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Abstract

We propose a new theoretical framework to assess the approximate valid-

ity of overidentifying moment restrictions. Their validity is evaluated by the

divergence between the true probability measure and the closest measure that

imposes the moment restrictions of interest. The divergence can be chosen as

any of the Cressie-Read family. The considered alternative hypothesis states that

the divergence is smaller than some user-chosen tolerance. Tests are constructed

based on the minimum empirical divergence that attain the local semiparametric

power envelope of invariant tests. We show how the tolerance can be chosen by

reformulating the hypothesis under test as a set of admissible misspecifications.

Two empirical applications illustrate the practical usefulness of the new tests for

providing evidence on the potential extent of misspecification.
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1 Introduction

The goal of this work is to develop “classical” tests for assessing the approximate

validity of overidentifying restrictions. Since the seminal work by White (1982), it

has been widely recognized that misspecification is the rule rather than the excep-

tion, and a growing literature has aimed at accounting for potential misspecification

in inference. Several authors have adopted a local to zero approach for studying mis-

specifications of moment restrictions, e.g. instruments that locally violate exogeneity,

see Berkowitz, Caner, and Fang (2008, 2012), Bugni, Canay, and Guggenberger (2012),

Conley, Hansen, and Rossi (2012), Kraay (2012), Guggenberger (2012), Nevo and Rosen

(2012), and Caner (2014). Recent work focuses on consequences for inference on param-

eters. Andrews, Gentzkow, and Shapiro (2017) and Andrews, Gentzkow, and Shapiro

(2018) study sensitivity of estimators to local misspecifications, while Armstrong and

Kolesár (2018) and Bonhomme and Weidner (2018) propose robust confidence intervals.

Practically, our approach recognizes that any model is misspecified to some ex-

tent, and aims at confirming that misspecification is relatively small. To develop such

tests, a central issue is how to measure the extent of misspecification. Here we build

on recent work on Generalized Empirical Likelihood (GEL), which include Empirical

Likelihood (EL), see Imbens (1993) and Qin and Lawless (1994), Exponential Tilting

(ET), see Imbens (1993) and Kitamura and Stutzer (1997), and the Continuously Up-

dated Estimator (CUE-GMM), see Hansen, Heaton, and Yaron (1996) and Antoine,

Bonnal, and Renault (2007). As explained by Kitamura (2007), these estimators rely

on minimizing a divergence (or contrast) between the distribution of the observations

and one that imposes the moment restrictions. We choose as a measure the theoreti-

cal Cressie-Read divergence, which has a natural information-theoretic interpretation.

This choice is mainly motivated by invariance considerations. Indeed, any measure

of validity (or lack of) should not vary if moment restrictions are reformulated in a

different but equivalent way. Such a measure should also be invariant to any (poten-

tially nonlinear) reparameterization. As our main instance, we focus on the chi-square

divergence, which, for moment restrictions of the form E g(X, θ0) = 0, measures the

extent of misspecification as

min
Θ

E (g′(X, θ)) [Var g(X, θ)]−1 E (g(X, θ)) . (1.1)

Clearly, this is measure is zero unless there is overidentification. As will be shown, any
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other Cressie-Read divergence yields approximately the same theoretical measure of

validity if the restrictions are close to be valid. Given a misspecification measure for

our moment conditions, we consider as our alternative hypothesis that this divergence

is smaller than some user-chosen tolerance.

The interest of approximate hypotheses has been long recognized in statistics, see

e.g. Hodges and Lehmann (1954). As stated by Cox (1958), “exact truth of a (point)

null hypothesis is very unlikely except in a genuine uniformity trial.” Leamer (1998)

argues that “genuinely interesting hypotheses are neighborhoods, not points. No pa-

rameter is exactly equal to zero; many may be so close that we can act as if they

were zero.” Good (1981) and Berger and Delampady (1987) in statistics or McCloskey

(1985) in economics, among many others, also advocate for approximate hypotheses.

We chose to consider the approximate validity of the moment condition as the alterna-

tive hypothesis to reflect where the burden of proof is. This is known in biostatistics

as equivalence testing, see Lehmann and Romano (2005) and the monograph of Wellek

(2003). Applications of approximate hypotheses and equivalence testing can be found

for example in Romano (2005) and Lavergne (2014) for restrictions on parameters,

and in Rosenblatt (1962) and Dette and Munk (1998) for specification testing. With

reference to equivalence testing in biostatistics, our tests are labeled model equivalence

tests for moment restrictions.

Our test is based on the empirical analog of the divergence (1.1). The alternative

hypothesis is accepted for small values of the empirical divergence, and the critical value

is not derived under the assumption that the moment restrictions are valid. The new

tests have interesting properties, in particular they attain the semiparametric power en-

velope of invariant tests for our hypotheses. Our framework builds on Lavergne (2014),

who has focused on restrictions on parameters in parametric models and a Kullback-

Leibler divergence. We significantly extend it to assessing the approximate validity

of moment restrictions in semiparametric models using a large class of divergences.

Our new tests allow to conclude that the model may be misspecified to an extent that

is acceptable by the practitioner, as measured by the chosen tolerance. Our work is

related to the recent literature on robust inference under local misspecification cited

above. For instance, Armstrong and Kolesár (2018) consider E g(X, θ0) = c/
√
n and

devise confidence intervals that are robust to such such local misspecifications for c in a

user-chosen set C. By contrast our test aims to confirm that misspecification is indeed
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local and bounded by the user-chosen tolerance, so our approach is complementary to

theirs.

The tolerance can be interpreted as a squared percentage, and its square root as the

distance of overidentifying restrictions to zero in standard deviations units. Its role is

similar to the one of the threshold used for defining weak instruments in Stock and Yogo

(2005), who deemed instruments weak if the bias of the IV estimator in standardized

units exceed a certain percentage. In a theoretical demand model, Chetty (2012) also

measures the degree of optimization frictions (i.e. the extent of model misspecification)

through the average utility cost as a percentage of expenditures. Christensen and

Connault (2019) similarly use Cressie-Read divergences to measure misspecification

and evaluate sensitivity of counterfactuals from an economic model. It can be useful

for the researcher to return to the natural units of the application and to assess using

expert judgment what the chosen tolerance implies for a particular model. The re-

statement of model equivalence in terms of overidentifying restrictions that we derive

is instrumental in this respect. For instance, in an IV model, it is possible to state

how much endogeneity, that is how much correlation between the error term and the

instruments, is allowed by choosing a specific tolerance. Finally, it is also possible to

let the tolerance vary so as to determine the minimal allowable misspecification that

yields to declare model equivalence. Again this can be reinterpreted in terms of local

misspecification of the moment restrictions by the researcher to decide whether the

model under scrutiny is only slightly or grossly misspecified, as illustrated in Section

3.

The outcome of a model equivalence test is not defining a confidence region of a

special kind. A confidence region is a random set such that we are confident with

some predetermined level, say 95%, that the true parameters lie in this set. A model

equivalence hypothesis defines instead a set such that the probability of falsely con-

cluding that the parameters are in this set is bounded by a small number, say 5%.

So the two sets are constructed by controlling different probabilities. Another possi-

ble approach would be to rely on power evaluation of overidentification tests. Andrews

(1989) proposes approximations of the asymptotic inverse power function of Wald tests

for restrictions on parameters as an aid to interpret non significant outcomes. While

such an approach might be generalized to overidentification tests, this has not been
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investigated up to date.1 To sum up, model equivalence tests for moment restrictions

deliver a new type of inference that is complementary to existing methods.

In Section 2, we develop our testing framework first based on the chi-square di-

vergence then on a general Cressie-Read divergence, that includes as special cases the

ones used in EL and ET. We show that all divergences are approximately equal for an

“almost” correctly specified model, so that the chosen divergence should not matter

as soon as the tolerance is small. In Section 3, we illustrate the usefulness of the new

tests on two selected empirical examples. In Section 4, we derive the semiparametric

envelope of tests that are invariant to transformations of the moment restrictions and

we show that our tests reach this envelope. Section 5 concludes. Section 6 contains

the proofs of our results.

2 The Tests

2.1 Testing Framework: Chi-Square Divergence

For a random vector X ∈ Rq with probability distribution P , we want to assess some

implicit restrictions of the form

∃ θ0 ∈ Θ such that E g(X, θ0) = 0 , (2.2)

where g(·, θ) is a m-vector function indexed by a finite-dimensional parameter θ ∈ Θ ⊆
Rp, p < m. To do so, we can evaluate the divergence between P and a measure that

imposes these restrictions. Consider the chi-square divergence (or contrast) between

two measures Q and P defined as

D2(Q,P ) = E
1

2

(
dQ

dP
− 1

)2

=
1

2

∫ (
dQ

dP
− 1

)2

dP ,

where dQ
dP

denotes the Radon-Nikodym derivative. Hence D2(Q,P ) ≥ 0 with equality

if and only if Q = P P−almost surely. Twice the chi-square divergence measures the

1Wald tests are not invariant to nonlinear transformations of restrictions under scrutiny, see e.g.

Gregory and Veall (1985). Moreover, evaluating the asymptotic power of a significance test of given

level does not directly provide evidence in favor of the approximate validity of the restrictions under

consideration. Other issues surround post-experiment power calculations, as summarized by Hoenig

and Heisey (2001).
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expected squared proportional difference between distributions and is thus an expected

squared percentage. For a particular value of θ ∈ Θ, let

Mθ =

{
Q finite measure : Q << P,

∫
dQ = 1,

∫
g(X, θ) dQ = 0

}
and D2(Mθ, P ) = infQ∈Mθ

D2(Q,P ). A minimizer Qθ of D2(Q,P ) over Mθ, if it

exists, is labeled a projection of P on Mθ. Now let M = ∪θ∈ΘMθ. A minimizer QM

of D2(Q,P ) over M is a projection of P on M. The quantity

D2(M, P ) = inf
Θ
D2(Mθ, P ) (2.3)

provides a global measure of the approximate validity of the restrictions (2.2). By

definition, this measure is invariant to any reparameterization and any transformation

of the restrictions. In particular, for any q × q matrix A(θ) which is nonsingular for

any θ with probability one, the moment restrictions (2.2) remains unaltered if g (·, θ)
is replaced by A(θ)g (·, θ), and so does D2(M, P ). Moreover, a duality approach, as

discussed e.g. by Kitamura (2007) and briefly outlined in the supplementary material,

shows that

D2(M, P ) =
1

2
min

Θ
E (g′(X, θ)) [Var g(X, θ)]−1 E (g(X, θ)) , (2.4)

see Antoine et al. (2007). This is the theoretical objective function used in the CUE-

GMM method. Hence twice the divergence has a pretty intuitive content: it measures

the square distance to zero of the moment restrictions in standard deviations units.

To assess the approximate validity of our moment restrictions, we consider the

alternative hypothesis that D2(M, P ) is smaller than some tolerance chosen by the

practitioner. That is, there is a measure imposing the moment restrictions which is

close enough to the true probability measure. We write our alternative hypothesis as

H1n : 2D2(M, P ) <
δ2

n
.

This hypothesis is labeled the model equivalence hypothesis. It allows for some local

misspecification of the moment restrictions, as apparent from (2.4). The null hypothesis

is the complement of the alternative, that is

H0n : 2D2(M, P ) ≥ δ2

n
.
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The vanishing tolerance δ2/n, which makes the alternative hypothesis shrinks, is a

purely theoretical but useful device, acknowledging that misspecification is small in

a substantive sense, as considered by Romano (2005), Berkowitz et al. (2012), Bugni

et al. (2012), Caner (2014), Lavergne (2014), Andrews et al. (2017), Andrews et al.

(2018), Armstrong and Kolesár (2018), and Bonhomme and Weidner (2018), among

others. In practice, as in our subsequent illustrations, a small but fixed tolerance ∆2

is typically chosen, where ∆ can be seen as a percentage, so one can set δ2 = n∆2 to

run the test. But because the fixed tolerance is small, the asymptotics under a drifting

tolerance will approximate the finite sample behavior of the test statistic better than

the asymptotics under a fixed tolerance.

2.2 Testing Procedure

With at hand a random sample {Xi, i = 1, . . . n} from X, the empirical divergence of

interest is

D2(Q,Pn) = E n
1

2

(
dQ

dPn
− 1

)2

=
1

2n

n∑
i=1

(Q(Xi)− 1)2 ,

where E n denotes expectation with respect to the empirical distribution Pn. Let

Mn,θ =

{
Q finite measure : Q << Pn,

∫
dQ = 1,

∫
g(X, θ) dQ = 0

}
Mn = ∪θ∈ΘMn,θ, and

D2(Mn, Pn) = inf
Θ

inf
Q∈Mn,θ

D2(Q,Pn). (2.5)

This quantity is the empirical equivalent of the theoretical divergence and thus provides

a natural estimator of the latter. In addition, duality extends to the empirical chi-

square divergence, so that

D2(Mn, Pn) =
1

2
min

Θ
E n (g′(X, θ)) [Varn g(X, θ)]−1 E n (g(X, θ)) ,

where Varn denotes the empirical variance, see e.g. Antoine et al. (2007). As a by-

product, we obtain the CUE-GMM estimator of the solution of (2.4), which is the

value of θ0 that fulfills (2.2) when the restrictions hold. By contrast to standard two-

step GMM, estimation is one-step and does not require a preliminary estimator. The

empirical divergence is also invariant to any reparameterization and any transformation
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of the restrictions, which may not be the case for the two-step GMM optimal objective

function, see e.g. Hall and Inoue (2003).

The empirical divergence provides a natural basis for testing H0n against H1n.

When the theoretical divergence 2D2(M, P ) equals δ2

n
, 2nD2(Mn, Pn) converges in

distribution to a χ2
r(δ

2), the non-central chi-square with r = m− p degrees of freedom

and noncentrality parameter δ2. The model equivalence test is then defined as

πn = I [2nD2(Mn, Pn) < cα,r,δ2 ] ,

where cα,r,δ2 is the α-quantile of a χ2
r(δ

2). The test concludes that moment restrictions

are approximately valid if the test statistic 2nD2(Mn, Pn) is relatively small. This

stands in contrast to an overidentification test, which rejects the exact validity of mo-

ment restrictions for large values of the test statistic, and for which the critical value

is the 1 − α quantile of a central chi-square distribution. This is because our model

equivalence test does not assume that moment restrictions hold under the null hypoth-

esis, as the test aims at confirming that these restrictions approximately hold. While

critical values are non-standard, they can be readily obtained from most statistical

softwares.

The main properties of the test are easily derived. First, it is invariant to reparame-

terization and to transformation of the moment restrictions. Second, when 2D2(M, P )

is large, which corresponds to grossly misspecified restrictions, the test will fail to re-

ject H0n in favor of model equivalence. This can be deduced from the convergence

of D2(Mn, Pn) to the theoretical divergence D2(M, P ), see Broniatowski and Keziou

(2012, Theorem 5.6). In Section 4, we will establish asymptotic optimality of the test.

The objective function based on the chi-square divergence is similar to the GMM

one, both at the theoretical and empirical level. Reformulating the problem in terms

of the two-step GMM theoretical objective function would yield to write the null and

alternative hypotheses in terms of

1

2
min

Θ
E (g′(X, θ)) [Var g(X, θ1)]−1 E (g(X, θ)) , (2.6)

with θ1 = arg minΘ ‖E g(X, θ)‖. Aside the non-invariance of this theoretical criterion,

this seems an awkward way to measure the extent of misspecification because E g(X, θ)

is scaled by the standard deviation of g(X, θ1). Of course, this should not matter much

if the model is only lightly misspecified, but we cannot assume at the outset what
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we would like to show. For these reasons, we do not aim to extend our analysis to

the two-step GMM context. Routines to implement CUE-GMM are now available for

many econometric softwares, such as Stata, or languages, such as Gauss, Matlab, or R.

In our applications of Section 4, the two-step GMM criterion was found to be pretty

close to the Generalized Empirical Likelihood (GEL) ones and thus would yield similar

outcomes if used to run a model equivalence test. This does not preclude however the

possibility to obtain contradictory outcomes in some other applications.

2.3 Alternative Formulation

We now show how to formulate and interpret the model equivalence hypothesis in terms

of overidentification restrictions. As will be seen, such an alternative formulation is

intuitive and appealing from an empirical viewpoint. For any p × m matrix L with

full rank p, consider the partition of g(·, θ) into a p-vector g1(·, θ) = Lg(·, θ) and the

remaining (m− p) vector g2(·, θ) = Mg(·, θ), where [L,M ] is full rank. Define

DW (M, P ) =
1

2
E g′2(X, θ∗)Σ−1E g2(X, θ∗) ,

where Σ is the semiparametric efficiency bound on the
√
n-variance for estimating

E g2(X, θ∗). We will show that this divergence is locally equivalent to D2(M, P ) in the

following sense.

Definition 2.1 Two divergence measures di, i = 1, 2, are locally equivalent under a

drifting sequence of probability distributions P̃ (n) , n ≥ 1, if whenever d1(M, P̃ (n)) =

o(1) or d2(M, P̃ (n)) = o(1), we have d1(M, P̃ (n)) = d2(M, P̃ (n))(1 + o(1)).

Let us introduce the following assumptions.

Assumption 2.1 (a) Θ is compact; (b) Var g(X, θ) is positive definite for any θ ∈ Θ;

(c) For any p ×m matrix L with full rank p, there exists a unique solution θ∗ to the

equations LE g(X, θ) = 0; (d) θ̃0 = arg infΘD2(Mθ, P ) is unique; and (v) ∇θE g(X, θ̃0)

is full rank.

Assumption 2.2 Each component of the function g (·, θ) is twice continuously differ-

entiable in θ over Θ.
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Lemma 2.1 Under any drifting sequence of probability distributions P̃ (n) such that

Assumptions 2.1 and 2.2 hold, D2(M, P̃ (n)) and DW (M, P̃ (n)) are locally equivalent.

Therefore, when 2D2(M, P̃ (n)) < δ2/n, DW (M, P̃ (n)) is bounded by (δ2/n) (1 + o(1)).

But a test based on a sample of size n would not be able to distinguish a variation in

divergence of an order smaller than 1/n. This entails that the alternative hypothesis

H1n, for all practical purposes, is asymptotically the same as (and indistinguishable

from)

E g′2(X, θ∗)Σ−1E g2(X, θ∗) <
δ2

n
. (2.7)

This alternative formulation uses a divergence that focuses on the closeness to zero of

m−p overidentifying moments in standard deviations units evaluated at θ∗. Moreover,

this is independent of the particular choice of the subset g2(·, ·). If there is one degree

of overidentification only, i.e. m− p = 1, then the above expression becomes

|E g2(X, θ∗)| < δσ√
n
,

where σ2 is the semiparametric efficiency bound for estimating E g2(X, θ∗). With a con-

sistent estimator of σ, or of Σ in the general case, one can then evaluate the content of

the model equivalence hypothesis in terms of closeness to zero of the overidentification

restrictions, and if their number is small, the set defined by (2.7) can be easily graphed.

The last formulation is simple and intuitive, but it must be kept in mind that direct

tests of this hypothesis would generally not be invariant. We will therefore use this

asymptotically equivalent formulation for interpretative purposes only, see Section 3.

2.4 Cressie-Read Divergence Based Test

We here detail the more general tests based on Cressie-Read divergences and we discuss

their relationship with the test described in the previous section. As done by Smith

(1997), Imbens, Spady, and Johnson (1998), Newey and Smith (2004), and Kitamura

(2007), we focus here on the class of divergences based on the Cressie and Read (1984)

family of functions

ϕγ (x) = [xγ − γx+ γ − 1] / [γ (γ − 1)] , γ ∈ R\{0, 1} ,
ϕ1 (x) = x log x− x+ 1,

ϕ0 (x) = − log x+ x− 1 .
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If ϕγ (·) is not defined on (−∞, 0), as for γ = 0, or when it is not convex on (−∞, 0) as

ϕ3 (x), we set it to +∞ on (−∞, 0). Hence, all considered functions are strictly convex,

positive, and twice differentiable on their domain. The way we wrote the Cressie-Read

family of functions slightly differs from most of the econometric literature, but yields

the normalization ϕγ (1) = 0, ϕ
′
γ (1) = 0, and ϕ

′′
γ (1) = 1, so that all functions behave

similarly around 1 up to second-order. For each γ, the Cressie-Read divergence between

two measures Q and P is defined as

Dγ(Q,P ) = E ϕγ

(
dQ

dP

)
=

∫
ϕγ

(
dQ

dP

)
dP .

The quantity Dγ(M, P ) = infΘ Dγ(Mθ, P ) thus provides an alternative global mea-

sure of the validity of the moments restrictions (2.2). The cases γ = 1 and 0 correspond

to Kullback-Leibler-type divergences, γ = 1/2 yields the Hellinger divergence, see Ki-

tamura, Otsu, and Evdokimov (2013), and γ = 2 the chi-square divergence considered

above. The model equivalence hypothesis based on Dγ(·, ·) writes

H1n : 2Dγ(M, P ) <
δ2

n
,

and the null hypothesis is

H0n : 2Dγ(M, P ) ≥ δ2

n
.

The corresponding empirical divergence is

Dγ(Mn, Pn) = inf
Θ

inf
Q∈Mn,θ

Dγ(Q,Pn) . (2.8)

For γ = 1, respectively γ = 0, one obtains as a by-product the exponential tilting (ET)

estimator, respectively the empirical likelihood (EL) estimator. The model equivalence

test writes

πn = I [2nDγ(Mn, Pn) < cα,r,δ2 ] ,

with the same critical values as the test based on the chi-square divergence. Irrespective

of the choice of the divergence, the test retain the same basic characteristics than the

test based on the chi-square divergence. In particular, it remains invariant to any

transformation of the moment restrictions. But because of the degree of freedom in

the choice of the specific divergence, there is a multiplicity of implied model equivalence

hypotheses and tests.
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We now show that all Cressie-Read divergences are equivalent for locally misspeci-

fied models, so that the choice of the divergence should not matter much in practice. A

similar but slightly different result has been independently derived by Andrews et al.

(2018).

Assumption 2.3 (a) For any θ ∈ Θ, Dγ (Mθ, P ) <∞. (b) θ̃0 = arg infΘDγ(Mθ, P )

exists and is unique.

Lemma 2.2 For any γ, under any drifting sequence of probability distributions P̃ (n)

such that Assumptions 2.1, 2.2, and 2.3 hold, Dγ(M, P̃ (n)) and D2(M, P̃ (n)) are locally

equivalent.

Our result entails that the choice of the particular divergence is asymptotically irrel-

evant for the definition of the model equivalence hypothesis H1n, while there may be

some supplementary (theoretical or practical) reason to favor a specific divergence in

a particular application. As a result, the alternative formulations of model equiva-

lence derived for the chi-square divergence in Section 2.3 extend to any Cressie-Read

divergence. Hence (2.7) is an asymptotically equivalent formulation of model equiva-

lence, irrespective of the chosen divergence. Also the tolerance can be interpreted as a

squared percentage or as the square of the distance to zero of the moment restrictions

in standard deviations units.

To show the asymptotic equivalence between different Cressie-Read divergences,

we use duality, see Kitamura (2007). The strength of the duality principle is that

dual optimization is finite-dimensional and concave. For duality to apply, one needs

a projection to exist, which is ensured by Assumption 2.3 (a). Basically, this requires

that for each θ a measure Q ∈ Mθ exists such that dQ
dP

(x) lies in the interior of the

support of ϕγ(·). The projection of P on Mθ is then essentially unique, see Keziou

and Broniatowski (2006) for more detailed conditions on the existence and uniqueness

of projections. This is explicitly assumed in Assumption 2.3 (b). Our technical as-

sumption may seem pretty innocuous in practice. Indeed, one can always restrict the

parameter space to the set of θ for which a finite empirical divergence obtains. How-

ever it may not be so when moment restrictions are misspecified. Take any function

ϕγ(·) with domain (0,∞), such as the ones used for EL or ET. The projection measure

Q that solves Dγ(M, P ) = Dγ(Q,P ) should be a probability measure with the same
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support as P . But, in case of misspecification, such a measure may not exist. Issues of

GEL estimation methods under misspecification have been documented in the litera-

ture. In particular, Schennach (2007) shows that the EL estimator can have an atypical

behavior when moment restrictions are invalid, as a projection does not generally ex-

ist when the functions in g(·, ·) are unbounded. Sueishi (2013) points out that under

misspecification there may exist no probability measure in M with a finite divergence

D1(M, P ). By contrast, because ϕ2(·) has domain R, and since Mθ includes signed

measures, a solution always exists when minimizing the chi-square divergence.

2.5 Choice of the Tolerance

The choice of the tolerance ∆2 = δ2/n used to define model equivalence is key. From the

definition of the divergence, and our alternative formulation of Lemma 2.1, the square

root of the tolerance is a percentage or equivalently a number of standard deviations

units of the moment restrictions. It is similar to the threshold used, for instance,

by Stock and Yogo (2005) to characterize weak instruments, or by Chetty (2012) to

evaluate the extent of model misspecification. Any analysis of locally misspecified

models is met with the choice of a tolerance. For a parametric model, Bonhomme

and Weidner (2018) determine a tolerance by choosing the probability of a model

detection error based on likelihood ratios. For moment restrictions models, they suggest

using specification testing, as do Armstrong and Kolesár (2018). In their applications,

Andrews et al. (2017) consider the effect on estimation of local misspecification of

several (unscaled) moments, each taken at a time, with a tolerance of 1/n. Armstrong

and Kolesár (2018) perform a sensitivity analysis letting the amount of misspecification

depends on the number of potentially invalid instruments. Our above formulation of

model equivalence in terms of overidentifying restrictions allow the researcher to return

to the application and to asses using expert judgment what the chosen tolerance implies

for a particular model, as we will illustrate below. For instance, in an IV model, it

is possible to state how much endogeneity, that is how much correlation between the

error term and the instruments, is allowed by choosing a specific tolerance.

Tolerance should ultimately be tailored to the specific application at hand. If one

does not wish to choose a tolerance at the outset, we may let it vary for a given level
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of the test. Formally, let

δ2
inf(α) = inf

{
δ2 > 0 : 2n D2 (Mn, Pn) < cα,r,δ2

}
. (2.9)

Hence ∆2
inf(α) = δ2

inf(α)/n determines the minimal allowable misspecification that

yields the test to declare model equivalence.2 This provides a useful benchmark against

which a practitioner may decide a posteriori whether it is a small enough misspecifi-

cation. Again it can be reinterpreted in terms of moment restrictions to help the

researcher reaching a decision. We will illustrate in our applications how this provides

valuable information on the model approximate validity.

3 Empirical Illustrations

We here apply our model equivalence tests to two selected empirical problems. This will

help us to discuss the choice of the tolerance and the interpretation of the outcomes.

All computations used the R package gmm, see Chaussé (2010).

3.1 Social Interactions

Graham (2008) shows how social interactions can be identified through conditional

variance restrictions. He applies this strategy to assess the role of peer spillovers in

learning using data from the class size reduction experiment Project STAR. His model

yields conditional restrictions of the form

E
[
ρ(Zc, τ

2(W1c), γ
2
0)|W1c,W2c

]
= 0

where Zc are observations related to classroom c, τ 2(W1c) = W ′
1cβ0 represents condi-

tional heterogeneity in teacher effectiveness as a function of classroom-level covariates

W1c, γ0 is the peers effect parameter (where γ0 = 1 corresponds to no spillover), and

W2c denotes class size. I focus on results concerning math test scores as reported in

Graham (2008, Table 1, Column 1). In this application, the classroom-level covari-

ates W1c are school dummy variables as well as a binary variable indicating whether

classroom is of the regular with a full time teaching aide type, while W2c is binary

2This is a slight abuse of language, since strictly speaking, ∆2
inf(α) determines the minimal mis-

specification that is not confirmed by the test.
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Table 1: Equivalence tests results for social interactions model
J γ = 2 γ = 1 γ = 0

Test statistic 1.081 1.108 1.139 1.157

P-value (∆2 = (0.1)2) 0.127 0.131 0.133

δ2inf(5%) 5.557 5.649 5.70

∆2
inf(5%) (13.24%)2 (13.35%)2 (13.41%)2

Figure 1: Social interactions: Equivalence hypothesis and confidence region in terms

of correlations
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indicating whether class size is small (13 to 17 students) as opposed to regular (22 to

25 students). Graham (2008) based estimation on the unconditional moments

E
[
W ′
c ρ(Zc, τ

2(W1c), γ
2
0)
]

= 0 ,

where Wc = (W1c,W2c). To assess the approximate validity of the social interactions

model, I use unconditional moments of the above type, where Wc additionally includes

some interactions between binary variables. Specifically, I consider two overidentifying

restrictions based on the interactions of a dummy for whether a classroom is in one of

the 48 larger schools with the small and regular-with-aide class type dummies. Graham

(2008) argues that such interactions terms are of particular interest if within-class-type

student sorting or student-teacher matching in large schools is a potential concern.3

The standard two-step GMM overidentification test statistic is 1.08 and does not re-

ject the null hypothesis that the overidentifying restrictions hold. In terms of spillovers,

3Considering all interactions terms of school dummies with small and regular dummies would yield

a large number of restrictions with respect to the sample size n = 317.
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the CUE-GMM estimated value of γ2
0 is about 3.07, which is a little bit lower than

the value of 3.47 reported by Graham (2008), and the p-value of a significance test

of γ2
0 = 1 (the null of no spillover) is always less than 1%. The results of the model

equivalence tests for γ = 2, 1, and 0, are gathered in Table 1 and they closely agree.

For ∆2 = (0.1)2, p-values are around 13%. Thus for a significance level just above

10%, model equivalence at a tolerance ∆2 = (0.1)2 can be accepted. The minimum

tolerance that would yield to accept model equivalence for a 5% level is around (13%)2.

To interpret this result, we rely on the alternative formulation of the model equivalence

hypothesis

E g′2(X, θ∗)Σ−1E g2(X, θ∗) < ∆2 , (3.10)

where, for ease of interpretation, E g2(X, θ∗) are the correlations between the error

and interactions terms. Setting ∆2 = (13.24%)2 and estimating the matrix Σ (based

on CUE-GMM results) yields an estimated set of correlations that can be confirmed

by our test.4 This set, by definition an ellipse centered at (0, 0), is represented in

Figure 1. The model equivalence tests at 5% level allow to conclude that the extent

of misspecification is limited to correlations in this set, which include ones of 4% or

less. Hence student-sorting or student-teacher matching does not appear to be of much

practical importance.

It is interesting to contrast these findings with the ones that obtain from a more

standard approach based on confidence regions. From estimation results, one can

readily evaluate the 95% confidence region for the correlations between errors and

interaction terms. This region is also represented in Figure 1. The confidence ellipse is

centered at the empirical correlations. It is slightly wider than the model equivalence

set and includes larger correlations values. Crucially, it does not include the point

where both correlations are zero (though it would by increasing slightly the confidence

level). This illustrates that confidence regions and model equivalence tests provide

different information about the problem at hand.

4Strictly speaking, this is the largest set of correlations that is not confirmed by the test, but by a

slight abuse of language, I refer to it as the smallest set that is confirmed.

16



3.2 Nonlinearities in Growth Regression

I consider here a cross-country growth regression in the spirit of Mankiw, Romer, and

Weil (1992) using data on 86 countries averaged over the 1960’s, 1970’s and 1980’s from

King and Levine (1993) and further studied by Liu and Stengos (1999). Explanatory

variables include GDP60, the 1960 level of GDP; POP, population growth (to which

0.05 is added to account for depreciation rate and technological change); SEC, the

enrollment rate in secondary schools; INV, the share of output allocated to investment;

and fixed time effects. The Solow model assumes a Cobb-Douglas aggregate technology,

which yields a linear regression of growth on log(INV ), log(POP ), and log(SEC).

There is more uncertainty about the relationship to the initial GDP level. Liu and

Stengos (1999) argue that the relation is actually nonlinear in the initial GDP level

and in human capital based on the outcome of a joint semiparametric specification

test.

I used the proposed model equivalence tests to check whether the regression is

approximately linear in the initial level of GDP and human capital. The considered

restrictions are E (U W ) = 0, where U is the error term of the linear model, W contains

each explanatory variable, and polynomials terms from order two to four of GDP

or human capital, that is, I consider nonlinearity in initial GDP and human capital

separately. In each case, there are three overidentifying restrictions. For GDP60, and

when considering model equivalence at ∆2 = (0.1)2, p-values are greater than 90%.

The minimum tolerance ∆2
inf(5%) that would yield the reverse decision for a 5% level

is around (30%)2. I use again the formulation in (3.10) with correlations between the

error term and polynomials together with an estimated Σ to determine the smaller

estimated set of correlations that can be confirmed by the model equivalence test. As

this is a three-dimensional set, I report in Figure 2 a cut of this set when one of the

correlation (with cubic term) is set to zero, together with the same cut of the 95%

confidence region. The confidence region is much smaller than the model equivalence

set and contains the point where both correlations are zero. The model equivalence set

by contrast includes values larger than 20% simultaneously for both correlations.

The picture is strikingly different when considering nonlinearities in human capita.

For a model equivalence test at ∆2 = (0.1)2, all p-values are around 1%. Moreover,

the minimum tolerances ∆2
inf(5%) is zero for all three tests, because all test statistics
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Table 2: Equivalence tests results for growth regression
J γ = 2 γ = 1 γ = 0

Nonlinearities in initial GDP

Test statistic 11.30 12.14 11.97 11.19

P-value (∆2 = (0.1)2) 0.93 0.92 0.90

δ2inf(5%) 23.87 23.62 22.43

∆2
inf(5%) (30.42%)2 (30.26%)2 (29.88%)2

Nonlinearities in human capital

Test statistic 0.203 0.222 0.223 0.224

P-value (∆2 = (0.1)2) 0.008 0.008 0.008

δ2inf(5%) 0 0 0

∆2
inf(5%) 0 0 0

Figure 2: Growth regression: Equivalence hypothesis and confidence region in terms

of correlations
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are smaller than the critical value c0.05,3,0. This constitutes strong evidence in favor of

approximate linearity of growth with respect to human capital, which is accepted at

level 5% regardless of how small the tolerance is. It is noteworthy that, by contrast,

a confidence region for correlations between error term and polynomials cannot be

arbitrarily small, so our model equivalence hypothesis is not a confidence region of a

special kind. Our finding that the model is approximately linear in log(SEC) does not

actually contradict Liu and Stengos (1999). Indeed, their separable semiparametric

model appears to be only slightly non-linear in log(SEC), as seen in their Figure 2,

with a large confidence band that does not exclude linearity.
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4 Asymptotic Properties

We rely on the concept of semiparametric power envelope and we restrict to tests

that are invariant to linear transformations of the moment restrictions and of the

parameters. We consider a sufficiently rich family of parametric distributions for the

unknown data generating process that are differentiable in quadratic mean. For the

asymptotic equivalent experiment, see Le Cam and Lo Yang (2000) and van der Vaart

(1998), we determine an upper bound for the power of any invariant test using a result

in Lavergne (2014), and show that our tests asymptotically attain this bound. Formally,

consider the partition of g(·, θ) into the p-vector g1(·, θ) = Lg(·, θ) and the remaining

(m − p) vector g2(·, θ) = Mg(·, θ), where [L,M ] is full rank. Let λ = (θ′, υ′)′ ∈ Λ =

Θ× Rm−p, and define

h(X,λ) =

[
g1(X, θ)

g2(X, θ)− υ

]
.

We consider the following family of probability distributions.

Definition 4.2 P is a family of probability distributions Pλ, λ ∈ Λ, with common

support and such that E Pλh(X,λ) = 0. It contains at least one distribution with λ̄ =

(θ̄′,0′)′, where θ̄ ∈
◦
Θ, the interior of Θ. The corresponding density (or probability mass

function) is differentiable with respect to λ for any x, and the density and its derivatives

are dominated over Λ by an integrable function. The family P is differentiable in

quadratic mean and the limiting information matrix is J = H ′V −1H, where H =

∇λ′E Pλh(X,λ), and V = VarPλ h(X,λ).

Such a family of distributions can generally be built as multinomial distributions, see

Chamberlain (1987) who uses such a construct to study asymptotic efficiency bounds.

In specific models, one can consider a more adapted family of distributions, see Gourier-

oux and Monfort (1989, Chap. 23). It is also possible to consider a family of distribu-

tions indexed by a parameter of higher dimension without affecting the analysis.

The following result shows that the model equivalence tests attain the local asymp-

totic power envelope of tests of H0n against H1n for any parametric sub-family of models

P . Here local means that we are considering parameters value around λ̄ = (θ̄′,0′)′.

Formally the set ∂H1n(ν) introduced below allows to focus on alternatives distant

enough from the null hypothesis for which power is not trivial. The result obtains
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independently of the specific value of θ̄ or the precise form of the distributions Pλ.

We consider the following supplementary assumption, that corresponds to the techni-

cal conditions in Broniatowski and Keziou (2012) for asymptotics of GEL estimators

under misspecification, see Newey and Smith (2004) for the case of a well specified

model.

Assumption 4.4 (a) E supθ∈Θ ‖g(X, θ)‖α <∞ for some α > 2

(b) Let mγ(X, θ, t) = t0 − ψγ (t0 +
∑m

l=1 tlgl(X, θ)).

Then θ̃0 = arg infΘ supTθ Emγ(X, θ, t), where Tθ = {t ∈ R1+m : E |mγ(X, θ, t)| <∞},

exists, is unique, and belongs to
◦
Θ. Moreover, for some neighborhood Nθ̃0

of θ̃0,

E supθ∈Nθ̃0
‖∇θg(X, θ)‖ <∞.

(c) Let t̄(θ) = supTθ Emγ(X, θ, t). Then E supθ∈Θ supt∈Nt̄(θ) |mγ(X, θ, t)| < ∞, where

Nt̄(θ) ⊂ Tθ is a compact set such that t̄(θ) ∈
◦

Nt̄(θ).

Theorem 4.1 Suppose X1, . . . , Xn are i.i.d. according to Pλ ∈ P as defined above,

and that Assumptions 2.1, 2.2, 2.3, and 4.4 hold.

(A) Let φn be a pointwise asymptotically level α tests sequence, that is

lim sup
n→∞

E Pλ (φn) ≤ α ∀Pλ ∈ H0n ∩ P .

Let M > 0 arbitrary large and N (λ̄,M) =
{
λ̄+ n−1/2Υ, Υ ∈ Rm, ‖Υ‖ ≤M

}
. If

φn is invariant to orthogonal transformations of the parameters and of the moment

restrictions, then for all ν2 < δ2

lim sup
n→∞

E Pλ (φn) ≤ Pr
[
χ2
r(ν

2) < cα,r,δ2

]
∀Pλ ∈ ∂H1n(ν)∩P , λ ∈ N (λ̄,M) , (4.11)

where ∂H1n(ν) = {Pλ : 2Dγ(M, Pλ) = ν2/n}.
(B) The tests sequence πn is pointwise asymptotically level α for any Pλ ∈ H0n ∩ P
with λ ∈ N (λ̄,M), is invariant to orthogonal transformations of the parameters and

of the moment restrictions, and is such that for all ν2 < δ2

lim sup
n→∞

E Pλ (πn) = Pr
[
χ2
r(ν

2) < cα,r,δ2

]
∀Pλ ∈ ∂H1n(ν) ∩ P , λ ∈ N (λ̄,M) .

Our model equivalence test attains the power envelope of tests of H0n that are invariant

to orthogonal transformations. But tests that are also invariant to possibly nonlinear

transformations cannot be more powerful. Hence our test asymptotically reaches the

semiparametric power envelope of invariant tests.
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5 Concluding Remarks

We have proposed a new theoretical framework to assess the approximate validity

of overidentifying moment restrictions. Approximate validity is evaluated through a

Cressie-Read divergence between the true probability measure and the closest measure

that imposes the moment restrictions of interest. The considered alternative hypoth-

esis states that the divergence is smaller than some user-chosen tolerance. A model

equivalence test is built on the corresponding empirical divergence, and attains the

local semiparametric power envelope of invariant tests. Using two empirical applica-

tions, we have illustrated the usefulness of our approach, discussed how the choice of

the tolerance can be adapted to the application at hand, and show how this can pro-

vide complementary information on potential misspecification compared to standard

procedures.

One may be interested in assessing the approximate validity of only a subset of the

moment restrictions, such as when doubt surrounds the exogeneity of some instruments.

It is likely that our approach generalizes to this setup. Another direction of research

could focus on a subvector of parameters of interest. This is a different issue from

the one considered here, because misspecification of the model, i.e. invalid moment

restrictions, can have different consequences for each parameter, and may make no

difference asymptotically for some. These empirically relevant extensions are left for

future research.

6 Proofs

We use the following notations. For a real-valued function l(x, ·), ∇l(x, ·) and ∇2l(x, ·)
respectively denote the column vector of first partial derivatives and the matrix of

second derivatives with respect to its second vector-valued argument. We use indices

for derivatives with respect to specific arguments.

Preliminaries:

Let ψγ (y) = supx {yx− ϕγ(x)} be the so-called convex conjugate of ϕγ (·). For the
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Cressie-Read family of functions, the convex conjugates are

ψγ(y) = γ−1
[
(γy − y + 1)

γ
γ−1 − 1

]
, γ ∈ R\{0, 1}

ψ1(y) = exp(y)− 1 ,

ψ0(y) = − log(1− y) ,

where the domain may vary depending on γ. By definition, the convex conjugate is

strictly convex on its domain, and due to our definition, ψγ (0) = 0, ψ
′
γ (0) = 1, and

ψ
′′
γ (0) = 1. For t ∈ Rm+1 let mγ(X, θ, t) = t0 − ψγ (t0 +

∑m
l=1 tlgl(X, θ)). Duality

applies provided Assumption 2.1 and 3.1 hold, see Keziou and Broniatowski (2006)

and Broniatowski and Keziou (2012), and implies that

Dγ (M, P ) = inf
Θ

sup
t∈Rm+1

E mγ(X, θ, t) (6.12)

and Dγ (Mn, Pn) = inf
Θ

sup
t∈Rm+1

E nmγ(X, θ, t) . (6.13)

We now detail some key properties that will be used in our proofs. We let g̃(X, θ) =

(I(X ∈ Rp), g′(X, θ))′ so that mγ(X, θ, t) = t0−ψγ (t′g̃(X, θ)), where t = (t0, t1, . . . tm)′.

a. Emγ(X, ·, ·) is twice continuously differentiable in t ∈ Tθ and in θ. This comes

from Assumption 2.2 and the differentiability of Cressie-Read divergences.

b. It is also strictly concave in t for all θ since ψ(·) is strictly convex.

c. Emγ(X, θ,0) = 0,

∇Emγ(X, θ,0) =

 0

0

−E g(X, θ)

 ,

∇2Emγ(X, θ,0) =

[
0 −E∇θg̃(X, θ)

· −E g̃(X, θ)g̃′(X, θ)

]
.

From Assumption 5.1, recall that t̄(θ) = supTθ Emγ(X, θ, t).

a. The function t̄(·) is well-defined. Existence for any θ is ensured by Assumptions

2.1 and 3.1. By Assumption 2.2, Var g(X, θ) is positive definite, and hence the

functions in g(X, θ) are linearly independent, so uniqueness is ensured, see e.g.

Keziou and Broniatowski (2006).
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b. The function t̄(·) is continuous and twice differentiable on Θ by the properties of

ψγ (·) and g (X, ·).

c. t̄(·) admits at most one root. Indeed, t̄(θ) = 0 ⇒ supT Emγ(X, θ, t) = 0 ⇒
Dγ(Mθ, P ) = 0⇒ E g(X, θ) = 0⇒ θ = θ∗ for a unique θ∗ by Assumption 2.1.

d. Conversely, if there exists θ∗ such that E g(X, θ∗) = 0, then t̄(θ∗) = 0. This is

because on the one hand, Emγ(X, θ
∗, t̄(θ∗)) = supT Emγ(X, θ

∗, t) = 0, and on

the other hand, Emγ(X, θ
∗,0) = 0, ∇tEmγ(X, θ

∗,0) = 0, and Emγ(X, θ
∗, t) is

strictly concave in t.

Proof of Lemmas 2.1 and 3.1: We show the two lemmas in a compact way. We

note that Assumption 3.1(a) is automatically satisfied for the chi-square divergence

because we consider signed measures, and that this condition ensures that duality

applies, see Broniatowski and Keziou (2012), Keziou and Broniatowski (2006).

Let λ = (θ′, υ′)′ ∈ Λ = Θ× Rm−p, and define

h(X,λ) =

[
g1(X, θ)

g2(X, θ)− υ

]
.

Let h̃(X,λ) = (I(X ∈ Rp), h′(X,λ))′ and mγ(X,λ, t) = t0 − ψγ

(
t′h̃(X,λ)

)
, where

t = (t0, t1, . . . tm)′. Under Assumptions 2.1, 2.2, and 3.1, there is a λ∗, unique by

2.1(c), such that

0 = inf
Λ
Dγ(Mλ, P ) = inf

Λ
sup
t

Emγ(X,λ, t) = sup
t

Emγ(X,λ
∗, t) = Emγ(X,λ

∗,0) .

Moreover, there exist λ∗R, unique by 2.1(d), and unique t∗R = t̄(λ∗R) such that

Dγ(M, P ) = inf
Θ×0

sup
t

Emγ(X,λ, t) = sup
t

Emγ(X,λ
∗
R, t) = Emγ(X,λ

∗
R, t
∗
R) . (6.14)

(i). If Dγ(M, P ) = o(1), then 0 = Emγ(X,λ
∗
R,0) ≤ Emγ(X,λ

∗
R, t
∗
R) = o(1), and it

follows that ‖t∗R‖ = o(1) since Emγ(X,λ
∗
R, t) is twice continuously differentiable and

strictly concave in t. Since t̄(λ∗) = 0 and t̄(·) is continuous and admits only one root,

it must be that ‖λ∗R − λ∗‖ = o(1). By a Taylor expansion of Emγ(X,λ, t) and using

the continuity of ∇2Emγ(X,λ, t) for ‖t‖ = o(1), we obtain that uniformly in (λ, t) in
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a o(1) neighborhood of (λ∗,0)

Emγ(X,λ, t) =

[
− (λ− λ∗)′∇λE h̃(X,λ∗)t− 1

2
t′E h̃(X,λ∗)h̃′(X,λ∗)t

]
(1 + o(1)) .

(6.15)

We can then solve for t̄(λ) to get

sup
t

Emγ(X,λ, t) =
1

2
(λ− λ∗)′ J (λ− λ∗) (1 + o(1)) , (6.16)

with J = J(λ∗) = H(λ∗)′Var−1 (h (X,λ∗))H(λ∗) and H(λ∗) = ∇λ′Eh(X,λ∗). Solving

(6.16) for λ∗R under the constraint R′λ = [0, Im−p]λ = 0 yields

λ∗R = J−1/2 [I− P ] J1/2λ∗(1 + o(1)) ,

Dγ(M, P ) =
1

2
λ∗
′
J1/2PJ1/2λ∗(1 + o(1)) =

1

2
υΣ−1υ(1 + o(1)) = DW (M, P )(1 + o(1)) ,

where

Σ = R′J−1R and P = J−1/2R[R′J−1R]−1R′J−1/2. (6.17)

(ii). Assume now instead that DW (Mλ, P ) = o(1), then ‖E g(X, θ∗)‖ = o(1) and

0 ≤ D2(M, P ) ≤ 1

2
E (g′(X, θ∗)) [Var g(X, θ∗)]−1 E (g(X, θ∗)) = o(1) .

So there exists
(
λ∗R,2, t

∗
R,2 = t̄(λ∗R,2)

)
such that D2(M, P ) = Em2

(
X,λ∗R,2, t

∗
R,2

)
=

o(1). Reasoning as above, ‖λ∗R,2 − λ∗2‖ = o(1), ‖t∗R,2‖ = o(1), and D2(M, P ) =

DW (Mλ, P )(1 + o(1)). For any γ,

0 = Emγ

(
X,λ∗R,γ,0

)
≤ Emγ

(
X,λ∗R,γ, t

∗
R,γ

)
≤ Emγ

(
X,λ∗R,2, t

∗
R,2

)
which is an o(1) by a Taylor expansion at (λ∗2,0). Reason then as above to obtain

Dγ(M, P ) = DW (Mλ, P )(1 + o(1)) = D2(M, P )(1 + o(1)).

Proof of Theorem 5.1:

(i). Recall that with J = J(λ∗) = H(λ∗)′V (λ∗)−1H(λ∗), H(λ∗) = ∇λ′Eh(X,λ∗),

and V (λ∗) = Varh(X,λ∗) = Var g(X, θ∗). The proof of Lemma 3.1 yields that

2Dγ(M, P ) = λ∗
′
J1/2PJ1/2λ∗(1 + o(1)), uniformly in λ∗ ∈ N (λ̄,M), where P is

defined in (6.17). Moreover, and also uniformly in λ∗ ∈ N (λ̄,M), we have J =
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J(λ̄) + o(1) = J̄ + o(1), and similarly P = P̄ + o(1) with self-explanatory notations.

Since P̄ J̄1/2λ̄ = J̄−1/2R[R′J̄−1R]−1R′λ̄ = 0,

2Dγ(M, P ) = λ∗
′
J̄1/2P̄ J̄1/2λ∗(1 + o(1)) =

(
λ∗ − λ̄

)′
J̄1/2P̄ J̄1/2

(
λ∗ − λ̄

)
(1 + o(1))

= n−1Υ′J̄1/2P̄ J̄1/2Υ(1 + o(1)) . (6.18)

Let λ̂ be the minimum empirical divergence estimator of λ∗, that is the argument

minimizing 2 infΛ D(Mλ,n, Pn). Using a reasoning similar to Lemma 3.1’s proof for

the empirical problem yields

2nD(Mn, Pn) = nλ̂′J1/2
n PnJ

1/2
n λ̂(1 + op(1)) (6.19)

with Pn = J
−1/2
n R[R′J−1

n R]−1R′J
−1/2
n , Jn = H ′nV

−1
n Hn, Hn = ∇λ′E nh(X, λ̂), and

Vn = Varn g(X, θ̂).

(ii). If we assume correct specification of the moment restrictions, that is λ = λ̄ =(
θ̄,0
)
, standard tools, see e.g. Newey and Smith (2004, Theorem 3.2) or Broniatowski

and Keziou (2012, Theorem 5.6), yield that under Assumptions 2.1, 2.2, 3.1, and 5.1,

√
n
(
λ̂− λ̄

)
= −J̄−1H̄ ′V̄ −1

√
nE nh(X, λ̄)

d−→N(0, J̄−1) ,

where J̄ = J(λ̄), and similarly for H̄ and V̄ . Moreover, Jn = J̄ + op(1) and Pn =

P̄ + o(1). Let us now look at the behavior of λ̂ under local misspecification. Local

asymptotic normality of the log-likelihood ratio, which follows as the model is differ-

entiable in quadratic mean over Λ, see van der Vaart (1998, Theorem 7.2), yields

n1/2 ln
n∏
t=1

f(Xi;λ)

f(Xi; λ̄)
=
(
λ − λ̄

)′
∆n −

(
λ − λ̄

)′
J̄
(
λ − λ̄

)
/2 + op(1) ∀λ ,

with ∆n = n−1/2

n∑
i=1

∇λ log f(Xi; λ̄)
d−→N(0, J̄) ,

J̄ = E∇λ log f(X; λ̄)∇′λ log f(X; λ̄) = H̄ ′V̄ −1H̄ .

Since Eh
(
X, λ̄

)
= 0, total differentiation yields

Cov
(
h
(
X, λ̄

)
,∇λ log f(X; λ̄)

)
= −∇λEh(X, λ̄) .

Hence, Cov
(√

n
(
λ̂− λ̄

)
,∆n

)
= − n J̄−1H̄ ′V̄ −1 Cov

(
E nh(X, λ̄),E n∇λ log f(X; λ̄)

)
= −J̄−1H̄ ′V̄ −1H̄ = −Im . (6.20)
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Therefore by Le Cam’s third Lemma, see e.g. van der Vaart (1998), we obtain that

under the sequences of distributions corresponding to λ = λ̄+ n−1/2Υ,

τn ≡
√
n
(
λ̂− λ̄

)
≡ Z + op(1) ,

where Z ∼ N(−Υ, J̄−1). As a consequence,

n
(
λ̂− λ̄

)′
J1/2
n PnJ

1/2
n

(
λ̂− λ̄

)′
= Z ′J̄1/2P̄ J̄1/2Z + op(1) .

(iii). Since the sequence of distributions converges to a limiting normal experiment

Z with unknown mean −Υ and known covariance matrix J̄−1, it follows that we can

approximate pointwise the power of any test φn by the power of a test in the limit

experiment, see van der Vaart (1998, Theorem 15.1) and Lehmann and Romano (2005,

Theorem 13.4.1).

Lemma 6.3 (Lavergne (2014, Lemma 4.2)) Consider testing

H0 : µ′Ω−1/2PΩ−1/2µ ≥ δ2 against H1 : µ′Ω−1/2PΩ−1/2µ < δ2 ,

where P is a known orthogonal projection matrix of rank r, from one observation

Z ∈ Rp distributed as a multivariate normal N(µ,Ω) with unknown mean µ and

known nonsingular covariance matrix Ω. Then the test π(z) that rejects H0 when

Z ′Ω−1/2PΩ−1/2Z < cα,r,δ2 is of level α. For any ν2 < δ2, the test is maximin among

α-level tests of H0 against H1(ν) : µ′Ω−1/2PΩ−1/2µ ≤ ν2 with guaranteed power

Pr [χ2
r(ν

2) < cα,r,δ2 ].

In our case, the test writes π(Z) = I
[
Z ′J̄1/2P̄ J̄1/2Z < cα,r,δ2

]
. Since the test is max-

imin, it is necessarily admissible and unbiased. Moreover, as it is independent of ν2,

it must be most powerful against Υ = 0. Finally, as it is invariant to orthogonal

transformations of the parameter space, it must be UMP invariant.

(iv). For λ ∈ N (λ̄,M), the model equivalence test πn is asymptotically equivalent

to π(τn), where π(·) is the test defined above and τn ≡
√
n
(
λ̂− λ̄

)
. It thus remains

to check that πn has the same local asymptotic properties as the optimal test π(Z) in

the limiting experiment.

We have Eπn = E π(τn) + o(1) pointwise in Υ ∈ Rm. Also nτ ′nJ
1/2
n PnJ

1/2
n τn is for

any Υ asymptotically distributed as a non-central χ2
m−p(ΥJ̄

1/2P̄ J̄1/2Υ), see Rao and
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Mitra (1972). As π(τn) rejects H0n when τnJ
1/2
n PnJ

1/2
n τn < cα,r,δ2 ,

E λ̄+n−1/2Υπ(τn) = Pλ̄+n−1/2Υ

[
τ ′nJ

1/2PJ1/2τn < cα,r,δ2

]
→ P

[
χ2
r(ΥJ̄

1/2P̄ J̄1/2Υ) < cα,r,δ2

]
.

Hence, π(τn) and thus πn are locally pointwise asymptotic level α.

The proof of Lemma 6.3 in Lavergne (2014) shows that π(Z) is a α-level Bayes test

of

H0 : Υ′J̄1/2P̄ J̄1/2Υ ≥ δ2 against H1(ν) : Υ′J̄1/2P̄ J̄1/2Υ ≤ ν2

for ν2 < δ2 under least favorable a priori measures, which are respectively the uniform

measure Qδ on the domain S(δ) such that Υ′J̄1/2P̄ J̄1/2Υ = δ2 and the uniform measure

Qν defined similarly. Now

EQνπ(τn) =

∫
S(ν)

E π(τn) dQν → EQνπ(Z)

by the Lebesgue dominated convergence theorem, so that π(τn) and thus πn are also

asymptotically Bayesian level α for the same a priori measures. For any other test

sequence φn of asymptotically Bayesian level α,

lim sup
n→∞

inf
H1(ν)

Eφn ≤ lim sup
n→∞

EQνφn ≤ lim sup
n→∞

EQνπ(τn) .

But lim supn→∞ EQνπ(τn) = EQνπ(Z) = infH1(ν) Eπ(Z) = limn→∞ infH1(ν) E π(τn).

Gathering results,

lim inf
n→∞

(
inf
H1(ν)

E π(τn)− inf
H1(ν)

Eφn
)
≥ 0 ,

which shows that π(τn) and thus πn are locally asymptotically maximin.

Consider an invariant test sequence φn of pointwise asymptotic level α. Then for

any ν and any Υ such that Υ′J̄1/2P̄ J̄1/2Υ = ν2

lim sup
n→∞

E λ̄+n−1/2Υφn ≤ lim sup
n→∞

EQνφn ≤ lim sup
n→∞

EQνπ(τn) = lim
n→∞

E λ̄+n−1/2Υπ(τn) ,

so that π(τn) and thus πn have maximum asymptotic local power among invariant

tests.

Since the power of π(τn) converges to a bounded function which is continuous in Υ,

limits of extrema on H1(ν) equal limits of extrema on H1n(ν) : 2Dγ(M, P ) < ν2/n,

using (6.18). Hence the same local asymptotic properties hold for π(τn) and thus πn

as tests of H0n against H1n(ν).
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