Appendix A A Generalization of the Harsanyi NTU Value to Games with Incomplete Information $\stackrel{k}{\simeq}$

Andrés Salamanca Lugo

Toulouse School of Economics

1. Introduction

The purpose of this supplementary note is to provide detailed computations of the different value allocations presented in the paper.

2. Example 1: A Collective Choice Problem

A value allocation in this example can be uniquely supported by the utility weights $\bar{\lambda} = (\bar{\lambda}_1, \bar{\lambda}_2, \bar{\lambda}_3^H, \bar{\lambda}_3^L) = (1, 1, 9/10, 1/5)$, which correspond to the supporting normal vector to the incentive efficient frontier in the individually rational zone. For these utility weights, the optimal value of the dual variables is $(\bar{\alpha}_1(L \mid H), \bar{\alpha}_1(H \mid L)) = (0, 0)$. Virtual utilities take the form

$$v_i(d, t, \bar{\lambda}, \bar{\alpha}) = u_i(d, t), \quad \forall t \in \{H, L\}, \, \forall i = 1, 2$$

$$v_3(d, H, \bar{\lambda}, \bar{\alpha}) = u_3(d, H)$$

$$v_3(d, L, \bar{\lambda}, \bar{\alpha}) = 2u_3(d, L)$$

Thus, the payoff matrix in the $(\bar{\lambda}, \bar{\alpha})$ -virtual utility game is

(v_1, v_2, v_3)	L	H
$[d_1, d_2, d_3]$	(0, 0, 0)	(0, 0, 0)
$[d_{12}, d_3]$	(5, 5, 0)	(5, 5, 0)
$[d_{13}^1, d_2]$	(0, 0, 10)	(0, 0, 10)
$[d_{13}^3, d_2]$	(10, 0, -10)	(10, 0, 0)
$[d_{23}^2, d_1]$	(0, 0, 10)	(0, 0, 10)
$[d_{23}^{\overline{3}}, d_1]$	(0, 10, -10)	(0, 10, 0)

For any (M or H) bargaining solution, μ_N solves the primal problem for $\overline{\lambda}$. Hence, it maximizes the Lagrangian in (2.3). Then, condition (2.5) implies that

$$W_N(\mu_N, t, \bar{\lambda}, \bar{\alpha}) = \max_{d \in D} \sum_{i \in N} v_i(d, t, \bar{\lambda}, \bar{\alpha}) = 10, \quad \forall t \in \{H, L\}$$
(1)

[☆]This document contains supplementary material to the paper "A Generalization of the Harsanyi NTU Value to Games with Incomplete Information". For publication on-line.

Email address: asalamancal.tse@gmail.com(Andrés Salamanca Lugo)

2.1. The M-Value

Myerson's (1984b) rational threats for coalition $S \subset N$ solve

$$\max_{\mu_{S}\in\mathcal{M}_{S}}\sum_{t\in\{H,L\}}p(t)\sum_{i\in S}v_{i}(\mu_{S},t,\bar{\lambda},\bar{\alpha})$$
(2)

Clearly, $W_{\{i\}}(\mu_{\{i\}}, t, \overline{\lambda}, \overline{\alpha}) = 0$ for every $t \in \{H, L\}$ and every $i \in N$. Let us consider the problem faced by coalition $S = \{i, 3\}$ (i = 1, 2). Notice that, for any mechanism $\mu_{\{i,3\}}$, the expected worth for this coalition is

$$\sum_{t \in \{H,L\}} p(t) \sum_{j \in S} v_j(\mu_{\{i,3\}}, t, \lambda, \alpha) = 9[\mu_{\{i,3\}}(d_{i3}^i \mid H) + \mu_{\{i,3\}}(d_{i3}^3 \mid H)] + \mu_{\{i,3\}}(d_{i3}^i \mid L)$$
(3)

Hence, if we were to maximize (3) subject to $\mu_{\{i,3\}} \in \mathcal{M}_{\{i,3\}}$, an optimal solution should satisfy

$$\mu_{\{i,3\}}(d_{i3}^{i} \mid H) + \mu_{\{i,3\}}(d_{i3}^{i3} \mid H) = \mu_{S}(d_{i3}^{i} \mid L) = 1$$
(4)

Therefore, $W_{\{i,3\}}(\mu_{\{i,3\}}, t, \overline{\lambda}, \overline{\alpha}) = 10$ for all $t \in \{H, L\}$.

Because the members of coalition $\{1, 2\}$ do not have private information, a mechanism for this coalition is simply an element of $\Delta(D_{\{1,2\}}) = \mathcal{M}_{\{1,2\}}$. Then, it is clear that the only rational threat for coalition $\{1, 2\}$ is the mechanism $\mu_{\{1,2\}}(d_{12}) = 1$. Then, $W_{\{1,2\}}(\mu_{\{1,2\}}, t, \overline{\lambda}, \overline{\alpha}) = 10$ for every $t \in \{H, L\}$.

Summarizing, the conditionally transferable virtual utility game is described by

$$\begin{aligned} W_i(\mu_i, t, \lambda, \bar{\alpha}) &= 0, \quad \forall i \in N, \; \forall t \in \{H, L\} \\ W_S(\mu_S, t, \bar{\lambda}, \bar{\alpha}) &= 10, \quad S \subseteq N, S \neq \{i\} \; (i = 1, 2, 3), \; \forall t \in T \end{aligned}$$

Then, $\phi_i(W(\eta, t, \overline{\lambda}, \overline{\alpha})) = \frac{10}{3}$ for all $i \in N$ and $t \in \{H, L\}$. Therefore, a mechanism $\overline{\mu}_N$ satisfies the warrant equations if and only if

$$U(\bar{\mu}_N) = (U_1(\bar{\mu}_N), U_2(\bar{\mu}_N), U_3(\bar{\mu}_N \mid H), U_3(\bar{\mu}_N \mid L))) = \left(\frac{10}{3}, \frac{10}{3}, \frac{5}{3}\right)$$

This allocation is achieved by the incentive efficient mechanism

$$\bar{\mu}_N([d_{12}, d_3] \mid t) = \frac{2}{3}, \ \bar{\mu}_N([d_{23}^2, d_1] \mid t) = \bar{\mu}_N([d_{13}^1, d_2] \mid t) = \frac{1}{6}, \quad \forall t \in \{H, L\}.$$

The allocation $U(\bar{\mu}_N)$ is feasible and by construction it solves the primal for $\bar{\lambda}$. Thus it is the unique (non-degenerated) M-value of this game.

2.2. Coalitionally Incentive Compatible M-Value

Let us consider the game with transferable virtual utility when coalitional threats are required to be incentive compatible. Clearly, rational threats do not change for coalition $\{1, 2\}$, since its members do not face any informational problem.

Now we wonder if there is an incentive compatible mechanism for $\{i, 3\}$ satisfying (4). Incentive constraints for $\{i, 3\}$ are

$$\mu_{\{i,3\}}(d_{i3}^{i} \mid H) \geq \mu_{\{i,3\}}(d_{i3}^{i} \mid L)$$
(5)

$$\mu_{\{i,3\}}(d_{i3}^{i} \mid L) - \mu_{\{i,3\}}(d_{i3}^{i} \mid L) \geq \mu_{\{i,3\}}(d_{i3}^{i} \mid H) - \mu_{\{i,3\}}(d_{i3}^{i} \mid H)$$
(6)

Note that (6) holds for any mechanism satisfying (4). Then (4) and (5) implies $\mu_S(d_{i3}^i \mid H) = 1$. Then the unique incentive compatible rational threat for $\{i, 3\}$ is the mechanism

$$\mu_{\{i,3\}}(d_{i3}^i \mid t) = 1, \quad \forall t \in \{H, L\}$$

Hence, $W_{\{i,3\}}(\mu_{\{i,3\}}, t, \bar{\lambda}, \bar{\alpha}) = 10$ for all $t \in T$. Therefore, the transferable virtual utility game does not change when we require coalitional threats to be incentive compatible. As a consequence, the value allocation continues to be the same. Imposing incentive compatibility on the mechanisms μ_S does not always change the worth of the coalition, because the virtual worth of all coalitions is computed using virtual utilities as determined by the vector $(\bar{\lambda}, \bar{\alpha})$ specified for the grand coalition.

2.3. The H-Value

We compute now our cooperative solution concept. We proceed recursively. When $S = \{i\}$ $(i \in N)$, $W_{\{i\}}(\mu_{\{i\}}, t, \overline{\lambda}, \overline{\alpha}) = 0$ for every $t \in \{H, L\}$. Then, optimal egalitarian threats for coalition $S \subset N$ solve

$$\max_{\mu_{S} \in \mathcal{M}_{S}} \sum_{t \in \{H,L\}} p(t) \sum_{i \in S} v_{i}(\mu_{S}, t, \bar{\lambda}, \bar{\alpha})$$
(7)
s.t.
$$\sum_{t_{-i} \in T_{-i}} p(t_{-i})v_{i}(\mu_{S}, t, \bar{\lambda}, \bar{\alpha}) = \sum_{t_{-i} \in T_{-i}} p(t_{-i})v_{j}(\mu_{S}, t, \bar{\lambda}, \bar{\alpha}), \quad \forall t_{i}, \forall i, j \in S$$

For coalition $S = \{1, 2\}$, problem (7) reduces to

$$\max_{\mu_{\{1,2\}}\in\Delta(D_{\{1,2\}})} \sum_{t\in\{H,L\}} p(t) \sum_{i\in S} v_i(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha})$$

s.t.
$$\sum_{t\in\{H,L\}} p(t)v_1(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}) = \sum_{t\in\{H,L\}} p(t)v_2(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha})$$

Clearly the unique solution to this optimization problem is the mechanism $\mu_{\{1,2\}}(d_{12}) = 1$. Then, $W_{\{1,2\}}(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}) = 10$ for every $t \in \{H, L\}$.

Now consider coalition $S = \{i, 3\}$ (i = 1, 2). Problem (7) reduces to

$$\begin{split} \max_{\mu_{\{i,3\}} \in \mathcal{M}_{\{i,3\}}} & \sum_{t \in \{H,L\}} p(t) \sum_{i \in S} v_i(\mu_{\{i,3\}}, t, \bar{\lambda}, \bar{\alpha}) \\ \text{s.t.} & v_i(\mu_{\{i,3\}}, t, \bar{\lambda}, \bar{\alpha}) = v_3(\mu_{\{i,3\}}, t, \bar{\lambda}, \bar{\alpha}), \quad \forall t \in \{H, L\} \end{split}$$

Notice that

$$v_{i}(\mu_{\{i,3\}}, H, \bar{\lambda}, \bar{\alpha}) = v_{3}(\mu_{\{i,3\}}, H, \bar{\lambda}, \bar{\alpha}) \iff \mu_{\{i,3\}}(d_{i3}^{i} \mid H) = \mu_{\{i,3\}}(d_{i3}^{i} \mid H)$$
(8)

$$v_{i}(\mu_{\{i,3\}}, L, \bar{\lambda}, \bar{\alpha}) = v_{3}(\mu_{\{i,3\}}, L, \bar{\lambda}, \bar{\alpha}) \quad \Leftrightarrow \quad \mu_{\{i,3\}}(d_{i3}^{i} \mid L) = 2\mu_{\{i,3\}}(d_{i3}^{3} \mid L) \tag{9}$$

The unique mechanism for $\{i, 3\}$ satisfying (4), (8) and (9) is

$$\mu_{\{i,3\}}(d_{i3}^i \mid H) = \mu_{\{i,3\}}(d_{i3}^3 \mid H) = \frac{1}{2}, \quad \mu_{\{i,3\}}(d_{i3}^3 \mid L) = 1 - \mu_{\{i,3\}}(d_{i3}^i \mid L) = \frac{1}{3}$$

It is thus the unique optimal egalitarian threat for $\{i, 3\}$. We conclude that $W_{\{i,3\}}(\mu_{\{i,3\}}, H, \bar{\lambda}, \bar{\alpha}) = 10$ and $W_{\{i,3\}}(\mu_{\{i,3\}}, L, \bar{\lambda}, \bar{\alpha}) = \frac{20}{3}$.

Therefore, the Shapley value allocations of the $(\bar{\lambda}, \bar{\alpha})$ -virtual utility game are

$$\phi(W(\eta, H, \bar{\lambda}, \bar{\alpha})) = \left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right) \quad \text{and} \quad \phi(W(\eta, L, \bar{\lambda}, \bar{\alpha})) = \left(\frac{35}{9}, \frac{35}{9}, \frac{20}{9}\right)$$

A mechanism μ_N^* thus satisfies the warrant equations if and only if

$$U(\mu_N^*) = (U_1(\mu_N^*), U_2(\mu_N^*), U_3(\mu_N^* \mid H), U_3(\mu_N^* \mid L))) = \left(\frac{61}{18}, \frac{61}{18}, \frac{60}{18}, \frac{20}{18}\right)$$

This allocation is achieved by the incentive efficient mechanism

$$\mu_N^*([d_{13}^3, d_2^0] \mid H) = \mu_N^*([d_{23}^3, d_1^0] \mid H) = \mu_N^*([d_{23}^2, d_1^0] \mid H) = \frac{1}{3},$$

$$\mu_N^*([d_{12}, d_3^0] \mid L) = 1 - \mu_N^*([d_{23}^2, d_1^0] \mid L) = \frac{7}{9}$$

The allocation $U(\mu_N^*)$ is feasible and by construction it solves the primal for $\overline{\lambda}$. Thus it is the unique H-value of this game.

2.4. Coalitionally Incentive Compatible H-Value

We require now coalitional threats to be incentive compatible. $W_{\{i\}}(\mu_{\{i\}}, t, \bar{\lambda}, \bar{\alpha}) = 0$ $(i \in N)$ for every $t \in \{H, L\}$. Coalition $\{1, 2\}$ does not face any informational problem, then $\mu_{\{1,2\}}(d_{12}) = 1$ is an incentive compatible optimal egalitarian threat for $\{1, 2\}$. We conclude that $W_{\{1,2\}}(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}) = 10$ for every $t \in \{H, L\}$.

Consider a coalition $\{i, 3\}$ (i = 1, 2). When incentive constraints are not imposed, the unique optimal egalitarian threat for this coalition violates the constraint asserting that 3_H must not be tempted to report 3_L ; thus (5) is the only binding incentive constraint. Then an incentive compatible optimal egalitarian threat for $\{i, 3\}$ satisfies (5) (as equality) together with the balanced contributions conditions (8) and (9). The unique mechanism for $\{i, 3\}$ satisfying these requirements is

$$\mu_{\{i,3\}}(d_{i3}^i \mid H) = \mu_{\{i,3\}}(d_{i3}^3 \mid H) = \mu_{\{i,3\}}(d_{i3}^i \mid L) = \frac{1}{2}, \quad \mu_{\{i,3\}}(d_{i3}^3 \mid L) = \mu_{\{i,3\}}([d_i, d_3] \mid L) = \frac{1}{4}$$

Therefore, it is the unique incentive compatible optimal egalitarian threat. The virtual worths for coalition $\{i, 3\}$ are now $W_{\{i,3\}}(\mu_{\{i,3\}}, H, \overline{\lambda}, \overline{\alpha}) = 10$ and $W_{\{i,3\}}(\mu_{\{i,3\}}, L, \overline{\lambda}, \overline{\alpha}) = 5$.

Therefore, the Shapley value allocations of the $(\bar{\lambda}, \bar{\alpha})$ -virtual utility game are

$$\phi(W(\eta, H, \bar{\lambda}, \bar{\alpha})) = \left(\frac{10}{3}, \frac{10}{3}, \frac{10}{3}\right) \text{ and } \phi(W(\eta, L, \bar{\lambda}, \bar{\alpha})) = \left(\frac{25}{6}, \frac{25}{6}, \frac{10}{6}\right)$$

A mechanism μ_N^* thus satisfies the warrant equations if and only if

$$U(\mu_N^*) = (U_1(\mu_N^*), U_2(\mu_N^*), U_3(\mu_N^* \mid H), U_3(\mu_N^* \mid L))) = \left(\frac{41}{12}, \frac{41}{12}, \frac{40}{12}, \frac{10}{12}\right)$$

This allocation is achieved by the incentive efficient mechanism

$$\mu_N^*([d_{13}^3, d_2^0] \mid H) = \mu_N^*([d_{23}^3, d_1^0] \mid H) = \mu_N^*([d_{23}^2, d_1^0] \mid H) = \frac{1}{3},$$

$$\mu_N^*([d_{12}, d_3^0] \mid L) = 1 - \mu_N^*([d_{23}^2, d_1^0] \mid L) = \frac{5}{6}$$

The allocation $U(\mu_N^*)$ is feasible and by construction it solves the primal for $\overline{\lambda}$. Thus it is the unique coalitionally incentive compatible H-value of this game.

3. Example 2: de Clippel's Example

In this game the incentive efficient frontier coincides with an hyperplane with slope $\bar{\lambda} = (\bar{\lambda}_1^H, \bar{\lambda}_1^L, \bar{\lambda}_2, \bar{\lambda}_3) = (4/5, 1/5, 1, 1)$. Hence, a value allocation can only be supported by the utility weights $\bar{\lambda}$. The unique solution of the dual problem for $\bar{\lambda}$ is $(\bar{\alpha}_1(L \mid H), \bar{\alpha}_1(H \mid L)) = (0, 0)$. Virtual utilities thus coincide with real utilities in every state.

A bargaining solution, μ_N , must solve the primal problem for $\bar{\lambda}$. Hence, it maximizes the Lagrangian in (2.3). Then, condition (2.5) implies that $W_N(\mu_N, H, \bar{\lambda}, \bar{\alpha}) = 90$ and $W_N(\mu_N, L, \bar{\lambda}, \bar{\alpha}) = 30$.

3.1. The H-Value

For any coalition $S = \{i\}$ $(i \in N)$, $W_{\{i\}}(\mu_{\{i\}}, t, \overline{\lambda}, \overline{\alpha}) = 0$ for every $t \in \{H, L\}$. Then, optimal egalitarian threats for a two-person coalition solve (7). Clearly, for any coalition $S \subset N$ different from $\{1, 2\}$, we have that $W_S(\mu_S, t, \overline{\lambda}, \overline{\alpha}) = 0$ for all $t \in \{H, L\}$. An optimal egalitarian threat for $\{1, 2\}$ solves

$$\begin{split} \max_{\mu_{\{1,2\}} \in \mathcal{M}_{\{1,2\}}} & \sum_{t \in T_1} p(t) \sum_{i \in S} v_i(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}) \\ \text{s.t.} & v_1(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}) = v_2(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha}), \quad \forall t \in \{H, L\} \end{split}$$

The expected (virtual) worth for this coalition is

$$\sum_{t \in \{H,L\}} p(t) \sum_{j \in S} v_j(\mu_{\{1,2\}}, t, \bar{\lambda}, \bar{\alpha})$$

= 72[$\mu_{\{1,2\}}(d_{12}^1 \mid H) + \mu_{\{1,2\}}(d_{12}^2 \mid H)$] + 6[$\mu_{\{1,2\}}(d_{12}^1 \mid L) + \mu_{\{1,2\}}(d_{12}^2 \mid L)$] (10)

On the other hand,

$$v_1(\mu_{\{1,2\}}, H, \bar{\lambda}, \bar{\alpha}) = v_2(\mu_{\{1,2\}}, H, \bar{\lambda}, \bar{\alpha}) \iff \mu_{\{1,2\}}(d_{12}^1 \mid H) = \mu_{\{1,2\}}(d_{12}^2 \mid H)$$
(11)

$$v_1(\mu_{\{1,2\}}, L, \bar{\lambda}, \bar{\alpha}) = v_2(\mu_{\{1,2\}}, L, \bar{\lambda}, \bar{\alpha}) \quad \Leftrightarrow \quad \mu_{\{1,2\}}(d_{12}^1 \mid L) = 5\mu_{\{1,2\}}(d_{12}^2 \mid L) \tag{12}$$

If we were to maximize (10) subject only to $\mu_{\{1,2\}} \in \mathcal{M}_{\{1,2\}}$, an optimal solution must be of the form

$$\mu_{\{1,2\}}(d_{12}^1 \mid t) + \mu_{\{1,2\}}(d_{12}^2 \mid t) = 1, \quad \forall t \in \{H, L\}$$
(13)

The unique mechanism satisfying (11)-(13) is

$$\mu_{\{1,2\}}(d_{12}^1 \mid H) = \mu_{\{1,2\}}(d_{12}^2 \mid H) = \frac{1}{2}, \quad \mu_{\{1,2\}}(d_{12}^2 \mid L) = 1 - \mu_{\{1,2\}}(d_{12}^1 \mid L) = \frac{1}{6},$$

thus it is the unique optimal egalitarian threat for {1, 2}. Therefore, $W_{\{1,2\}}(\mu_{\{1,2\}}, H, \bar{\lambda}, \bar{\alpha}) = 90$ and $W_{\{1,2\}}(\mu_{\{1,2\}}, L, \bar{\lambda}, \bar{\alpha}) = 30$. We conclude that the Shapley value allocations of the $(\bar{\lambda}, \bar{\alpha})$ -virtual utility game are

$$\phi(W(\eta, H, \bar{\lambda}, \bar{\alpha})) = (45, 45, 0)$$
 and $\phi(W(\eta, L, \bar{\lambda}, \bar{\alpha})) = (15, 15, 0)$

A mechanism μ_N^* thus satisfies the warrant equations if and only if it achieves the utility allocation in (3.2). Hence, (3.2) is the unique H-value.

3.2. Coalitionally Incentive Compatible H-Value

We now require coalitional threats to be incentive compatible. Clearly $W_S(\mu_S, t, \bar{\lambda}, \bar{\alpha})$ does not change for any coalition $S \subset N$ different from $\{1, 2\}$. Incentive constraints for coalition $\{1, 2\}$ are

$$\mu_{\{1,2\}}(d_{12}^1 \mid H) \geq \mu_{\{1,2\}}(d_{12}^1 \mid L)$$
(14)

$$\mu_{\{1,2\}}(d_{12}^1 \mid L) - 2\mu_{\{1,2\}}(d_{12}^2 \mid L) \geq \mu_{\{1,2\}}(d_{12}^1 \mid H) - 2\mu_{\{1,2\}}(d_{12}^2 \mid H)$$
(15)

When incentive constraints are not imposed, the unique optimal egalitarian threat for $\{1, 2\}$ violates the constraint asserting that 1_H must not be tempted to report 1_L ; thus (14) is the only binding incentive constraint. Then an incentive compatible optimal egalitarian threat for $\{1, 2\}$ satisfies (14) (as equality) together with the balanced contributions conditions (11) and (12). Thus, the unique incentive compatible optimal egalitarian threat is the mechanism

$$\mu_{\{1,2\}}(d_{12}^1 \mid H) = \mu_{\{1,2\}}(d_{12}^2 \mid H) = \frac{1}{2},$$

$$\mu_{\{1,2\}}(d_{12}^1 \mid L) = \frac{1}{2}, \quad \mu_{\{1,2\}}(d_{12}^2 \mid L) = \frac{1}{10}, \quad \mu_{\{1,2\}}([d_1, d_2] \mid L) = \frac{2}{5}$$

Hence, the virtual worths for coalition {1,2} are now $W_{\{1,2\}}(\mu_{\{1,2\}}, H, \bar{\lambda}, \bar{\alpha}) = 90$ and $W_{\{1,2\}}(\mu_{\{1,2\}}, L, \bar{\lambda}, \bar{\alpha}) = 18$. The Shapley value allocations corresponding to the $(\bar{\lambda}, \bar{\alpha})$ -virtual utility game are

$$\phi(W(\eta, H, \bar{\lambda}, \bar{\alpha})) = (45, 45, 0)$$
 and $\phi(W(\eta, L, \bar{\lambda}, \bar{\alpha})) = (13, 13, 4)$

A mechanism μ_N^* thus satisfies the warrant equations if and only if

$$U(\mu_N^*) = (U_1(\mu_N^* \mid H), U_1(\mu_N^* \mid L), U_2(\mu_N^*), U_3(\mu_N^*)) = (45, 13, 38.6, 0.8)$$

This allocation is achieved by the incentive efficient mechanism

$$\mu_N^*([d_{12}^1, d_3] \mid H) = \mu_N^*([d_{12}^2, d_1] \mid H) = \frac{1}{2},$$

$$\mu_N^*([d_{12}^1, d_3] \mid L) = \mu_N^*(d_{23} \mid L) = \frac{13}{30} \quad \mu_N^*(d_{32} \mid L) = \frac{2}{15}$$

Hence, $U(\mu_N^*)$ is feasible, and thus it is the unique coalitionally incentive compatible H-value of this game.