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Abstract

A bargaining solution concept generalizing the Harsanyi NTU value is defined for cooperative
games with incomplete information. Our definition of a cooperative solution implies that all
coalitional threats are equitable when players make interpersonal utility comparisons in terms
of some virtual utility scales. In contrast, Myerson’s (1984b) generalization of the Shapley
NTU value is only equitable for the grand coalition. When there are only two players, the two
solutions are easily seen to coincide, however they may differ for general n-person games. By
using the concept of virtual utility, our bargaining solution reflects the fact that players negotiate
at the interim stage.
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1. Introduction

The value is a central solution concept in the theory of cooperative games. Introduced by Sha-
pley (1953) for the study of games with transferable utility (TU), the value has been extended in
different ways to general games with nontransferable utility (NTU); some of the most notable
NTU values are due to Harsanyi (1963) and Shapley (1969)1.

Introducing asymmetric information in the analysis of cooperation involves two conceptual
issues. First, an individual possessing non-verifiable private information may not have the in-
centive to truthfully reveal such information, as a consequence the final agreement may be
subject to strategic manipulation. A cooperative agreement is then constrained by the necessity
to provide the appropriate incentives for each party to reveal his private information. Second,
when individuals negotiate at the interim stage, the bargaining process is itself a mechanism by
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very much indebted to Françoise Forges for her insights, her continuous guidance and for innumerable discussions.
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and suggestions. I would also like to thank François Salanié for helpful comments.
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1The Shapley NTU value is sometimes referred as the “λ-transfer value”.



which information is transmitted. Thus, individuals should take into account the information
they reveal by proposing, accepting or refusing a particular agreement.

Incentive efficient mechanisms maximize the weighted sum of the players’ interim utilities sub-
ject to incentive constraints. Myerson (1984a,b) proposes an approach in which the Lagrange
multipliers of the incentive constraints are used to define the virtual utility of players. The con-
cept of virtual utility reflects not only the signaling costs associated with incentive compatibility,
but also the fact that individuals negotiate at the interim stage. By performing utility compari-
sons in the virtual utility scales, Myerson generalizes Shapley’s (1969) fictitious-transfer pro-
cedure. Specifically, one associates to any incentive efficient mechanism a set of virtual utility
scales (utility weights and Lagrange multipliers) and then considers the fictitious game in which
utility is transferable in terms of such virtual scales. This approach has been used in Myerson
(1984b) to extend the Shapley NTU value to an environment with incomplete information.

In this paper, we study two examples of cooperative games with incomplete information in
which Myerson’s (1984b) solution does not reflect well enough the game situation. Starting
from the two-person bargaining problem studied in Section 10 of Myerson (1984a), we con-
struct a three-player game in which the uninformed individuals (players 1 and 2) can overcome
the potential adverse selection problem they face by ignoring the informed individual (player
3) and cooperating together. Since there is no conflict between players 1 and 2 for agreeing on
an equitable and ex-post efficient allocation, it then appears that coalition {1, 2} is more likely
to form, thus leaving the informed player with a low expected payoff. According to Myerson’s
solution, the informed player extracts however a considerable amount of utility. Our example
shares features with a complete information NTU game previously proposed by Roth (1980).
In addition, we also study a three-player Bayesian cooperative game proposed by de Clippel
(2005). In that example, the third player’s only contribution is to partly release the other two
players from the incentive constraints they face when they cooperate. One may consider this
contribution important enough for rewarding the third player with a strictly positive payoff.
Myerson’s solution is however not sensitive to this informational contribution. De Clippel’s
example is an incomplete information version of a NTU game introduced by Owen (1972).

Our aim is to provide an alternative approach dealing with the “difficulties” identified in the
examples above. Specifically, we construct a new solution concept for cooperative games with
incomplete information that will extend the Harsanyi NTU value (cf. Theorem 1)2. For that, we
build on Myerson’s virtual utility approach to extend Myerson’s (1980) balanced contributions
characterization of the Harsanyi NTU value. While there might be several appealing ways to
generalize the balanced contributions, here we adopt a method that is consistent with Imai’s
(1983) subgame value characterization of the Harsanyi NTU value. We first formulate an ex-
tended version of the subgame value condition based on Myerson’s (1984b) principle for an
equitable mechanism (cf. Definition 1). We then define an egalitarian criterion to be the unique
extension of the balanced contributions (cf. Definition 2) that equivalently characterizes our
generalized subgame value condition (cf. Proposition 1). Equipped with these equity notions,
we extend Harsanyi’s (1963, sec. 9) optimal threat strategies to define what we call optimal

2This actually holds only for the case of nondegenerate Harsanyi NTU values (i.e., those corresponding to
strictly positive utility weights).
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egalitarian threats. Specifically, we modify Myerson’s (1984b) rational threats criterion by re-
quiring coalitional threats to meet our egalitarian criterion. The idea in defining our cooperative
solution is then to find an incentive efficient mechanism for which there exist virtual utility
scales such that the mechanism would be equitable for the grand coalition when all intermedi-
ate coalitions commit to their optimal egalitarian threats in the fictitious game with transferable
virtual utility.

Our solution concept is (interim) individually rational (cf. Theorem 2). In addition, it implies
that all coalitional threats are equitable (cf. Proposition 2). In contrast, Myerson’s solution
is only equitable for the grand coalition. When there are only two players, our cooperative
solution coincides with Myerson’s solution. In particular, if the game corresponds to a bilateral
bargaining problem both solutions coincide with Myerson’s (1984a) neutral bargaining solution.
However they both may differ for general n-person games. When we explicitly compute our
solution concept in the examples described above, it turns out that it prescribes more intuitive
and appealing outcomes than Myerson’s solution.

The paper is organized as follows. Section 2 is devoted to specifying formally the model of
a cooperative game with incomplete information and the notations used, including the basic
assumptions on the class of games considered. We also present a summary of the facts one
needs to know about Myerson’s (1984b) virtual utility approach. The two motivating examples
quoted in this introduction are studied in Section 3. The virtual utility approach is then used
in Section 4 to introduce some equity principles for Bayesian cooperative games. In particular,
we define our egalitarian criterion. In Section 5, the ideas of Section 4 are applied to define
the optimal egalitarian threats. In Section 6 we introduce our cooperative solution. We then
compute our solution in the examples studied in Section 3. Some additional comments about
the existence of our solution concept are also discussed. Final remarks are presented in Section
7. Proofs are deferred to Section 8.

2. Formulation

2.1. Bayesian Cooperative Game
The model of a cooperative game with incomplete information is as follows. Let N = {1, 2, ..., n}
denote the set of players. For each (non-empty) coalition S ⊆ N, DS denotes the set of feasible
joint actions for coalition S . We assume that the sets of joint actions are finite and superadditive,
that is, for any two disjoint coalitions3 S and R,

DR × DS ⊆ DR∪S .

For any player i ∈ N, we let Ti denote the (finite) set of possible types for player i. The
interpretation is that ti ∈ Ti denotes the private information possessed by player i. We use the
notations4 tS = (ti)i∈S ∈ TS =

∏

i∈S Ti, t−i = tN\i ∈ T−i = TN\i and t−S = tN\S ∈ T−S = TN\S . For
simplicity, we drop the subscript N in the case of the grand coalition, so we define D = DN and

3For any two sets A and B, A ⊆ B denotes weak inclusion (i.e., possibly A = B), and A ⊂ B denotes strict
inclusion.

4For simplicity we write S \ i, S ∪ i and Di instead of the more cumbersome S \ {i}, S ∪ {i} and D{i}.
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T = TN . We assume that players have a common prior belief p defined on T , and that all types
have positive marginal probability, i.e., p(ti) > 0 for all ti ∈ Ti and all i ∈ N. At the interim stage
each player knows his type ti ∈ Ti, and hence, we let p(t−i | ti) denote the conditional probability
of t−i ∈ T−i that player i infers given his type ti.

The utility function of player i ∈ N is ui : D×T → R. As in most of the literature in cooperative
game theory, we assume that coalitions are orthogonal, namely, when coalition S ⊆ N chooses
an action which is feasible for it, the payoffs to the members of S do not depend on the actions
of the complementary coalition N \ S . Formally,

ui((dS , dN\S ), t) = ui((dS , d′N\S ), t),

for every S ⊂ N, i ∈ S , dS ∈ DS , dN\S , d′N\S ∈ DN\S and t ∈ T . Then we can let ui(dS , t) denote
the utility for player i ∈ S if dS ∈ DS is carried out. That is, ui(dS , t) = ui((dS , dN\S ), t) for any
dN\S ∈ DN\S (recall that DS × DN\S ⊆ D).

A cooperative game with incomplete information is defined by

Γ = {N, (DS )S⊆N , (Ti, ui)i∈N , p}.

A (direct) mechanism for the grand coalition N is a mapping µN : T → ∆(D), where ∆(D)
denotes the set of probability distributions over D. The interpretation is that if N forms, it makes
a decision randomly as a function of its members’ information. Let the set of mechanisms for
N be denotedMN .

The (interim) expected utility of player i of type ti under the mechanism µN when he pretends
to be of type τi (while all other players are truthful) is

Ui(µN , τi | ti) =
∑

t−i∈T−i

p(t−i | ti)
∑

d∈D

µN(d | τi, t−i)ui(d, (ti, t−i)).

As is standard, we denote Ui(µN | ti) = Ui(µN , ti | ti).

Players can use any communication mechanism to implement a state-contingent contract. Be-
cause information is not verifiable, the only feasible contracts are those which are induced by
Bayesian Nash equilibria of the corresponding communication game. By the revelation prin-
ciple (see Myerson (1991)), we can restrict attention to (Bayesian) incentive compatible direct
mechanisms. Formally, a mechanism µN is incentive compatible (for the grand coalition) if and
only if

Ui(µN | ti) ≥ Ui(µN , τi | ti), ∀ti, τi ∈ Ti, ∀i ∈ N.

We denote asM∗
N the set of incentive compatible mechanisms for coalition N (“*” stands for

incentive compatible as in Holmström and Myerson (1983)).

A mechanism µN is (interim) individually rational if and only if

Ui(µN | ti) ≥ max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, ∀i ∈ N.
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2.2. Incentive Efficiency and The Virtual Utility Approach
Following Holmström and Myerson (1983) we say that a mechanism µ̄N for the grand coalition
is (interim) incentive efficient if and only if µ̄N is incentive compatible and there does not exist
any other incentive compatible mechanism giving a strictly higher expected utility to all types
ti of all players i ∈ N.5 Because the set of incentive-compatible mechanisms is a compact
and convex polyhedron, the mechanism µ̄N is incentive efficient if and only if there exist non-
negative numbers λ = (λi(ti))i∈N, ti∈Ti , not all zero, such that µ̄N is a solution to

max
µN∈M

∗
N

∑

i∈N

∑

ti∈Ti

λi(ti)Ui(µN | ti) (2.1)

We shall refer to this linear-programming problem as the primal problem for λ. Let αi(τi | ti) ≥ 0
be the Lagrange multiplier (or dual variable) for the constraint that the type ti of player i should
not gain by reporting τi. Then the Lagrangian for this optimization problem can be written as

L(µN , λ, α) =
∑

i∈N

∑

ti∈Ti

















λi(ti)Ui(µN | ti) +
∑

τi∈Ti

αi(τi | ti)
[

Ui(µN | ti) − Ui(µN , τi | ti)
]

















,

where µN ∈ MN. To simplify this expression, let

vi(d, t, λ, α) =
1

p(ti)

































λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ui(d, t) −
∑

τi∈Ti

αi(ti | τi)
p(t−i | τi)
p(t−i | ti)

ui(d, (τi, t−i))

















(2.2)

The quantity vi(d, t, λ, α) is called the virtual utility of player i ∈ N from the joint action d ∈ D,
when the type profile is t ∈ T , w.r.t. the utility weights λ and the Lagrange multipliers α. Then,
the above Lagrangian can be rewritten as

L(µN , λ, α) =
∑

t∈T

p(t)
∑

d∈D

µN(d | t)
∑

i∈N

vi(d, t, λ, α) (2.3)

Necessary and sufficient first order conditions for the primal problem imply that an incentive
compatible mechanism µ̄N is incentive efficient if and only if there exists some vectors λ ≥ 0
(λ , 0) and α ≥ 0, such that

αi(τi | ti)
[

Ui(µ̄N | ti) − Ui(µ̄N , τi | ti)
]

= 0, ∀i ∈ N, ∀ti ∈ Ti, ∀τi ∈ Ti (2.4)

and µ̄N maximizes the Lagrangian function over all mechanisms inMN , namely,
∑

d∈D

µ̄N(d | t)
∑

i∈N

vi(d, t, λ, α) = max
d∈D

∑

i∈N

vi(d, t, λ, α), ∀t ∈ T (2.5)

Equation (2.4) is the usual dual complementary slackness condition. Condition (2.5) says that
any incentive efficient mechanism µ̄N must put positive probability weight only on the decisions

5We have departed slightly from the formal definition of Holmström and Myerson (1983) in using strict in-
equalities rather than weak inequalities and one strict inequality.
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that maximize the sum of the players’ virtual utilities, on each information state. This implies
that if players are given the possibility to transfer virtual utility, conditionally on every state,
then µ̄N would be ex-post efficient6. Incentive compatibility forces each player to act as if he
was maximizing a distorted utility, which magnifies the differences between his true type and
the types that would be tempted to imitate him. Myerson (1984b) refers to this idea as the
virtual utility hypothesis. A more detailed discussion about the meaning and significance of the
virtual utility can be found in Myerson (1991, ch. 10).

The natural vector α in this Lagrangian analysis is the vector that solves the dual problem of
(2.1). This dual problem for λ can be written as

min
α≥0

∑

t∈T

p(t)















max
d∈D

∑

i∈N

vi(d, t, λ, α)















(2.6)

2.3. The Myerson Value
Using the concept of virtual utility, Myerson (1984b) generalizes Shapley’s (1969) fictitious-
transfer procedure in order to extend the Shapley NTU value to an environment with incomplete
information. Specifically, for any incentive efficient mechanism µ̄N one associates a vector (λ, α)
of virtual utility scales. These scales correspond to the utility weights λ for which µ̄N solves the
primal problem and the associated Lagrange multipliers α. Then, one considers the fictitious
game in which players are allowed to transfer virtual utility conditional on every state t ∈ T
w.r.t. the scales (λ, α). In the virtual game, each intermediate coalition S ⊂ N commits to a
rational threat mechanism to be carried out in case the other players refuse to cooperate with
the members of S . Rational threats are the basis for computing the (virtual) worth of each
coalition, and thus they determine how much credit each player can claim from the proceeds
of cooperation in the grand coalition. Conditionally on every state, rational threats thus define
a coalitional game with transferable virtual utility. A mechanism is equitable for the grand
coalition N if it gives each type of every player his (conditional) expected Shapley TU value of
the fictitious game. A formal definition is given in Section 4 (see Remark 1).

Myerson (1984b) defines his bargaining solution to be an incentive efficient mechanism µ̄N for
which there exist virtual scales (λ, α) such that µ̄N is equitable for the grand coalition w.r.t.
(λ, α). The associated interim utility allocations are called an M-value (short for Myerson
value). A formal definition of the M-value can be deduced from our cooperative solution con-
cept (cf. Definition 6) by removing the egalitarian restrictions from our optimal threat criterion
(see Section 5). Two variants of the value can be considered depending on whether optimal
threats are required to be incentive compatible or not. Each possible definition of the value
can be justified according to different assumptions on the commitment structure underlying the
bargaining situation (see Section 6 in Myerson (1984b) for a detailed discussion). Myerson ex-
clusively deals with the case in which only the mechanism of the grand coalition is constrained
to be incentive compatible.

6This property is specially useful for practical applications, in particular when computing value allocations.
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3. Motivating Examples

In this section we study two examples which motivate the introduction of our solution concept.
In both examples, it is shown that the M-value exhibits some “difficulties”; specifically, there
are compelling reasons leading to an outcome not consistent with the M-value.

3.1. Example 1: A Collective Choice Problem
We consider the following cooperative game with incomplete information. The set of players
is N = {1, 2, 3}. Only player 3 has private information represented by two possible types in
T3 = {H, L} with prior probabilities p(H) = 1 − p(L) = 9/10. Decision options for every
coalition are Di = {di} (i ∈ N), D{1,2} = {D1 × D2} ∪ {d12} = {[d1, d2], d12}, D{i,3} = {Di × D3} ∪

{di
i3, d

3
i3} = {[di, d3], di

i3, d
3
i3} (i = 1, 2) and DN = {D{1,2} × D3} ∪ {D{1,3} × D2} ∪ {D{2,3} × D1}. A

detailed interpretation will be given below. Finally, utility functions are as follows:

(u1, u2, u3) L H
[d1, d2, d3] (0, 0, 0) (0, 0, 0)
[d12, d3] (5, 5, 0) (5, 5, 0)
[d1

13, d2] (0, 0, 5) (0, 0, 10)
[d3

13, d2] (10, 0,−5) (10, 0, 0)
[d2

23, d1] (0, 0, 5) (0, 0, 10)
[d3

23, d1] (0, 10,−5) (0, 10, 0)

This game can be interpreted as a collective choice problem in which three individuals have the
option to cooperate by investing in a work project which would benefit them. The project would
cost $10. It is commonly known that the project is worth $10 to player 1 as well as to player 2;
but its value to player 3 depends on his type, which is unknown to the other players. If 3’s type
is H (“high”) then the project is worth $10 to him. However, if 3’s type is L (“low”) then the
project is only worth $5 to him.

Decision options for all coalitions are interpreted as follows. For each player i ∈ N, di is the only
available action for himself, which leaves him with his reservation utility normalized to $0. If
coalition {1, 2} forms, its members may decide not to undertake the project by choosing [d1, d2]
or they can agree on the option d12 which carries out the project dividing the cost on equal parts.
If players 1 and 3 form a coalition, decision d j

13 ( j = 1, 3) denotes the option to undertake the
project at j ’s expense. There is no need to consider intermediate financing options, because
they can be represented by randomized decisions. They may also agree on [d1, d3] which does
not implement the project. Decision options for coalition {2, 3} are similarly interpreted. If all
three form a coalition, they may use a random device to pick a two-person coalition which must
then make a decision as above.

To analyze this game, we first consider the situation in which players 1 and 3 must reach a
cooperative agreement to be implemented in case player 2 refuses to cooperate with them. In
such a situation, 1 and 3 face a threat-selection subgame described by a two-person cooperative
game with incomplete information that can be analyzed applying the concepts of Section 2.
Assume that threats are not required to be incentive compatible. Figure 1 illustrates the set of
interim efficient (and individually rational) utility allocations for this (sub)game.
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Figure 1: Efficient utility allocations for coalition {1, 3}

An equitable utility allocation in this game can be constructed as follows. Suppose that player 3
is given the right to act as a “dictator”, so that he may enforce any mechanism that is individually
rational given the information that player 1 may infer from the selection of the mechanism. In
this case, there is a clear decision that both types of player 3 would demand, namely, d1

13. This
decision implements the utility allocation (U1,UH

3 ,U
L
3 ) = (0, 10, 5) which gives both types

of player 3 the highest expected utility they can get in the game. Moreover, it is efficient
and safe, i.e., it remains individually rational no matter what player 1 can infer about 3’s type
from this proposal. In the terminology of Myerson (1983), it is a strong solution7 for player
3. On the other hand, if player 1 were a dictator, then he would demand his strong solution
which implements the allocation (19/2, 0, 0). Now consider a random-dictatorship in which
each player is given equal chance of enforcing his strong solution. Then, the interim efficient
allocation (19/4, 5, 5/2) = 1

2 (0, 10, 5) + 1
2 (19/2, 0, 0) is equitable for {1, 3}. Indeed, random-

dictatorship together with efficiency characterize Myerson’s (1984a) generalization of the Nash
bargaining solution. It is then the unique M-value for this subgame8.

The value of a player is an index based on his ability to guarantee high payoffs to all members
of the coalitions to which he belongs (marginal contribution). From that perspective, player 3
should be considered as a weak player. By agreeing to cooperate with player 3, player 1 cannot
expect to get more than 19/4 in an equitable allocation. Because players 1 and 2 are symmetric,
the same reasoning is also true for a negotiation between players 2 and 3. Hence, both players
1 and 2 are better off in coalition {1, 2} in which case they both get 5 each, which is strictly
preferred to 19/4. When negotiating with player 3, 1 and 2 are adversely affected by the likely
presence of 3’s “bad” low type. However, by acting together players 1 and 2 face no uncertainty
at all. Indeed, it is commonly known that the project is equally worth to each of them. A value
allocation for our three player game should thus reward player 3 less than the other players in
both states.

7A strong solution may not exist, but if so it is unique up to equivalence in utility.
8This allocation is implemented by the mechanism µ{1,3}(d1

13 | L) = 1 − µ{1,3}(d3
13 | L) = 3/4, µ{1,3}(d1

13 | H) =
µ{1,3}(d3

13 | H) = 1/2.

8



Let us suppose now that threats are required to be incentive compatible. Figure 2 depicts the
set of interim incentive efficient (and individually rational) utility allocations for the subgame
faced by coalition {1, 3}. For this modified threat-selection game, the strong solution for player
3 implements again the utility allocation (0, 10, 5). However, the strong solution for player 1
now implements the allocation (9, 0, 0). Proceeding as before, random-dictatorship prescribes
the value allocation (9/2, 5, 5/2).9 We notice that both types of player 3 get the same expected
utility in an equitable allocation regardless of whether incentive constraints are relevant or not.
In contrast, 1’s expected utility is reduced in the presence of incentive constraints. Incentive
compatibility leads to efficiency losses that are mainly beared by the uninformed party, hence
increasing the incentives for 1 and 2 to form a coalition, and thus reducing the bargaining
position of player 3. Therefore, 3’s payoff from a value allocation should be further reduced
when coalitional incentive constraints matter.

UH
3

UL
3

U1

�

�

�

(0,10,5)

(9,0,0)

(5,5,0)
�

(

9
2 , 5,

5
2

)

Figure 2: Incentive efficient utility allocations for coalition {1, 3}

The unique (non-degenerated) M-value of our three player game is the utility allocation
(

U1,U2,UH
3 ,U

L
3

)

=

(

10
3 ,

10
3 ,

10
3 ,

5
3

)

. (3.1)

For instance, the incentive efficient mechanism µN([d12, d3] | t) = 2
3 , µN([d2

23, d1] | t) =
µN([d1

13, d2] | t) = 1
6 for all t ∈ T3 is an M-solution. The value is supported by the utility

weights10 (λ1, λ2, λ
H
3 , λ

L
3 ) = (1, 1, 9/10, 1/5) and the Lagrange multipliers (α1(L | H), α1(H |

L)) = (0, 0).11

An easy way to compute the M-solution in this game is simply to apply the random-dictatorship
procedure to the grand coalition. The strong solution for player 3 in N implements the allocation
(U1,U2,UH

3 ,U
L
3 ) = (0, 0, 10, 5). The strong solution for player 1 (resp. 2) in N implements the

9This allocation is implemented by the mechanism µ{1,3}(d1
13 | L) = µ{1,3}([d1, d3] | L) = 1/2, µ{1,3}(d1

13 | H) =
µ{1,3}(d3

13 | H) = 1/2.
10Utility weights are determined up to a positive scalar multiplication. We then normalize utility weights so that

virtual utilities of the uninformed players coincide with their real utilities.
11Explicit computations are given in the Appendix A.
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allocation (19/2, 1/2, 0, 0) (resp. (1/2, 19/2, 0, 0)). Averaging these utility vectors we obtain
(3.1). Is is worth emphasizing that this procedure does not generally characterize the M-value.
Yet for our example, it exhibits the reason why both types of player 3 extract a considerable
amount of utility; namely, players are treated symmetrically in both states. Indeed, the random
dictatorship procedure applied to N assumes coalitions are symmetric, so that threats can be
disregarded. Myerson’s rational threats criterion cares only about the joint overall gains that
can be allocated inside a coalition, but not about the way in which they are distributed. Since
all coalitions can achieve the maximal gains from the project in both states of the transferable
virtual utility game, the M-value treats all coalitions symmetrically. This is so even when threats
are required to be incentive compatible. For instance, the mechanism that implements d j

j 3 ( j =
1, 2) in both states is a rational threat for coalition { j , 3}. This mechanism however gives the
whole surplus of cooperation to player 3 (which is not equitable). Moreover, such a threat is not
“credible” since player i < { j , 3} could not believe that player j would agree to implement d j

j 3
in case cooperation in N breaks down.

The following feature of the game also explains why player 3 obtains a significantly high ex-
pected payoff. Suppose that player 2 has definitely dropped out of the game. Then, type L
of player 3 becomes “surprisingly strong”, since he has very little to lose by not agreeing to
undertake the project and, at the same time, player 1 cannot go to close a deal with player 2.
When player 3 is in a such surprisingly strong position, the outcome of the Myerson’s (1984a)
bargaining solution tends to be similar to what would have been the outcome if player 3 had
become a dictator. Myerson (1991, p. 523) calls this property of his bargaining solution arro-
gance of strength. Because 3’s type is not verifiable by player 1, type H also benefits from L’s
arrogance. A similar reasoning applies when player 1 leaves the game. Consider again the value
allocations in the different subgames obtained when one player drops out of the game12. It will
be convenient to write these allocations as a 4-dimensional vector with “−” for players outside
coalition S :

(U1,U2,UH
3 ,U

L
3 ) =

(

9
2 ,−, 5,

5
2

)

(U1,U2,UH
3 ,U

L
3 ) =

(

−, 9
2 , 5,

5
2

)

(U1,U2,UH
3 ,U

L
3 ) = (5, 5,−,−)

Now, for each allocation, we add a payoff for the missing player (in boldface) so that the result-
ing payoff vector is incentive efficient for N:

(U1,U2,UH
3 ,U

L
3 ) =

(

9
2 ,

1
2 , 5,

5
2

)

(U1,U2,UH
3 ,U

L
3 ) =

(

1
2 ,

9
2 , 5,

5
2

)

(U1,U2,UH
3 ,U

L
3 ) = (5, 5, 0, 0)

These assigned payoffs can be interpreted as a compensation that the forming two-person coali-
tion grants to the remaining player for agreeing to leave the grand coalition. Averaging the

12For this analysis we assume that threats are required to be incentive compatible. The same conclusions can be
obtained when threats do not need to be incentive compatible.
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above three utility allocations we obtain (3.1). The underlying assumption in this computation
is that any two-person coalition is equally likely to form. We argue however that the probability
that {1, 3} or {2, 3} be the forming coalitions is rather small.

In this example, the M-value is insensitive to the negative externality created by 3’s private
information. The challenge for our solution concept is to better reflect the game situation.

3.2. Example 2: A Bilateral Trade Problem
Let us consider the following cooperative game with incomplete information originally pro-
posed by de Clippel (2005). N = {1, 2, 3}, T1 = {H, L}, p(H) = 1 − p(L) = 4/5,
Di = {di} (i = 1, 2, 3), D{1,2} = {[d1, d2], d1

12, d
2
12}, D{1,3} = {[d1, d3]}, D{2,3} = {[d2, d3]},

DN = {[d1, d2, d3], [d1
12, d3], [d2

12, d3], d23, d32} and

(u1, u2, u3) [d1, d2, d3] [d1
12, d3] [d2

12, d3] d23 d32

H (0, 0, 0) (90, 0, 0) (0, 90, 0) (0, 90, 0) (0, 0, 90)
L (0, 0, 0) (30, 0, 0) (−60, 90, 0) (0, 30, 0) (0, 0, 30)

The game can be interpreted as follows. Player 2 is the seller of a single good that has no
value for himself. Player 1 is the only potential buyer and he has a valuation of the good that
can be low (30$), with probability 1/5, or high (90$), with probability 4/5. Decision [d1, d2]
represents the no-exchange alternative. Decision d1

12 (resp. d2
12) represents the situation where

player 1 receives the good from player 2 for free (resp. in exchange of 90$). Any other transfer
of money from player 1 to player 2 (between 0$ and 90$) can be represented by a lottery defined
on {d1

12, d
2
12}. Because of the necessity to give player 1 an incentive to participate honestly, both

players are limited in their abilities to share the gains from trade. Indeed, the mechanism that
gives the entire surplus to player 2 in both states, is not incentive compatible. Player 3 does
not generate any additional surplus from the trade. Yet, his participation partly releases players
1 and 2 from the incentive constraints they face when they cooperate. Indeed, when he joins
coalition {1, 2} (so that the grand coalition forms), decisions d23 and d32 are added to D{1,2}×D{3}.
Decision d23 (resp. d32) gives the whole surplus to player 2 (resp. 3) in both states13.

As it is shown by de Clippel (2005), the unique M-value of this game is the interim utility
allocation

(

UH
1 ,U

L
1 ,U2,U3

)

= (45, 15, 39, 0) . (3.2)

We observe that player 3 is considered a null player. Even though player 3 does not create any
additional surplus, it would be fair to give him some positive payoff, as players 1 and 2 have to
rely on him in order to weaken the incentive constraints they face. As in the previous example,
requiring optimal threats to be incentive compatible does not change the M-value allocation.
Thus, the M-value is not sensitive to the informational contribution of player 3.

13It can be shown that when player 3 drops out of the game and coalition {1, 2} forms, the constraint asserting that
type 1H has no incentive to report to be type 1L is binding in any incentive efficient mechanism for this coalition.
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4. Equity Principles for Bayesian Cooperative Games

Harsanyi (1963) introduced his NTU value using a model of bargaining in which players inside
each coalition negotiate a vector of dividends. This dividend allocation procedure is rather
intractable and difficult to extend to games with incomplete information. In this work, we
shall generalize a simpler (yet equivalent) definition of the Harsanyi NTU value introduced by
Myerson (1980). This definition, which dispenses with the notion of dividends, is characterized
by a condition called balanced contributions (see also Myerson (1992) for a more detailed
explanation). According to this condition, for any two members of every coalition, the amount
that each player would gain by the other’s participation should be equal. In this section we
build on Myerson’s virtual utility approach to define equity principles for cooperative games
with incomplete information generalizing the balanced contributions condition.

While there might be several appealing ways to generalize the balanced contributions condi-
tion, here we adopt a method that preserves a conceptual coherence with the equity principles
developed by Myerson (1984b) in his M-solution. A well known property of the balanced con-
tributions condition is that it can be equivalently characterized through a subgame value equity
condition (see for instance Imai (1983)). The most important consequence of this dual relation-
ship is that it reveals a reasonable way to extend the balanced contributions. We proceed first
to formulate a “natural” extended version of the subgame value condition based on Myerson’s
(1984b) principle for an equitable mechanism (cf. Definition 1). We then construct an egalita-
rian criterion to be the unique extension of the balanced contributions (cf. Definition 2) that is
consistent with our generalized subgame value condition (cf. Proposition 1).

Given a vector of utility weights λ and a vector of Lagrange multipliers α, let us consider the
fictitious game in which players make interpersonal utility comparisons in the virtual utility
scales (λ, α). In such a virtual game, each player’s payoffs are represented in the virtual utility
scales and virtual payoffs are transferable among the players (conditionally on every state).

For the virtual game, we would like to identify mechanisms that are equitable in some well
defined sense. For that, we assume that, as a threat during the bargaining process within the
grand coalition N, each coalition S ⊂ N commits to some mechanism µS : TS → ∆(DS ).14

We denote byMS the set of mechanisms for S . LetM =
∏

S⊆NMS denote the set of possible
profiles of mechanisms that all various coalitions might select.

Let vi(µS , t, λ, α) denote the linear extension of vi(·, t, λ, α) (as defined in (2.2)) over µS . The
expected virtual utility of type ti of player i ∈ S when the members of S agree on µS is

Vi(µS | ti, λ, α) B
∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α). (4.1)

We define WS (µS , t, λ, α) as the sum of virtual utilities that the members of S ⊆ N would expect
in state t when they select the mechanism µS , that is

WS (µS , t, λ, α) =
∑

i∈S

vi(µS , t, λ, α). (4.2)

14When a coalition S forms, it cannot rely on the information possessed by the players outside S . In other
words, a communication mechanism for a coalition must be measurable with respect to the private information of
its members.
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Let W(η, t, λ, α) = (WS (µS , t, λ, α))S⊆N denote the characteristic function game when the vector
of threats η = (µS )S⊆N ∈ M is selected by the various coalitions15 and virtual utility is condi-
tionally transferable in state t w.r.t (λ, α). For any vector η ∈ M, let ηS = (µR)R⊆S denote its
restriction to the subcoalitions of S . We define W |S (ηS , t, λ, α) as the subgame of W(η, t, λ, α)
obtained by restricting the domain of W(η, t, λ, α) to the subsets of S . Let φ be the Shapley
TU value operator; for i ∈ S ⊆ N, φi(S ,W |S (ηS , t, λ, α)) will thus denote the Shapley TU value
of player i in the subgame restricted to S when the vector of threats ηS is selected and virtual
utility is conditionally transferable in state t w.r.t. (λ, α).

Definition 1 (Equitable mechanism).
For any coalition S ⊆ N, the mechanism µS is equitable for S w.r.t. ηS , λ and α if

Vi(µS | ti, λ, α) =
∑

t−i∈T−i

p(t−i | ti) φi(S ,W |S (ηS , t, λ, α)), ∀ti ∈ Ti, ∀i ∈ S . (4.3)

If for all coalitions R ⊆ S , µR is equitable for R w.r.t. ηR, λ and α, then the vector of threats
ηS = (µR)R⊆S is called equitable w.r.t. λ and α.

R 1. When S = N, the equality in (4.3) reduces to Myerson’s (1984b) principle for
equitable compromises.

Based on the principle of “equal gains”, according to which cooperating players within a coali-
tion should have equal compensation for their cooperation, we define the following egalitarian
criterion.

Definition 2 (Egalitarian mechanism).
For any coalition S ⊆ N, the mechanism µS is egalitarian for S w.r.t. (µS \i)i∈S , λ and α if

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

vi(µS , t, λ, α) − vi(µS \ j, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
]

, ∀ti ∈ Ti, ∀i ∈ S . (4.4)

If for all coalitions R ⊆ S , µR is egalitarian for R w.r.t. (µR\i)i∈R, λ and α, then the vector of
threats ηS = (µR)R⊆S is called egalitarian w.r.t. λ and α.

Equation (4.4) says that the expected average virtual contribution of the different players in S
to player i equals the expected average virtual contribution of player i to the different players
in S as assessed by his type ti. This egalitarian criterion generalizes the balanced contribution
condition16. Indeed, when information is complete (i.e., T i is a singleton for every i ∈ N, so
that we can set α = 0), condition (4.4) implies that the j-th terms on both sides are equal:
the marginal contribution of j to i, measured by vi(µS , λ) − vi(µS \ j, λ), equals the marginal
contribution of i to j, symmetrically measured by v j(µS , λ) − v j(µS \i, λ). The same implication

15Strictly speaking, the component µN ∈ MN of η is not a threat, since there is no coalition to threaten. However,
we keep this terminology in order to simplify the exposition.

16It also extends the “preservation of average differences” principle introduced by Hart and Mas-Colell (1996)

13



cannot be expected to generally hold in the case of asymmetric information. The reason is that,
since negotiations take place at the interim stage, the individual probability assessments of the
different types of the various players need not be the same. Then, i’s personal evaluation of j’s
gains may not coincide with j’s evaluation of her own gains.

For given arbitrary mechanisms (µR)R⊂S , equity and egalitarianism are in general two different
notions of “fairness” for coalition S ⊆ N. In particular, notice that while an egalitarian mech-
anism µS depends only on the mechanisms (µS \i)i∈S , an equitable mechanism depends on the
whole profile of threats (µR)R⊂S . However, it turns out that if the whole profile ηS is egalitarian,
then it is also equitable, and viceversa.

Proposition 1 (Equity equivalence).
For any coalition S ⊆ N, the vector of threats ηS = (µR)R⊆S is equitable (w.r.t. λ and α) if and
only if it is egalitarian (w.r.t. λ and α).

This result is significant, first, in establishing a dual relationship between equity (as defined
by the Shapley TU value) and the principle of equal gains in environments with incomplete
information. Second, and most important, Proposition 1 helps us to justify why our egalita-
rian criterion is (probably) the most appropriate generalization of the balanced contributions
condition.

When information is asymmetric, so that the probability assessments of the various types of
distinct players are different, equity equivalence cannot be established simply by taking ex-
pectations over the Myerson’s (1980) balanced contributions characterization of the Shapley
TU value. Instead we use a “consistency property” of the Shapley TU value: the value of a
player is the average of his marginal contribution to the grand coalition and his TU values in
the subgames with |N | − 1 players17. Apart from this clarification, the proof of Proposition 1 is
straightforward. A detailed reasoning is presented in Section 8.

We conclude this section with a convenient characterization of an equitable mechanism for the
grand coalition. It will allow us to identify the real interim utilities corresponding to an equitable
allocation in the virtual game.

Definition 3 (Warranted claims).
Let (λ, α) be a vector of virtual scales and η ∈ M a vector of threats. The interim allocation
ω ∈
∏

i∈N R
Ti is warranted by λ, α and η if

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ωi(ti) −
∑

τi∈Ti

αi(ti | τi)ωi(τi) =

∑

t−i∈T−i

p(t)φi(N,W(η, t, λ, α)), ∀ti ∈ Ti, ∀i ∈ N. (4.5)

The quantity ωi(ti) is called the warranted claim of type ti of player i.

17This property can also be used to characterize Maschler-Owen’s (1992) consistent NTU value (see Hart and
Mas-Colell (1996)).
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R 2. By Lemma 1 in Myerson (1983), the warrant equations have a unique solution in the
vector of warranted claims of player i, provided that λ > 0. Furthermore, the solution (weakly)
increases (in the vector sense) as the right-hand side is increased.

The following result follows from the equalities (3.10) and (3.11) in Myerson (1984b).

Lemma 1.
Let (λ, α) be a vector of virtual scales such that α is a solution of the dual for λ. Let η ∈ M be
a vector of threats such that µN is a solution of the primal for λ. The mechanism µN is equitable
for N w.r.t. η, λ and α if and only if the vector of interim utilities U(µN) B (Ui(µN | ti))i∈N,ti∈Ti is
warranted by λ, α and η.

We can thus interpret the warrant equations: they implicitly define ω to be the real utility allo-
cation which would give every type of each player (in the grand coalition) his expected Shapley
TU value in the virtual game.

5. Optimal Threats

A cooperative solution for the virtual game will take into account not only the equity compro-
mises among the different types of the various members of a coalition, but also the efficiency
of the selected threat. Because in the virtual game payoffs are transferable, a natural efficiency
criterion is given by the maximization of the total expected virtual worth of the coalition. Thus,
considerations of equity and efficiency in the virtual game lead us to the following optimal threat
criterion:

Definition 4 (Optimal egalitarian threats).
The mechanism µ̄S ∈ MS is an optimal egalitarian threat for S ⊂ N w.r.t. (µS \i)i∈S , λ and α if
and only if µ̄S is a solution to

max
µS ∈MS

∑

t∈T

p(t)WS (µS , t, λ, α) (5.1)

s.t. (4.4)

The optimal threats criterion in (5.1) postulates that each coalition should maximize the ex-ante
expected total virtual utility that its members would earn when coalitions commit to a vector
of egalitarian threats. In view of Proposition 1, we could also have defined an optimal threat
replacing the egalitarian constraints (4.4) in (5.1) by the equity conditions in (4.3). However,
this alternative definition is less tractable since threats of one coalition cannot be determined
without knowledge of threats of all its subcoalitions18. It is easy to see that (5.1) generalizes
Harsanyi’s (1963, sec. 9) optimal threats criterion19.

We can alternatively require threats to be incentive compatible. A mechanism µS is incentive

18A definition like that would be consistent with Imai’s (1983) characterization of the Harsanyi NTU value.
19Myerson (1992) has a formula for Harsanyi’s optimal threats that immediately implies (5.1) when information

is complete.
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compatible for coalition S ⊂ N if and only if

∑

t−i∈T−i

p(t−i | ti)
∑

dS ∈DS

µS (dS | tS )ui(dS , t)

≥
∑

t−i∈T−i

p(t−i | ti)
∑

dS ∈DS

µS (dS | τi, tS \i)ui(dS , t), ∀i ∈ S , ∀ti, τi ∈ Ti.

We denote asM∗
S the set of incentive-compatible mechanisms for coalition S .

Definition 5 (Incentive compatible optimal egalitarian threats).
A mechanism µ̄S ∈ MS is an incentive compatible optimal egalitarian threat for S ⊂ N w.r.t.
(µS \i)i∈S , λ and α if and only if it solves (5.1) over all mechanisms inM∗

S .

Myerson (1984b, sec. 6) argues that maximizing the ex-ante expected virtual worth of a coali-
tion is appropriate in games where only the mechanism chosen by the grand coalition will be
implemented. In such a situation, the final payoffs are granted by the grand coalition and there-
fore the mechanisms (µS )S⊂N need not be either equitable or incentive compatible. Thus, My-
erson’s (1984b) rational-threat criterion maximizes the objective function in (5.1) constrained
only by the feasibility of the mechanisms, i.e., µS ∈ MS . Even if we agree with this reasoning,
the examples in Section 3 illustrate situations in which some relevant aspects of the intermedi-
ate coalitions are ignored by Myerson’s rational threat criterion. In contrast, we think that for
a mechanism µS to constitute an appropriate measure of the strength of coalition S , it must be
a “credible threat”, regardless of whether it is expected to be implemented or not. Then, at the
very least, an optimal threat must be equitable.

By its definition, a profile (µ̄S )S⊂N of optimal egalitarian threats must be recursively constructed.
Start with all coalitions of the form {i } (i ∈ N). Then, (5.1) amounts to maximizing i’s ex-ante
expected virtual utility on the setMi. This problem is always feasible and its solution µ̄i is such
that, for all ti ∈ Ti, µ̄i(di | ti) > 0 only if di maximizes

∑

t−i∈T−i
p(t−i | ti)vi(di, t, λ, α). Now, for

any coalition S with 1 < |S | < n, given the threats (µ̄R)R⊂S (already defined by induction), an
optimal threat µ̄S is determined solving (5.1).

Unfortunately, the recursion above may be unfeasible. The reason is that mechanisms satisfying
our egalitarian criterion may not always exist. When information is complete, this possibility is
ruled out by the assumption that the NTU game is comprehensive (“free disposal” assumption).
Then, one is tempted to accommodate free disposal activities by introducing decisions in each
DS specifying how much utility a player may discard. This has no significant consequence
when information is complete, however under asymmetric information, adding new decisions
may change not only the incentive structure of the game, but also the efficient frontier: free
disposal can be used for signaling purposes, i.e., for weakening incentive compatibility.

Another alternative is to consider a more general class of mechanisms allowing players in any
coalition S ⊆ N to agree to discard utility. More formally, we have in mind mechanisms of the
form (µS , xS ), where µS ∈ MS is a random joint plan and xS : TS → R

S
− is a type-contingent

deterministic vector of utility decrements. For one unit of decreased (real) utility, type ti of
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player i will experience a reduction of

βi(ti, λ, α) B

















λi(ti) +
∑

τi∈Ti

αi(τi | ti) −
∑

τi∈Ti

αi(ti | τi)

















1
p(ti)

units of his virtual utility. It can be shown that if α solves the dual for λ, all coefficients βi(ti, λ, α)
are non-negative. However, we cannot prevent some of the coefficients to vanish. This is
so even when the utility weights λ are all strictly positive. Hence, there may be players for
which disposing of (real) utility does not result in virtual utility decrements, thus removing free
disposal from the virtual utility game.

All previous difficulties are not specific of our egalitarian criterion, they also arise for other no-
tions of egalitarianism in the context of mechanism design (see de Clippel (2012)). An extensive
discussion about these issues is presented in the Appendix B.

6. The General Bargaining Solution

In this section we apply the ideas developed in the preceding sections to construct an egalitarian-
based cooperative solution.

Definition 6 (H-bargaining solution).
A mechanism µ̄N ∈ MN is an H-bargaining solution if and only if there exist vectors λ > 0,
α ≥ 0 and η = (µS )S⊆N ∈ M with µN = µ̄N such that

(i ) µN is a solution of the primal problem for λ.
(ii ) α is a solution of the dual problem for λ.

(iii ) For each coalition S ⊂ N, µS is an optimal egalitarian threat for S w.r.t. (µS \i)i∈S , λ and α.
(iv ) U(µN ) is warranted by λ, α and η.

The vector of interim utilities U(µ̄N) is called an H-value.

Alternatively, a bargaining solution can be defined replacing condition (iii ) by

(iii ′ ) For each coalition S ⊂ N, µS is an incentive compatible optimal egalitarian threat for S
w.r.t. (µS \i)i∈S , λ and α.

In that case an H-bargaining solution is called coalitionally incentive compatible.

Conditions (i ) − (iv ) in our definition of an H-value have natural interpretations: (i ) genera-
lizes the λ-weighted utilitarian criterion, (ii ) says that α is the vector of Lagrange multipliers
associated with (i ), and (iii ) extends Harsanyi’s (1963) optimal threats criterion to games with
incomplete information. Condition (iv) asserts that, to be a bargaining solution, the final agree-
ment µ̄N must give every type of each player his expected Shapley TU value in the (λ, α)-virtual
game.

By Lemma 1, conditions (i ), (ii ) and (iv ) imply that an H-bargaining solution µN is equitable
for N w.r.t. η, λ and α. On the other hand, for each coalition S ⊂ N, condition (iii ) implies that
µS is egalitarian for S w.r.t. (µS \i)i∈S , λ and α. Therefore, by Proposition 1, for each S ⊂ N, µS

is equitable for S w.r.t. ηS , λ and α. This reasoning is summarized in the following proposition.
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Proposition 2.
Let η = (µS )S⊆N be part of an H-bargaining solution supported by the virtual scales (λ, α). Then,
for each coalition S ⊆ N, ηS is equitable w.r.t. λ and α.

Unlike the M-solution, for which only the final agreement µN is equitable, our cooperative
solution concept implies that coalitional threats (µS )S⊂N are also equitable. Proposition 1 then
implies that we can equivalently define an H-bargaining solution replacing condition (iv ) by

(iv ′ ) µN is egalitarian for N w.r.t (µN\i)i∈N , λ and α.

Indeed, under this alternative formulation, it becomes evident that the H-value generalizes
Harsanyi’s (1963) definition of his NTU value.

Theorem 1 (Generalization of the Harsanyi NTU value).
Let Γ be a cooperative game with complete information, i.e., T i is a singleton for every i ∈ N.
If µ̄N is an H-bargaining solution, then the utility allocation U(µ̄N) is a Harsanyi NTU value of
Γ. Conversely, if the utility allocation Ū = (Ūi)i∈N is a (non-degenerated) Harsanyi NTU value
of Γ, then there exists an H-bargaining solution of Γ, µ̄N , such that Ū = U(µ̄N ).

Theorem 2 (Individual rationality).
Both variants of the H-bargaining solution are interim individually rational.

We are now ready to compute our bargaining solution for the examples introduced in Section 3.

6.1. Example 1
Based on the coalitional analysis presented in Section 3, we argue that a reasonable outcome
for this example should satisfy the following three properties. First, it should reward both types
of player 3 strictly less than players 1 and 2: despite the fact that in state H all players are
symmetric, 1 and 2 are adversely affected by the likely presence of 3’s “low” type. On the
other hand, in state L, 3 has a weak bargaining position. In addition, incentive compatibility
forces 1 and 2 to accept an efficiency loss in a bilateral bargaining with 3. Therefore, 3’s payoff
should be further reduced when coalitional incentive constraints matter. Second, because the
bargaining position of type H is more favorable than that of type L, player 3 should be rewarded
more in state H than in state L. Finally, since players 1 and 2 are symmetric, they both should
get the same expected utility.

Let us consider the vector of utility weights λ̄ = (λ̄1, λ̄2, λ̄
H
3 , λ̄

L
3) = (1, 1, 9/10, 1/5). First, we

notice that for any feasible mechanism µN ∈ MN we have that

U(µN , λ̄) B U1(µN) + U2(µN) + 9
10U3(µN | H) + 1

5 U3(µN | L) ≤ 10, (6.1)

Consider now the problem of finding the best incentive compatible and individually rational
utility allocation for each possible type of every player. Straightforward computations yield
that the best allocation for player 1 is (U1,U2,UH

3 ,U
L
3 ) = (19/2, 1/2, 0, 0). By symmetry, the

best allocation for player 2 is (1/2, 19/2, 0, 0). Finally, (0, 0, 10, 5) is simultaneously the best
allocation for both types of player 3. These three allocations are incentive efficient, and they
lie on the hyperplane U(µN , λ̄) = 10. Then, by convexity of M∗

N , any individually rational
and incentive efficient mechanism µN must satisfy U(µN , λ̄) ≥ 10. Thus, (6.1) implies that the
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incentive efficient frontier coincides with the hyperplane U(µN , λ̄) = 10 on the individually
rational zone. Therefore, in view of Theorem 2, condition (i ) implies that a value allocation can
only be supported by the utility weights λ̄.20

The utility weights λ̄ reflect the optimal inter-type compromise between both types of player
3. To conceal his type, player 3 must achieve a balance that puts extra weight on the payoff
maximization goals of type L (inscrutability principle). This is what explains that λ̄L

3 differs
from the prior probability p(L) by scaling up the actual utility of type L. On the other hand, the
optimal value of the dual variables in the dual problem for λ̄ is (ᾱ3(L | H), ᾱ3(H | L)) = (0, 0).

Given these virtual scales, it can be easily verified that the only H-value of this game is21

(

U1,U2,UH
3 ,U

L
3

)

=

(

61
18 ,

61
18 ,

60
18 ,

20
18

)

. (6.2)

The value allocation gives less to player 3 in both states. This is due to the fact that by requiring
optimal threats to satisfy our egalitarian criterion, coalitions {1, 3} and {2, 3} cannot agree to
fully distribute the total gains of cooperation in state L. Indeed, because players in coalition
{i, 3} (i = 1, 2) are constrained to choose a feasible allocation giving them equal gains (in the
virtual utility scales), then they have to settle for a sum of payoffs of at most $20/3(< $10) in
state L. This implies that, in a two-person coalition with 3, players 1 and 2 cannot expect to
get more than $29/6(< $5) each. Hence, the expected “marginal contribution” of player 3 to
the other players in a two-person coalition with him is strictly lower than what 1 and 2 can get
by acting together. Consequently, 3 is perceived to have a weak bargaining position. It then
appears that the H-value reflects the game situation better that the M-value.

The asymmetry reflected in the allocation (6.2) comes uniquely from the fact that players 1 and
2 are adversely affected by 3’s low type. None of the inefficiencies created by the incentive
compatibility is taken into account: incentive constraints are not essential for the grand coali-
tion and optimal egalitarian threats are not required to be incentive compatible. The unique
coalitionally incentive compatible H-value of this game is

(

U1,U2,UH
3 ,U

L
3

)

=

(

41
12 ,

41
12 ,

40
12 ,

10
12

)

. (6.3)

When we take account of the incentive constraints that coalitions {1, 3} and {2, 3} face, our
bargaining solution gives much less to player 3 in both states compared to the situation in
which incentive constraints only matter for the grand coalition (compare (6.2) and (6.3)). In
fact, when coalition {i, 3} (with i = 1, 2) is required to choose a mechanism that is incentive
compatible, its members cannot agree on a virtual utility allocation giving them equal gains
without an efficiency loss. Thus player 3’s bargaining ability is further lowered by the necessity
for players to trust each other.

All in all, it seems that, in this particular game, our solution concept provides much more
agreement with what we expect the outcome to be.

20The same utility weights support the unique M-value (see Section 3).
21Detailed computations are provided in the Appendix A.
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6.2. Example 2
Proceeding as in Example 1, it can be shown that any incentive compatible and individually
rational mechanism is incentive efficient if and only if it satisfies

4
5U1(µN | H) + 1

5U1(µN | L) + U2(µN) + U3(µN) = 78, (6.4)

The natural vector of utility weights is thus λ̄ = (λ̄H
1 , λ̄

L
1 , λ̄2, λ̄3) = (4/5, 1/5, 1, 1). For these

utility weights, the corresponding dual variables are (ᾱ1(L | H), ᾱ1(H | L)) = (0, 0). Then, we
conclude that incentive constraints do not matter for the grand coalition. As it was previously
discussed in Section 3, the participation of player 3 in the grand coalition releases players 1
and 2 from the incentive constraints they face in coalition {1, 2}. Unlike Example 1, here utility
weights and prior probabilities coincide. This is so because player 3 allows 1 and 2 to fully
distribute the gains from trade. Types are then essentially verifiable, as any transfer of utility
can be implemented by a utility equivalent incentive compatible mechanism.

Given these virtual scales, it can be checked that the interim allocation in (3.2) is also the unique
H-value of this game. Both the M-value and the H-value coincide because the virtual value of
coalition {1, 2} is computed while using the vector (λ, α) as specified for the grand coalition. By
doing so, we act as if incentive constraints do not matter for coalition {1, 2}, although they do.

By imposing incentive constraints for all intermediate coalitions, we have that the unique coali-
tionally incentive compatible H-value of this game is the allocation

(

U1,U2,UH
3 ,U

L
3

)

= (45, 13, 38.6, 0.8) . (6.5)

The H-value generates an interesting alternative to the M-value in de Clippel’s example. This
game however also puts in evidence some “difficulties” with our bargaining solution. First, no-
tice that while it is the case that the coalitionally incentive compatible value allocation rewards
player 3, it is as if both players 1 and 2 pay $0.8 to player 3 in exchange of his service. This
may be considered as not reasonable since only player 2 needs the help of player 3 in order to
extract the whole cooperative surplus in both states. Second, the virtual worths of all coalitions
in our bargaining solution are computed using the vector (λ, α) specified for the grand coalition.
As a consequence, the efficiency losses due to the incentive compatibility at the level of all
subcoalitions are not taken into account, unless incentive constraints are explicitly required.

It turns out that both examples presented in this paper are similar in nature, and that our solution
concept prescribes intuitively appealing outcomes in each case.

6.3. Some Comments about the Existence of the H-solutions
Two difficulties are imposed for proving an existence result of our cooperative solution concept.
First, as it was already established in Section 5, the optimization problem (5.1) may not be
feasible for some combination of parameters (λ, α, (µS \i)i∈S ). Second, even if (5.1) has a solution
for any (λ, α, (µS \i)i∈S ) in a subset Θ ⊆

∏

i∈N R
Ti
+ ×
∏

i∈N R
Ti×Ti
+ ×

∏

i∈S MS \i, the corresponding
optimal solutions correspondence is not generally upper-hemicontinuous on Θ. This would be
required in case Kakutani’s fixed point theorem were to be employed.

When there are only two players, an H-solution always exists. This follows from the existence
theorem in Myerson (1984b), since both solutions coincide whenever N = 2. In the three-player
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case, the feasibility of (5.1) is not an issue. Indeed, for any two-person coalition {i, j} (i, j ∈ N),
(5.1) has an optimal solution for all combination of parameters (λ, α, µ̄i, µ̄ j). To see this, define
the mechanism µ̄{i, j} ∈ M{i, j} by

µ̄{i, j}((di, d j) | (ti, t j)) = µ̄i(di | ti)µ̄ j(d j | t j), if (di, d j) ∈ Di × D j ⊆ D{i, j}.
µ̄{i, j}(d{i, j} | (ti, t j)) = 0, if d{i, j} ∈ D{i, j} \ Di × D j.

It can be easily checked that µ̄{i, j} is incentive compatible and equitable for {i, j} (w.r.t. λ, α and
(µ̄i, µ̄ j)). In fact, vi(µ̄{i, j}, t, λ, α) = vi(µ̄i, t, λ, α) for every i, j ∈ N and t ∈ T . This argument can-
not be extended to more general games with n > 3 players. The difficulty in the three-player case
is, however, that the optimal solutions correspondence may not be upper-hemicontinuous. Con-
sider for instance problem (5.1) for coalition {1, 2} in Example 1. A mechanism µ̄{1,2} ∈ ∆(D{1,2})
is an optimal egalitarian threat for {1, 2} if and only if it maximizes λ1U1(µ{1,2}) + λ2U2(µ{1,2})
subject to λ1U1(µ{1,2}) = λ2U2(µ{1,2}).22 The set of feasible expected utility allocations for coali-
tion {1, 2} is given by the line segment ~ow as in the following figure:

o

U2

5

U15

λ1U1 = λ2U2	 w

For any vector λ > 0 such that λ1 , λ2, the unique solution of (5.1) is then µ̄{1,2}(d12) =
1 − µ̄{1,2}([d1, d2]) = 0, since it is the unique feasible mechanism satisfying the egalitarian cons-
traints. The corresponding utility allocation is o. However, when λ1 = λ2, the unique solution
is µ̃{1,2}(d12) = 1 − µ̃{1,2}([d1, d2]) = 1, achieving the utility allocation w. Hence the optimal
solutions correspondence, viewed as a function of (λ1, λ2), is discontinuous.

When information is complete, the above difficulties are overcome by the free disposal assump-
tion. As it was previously discussed in Section 5, free disposal is however more difficult to
accommodate within the virtual utility approach. General existence of our cooperative solution
remains an open problem for future research.

7. Concluding Remarks

The contribution of this paper is twofold. On one hand, we develop equity principles for coope-
rative games with incomplete information preserving a conceptual coherence with Myerson’s
(1984b) virtual utility approach. In particular, we obtain generalizations of Imai’s (1983) sub-
game value equity condition and Myerson’s (1980) balanced contributions condition. We also
show that these two generalized notions of equity are in a dual relationship. On the other hand,
we extend Harsanyi’s (1963) NTU value to games with incomplete information. As most of the

22Notice that the virtual utility of players 1 and 2 do not depend on the dual variables α.
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literature on cooperative games, our analysis is restricted to games with orthogonal coalitions,
which rules out the possibility of strategic externalities.

The relevance of our solution concept is evidenced in two eloquent examples in which our value
allocation is computed and contrasted with Myerson’s (1984b) extension of the Shapley NTU
value. It is shown that in both cases our solution concept provides much more agreement with
what we expect the outcome to be. The fact that our considerations are better reflected by our
bargaining solution must not be taken to be controversial. In the same way, the Shapley NTU
value was introduced as a simplification of the Harsanyi NTU value, our cooperative solution is
constructed to be a more sophisticated adaptation of Myerson’s (1984b) theory. The proposed
games are not intended to claim that the Myerson value must be abandoned. The value is an
index and, to that extent, different values reflect different qualitative features of a same game.

A clear drawback of our solution concept is the difficulty to get a general existence result. This
is not only due to technical difficulties, but more importantly it is connected to the way incentive
constraints modify the shape of the feasible interim utility sets. Incentive compatibility has an
impact on the signaling opportunities for the players that makes arguments significantly more
complicated than in the special case of complete information. Despite the identified difficulties,
we see our cooperative solution (and a fortiori our egalitarian criterion) as the most appealing
way to extend the Harsanyi NTU value to games with incomplete information. Existence is
clearly an issue that remains to be investigated.

8. Proofs

8.1. Proof of Proposition 1
It suffices to establish Proposition 1 only for the case of coalition N. For any other subcoalition
S ⊂ N, the same arguments apply by replacing N by S . We start proving the “only if” part. Let
η ∈ M be a vector of equitable threats (w.r.t. λ and α). Let S ⊆ N and i ∈ S be fixed. Then, for
any player j ∈ S \ i, µS \ j is equitable for S \ j (w.r.t. ηS \ j, λ and α). Thus
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

φi

(

S \ j,W |S \ j(ηS \ j, t, λ, α)
)

=

∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

vi(µS \ j, t, λ, α), (8.1)

for all ti ∈ Ti. Because µS is equitable for S (w.r.t. ηS , λ and α), we have that for any type ti of
a player i ∈ S ,

∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α)

=

∑

t−i∈T−i

p(t−i | ti)φi (S ,W |S (ηS , t, λ, α))

=

∑

t−i∈T−i

p(t−i | ti)
1
|S |

[

WS (µS , t, λ, α) −WS \i(µS \i, t, λ, α)

+

∑

j∈S \i

φi

(

S \ j,W |S \ j(ηS \ j, t, λ, α)
)

]
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=
1
|S |

∑

t−i∈T−i

p(t−i | ti)
[

vi(µS , t, λ, α) +
∑

j∈S \i

vi(µS \ j, t, λ, α)

+

∑

j∈S \i

(

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
)

]

, (8.2)

where in the second line we used the fact that the Shapley value of player i is the average of
his marginal contribution to the grand coalition WS −WS \i, and his values in the subgames with
|S | − 1 players (see Hart (2004, p. 39)); and in the third line we used the definition of WS

together with (8.1). Finally, rearranging terms in (8.2) we get (4.4).

Consider now the “if” part. Let η ∈ M be a vector of egalitarian threats (w.r.t. λ and α). For
any coalition S ⊆ N and any player i ∈ S of type ti we have

∑

t−i∈T−i

p(t−i | ti)
[

WS (µS , t, λ, α) −WS \i(µS \i, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)

















∑

j∈S

v j(µS , t, λ, α) −
∑

j∈S \i

v j(µS \i, t, λ, α)

















=

∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α) +
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

v j(µS , t, λ, α) − v j(µS \i, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α) +
∑

t−i∈T−i

p(t−i | ti)
∑

j∈S \i

[

vi(µS , t, λ, α) − vi(µS \ j, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)

















|S |vi(µS , t, λ, α) −
∑

j∈S \i

vi(µS \ j, t, λ, α)

















, (8.3)

where the first equality comes from the definition of WS and the third equality is due to the fact
that µS is egalitarian for S w.r.t. (µS \ j) j∈S , λ and α. Therefore,

∑

t−i∈T−i

p(t−i | ti)φi(S ,W |S (ηS , t, λ, α))

=

∑

R⊆S
i∈R

(|R| − 1)!(|S | − |R|)!
|S |!

∑

t−i∈T−i

p(t−i | ti)
[

WR(µR, t, λ, α) −WR\i(µR\i, t, λ, α)
]

=

∑

t−i∈T−i

p(t−i | ti)
∑

R⊆S
i∈R

(|R| − 1)!(|S | − |R|)!
|S |!

















|R|vi(µR, t, λ, α) −
∑

j∈R\i

vi(µR\ j, t, λ, α)

















=

∑

t−i∈T−i

p(t−i | ti)

























∑

R⊆S
i∈R

|R|!(|S | − |R|)!
|S |!

vi(µR, t, λ, α)

−
∑

R⊆S
i∈R

∑

j∈R\i

(|R| − 1)!(|S | − |R|)!
|S |!

vi(µR\ j, t, λ, α)
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=

∑

t−i∈T−i

p(t−i | ti)

























∑

R⊆S
i∈R

|R|!(|S | − |R|)!
|S |!

vi(µR, t, λ, α)

−
∑

R⊂S
i∈R

|R|!(|S | − |R| − 1)!
|S |!

|S \ R|vi(µR, t, λ, α)























=

∑

t−i∈T−i

p(t−i | ti)vi(µS , t, λ, α),

where the first equality follows from the definition of the Shapley TU value and the second
equality uses (8.3). This completes the proof.

8.2. Proof of Theorem 2
Let µN be an H-bargaining solution supported by η, λ and α. For each i ∈ N, let µ̂i ∈ Mi be
defined by

∑

t−i∈T−i

p(t−i | ti)
∑

di∈Di

µ̂i(di | ti)ui(di, t) = max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t), ∀ti ∈ Ti, (8.4)

For each t ∈ T , the TU game W(η, t, λ, α) is weakly superadditive23 (this is a consequence of
Lemma 2 below). Then, φi(N,W(η, t, λ, α)) ≥ vi(µi, t, λ, α) for every t ∈ T . Also, for all i ∈ N,
∑

t−i∈T−i
p(t−i | ti)vi(µi, t, λ, α) ≥

∑

t−i∈T−i
p(t−i | ti)vi(µ̂i, t, λ, α) for all ti ∈ Ti, since µi is an optimal

egalitarian threat for i. Then, we have that for each i ∈ N and ti ∈ Ti,
















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















Ui(µN | ti) −
∑

τi∈Ti

αi(ti | τi)Ui(µN | τi)

=

∑

t−i∈T−i

p(t)φi(N,W(η, t, λ, α))

≥
∑

t−i∈T−i

p(t)vi(µ̂i, t, λ, α)

≥

















λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















max
di∈Di

∑

t−i∈T−i

p(t−i | ti)ui(di, t)

−
∑

τi∈Ti

αi(ti | τi) max
di∈Di

∑

t−i∈T−i

p(t−i | τi)ui(di, (τi, t−i)). (8.5)

where the first line follows from the fact that U(µN) is warranted by η, λ and α (cf. condition
(iv )); the second line follows from the first part of the proof; and finally, the last inequality uses
(8.4) applied to τi. The desired conclusion is obtained from (8.5) together with Remark 2.

In the proof we have used the following lemma.

23A TU game (N,W) is weakly superadditive if and only if for each player i ∈ N, W(S \ i) +W({i}) ≤ W(S ) for
all coalitions S ⊆ N containing i. Clearly, by definition of the Shapley TU value, weak superadditivity implies that
φi(N,W) ≥ W({i}) for every i ∈ N.
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Lemma 2.
Let η ∈ M be a vector of egalitarian threats (w.r.t. λ and α). Let i ∈ N be a fixed player and take
µ̂i ∈ Mi. Define η̂ ∈ M by

µ̂S =

{

(µ̂i, µS \i), if i ∈ S
µS , if i < S

where (µ̂i, µS \i) ∈ MS is defined by

(µ̂i, µS \i)((di, dS \i) | tS ) = µ̂i(di | ti)µS \i(dS \i | tS \i), if (di, dS \i) ∈ Di × DS \i ⊆ DS

(µ̂i, µS )(dS | tS ) = 0, if dS ∈ DS \ Di × DS \i.

Then, η̂ is egalitarian (w.r.t. λ and α). Moreover, if µS is incentive compatible for S , so is µ̂S .

Proof. Let i ∈ N be a fixed player. Let S ⊆ N be such that i < S . Then, µ̂S = µS and µ̂S \ j = µS \ j

for all j ∈ S . Then, clearly µ̂S is egalitarian for S w.r.t. (µ̂S \ j) j∈S , λ and α. Also, if µS is
incentive compatible for S , so is µ̂S . Now, let S ⊆ N be such that i ∈ S . Then, for all t ∈ T we
have that

vi(µ̂S , t, λ, α) − vi(µ̂S \ j, t, λ, α) = 0 = v j(µ̂S , t, λ, α) − v j(µ̂S \i, t, λ, α), ∀ j ∈ S \ i.

Then, it follows immediately that µ̂S is egalitarian for S w.r.t. (µ̂S \ j) j∈S , λ and α. It is straight-
forward to check that if µS is incentive compatible for S , so is µ̂S .
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