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Abstract

The class of quantiles lies at the heart of extreme-value theory and is one of the basic
tools in risk management. The alternative family of expectiles is based on squared
rather than absolute error loss minimization. The flexibility and virtues of these least
squares analogues of quantiles are now well established in actuarial science, econo-
metrics and statistical finance. Both quantiles and expectiles were embedded in the
more general class of M-quantiles as the minimizers of a generic asymmetric convex
loss function. It has been proved very recently that the only M-quantiles that are
coherent risk measures are the expectiles. Also, in contrast to the quantile-based ex-
pected shortfall, expectiles benefit from the important property of elicitability that
corresponds to the existence of a natural backtesting methodology. Least asymmetri-
cally weighted squares estimation of expectiles did not, however, receive yet as much
attention as quantile-based risk measures from the perspective of extreme values. In
this article, we develop new methods for estimating the Value-at-Risk and expected
shortfall measures via high expectiles. We focus on the challenging domain of attrac-
tion of heavy-tailed distributions that better describe the tail structure and sparseness
of most actuarial and financial data. We first estimate the intermediate large expec-
tiles and then extrapolate these estimates to the very far tails. We establish the limit
distributions of the proposed estimators when they are located in the range of the data
or near and even beyond the maximum observed loss. Monte Carlo experiments and
a concrete application are given to illustrate the utility of extremal expectiles as an
efficient instrument of risk protection.

Key words : Asymmetric squared loss; Coherent Value-at-Risk; Expected shortfall; Ex-
pectiles; Extrapolation; Extreme value theory; Heavy tails.

1 Introduction

Growing interest in modern tail analysis has focused on the concept of expectiles. This

concept is a least squares analogue of quantiles, which summarizes the underlying distri-

bution of an asset return or a loss variable Y in much the same way that quantiles do. It

is a natural generalization of the usual mean E(Y ), which bears the same relationship to
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this noncentral moment as the class of quantiles bears to the median. Both expectiles and

quantiles are found to be useful descriptors of the higher and lower regions of the data points

in the same way as the mean and median are related to their central behavior. Koenker and

Bassett (1978) elaborated an absolute error loss minimization framework to define quantiles,

which successfully extends the conventional definition of quantiles as left-continuous inverse

functions. Instead, Newey and Powell (1987) substituted the “absolute deviations” in the

asymmetric loss function of Koenker and Bassett with “squared deviations” to obtain the

population expectile of order τ ∈ (0, 1) as the minimizer

ξτ = argminθ∈RE {ητ (Y − θ)− ητ (Y )} ,

where ητ (y) = |τ − 1I(y ≤ 0)| y2, with 1I(·) being the indicator function. A natural estimator

of ξτ is obtained from a given sample (Y1, . . . , Yn) via minimization of the asymmetrically

weighted squared residuals criterion
∑n

i=1 ητ (Yi − θ) with respect to θ. The first advantage

of this asymmetric least squares approach relative to quantiles lies in the computational

expedience of expectiles using only scoring or iteratively-reweighted least squares (though

efficient linear programming routines are nowadays available for quantiles). The second

advantage is that sample expectiles are more efficient as the weighted least squares rely on

the distance to data points, while empirical quantiles only utilize the information on whether

an observation is below or above the predictor (because they are based on absolute rather

than squared error loss minimization). This benefit in terms of increased efficiency comes at

the price of decreased robustness against outliers. Expectiles are indeed more sensitive to

the magnitude of extremes than quantiles are. Henceforth, the choice between expectiles and

quantiles usually depends on the application at hand, as is the case in the duality between

the mean and the median. In this paper, we shall discuss how extreme expectiles can serve as

a more efficient instrument of risk protection than the traditional quantile-based measures.

The classical mean being a special case (τ = 1
2
) of expectiles, this indicates that the

latter are closer to the notion of explained variance in least squares estimation. This is

of particular relevance in the context of regression analysis. Furthermore, sample expec-

tiles provide a class of smooth curves as functions of the level τ , which is not the case for

sample quantiles. Finally, inference on expectiles is much easier than inference on quan-

tiles. Standard results from M-estimation theory show that, under mild moment conditions,

the empirical τ -expectiles are
√
n-consistent and asymptotically normal with mean ξτ and

variance described in Abdous and Remillard (1995). Unlike expectiles, the estimation of

the asymptotic variance/covariance of quantile estimators involves the tedious “smoothing”

of the values of the density function at those quantiles (i.e., sparsity function). The only

drawback of asymmetric least squares relative to quantiles is that expectiles do not have an
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intuitive interpretation as direct as quantiles. The τ -quantile determines the point below

which 100τ% of the mass of Y lies, while the τ -expectile specifies the position such that the

average distance from the data below that position to itself is 100τ%, i.e.,

τ = E {|Y − ξτ |1I(Y ≤ ξτ )} /E |Y − ξτ | .

This reduced interpretability of expectiles should not be viewed as a serious disadvantage

however, since Efron (1991) already suggested an elegant device to recover quantiles and

their strong intuitive appeal from a set of expectiles. Koenker (1993) derived a first example

of a distribution where the τth expectile and quantile coincide for all τ ∈ (0, 1). Also, Jones

(1994) established that expectiles are precisely the quantiles, not of the original distribution,

but of a related transformation. Abdous and Remillard (1995) proved that quantiles and

expectiles of the same distribution coincide under the hypothesis of weighted-symmetry. In

case of location and scale family of distributions, Yao and Tong (1996) showed that quantiles

are identical to expectiles, but with different orders τ . Very recently, Zou (2014) has extended

Koenker’s argument to more generic distributions for which expectiles and quantiles coincide.

Both families of quantiles and expectiles were embedded in the more general class of

M-quantiles defined by Breckling and Chambers (1988) as the minimizers of a generic asym-

metric convex loss function. This class is one of the basic tools in statistical applications as

has been well reflected by the large amount of recent literature on M-quantiles. The prop-

erties of these statistical M-functionals have been extensively investigated during the last

decade, especially from the point of view of the axiomatic theory of risk measures. In partic-

ular, Bellini (2012) has shown that expectiles with τ ≥ 1
2

are the only M-quantiles that are

isotonic with respect to the increasing convex order, in accordance with the results of Baüerle

and Müller (2006). More recently, Bellini et al. (2014) have proved that the only M-quantiles

that are coherent risk measures are the expectiles. They have also established that expectiles

are more conservative than the usual quantiles for extremely heavy-tailed distributions, and

are robust in the sense of lipschitzianity with respect to the Wasserstein metric. Perhaps

most importantly, expectiles benefit from the prominent property of elicitability that corre-

sponds to the existence of a natural backtesting methodology. The relevance of this property

in connection with backtesting has been addressed by Embrechts and Hofert (2013) while its

relationship with coherency has been very recently discussed in Ziegel (2014). In contrast

to expectiles, the famous expected shortfall, which is the only risk measure that possesses a

highly desirable combination of properties such as coherency, suffers from the vexing defect

of lack of elicitability [Gneiting (2011)]. Expectiles are becoming increasingly popular also

in the econometric literature as can be seen, for instance, from Kuan et al. (2009), De Rossi

and Harvey (2009), Embrechts and Hofert (2013) and the references therein.
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Although least asymmetrically weighted squares estimation of expectiles dates back to

Newey and Powell (1987) in case of linear regression, it recently regained growing interest

in the context of nonparametric, semiparametric and more complex models [see for example

Schulze Waltrup et al. (2015)]. Attention has been, however, restricted to ordinary expectiles

of fixed order τ staying away from the tails of the underlying distribution. The purpose of

this paper is to extend their estimation and asymptotic theory far enough into the tails. This

translates into considering the expectile level τ = τn → 0 or τn → 1 as the sample size n goes

to infinity. We focus on high expectiles ξτn in the challenging maximum domain of attraction

of Pareto-type (heavy-tailed) distributions, where standard expectile estimates at the tails

are often unstable due to data sparsity. Specifically, we first estimate the intermediate

tail expectiles of order τn → 1 such that n(1 − τn) → ∞, and then extrapolate these

estimates to the very extreme expectile level τn which approaches one at an arbitrarily fast

rate in the sense that n(1 − τn) → c, for some constant c. Two such estimation methods

are considered. One is indirect, based on the use of asymptotic approximations involving

intermediate quantiles, and the other relies directly on least asymmetrically weighted squares

estimation. Similar considerations evidently apply to the case τn → 0.

There are many important applications in finance, insurance and econometrics, where

extending expectile estimation and large sample theory further into the tails is a highly

welcome development. Motivating examples include big financial losses, highest bids in auc-

tions, large claims in (re)insurance, and high medical costs, to name a few. To our knowledge,

this is the first work actually joining together the expectile perspective on asymmetric least

squares with the tail restrictions of modern extreme-value theory.

We organize this paper as follows. Section 2 revisits the basic properties of the coher-

ent expectile-based Value-at-Risk (VaR) and discusses its connection with the conventional

quantile-based VaR for high levels of prudentiality. Section 3 presents the two estimation

methods of intermediate and extreme expectiles. Section 4 returns to the connection of ex-

pectiles with the expected shortfall and discusses new interesting developments. Section 5

compares the proposed estimation methods of the expectile-based VaR and expected short-

fall via Monte-Carlo experiments. Section 6 provides a concrete application to the Society

of Actuaries Group Medical Insurance Large Claims Database. Section 7 concludes and the

Appendix collects the proofs.

2 Setting and basic properties

In this paper, the generic financial position Y is a real-valued random variable, and the

available data {Y1, Y2, . . .} are the negative of a series of financial returns. As such, a positive
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value of −Y denotes a profit and a negative value denotes a loss. This implies that the right-

tail of the distribution of Y corresponds to the negative of extreme losses. Following Newey

and Powell (1987), the expectile ξτ of order τ ∈ (0, 1) of the random variable Y is defined

as the minimizer of a piecewise-quadratic loss function. Namely,

ξτ = argminθ∈R
{
τE
[
(Y − θ)2+ − Y 2

+

]
+ (1− τ)E

[
(Y − θ)2− − Y 2

−
]}
,

where y+ := max(y, 0) and y− := max(−y, 0). The first-order necessary condition for opti-

mality related to this problem can be written in several ways such as

τE [(Y − ξτ )+] = (1− τ)E [(Y − ξτ )−]

or equivalently

ξτ − E(Y ) =
2τ − 1

1− τ
E [(Y − ξτ )+] . (1)

These equations have a unique solution for all Y such that E|Y | < ∞ [i.e. Y ∈ L1].

Thenceforth expectiles of a distribution function FY with finite absolute first moment are

well-defined. They summarize the distribution function in much the same way that the

quantiles qτ := F−1Y (τ) = inf{y ∈ R : FY (y) ≥ τ} do. A justification for their use to describe

distributions and their tails may be based on the following collection of elementary properties

[Newey and Powell (1987), Abdous and Remillard (1995) and Bellini et al. (2014)]:

(i) Law invariance: a distribution is uniquely defined by its class of expectiles in the sense

that the laws of two integrable random variables Y ∈ L1 and Ỹ ∈ L1 are identical if

and only if ξY,τ = ξỸ ,τ for every τ ∈ (0, 1).

(ii) Location and scale equivariance: the τth expectile of the linear transformation Ỹ =

a+ bY , where a, b ∈ R, satisfies

ξỸ ,τ =

{
a+ b ξY,τ if b > 0
a+ b ξY,1−τ if b ≤ 0 .

(iii) Constancy: if Y = c with probability 1, for some constant c (i.e. Y is degenerate),

then ξY,τ = c for any τ .

(iv) Strict monotonicity in τ : if τ1 < τ2, with τ1, τ2 ∈ (0, 1), then ξτ1 < ξτ2 . Also, the

function τ 7→ ξτ maps (0, 1) onto its range {y ∈ R : 0 < FY (y) < 1}.

(v) Preserving of stochastic order: if Y ≤ Ỹ with probability 1, then ξY,τ ≤ ξỸ ,τ for any τ .

(vi) Subadditivity: for any variables Y, Ỹ ∈ L1, ξY+Ỹ ,τ ≤ ξY,τ + ξỸ ,τ for all τ ≥ 1
2
. Also,

ξY+Ỹ ,τ ≥ ξY,τ + ξỸ ,τ for all τ ≤ 1
2
.

5



(vii) Lipschitzianity w.r.t. to the Wasserstein distance: for all Y, Ỹ ∈ L1 and all τ ∈ (0, 1),

it holds that
∣∣ξY,τ − ξỸ ,τ ∣∣ ≤ τ̃ · dW (Y, Ỹ ), where τ̃ = max

{
τ

1−τ ,
1−τ
τ

}
and

dW (Y, Ỹ ) =

∫ ∞
−∞
|FY (y)− FỸ (y)|dy =

∫ 1

0

|F−1Y (t)− F−1
Ỹ

(t)|dt.

(viii) Sensitivity vs resistance: expectiles are very sensitive to the magnitude of extreme ob-

servations since their gross-error-sensitivity and rejection points are infinite. Whereas

they are resistant to systematic rounding and grouping since their local-shift-sensitivity

is bounded.

Of interest are the cases τ ↑ 1 and τ ↓ 0, which lead to access, respectively, the upper and

lower endpoints of the distribution support. Like quantiles, expectiles are often argued in the

statistical and econometric literatures to be useful descriptors of the distribution tails [see,

e.g., De Rossi and Harvey (2009), Schulze Waltrup et al. (2015) and the references therein].

The estimation of tail quantities is of utmost importance in extreme-value theory, especially

when the distribution function of interest FY is heavy-tailed. This has been well reflected

by the large amount of literature on related actuarial and financial fields of application

[see, e.g., Coles (2001) and Embrechts et al. (1987)]. A very important problem involves

quantifying the “riskiness” implied by the return distribution under consideration. Greater

variability of the financial position Y and particularly a heavier right-tail of its distribution

FY necessitates a higher capital reserve for portfolios or price of the insurance risk. The

most common risk measure used in banking and finance is the quantile-based Value-at-

Risk (VaR) qτ with a given confidence level τ , which is defined as the τth quantile of the

underlying distribution FY . Recently, Kuan et al. (2009) have suggested and favored the

use of the alternative expectile-based VaR ξτ . Similar to the definition of the quantile-VaR,

this measure is understood as the maximal possible loss within a given holding period under

the prudentiality level τ ≥ 1
2
. It has the important advantage of being coherent as it satisfies

the added property of subadditivity. Also, taking ξτ as a margin (capital requirement), the

level τ can be understood as the relative cost of the expected margin shortfall, as discussed

in Kuan et al. (2009). In contrast, τ defines the tail probability when taking qτ as a margin

requirement.

The sign convention we have chosen for values of Y as the negative of returns implies

that extreme losses correspond to levels τ close to one. Only Bellini et al. (2014) have

described what happens for large expectiles ξτ and how they are linked to extreme quantiles

qτ when FY is attracted to the maximum domain of Pareto-type distributions with tail-index

0 < γ < 1. According to Bingham et al. (1987), such a heavy-tailed distribution function
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can be expressed as

FY (y) = 1− `(y) · y−1/γ (2)

where `(·) is a slowly-varying function at infinity, i.e,

lim
y→∞

`(λy)

`(y)
= 1 for all λ > 0.

The extreme-value index γ tunes the tail heaviness of the distribution function FY . Note also

that the moments of FY do not exist when γ > 1. For most applicational purposes in risk

management, it has been found in previous studies that assumption (2) describes sufficiently

well the tail structure of actuarial and financial data [see Embrechts et al. (2009)]. Writing

F Y := 1− FY , Bellini et al. (2014) have shown in the case γ < 1 that

F Y (ξτ )

F Y (qτ )
∼ γ−1 − 1 as τ → 1, (3)

or equivalently FY (ξτ )
1−τ ∼ γ−1 − 1 as τ → 1. It follows that extreme expectiles ξτ are more

spread than extreme quantiles qτ when γ > 1
2
, whereas ξτ < qτ for all large τ when γ < 1

2
.

The connection (3) between high expectiles and quantiles can actually be refined appreciably

by considering the second-order version of the regular variation condition (2). Assume that

the tail quantile function U of Y , namely the left-continuous inverse of 1/F Y , satisfies the

second-order condition indexed by (γ, ρ, A), that is, there exist γ > 0, ρ ≤ 0, and a function

A(·) converging to 0 at infinity and having constant sign such that

C2(γ, ρ,A) for all x > 0,

lim
t→∞

1

A(t)

[
U(tx)

U(t)
− xγ

]
= xγ

xρ − 1

ρ
.

Here and in what follows, (xρ − 1)/ρ is to be understood as log x when ρ = 0. The inter-

pretation of this so-called extremal value condition can be found in de Haan and Ferreira

(2006) along with abundant examples of commonly used families of continuous distributions

satisfying C2(γ, ρ, A).

Proposition 1. Assume that condition C2(γ, ρ, A) holds, with 0 < γ < 1. Then

F Y (ξτ )

1− τ
= (γ−1 − 1)(1 + ε(τ))

with

ε(τ) = −(γ−1 − 1)γE(Y )

qτ
(1 + o(1))− (γ−1 − 1)−ρ

γ(1− ρ− γ)
A((1− τ)−1)(1 + o(1)) as τ ↑ 1.
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Even more strongly, one can establish the precise bias term in the asymptotic approxi-

mation of (ξτ/qτ ) itself.

Corollary 1. Assume that condition C2(γ, ρ, A) holds, with 0 < γ < 1. If FY is strictly

increasing, then
ξτ
qτ

= (γ−1 − 1)−γ(1 + r(τ))

with

r(τ) =
γ(γ−1 − 1)γE(Y )

qτ
(1 + o(1))

+

(
(γ−1 − 1)−ρ

1− ρ− γ
+

(γ−1 − 1)−ρ − 1

ρ

)
A((1− τ)−1)(1 + o(1)) as τ ↑ 1.

In practice, the tail quantities ξτ , qτ and γ are unknown and only a sample of random

copies (Y1, . . . , Yn) of Y is typically available. While extreme-value estimates of high quantiles

and of the tail-index γ are used widely in applied work and investigated extensively in

theoretical statistics, the problem of estimating ξτ , when τ = τn → 1 at an arbitrary rate as

n→∞, has not been addressed yet. Direct expectile estimates at the tails are incapable of

extrapolating outside the data and are often unstable due to data sparseness. This motivated

us to construct estimators of large expectiles ξτn and derive their limit distributions when

they are located in the range of the data or near and even beyond the sample maximum. We

shall assume the extended regular variation condition C2(γ, ρ, A) to obtain some convergence

results.

3 Estimation of the expectile-VaR

Our main objective in this section is to estimate the expectile-based VaR ξτn for high levels of

prudentiality τn that may approach one at any rate, covering both scenarios of intermediate

expectiles with n(1−τn)→∞ and extreme expectiles with n(1−τn)→ c, for some constant c.

We assume that the available data consists of an n-tuple (Y1, . . . , Yn) of independent copies

of Y , and denote by Y1,n ≤ · · · ≤ Yn,n their ascending order statistics.

3.1 Intermediate expectile estimation

Here, we first use an indirect estimation method based on intermediate quantiles, and then

discuss a direct asymmetric least squares estimation method.
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3.1.1 Estimation based on intermediate quantiles

The rationale for this first method relies on the regular variation property (2) and on the

asymptotic equivalence (3). Given that F Y is regularly varying at infinity with index −1/γ

[i.e. it satisfies, for any x > 0, the property F Y (tx)/F Y (t) → x−1/γ as t → ∞], it follows

that U is regularly varying as well with index γ. Hence, (3) entails that

ξτ
qτ
∼ (γ−1 − 1)−γ as τ ↑ 1.

This is also an immediate consequence of Corollary 1. Therefore, for a suitable estimator γ̂

of γ, we may suggest estimating the intermediate expectile ξτn by

ξ̂τn := (γ̂−1 − 1)−γ̂ q̂τn , where q̂τn := Yn−bn(1−τn)c,n

and b·c stands for the floor function. This estimator parallels the intermediate quantile-VaR

q̂τn and crucially hinges on the estimated tail-index γ̂. Accordingly, it is more conservative

than q̂τn when γ̂ > 1
2
, but more liberal when γ̂ < 1

2
. A simple and widely used estimator of

γ is given by the popular Hill estimator

γ̂H =
1

k

k∑
i=1

log
Yn−i+1,n

Yn−k,n
, (4)

where k = k(n) is an intermediate sequence in the sense that k(n)→∞ such that k(n)/n→
0 as n → ∞. See, e.g., Section 3.2 in de Haan and Ferreira (2006) for a detailed review of

the properties of γ̂H .

Next, we formulate conditions that lead to asymptotic normality for ξ̂τn .

Theorem 1. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

0 < γ < 1, that τn ↑ 1 and n(1− τn)→∞. Assume further that

√
n(1− τn)

(
γ̂ − γ, q̂τn

qτn
− 1

)
d−→ (Γ,Θ). (5)

If
√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then

√
n(1− τn)

(
ξ̂τn
ξτn
− 1

)
d−→ m(γ)Γ + Θ− λ

with m(γ) := (1− γ)−1 − log(γ−1 − 1) and

λ := γ(γ−1 − 1)γE(Y )λ1 +

(
(γ−1 − 1)−ρ

1− ρ− γ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ2.
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When using the Hill estimator (4) of γ with k = n(1−τn), sufficient regularity conditions

for (5) to hold can be found in Theorems 2.4.1 and 3.2.5 in de Haan and Ferreira (2006,

p.50 and p.74). Under these conditions, the limit distribution Γ is then Gaussian with mean

λ2/(1 − ρ) and variance γ2, while Θ is the standard Gaussian distribution. Lemma 3.2.3

in de Haan and Ferreira (2006, p.71) shows that both Gaussian limiting distributions are

independent.

Yet, a drawback to the resulting expectile estimator ξ̂τn lies in its heavy dependency on

the estimated quantile q̂τn and tail-index γ̂ in the sense that the former may inherit the vexing

defects of the latters. Note also that ξ̂τn is asymptotically biased, which is not the case for

q̂τn . Another efficient way of estimating ξτn is by joining together the least asymmetrically

weighted squares estimation with the tail restrictions of modern extreme-value theory.

3.1.2 Asymmetric least squares estimation

Here, we consider estimating the expectile ξτn by its empirical counterpart defined through

ξ̃τn = argminu∈R
1

n

n∑
i=1

ητn(Yi − u),

where ητ (y) = |τ − 1I{y ≤ 0}|y2 is the expectile check function. This minimizer can easily

be calculated by applying the function “expectile” implemented in the R package ‘expectreg’.

It is not hard to verify that

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
= argminu∈Rψn(u) (6)

with ψn(u) :=
1

2ξ2τn

n∑
i=1

ητn(Yi − ξτn − uξτn/
√
n(1− τn))− ητn(Yi − ξτn).

It follows from the continuity and the convexity of ητ that (ψn) is a sequence of almost surely

continuous and convex random functions. A result of Geyer (1996) [see also Theorem 5 in

Knight (1999)] then states that to examine the convergence of the left-hand side term of (6),

it is enough to investigate the asymptotic properties of the sequence (ψn). Built on this idea,

we get the asymptotic normality of the least asymmetrically weighted squares estimator ξ̃τn

by applying standard techniques involving sums of independent and identically distributed

random variables.

Theorem 2. Assume that 0 < γ < 1/2 and τn ↑ 1 is such that n(1− τn)→∞. Then

√
n(1− τn)

(
ξ̃τn
ξτn
− 1

)
d−→ N

(
0, γ2V (γ)

)
with V (γ) =

2γ

1− 2γ
.
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Interestingly, in contrast to Theorem 1, the limit distribution in Theorem 2 is derived

without recourse to either the extended regular variation condition C2(γ, ρ, A) or any bias

condition. The mild assumption 0 < γ < 1/2 suffices. Most importantly, unlike the indirect

expectile estimator ξ̂τn , the new estimator ξ̃τn is asymptotically unbiased and does not hinge

by construction on any particular type of quantile or tail-index estimators. It should also

be clear that its asymptotic variance γ2V (γ) can easily be compared with the asymptotic

variance γ2 obtained in the intermediate quantile estimation [see, e.g., Theorem 2.4.1 in de

Haan and Ferreira (2006)]. Specifically, γ2V (γ) > γ2 for γ > 1/4, and γ2V (γ) < γ2 for

γ < 1/4.

3.2 Extreme expectile estimation

We now discuss the important issue of estimating extreme tail expectiles ξτ ′n , where τ ′n ↑ 1

with n(1− τ ′n)→ c <∞ as n→∞. The basic idea is to extrapolate intermediate expectile

estimates of order τn → 1, such that n(1 − τn) → ∞, to the very extreme level τ ′n. This is

achieved by transferring the elegant device of Weissman (1978) for estimating an extreme

quantile to our expectile setup. Note that, in standard extreme-value theory and related

fields of application, the levels τ ′n and τn are typically set to be τ ′n = 1 − pn for a pn much

smaller than 1
n
, and τn = 1− k(n)

n
for an intermediate sequence of integers k(n).

The model assumption of Pareto-type tails (2) means that U(tx)/U(t)→ xγ as t→∞,

which in turn suggests that

qτ ′n
qτn

=
U((1− τ ′n)−1)

U((1− τn)−1)
≈
(

1− τ ′n
1− τn

)−γ
for τn, τ

′
n satisfying suitable conditions. By (A.3), we arrive at

ξτ ′n
ξτn
≈
(

1− τ ′n
1− τn

)−γ
.

This approximation motivates the following class of ξτ ′n plug-in estimators

ξ
?

τ ′n
≡ ξ

?

τ ′n
(τn) :=

(
1− τ ′n
1− τn

)−γ̂
ξτn (7)

where γ̂ is an estimator of γ, and ξτn stands for either the estimator ξ̂τn or ξ̃τn of the

intermediate expectile ξτn . As a matter of fact, we have

ξ
?

τ ′n

ξτn
=
q̂?τ ′n
q̂τn

(8)
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where q̂τn = Yn−bn(1−τn)c,n is the intermediate quantile estimator introduced above, and q̂?τ ′n
is the extreme Weissman quantile estimator defined as

q̂?τ ′n ≡ q̂?τ ′n(τn) :=

(
1− τ ′n
1− τn

)−γ̂
q̂τn . (9)

By making use of the identity (8), we show that (
ξ
?
τ ′n
ξτ ′n
− 1) has the same limit distribution as

(γ̂ − γ), but with a different scaling.

Theorem 3. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

ρ < 0, that τn, τ ′n ↑ 1, with n(1− τn)→∞ and n(1− τ ′n)→ c <∞. If moreover√
n(1− τn)

(
ξτn
ξτn
− 1

)
d−→ ∆ and

√
n(1− τn)(γ̂ − γ)

d−→ Γ,

with
√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?

τ ′n

ξτ ′n
− 1

)
d−→ Γ.

More specifically, when ξτn in (7) is chosen to be the indirect intermediate expectile

estimator ξ̂τn , the resulting extreme expectile estimator ξ̂?τ ′n := ξ
?

τ ′n
, or equivalently,

ξ̂?τ ′n =

(
1− τ ′n
1− τn

)−γ̂
ξ̂τn

=
(
γ̂−1 − 1

)−γ̂
q̂?τ ′n (10)

satisfies the following general convergence result in view of Theorem 1.

Corollary 2. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

0 < γ < 1 and ρ < 0, and that τn, τ ′n ↑ 1 with n(1 − τn) → ∞ and n(1 − τ ′n) → c < ∞.

Assume further that √
n(1− τn)

(
γ̂ − γ, q̂τn

qτn
− 1

)
d−→ (Γ,Θ).

If
√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n
ξτ ′n
− 1

)
d−→ Γ.

Likewise, Theorem 2 yields the following corollary for the alternative extreme expectile

estimator

ξ̃?τ ′n =

(
1− τ ′n
1− τn

)−γ̂
ξ̃τn , (11)

obtained by substituting the least asymmetrically weighted squares estimator ξ̃τn in place of

ξτn in (7).
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Corollary 3. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

0 < γ < 1/2 and ρ < 0, and that τn, τ ′n ↑ 1 with n(1− τn)→∞ and n(1− τ ′n)→ c <∞. If

in addition √
n(1− τn)(γ̂ − γ)

d−→ Γ

and
√
n(1− τn)q−1τn → λ1 ∈ R,

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′n
ξτ ′n
− 1

)
d−→ Γ.

4 Expectile-based expected shortfall

Due to systemic risk nowadays, the vast majority of market participants (Investors, Risk

managers, Clearing houses, Regulators) are more concerned with the risk exposure to a

catastrophic event that might wipe out an investment in terms of the size of potential losses.

In this respect, the standard quantile-based VaR is often criticized for being too optimistic

since it only depends on the frequency of tail losses and not on their values. Also, in most

studies on actuarial and financial data, the realized values of the tail-index γ were found

to be smaller than 1
2
, indicating thereby that the expectile-based VaR would be even more

liberal than the quantile-VaR in these studies. In contrast, the pessimist market participants

can expect the worst by resorting to the alternative popular expected shortfall measure.

4.1 Basic properties

The expected shortfall (ES) is defined as the conditional expectation of the financial position

Y given that it exceeds the VaR. It is traditionally expressed at the 100(1 − ω)% security

level in terms of the ωth quantile as

QES(ω) := E[Y |Y > qω].

The standard interpretation of −QES(ω) is as the expected return on the portfolio in the

worst 100(1−ω)% of the cases. As pointed out earlier by Taylor (2008), this quantile-based

ES is closely related to expectiles as well. Indeed, the solution

ξτ = argminθ∈RE {ητ (Y − θ)− ητ (Y )}

satisfies (see (1)): (
2τ − 1

1− τ

)
E[(Y − ξτ )1I(Y > ξτ )] = ξτ − E(Y ).

13



The expectile ξτ is then determined by the properties of the expectation of the random

variable Y conditional on Y exceeding ξτ . This suggests the alternative expectile-based ES

XES(τ) := E[Y |Y > ξτ ]

=

(
1 +

1− τ
(2τ − 1)F Y (ξτ )

)
ξτ −

1− τ
(2τ − 1)F Y (ξτ )

E(Y ).

For a continuous distribution, if the τ -expectile ξτ coincides with a ω-quantile qω, we have

F Y (ξτ ) = 1− ω and the classical quantile-based ES can be rewritten as

QES(ω) =

(
1 +

1− τ
(2τ − 1)(1− ω)

)
ξτ −

1− τ
(2τ − 1)(1− ω)

E(Y ).

Before moving to a deeper study of the expectile-ES, we first illustrate its sensitive-

ness to tail events by comparing its relative performance with the quantile-VaR, expectile-

VaR and quantile-ES in the presence of catastrophic loss via Monte Carlo experiments.

Similar to Duffie and Pan (1997) and Kuan et al. (2009), the data are independently

drawn from N (0, 1/
√

1− P ) with probability 1 − P or from N (c, 1/
√
P ) with probabil-

ity P , where P ∈ {0.01, 0.005} and c ∈ [1, 50]. Hence the observations shall be often taken

from N (0, 1/
√

1− P ), but there may be infrequent catastrophic losses drawn from the more

disperse scenario N (c, 1/
√
P ). For each c, we simulate 1000 samples of size n = 1000 and

compute the Monte Carlo averages of the empirical versions of the four risk measures. The

results are graphed in Figure 1, where τ = 0.95, 0.99, from left to right for P = 0.01 (top pan-

els), and τ = 0.99, 0.995, for P = 0.005 (bottom panels). As expected, the expectile-VaR,

the quantile-ES and the expectile-ES are affected by the extreme values from N (c, 1/
√
P )

for all c, whereas the quantile-VaR may not respond properly to such catastrophic losses. In

particular, the expectile-ES is clearly more alert to infrequent disasters as its magnitude is

overall larger than that of all the other risk measures. That eternal maxim of the cautious

aunt and misanthropic uncle, “expect the worst, and you won’t be disappointed” [Bassett et

al. (2004)] can thus be transformed here into a precise computation via the expectile-based

ES, with τ being a natural measure of the degree of pessimism.

As a matter of fact, by considering a Pareto-type distribution FY (·) with tail-index γ < 1

as above, we show that the choice between the expectile-ES and quantile-ES depends on the

value at hand of γ ≶ 1
2

as is the case in the duality between the expectile-VaR and quantile-

VaR. More precisely, the theoretical expectile-ES defined earlier as XES(τ) := E[Y |Y > ξτ ]

is more conservative (respectively, liberal) than the quantile-ES QES(τ) := E[Y |Y > qτ ] for

all τ large enough when γ > 1
2

(respectively, γ < 1
2
).
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Figure 1: The catastrophic loss sensitivity of empirical quantile-VaR (QVaR), expectile-VaR
(XVaR), quantile-ES (QES) and expectile-ES (XES). From left to right and from top to
bottom, we have (P, τ) = (0.01, 0.95), (0.01, 0.99), (0.005, 0.99), (0.005, 0.995).

Proposition 2. Assume that the distribution of Y belongs to the Fréchet maximum domain

of attraction with tail-index γ < 1, or equivalently, that condition (2) holds. Then, as τ → 1,

XES(τ)

QES(τ)
∼ ξτ
qτ

and
XES(τ)

ξτ
∼ 1

1− γ
.

One may also establish, in the spirit of Proposition 1, a precise control of the remain-

der term which arises when using Proposition 2. This will prove to be quite useful when

examining the asymptotic properties of the extreme expectile-ES estimators.

Proposition 3. Assume that condition C2(γ, ρ, A) holds, with 0 < γ < 1. Then

XES(τ)

ξτ
=

1

1− γ

[
1 +

(γ−1 − 1)−ρ

1− ρ− γ
A((1− τ)−1)(1 + o(1)) + o(q−1τ )

]
as τ ↑ 1.
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An influential paper in the literature by Artzner et al. (1999) provides an axiomatic

foundation for coherent risk measures. Like the expectile-VaR, the ES satisfies all of their

requirements (Translation invariance, Monotonicity, Subadditivity, and Positive homogene-

ity). However, unlike the expectile-VaR, the ES is not elicitable [Gneiting (2011), Ziegel

(2014)]. The elicitability corresponds to the existence of a natural backtesting methodology,

which allows to validate a given estimation procedure for a risk measure on historical data.

In spite of the debate about the financial relevance of the elicitability property, a remarkable

property which follows from Propositions 2 and 3 is that the pessimistic ES risk measure

XES(τ) is asymptotically proportional to the elicitable expectile-VaR ξτ . This connection

can potentially be used to achieve the elicitability property for the desired large values of τ .

4.2 Estimation and asymptotics

According to Proposition 2, in the challenging maximum domain of attraction of Pareto-type

distributions with tail-index γ < 1, the expectile-based ES is definitely more sensitive to the

magnitude of the right heavy tails than is the expectile-based VaR, as τ → 1. Typically,

financial institutions and insurance companies are interested in the extreme region τ = τ ′n ↑ 1,

with τ ′n being much larger than (1− 1
n
). The asymptotic equivalence XES(τ ′n) ∼ (1−γ)−1ξτ ′n ,

established in Proposition 2, suggests the following estimators of the expectile-ES:

X̂ES
?
(τ ′n) = (1− γ̂)−1 · ξ̂?τ ′n and X̃ES

?
(τ ′n) = (1− γ̂)−1 · ξ̃?τ ′n (12)

where ξ̂?τ ′n and ξ̃?τ ′n are the extreme expectile estimators defined above in (10)-(11), and γ̂ is an

estimator of γ. Another option motivated by the second asymptotic equivalence XES(τ ′n) ∼
ξτ ′n
qτ ′n
·QES(τ ′n) would be to estimate XES(τ ′n) by

X̂ES
†
(τ ′n) = ξ̂?τ ′n ·

Q̂ES
?
(τ ′n)

q̂?τ ′n
or X̃ES

†
(τ ′n) = ξ̃?τ ′n ·

Q̂ES
?
(τ ′n)

q̂?τ ′n
(13)

for a suitable estimator Q̂ES
?
(τ ′n) of QES(τ ′n) [see, e.g., El Methni et al. (2014)], with q̂?τ ′n

being the extreme Weissman quantile estimator defined in (9). Our experience with real and

simulated data indicates, however, that the estimates X̂ES
?
(τ ′n) and X̂ES

†
(τ ′n) [respectively,

X̃ES
?
(τ ′n) and X̃ES

†
(τ ′n)] point toward very similar results. We therefore restrict our theo-

retical treatment to the first versions given in (12). Our first asymptotic result is for the

extreme XES estimator X̂ES
?
(τ ′n):

Corollary 4. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

0 < γ < 1 and ρ < 0, and that τn, τ ′n ↑ 1 with n(1 − τn) → ∞ and n(1 − τ ′n) → c < ∞.
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Assume further that √
n(1− τn)

(
γ̂ − γ, q̂τn

qτn
− 1

)
d−→ (Γ,Θ).

If
√
n(1− τn)q−1τn → λ1 ∈ R and

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̂ES

?
(τ ′n)

XES(τ ′n)
− 1

)
d−→ Γ.

In what concerns the asymmetric least squares type of estimator X̃ES
?
(τ ′n), we have the

following result.

Corollary 5. Assume that FY is strictly increasing, that condition C2(γ, ρ, A) holds with

0 < γ < 1/2 and ρ < 0, and that τn, τ ′n ↑ 1 with n(1− τn)→∞ and n(1− τ ′n)→ c <∞. If

in addition √
n(1− τn)(γ̂ − γ)

d−→ Γ

and
√
n(1− τn)q−1τn → λ1 ∈ R,

√
n(1− τn)A((1− τn)−1)→ λ2 ∈ R, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
X̃ES

?
(τ ′n)

XES(τ ′n)
− 1

)
d−→ Γ.

Both results are derived by noticing that, on the one hand, the extreme expectile estima-

tors ξ̂?τ ′n and ξ̃?τ ′n converge at a slower rate than the estimator γ̂ in view of Corollaries 2 and 3.

On the other hand, the nonrandom remainder term coming from the use of Proposition 2

can be controlled by applying Proposition 3, so detailed proofs are omitted.

5 Some simulation evidence

This section provides Monte-Carlo evidence that the direct estimation method is more effi-

cient relative to the indirect method. Recall that the direct type estimator ξ̃?τ ′n is obtained

via least asymmetrically weighted squares (LAWS) estimation, while the indirect type es-

timator ξ̂?τ ′n results from a full plug-in procedure based on an asymptotic equivalence with

intermediate quantiles.

To evaluate finite-sample performance of the presented extreme expectile estimators,

we have considered 10, 000 replications for samples of size 100 and 1000 simulated from

various Student’s t-scenarios: t3, t5, t7 and t9. The t5, t7 and t9-distributions fit heavy-tailed

returns from financial market variables rather well in the case of independent and identically

distributed data. However, the t3-distribution may be viewed as a violent model of the

empirical distribution of returns since its tails are too heavy [see, e.g., Tsay (2002)].
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We used in all our simulations the Hill estimator of the tail-index γ, the extreme level τ ′n =

0.995 for n = 100 and τ ′n = 0.9994 for n = 1000. The corresponding true extreme expectiles

ξτ ′n can be calculated by the existing function “et(τ ′n, df)” in the R package ‘expectreg’. In

what concerns the intermediate levels τn involved in both estimators ξ̃?τ ′n ≡ ξ̃?τ ′n(τn) and

ξ̂?τ ′n ≡ ξ̂?τ ′n(τn), we used the same considerations as in Ferreira et al. (2003). Namely, they

always considered τn = 1− k
n

with the range of intermediate integers k, say, from log(n1−ε)

to n/ log(n1−ε), where ε = 0.1 [this restriction allows to reject too small values or those

very near n1−ε]. The value k can actually be viewed as the effective sample size for tail

extrapolation. A larger k leads to estimators with more bias, while smaller k results in

higher variance.

Figure 2 gives the root-MSE estimates for the Student’s t-models, while Figure 3 gives the

bias estimates for the same models. Each figure displays the evolution of the obtained Monte-

Carlo results, for the two normalized estimators ξ̃?τ ′n(k)/ξτ ′n and ξ̂?τ ′n(k)/ξτ ′n , as functions of

the sample fraction k. Table 1 reports the root-MSE and bias estimates obtained by using

for each estimator the optimal value of k minimizing its MSE.

Our tentative conclusion from this exercise is that the indirect estimator ξ̂?τ ′n has a harder

time with small samples, and this can be compensated by taking larger samples. Indeed,

for n = 100, the direct estimator ξ̃?τ ′n performs better than ξ̂?τ ′n in terms of both MSE and

bias, whatever the thickness of the tails. Also, in contrast to the direct estimator’s plot,

the indirect one exhibits more volatility. In what concerns n = 1000, it seems that ξ̂?τ ′n is

superior to ξ̃?τ ′n only in terms of MSE for slightly heavy tails (i.e. df = 7, 9), whereas the

accuracy of ξ̃?τ ′n is more respectable for heavier tails (i.e. df = 3, 5), as can be seen from

Table 1. It should be, however, clear that even in the favorable case to ξ̂?τ ′n , where n = 1000

and df ∈ {7, 9}, the estimator ξ̃?τ ′n has actually almost overall a smaller MSE except for a

very small zone of values of k, as can be seen from Figure 2 (bottom-right panels). Due to

the tightness of that zone, the detection of the optimal k which minimizes the MSE of ξ̂?τ ′n
is hard to manage in practice. It may also be seen that most of the error is due to variance,

the squared bias being much smaller in all cases. It is interesting that in almost all cases

the bias was positive. This may be explained by the sensitivity of high expectiles to the

magnitude of heavy tails, since they are based on “squared” error loss minimization.

We have also undertaken simulation experiments to evaluate the finite-sample perfor-

mance of the presented expectile-ES estimators X̂ES
?
(τ ′n), X̃ES

?
(τ ′n), X̂ES

†
(τ ′n) and X̃ES

†
(τ ′n).

The experiments all employed the same family of Student’s t-distributions as before. The

lessons were similar to those from the expectile-VaR setting, hence the results are not

reported here. It may also be noticed that the Monte-Carlo estimates corresponding to

X̂ES
?
(τ ′n) and X̂ES

†
(τ ′n) [respectively, X̃ES

?
(τ ′n) and X̃ES

†
(τ ′n)] are very similar.
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Figure 2: Root MSE estimates for the t3, t5, t7 and t9-distributions, respectively, from left to
right. The sample size n = 100 (top panels) and n = 1000 (bottom panels).

n = 100
RMSE BIAS

df ξ̃?
τ ′n

ξ̂?
τ ′n

ξ̃?
τ ′n

ξ̂?
τ ′n

3 1.5010 47.9486 0.4888 1.7107
5 0.5963 2.9132 0.1253 0.4139
7 0.4385 0.8001 0.0797 0.2486
9 0.3753 0.6200 0.0579 0.1685

n = 1000
RMSE BIAS

df ξ̃?
τ ′n

ξ̂?
τ ′n

ξ̃?
τ ′n

ξ̂?
τ ′n

3 0.4809 0.5403 0.2080 0.2599
5 0.2867 0.2981 0.0816 0.1088
7 0.2172 0.2119 0.0666 0.0629
9 0.1908 0.1781 0.0271 0.0440

Table 1: Monte-Carlo results obtained for the optimal sample fraction k minimizing the
MSE of each estimator.

6 Application: SOA Group Medical Insurance data

The Society of Actuaries (SOA) Group Medical Insurance Large Claims Database records

all the claim amounts exceeding 25,000 USD over the period 1991-92. As in Beirlant et al.

(2004), we only deal here with the 75,789 claims for 1991. The histogram shown in Figure

4 (top) gives evidence of an important right-skewness. Accordingly, nothing guarantees

that the future does not hold some unexpected higher claim amounts. Insurance companies
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Figure 3: Bias estimates for the t3, t5, t7 and t9-distributions, respectively, from left to right.
The sample size n = 100 (top panels) and n = 1000 (bottom panels).

are then interested in estimating the worst tail value of the corresponding loss severity

distribution. One way of measuring this value at risk is by considering the Weissman quantile

estimate q̂?1−pn = Yn−k,n

(
k
npn

)γ̂H
as described in (9), where γ̂H is the Hill estimator defined

in (4), with τ ′n = 1− pn and τn = 1− k
n
. Insurers typically are interested in pn = 1

100,000
< 1

n
,

that is, in an estimate of the claim amount that will be exceeded (on average) only once in

100,000 cases. Figure 4 (bottom) shows the quantile-VaR estimates q̂?1−pn against the sample

fraction k (rainbow curve). A commonly used heuristic approach for selecting a pointwise

estimate is to pick out a value of k corresponding to the first stable part of the plot [see,

e.g., Section 3 in de Haan and Ferreira (2006)]. Here, a stable region appears for k from 150

up to 500, leading to an estimate between 3.73 and 4.12 million. This result is consistent

with the earlier analysis of Beirlant et al. (2004, p.125 and p.159), but it does not succeed

in exceeding the sample maximum Yn,n = 4, 518, 420 (indicated by the horizontal pink line).

Also, we would like to comment on the effect of γ̂H on q̂?1−pn . This Hill estimate of the

extreme-value index γ seems to mainly vary within the interval [0.27, 0.43]. Its effect on
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q̂?1−pn is highlighted by a colour-scheme, ranging from dark red (low γ̂H) to dark violet (high

γ̂H).

Given that γ̂H < 1
2
, the proposed “indirect” estimate ξ̂?1−pn of the alternative expectile-

based VaR, described in (10), is by construction more liberal than the quantile-VaR q̂?1−pn .

Its plot graphed in Figure 4 (bottom) in yellow indicates a more optimistic VaR between

3.02 and 3.40 million, for k ranging from 150 up to 500.

The “direct” asymmetric-least-squares based estimator ξ̃?1−pn of the expectile-VaR, de-

fined in (11), is also displayed in the same figure in orange. It is more liberal than the

quantile-VaR q̂?1−pn as well, but is more conservative than the indirect version ξ̂?1−pn . It

varies between 3.18 and 3.57 million over k ∈ {150, . . . , 500}.
Another alternative option for measuring risk, which is more capable of extrapolating

outside the range of the available observations, is by using the estimated quantile-ES

Q̂ES
?
(1− pn) =

1

k

n∑
i=1

Yi1I (Yi > Yn−k,n) ·
(

k

npn

)γ̂H
[see El Methni et al. (2014)]. Its graph shown in Figure 4 (bottom) in black line indicates

a stable region for k ranging from 150 up to 500 with an averaged estimate of around 6.13

million, which is successfully extrapolated beyond the data but seems unrealistically high

for the SOA.

To summarize, both estimates ξ̂?1−pn and ξ̃?1−pn of the expectile-VaR are too liberal, while

the quantile-ES Q̂ES
?
(1−pn) is too conservative. Although the quantile-VaR q̂?1−pn is less lib-

eral, it remains too optimistic as it does not even succeed in exceeding the sample maximum.

Our proposed plug-in estimates X̂ES
?
(1−pn), X̃ES

?
(1−pn), X̂ES

†
(1−pn) and X̃ES

†
(1−pn)

of the alternative expectile-based expected shortfall, described in (12) and (13), steer an

advantageous middle course between the optimism of the ξ̂?1−pn , ξ̃?1−pn and q̂?1−pn values at

risk and the excessive pessimism of the quantile-based expected shortfall Q̂ES
?
(1−pn). The

two estimates X̂ES
?
(1 − pn) and X̂ES

†
(1 − pn), based on the indirect expectile-VaR ξ̂?1−pn

and graphed in Figure 4 (bottom) in gray and red lines, indicate a more realistic averaged

risk estimate of around 5 million, for k from 150 up to 500, which might be good news

to both insurers and pessimist regulators. The remaining two estimates X̃ES
?
(1 − pn) and

X̃ES
†
(1 − pn), based on the direct expectile-VaR ξ̃?1−pn and shown in Figure 4 (bottom) in

cyan and magenta lines, indicate a slightly higher averaged risk estimate of around 5.30

million, for k ∈ {150, . . . , 500}.
A popular approach to the estimation of the optimal sample fraction k needed to apply the

Hill extreme-value index and Weissman quantile estimators is by minimizing the asymptotic

mean squared error of γ̂H and q̂?1−pn . We refer to Beirlant et al. (2004, p.125) for a thorough

discussion of the rationale for this adaptive selection of the tail sample fraction. They arrive
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in this way at the value k̂ = 486 which minimizes the estimated asymptotic mean squared

error of q̂?1−pn . The corresponding Weissman quantile-based VaR and ES estimates are

q̂?1−pn = 3, 807, 575 , Q̂ES
?
(1− pn) = 5, 946, 019.

For our comparison purposes, we find by using the same optimal sample fraction k̂ that

ξ̂?1−pn = 3, 092, 991 , ξ̃?1−pn = 3, 294, 602

X̂ES
?
(1− pn) = 4, 827, 261 , X̂ES

†
(1− pn) = 4, 830, 104

X̃ES
?
(1− pn) = 5, 141, 918 , X̃ES

†
(1− pn) = 5, 144, 946.

We also get the tail-index estimate γ̂H(k̂) = 0.3593.

If the political decision is to use the quantile-ES to determine the capital reserve, in-

surance companies would be motivated to merge in order to diminish the amount of re-

quired capital that is of the order of 5, 946, 019 USD. This incentive to merge may create

non-competitive effects and increase the risk. This may not occur, however, if the less pes-

simistic expectile-ES were favored, since it only requires the amount of 4, 830, 104 USD or at

most 5, 144, 946 USD as a hedge against extreme risks. This exceeds the sample maximum

Yn,n = 4, 518, 420 USD, but not by much compared to the quantile-ES.

In contrast, if the political decision is to favor the use of a VaR in order to avoid changing

severely the order of magnitude of the capital requirements, then the expectile-based VaR is

the winner in terms of coherency, but also a priori psychologically in terms of its optimism

or, say, realism in certain sectors of activity of the financial industry. Extreme expectile

estimators are more liberal than their quantile analogues, since they are by construction less

spread in the usual encountered practical settings where the tail-index estimate γ̂ < 1
2
.

7 Conclusion

The search of efficient instruments of risk protection is of utmost importance in actuarial and

portfolio allocation problems. Expectiles are used here to estimate the underlying concepts of

Value-at-Risk and expected shortfall from the perspective of modern extreme-value theory.

The first estimation method enables the usage of advanced high quantile and tail-index

estimators. The second proposed method joins together the least asymmetrically weighted

squares (LAWS) estimation with the tail restrictions of extreme-value theory. Simulation

evidence suggests that the LAWS estimation is more efficient relative to the first method.

The presented methodology is successfully applied in practice to the Society of Actuaries

Group Medical Insurance data. Compared with the conventional quantile-based VaR and
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Figure 4: SOA Group Medical Insurance data. (top) Histogram and scatterplot of the
log-claim amounts; (bottom) The expectile-based VaR and ES plots {(k, ξ̂?1−pn(k))}k in yel-

low, {(k, ξ̃?1−pn(k))}k in orange, {(k, X̂ES
?

k(1 − pn))}k in gray, {(k, X̂ES
†
k(1 − pn))}k in red,

{(k, X̃ES
?

k(1− pn))}k in cyan and {(k, X̃ES
†
k(1− pn))}k in magenta, along with the quantile-

based VaR and ES plots {(k, q̂?1−pn(k))}k as rainbow curve and {(k, Q̂ES
?

k(1−pn))}k in black.
The sample maximum Yn,n is indicated by the horizontal pink line.
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expected shortfall, we favor the use of the expectile-based versions that afford more realistic

risk estimates in terms of both liberalism and conservatism, respectively.

The proposed estimation methods all employ an estimator of the tail-index γ. Typically,

the existing estimators of γ only rely on the use of quantiles. One way to extend our results

is by developing a new estimator of γ completely based on expectiles themselves rather

than quantiles. Another topic of interest for future research is to explore the estimation of

extreme conditional expectiles for understanding the implications of regression data on their

related risk measures. Also, we do not discuss the extensions of our theorems to a time

dynamic setting such as, for instance, forecasting the expected shortfall in the conditional

autoregressive expectile model introduced by Taylor (2008), but they are of genuine interest.

Appendix

For notational simplicity, let F = F Y be the survival function of Y . It is a consequence of

Theorem 2.3.9 in de Haan and Ferreira (2006, p.48) that condition C2(γ, ρ, A) entails the

following second-order condition for the related survival function F :

∀x > 0, lim
t→∞

1

A(1/F (t))

[
F (tx)

F (t)
− x−1/γ

]
= x−1/γ

xρ/γ − 1

γρ
. (A.1)

Proof of Proposition 1. We start by noticing that equation (1) entails, for τ sufficiently

large so that ξτ > 0,

1− E(Y )

ξτ
=

2τ − 1

1− τ
E
([

Y

ξτ
− 1

]
1I{Y/ξτ ≥ 1}

)
. (A.2)

An integration by parts yields

E
([

Y

ξτ
− 1

]
1I{Y/ξτ ≥ 1}

)
=

∫ ∞
1

F (ξτx)dx

=F (ξτ )

(
γ

1− γ
+ A

(
1

F (ξτ )

)∫ +∞

1

1

A(1/F (ξτ ))

[
F (ξτx)

F (ξτ )
− x−1/γ

]
dx

)
.

Recall that since Y has an infinite right endpoint, ξτ → ∞ as τ ↑ 1; using together equa-

tion (A.1), Theorem 2.3.9 in de Haan and Ferreira (2006) and a uniform inequality such as

Theorem B.3.10 in de Haan and Ferreira (2006) applied to the function F , we get after some

easy computations

E
([

Y

ξτ
− 1

]
1I{Y/ξτ ≥ 1}

)
= F (ξτ )

(
γ

1− γ
+ A

(
1

F (ξτ )

)
1

(1− γ)(1− ρ− γ)
(1 + o(1))

)
.

Plugging this equality into (A.2), we thus get

F (ξτ )

1− τ
= (γ−1 − 1)

(
1− E(Y )

ξτ

)
1

2τ − 1

(
1 + A

(
1

F (ξτ )

)
1

γ(1− ρ− γ)
(1 + o(1))

)−1
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and therefore

F (ξτ )

1− τ
= (γ−1−1)

(
1− E(Y )

ξτ
(1 + o(1)) + 2(1− τ)(1 + o(1))− A

(
1

F (ξτ )

)
1

γ(1− ρ− γ)
(1 + o(1))

)
.

In particular, as noted in Bellini et al. (2014):

F (ξτ )

1− τ
→ (γ−1 − 1) and thus ξτ =

(
γ−1 − 1

)−γ
qτ (1 + o(1)) (A.3)

as τ ↑ 1. A consequence of this is that (1− τ)ξτ = O((1− τ)qτ )→ 0 as τ ↑ 1 and so

F (ξτ )

1− τ
= (γ−1 − 1)

(
1− (γ−1 − 1)γE(Y )

qτ
(1 + o(1))− (γ−1 − 1)−ρ

γ(1− ρ− γ)
A((1− τ)−1)(1 + o(1))

)
where the regular variation property of |A| was used. This completes the proof.

The key element in the proof of Corollary 1 is to apply Proposition 1 in conjunction with

the following generic result.

Lemma 1. Assume that v, V are such that v(τ) ↑ ∞ and V (τ) ↓ 0, as τ ↑ 1, and there

exists B > 0 such that
V (τ)

F (v(τ))
= B(1 + e(τ))

where e(τ)→ 0 as τ ↑ 1. If condition C2(γ, ρ, A) holds, with γ > 0 and F strictly increasing,

then

v(τ)

U(1/V (τ))
= Bγ

(
1 + γe(τ)(1 + o(1)) +

Bρ − 1

ρ
A(1/V (τ))(1 + o(1))

)
as τ ↑ 1.

Proof of Lemma 1. Apply the function U to get

v(τ)

U(1/V (τ))
−Bγ =

U(B[1 + e(τ)]/V (τ))

U(1/V (τ))
−Bγ.

By Theorem 2.3.9 in de Haan and Ferreira (2006), we may find a function A0, equivalent to

A at infinity, such that for any ε > 0, there is t0(ε) > 1 such that for t, tx ≥ t0(ε),∣∣∣∣ 1

A0(t)

(
U(tx)

U(t)
− xγ

)
− xγ x

ρ − 1

ρ

∣∣∣∣ ≤ ε

2Bγ+ε
xγ+ρ max(xε, x−ε).

Thus, for τ sufficiently close to 1, using this inequality with t = 1/V (τ) and x = B[1 + e(τ)]

gives∣∣∣∣ 1

A0(1/V (τ))

(
U(B[1 + e(τ)]/V (τ))

U(1/V (τ))
−Bγ(1 + e(τ))γ

)
−Bγ(1 + e(τ))γ

Bρ(1 + e(τ))ρ − 1

ρ

∣∣∣∣ ≤ ε

and therefore

1

A0(1/V (τ))

(
U(B[1 + e(τ)]/V (τ))

U(1/V (τ))
−Bγ(1 + e(τ))γ

)
→ BγB

ρ − 1

ρ
as τ ↑ 1.

The desired result follows by a simple first-order Taylor expansion.
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Proof of Corollary 1. We have in view of Proposition 1 that

1− τ
F (ξτ )

= (γ−1 − 1)−1(1 + e(τ))

with

e(τ) =
(γ−1 − 1)γE(Y )

qτ
(1 + o(1)) +

(γ−1 − 1)−ρ

γ(1− ρ− γ)
A((1− τ)−1)(1 + o(1)) as τ ↑ 1.

Using Lemma 1 and recalling that U(1/(1− τ)) = qτ gives the result.

Proof of Theorem 1. The consistency statement is an immediate consequence of the

convergence

Yn−bn(1−τn)c,n
qτn

=
Yn−bn(1−τn)c,n
U((1− τn)−1)

=
Yn−bn(1−τn)c,n

U(n/bn(1− τn)c)
(1 + o(1))

P−→ 1

which follows from the regular variation of U and Corollary 2.2.2 in de Haan and Ferreira

(2006, p.41). The asymptotic distribution is obtained by writing

ξ̂τn
ξτn
− 1 =

(
(γ̂−1 − 1)−γ̂

(γ−1 − 1)−γ
− 1

)
+

(
q̂τn
qτn
− 1

)
(1 + oP(1))− r(τn)(1 + oP(1)),

where
√
n(1− τn)r(τn)→ λ in view of Corollary 1. Since

∀x ∈ (0, 1),
d

dx

(
(x−1 − 1)−x

)
= (x−1 − 1)−x

{
(1− x)−1 − log(x−1 − 1)

}
,

the delta-method entails√
n(1− τn)

(
(γ̂−1 − 1)−γ̂

(γ−1 − 1)−γ
− 1

)
d−→ [(1− γ)−1 − log(γ−1 − 1)]Γ = m(γ)Γ, (A.4)

from which the result easily follows.

Before moving to the proof of Theorem 2, we shall show a couple of useful preliminary

results. The next two lemmas are entirely based on non-probabilistic arguments. In the first

one, we use the fact that ητ (y)/2 is continuously differentiable with derivative

ϕτ (y) := |τ − 1I{y ≤ 0}|y.

Lemma 2. For all x, y ∈ R and τ ∈ (0, 1),

1

2
(ητ (x− y)− ητ (x)) = −yϕτ (x)−

∫ y

0

(ϕτ (x− t)− ϕτ (x))dt.

Proof of Lemma 2. The result is a simple consequence of the equality

1

2
(ητ (x− y)− ητ (x)) =

∫ x−y

x

ϕτ (s)ds = −
∫ y

0

ϕτ (x− t)dt

obtained by the change of variables s = x− t.
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The next result gives a Lipschitz property for the derivative ϕτ .

Lemma 3. For all x, h ∈ R and τ ∈ (0, 1), we have

ϕτ (x− h)− ϕτ (x) = −h|τ − 1I{x ≤ 0}|+ (2τ − 1)(x− h)(1I{x ≤ h} − 1I{x ≤ 0}),

and in particular |ϕτ (x− h)− ϕτ (x)| ≤ |h|(1− τ + 21I{x > min(h, 0)}).

Proof of Lemma 3. Write

ϕτ (x− h)− ϕτ (x) = −h|τ − 1I{x ≤ 0}|+ (x− h)(|τ − 1I{x ≤ h}| − |τ − 1I{x ≤ 0}|).

Besides,

|τ − 1I{x ≤ h}| − |τ − 1I{x ≤ 0}| = τ(1I{x ≤ h} − 1I{x ≤ 0}) + (1− τ)(1I{x > h} − 1I{x > 0})

= (2τ − 1)(1I{x ≤ h} − 1I{x ≤ 0}),

from which the desired equality follows. The required bound on |ϕτ (x− h)− ϕτ (x)| is then

obtained by noting that

|τ − 1I{x ≤ 0}| = τ1I{x > 0}+ (1− τ)1I{x ≤ 0} ≤ 1− τ + 1I{x > 0} (A.5)

and

|x− h||1I{x ≤ h} − 1I{x ≤ 0}| ≤ |h||1I{x ≤ h} − 1I{x ≤ 0}| ≤ |h|1I{x > min(h, 0)}. (A.6)

Combining (A.5) and (A.6) completes the proof.

The last result will be useful to derive the limit distribution of the objective function

ψn(u) described in (6).

Lemma 4. Pick a > 1 and assume that 0 < γ < 1/a. Then

E(|ϕτ (Y − ξτ )|a) = aξaτ (1− τ)(γ−1 − 1)B(a, γ−1 − a)(1 + o(1)) as τ ↑ 1,

where B(s, t) =
∫ 1

0
us−1(1− u)t−1du is the Beta function evaluated at (s, t).

Proof of Lemma 4. As a first step, write

E(|ϕτ (Y − ξτ )|a) = (1− τ)aE([ξτ − Y ]a1I{Y ≤ ξτ}) + τaE([Y − ξτ ]a1I{Y > ξτ}). (A.7)

Furthermore, for any x, y such that x < y, (y−x)a ≤ 2a−1(|x|a+ |y|a) by Hölder’s inequality,

so that

E([ξτ − Y ]a1I{Y ≤ ξτ}) ≤ 2a−1E([|ξτ |a + |Y |a]1I{Y ≤ ξτ}).
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The condition γ < 1/a ensures that E|Y |a < ∞. Recall that ξτ ↑ ∞ as τ ↑ 1 and use the

dominated convergence theorem to get

E([ξτ − Y ]a1I{Y ≤ ξτ}) = O(ξaτ ) as τ ↑ 1. (A.8)

Besides, an integration by parts and a change of variables entail

E([Y−ξτ ]a1I{Y > ξτ}) = aξa−1τ

∫ ∞
ξτ

(
x

ξτ
− 1

)a−1
F (x)dx = aξaτF (ξτ )

∫ ∞
1

(v−1)a−1
F (ξτv)

F (ξτ )
dv.

Using a uniform convergence theorem such as Proposition B.1.10 in de Haan and Ferreira

(2006, p.360) gives

E([Y − ξτ ]a1I{Y > ξτ}) = aξaτF (ξτ )

∫ ∞
1

(v − 1)a−1v−1/γdv(1 + o(1)) as τ ↑ 1.

Combining this equality with (A.3) yields

E([Y −ξτ ]a1I{Y > ξτ}) = aξaτ (1−τ)(γ−1−1)

∫ ∞
1

(v−1)a−1v−1/γdv(1+o(1)) as τ ↑ 1. (A.9)

Combining (A.7), (A.8), (A.9) and using the change of variables u = 1−v−1 gives the desired

result.

Proof of Theorem 2. Use Lemma 2 to write, for any u,

ψn(u) = −uT1,n + T2,n(u) (A.10)

with T1,n :=
1√

n(1− τn)

n∑
i=1

1

ξτn
ϕτn(Yi − ξτn) =:

n∑
i=1

Sn,i

and T2,n(u) := − 1

ξ2τn

n∑
i=1

∫ uξτn/
√
n(1−τn)

0

(ϕτn(Yi − ξτn − t)− ϕτn(Yi − ξτn))dt.

The random variables Sn,i are independent, identically distributed, and centered since

ξτn = argminu∈RE(ητn(Yi − u)− ητn(Yi))⇒ E(ϕτn(Yi − ξτn)) = 0

(where a differentiation under the expectation sign was used). We shall prove that

T1,n√
Var(T1,n)

d−→ N (0, 1) (A.11)

for which it is sufficient to show that for some δ > 0,

nE|Sn,1|2+δ

[nVar(Sn,1)]1+δ/2
→ 0 as n→∞
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and use Lyapunov’s criterion. Choose δ > 0 small enough so that γ < 1/(2 + δ) and apply

Lemma 4 to get

nE|Sn,1|2+δ

[nVar(Sn,1)]1+δ/2
= O([n(1− τn)]−δ/2)→ 0 as n→∞.

Convergence (A.11) follows and, especially, Lemma 4 entails

T1,n
d−→ N

(
0,

2γ

1− 2γ

)
. (A.12)

We now turn to the control of the second term T2,n(u). Write

T2,n(u) = T3,n(u)− n

ξ2τn

∫ uξτn/
√
n(1−τn)

0

[E(ϕτn(Y − ξτn − t))− E(ϕτn(Y − ξτn))]dt. (A.13)

The random term T3,n(u) is a sum of independent, identically distributed and centered

random variables, which we shall examine after having controlled first the nonrandom term

on the right-hand side of (A.13). By Lemma 3, we obtain

E(ϕτn(Y − ξτn − t))− E(ϕτn(Y − ξτn)) = (2τn − 1)E((Y − ξτn − t)(1I{Y ≤ ξτn + t} − 1I{Y ≤ ξτn}))

− tE(|τn − 1I{Y ≤ ξτn}|). (A.14)

Clearly

E(|τn − 1I{Y ≤ ξτn}|) = τnF (ξτn) + (1− τn)F (ξτn).

It therefore follows from (A.3) that

E(|τn − 1I{Y ≤ ξτn}|) = γ−1(1− τn)(1 + o(1)) (A.15)

as n→∞. Let further ψ(t) := E((Y − t)1I{Y > t}) and observe that

E((Y − ξτn − t)(1I{Y ≤ ξτn + t} − 1I{Y ≤ ξτn})) = E((Y − ξτn − t)(1I{Y > ξτn} − 1I{Y > ξτn + t}))

= ψ(ξτn)− ψ(ξτn + t)− tF (ξτn).

Integrating by parts entails

ψ(ξτn)− ψ(ξτn + t) =

∫ ξτn+t

ξτn

F (x)dx = ξτnF (ξτn)

∫ 1+t/ξτn

1

F (ξτnv)

F (ξτn)
dv

from which we deduce that

E((Y − ξτn − t)(1I{Y ≤ ξτn + t} − 1I{Y ≤ ξτn})) = tF (ξτn)

(
ξτn
t

∫ 1+t/ξτn

1

F (ξτnv)

F (ξτn)
dv − 1

)
.
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We now bound the term into brackets as follows: let In(u) = [0, |u|ξτn/
√
n(1− τn)] and

write

sup
|t|∈In(u)

∣∣∣∣∣ξτnt
∫ 1+t/ξτn

1

F (ξτnv)

F (ξτn)
dv − 1

∣∣∣∣∣ ≤ sup
|t|∈In(u)

ξτn
|t|

∣∣∣∣∣
∫ 1+t/ξτn

1

[
F (ξτnv)

F (ξτn)
− v−1/γ

]
dv

∣∣∣∣∣+o(1) = o(1)

by the uniform convergence theorem for regularly varying functions [see Theorem 1.5.2 in

Bingham et al. (1987), p.22], the continuity of v 7→ v−1/γ at 1 and the convergence n(1 −
τn)→∞. As a consequence, by (A.3), the equality

E((Y − ξτn − t)(1I{Y ≤ ξτn + t} − 1I{Y ≤ ξτn})) = t(1− τn)rn(t) (A.16)

holds with rn(t) → 0 uniformly in t such that |t| ∈ In(u). Combine (A.13), (A.14), (A.15)

and (A.16) to get

T2,n(u) =
u2

2γ
(1 + o(1)) + T3,n(u), (A.17)

with T3,n(u) := − 1

ξ2τn

n∑
i=1

∫ uξτn/
√
n(1−τn)

0

[Sn,i(ξτn + t)− Sn,i(ξτn)]dt

where the Sn,i(v) := ϕτn(Y −v)−E(ϕτn(Y −v)) are independent copies of Sn(v) := ϕτn(Y −
v)− E(ϕτn(Y − v)). Thus

Var(T3,n(u)) =
n

ξ4τn
Var

(∫ uξτn/
√
n(1−τn)

0

[Sn(ξτn + t)− Sn(ξτn)]dt

)
.

We now notice that for any v, Sn(v) is centered and thus

Var(T3,n(u)) =
n

ξ4τn

∫
[0, uξτn/

√
n(1−τn)]2

E([Sn(ξτn + s)− Sn(ξτn)][Sn(ξτn + t)− Sn(ξτn)])ds dt

(where the integrability properties of Y were used to switch integrals). By the Cauchy-

Schwarz inequality,

Var(T3,n(u)) ≤ n

ξ4τn

(∫ uξτn/
√
n(1−τn)

0

√
E(|Sn(ξτn + t)− Sn(ξτn)|2) dt

)2

. (A.18)

Applying Lemma 3, we get for any t

|Sn(ξτn + t)− Sn(ξτn)| ≤ 2|t|[1− τn + 1I{Y > ξτn + min(t, 0)}+ F (ξτn + min(t, 0))].

Using the inequality |a+ b+ c|2 ≤ 3(a2 + b2 + c2) yields

E(|Sn(ξτn+t)−Sn(ξτn)|2) ≤ 12t2[(1−τn)2+F (ξτn+min(t, 0))(1+F (ξτn+min(t, 0)))]. (A.19)
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Finally, using again the regular variation property of F and the convergence n(1− τn)→∞,

sup
|s|∈In(u)

|F (ξτn + s)− F (ξτn)| = F (ξτn) sup
|s|∈In(u)

∣∣∣∣F (ξτn + s)

F (ξτn)
− 1

∣∣∣∣ = o(F (ξτn)) = o(1− τn)

(A.20)

in view of (A.3). Using (A.3) once again and combining (A.18), (A.19) and (A.20) yields

Var(T3,n(u)) = O

 n

ξ4τn
(1− τn)

∣∣∣∣∣
∫ uξτn/

√
n(1−τn)

0

|t| dt

∣∣∣∣∣
2
 = O

(
1

n(1− τn)

)
→ 0

as n → ∞. Whence the convergence T3,n(u)
P−→ 0; combining (A.10), (A.12) and (A.17)

entails

ψn(u)
d−→ −uZ

√
2γ

1− 2γ
+
u2

2γ
as n→∞

(with Z being standard Gaussian) in the sense of finite-dimensional convergence. As a

function of u, this limit is almost surely finite and defines a convex function which has a

unique minimum at

u∗ = γ

√
2γ

1− 2γ
Z

d
= N

(
0, γ2

2γ

1− 2γ

)
.

Applying the convexity lemma of Geyer (1996) completes the proof.

Proof of Theorem 3. By the equality (8), we have

log

(
ξ
?

τ ′n

ξτ ′n

)
= log

(
q̂?τ ′n
qτ ′n

)
+ log

(
ξτn
ξτn

)
− log

(
q̂τn
qτn

)
+ log

(
ξτn
qτn

)
− log

(
ξτ ′n
qτ ′n

)
.
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Furthermore, the convergence log[(1− τn)/(1− τ ′n)]→∞ entails√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
q̂?τ ′n
qτ ′n

)
d−→ Γ, (A.21)

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
ξτn
ξτn

)
= OP (1/ log[(1− τn)/(1− τ ′n)]) = oP(1), (A.22)

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
q̂τn
qτn

)
= OP (1/ log[(1− τn)/(1− τ ′n)]) = oP(1), (A.23)

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
ξτn
qτn

)
= O

(√
n(1− τn)r(τn)/ log[(1− τn)/(1− τ ′n)]

)
= o(1), (A.24)

and

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
ξτ ′n
qτ ′n

)
= O

(√
n(1− τn)r(τ ′n)/ log[(1− τn)/(1− τ ′n)]

)
= o

(√
n(1− τn)r(τn)/ log[(1− τn)/(1− τ ′n)]

)
= o(1). (A.25)

Here, Theorem 4.3.8 in de Haan and Ferreira (2006, p.138) was used to show (A.21),

while (A.22) and (A.23) follow from Theorem 2 above and from Theorem 2.4.1 in de Haan

and Ferreira (2006, p.50), respectively. Convergences (A.24) and (A.25) are consequences of

Corollary 1 and, in what concerns (A.25), the regular variation of s 7→ q1−s−1 and |A|. Com-

bining these convergence results and using the delta-method gives the desired conclusion.

Proof of Proposition 2. On the one hand, we have

XES(τ) =
E [Y 1I(Y > ξτ )]

F (ξτ )
=

E [(Y − ξτ )+]

F (ξτ )
+ ξτ ,

where y+ = max(y, 0). On the other hand, it follows from the proof of Theorem 11 in Bellini

et al. (2014) that
E [(Y − ξτ )+]

F (ξτ )
∼ ξτ
γ−1 − 1

as τ → 1.

Therefore XES(τ)
ξτ
∼ 1

1−γ as τ → 1. Likewise, we have

QES(τ) =
E [Y 1I(Y > qτ )]

F (qτ )
=

E [(Y − qτ )+]

F (qτ )
+ qτ ,

with
E [(Y − qτ )+]

F (qτ )
∼ qτ
γ−1 − 1

as τ → 1.

Then QES(τ)
qτ
∼ 1

1−γ as τ → 1. Whence XES(τ)
QES(τ)

∼ ξτ
qτ

as τ → 1.
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Proof of Proposition 3. The starting point is equation (1), which is equivalent to

XES(τ)

ξτ
= 1 +

1− τ
F (ξτ )

1

2τ − 1

(
1− E(Y )

ξτ

)
.

We have by Proposition 1 and (A.3), with the notation therein, that

1− τ
F (ξτ )

=
γ

1− γ
[1− ε(τ)(1 + o(1))] and

1

ξτ
=

(γ−1 − 1)γ

qτ
(1 + o(1)),

where the o(·) terms have to be understood in the asymptotic sense as τ ↑ 1. Using a Taylor

expansion thus yields:

XES(τ)

ξτ
=

1

1− γ
+

γ

1− γ

[
2(1− τ)(1 + o(1))− ε(τ)(1 + o(1))− (γ−1 − 1)γE(Y )

qτ
(1 + o(1))

]
.

The condition γ < 1 entails (1− τ)qτ → 0 as τ ↑ 1, so that

XES(τ)

ξτ
=

1

1− γ
− γ

1− γ

[
ε(τ)(1 + o(1)) +

(γ−1 − 1)γE(Y )

qτ
(1 + o(1))

]
.

Using once again Proposition 1 gives

ε(τ) +
(γ−1 − 1)γE(Y )

qτ
= − (γ−1 − 1)−ρ

γ(1− ρ− γ)
A((1− τ)−1)(1 + o(1)) + o(q−1τ ),

whence

XES(τ)

ξτ
=

1

1− γ

[
1 +

(γ−1 − 1)−ρ

1− ρ− γ
A((1− τ)−1)(1 + o(1)) + o(q−1τ )

]
.

This completes the proof.
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