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Abstract

We prove the existence of some solutions u(t, x) of the Schrödinger equation with a saturation
nonlinear term (u/|u|) having compact support, for each t > 0, expanding with t with a growth
law of the type C

√
t. The primary tool is considering the self-similar solution of the associated

equation.
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1 Introduction

The existence of compactly support solutions to Schrödinger equation was a constant subject of

research since Schrödinger postulated the existence of such equation in 1925 and published it in 1926.

For the case of the linear equation it seems that it was Sir Nevill Francis Mott (1905-1996), who would

later win the Nobel Prize in 1977, proposed the study of the infinite well potential in his 1930 book [17].

This was a generalization of the finite well potential proposed, in 1928, by George Gamow [15] when

finding the tunnel effect by first time in the literature. Solutions of the linear Schrödinger equation

with an infinite well potential have compact support (the compact set of RN where the potential is

finite) but the mathematical study of this problem presents some ambiguities ([13]) which disappear

when such a discontinuous potential is replaced by strongly singular potentials of the Pöschl–Teller

type ([18], [13], [14]).

This study of the support of solutions of nonlinear Schrödinger equations was also considered by

many authors but with negative results when the nonlinear term is Lipschitz continuous (see, e.g.,

the presentation made by J. Bourgain in [9]). These authors made completely new contributions in

the subject by showing that solutions with compact support do exist when the nonlinear term is not

Lipschitz continuous but of the form

i
∂u

∂t
+∆u = a|u|−(1−m)u+ f(t, x), (1.1)

for some m ∈ (0, 1) and for a suitable complex coefficient a. This equation is associated to the

consideration of non-Kerr law optical Schrödinger equation arising, for instance, in nonlinear optical

media. This type of equations also arises in QuantumMechanics and Hydrodynamics. When searching

for “solitary wave solutions” of the form u(t, x) = ψ(x)eibt (when f(t, x) = eibtF (x)) then the complex

function u satisfies a stationary nonlinear equation which leads to solutions with compact support

once we assume that F (x) has compact support.

The above problem was extended to the case of saturated nonlinear terms (m = 0) in the recent

paper [7] proving that “solitary wave solutions” u(t, x) = ψ(x)eibt have compact support even if F (x)

does not have compact support but is small enough outside of some compact subset of RN . From

the qualitative point of view, the above type of solutions with compact support (for the mentioned

linear and nonlinear cases) concern some special type of solutions: “solitary wave solutions” of the

form u(t, x) = ψ(x)eibt which implies that support of u(t) does not move, for any t > 0, since

suppu(t) = suppψ.

A different point of view was followed by the authors in the paper [4] where the existence of a self-

similar solution of the form u(t, x) = t
p
2φ
(

x√
t

)
was proved for the equations of the type (1.1) with

m ∈ (0, 1) once we assume that f(t, x) = t
p−2
2 F

(
x√
t

)
: it was proved in that paper that if suppF is
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compact then the solution profile φ is also compact. As it was detailed later, for this type of solutions

their support suppu(t) expands with time t > 0, with a sublinear growth of the type C
√
t.

The main objective of the present paper is to extend the results of [4] to the saturated case (m = 0)

by showing that the corresponding solution has expanding support suppu(t) that expands with time

t > 0, with a sublinear growth of type C
√
t even if the profile F of the data f(t, x) = t

p−2
2 F

(
x√
t

)
is

not compactly supported but, as in [7], is sufficiently small outside a compact subset of RN . One of

the consequences of such general assumption on f(t, x) is that we can extend the property of solutions

with compact support when we couple the Schrödinger equation with some other phenomena (as for

instance the existence of some magnetic fields: see Section 9 of [7]). Here we are interested in finding

self-similar solutions with compact support in the space variable of the following Schrödinger equation

with saturated nonlinearity,
i
∂u

∂t
+∆u = aU + f(t, x), (t, x) ∈ (0,∞)× RN ,

U =
u

|u|
, a.e. in

{
(t, x) ∈ (0,∞)× RN ;u(t, x) ̸= 0

}
,

(1.2)

where a ∈ C. For this, it is enough to study the equation satisfied by the profile φ of u, that is
−∆φ+ aΦ− ip

2
φ+

i

2
x.∇φ = −F, in D ′(RN ),

Φ =
φ

|φ|
, a.e. in

{
x ∈ RN ;φ(x) ̸= 0

}
,

(1.3)

where p ∈ C with Re(p) = 2, φ = u(1), and F = f(1). We will maintain the notation and several

common arguments with our previous papers [4] and [7] but new results will be given improving both

papers. As in [4], it is useful to introduce a change of unknowns which brings us back to the search

for solutions to the problem
−∆g + aG− i

N + 2p

4
g − 1

16
|x|2g = −Fe−i

|x|2
8 , in D ′(RN ),

G =
g

|g|
, a.e. in

{
x ∈ RN ; g(x) ̸= 0

}
.

(1.4)

So in this paper, we study the following which is more general equation than (1.4),
−∆u+ aU + b u+ V u = F, in H−1(Ω) + L∞(Ω),

U =
u

|u|
, a.e. in ω =

{
x ∈ Ω;u(x) ̸= 0

}
,

(1.5)

where (a, b) ∈ C2, and Ω is a subset of RN whose boundary is Γ, with homogeneous Dirichlet boundary

condition

u|Γ = 0, (1.6)
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or with homogeneous Neumann boundary condition

∂u

∂ν |Γ
= 0. (1.7)

The compactness of the support of solutions will be obtained by some improvements of the energy

methods presented in the monograph [2] (see also the extension to some variational inequalities made

in [12]). We mention that the method such as it was developed in the above mentioned references is

only well adapted to its application to complex problems of Ginzburg -Landau type [1] in which the

time derivative of the unknown contains a real part (situation which is not valid for the Schrödinger

equation).

The organization of this paper is as it follows: Section 2 is devoted to the structure of self-similar

solutions and to the presentation of the main result of this paper (Theorem 2.3 below). Details on the

notion of solutions, the results on the existence and uniqueness of solutions are collected in Section 3.

A set of auxiliary results preparing the application of an energy method leading to the compactness

of the support of the solution, as well as the proof of the results stated in the previous sections are

presented in Section 4. Finally, an Appendix is devoted to the proof of the additional regularity

obtained from the structure of self-similar solutions.

As indicated before, this paper extends some previous papers by the authors ([4] and a part of [6])

to the case m = 0. Nevertheless, since the applied techniques are of some different type, they do

not allow to conclude some previous results in their complete generality. Furthermore, despite the

fact that [7] also concerns equation (1.5), we point out that the assumptions and results differ so

that they cannot be employed to construct self-similar solutions with compact support in space. For

instance, Theorem 3.2 vs [7, Theorem 2.6]: [7, Theorem 2.6] in less restrictive in terms of V, and

Theorem 3.2, only considers the Dirichlet condition and |Ω| < ∞. But Theorem 3.2 is more general

in terms of (a, b) since (a, b) ∈ C × B while in [7, Theorem 2.6], (a, b) ∈ A2 satisfy some additional

conditions, and A ⊊ B. Theorem 3.4 vs [7, Theorem 2.6]: Theorem 3.4 is more restrictive in terms of

(a, b) but it allows V to be a complex-valued function with no sign restriction about Re(V ), while in

[7, Theorem 2.6], V is a nonnegative real-valued functions. It is essential to allow to choose V with a

negative real part to consider self-similar solutions.

Here is a list of symbols we will use in this paper: for a complex number z, we denote by z, Re(z)

and Im(z), its conjugate, real and imaginary part, respectively, and i2 = −1. N0 = N ∪ {0}. For
p ∈ [1,∞], p′ is the conjugate of p defined by 1

p + 1
p′ = 1. Unless specified, all functions are complex-

valued and all the vector spaces are considered over the field R. For a Banach space X, we denote

by X⋆ def
= L (X;R) its topological dual and by ⟨ . , . ⟩X⋆,X the X⋆ − X duality product. By con-

vention, W 0,q(RN ) = Lq(RN ), for any 0 < q < ∞. For positive parameters a1, . . . , an, we shall
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write C(a1, . . . , an) to indicate that C is a positive constant which depends only and continuously on

a1, . . . , an. Finally, if A is a subset of RN then Ac denotes its complement, and A \B = A ∩Bc.

Let us recall that if X and Y are two Banach spaces1 such that X ↪→ Y with dense embedding then

Y ⋆ ↪→ X⋆, and for any F ∈ Y ⋆ and u ∈ X, ⟨F, u⟩X⋆,X = ⟨F, u⟩Y ⋆,Y . By the Riesz representation The-

orem, we have for any p ∈ [1,∞), F ∈ Lp′
(Ω) and u ∈ Lp(Ω), ⟨F, u⟩Lp′ (Ω),Lp(Ω) = Re

∫
Ω
F (x)u(x)dx.

In particular, this implies that we shall always identify L2(Ω) with its topological dual. In addition, if

A1 and A2 are two Banach spaces such that A1, A2 ⊂ H for some Hausdorff topological vector space

H, and if A1 ∩ A2 is dense in both A1 and A2 then A1 ∩ A2 and A1 + A2 are Banach spaces, and(
A1∩A2

)⋆
= A⋆

1+A
⋆
2. This justifies the identity (3.1) below. For more details, see Trèves [19], Bergh

and Löfström [8], and [3].

2 Self-similar solutions

Let us recall that the notion of self-similar solutions relies on the transformation λ 7−→ (uλ, U
λ), where

for λ > 0, p ∈ C, u ∈ L1
loc

(
(0,∞) × RN

)
and U a saturated section associated to u (Definition 2.1

below),

uλ(t, x) = λ−pu(λ2t, λx), (2.1)

Uλ(t, x) = λ−(p−2)U(λ2t, λx), (2.2)

for a.e. (t, x) ∈ (0,∞) × RN . We also recall that λp
def
= ep lnλ and |λp| = λRe(p). If Re(p) = 2 then a

straightforward calculation shows that if (u, U) is a solution to (1.2) with f = 0, then so is (uλ, U
λ),

for any λ > 0. In particular, Uλ is a saturated section associated to uλ. To keep this property when

f ̸= 0, with f ∈ L1
loc

(
(0,∞)× RN

)
, we assume that f satisfies

∀λ > 0, fλ = f, (2.3)

or equivalently,

f(t, x) = t
p−2
2 F

(
x√
t

)
, (2.4)

for a.e. (t, x) ∈ (0,∞) × RN , where F = f(1). To have functions f satisfying (2.3), it is sufficient

for any given function F ∈ L1
loc(RN ) to define f by (2.4). Furthermore, we easily check that (u, U)

satisfies the invariance property

∀λ > 0, (uλ, U
λ) = (u, U),

1Actually, locally convex topological vector spaces is enough which allows to consider X = D(Ω).
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if, and only if,

u(t, x) = t
p
2φ

(
x√
t

)
, (2.5)

U(t, x) = t
p−2
2 Φ

(
x√
t

)
, (2.6)

for a.e. (t, x) ∈ (0,∞) × RN , where (φ,Φ) = (u(1), U(1)). This remarkable invariance property leads

to the well-known definition of self-similar solution.

Definition 2.1. Let θ ⊆ RN be an open subset and let u ∈ L1
loc(θ). A function U ∈ L∞(θ) is

said to be a saturated section associated to u if ∥U∥L∞(θ) ⩽ 1 and U = u
|u| , almost everywhere in

ω
def
=
{
y ∈ θ;u(y) ̸= 0

}
.

Definition 2.2. Let f ∈ C
(
(0,∞);L2(RN )

)
satisfy (2.3) and let p ∈ C be such that Re(p) = 2. A

solution (u, U) to (1.2) is said to be self-similar if u ∈ C
(
(0,∞);L2(RN )

)
, U is a saturated section

associated to u and if for any λ > 0, (uλ, U
λ) = (u, U), where uλ and Uλ are defined by (2.1) and

(2.2), respectively. In this cases, u(1) is called the profile of u and is denoted by φ.

It follows from (1.2), (2.5) and (2.6) that the profile φ of u and Φ satisfy (1.3). In particular,

Φ is a saturated section associated to φ. Conversely, if (φ,Φ) ∈ L2(RN ) × L∞(RN ) satisfies (1.3)

with ∥Φ∥L∞(RN ) ⩽ 1, then the functions u and U defined by (2.5) and (2.6), respectively, belong

to C
(
(0,∞);L2(RN )

)
(Lemma A.1) and L∞((0,∞) × RN ), respectively, U is a saturated section

associated to u and u is a self-similar solution to (1.2), where f is defined by (2.4) and satisfies (2.3).

A priori estimates on φ are not easy to obtain due to the term x.∇φ. Thus in the literature, this

problem is circumvented using the bijective transformation

g(x) = φ(x)e−i
|x|2
8 , for a.e.x ∈ RN . (2.7)

The saturated section Φ associated to φ then becomes

G(x) = Φ(x)e−i
|x|2
8 , for a.e.x ∈ RN . (2.8)

It follows that for any p ∈ C and φ ∈ L2(RN ), whose a saturated section associated to φ is Φ, (φ,Φ)

is a solution to (1.3) if, and only if, (g,G) ∈ L2(RN ) × L∞(RN ) is a solution to (1.4) and G is a

saturated section associated to g. The study of (1.4) is then more convenient than of (1.3), and is

related to Theorem 3.4. Let,

A = C \
{
z ∈ C; Re(z) ⩽ 0 and Im(z) = 0

}
. (2.9)

The main result of this paper is the following.
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Theorem 2.3. Assume that a ∈ A is such that Im(a) ⩽ 0. Let p ∈ C be such that Re(p) = 2, let

f ∈ C
(
(0,∞);L2(RN )

)
satisfy (2.3) and set F = f(1). Assume also that F|Kc ∈ L∞(Kc), for some

compact subset K of RN .

1. Existence. For any R > 0 such that K ⊂ B(0, R) and any ε > 0, there existM =M(|a|, |Im(p)|, R,N)

and δ = δ(|a|, |Im(p)|, R, ε,N) satisfying the following property. If ∥F∥L2(RN ) ⩽ δ and ∥F∥L∞(Kc) ⩽
1
M then there exists a self-similar solution (u, U) to (1.2) such that

u ∈ C
(
(0,∞);H2(RN )

)
∩ C1

(
(0,∞);H1(RN )

)
∩ C2

(
(0,∞);L2(RN )

)
(2.10)

and for any t > 0, suppu(t) is compact. In addition, the profile φ of u satisfies that suppφ ⊂
K(ε) ⊂ B(0, R+ ε), where

K(ε) =
{
x ∈ RN ; dist(x,K) ⩽ ε

}
,

which is compact.

2. Uniqueness. Let (u, U) and (v, V ) be two self-similar solutions to (1.2) with profiles φ and ϕ,

respectively, and with suppφ ∪ suppϕ ⊂ B(0, r), for some r > 0. Assume that one of the two

following conditions is satisfied.

(a) Re(a) = 0.

(b) Re(a) > 0 and r2 ⩽ 8Im(p) + 4 |Im(a)|
Re(a) (N + 4).

Then for any t > 0, u(t) = v(t). As a consequence, U = V almost everywhere in (0,∞)× RN .

We postpone the proof of Theorem 2.3 to Subsection 4.3.

Remark 2.4. It is obvious from (1.2) that the uniqueness of the solution u implies the uniqueness

of the saturated section U.

Remark 2.5. In [4], self-similar solutions are studied with the nonlinearity |u|−(1−m)u, where 0 <

m < 1. It is shown that a self-similar solution cannot be continuous at t = 0 in a reasonable way.

This remains true in our case (which corresponds to m = 0). Below, we give some details. Let p ∈ C

be such that Re(p) = 2 and let u be a self-similar solution to (1.2) with profile φ.

1. Let us define the transformation Tλ : v 7−→ vλ, for any v ∈ L1
loc(RN ), when λ > 0 : Tλ(v)( . ) =

λ−pv(λ . ). The functions which satisfy this invariance property cannot be Lq-functions in the

sense that we have

Λq
def
=
{
v ∈ Lq(RN );∀λ > 0, Tλ(v) = v

}
=
{
0
}
,
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for any q ∈ (0,∞]. Indeed, if for some q ∈ (0,∞], v ∈ Λq then a straighforward calculation gives

that

∀λ > 0, ∥v∥Lq(RN ) = λ2+
N
q ∥v∥Lq(RN ).

Therefore, v = 0. It follows that if u(0) ∈ Lq(RN ), for some 0 < q ⩽ ∞, then u(0) ∈ Λq and so

necessarily u(0) = 0.

2. It follows from above that if u ∈ C
(
[0,∞);D ′(RN )

)
is a self-similar solution to (1.2) with

u(0) ̸= 0 then for any 0 < q ⩽ ∞, u /∈ C
(
[0,∞);Lq(RN )

)
. On the other hand, if for some

0 < q ⩽ ∞, u ∈ C
(
(0,∞);Lq(RN )

)
then φ ∈ Lq(RN ) and it follows from (2.5) that

∀t > 0, ∥u(t)∥Lq(RN ) = t1+
N
2q ∥φ∥Lq(RN ), (2.11)

and so lim
t↘0

∥u(t)∥Lq(RN ) = 0. Actually, if m ∈ {0, 1, 2}, 0 < q ⩽ ∞ and φ ∈ Wm,q(RN ) then by

(2.5), u(t) ∈Wm,q(RN ), for any t > 0, and

∥∇u(t)∥Lq(RN ) = t
1
2+

N
2q ∥∇φ∥Lq(RN ), (2.12)

∥∂2jku(t)∥Lq(RN ) = t
N
2q ∥∂2jkφ∥Lq(RN ), (2.13)

for any t > 0 and (j, k) ∈ J1, NK2, so that lim
t↘0

∥u(t)∥Wm,q(RN ) = 0 (q <∞, if m = 2).

3. If f = 0, a ∈ R and φ has compact support then for any t ∈ R, u(t) = 0. Indeed, if g is

defined by (2.7) then g ∈ L2(RN ) and by (1.4), ∆g ∈ L2
loc(RN ). By interior elliptic regularity,

g ∈ H2
loc(RN ) (Cazenave [11, Proposition 4.1.2]). Then φ ∈ H2

loc(RN ) and since suppφ is

compact, we finally have φ ∈ H2(RN ). It follows from Lemma A.1 below that u satisfies the

regularity (2.10). We are then allowed to take the X⋆ − X duality product of (1.2) with iu,

where X = H1(RN ) ∩ L1(RN ), to obtain that d
dt∥u(t)∥

2
L2(RN ) = 0, for any t > 0. With help of

(2.11), we then deduce that

∀t > 0, ∥φ∥L2(RN ) = ∥u(t)∥L2(RN ) = t1+
N
4 ∥φ∥L2(RN ).

Then φ = 0, from which the result follows.

4. Assume that u(0) ̸= 0. From the structure of the self-similar solution u we easily deduce that

for any t > 0,

suppu(t) =
√
t suppφ.

Letting t ↘ 0, we could conclude that suppu(0) = ∅ and then u(0) = 0. But as seen above, u

is not continuous at t = 0 in any reasonable way and we cannot infer that u(0) = 0. Estimates

on the expansion of the support of the type C
√
t where proved, for the first time, for parabolic

variational inequalities, in the paper H. Brezis and A. Friedman [10].
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Remark 2.6. Let 0 < m < 1, let a ∈ A be such that Im(a) ⩽ 0, let p ∈ C be such that Re(p) = 2
1−m

and let f1, . . . , fd ∈ C
(
(0,∞);L2(RN )

)
satisfying (2.3). Assume further that for any j ∈ J1, dK,

Kj
def
= supp fj(1) is compact, ∥fj(1)∥L2(RN ) is small enough and Kj ∩Kℓ = ∅, for any j ̸= ℓ. It follows

from [4, Theorem 1.2] that for any j ∈ J1, dK, there exists a self-similar solution uj to

i
∂uj
∂t

+∆uj = a|uj |−(1−m)uj + fj(t, x), (t, x) ∈ (0,∞)× RN ,

such that suppuj(1) is compact. Due to the smallness of the d norms ∥fj(1)∥L2(RN ), we also have

that for any j ̸= ℓ, suppuj(1) ∩ suppuℓ(1) = ∅. Set,

u =

d∑
j=1

uj and f =

d∑
j=1

fj .

From the structure of the self-similar solutions and since the support of the d functions uj(1) are

disjoints, we conclude that the supports of the d functions uj remain disjoints at least during some

suitable period of time (0, T ), for some T > 1. It follows that u is a self-simlar solution to

i
∂u

∂t
+∆u = a|u|−(1−m)u+ f(t, x), (t, x) ∈ (0, T )× RN ,

although this equation is not linear. If m = 0, then the above arguments do not work since we

do not necessarily have that the saturated section U associated to u satisfies U = 0 when u = 0.

Nevertheless, we may still generate self-similar solutions of the evolution Schrödinger equation (1.2),

on a finite time interval (0, T ), with T > 1, having support with more than one connected component.

Indeed, it is sufficient to work with one function f where the compactness of f(1) and the smallness of

∥f(1)∥L2(RN ) are replaced by the following assumptions: there exist d compact connected subsets Kj

such that ∥f(1)∥L∞(Kc) is small enough, whereK = ∪d
j=1Kj , and such that for any j ̸= ℓ, Kj∩Kℓ = ∅.

We conclude with help of Theorem 2.3.

Remark 2.7. It is useful to rewrite the evolution Schrödinger equation in terms of real components

of solutions and data u = uR + iuI , f = fR + ifI ,

a = aR + iaI .

Then, the sign of the components of the coefficient a is especially crucial for understanding the different

nature of the coupled system. Theorem 2.3 holds, for instance, if a = λ − iµ with λ, µ > 0 (in the

pure elliptic system, the case of µ < 0 is also allowed: see our paper in [7]), and then we arrive to the

coupled system 
∂uI
∂t

−∆uR +
λuR + µuI√
u2R + u2I

= −fR,

−∂uR
∂t

−∆uI +
λuI − µuR√
u2R + u2I

= −fI .

9



Here we can appreciate how this system becomes easier if we add a real coefficient to the kinetics

term (as it is the case of Ginzburg-Landau equations) since then it appears a new term ∂uR

∂t in the

first equation and a new term ∂uI

∂t in the second equation. See the paper [1].

3 Existence and uniqueness of the solutions

Definition 3.1. Let Ω ⊆ RN be an open subset, (a, b) ∈ C2 and V ∈ L∞(Ω).

1. Let F ∈ H−1(Ω)+L∞(Ω). We shall say that a function u is a global weak solution to (1.5) with

boundary condition (1.6), if u ∈ H1
0 (Ω) ∩ L1(Ω), there is saturated section U associated to u,

and if

⟨∇u,∇v⟩L2(Ω),L2(Ω) + ⟨aU, v⟩L∞(Ω),L1(Ω) + ⟨b u, v⟩L2(Ω),L2(Ω)

+ ⟨V u, v⟩L2(Ω),L2(Ω) = ⟨F, v⟩X⋆,X , (3.1)

for any v ∈ H1
0 (Ω) ∩ L1(Ω), where X = H1

0 (Ω) ∩ L1(Ω).

2. Assume that Ω has a finite measure and a Lipschitz continuous boundary. Let F ∈ H1(Ω)⋆.

We shall say that a function u is a global weak solution to (1.5) with boundary condition (1.7)

if u ∈ H1(Ω), there is a saturated section U associated to u, and if (u, U) satisfies (3.1) for any

v ∈ H1(Ω), where X = H1(Ω).

Sometimes, we shall write (u, U) to designate a solution with the obvious meanings.

By convention, throughout this paper Ω denotes any open subset of RN , and (a, b) is a pair of

complex numbers. When a function will be said to satisfy the boundary condition (1.7), it will always

be assumed that Ω has a finite measure and a Lipschitz continuous boundary.

Let,

B = C \
{
z ∈ C; Re(z) ⩽ − 1

C2
P

and Im(z) = 0

}
, (3.2)

where CP is the constant in Poincaré’s inequality (4.15) below.

Theorem 3.2 (Existence and a priori bound). Assume that |Ω| < ∞ and b ∈ B. Let V ∈
L∞(Ω;R) with V ⩾ 0, a.e. in Ω. Then for any F ∈ H−1(Ω), equations (1.5)–(1.6) admit at least

one global weak solution. In addition, Symmetry Property 3.3 below holds. Finally, any solution u to

(1.5)–(1.6) satisfies

∥u∥H1
0 (Ω) ⩽ C, (3.3)

where C = C(∥F∥H−1(Ω), ∥V ∥L∞(Ω;R), |Ω|, |a|, |b|, N).
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Symmetry Property 3.3. Furthermore, if there exists R ∈ SON (R) such that for almost every

x ∈ Ω, Rx ∈ Ω, F (Rx) = F (x) and V (Rx) = V (x) then we may construct a solution u which also

satisfies u(Rx) = u(x), for almost every x ∈ Ω. When N = 1, if Ω is symmetric with respect to the

origin and if F and V are odd functions then u is also an odd function.

Here and in what follows, SON (R) denotes the special orthogonal group of RN . We recall that A is

defined by (2.9).

Theorem 3.4 (Existence and a priori bound). Let V ∈ L∞(Ω). Assume that a ∈ A, Im(b) ̸= 0,

Im(a)Im(b) ⩾ 0 and Im(b)Im(V ) ⩾ 0, a.e. in Ω. Then for any F ∈ H−1(Ω), equations (1.5)–(1.6)

admit at least one global weak solution. In addition, Symmetry Property 3.3 holds. Finally, any

solution u to (1.5)–(1.6) satisfies

∥u∥2H1
0 (Ω) + ∥u∥L1(Ω) +

∫
Ω

|Im(V )||u|2dx ⩽ C∥F∥2H−1(Ω), (3.4)

where C = C(∥Re(V )∥L∞(Ω), |a|, |b|). When F ∈ H1(Ω)⋆, a similar statement holds for the boundary

condition (1.7).

Remark 3.5. Note that if, in addition, Re(a) ⩾ 0 and Re(ab) + Re(aV ) ⩾ 0, a.e. in Ω, then the

solution given by Theorem 3.4 is unique ([7, Theorem 2.8]).

Theorem 3.6 (Null solution). Let V ∈ L∞(Ω). Assume that a ∈ A, Im(b) ̸= 0, Im(a)Im(b) ⩾ 0 and

Im(b)Im(V ) ⩾ 0, a.e. in Ω. Then there exists M = M(|a|, |b|, ∥Re(V )∥L∞(Ω)) satisfying the following

property. Let F ∈ L∞(Ω) with ∥F∥L∞(Ω) ⩽ |a|. If ∥F∥L∞(Ω) ⩽
1
M then the unique global weak solution

(u, U) to (1.5) with boundary condition (1.6) or (1.7) is given by,

u = 0 and U =
1

a
F, (3.5)

almost everywhere in Ω.

4 Setting of the framework and proofs of the existence theo-
rems

Let δ ∈ {0, 1} and V ∈ L∞(Ω). For n ∈ N and u ∈ L2(Ω), let

gn(u) =


u

|u|+ (n− |u|) 1
n2

, if |u| ⩽ n,

u

|u|
, if |u| > n,

(4.1)

hn(u) =


u, if |u| ⩽ n,

n
u

|u|
, if |u| > n,

(4.2)

11



fn,δ = agn(u) + (b− δ + V )hn(u). (4.3)

Let X = H1
0 (Ω) if we deal with the boundary condition (1.6), and let X = H1(Ω) if we deal with the

boundary condition (1.7).

Let F ∈ X⋆. Throughout this section, u denotes any global weak solution to

−∆u+ aU + b u+ V u = F, (4.4)

with boundary condition (1.6) or (1.7). Moreover, for each n ∈ N, un ∈ H1
0 (Ω) denotes any global

weak solution to

−∆un + fn,0(un) = F, (4.5)

with boundary condition (1.6), and vn denotes any global weak solution to

−∆vn + vn + fn,1(vn) = F, (4.6)

with boundary condition (1.6) or (1.7). Choosing as test functions u and iu in (4.4), un and iun in

(4.5), and vn and ivn in (4.6), we obtain

∥∇u∥2L2(Ω) +Re(a)∥u∥L1(Ω) +Re(b)∥u∥2L2(Ω) +

∫
Ω

Re(V )|u|2dx = ⟨F, u⟩X⋆,X , (4.7)

Im(a)∥u∥L1(Ω) + Im(b)∥u∥2L2(Ω) +

∫
Ω

Im(V )|u|2dx = ⟨F, iu⟩X⋆,X , (4.8)

and for any n ∈ N,

∥∇un∥2L2(Ω) +Re(a)

(∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx+ ∥un∥L1({|un|>n})

)
+Re(b)

(
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
+

∫
{|un|⩽n}

Re(V )|un|2dx+ n

∫
{|un|>n}

Re(V )|un|dx = ⟨F, un⟩X⋆,X , (4.9)

Im(a)

(∫
{|un|⩽n}

|un|2

|un|+ (n− |un|) 1
n2

dx+ ∥un∥L1({|un|>n})

)
+ Im(b)

(
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
+

∫
{|un|⩽n}

Im(V )|un|2dx+ n

∫
{|un|>n}

Im(V )|un|dx = ⟨F, iun⟩X⋆,X , (4.10)

∥vn∥2X +Re(a)

(∫
{|vn|⩽n}

|vn|2

|vn|+ (n− |vn|) 1
n2

dx+ ∥vn∥L1({|vn|>n})

)
⩽
(
|Re(b)|+ 1 + ∥Re(V )∥L∞(Ω)

) (
∥vn∥2L2({|vn|⩽n}) + n∥vn∥L1({|vn|>n})

)
+ ⟨F, vn⟩X⋆,X , (4.11)
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and

vn satisfies (4.10). (4.12)

We note that for any w ∈ L2(Ω) and n ∈ N, we have that∫
{|w|⩽n}

|w|2

|w|+ (n− |w|) 1
n2

dx+ ∥w∥L1({|w|>n}) ⩽ ∥w∥L1(Ω), (4.13)

∥w∥2L2({|w|⩽n}) + n∥w∥L1({|w|>n}) ⩽ ∥w∥2L2(Ω). (4.14)

Finally, we recall that if |Ω| <∞ then we have Poincaré’s inequality:

∀w ∈ H1
0 (Ω), ∥w∥L2(Ω) ⩽ CP∥∇w∥L2(Ω), (4.15)

where CP = CP(|Ω|, N), and then

∀w ∈ H1
0 (Ω), ∥w∥L1(Ω) ⩽ |Ω| 12 ∥w∥L2(Ω) ⩽ CP|Ω|

1
2 ∥∇w∥L2(Ω), (4.16)

∀w ∈ H1
0 (Ω), ∥w∥H1

0 (Ω) ⩽ (1 + CP)∥∇w∥L2(Ω). (4.17)

4.1 Homogeneous Dirichlet boundary condition with a domain of finite
measure

Throughout this subsection, we deal with the boundary condition (1.6) and assume that |Ω| <∞.

Lemma 4.1.1. If Re(b) ⩾ 0 and Re(V ) ⩾ 0 then

∥∇u∥L2(Ω) + ∥∇un∥L2(Ω) +

∫
Ω

Re(V )|u|2dx ⩽ C(∥F∥H−1(Ω), |Ω|, |Re(a)|, N), (4.1.1)

for any n ∈ N.

Proof. Starting with (4.9) and using (4.13)–(4.17), we get for any n ∈ N,

∥∇un∥2L2(Ω) ⩽
(
|Re(a)|CP|Ω|

1
2 + (1 + CP)∥F∥H−1(Ω)

)
∥∇un∥L2(Ω),

from which the result follows for ∥∇un∥L2(Ω). Starting with (4.7), we get the estimate for ∥∇u∥L2(Ω)+∫
Ω
Re(V )|u|2dx in the same way.

Lemma 4.1.2. If − 1
C2

P
< Re(b) < 0 and Re(V ) ⩾ 0 then u and (un)n∈N satisfy (4.1.1).

Proof. Starting with (4.9) and using (4.13), (4.14), (4.16) and (4.17), we get for any n ∈ N,

∥∇un∥2L2(Ω) ⩽ (|Re(a)|CP|Ω|
1
2 + (1 + CP)∥F∥H−1(Ω))∥∇un∥L2(Ω) − Re(b)C2

P∥∇un∥2L2(Ω),

from which we get,

(1 + Re(b)C2
P)∥∇un∥L2(Ω) ⩽ (|Re(a)|CP|Ω|

1
2 + (1 + CP)∥F∥H−1(Ω)),
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for any n ∈ N. But 1 + Re(b)C2
P > 0 and then the result follows for ∥∇un∥L2(Ω). Starting with (4.7),

we get the estimate for ∥∇u∥L2(Ω) +
∫
Ω
Re(V )|u|2dx in the same way.

Lemma 4.1.3. If Im(b) ̸= 0 and Im(b)Im(V ) ⩾ 0 then for any n ∈ N,

∥∇u∥L2(Ω) + ∥∇un∥L2(Ω) +

∫
Ω

|Im(V )||u|2dx ⩽ C,

where C = C(∥F∥H−1(Ω), ∥Re(V )∥L∞(Ω), |Ω|, |a|, |b|, N).

Proof. Let n ∈ N. Since Im(b) ̸= 0 and Im(b)Im(V ) ⩾ 0, we infer from (4.10) with help of (4.13),

(4.16) and (4.17) that

|Im(b)|
(
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
⩽ C1∥∇un∥L2(Ω), (4.1.2)

where

C1 = |Im(a)||Ω| 12CP + (1 + CP)∥F∥H−1(Ω).

It follows that, ∫
{|un|⩽n}

|Re(V )||un|2dx+ n

∫
{|un|>n}

|Re(V )||un|dx

⩽ ∥Re(V )∥L∞(Ω)

(
∥un∥2L2({|un|⩽n}) + n∥un∥L1({|un|>n})

)
⩽ C1|Im(b)|−1∥Re(V )∥L∞(Ω)∥∇un∥L2(Ω).

This yields with (4.9), (4.13), (4.16), (4.17) and (4.1.2) that

∥∇un∥2L2(Ω) ⩽
(
CP|Re(a)||Ω|

1
2 + C1|Im(b)|−1(|Re(b)|+ ∥Re(V )∥L∞(Ω))

+ (1 + CP)∥F∥H−1(Ω)

)
∥∇un∥L2(Ω),

which gives the desired result for ∥∇un∥L2(Ω). For ∥∇u∥L2(Ω), we proceed as follows. Using (4.8) in

place of (4.13), we obtain in the same way as for (4.1.2) that

|Im(b)|∥u∥2L2(Ω) +

∫
Ω

|Im(V )||u|2dx ⩽ C2∥∇u∥L2(Ω), (4.1.3)

where

C2 = |Im(a)||Ω| 12CP + (1 + CP)∥F∥H−1(Ω).

As a consequence, ∫
Ω

|Re(V )||u|2dx ⩽ C2|Im(b)|−1∥Re(V )∥L∞(Ω)∥∇u∥L2(Ω). (4.1.4)
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Using (4.16), (4.17), (4.1.3) and (4.1.4) in (4.7), we get that

∥∇u∥2L2(Ω) ⩽
(
CP|Re(a)||Ω|

1
2 + C2|Im(b)|−1(|Re(b)|+ ∥Re(V )∥L∞(Ω))

+ (1 + CP)∥F∥H−1(Ω)

)
∥∇u∥L2(Ω).

Hence the result with help of (4.1.3).

4.2 General case

In this subsection, we deal with both boundary conditions (1.6) and (1.7). In addition, no assumption

about the open set Ω is made. We recall that X = H1
0 (Ω) if we deal with the boundary condition

(1.6), and X = H1(Ω) if we deal with the boundary condition (1.7). Let F ∈ X⋆.

Lemma 4.2.1. If a ∈ A, Im(b) ̸= 0, Im(a)Im(b) ⩾ 0 and Im(b)Im(V ) ⩾ 0 then

∥u∥2X + ∥u∥L1(Ω) +

∫
Ω

|Im(V )||u|2dx ⩽ C(|⟨F, iu⟩X⋆,X |+ |⟨F, u⟩X⋆,X |), (4.2.1)

∥vn∥2X +

∫
{|vn|⩽n}

|vn|2

|vn|+ (n− |vn|) 1
n2

dx ⩽ C∥F∥2X⋆ , (4.2.2)

for any n ∈ N, where C = C(∥Re(V )∥L∞(Ω), |a|, |b|).

Proof. Let n ∈ N. By our assumptions, (4.12) may be written as,

|Im(a)|

(∫
{|vn|⩽n}

|vn|2

|un|+ (n− |vn|) 1
n2

dx+ ∥vn∥L1({|vn|>n})

)
+ |Im(b)|

(
∥vn∥2L2({|vn|⩽n}) + n∥vn∥L1({|vn|>n})

)
+

∫
{|vn|⩽n}

|Im(V )||un|2dx+ n

∫
{|vn|>n}

|Im(V )||vn|dx = |⟨F, ivn⟩X⋆,X |, (4.2.3)

If Re(a) > 0 then by (4.11) and (4.2.3), we have

∥vn∥2X +Re(a)

∫
{|vn|⩽n}

|vn|2

|vn|+ (n− |vn|) 1
n2

dx

⩽

( |Re(b)|+ 1 + ∥Re(V )∥L∞(Ω)

|Im(b)|

)
|⟨F, ivn⟩X⋆,X |+ |⟨F, vn⟩X⋆,X |.

If Re(a) ⩽ 0 then Im(a) ̸= 0. Multiplying (4.2.3) by L
def
= |Re(a)|+1

|Im(a)| and adding the result to (4.11),

we get that

∥vn∥2X +

∫
{|vn|⩽n}

|vn|2

|vn|+ (n− |vn|) 1
n2

dx

⩽

( |Re(b)|+ 1 + ∥Re(V )∥L∞(Ω)

|Im(b)|
+ L

)
|⟨F, ivn⟩X⋆,X |+ |⟨F, vn⟩X⋆,X |.
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In both cases we obtain that,

∥vn∥2X +

∫
{|vn|⩽n}

|vn|2

|un|+ (n− |vn|) 1
n2

dx ⩽ C(|⟨F, ivn⟩X⋆,X |+ |⟨F, vn⟩X⋆,X |),

for some C = C(∥Re(V )∥L∞(Ω), |a|, |b|). Applying Young’s inequality to the above, we get (4.2.2).

Using (4.7) and (4.8) instead of (4.11) and (4.12), we obtain (4.2.1) in the same way.

4.3 Proofs of the existence and compactness theorems

Proof of Theorems 3.2 and 3.4. We first note that (3.3) comes from Lemmas 4.1.1–4.1.3 and

(4.15), and that (3.4) comes from Lemma 4.2.1 and Young’s inequality. It remains to establish the

existence part of the theorems. We first assume that |Ω| <∞. Let F be as in the theorems. For each

n ∈ N, let un be a global weak solution to (4.5) and (1.6), and let vn be a global weak solution to (4.6)

and (1.6) (respectively, to (4.6) and (1.7)). Indeed, such solutions exist with help of [7, Lemma 6.5].

By Lemmas 4.1.1–4.1.3, (4.13), (4.15) and (4.16), it follows that (un)n∈N is bounded in H1
0 (Ω) and(

|un|2

|un|+ (n− |un|) 1
n2

1{|un|⩽n}

)
n∈N

is bounded in L1(Ω).

By [7, Lemma 6.2], we may extract a subsequence of (un)n∈N which converges to a solution of (1.5)–

(1.6). Theorem 3.2 is then proved. By Lemma 4.2.1, (vn)n∈N is bounded in H1
0 (Ω) (respectively, in

H1(Ω)) and (
|vn|2

|vn|+ (n− |vn|) 1
n2

1{|vn|⩽n}

)
n∈N

is bounded in L1(Ω).

By [7, Lemma 6.2], (respectively, [7, Lemma 6.3],) we may extract a subsequence of (vn)n∈N which

converges to a solution of (1.5)–(1.6) (respectively, of (1.5) and (1.7)). This completes the proof of

Theorem 3.2, then Theorem 3.4 is then proved in the case |Ω| <∞. To complete the proof, it remains

to show that (1.5)–(1.6) admits a solution when |Ω| = ∞. An appeal to (3.4) and the Extension

Lemma ([7, Lemma 6.9] applied with Ωn = Ω ∩B(0, n)) gives the existence of a u ∈ H1
0 (Ω) and of a

saturated section U associated to u such that (u, U) satisfies (1.5) in D ′(Ω). But ∆u, V u, F ∈ H−1(Ω)

and U ∈ L∞(Ω) so that the equation (1.5) makes sense in H−1(Ω) + L∞(Ω) ↪→ D ′(Ω). Theorem 3.4

is then proved.

Proof of Theorem 3.6. We indeed check that (u, U) defined by (3.5) is a solution to (1.5). Now,

assume that (u, U) is a solution to (1.5). Taking the duality product of (1.5) with u and iu, we have

that,

∥∇u∥2L2(Ω) +Re(a)∥u∥L1(Ω) + (Re(b)− ∥V ∥L∞(Ω))∥u∥2L2(Ω) ⩽
∫
Ω

|Fu|dx, (4.3.1)

|Im(a)|∥u∥L1(Ω) + |Im(b)|∥u∥2L2(Ω) +

∫
Ω

|Im(V )||u|2dx ⩽
∫
Ω

|Fu|dx. (4.3.2)
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Since we have either Re(a) > 0 or |Im(a)| > 0, and since |Im(b)| > 0, we may find a C =

C(|a|, |b|, ∥Re(V )∥L∞(Ω)) such that Re(a) + C|Im(a)| > 0 and Re(b) − ∥V ∥L∞(Ω) + C|Im(b)| ⩾ 1.

We then multiply (4.3.2) by C and sum the result to (4.3.1). This yields to,

∥u∥2H1(Ω) + ∥u∥L1(Ω) ⩽M

∫
Ω

|Fu|dx,

for some M =M(|a|, |b|, ∥Re(V )∥L∞(Ω)). Applying Hölder’s inequality to the above, we get that

∥u∥2H1(Ω) + (1−M∥F∥L∞(Ω))∥u∥L1(Ω) ⩽ 0.

Hence (3.5) if ∥F∥L∞(Ω) ⩽
1
M .

Proof of Theorem 2.3. Let K be a compact subset of RN for which F|Kc ∈ L∞(Kc). Let R > 0

be such that K ⊂ B(0, R) and let ε ∈ (0, 1).

Proof of Property 1. Let us write (1.4) as follows.

−∆g + aG+ bg + V g = F1, (4.3.3)

where b = −iN+2p
4 , V (x) = − 1

16 |x|
2 and F1 = −Fe−i

|x|2
8 . We have that Im(b) = −N+4

4 < 0,

Im(a)Im(b) ⩾ 0 and Im(b)Im(V ) = 0, in RN . It follows that (4.3.3) falls into the scope of The-

orem 3.4 and then (4.3.3) admits a solution gε ∈ H1
0 (B(0, R + 2ε)), where the right member of

(4.3.3) is F1|B(0,R+2ε). By global elliptic regularity gε ∈ H2(B(0, R+2ε)) (Gilbarg and Trudinger [16,

Theorem 8.12, p.186]). Let us denote by Gε the saturated section associated to gε. Applying [5,

Theorem 3.1], we have that,

∥∇gε∥2L2(BR,ε,x0
(ρ)) +Re(a)∥gε∥L1(BR,ε,x0

(ρ)) +Re(b)∥gε∥2L2(BR,ε,x0
(ρ))

−
∫

BR,ε,x0
(ρ)

|x|2

16
|gε|2dx = Re

 ∫
BR,ε,x0

(ρ)

F1 gε dx

+Re

 ∫
SR,ε,x0

(ρ)

gε∇gε.
x− x0
|x− x0|

dσ

 , (4.3.4)

|Im(a)|∥gε∥L1(BR,ε,x0
(ρ)) + |Im(b)|∥gε∥2L2(BR,ε,x0

(ρ))

= −Im

 ∫
BR,ε,x0

(ρ)

F1 gε dx

− Im

 ∫
SR,ε,x0

(ρ)

gε∇gε.
x− x0
|x− x0|

dσ

 , (4.3.5)

for any x0 ∈ B(0, R+2ε) and ρ ∈ [0, 2ε), where BR,ε,x0
(ρ) = B(0, R+2ε)∩B(x0, ρ) and SR,ε,x0

(ρ) =

B(0, R+2ε)∩S(x0, ρ). Let us denote by g ∈ H1(RN ) the extension by 0 of gε outside of B(0, R+2ε).

Since we have either Re(a) > 0 or |Im(a)| > 0, and |Im(b)| > 0, we may find a C = C(|a|, |Im(p)|, R,N)

such that Re(a) + C|Im(a)| > 0 and Re(b) − (R+2)2

16 + C|Im(b)| ⩾ 1. We then multiply (4.3.5) by C
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and sum the result to (4.3.4). This yields to,

∥g∥2H1(B(x0,ρ))
+ ∥g∥L1(B(x0,ρ)) ⩽ C1

(∫
B(x0,ρ)

|F1g|+

∣∣∣∣∣
∫
S(x0,ρ)

g∇g. x− x0
|x− x0|

dσ

∣∣∣∣∣
)
,

for any x0 ∈ B(0, R + 2ε) and ρ ∈ [0, 2ε), and for some C1 = C1(|a|, |Im(p)|, R,N). It follows from

Hölder’s inequality that for M ⩾ 2C1, if ∥F∥L∞(Kc) ⩽
1
M then

∥g∥2H1(B(x0,ρ))
+ ∥g∥L1(B(x0,ρ)) ⩽M

∣∣∣∣∣
∫
S(x0,ρ)

g∇g. x− x0
|x− x0|

dσ

∣∣∣∣∣ , (4.3.6)

for any x0 ∈ B(0, R+2ε) and ρ ∈ [0, 2ε) such that K ∩B(x0, 2ε) = ∅. It follows from [7, Theorem 4.1]

that there exists ρmax ⩾ 0 such that g = 0, a.e. in B(x0, ρmax), for any x0 ∈ B(0, R + 2ε) such that

K ∩B(x0, 2ε) = ∅. By (3.4) and [7, Theorem 4.1], there exists δ = δ(|a|, |Im(p)|, R, ε,N) such that if

∥F∥L2(RN ) ⩽ δ then ρmax > ε. We then deduce that g = gε = 0, a.e. in B(0, R + 2ε) \K(ε). Now, let

us define G on RN by G = Gε, in B(0, R + 2ε) and by G = − 1
aFe

−i
|x|2
8 , in B(0, R + 2ε)c. Choosing

also M ⩾ |a|−1, it follows that G is a saturated section associated to g. So, we have shown that (g,G)

is a solution to (1.4), g ∈ H2(RN ) and supp g ⊂ K(ε). Now, we define φ and Φ by (2.7) and (2.8),

respectively, and finally, u and U by (2.5) and (2.6), respectively. The proof of (2.10) comes from

standards arguments of integration theory but for convenience of the reader, we postpone its proof to

the Appendix A. This completes the proof.

Proof of Property 2. Using the change of functions (2.7) and (2.8), we are brought back to show

the uniqueness for the equation (1.4). In both cases (2a) and (2b), φ and ϕ belong to L2(RN ) and are

compactly supported. It follows that the corresponding solutions to (1.4) belong to L2(RN ) and their

Laplacian belong to L2
loc(RN ). By interior elliptic regularity, they belong to H2

loc(RN ) (Cazenave [11,

Proposition 4.1.2]). Since they are compactly supported, they actually belong to H2(RN ) and it

is sufficient to show the uniqueness for (1.4) set in B(0, r), where r > 0 is large enough to have

suppφ∪ suppϕ ⊂ B(0, r). It follows that (1.4) falls into the scope of the uniqueness [7, Theorem 2.8].

Since also a ∈ A and Re(a) ⩾ 0, we only have to show that,

Re(ab) + Re(aV ) > 0, a.e. in B(0, r),

where b and V are as in (4.3.3). If Re(a) = 0 then Im(a) < 0 and Re(ab)+Re(aV ) = −Im(a)N+4
4 > 0,

over RN . If Re(a) > 0 then

Re(ab) + Re(aV ) =
1

2
Re(a)Im(p)− Im(a)

N + 4

4
− 1

16
Re(a)|x|2, in RN .

Using (2b), we have that

Re(ab) + Re(aV ) >
Re(a)

16

(
8Im(p)− 4

Im(a)

Re(a)
(N + 4)− r2

)
⩾ 0, in B(0, r).

This concludes the proof of the theorem.
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A Appendix

Lemma A.1. Let m ∈ N0, 1 < q <∞ and φ ∈Wm,q(RN ). Let p ∈ C, and let u be defined by (2.5).

Then,

u ∈ C
(
(0,∞);Wm,q(RN )

)
. (A.1)

If, in addition, suppφ is compact and m ⩾ 1 then,

u ∈
m⋂
j=1

Cj
(
(0,∞);Wm−j,q(RN )

)
. (A.2)

Proof. Let 1 < q <∞, p ∈ C, φ ∈ Lq(RN ) and u be defined by (2.5). Let t > 0. Let (tn)n∈N ⊂ (0,∞)

be such that tn
n→∞−−−−→ t. We claim that,

u(tn)
Lq(Ω)w
−−−−−⇀

n→∞
u(t). (A.3)

By (2.11), (u(tn))n∈N is bounded in Lq(RN ). So, it is enough to show that u(tn)
D′(RN )−−−−−→
n→∞

u(t). Let

θ ∈ D(RN ). By change of variables, we have for any n ∈ N,

⟨u(tn), θ⟩D′(RN ),D(RN ) = Re

∫
RN

t
p+N

2
n φ(x)θ(

√
tnx)dx,

⟨u(t), θ⟩D′(RN ),D(RN ) = Re

∫
RN

t
p+N

2 φ(x)θ(
√
tx)dx.

It follows from the dominated convergence Theorem that,

⟨u(tn), θ⟩D′(RN ),D(RN )
n→∞−−−−→ ⟨u(t), θ⟩D′(RN ),D(RN ).

from which we get (A.3). By (2.11), we also have that

∥u(tn)∥Lq(RN )
n→∞−−−−→ ∥u(t)∥Lq(RN ). (A.4)

By (A.3), (A.4) and the uniform convexity of the Lq-spaces, we infer that

u(tn)
Lq(RN )−−−−−→
n→∞

u(t),

proving that u ∈ C
(
(0,∞);Lq(RN )

)
. Now assume that φ ∈Wm,q(RN ), for some m ∈ N. Then (A.1)

follows with the same arguments. We have for any n ∈ N and almost every x ∈ RN ,

∂u

∂t
(tn, x) =

p

2
t
p−2
2

n φ

(
x√
tn

)
− 1

2
t
p−3
2

n x.∇φ
(

x√
tn

)
,

∂u

∂t
(t, x) =

p

2
t
p−2
2 φ

(
x√
t

)
− 1

2
t
p−3
2 x.∇φ

(
x√
t

)
.
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If suppφ is compact then we may proceed as above to show that

p

2
t
p−2
2

n φ

(
.√
tn

)
Lq(RN )−−−−−→
n→∞

p

2
t
p−2
2 φ

(
.√
t

)
,

1

2
t
p−3
2

n ( . ).∇φ
(

.√
tn

)
Lq(RN )−−−−−→
n→∞

1

2
t
p−3
2 ( . ).∇φ

(
.√
t

)
.

As a consequence, ∂u
∂t (tn)

Lq(RN )−−−−−→
n→∞

∂u
∂t (t) and then u ∈ C1

(
(0,∞);Lq(RN )

)
. The others regularity in

(A.2) are obtained in the same way and the details are left to the reader.

References

[1] S. Antontsev, J.-P. Dias, and M. Figueira. Complex Ginzburg-Landau equation with absorption:
existence, uniqueness and localization properties. J. Math. Fluid Mech., 16(2):211–223, 2014.

[2] S. N. Antontsev, J. I. Dı́az, and S. Shmarev. Energy methods for free boundary problems: Ap-
plications to nonlinear PDEs and fluid mechanics. Progress in Nonlinear Differential Equations
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Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

[12] J. I. Dı́az. Estimates of the location of a free boundary for the obstacle and Stefan problems
obtained by means of some energy methods. Georgian Math. J., 15(3):475–484, 2008.

[13] J. I. Dı́az. On the ambiguous treatment of the Schrödinger equation for the infinite potential
well and an alternative via flat solutions: the one-dimensional case. Interfaces Free Bound.,
17(3):333–351, 2015.

20
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