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Abstract

We use tail expectiles to estimate alternative measures to the Value at Risk (VaR),
Expected Shortfall (ES) and Marginal Expected Shortfall (MES), three instruments
of risk protection of utmost importance in actuarial science and statistical finance.
The concept of expectiles is a least squares analogue of quantiles. Both expectiles and
quantiles were embedded in the more general class of M-quantiles as the minimizers of
an asymmetric convex loss function. It has been proved very recently that the only M-
quantiles that are coherent risk measures are the expectiles. Moreover, expectiles define
the only coherent risk measure that is also elicitable. The elicitability corresponds to
the existence of a natural backtesting methodology. The estimation of expectiles did
not, however, receive yet any attention from the perspective of extreme values. The
first estimation method that we propose enables the usage of advanced high quantile
and tail index estimators. The second method joins together the least asymmetrically
weighted squares estimation with the tail restrictions of extreme-value theory. A main
tool is to first estimate the large expectile-based VaR, ES and MES when they are
covered by the range of the data, and then extrapolate these estimates to the very far
tails. We establish the limit distributions of the proposed estimators when they are
located in the range of the data or near and even beyond the maximum observed loss.
We show through a detailed simulation study the good performance of the procedures,
and also present concrete applications to medical insurance data and three large US
investment banks.

Keywords: Asymmetric squared loss; Coherency; Expected shortfall; Expectiles; Extrap-
olation; Extreme values; Heavy tails; Marginal expected shortfall; Value at Risk.

1 Introduction

The concept of expectiles is a least squares analogue of quantiles, which summarizes the

underlying distribution of an asset return or a loss variable Y in much the same way that

quantiles do. It is a natural generalization of the usual mean EpY q, which bears the same

relationship to this noncentral moment as the class of quantiles bears to the median. Both

expectiles and quantiles are found to be useful descriptors of the higher and lower regions

of the data points in the same way as the mean and median are related to their central



behavior. Koenker and Bassett (1978) elaborated an absolute error loss minimization frame-

work to define quantiles, which successfully extends the conventional definition of quantiles

as left-continuous inverse functions. Later, Newey and Powell (1987) substituted the “ab-

solute deviations” in the asymmetric loss function of Koenker and Bassett with “squared

deviations” to obtain the population expectile of order τ P p0, 1q as the minimizer

ξτ “ argminθPRE tητ pY ´ θq ´ ητ pY qu , (1)

where ητ pyq “ |τ´1Ipy ď 0q| y2, with 1Ip¨q being the indicator function. Although formulated

using a quadratic loss, problem (1) is well-defined as soon as E|Y | is finite, thanks to the

presence of the term ητ pY q. The first advantage of this asymmetric least squares approach

relative to quantiles lies in the computational expedience of sample expectiles using only

scoring or iteratively-reweighted least squares (see the R package ‘expectreg’). The second

advantage following Newey and Powell (1987) and Sobotka and Kneib (2012), among others,

is that expectiles make more efficient use of the available data since the weighted least squares

rely on the distance to data points, while empirical quantiles only utilize the information

on whether an observation is below or above the predictor. Furthermore, sample expectiles

provide a class of smooth curves as functions of the level τ , which is not the case for sample

quantiles (see, e.g., Schulze Waltrup et al. (2015)). Perhaps most importantly, inference on

expectiles is much easier than inference on quantiles as already established by Newey and

Powell (1987) and Abdous and Remillard (1995).

Value at Risk (VaR), Expected Shortfall (ES) and Marginal Expected Shortfall (MES) are

three instruments of risk protection of utmost importance in actuarial science and statistical

finance. They are traditionally based on the use of tail quantiles as a main tool for quantifying

the riskiness implied by the great variability of losses and the heavy tails of their distribution.

In this article we focus on the less-discussed problem of estimating the concepts of VaR,

ES and MES when quantiles are replaced therein by expectiles. The use of expectiles as an

alternative tool for quantifying tail risk has recently attracted a lot of interest, see for instance

Martin (2014). A first motivating advantage of expectiles, following Kuan et al. (2009), is

that they are more alert than quantiles to the magnitude of infrequent catastrophic losses.

Also, they depend on both the tail realizations of Y and their probability, while quantiles only

depend on the frequency of tail realizations and not on their values (Kuan et al. (2009)).

Both families of quantiles and expectiles were embedded in the more general class of M-

quantiles defined by Breckling and Chambers (1988) as the minimizers of an asymmetric

convex loss function. Bellini (2012) has shown that expectiles with τ ě 1
2

are the only M-

quantiles that are isotonic with respect to the increasing convex order. Most importantly

from the point of view of the axiomatic theory of risk measures, Bellini et al. (2014) have

proved that the only M-quantiles that are coherent risk measures are the expectiles. They
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have also established that expectiles are robust in the sense of lipschitzianity with respect to

the Wasserstein metric. Very recently, Ziegel (2016) has proved that expectiles are the only

coherent law-invariant measure of risk which is also elicitable. The property of elicitability

corresponds to the existence of a natural backtesting methodology. It has been shown that

ES, the most popular coherent risk measure, is not elicitable (Gneiting, 2011), but jointly

elicitable with VaR (Fissler and Ziegel, 2016).

In terms of interpretability, the τ -quantile determines the point below which 100τ% of the

mass of Y lies, while the τ -expectile specifies the position ξτ such that the average distance

from the data below ξτ to ξτ itself is 100τ% of the average distance between ξτ and all the

data, i.e.,

τ “ E t|Y ´ ξτ |1IpY ď ξτ qu {E |Y ´ ξτ | . (2)

Thus, as pointed out by Fan and Gijbels (1996, p.231), the τ -expectile shares an intuitive

interpretation similar to the τ -quantile, replacing the number of observations by the distance.

This reduced ‘probabilistic’ interpretability of expectiles should not be viewed as a serious

disadvantage however, since Bellini and Di Bernardino (2015) provide a transparent financial

meaning of expectiles in terms of their acceptance sets: the τ -expectile defines the amount

of money that should be added to a position in order to have a prespecified, sufficiently

high gain-loss ratio. The gain-loss ratio is a popular performance measure in portfolio

management and is well-known in the literature on no good deal valuation in incomplete

markets (see Bellini and Di Bernardino (2015) and the references therein). Also, Ehm et

al. (2016) have shown that expectiles are optimal decision thresholds in binary investment

problems with fixed cost basis and differential taxation of profits versus losses. Another

potential advantage for the adoption of expectiles in risk management, according to Taylor

(2008), is that they are very closely related to the classical mean and the popular ES.

Furthermore, the theoretical and numerical results obtained by Bellini and Di Bernardino

(2015) seem to indicate that expectiles are perfectly reasonable alternatives to standard

quantile-based VaR and ES. The statistical problem of expectile estimation did not, however,

receive yet any attention from the perspective of extreme values.

Although least asymmetrically weighted squares estimation of expectiles dates back to

Newey and Powell (1987) in case of linear regression, it recently regained growing interest

in the context of nonparametric, semiparametric and more complex models, see for example

Sobotka and Kneib (2012) and the references therein, as well as the two recent contributions

by Holzmann and Klar (2016) and Krätschmer and Zähle (2016) for advanced theoretical

developments. Attention has been, however, restricted to ordinary expectiles of fixed order

τ staying away from the tails of the underlying distribution: in the latter two references,

several asymptotic results such as uniform consistency and a uniform central limit theorem

are shown for expectile estimators, but the order τ therein is assumed to lie within a fixed
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interval bounded away from 0 and 1. The purpose of this paper is to extend their estimation

and asymptotic theory far enough into the tails. This translates into considering the expectile

level τ “ τn Ñ 0 or τn Ñ 1 as the sample size n goes to infinity. Bellini et al. (2014),

Mao et al. (2015), Bellini and Di Bernardino (2015) and Mao and Yang (2015) have already

initiated and studied the connection of such extreme population expectiles with their quantile

analogues when Y belongs to the domain of attraction of a Generalized Extreme Value

distribution. They do not enter, however, into the crucial statistical question of how to

estimate in practice these unknown tail quantities from available historical data.

In this article, we focus on high expectiles ξτn in the challenging maximum domain of

attraction of Pareto-type distributions, where standard expectile estimates at the tails are

often unstable due to data sparsity. It has been found in statistical finance and actuar-

ial science that Pareto-type distributions describe quite well the tail structure of losses:

already Embrechts et al. (1997, p.9) have indeed pointed out that “claims are mostly mod-

elled by heavy-tailed distributions”, and more recently Resnick (2007, p.1) has stated that

“Record-breaking insurance losses, financial log-returns [...] are all examples of heavy-tailed

phenomena”. The rival quantile-based risk measures are investigated extensively in the-

oretical statistics and used widely in applied work. Notice that in applications, extreme

losses correspond to tail probabilities τn at an extremely high level that can be even larger

than p1´ 1{nq, see for instance Steenbergen et al. (2004) in the context of flood risk assess-

ment, Embrechts and Puccetti (2007) who studied extreme operational bank losses, Cai et

al. (2015) for an application to extreme loss returns of banks in the US market, El Methni

and Stupfler (2016) who estimate several risk measures including excess-of-loss risk measures

on automobile insurance data and de Valk (2016) for an application to oceanographic data.

Therefore, estimating the corresponding quantile-based risk measures is a typical extreme

value problem. We refer the reader to the books of Embrechts et al. (1997), Beirlant et al.

(2004), and de Haan and Ferreira (2006) for a general overview of the theoretical background.

Let us point out four main conceptual results of this paper. First, we estimate the inter-

mediate tail expectiles of order τn Ñ 1 such that np1´ τnq Ñ 8, and then extrapolate these

estimates to the very extreme expectile level τ 1n which approaches one at an arbitrarily fast

rate in the sense that np1´ τ 1nq Ñ c, for some nonnegative constant c. Two such estimation

methods are considered. One is indirect, based on the use of asymptotic approximations in-

volving intermediate quantiles, and the other relies directly on least asymmetrically weighted

squares (LAWS) estimation. We establish the asymptotic normality of the thus obtained

estimators, which makes statistical inference for the tail expectile-based VaR feasible. Sec-

ond, we wish to further contribute to the expanding literature on ES by developing a novel

expectile-based variant. Taylor (2008) has already introduced an alternative expectile-based

Tail Conditional Expectation (see (15) below). In contrast to his proposal, our formulation
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of the expectile-based ES induces a coherent risk measure. We propose two different es-

timators for this new coherent measure, at an extreme expectile level τ 1n, and derive their

full asymptotic properties. Third, we provide adapted extreme expectile-based tools for the

estimation of the MES, an important factor when measuring the systemic risk of financial

institutions. Denoting by X and Y , respectively, the loss of the equity return of a financial

firm and that of the entire market, the MES is equal to EpX|Y ą tq, where t is a high thresh-

old reflecting a systemic crisis, i.e., a substantial market decline. For an extreme expectile

t “ ξτ 1n and for a wide nonparametric class of bivariate distributions of pX, Y q, we construct

two asymptotically normal estimators of the MES. A rival procedure by Cai et al. (2015)

is based on extreme quantiles. Finally, we unravel the important question of how to select

theoretically the extreme level τ 1n so that each expectile-based risk measure (VaR, ES, MES)

at this level coincides with its quantile-based analogue at a given tail probability αn Ñ 1 as

n Ñ 8 . The obtained τ 1n “ τ 1npαnq needs itself to be estimated, which results in two final

composite estimators of the risk measure. We also elucidate the asymptotic distributions of

the thus built composite estimators. To our knowledge, this is the first work to actually join

together the expectile perspective with the tail restrictions of extreme-value theory.

We organize this paper as follows. Section 2 discusses the basic properties of the expectile-

based VaR including its connection with the standard quantile-VaR for high levels τn Ñ

1. Section 3 presents the two estimation methods of intermediate and extreme expectiles.

Section 4 explores the notion of expectile-based ES and discusses interesting axiomatic and

asymptotic developments. Section 5 considers the problem of estimating the MES when the

related variable is extreme. Section 6 addresses the important question of how to select the

extreme expectile level in the three studied risk measures. The good performance of the

presented procedures is shown in Section 7 and concrete applications to medical insurance

data and the loss-returns of three large US investment banks are provided in Section 8.

2 Basic properties

In this paper, the generic financial position Y is a real-valued random variable, and the

available data tY1, Y2, . . .u are the negative of a series of financial returns. This implies that

the right-tail of the distribution of Y corresponds to the negative of extreme losses. Following

Newey and Powell (1987), the expectile ξτ of order τ P p0, 1q of the random variable Y can

be defined as the minimizer (1) of a piecewise-quadratic loss function or, equivalently, as

ξτ “ argminθPR
 

τE
“

pY ´ θq2` ´ Y
2
`

‰

` p1´ τqE
“

pY ´ θq2´ ´ Y
2
´

‰(

,

where y` :“ maxpy, 0q and y´ :“ maxp´y, 0q. The presence of terms Y 2
` and Y 2

´ makes

indeed this problem well-defined as soon as Y P L1 [i.e. E|Y | ă 8]. The first-order necessary
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condition for optimality related to this problem can be written in several ways, one of them

being

ξτ ´ EpY q “
2τ ´ 1

1´ τ
E rpY ´ ξτ q`s .

This equation has a unique solution for all Y P L1. Thenceforth expectiles of a distribution

function FY with finite absolute first moment are well-defined, and we will assume in the

sequel that E|Y | ă 8. Expectiles summarize the distribution function in much the same

way that the quantiles qτ :“ F´1Y pτq “ infty P R : FY pyq ě τu do. A justification for their

use to describe distributions and their tails, as well as to quantify the “riskiness” implied

by the return distribution under consideration, may be based on the following collection of

elementary properties [Newey and Powell (1987), Abdous and Remillard (1995) and Bellini

et al. (2014)]:

(i) Law invariance: a continuously differentiable distribution function is uniquely defined

by its class of expectiles in the sense that the laws of two integrable random variables

Y and rY , with continuous densities, are identical if and only if ξY,τ “ ξ
rY ,τ for every

τ P p0, 1q.

(ii) Location and scale equivariance: the τth expectile of the linear transformation rY “

a` bY , where a, b P R, satisfies

ξ
rY ,τ “

"

a` b ξY,τ if b ą 0
a` b ξY,1´τ if b ď 0 .

(iii) Constancy: if Y “ c with probability 1, for some constant c (i.e. Y is degenerate),

then ξY,τ “ c for any τ .

(iv) Strict monotonicity in τ : if τ1 ă τ2, with τ1, τ2 P p0, 1q, then ξτ1 ă ξτ2 . Also, the

function τ ÞÑ ξτ maps p0, 1q onto its range ty P R : 0 ă FY pyq ă 1u.

(v) Preserving of stochastic order: if Y ď Ỹ with probability 1, then ξY,τ ď ξỸ ,τ for any τ .

(vi) Subadditivity: for any variables Y, Ỹ P L1, ξY`Ỹ ,τ ď ξY,τ ` ξỸ ,τ for all τ ě 1
2
. Also,

ξY`Ỹ ,τ ě ξY,τ ` ξỸ ,τ for all τ ď 1
2
.

(vii) Lipschitzianity w.r.t. the Wasserstein distance: for all Y, Ỹ P L1 and all τ P p0, 1q, it

holds that
ˇ

ˇξY,τ ´ ξỸ ,τ
ˇ

ˇ ď τ̃ ¨ dW pY, Ỹ q, where τ̃ “ max
 

τ
1´τ

, 1´τ
τ

(

and

dW pY, Ỹ q “

ż 8

´8

|FY pyq ´ FỸ pyq|dy “

ż 1

0

|F´1Y ptq ´ F´1
Ỹ
ptq|dt.
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(viii) Sensitivity vs resistance: expectiles are very sensitive to the magnitude of extreme ob-

servations since their gross-error-sensitivity and rejection points are infinite. Whereas

they are resistant to systematic rounding and grouping since their local-shift-sensitivity

is bounded.

The sign convention we have chosen for values of Y as the negative of returns implies

that extreme losses correspond to levels τ close to one. Only Bellini et al. (2014), Mao

et al. (2015) and Mao and Yang (2015) have described what happens for large population

expectiles ξτ and how they are linked to extreme quantiles qτ when FY is attracted to the

maximum domain of Pareto-type distributions with tail index 0 ă γ ă 1. According to

Bingham et al. (1987), such a heavy-tailed distribution function can be expressed as

FY pyq “ 1´ `pyq ¨ y´1{γ (3)

where `p¨q is a slowly-varying function at infinity, i.e, `pλyq{`pyq Ñ 1 as y Ñ 8 for all λ ą 0.

The tail index γ tunes the tail heaviness of the distribution function FY . Note also that

the first moment of FY does not exist when γ ą 1. For most applicational purposes in risk

management, it has been found in previous studies that assumption (3) describes sufficiently

well the tail structure of actuarial and financial data: in addition to the monographs of

Embrechts et al. (1997) and Resnick (2007), see for instance Chavez-Demoulin et al. (2015)

and the references therein. See also Alm (2015) for a recent study in the context of the

Swedish insurance market.

Writing F Y :“ 1´ FY , Bellini et al. (2014) have shown in the case γ ă 1 that

F Y pξτ q

F Y pqτ q
„ γ´1 ´ 1 as τ Ñ 1, (4)

or equivalently FY pξτ q
1´τ

„ γ´1 ´ 1 as τ Ñ 1. It follows that extreme expectiles ξτ are larger

than extreme quantiles qτ (i.e. ξτ ą qτ ) when γ ą 1
2
, whereas ξτ ă qτ when γ ă 1

2
, for all

large τ . The connection (4) between high expectiles and quantiles can actually be refined

appreciably by considering a strengthened yet classical version of condition (3). Assume that

the tail quantile function U of Y , namely the left-continuous inverse of 1{F Y , defined by

@t ą 1, Uptq “ inf

"

y P R
ˇ

ˇ

ˇ

ˇ

1

F Y pyq
ě t

*

,

is such that there exist γ ą 0, ρ ď 0, and a function Ap¨q converging to 0 at infinity and

having constant sign such that

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

„

Uptxq

Uptq
´ xγ



“ xγ
xρ ´ 1

ρ
.
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Here and in what follows, pxρ´1q{ρ is to be understood as log x when ρ “ 0. The interpreta-

tion of this extremal value condition can be found in Beirlant et al. (2004) and de Haan and

Ferreira (2006) along with abundant examples of commonly used continuous distributions

satisfying C2pγ, ρ, Aq: for instance, the (Generalized) Pareto, Burr, Fréchet, Student, Fisher

and Inverse-Gamma distributions all satisfy this condition, and more generally so does any

distribution whose distribution function F satisfies

1´ F pxq “ x´1{γ
`

a` bxρ{γ ` opxρ{γq
˘

as xÑ 8,

where a and b are positive constants and ρ ă 0. This contains in particular the Hall-Weiss

class of models (see Hua and Joe, 2011).

Proposition 1. Assume that condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1. Then

F Y pξτ q

1´ τ
“ pγ´1 ´ 1qp1` εpτqq

with εpτq “ ´
pγ´1 ´ 1qγEpY q

qτ
p1` op1qq ´

pγ´1 ´ 1q´ρ

γp1´ ρ´ γq
App1´ τq´1qp1` op1qq as τ Ò 1.

Even more strongly, one can establish the precise bias term in the asymptotic approxi-

mation of pξτ{qτ q itself.

Corollary 1. Assume that condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1. If FY is strictly

increasing, then

ξτ
qτ

“ pγ´1 ´ 1q´γp1` rpτqq

with rpτq “
γpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

`

ˆ

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q as τ Ò 1.

Other refinements under similar second order regular variation conditions can also be

found in Mao et al. (2015) and Mao and Yang (2015). An extension to a subset of the

challenging Gumbel domain of attraction is also derived in Proposition 2.4 in Bellini and Di

Bernardino (2015). In practice, the tail quantities ξτ , qτ and γ are unknown and only a sample

of random copies pY1, . . . , Ynq of Y is typically available. While extreme-value estimates of

high quantiles and of the tail index γ are used widely in applied work and investigated

extensively in theoretical statistics, the problem of estimating ξτ , when τ “ τn Ñ 1 at an

arbitrary rate as n Ñ 8, has not been addressed yet. Direct expectile estimates at the

tails are incapable of extrapolating outside the data and are often unstable due to data

sparseness. This motivated us to construct estimators of large expectiles ξτn and derive their

limit distributions when they are located in the range of the data or near and even beyond

the sample maximum. We shall assume the extended regular variation condition C2pγ, ρ, Aq
to obtain some convergence results.
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3 Estimation of the expectile-based VaR

Our main objective in this section is to estimate ξτn for high levels τn that may approach

one at any rate, covering both scenarios of intermediate expectiles with np1´ τnq Ñ 8 and

extreme expectiles with np1 ´ τnq Ñ c, for some nonnegative constant c. We assume that

the available data consists of an n-tuple pY1, . . . , Ynq of independent copies of Y , and denote

by Y1,n ď ¨ ¨ ¨ ď Yn,n their ascending order statistics.

3.1 Intermediate expectile estimation

Here, we first use an indirect estimation method based on intermediate quantiles, and then

discuss a direct asymmetric least squares estimation method.

3.1.1 Estimation based on intermediate quantiles

The rationale for this first method relies on the regular variation property (3) and on the

asymptotic equivalence (4). Given that F Y is regularly varying at infinity with index ´1{γ

[i.e. it satisfies, for any x ą 0, the property F Y ptxq{F Y ptq Ñ x´1{γ as t Ñ 8], it follows

that U is regularly varying as well with index γ, see e.g. Proposition B.1.9.9 in de Haan and

Ferreira (2006). Hence, (4) entails that

ξτ
qτ
„ pγ´1 ´ 1q´γ as τ Ò 1. (5)

This result is also an immediate consequence of Corollary 1 above and can be found in Propo-

sition 2.3 of Bellini and Di Bernardino (2015) as well. Therefore, for a suitable estimator pγ

of γ, we may suggest estimating the intermediate expectile ξτn by

pξτn :“ ppγ´1 ´ 1q´pγ pqτn , where pqτn :“ Yn´tnp1´τnqu,n

and t¨u stands for the floor function. This estimator parallels the intermediate quantile-VaR

pqτn and crucially hinges on the estimated tail index pγ. Accordingly, it is more extreme than

pqτn when pγ ą 1
2
, but less extreme when pγ ă 1

2
. A simple and widely used estimator of γ is

given by the popular Hill estimator (Hill, 1975):

pγH “
1

k

k
ÿ

i“1

log
Yn´i`1,n
Yn´k,n

, (6)

where k “ kpnq is an intermediate sequence in the sense that kpnq Ñ 8 such that kpnq{nÑ 0

as nÑ 8. The monographs of Beirlant et al. (2004) and de Haan and Ferreira (2006) give

a nice summary of the properties of pγH and review other efficient estimation methods with

an extensive bibliography.

Next, we formulate conditions that lead to asymptotic normality for pξτn .
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Theorem 1. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1, that τn Ò 1 and np1´ τnq Ñ 8. Assume further that

a

np1´ τnq

ˆ

pγ ´ γ,
pqτn
qτn

´ 1

˙

d
ÝÑ pΓ,Θq. (7)

If
a

np1´ τnqq
´1
τn Ñ λ1 P R and

a

np1´ τnqApp1´ τnq
´1q Ñ λ2 P R, then

a

np1´ τnq

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ mpγqΓ`Θ´ λ

with mpγq :“ p1´ γq´1 ´ logpγ´1 ´ 1q and

λ :“ γpγ´1 ´ 1qγEpY qλ1 `
ˆ

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ2.

When using the Hill estimator (6) of γ with k “ rnp1´τnqs, sufficient regularity conditions

for (7) to hold can be found in Theorems 2.4.1 and 3.2.5 in de Haan and Ferreira (2006,

p.50 and p.74). Under these conditions, the limit distribution Γ is then Gaussian with mean

λ2{p1 ´ ρq and variance γ2, while Θ is the centered Gaussian distribution with variance

γ2. Lemma 3.2.3 in de Haan and Ferreira (2006, p.71) shows that both Gaussian limiting

distributions are independent. As an immediate consequence we get the following for pγ “ pγH .

Corollary 2. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with 0 ă

γ ă 1, that τn Ò 1 and np1´ τnq Ñ 8. If
a

np1´ τnqq
´1
τn Ñ λ1 P R and

a

np1´ τnqApp1´

τnq
´1q Ñ λ2 P R, then

a

np1´ τnq

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ N

ˆ

mpγq

1´ ρ
λ2 ´ λ, vpγq

˙

,

with mpγq and λ as in Theorem 1, and

vpγq “ γ2

«

1`

ˆ

1

1´ γ
´ log

ˆ

1

γ
´ 1

˙˙2
ff

.

Yet, a drawback to the resulting estimator pξτn lies in its heavy dependency on the esti-

mated quantile pqτn and tail index pγ in the sense that pξτn may inherit the vexing defects of

both pqτn and pγ. Note also that pξτn is asymptotically biased, which is not the case for pqτn ;

it should be pointed out though that one may design a bias-reduced version of the estima-

tor pξτn . Indeed, the bias components λ1 and λ2 appearing in Theorem 1 can be estimated,

respectively, by using pλ1 “
a

np1´ τnqpq
´1
τn and by applying the methodology of Caeiro et

al. (2005) in conjunction with the Hall-Welsh class of models to get an estimator pλ2 of
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λ2. Along with the empirical mean Y , the estimator pγ, and a consistent estimator pρ of the

second-order parameter ρ (a review of possible estimators pρ is given in Gomes and Guillou,

2015), it is possible to come up with a consistent estimator

pλ :“ pγppγ´1 ´ 1qpγY pλ1 `

ˆ

ppγ´1 ´ 1q´pρ

1´ pρ´ pγ
`
ppγ´1 ´ 1q´pρ ´ 1

pρ

˙

pλ2

of the bias component λ. This in turn enables one to define a bias-reduced version of pξτn ,

for instance, as

pξRBτn :“ pξτn

˜

1´

„

mppγq

1´ pρ
pλ2 ´ pλ



1
a

np1´ τnq

¸

.

Of course, one should expect the value of the asymptotic variance of this estimator to be even

higher than that of pξτn , as when bias reduction techniques are applied to the Hill estimator

(see e.g. Theorem 3.2 in Caeiro et al., 2005).

Another efficient way of estimating ξτn , which we develop in the next section, is by

joining together the least asymmetrically weighted squares (LAWS) estimation with the tail

restrictions of modern extreme-value theory.

3.1.2 Asymmetric least squares estimation

Here, we consider estimating the expectile ξτn by its empirical counterpart defined through

rξτn “ arg min
uPR

1

n

n
ÿ

i“1

ητnpYi ´ uq,

where ητ pyq “ |τ ´ 1Ity ď 0u|y2 is the expectile check function. This LAWS minimizer

can easily be calculated by applying the function “expectile” implemented in the R package

‘expectreg’. It is not hard to verify that

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

“ arg min
uPR

ψnpuq (8)

with ψnpuq :“
1

2ξ2τn

n
ÿ

i“1

”

ητnpYi ´ ξτn ´ uξτn{
a

np1´ τnqq ´ ητnpYi ´ ξτnq
ı

.

It follows from the continuity and the convexity of ητ that pψnq is a sequence of almost surely

continuous and convex random functions. A result of Geyer (1996) [see also Theorem 5 in

Knight (1999)] then states that to examine the convergence of the left-hand side term of (8),

it is enough to investigate the asymptotic properties of the sequence pψnq. Built on this idea,

we get the asymptotic normality of the LAWS estimator rξτn by applying standard techniques

involving sums of independent and identically distributed random variables. We will denote

in the sequel by Y´ the negative part of Y , i.e., Y´ “ minpY, 0q.

11



Theorem 2. Assume that there is δ ą 0 such that E|Y´|2`δ ă 8, that 0 ă γ ă 1{2 and

τn Ò 1 is such that np1´ τnq Ñ 8. Then

a

np1´ τnq

˜

rξτn
ξτn

´ 1

¸

d
ÝÑ N p0, V pγqq with V pγq “

2γ3

1´ 2γ
.

Interestingly, in contrast to Theorem 1 and Corollary 2, the limit distribution in Theo-

rem 2 is derived without recourse to either the extended regular variation condition C2pγ, ρ, Aq
or any bias condition. A mild moment assumption and the condition 0 ă γ ă 1{2 suffice. It

has been found in previous studies by many authors (e.g. recently by Chavez-Demoulin et

al. (2014), Alm (2015), Cai et al. (2015) and El Methni and Stupfler (2016)) that the model

assumption of Pareto-type tails along with these conditions (required for losses to have at

least a finite variance) deliver competitive results for most applicational purposes in risk

management. In these studies the realized values of γ were found below 1{2, being in line

with the recent findings of Cai et al. (2015) and our findings in Section 8. We also refer the

reader to the R package ‘CASdatasets’ which contains a large variety of dataset examples

where realized values of γ often vary between 1{4 and 1{2. Most importantly, unlike the

indirect expectile estimator pξτn , the new estimator rξτn does not hinge by construction on any

particular type of quantile or tail index estimators. A comparison of the asymptotic variance

V pγq of rξτn with the asymptotic variance vpγq of pξτn is provided in Figure 1. It can be seen

that both asymptotic variances are extremely stable and close for values of γ ă 0.3, with a

slight advantage for V pγq in dashed line. Then V pγq becomes appreciably larger than vpγq

for γ ą 0.3 and explodes in the neighborhood of 1{2, while vpγq in solid line remains lower

than the level 1.25.

3.2 Extreme expectile estimation

We now discuss the important issue of estimating extreme tail expectiles ξτ 1n , where τ 1n Ò 1

with np1 ´ τ 1nq Ñ c ă 8 as n Ñ 8. The basic idea is to extrapolate intermediate expectile

estimates of order τn Ñ 1, such that np1 ´ τnq Ñ 8, to the very extreme level τ 1n. This is

achieved by transferring the elegant device of Weissman (1978) for estimating an extreme

quantile to our expectile setup. Note that, in standard extreme-value theory and related

fields of application, the levels τ 1n and τn are typically set to be τ 1n “ 1 ´ pn for a pn much

smaller than 1
n
, and τn “ 1´ kpnq

n
for an intermediate sequence of integers kpnq.

The model assumption of Pareto-type tails (3) means that Uptxq{Uptq Ñ xγ as t Ñ 8,

which in turn suggests that

qτ 1n
qτn

“
Upp1´ τ 1nq

´1q

Upp1´ τnq´1q
«

ˆ

1´ τ 1n
1´ τn

˙´γ

and thus
ξτ 1n
ξτn

«

ˆ

1´ τ 1n
1´ τn

˙´γ

12
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Figure 1: Asymptotic variances V pγq of the LAWS estimator rξτn in dashed line and vpγq of

the indirect estimator pξτn in solid line, with γ P p0, 1{2q.

by (5), for τn, τ
1
n satisfying suitable conditions. This approximation motivates the following

class of plug-in estimators of ξτ 1n :

ξ
‹

τ 1n
” ξ

‹

τ 1n
pτnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγ

ξτn (9)

where pγ is an estimator of γ, and ξτn stands for either the estimator pξτn or rξτn of the

intermediate expectile ξτn . As a matter of fact, we have ξ
‹

τ 1n
{ξτn “ pq‹τ 1n{pqτn where pqτn “

Yn´tnp1´τnqu,n is the intermediate quantile estimator introduced above, and pq‹τ 1n is the extreme

Weissman quantile estimator defined as

pq‹τ 1n ” pq‹τ 1npτnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγ

pqτn . (10)

We then show that p
ξ
‹

τ 1n

ξτ 1n
´1q has the same limit distribution as ppγ´γq with a different scaling.

Theorem 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

ρ ă 0, that τn, τ 1n Ò 1, with np1´ τnq Ñ 8 and np1´ τ 1nq Ñ c ă 8. If moreover

a

np1´ τnq

˜

ξτn
ξτn

´ 1

¸

d
ÝÑ ∆ and

a

np1´ τnqppγ ´ γq
d
ÝÑ Γ,

with
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1´τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1´

13



τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ξ
‹

τ 1n

ξτ 1n
´ 1

¸

d
ÝÑ Γ.

More specifically, we can choose ξτn in (9) to be either the indirect intermediate expectile

estimator pξτn , the resulting extreme expectile estimator pξ‹τ 1n :“ ξ
‹

τ 1n
being

pξ‹τ 1n “

ˆ

1´ τ 1n
1´ τn

˙´pγ

pξτn “
`

pγ´1 ´ 1
˘´pγ

pq‹τ 1n , (11)

or we may choose ξτn to be the LAWS estimator rξτn , yielding the extreme expectile estimator

rξ‹τ 1n “

ˆ

1´ τ 1n
1´ τn

˙´pγ

rξτn , (12)

Their respective asymptotic properties are given in the next two corollaries of Theorem 3.

Corollary 3. Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1 and ρ ă 0, and that τn, τ 1n Ò 1 with np1 ´ τnq Ñ 8 and np1 ´ τ 1nq Ñ c ă 8.

Assume further that
a

np1´ τnq

ˆ

pγ ´ γ,
pqτn
qτn

´ 1

˙

d
ÝÑ pΓ,Θq.

If
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1 ´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1 ´

τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

pξ‹τ 1n
ξτ 1n

´ 1

¸

d
ÝÑ Γ.

Corollary 4. Assume that FY is strictly increasing, there is δ ą 0 such that E|Y´|2`δ ă 8,

condition C2pγ, ρ, Aq holds with 0 ă γ ă 1{2 and ρ ă 0, and that τn, τ 1n Ò 1 with np1´τnq Ñ 8

and np1´ τ 1nq Ñ c ă 8. If in addition

a

np1´ τnqppγ ´ γq
d
ÝÑ Γ

and
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1´

τnq{p1´ τ
1
nqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

rξ‹τ 1n
ξτ 1n

´ 1

¸

d
ÝÑ Γ.
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4 Expectile-based expected shortfall

The conventional quantile-based VaR was often criticized for being insensitive to the magni-

tude of extreme losses since it only depends on the frequency of tail losses and not on their

values. Acerbi (2002), Rockafellar and Uryasev (2002) proposed to change the measurement

method for calculating losses from the usual quantile-VaR to an alternative coherent method

known as Expected Shortfall (ES). This proposal was criticized though for its dependency

only on the tail event. The formulation of the ES remains still intrinsically linked to quantiles

as can be seen from (13) and (14) below. This motivated Kuan et al. (2009) to introduce

the expectile-based VaR which depends on both the tail realizations of the loss variable and

their probability. Yet, with the recent crisis in the financial industry, the vast majority of

market participants (investors, risk managers, clearing houses), academics and regulators

are more concerned with the risk exposure to a catastrophic event that might wipe out an

investment in terms of the size of potential losses. Already in October 2013, The Basel

Committee on Banking Supervision proposed to change the traditional VaR with the ES for

calculating losses. This motivates us to introduce a new variant of ES which is purely built

on expectiles, inherits their coherency, but is more alert to extreme risks.

4.1 Basic properties

The standard ES, also known under the names Conditional Value at Risk or Average Value

at Risk, is defined as the average of the quantile function above a given confidence level τ . It

is traditionally expressed at the 100p1 ´ τq% security level as the Quantile-based Expected

Shortfall (QES):

QESpτq :“
1

1´ τ

ż 1

τ

qαdα. (13)

When the financial position Y is continuous, QESpτq is just the conditional expectation

QTCEpτq :“ ErY |Y ą qτ s (14)

of Y given that it exceeds the VaR qτ . In this sense, it is referred to as Tail Conditional

Expectation (TCE), with ´QESpτq being interpreted as the expected return on the portfolio

in the worst 100p1´τq% of cases. Similarly, Taylor (2008) has suggested to use an expectile-

based TCE defined as

XTCEpτq :“ ErY |Y ą ξτ s (15)

“

ˆ

1`
1´ τ

p2τ ´ 1qF Y pξτ q

˙

ξτ ´
1´ τ

p2τ ´ 1qF Y pξτ q
EpY q.
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We shall discuss below that this proposal does not seem, however, to be a coherent risk

measure in general. Instead, we introduce the alternative expectile-based ES

XESpτq :“
1

1´ τ

ż 1

τ

ξαdα, (16)

which defines a new coherent risk measure as established in Proposition 4 below. We also

show in Proposition 2, under the model assumption of Pareto-type distributions FY p¨q with

tail index γ ă 1, that XESpτq is asymptotically equivalent to XTCEpτq as τ Ñ 1, and hence

inherits its direct meaning as a conditional expectation for all τ large enough. On the other

hand, the choice between the expectile-based ES/TCE and their quantile-based versions will

depend on the value at hand of γ ž 1
2

as is the case in the duality between the expectile-based

VaR and quantile-VaR. More precisely, the XESpτq in (16) and XTCEpτq in (15) are more

extreme (respectively, less extreme) than their quantile-based analogues QESpτq in (13) and

QTCEpτq in (14), for all τ large enough, when γ ą 1
2

(respectively, γ ă 1
2
).

Proposition 2. Assume that the distribution of Y belongs to the Fréchet maximum domain

of attraction with tail index γ ă 1, or equivalently, that condition (3) holds. Then

XESpτq

QESpτq
„
ξτ
qτ
„

XTCEpτq

QTCEpτq
and

XESpτq

ξτ
„

1

1´ γ
„

XTCEpτq

ξτ
as τ Ñ 1.

These connections are very useful when it comes to proposing estimators for XESpτq and

XTCEpτq. One may also establish, in the spirit of Proposition 1, a precise control of the

remainder term which arises when using Proposition 2. This will prove to be quite useful

when examining the asymptotic properties of the extreme expectile-based ES estimators.

Proposition 3. Assume that condition C2pγ, ρ, Aq holds, with 0 ă γ ă 1. Then, as τ Ñ 1,

XESpτq

ξτ
“

1

1´ γ

ˆ

1´
γ2pγ´1 ´ 1qγEpY q

qτ
p1` op1qq

`
1´ γ

p1´ ρ´ γq2
pγ´1 ´ 1q´ρApp1´ τq´1qp1` op1qq

˙

,

XTCEpτq

ξτ
“

1

1´ γ

„

1`
pγ´1 ´ 1q´ρ

1´ ρ´ γ
App1´ τq´1qp1` op1qq ` opq´1τ q



.

From the point of view of the axiomatic theory, an influential paper in the literature by

Artzner et al. (1999) provides an axiomatic foundation for coherent risk measures. Like the

quantile-based expected shortfall QESpτq and the expectile-based VaR, we show that the

expectile-based expected shortfall XESpτq satisfies all of their requirements, namely Trans-

lation invariance, Positive homogeneity, Monotonicity and Subadditivity. However, while

the Tail Conditional Expectation variant XTCEpτq can easily be shown to be translation

invariant and positive homogeneous, its monotonicity and subadditivity remain unclear. It
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should also be noted that, in contrast to QESpτq, the coherence of XESpτq is actually a

straightforward consequence of the coherence of the expectile-based VaR above the median

in conjunction with the fact that the expectile-based ES is an increasing linear functional of

the expectile-based VaR above some high level, in the sense that

ξp1qα ď ξp2qα @α P pτ, 1q ñ XESp1qpτq “
1

1´ τ

ż 1

τ

ξp1qα dα ď
1

1´ τ

ż 1

τ

ξp2qα dα “ XESp2qpτq.

Proposition 4. For all τ ě 1{2, the expectile-based expected shortfall XESpτq induces a

coherent risk measure, and the tail conditional expectation XTCEpτq is translation invariant

and positive homogeneous.

This result does not seem to have been appreciated in the literature before. It affords

an additional convincing reason that the use of both expectile-based VaR and ES may be

preferred over the classical quantile-based versions.

4.2 Estimation and asymptotics

When analyzing the very far tails of the involved distribution, as required in modern regu-

latory frameworks (such as the European Union Solvency II directive), financial institutions

and insurance companies are typically interested in the region τ “ τ 1n Ò 1, as the sample size

n Ñ 8. This is particularly required to manage extreme events. For example, Acharya et

al. (2012) handle once-in-a-decade events with one year of data. Gilli and Këllezi (2006)

apply extreme value theory to estimate risk measures for several stock market indices. Hart-

mann et al. (2004, 2005, 2010) employ extreme value techniques to evaluate systemic risk

in the European and American banking systems. Also, Ibragimov et al. (2009) develop

models for catastrophe insurance markets based on real data. The asymptotic equivalence

XESpτ 1nq „ p1 ´ γq´1ξτ 1n , established in Proposition 2, suggests the following estimators of

the expectile-based ES:

zXES
‹

pτ 1nq “ p1´ pγq´1 ¨ pξ‹τ 1n and ĆXES
‹

pτ 1nq “ p1´ pγq´1 ¨ rξ‹τ 1n (17)

where pξ‹τ 1n and rξ‹τ 1n are the extreme expectile estimators defined above in (11)-(12), and pγ is an

estimator of γ. Another option motivated by the second asymptotic equivalence XESpτ 1nq „
ξτ 1n
qτ 1n
¨QESpτ 1nq would be to estimate XESpτ 1nq by

zXES
:

pτ 1nq “
pξ‹τ 1n ¨

zQES
‹

pτ 1nq

pq‹τ 1n
or ĆXES

:

pτ 1nq “
rξ‹τ 1n ¨

zQES
‹

pτ 1nq

pq‹τ 1n
(18)

for a suitable estimator zQES
‹

pτ 1nq of QESpτ 1nq (see, e.g., El Methni et al. (2014)), with pq‹τ 1n
being the extreme Weissman quantile estimator defined in (10). Our experience with real
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and simulated data indicates, however, that the estimates zXES
‹

pτ 1nq and zXES
:

pτ 1nq [respec-

tively, ĆXES
‹

pτ 1nq and ĆXES
:

pτ 1nq] point toward very similar results. We therefore restrict our

theoretical treatment to the initial versions given in (17). Our first asymptotic result is for

the extreme XES estimator zXES
‹

pτ 1nq:

Corollary 5. Under the conditions of Corollary 3,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

zXES
‹

pτ 1nq

XESpτ 1nq
´ 1

¸

d
ÝÑ Γ.

In what concerns the asymmetric least squares-type estimator ĆXES
‹

pτ 1nq, we have the

following result.

Corollary 6. Under the conditions of Corollary 4,

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ĆXES
‹

pτ 1nq

XESpτ 1nq
´ 1

¸

d
ÝÑ Γ.

Both results are derived by noticing that, on the one hand, the extreme expectile estima-

tors pξ‹τ 1n and rξ‹τ 1n converge to the same distribution as the estimator pγ but with a slower rate

in view of Corollaries 3 and 4. On the other hand, the nonrandom remainder term coming

from the use of Proposition 2 can be controlled by applying Proposition 3, so detailed proofs

are omitted.

When it comes to estimate the Tail Conditional Expectation XTCEpτ 1nq, the asymptotic

equivalence XTCEpτ 1nq „ XESpτ 1nq as n Ñ 8, obtained in Proposition 2, suggests to use

the same estimators of XESpτ 1nq in (17) and (18) for XTCEpτ 1nq itself. To derive the limit

distributions here, the basic arguments go as above.

5 Marginal expected shortfall

5.1 Setting and objective

With the recent financial crisis and the rising interconnection between financial institutions,

interest in the concept of systemic risk has grown. Acharya et al. (2012), Brownlees and

Engle (2016) and Engle et al. (2015) define systemic risk as the propensity of a financial

institution to be undercapitalized when the financial system as a whole is undercapitalized.

They have proposed econometric and statistical approaches to measure the systemic risk

of financial institutions. An important step in constructing a systemic risk measure for a

financial firm is to measure the contribution of the firm to a systemic crisis. A systemic event

or crisis is specified as a major stock market decline that happens once or twice a decade.

The total risk measured by the expected capital shortfall in the financial system during a
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systemic crisis is typically decomposed into firm level contributions. Each financial firm’s

contribution to systemic risk can then be measured as its marginal expected shortfall (MES),

i.e., the expected loss on its equity return conditional on the occurrence of an extreme loss

in the aggregated return of the financial market. More specifically, denote the loss return on

the equity of a financial firm as X and that of the entire market as Y . Then the MES at

probability level p1´ τq is defined as

QMESpτq “ EtX|Y ą qY,τu, τ P p0, 1q,

where qY,τ is the τth quantile of the distribution of Y . Typically, a systemic crisis defined

as an extreme tail event corresponds to a probability τ at an extremely high level that

can be even larger than p1 ´ 1{nq, where n is the sample size of historical data that are

used for estimating QMESpτq. The estimation procedure in Acharya et al. (2012) relies on

daily data from only 1 year and assumes a specific linear relationship between X and Y . A

nonparametric kernel estimation method has been performed in Brownlees and Engle (2016)

and Engle et al. (2015), but cannot handle extreme events required for systemic risk measures

(i.e. 1´ τ “ Op1{nq). Very recently, Cai et al. (2015) have proposed adapted extreme-value

tools for the estimation of QMESpτq without recourse to any parametric structure on pX, Y q.

Here, instead of the extreme τth quantile qY,τ , we will explore the use of the τth expectile

analogue ξY,τ in the marginal expected shortfall

XMESpτq “ EtX|Y ą ξY,τu

at least for the following reason: as claimed by Newey and Powell (1987), Kuan et al.

(2009) and Sobotka and Kneib (2012) among others, expectiles make a more efficient use of

the available data since they rely on the distance of observations from the predictor, while

quantile estimation only knows whether an observation is below or above the predictor. It

would be awkward to measure extreme risk based only on the frequency of tail losses and

not on their values. An interesting asymptotic connection between XMESpτq and QMESpτq

is provided below in Proposition 5. It is also the goal of the next section to establish

estimators of the tail expectile-based MES and to unravel their asymptotic behavior. The

asymptotic normality is derived for a large class of bivariate distributions of pX, Y q, which

makes statistical inference for XMESpτq feasible.

5.2 Tail dependence model

Suppose the random vector pX, Y q has a continuous bivariate distribution function FpX,Y q

and denote by FX and FY the marginal distribution functions of X and Y , assumed to be

increasing in what follows. Given that our goal is to estimate XMESpτq at an extreme level

τ , we adopt the same conditions as Cai et al. (2015) on the right-hand tail of X and on
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the right-hand upper tail dependence of pX, Y q. Here, the right-hand upper tail dependence

between X and Y is described by the following joint convergence condition:

JCpRq For all px, yq P r0,8s2 such that at least x or y is finite, the limit

lim
tÑ8

tPpFXpXq ď x{t, F Y pY q ď y{tq :“ Rpx, yq

exists, with FX “ 1´ FX and F Y “ 1´ FY .

The limit function R completely determines the so-called tail dependence function ` [Drees

and Huang (1998)] via the identity `px, yq “ x` y´Rpx, yq for all x, y ě 0 [see also Beirlant

et al. (2004), Section 8.2]. Regarding the marginal distributions, we assume that X and Y

are heavy-tailed with respective tail indices γX , γY ą 0, or equivalently, for all z ą 0,

UXptzq

UXptq
Ñ zγX and

UY ptzq

UY ptq
Ñ zγY as tÑ 8,

with UX and UY being, respectively, the left-continuous inverse functions of 1{FX and 1{F Y .

Compared with the quantile-based MES framework in Cai et al. (2015), we need the extra

condition of heavy-tailedness of Y which is quite natural in the financial setting. Under

these regularity conditions, we get the following asymptotic approximations for XMESpτq.

Proposition 5. Suppose that condition J CpRq holds and that X and Y are heavy-tailed

with respective indices γX , γY P p0, 1q. Then

lim
τÒ1

XMESpτq

UXp1{F Y pξY,τ qq
“

ż 8

0

Rpx´1{γX , 1qdx, (19)

lim
τÒ1

XMESpτq

QMESpτq
“
`

γ´1Y ´ 1
˘´γX . (20)

The first convergence result indicates that XMESpτq is asymptotically equivalent to the

small exceedance probability UXp1{F Y pξY,τ qq up to a multiplicative constant. Since as usual

in the financial setting 0 ă γX , γY ă 1{2, the second result shows that XMESpτq is less

extreme than QMESpτq as τ Ñ 1. This is visualised in Figure 2 in the case of a standard

bivariate Student tν-distribution on p0,8q2 with density

fνpx, yq “
2

π

ˆ

1`
x2 ` y2

ν

˙´pν`2q{2

, x, y ą 0, (21)

where ν “ 3, 5, respectively from left to right. It can be seen that QMESpτq becomes overall

much more extreme than XMESpτq as τ approaches 1.
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Figure 2: QMESpτq in solid line and XMESpτq in dashed line, as functions of τ P r0.95, 1q.
Case of Student tν-distribution on p0,8q2. From left to right, ν “ 3, 5.

5.3 Estimation and results

The asymptotic equivalences in Proposition 5 are of particular interest when it comes to

proposing estimators for tail expectile-based MES. Two approaches will be distinguished.

We consider first asymmetric least squares estimation by making use of the asymptotic

equivalence (19). Subsequently we shall deal with a nonparametric estimator derived from

the asymptotic connection (20) with the tail quantile-based MES.

5.3.1 Asymmetric least squares estimation

On the basis of the limit (19) and then of the heavy-tailedness assumption on X, we have

for τ ă τ 1 ă 1 that, as τ Ñ 1,

XMESpτ 1q «
UXp1{F Y pξY,τ 1qq

UXp1{F Y pξY,τ qq
XMESpτq «

ˆ

F Y pξY,τ q

F Y pξY,τ 1q

˙γX

XMESpτq.

It follows then from Proposition 1 that

XMESpτ 1q «

ˆ

1´ τ 1

1´ τ

˙´γX

XMESpτq. (22)

Hence, to estimate XMESpτ 1q at an arbitrary extreme level τ 1 “ τ 1n, we first consider the

estimation of XMESpτq at an intermediate level τ “ τn, and then we use the extrapola-

tion technique of Weissman (1978). For estimating XMESpτnq “ EtX|Y ą ξY,τnu at an
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intermediate level τn Ñ 1 such that np1´ τnq Ñ 8, as nÑ 8, we use the empirical version

ČXMESpτnq :“

řn
i“1Xi1ItXi ą 0, Yi ą rξY,τnu

řn
i“1 1ItYi ą rξY,τnu

,

where rξY,τn is the LAWS estimator of ξY,τn . As a matter of fact, in actuarial settings, we

typically have a positive loss variable X, and hence 1ItXi ą 0u “ 1. When considering a

real-valued profit-loss variable X, the MES is mainly determined by high, and hence positive,

values of X as shown in Cai et al. (2015).

We shall show under general conditions that the estimator ČXMESpτnq is
a

np1´ τnq-

relatively consistent. By plugging this estimator into approximation (22) together with a
a

np1´ τnq-consistent estimator pγX of γX , we obtain the following estimator of XMESpτ 1nq:

ČXMES
‹

pτ 1nq ”
ČXMES

‹

pτ 1n; τnq :“

ˆ

1´ τ 1n
1´ τn

˙´pγX
ČXMESpτnq. (23)

To determine the limit distribution of this estimator, we need to quantify the rate of con-

vergence in condition J CpRq as follows:

JC2pR, β, κq Condition J CpRq holds and there exist β ą γX and κ ă 0 such that

sup
xPp0,8q
yPr1{2,2s

ˇ

ˇ

ˇ

ˇ

tPpFXpXq ď x{t, F Y pY q ď y{tq ´Rpx, yq

minpxβ, 1q

ˇ

ˇ

ˇ

ˇ

“ Optκq as tÑ 8.

This is exactly condition (a) in Cai et al. (2015) under which an extrapolated estimator of

QMESpτ 1nq converges to a normal distribution. See also condition (7.2.8) in de Haan and

Ferreira (2006). We also need to assume that the tail quantile function UX (resp. UY )

satisfies the second-order condition C2pγX , ρX , AXq (resp. C2pγY , ρY , AY q). The following

generic theorem gives the asymptotic distribution of ČXMES
‹

pτ 1nq. The asymptotic normality

follows by using for example the Hill estimator pγX of the tail index γX .

Theorem 4. Suppose that condition J C2pR, β, κq holds, that there is δ ą 0 such that

E|Y´|2`δ ă 8, and that UX and UY satisfy conditions C2pγX , ρX , AXq and C2pγY , ρY , AY q
with γX , γY P p0, 1{2q and ρX ă 0. Assume further that

(i) τn, τ 1n Ò 1, with np1´ τnq Ñ 8, np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´

τ 1nqs Ñ 8 as nÑ 8;

(ii) 1´ τn “ Opnα´1q for some α ă min

ˆ

´2κ

´2κ` 1
,

2γXρX
2γXρX ` ρX ´ 1

˙

;

(iii) The bias conditions
a

np1´ τnqq
´1
Y,τn

Ñ λ1 P R,
a

np1´ τnqAXpp1 ´ τnq
´1q Ñ λ2 P R

and
a

np1´ τnqAY pp1´ τnq
´1q Ñ λ3 P R hold;
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(iv)
a

np1´ τnqppγX ´ γXq
d
ÝÑ Γ.

Then, if X ą 0 almost surely, we have that

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ČXMES
‹

pτ 1nq

XMESpτ 1nq
´ 1

¸

d
ÝÑ Γ.

This convergence remains still valid if X P R provided

(v) E|X´|1{γX ă 8; (24)

(vi) np1´ τnq “ o
`

p1´ τ 1nq
2κp1´γXq

˘

as nÑ 8. (25)

Let us point out here that condition (ii), which also appears in Theorem 1 of Cai et al.

(2015), is a strengthening of the condition 1 ´ τn “ op1q. It essentially allows to control

additional bias terms that appear in conditions J C2pR, β, κq and C2pγX , ρX , AXq. Condition

(vi), which is also utilized in Cai et al. (2015), is another bias condition that makes it

possible to control the bias coming from the left tail of X.

5.3.2 Estimation based on tail QMES

On the basis of the limit (20), we consider the alternative estimator

{XMES
‹

pτ 1nq :“
`

pγ´1Y ´ 1
˘´pγX

{QMES
‹

pτ 1nq, (26)

where pγX , pγY and {QMES
‹

pτ 1nq are suitable estimators of γX , γY and QMESpτ 1nq, respectively.

Here, we use the Weissman-type device

{QMES
‹

pτ 1nq “

ˆ

1´ τ 1n
1´ τn

˙´pγX
{QMESpτnq (27)

of Cai et al. (2015) to estimate QMESpτ 1nq, where

{QMESpτnq “
1

tnp1´ τnqu

n
ÿ

i“1

Xi1ItXi ą 0, Yi ą pqY,τnu,

with pqY,τn :“ Yn´tnp1´τnqu,n being an intermediate quantile-VaR. As a matter of fact, Cai et

al. (2015) have suggested the use of two intermediate sequences in pγX and {QMESpτnq to

be chosen in two steps in practice. To ease the presentation, we use the same intermediate

sequence τn in both pγX and {QMESpτnq. Next, we derive the asymptotic distribution of the

new estimator {XMES
‹

pτ 1nq.

Theorem 5. Suppose that condition J C2pR, β, κq holds, and UX and UY satisfy conditions

C2pγX , ρX , AXq and C2pγY , ρY , AY q with γX P p0, 1{2q and ρX ă 0. Assume further that
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(i) τn, τ 1n Ò 1, with np1´ τnq Ñ 8, np1´ τ 1nq Ñ c ă 8 and
a

np1´ τnq{ logrp1´ τnq{p1´

τ 1nqs Ñ 8 as nÑ 8;

(ii) 1´ τn “ Opnα´1q for some α ă min

ˆ

´2κ

´2κ` 1
,

2γXρX
2γXρX ` ρX ´ 1

˙

;

(iii) The bias conditions
a

np1´ τnqq
´1
Y,τn

Ñ λ P R and
a

np1´ τnqAXpp1 ´ τnq
´1q Ñ 0

hold;

(iv)
a

np1´ τnqppγX ´ γXq
d
ÝÑ Γ and

a

np1´ τnqppγY ´ γY q “ OPp1q.

Then, if X ą 0 almost surely, we have that

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

{XMES
‹

pτ 1nq

XMESpτ 1nq
´ 1

¸

d
ÝÑ Γ.

This convergence remains still valid if X P R provided that (24) and (25) hold.

6 Extreme expectile level selection

An important question that remains to be addressed is the choice of the extreme expectile

level τ 1n in the three instruments of risk protection ξτ 1n , XESpτ 1nq and XMESpτ 1nq.

In the case of quantile-based risk measures qαn , QESpαnq and QMESpαnq, it is custom-

ary to choose tail probabilities αn Ñ 1 with np1´ αnq Ñ c, a finite constant, as the sample

size n Ñ 8, to allow for more ‘prudent’ risk management. In response to the many turbu-

lent episodes that have been experienced by financial markets during the last few decades,

academics are nowadays more interested in once-in-a-decade or twice-per-decade events (see,

e.g., Brownlees and Engle (2016) and Cai et al. (2015)). In the case of expectiles, we propose

to select τ 1n so that each expectile-based risk measure has the same intuitive interpretation

as its quantile-based analogue. This translates into choosing τ 1n such that ξτ 1n ” qαn for a

given relative frequency αn. Bellini and Di Bernardino (2015) have already suggested to pick

out τ 1n which satisfies ξτ 1n “ qαn , but for a normally distributed Y . Here, we wish to extend

this elegant device to a general random variable Y without any a priori specification.

Thanks to the connection (2), it is immediate from ξτ 1n ” qαn that τ 1npαnq :“ τ 1n satisfies

1´ τ 1npαnq “
E t|Y ´ qαn | 1I pY ą qαnqu

E |Y ´ qαn |
.

As a matter of fact, under the model assumption of Pareto-type tails, it turns out that the

expectile level τ 1npαnq depends asymptotically only on the quantile level αn and not on the

quantile qαn itself.
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Proposition 6. Suppose FY satisfies (3) with 0 ă γ ă 1. Then

1´ τ 1npαnq „ p1´ αnq
γ

1´ γ
, nÑ 8.

Hence, by substituting the estimated value

pτ 1npαnq “ 1´ p1´ αnq
pγ

1´ pγ

in place of τ 1n, both extreme expectile estimators pξ‹τ 1n in (11) and rξ‹τ 1n in (12) estimate the

same Value at Risk ξτ 1npαnq ” qαn as the Weissman quantile estimator pq‹αn in (10). It is easily

seen that the latter estimator is actually identical to the indirect expectile estimator pξ‹
pτ 1npαnq

.

Indeed, we have in view of (10) and (11) that

pξ‹
pτ 1npαnq

“
`

pγ´1 ´ 1
˘´pγ

pq‹
pτ 1npαnq

“
`

pγ´1 ´ 1
˘´pγ

ˆ

1´ pτ 1npαnq

1´ τn

˙´pγ

pqτn

“

ˆ

1´ pγ

pγ

˙´pγ
˜

p1´ αnq
pγ

1´pγ

1´ τn

¸´pγ

pqτn

“

ˆ

1´ αn
1´ τn

˙´pγ

pqτn

“ pq‹αn .

This quantile-based estimator pq‹αn ”
pξ‹
pτ 1npαnq

may be criticized for being optimistic (or liberal)

because it relies on a single order statistic pqτn “ Yn´tnp1´τnqu,n, and hence may not respond

properly to the very extreme losses. By contrast, the direct expectile-based estimator rξ‹
pτ 1npαnq

relies on the asymmetric least squares estimator rξτn , and hence bears much better the burden

of representing a sensitive risk measure to the magnitude of infrequent catastrophic losses.

The next result shows that the asymptotic behavior of the original extrapolated estimators
pξ‹τ 1n and rξ‹τ 1n , established in Corollaries 3 and 4, remains still valid for the resulting composite

estimators pξ‹
pτ 1npαnq

and rξ‹
pτ 1npαnq

, under the same technical conditions.

Theorem 6. (i) Assume that FY is strictly increasing, that condition C2pγ, ρ, Aq holds with

0 ă γ ă 1 and ρ ă 0, and that τn, αn Ò 1 with np1 ´ τnq Ñ 8 and np1 ´ αnq Ñ c ă 8.

Assume further that
a

np1´ τnq

ˆ

pγ ´ γ,
pqτn
qτn

´ 1

˙

d
ÝÑ pΓ,Θq.

If
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1 ´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1 ´

τnq{p1´ αnqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

pξ‹
pτ 1npαnq

qαn
´ 1

¸

d
ÝÑ Γ.
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(ii) Assume that FY is strictly increasing, that there is δ ą 0 such that E|Y´|2`δ ă 8,

that condition C2pγ, ρ, Aq holds with 0 ă γ ă 1{2 and ρ ă 0, and that τn, αn Ò 1 with

np1´ τnq Ñ 8 and np1´ αnq Ñ c ă 8. If in addition

a

np1´ τnqppγ ´ γq
d
ÝÑ Γ

and
a

np1´ τnqq
´1
τn Ñ λ1 P R,

a

np1´ τnqApp1´ τnq
´1q Ñ λ2 P R and

a

np1´ τnq{ logrp1´

τnq{p1´ αnqs Ñ 8, then

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

rξ‹
pτ 1npαnq

qαn
´ 1

¸

d
ÝÑ Γ.

Likewise, zXES
‹

pτ 1nq and ĆXES
‹

pτ 1nq in (17) as well as zXES
:

pτ 1nq and ĆXES
:

pτ 1nq in (18), with

τ 1n “ pτ 1npαnq, estimate the same expected shortfall XESpτ 1npαnqq ” QESpαnq as the quantile-

based estimator zQES
‹

pαnq described in (28). Note also that zXES
:

ppτ 1npαnqq coincides with
zQES

‹

pαnq. Moreover, our numerical illustrations indicate that zQES
‹

pαnq points towards

similar estimates as zXES
‹

ppτ 1npαnqq, but the direct expectile-based estimators ĆXES
‹

ppτ 1npαnqq

and ĆXES
:

ppτ 1npαnqq tend to be more conservative. The next result can be proved by making

use of the proof of the previous Theorem just as Corollaries 5 and 6 follow from the proofs

of Corollaries 3 and 4.

Theorem 7. (i) Under the conditions of Theorem 6 (i),
a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

zXES
‹

ppτ 1npαnqq

QESpαnq
´ 1

¸

d
ÝÑ Γ.

(ii) Under the conditions of Theorem 6 (ii),
a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

ĆXES
‹

ppτ 1npαnqq

QESpαnq
´ 1

¸

d
ÝÑ Γ.

Let us now turn to ČXMES
‹

ppτ 1npαnqq in (23) and {XMES
‹

ppτ 1npαnqq in (26) that estimate

the same marginal expected shortfall XMESpτ 1npαnqq ” QMESpαnq as Cai et al. (2015)’s

estimator {QMES
‹

pαnq defined in (27). As a matter of fact, {XMES
‹

ppτ 1npαnqq is nothing but
{QMES

‹

pαnq.

Theorem 8. (i) Suppose the conditions of Theorem 4 hold with αn in place of τ 1n. Then
a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

ČXMES
‹

ppτ 1npαnqq

QMESpαnq
´ 1

¸

d
ÝÑ Γ.

(ii) Suppose the conditions of Theorem 5 hold with αn in place of τ 1n. Then
a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

{XMES
‹

ppτ 1npαnqq

QMESpαnq
´ 1

¸

d
ÝÑ Γ.
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7 Simulation study

The aim of this section is to highlight some of the theoretical findings with numerical simu-

lations. We will briefly touch on the presented tail XVaR and XES estimators in section 7.1

and tail XMES estimators in section 7.2. Both sections provide Monte-Carlo evidence that

the direct estimation method is more efficient relative to the indirect method in the case of

real-valued profit-loss variables, whereas the rival indirect method tends to be the winner in

the case of non-negative loss distributions. The latter method seems to be also superior in

the case of extremely heavy tails.

7.1 Expectile-based VaR and ES

To evaluate finite-sample performance of the extreme expectile estimators rξ‹τ 1n ”
rξ‹τ 1npτnq

and pξ‹τ 1n ”
pξ‹τ 1npτnq, we have considered simulated samples from the Student tν-distribution

pν “ 3, 5, 7, 9q, which corresponds to real-valued profit-loss variables, and from the marginal

of the bivariate Student tν-distribution described in (21), which corresponds to non-negative

loss variables. We shall refer to this marginal distribution on p0,8q as ‘positive Student

tν-distribution’. We used in all our simulations the Hill estimator of γ, the extreme level

τ 1n “ 0.995 for n “ 100 and τ 1n “ 0.9994 for n “ 1000, and the intermediate levels τn “ 1´ k
n
,

where the integer k can actually be viewed as the effective sample size for tail extrapolation.

We only present here the results for n “ 1000 and ν P t3, 5u, a full comparison including

additional results for optimal k is given in Supplement A.1.

In the case of Student t-distributions, Figure 3 gives the root Mean-Squared Error (MSE)

in top panels and bias estimates in bottom panels, computed over 10, 000 replications for

samples of size 1000. Each figure displays the evolution of the obtained Monte-Carlo re-

sults, for the two normalized estimators rξ‹τ 1npkq{ξτ 1n and pξ‹τ 1npkq{ξτ 1n , as functions of the sample

fraction k. Our tentative conclusion is that the accuracy of the direct estimator rξ‹τ 1n is quite

respectable relative to the indirect estimator pξ‹τ 1n . Our experience with other simulated data

indicates, however, that the direct estimator is no longer the winner in the case of extremely

heavy-tailed distributions such as, for instance, Student tν-distributions with 1 ă ν ď 2.

The resulting Monte-Carlo estimates in the case of positive Student distributions, dis-

played in Figure 4, indicate that the indirect estimator pξ‹τ 1n is superior to the direct estimator
rξ‹τ 1n : the use of the Pareto distribution FY pyq “ 1´y´1{γ, y ą 1, and the Fréchet distribution

FY pyq “ e´y
´1{γ

, y ą 0, leads to the same conclusion. It may also be seen in both Student

and positive Student scenarios that most of the error is due to variance, the squared bias

being much smaller in all cases. This may be explained by the sensitivity of high expectiles

to the magnitude of heavy tails, since they are based on “squared” error loss minimization.

It is interesting that in almost all cases the bias was positive.
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Another way of validating the presented estimation procedures for ξτ 1n on historical data

is by using the elicitability property of expectiles as pointed out in Section 1. Following

the ideas of Gneiting (2011), the competing estimates pξ‹τ 1n and rξ‹τ 1n can be compared from a

forecasting perspective by means of their realized losses. A more comprehensive description of

this comparison including Monte Carlo verification and validation is given in Supplement A.2,

where the resulting average values of the realized losses seem to favor rξ‹τ 1n over pξ‹τ 1n in the case

of Student t-distributions, while they tend to prefer pξ‹τ 1n over rξ‹τ 1n in the case of positive

Student t-distributions. Note that one can also compare the two forecasters pξ‹τ 1n and rξ‹τ 1n by

applying the modern and promising tool of ‘Murphy diagram’, recently developed by Ehm

et al. (2016).

We also investigate the normality of the estimators pξ‹τ 1n and rξ‹τ 1n in Supplement A.3, where

the Q–Q-plots indicate that the limit Theorem 3 and its Corollaries 3 and 4 provide adequate

approximations for finite sample sizes.

Other simulation experiments have been undertaken to assess the finite-sample perfor-

mance of the expectile-based ES estimators zXES
‹

pτ 1nq, ĆXES
‹

pτ 1nq, zXES
:

pτ 1nq and ĆXES
:

pτ 1nq.

The experiments all employed the same families of Student and positive Student t-distributions

as before. The lessons were similar to those from the expectile-based VaR setting, hence the

results are not reported here. It may also be noticed that the Monte-Carlo estimates corre-

sponding to zXES
‹

pτ 1nq and zXES
:

pτ 1nq [respectively, ĆXES
‹

pτ 1nq and ĆXES
:

pτ 1nq] are very similar.

7.2 Expectile-based MES

Here, we compare the composite estimators ČXMES
‹

ppτ 1npαnqq and {XMES
‹

ppτ 1npαnqq that es-

timate the same MES, XMESpτ 1npαnqq ” QMESpαnq, as the Cai et al. (2015) estimator
{QMES

‹

pαnq. The latter is actually identical to the indirect estimator {XMES
‹

ppτ 1npαnqq. All

the experiments have sample size n “ 1000 and extreme level αn “ 0.9994.

To investigate the finite sample performance of the two rival estimators ČXMES
‹

ppτ 1npαnqq

and {XMES
‹

ppτ 1npαnqq, the simulation experiments first employ the Student tν-distribution on

p0,8q2 with density fνpx, yq described in (21). It can be shown that this distribution satisfies

the conditions J C2pR, β, κq and C2pγX , ρX , AXq of Theorems 4 and 5 (see Cai et al. (2015)

for the case ν “ 3). Other motivating examples of distributions that satisfy these conditions

can also be found in section 3 of Cai et al. (2015). All the experiments have ν P t3, 5, 7, 9u.

As they point towards the same conclusions, we only present the results for ν “ 3, 5. For

the choice of the intermediate level τn, we used the same considerations as in Section 7.1.

In Figure 5 we present the root-MSE (top panels) and bias estimates (bottom panels)

computed over 10, 000 simulated samples. Each picture displays the evolution of the obtained

Monte-Carlo results, for the two normalized estimators ČXMES
‹

ppτ 1npαnqq{XMESpτ 1npαnqq and
{XMES

‹

ppτ 1npαnqq{XMESpτ 1npαnqq, as functions of the sample fraction k. We observe that the

28



latter indirect estimator is clearly the winner in all cases in terms of both root-MSE and

bias. As can also be seen in Supplement A.3, the limit Theorems 4 and 5 provide adequate

approximations for finite sample sizes, with a slight advantage for {XMES
‹

ppτ 1npαnqq.

To illustrate the case of real-valued profit-loss random variables, we consider a trans-

formed Student tν-distribution on the whole of the plane R2 defined as

pX, Y q “
´

Z
ν{4
1 1IpZ1 ě 0q ´ p´Z1q

ν{81IpZ1 ă 0q, Z2

¯

,

where pZ1, Z2q denotes a standard Student tν-distribution on R2 with density

1

2π

`

1`
`

x2 ` y2
˘

{ν
˘´pν`2q{2

, x, y P R.

The resulting Monte-Carlo estimates for ν P t3, 5u, displayed in Figure 6, indicate that
ČXMES

‹

ppτ 1npαnqq is more efficient relative to {XMES
‹

ppτ 1npαnqq. This superiority of the direct

estimator is, however, no more longer valid in the case of extremely heavy tails such as, for

instance, ν “ 2 and the transformed Cauchy distribution considered in Cai et al. (2015).

8 Applications

In this section, we apply our estimation methods to first estimate the tail VaR and ES for

the Society of Actuaries (SOA) Group Medical Insurance Large Claims, and then to estimate

the tail MES for three large investment banks in the USA.

8.1 VaR and ES for medical insurance data

The SOA Group Medical Insurance Large Claims Database records all the claim amounts

exceeding 25,000 USD over the period 1991-92. As in Beirlant et al. (2004), we only deal

here with the 75,789 claims for 1991. The histogram and scatterplot shown in Figure 7 (a)

give evidence of an important right-skewness. Insurance companies are then interested in

estimating the worst tail value of the corresponding loss severity distribution. One way

of measuring this value at risk is by considering the Weissman quantile estimate pq‹αn “

Yn´k,n

´

k
npn

¯

pγH
as described in (10), where pγH is the Hill estimator defined in (6), with

αn “ 1´ pn and τn “ 1´ k
n
. According to the earlier study of Beirlant et al. (2004, p.123),

insurers typically are interested in pn “
1

100,000
« 1

n
for these medical insurance data, that is,

in an estimate of the claim amount that will be exceeded (on average) only once in 100,000

cases. Similar recent studies in the context of the backtesting problem, which is crucial in the

current Basel III regulatory framework (see Basel Committee, 2011), are Chavez-Demoulin

et al. (2014) and Gong et al. (2015), who estimate quantiles exceeded on average once every

100 cases with sample sizes of the order of hundreds. Figure 7 (b) shows the quantile-VaR
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estimates pq‹αn against the sample fraction k (solid line). A commonly used heuristic approach

for selecting a pointwise estimate is to pick out a value of k corresponding to the first stable

part of the plot [see, e.g., Section 3 in de Haan and Ferreira (2006)]. Here, a stable region

appears for k from 150 up to 500, leading to an estimate between 3.73 and 4.12 million. This

estimate does not succeed in exceeding the sample maximum Yn,n “ 4, 518, 420 (indicated

by the horizontal line), which is consistent with the earlier analysis of Beirlant et al. (2004,

p.125 and p.159).

The alternative expectile-based estimator rξ‹
pτ 1npαnq

introduced in Section 6, which estimates

the same VaR qαn ” ξτ 1npαnq as the quantile-based estimator pq‹αn ”
pξ‹
pτ 1npαnq

, is also graphed in

Figure 7 (b) in dashed line. As an asymmetric-least-squares estimator, it is more affected

by the infrequent great claim amounts visualized in the top figure. Its plot indicates a more

conservative risk measure between 3.92 and 4.33 million, over the stable region k P r150, 500s.

Yet, this measure is less severe than the maximal recorded claim amount Yn,n.

An alternative option for measuring risk, which is more capable of extrapolating outside

the range of the available observations, is by using the estimated quantile-ES

zQES
‹

pαnq “
1

k

n
ÿ

i“1

Yi1I pYi ą Yn´k,nq ¨

ˆ

k

npn

˙

pγH

(28)

[see El Methni et al. (2014)]. Its graph shown in Figure 7 (c) in dashed-dotted line indicates

a stable region for k P r150, 500s with an averaged estimate of around 6.13 million, which

is successfully extrapolated beyond the data. The graph of zQES
‹

pαnq is very close to the

plot in solid line of the indirect expectile-based estimator zXES
‹

ppτ 1npαnqq which estimates the

same risk measure XESpτ 1npαnqq ” QESpαnq. In contrast to zXES
‹

ppτ 1npαnqq, which indicates an

averaged risk estimate of around 6.14 million over the stable region k P r150, 500s, both direct

expectile-based estimators ĆXES
‹

ppτ 1npαnqq in dashed line and ĆXES
:

ppτ 1npαnqq in dotted line are

clearly more pessimistic as they rely on the asymmetric-least-squares estimator rξ‹
pτ 1npαnq

. The

averaged values of these pessimistic ES estimates over k P r150, 500s are, respectively, around

6.5 and 6.48 million. They exceed the traditional quantile-ES estimate by 0.37 million.

That eternal maxim of the cautious aunt and misanthropic uncle, “expect the worst, and

you won’t be disappointed” [Bassett et al. (2004)] might thus be transformed into a concrete

calculus via the asymmetric least squares-based VaR and ES estimates.

8.2 MES of three large US financial institutions

We consider the same investment banks as in the studies of Brownlees and Engle (2016)

and Cai et al. (2015), namely Goldman Sachs, Morgan Stanley and T. Rowe Price. For

the three banks, the dataset consists of the loss returns, i.e., the negative log-returns pXiq

on their equity prices at a daily frequency from July 3rd, 2000, to June 30th, 2010. We
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follow the same set-up as in Cai et al. (2015) to extract, for the same time period, daily

loss returns pYiq of a value-weighted market index aggregating three markets: the New York

Stock Exchange, American Express stock exchange and the National Association of Securities

Dealers Automated Quotation system.

Cai et al. (2015) used {QMES
‹

pαnq, as defined in (27), to estimate the quantile-based

MES, QMESpαnq “ EtX|Y ą qY,αnu, where αn “ 1´ 1
n
“ 1´1{2513, with two intermediate

sequences involved in pγX and {QMESpτnq to be chosen in two steps. Instead, we use our

expectile-based method to estimate QMESpαnq ”XMESpτ 1npαnqq “ EtX|Y ą ξY,τ 1npαnqu, with

the same extreme relative frequency αn that corresponds to a once-per-decade systemic event.

We employ the rival estimator {QMES
‹

pαnq with the same intermediate sequence τn “ 1´ k
n

in both pγX and {QMESpτnq. The conditions required by the procedure were already checked

empirically in Cai et al. (2015). It only remains to verify that γY ă
1
2

as it is the case

for γX . This assumption is confirmed by the plot of the Hill estimates of γY against the

sample fraction k (dashed line) in Figure 8 (a). Indeed, the first stable region appears for

k P r70, 100s with an averaged estimate pγY “ 0.35. Hence, by Proposition 5, the estimates
{XMES

‹

pαnq and ČXMES
‹

pαnq are expected to be less extreme than the benchmark values
{QMES

‹

pαnq. This is visualised in Figure 18 in the supplement to this article, where the

three estimates are graphed as functions of k for each bank. As a matter of fact, both
{XMES

‹

pαnq and ČXMES
‹

pαnq estimate the less extreme risk measure XMESpαnq and not the

desired intuitive tail measure XMESpτ 1npαnqq ” QMESpαnq.

The interest here is rather on the composite estimators {XMES
‹

ppτ 1npαnqq and ČXMES
‹

ppτ 1npαnqq,

where {XMES
‹

ppτ 1npαnqq is actually nothing but {QMES
‹

pαnq. The two rival estimates {QMES
‹

pαnq

and ČXMES
‹

ppτ 1npαnqq represent the average daily loss return for a once-per-decade market cri-

sis. They are graphed in Figure 8 (b)-(d) as functions of k for each bank: (b) Goldman Sachs;

(c) Morgan Stanley; (d) T. Rowe Price. The first stable region of the plots (b)-(d) appears,

respectively, for k P r80, 105s, k P r90, 140s and k P r75, 100s. The final estimates based on

averaging the estimates from these stable regions are reported in the left-hand side of Table 1.

It may be seen that both expectile- and quantile-based MES levels for Goldman Sachs and

T. Rowe Price are almost equal. However, the MES levels for Morgan Stanley are largely

higher than those for Goldman Sachs and T. Rowe Price. It may also be noted that the es-

timates {QMES
‹

pαnq, obtained here with a single intermediate sequence, are slightly smaller

than those obtained in Table 1 of Cai et al. (2015) by using two intermediate sequences.

Also, these quantile-based estimates appear to be less conservative than our asymmetric least

squares-based estimates, but not by much: this minor difference can already be visualised

in Figure 8 (b)-(d), where the plots of {QMES
‹

pαnq, in dashed line, and ČXMES
‹

ppτ 1npαnqq, in

solid line, exhibit a very similar evolution for the three banks.

In our theoretical results we do not enter into the important question of serial dependence.
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Daily loss

Bank ČXMES
‹

ppτ 1npαnqq {QMES
‹

pαnq

Goldman Sachs 0.3123 0.3077
Morgan Stanley 0.5622 0.5552
T. Rowe Price 0.3308 0.3098

Weekly loss
ČXMES

‹

ppτ 1npαnqq {QMES
‹

pαnq

0.3423 0.3375
0.6495 0.6641
0.3407 0.3405

Table 1: Expectile- and quantile-based MES of the three investment banks. The second and
third columns report the results based on daily loss returns (n “ 2513 and αn “ 1 ´ 1{n).
The last two columns report the results based on weekly loss returns from the same sample
period (n “ 522 and αn “ 1´ 1{n).

We only consider independent and identically distributed random vectors pX1, Y1q, . . . , pXn, Ynq.

One way to reduce substantially the potential serial dependence in this application is by us-

ing lower frequency data. As suggested by Cai et al. (2015), we choose weekly loss returns

in the same sample period. This results in a sample of size n “ 522. The estimates of γY

and QMESpαnq ” XMESpτ 1npαnqq, with αn “ 1 ´ 1
n
, are displayed in Figure 9 as functions

of k. The averaged estimate pγY “ 0.37 is obtained from the first stable region k P r25, 35s of

the plot (a). The first stable region of the plots (b)-(d) appears, respectively, for k P r27, 36s,

k P r23, 33s and k P r25, 33s. The final results based on averaging the estimates from these

stable regions are reported in the right-hand side of Table 1. They are very similar to those

obtained in Cai et al. (2015) by resorting to two intermediate sequences. Both expectile- and

quantile-based MES estimates are qualitatively robust to the change from daily to weekly

data: they are still almost equal for Goldman Sachs and T. Rowe Price, while almost twice

higher for Morgan Stanley.

There remains a lot to be done, especially on the extension of our expectile-based methods

to a time dynamic setting. Already, Taylor (2008) and Kuan et al. (2009) have initiated

the use of expectiles to estimate VaR and ES in conditional autoregressive expectile models.

The use of expectiles to estimate MES may also work by allowing for dynamics in the

covariance matrix via a multivariate GARCH model, similarly to the quantile-based method

of Brownlees and Engle (2016). From the perspective of extreme values, one way to deal

with the heteroskedasticity present in series of financial returns, similarly to Diebold et

al. (2000), McNeil and Frey (2000) and McNeil et al. (2005, p. 283), is by applying

our method to residuals standardized by GARCH conditional volatility estimates. Also,

similarly to extreme value analysis under mixing conditions in a univariate setting (see, e.g.,

Drees (2000)), our extreme value theorems may work under serial dependence with enlarged

asymptotic variances.
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Figure 3: Root MSE estimates (top panels) and Bias estimates (bottom panels) of rξ‹τ 1npkq{ξτ 1n
(solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k, for the t3 and t5-distributions,
respectively, from left to right.
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Figure 4: Root MSE estimates (top panels) and Bias estimates (bottom panels) of rξ‹τ 1npkq{ξτ 1n
(solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k, for the positive Student t3 and
t5-distributions, respectively, from left to right.
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Figure 5: Root MSE estimates (top panels) and Bias estimates (bottom panels) of
ČXMES

‹

{XMES (solid line) and {XMES
‹

{XMES (dashed line), as functions of k, for the
bivariate t3 and t5-distributions on p0,8q2, respectively, from left to right.
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Figure 7: SOA Group Medical Insurance data. (a) Histogram and scatterplot of the log-

claim amounts. (b) The VaR plots tpk, rξ‹
pτ 1npαnq

pkqquk in dashed line and tpk, pq‹αnpkqquk in

solid line, along with the sample maximum Yn,n in horizontal line. (c) The ES plots

tpk,zXES
‹

kppτ
1
npαnqqquk in solid line, tpk,ĆXES

‹

kppτ
1
npαnqqquk in dashed line, tpk,ĆXES

:

kppτ
1
npαnqqquk

in dotted line, and tpk,zQES
‹

kpαnqquk in dashed-dotted, along with Yn,n in horizontal line.
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Figure 8: (a) Hill estimates pγY based on daily loss returns of market index (dashed), along
with pγX based on daily loss returns of three investment banks: Goldman Sachs (solid), Mor-

gan Stanley (dashed-dotted), T. Rowe Price (dotted). (b)-(d) The estimates {QMES
‹

pαnq

in dashed line and ČXMES
‹

ppτ 1npαnqq in solid line for the three banks, with n “ 2513 and
αn “ 1´ 1{n.
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Figure 9: (a) Hill estimates pγY based on weekly loss returns of market index (dashed), along
with pγX based on weekly loss returns of three investment banks: Goldman Sachs (solid),

Morgan Stanley (dashed-dotted), T. Rowe Price (dotted). (b)-(d) The estimates {QMES
‹

pαnq

in dashed line and ČXMES
‹

ppτ 1npαnqq in solid line for the three banks, with n “ 522 and
αn “ 1´ 1{n.
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