follows that

α2 > 0. Define the function Gg,X : [0, α1]× [0, α2]→ R by

Gg,X(β1, β2) = Var{g(β1 + β2X)} −Var{g(X)}.

For convenience we drop the subscripts of Gg,X during the proof, yet since the proof of Theorem 3

is very similar, it is good to keep the explicit dependence of Gg,X on g and X in mind.34

We now prove that G is strictly increasing in (i) β1 and (ii) β2. Notice that this also establishes

the well-definedness (finiteness) of G. To prove parts (i) and (ii) we use a simple lemma which we

study first. For this, let us introduce two real, non-degenerate random variables Z1 and Z2 which

satisfy the following assumption.

Assumption 5. Z1 and Z2 are perfectly rank correlated, that is, there exists a random variable

U ∼ unif[0, 1] that is uniformly distributed over the unit interval such that Zi = QZi(U), for some

weakly increasing measurable functions QZi : [0, 1]→ R.

Let supp(Z2) denote the support of Z2. The key lemma is as follows.

Lemma 4. Suppose random variables Z1 and Z2 satisfy Assumption 5. Suppose further that

h : supp(Z2)→ R is a continuous function with h(z)− z increasing in z. Then,

Cov(Z1, Z2) ≤ Cov(Z1, h(Z2)) (25)

and strictly so if h(z)− z is strictly increasing.

Proof. Notice that

Cov(Z1, h(Z2))− Cov(Z1, Z2) = Cov(Z1, h(Z2)− Z2) ≥ 0

34Essentially, the proof of Theorem 3 proceeds by changing g and X in the definition of Gg,X .

33



since both Z1 and h(Z2)− Z2 can be expressed as weakly increasing functions of U , and it is known

that the covariance of two perfectly rank-correlated random variables is non-negative (see, e.g.,

Schmidt, 2003 for an elementary proof). The covariance Cov(Z1, h(Z2)− Z2) can only be equal to

zero if Z1 were degenerate, which is ruled out by assumption, or if h(z)− z were (a.e.) constant over

the support of Z2. Hence, if h(z)− z is strictly increasing, (25) can only be strict.

Part (i): G strictly increasing in β1. Consider β1 ∈ [0, α1), β2 ∈ [1, α2] and β′1 ∈ (β1, α1], i.e.

β′1 > β1. For simplicity, we let Z ≡ g(β1 + β2X) and Z ′ ≡ g(β′1 + β2X) with the goal to show that

Var{Z} < Var{Z ′}. Define the function h : (g,∞) → R by h(z) = g(g−1(z) + (β
′
1 − β1)) where

g = infz∈R g(z) ∈ [−∞,∞). By definition, h is strictly increasing and h(Z) = Z ′.

We now prove that h(z)− z is strictly increasing. First, rewrite h(z)− z as

h(z)− z = g(g−1(z) + (β′1 − β1))− g(g−1(z)).

Introduce the notation ε ≡ β′1 − β1 > 0 and a ≡ g−1(z). By strict convexity of g, it holds for any

∆ > 0 that

g(a) + g(a+ ∆ + ε) =
∆

∆ + ε
g(a) +

ε

∆ + ε
g(a+ ∆ + ε)︸ ︷︷ ︸

>g(a+ε)

+
ε

∆ + ε
g(a) +

∆

∆ + ε
g(a+ ∆ + ε)︸ ︷︷ ︸

>g(a+∆)

> g(a+ ε) + g(a+ ∆)

and therefore, for any z′ > z, defining ∆ ≡ g−1(z′)− g−1(z),

h(z′)− z′ = g(a+ ∆ + ε)− g(a+ ∆)

> g(a+ ε)− g(a) = h(z)− z,

establishing that h(z)− z is strictly increasing.

Notice that Z and Z ′ are by construction perfectly rank-correlated, using U ≡ X. Thus, applying

Lemma 4 twice, we find

Var{Z} = Cov(Z,Z) < Cov(Z, h(Z)︸ ︷︷ ︸
Z′

) < Cov(Z ′, Z ′) = Var{Z ′},

concluding the proof of part (i).

Part (ii): G strictly increasing in β2. Consider β1 ∈ [0, α1), β2 ∈ [1, α2) and β′2 ∈ (β2, α2].

Define Z = g(β1 + β2X) and Z ′ = g(β1 + β′2X). The goal is again to show that Var{Z} < Var{Z ′}.
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By construction, h(Z) = Z ′, where we now define

h(z) = g

(
β′2
β2

(g−1(z)− β1) + β1

)
.

In the following, denote χ ≡ β′2/β2 > 1 and let z∗ be the unique value such that g−1(z∗) = β1.

Notice that h(z∗) = z∗. We now prove again that h(z)− z is strictly increasing.

By definition of h it holds that

g−1(h(z′))− g−1(h(z)) = χ(g−1(z′)− g−1(z)),

and, defining a ≡ g−1(h(z′)), b ≡ g−1(h(z)), c ≡ g−1(z′), d ≡ g−1(z), this implies that χ = (a −
b)/(c− d) and

g(a) + χg(d) = g(a)

(
b− d
a− d

+ χ
c− d
a− d

)
+ χg(d)

(
a− c
a− d

+
a− b
a− d

χ−1

)
≥ χg(c) + g(b),

or rearranging this,

h(z′)− z′ ≥ h(z)− z + (z′ − z)(χ− 1) > h(z)− z.

Thus, applying Lemma 4 twice again, we find

Var{Z} = Cov(Z,Z) < Cov(Z, h(Z)︸ ︷︷ ︸
Z′

) < Cov(Z ′, Z ′) = Var{Z ′},

concluding the proof of part (ii).

C Proof of Theorem 3

This proof uses a similar strategy as the proof of Theorem 2 in Appendix B above. We assume without

loss that E{g(X)} = 0 which can achieved by a simple vertical translation of g. The assumption that

E{g(Y )} > E{g(X)} then implies that α1 > 0. Define the function Gg−1,g(X) : [0, α1]× [0, α2]→ R
by

Gg−1,g(X)(β1, β2) = Var{g−1(β1 + β2g(X))} −Var{X}.

Notice that Gg−1,g(X)(0, 1) = 0, Gg−1,g(X)(α1, α2) = Var{Y } − Var{X} ≥ 0, and Var{g(Y )} =

α2
2Var{g(X)}, so it remains to be shown that α2 > 1. We now prove that Gg−1,g(X)(β1, β2) is

strictly decreasing in β1 and strictly increasing in β2, and thus, due to α1 > 0, Gg−1,g(X)(α1, α2) ≥ 0

necessitates that α2 > 1.

The function g−1 is increasing and concave, so the function h(z) ≡ −g−1(−z) is increasing and
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strictly convex. Observe that

Gg−1,g(X)(β1, β2) = Gh,h−1(−X)(−β1, β2).

As h is increasing convex and E{h−1(−X)} = 0, we can follow the exact steps of the proof of

Theorem 2 to show that Gh,h−1(−X) is strictly increasing in both its first and second arguments.

Therefore, Gg−1,g(X)(β1, β2) strictly decreases in β1 and strictly increases in β2, which concludes the

proof of Theorem 3.

D Proof of Proposition 5

We only prove that the risk term increases when g is convexly increasing. All other cases can be

reduced to this case by simple horizontal or vertical reflections of g. Hence, using the notation from

Section 4.2, we need to prove that

Var{X0} = Var{X ′0} ⇒ Cov(X0, g(X0)) ≤ Cov(X ′0, g(X ′0)).

Upon replacing X0 by X and X ′0 by Y , this is the exact first step in the proof of Theorem 1 in

Appendix A.3.

E Appendix for the applications

E.1 Proof of Lemma 1

We prove both directions of this result.

Start with an allocation {Ct,Kt+1, Nt}. The claim is that if the allocation solves (15), there

exists an equilibrium to support the allocation. Given the processes {zt, εit}, define the candidate

equilibrium as follows: Wt ≡ FN (Kt, Nt), rt ≡ eztFK(Kt, Nt) − δ, Qt ≡ (1 + rt)
−1Qt−1, Q0 ≡ 1,

kit+1 ≡ k(εit), nit ≡ n(εit−1, uit), yit is set according to the production (12), profits πit are set

according to (8), vit is set according to (7), and Vt ≡
∫ 1

0 vit di. Condition (a) is satisfied, since the

first order condition for k(ε̃) in (16) is

Et−1
d

dkit
f(kit, nit)

ν = FK(Kt, Nt),

which, due to the orthogonality of aggregate and idiosyncratic shocks immediately implies that

Et−1

{
Qt
Qt−1

(
d

dkit
eztf(kit, nit)

ν + 1− δ
)}

=
eztFK(Kt, Nt) + 1− δ

1 + rt
= 1,

which is precisely the first order condition for firm i’s profit maximization problem (7). Condition (b)

holds because the optimality conditions are the same as in the planning problem. The household’s

36



intertemporal optimality condition is C−1
t = β Qt

Qt+1
C−1
t+1 which is equivalent to the planner’s by

construction of Qt. The intratemporal optimality condition is θN ζ
t Ct = Wt which is again equivalent

to the planner’s by construction of Wt. Finally, the constraints are equivalent since from (7) and

(8), it follows that

Vt =

∫ 1

0
πit di+ Et

Qt+1

Qt
Vt+1

= eztF (K,tNt)−WtNt + (1− δ)Kt −Kt+1 + Et
Qt+1

Qt
Vt+1. (26)

Substituting out Vt from (14) using (26) yields the resource constraint. Conditions (c) and (d) hold

by construction.

The other direction of the lemma follows these exact same steps in reverse. Defining F as in

(16) means that by virtue of the first order conditions, it has to be the case that k(εit) = kit+1 and

nit = n(εit−1, uit), as well as Wt = FN (Kt, Nt), rt = eztFK(Kt, Nt)− δ, and eztF (K,tNt) =
∫
yitdi.

The constraints and optimality conditions of the planning problem and the household optimization

problem are then equivalent as before. This proves that {Ct,Kt+1, Nt} satisfies 15.

E.2 Business cycle accounting

To do the business cycle accounting exercise, we introduce in addition to the labor wedge also

an investment wedge τx,t and government spending Gt. The extended model is described by the

following four equations:

CtN
ζ
t = (1− τn,t)eztFN (Kt, Nt)

(1 + τx,t)C
−1
t = βEt

{
C−1
t+1 [ezt+1FK(Kt+1, Nt+1) + (1 + τx,t+1)(1− δ)]

}
Yt = Ct +Kt+1 − (1− δ)Kt +Gt

Yt = eztF (Kt, Nt).

We proceed similar to Chari, Kehoe and McGrattan (2007) and pick a path for {τn,t, τx,t, Gt, ezt} to

satisfy all four equations perfectly when evaluated at the realized paths of US aggregate data for

output, hours, consumption, and investment from 1947 to 2016. Since our model does not feature

growth, we first eliminate the growth trend from the data, detrending either linearly or applying a

high-pass filter with a cutoff of 40 years. For the accounting exercise, we begin by conjecturing a

VAR(1) process for the four exogenous shocks and solve for the equilibrium mapping from shocks to

endogenous variables. We then filter through the data using the equilibrium mapping, extracting

a path for the four wedges so that the model matches the (detrended) data exactly. In the final

step, we verify that the resulting timeseries of wedges is well-described by the conjectured VAR(1)
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