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Abstract

The empirical literature on the effects of opinion polls on election outcomes has recently

found substantial evidence of a bandwagon effect, defined as the phenomenon according to

which the publication of opinion polls is advantageous to the candidate with the greatest

support. This result is driven, in the lab experiments, by a higher turnout rate among the

majority than among the minority. Such evidence is however in stark contrast with the main

theoretical model of electoral participation in public choice, the pivotal voter model, which

predicts that the supporters of an underdog candidate participate at a higher rate, given the

higher probability of casting a pivotal vote. This paper tries to reconcile this discrepancy

by showing that a bandwagon effect can be generated within the pivotal voter model by

concavity in the voters’ utility function, which makes electoral participation more costly

for the expected loser supporters. Given the strict relationship between concavity and risk

aversion, the paper also establishes the role of risk aversion as a determinant of bandwagon.
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1 Introduction

The effects of opinion polls on election outcomes are, despite considerable research, still unclear.

In particular, an open question in the study of electoral participation is whether the knowledge

of voters’ preferences over the candidates in an election is advantageous or disadvantageous

for the candidate with the greatest support. The political science literature has defined the

bandwagon effect as the phenomenon according to which the publication of opinion polls gives

further advantage to the favorite candidate, who ends up with a larger than expected lead. The

underdog effect refers instead to the case in which the polls’ publication undermines the expected

win margin by favoring a trailing candidate. These effects may be driven by changes both in

the vote choices and in the turnout choices of voters and may have many different underlying

causes, e.g. a psychological desire to be on the winner’s side (which would induce bandwagon)

or free-riding behavior within the largest group (which would induce underdog). The fear that

these effects may distort electoral competition is the reason that several countries ban the release

of polling results in the last days of the electoral campaigns.

For many decades scholars in political science and public choice have tried to provide empirical

evidence of the existence and sizes of both bandwagon and underdog effects, facing considerable

trouble in disentangling the causal effect of polls on electoral outcomes. With opinion polling

data, isolating these effects from a shift in the electorate’s preferences for some other reason

can be very challenging. Laboratory experiments, in which preferences and information can be

controlled, have often been preferred to cope with these difficulties (Marsh 1985) . Although

the early literature has frequently generated inconclusive results (Irwin and Van Holsteyn 2000),

many recent experimental studies have provided substantial evidence of bandwagon effects caused

by higher turnout rates among the majority candidate’s supporters (Klor and Winter 2007;

Grosser and Schram 2010; Agranov et al 2015; Duffy and Tavits 2008). Some recent work also

confirms bandwagon effects exploiting district-level electoral data (Kiss and Simonovits 2014;

Morton et al 2015). These results suggest the prevalence of bandwagon effects in electoral

contests and are in line with the widespread perception that people are more likely to vote for a

candidate if his or her chances of success are thought to be favorable. The overconfidence with

which all candidates in any election tend to claim that they will win also illustrates the extent

to which politicians generally expect a bandwagon effect.

Such diverse evidence of bandwagon effects is, however, in stark contrast to the prediction of the

main theoretical model of electoral participation in public choice: the pivotal voter model with

costly voting (see section 3 for a review of the model and its main results). The literature on the

pivotal voter model has indeed converged to an apparently very robust underdog result, which

predicts, contrary to the evidence mentioned previously, that the members of a minority group

participate at a higher rate than those of a majority group, given the greater probability of casting

a pivotal vote for the underdog (Goeree and Grosser 2007; Taylor and Yildirim 2010a,b; Kartal
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2015). Accordingly, previous attempts to provide a theoretical model of the bandwagon effect

relied on additional elements with respect to the pivotal voter model, such as the introduction

of a psychological desire to win (Callander 2007) or informational asymmetries on candidates’

qualities (Cukierman 1991; Banerjee 1992).

This paper tries to reconcile this discrepancy by showing that a turnout-driven bandwagon effect

can be generated within the pivotal voter model by concavity in the voters’ utility function.

This hypothesis requires relaxing an assumption at the core of the model, whose discussion has

been surprisingly neglected by the existing literature: the assumption of a voter’s utility that is

linear in the election outcome benefit and in the cost of voting. Concavity in the voters’ utility

function makes electoral participation more costly for the supporters of the likely loser, raising

the relative value of abstention. The hypothesis of concavity is especially suited to the analysis of

experimental voting games, in which both the electoral benefit and the cost of voting are usually

defined in monetary terms.

I first present a simple decision-theoretic model to study the turnout decision of an agent, who

might support either an expected winning or losing candidate. I define the bandwagon effect as

the case in which the agent would be more likely to vote if he supports the likely winner than if

he supports the likely loser: the result is that the bandwagon effect occurs if the voter’s utility

is concave enough. Given the strict link between concavity and risk aversion, this result also

reveals the non-intuitive role of risk aversion as a determinant of bandwagon. The interpretation

is nonetheless easier if we look at concavity not in terms of risk aversion but in terms of decreasing

marginal benefits. Let’s consider the cost and benefit of voting in the pivotal voter model. The

benefit is the increase in the probability of electing the preferred candidate, which is equal to the

probability of casting a pivotal vote. The cost is an opportunity cost, which is subtracted from

the election outcome benefit if the agent votes. The decreasing marginal benefits property of a

concave utility function implies, then, that the cost of voting has a stronger negative effect on

the voter’s utility if it is more likely subtracted from a small election outcome benefit (as that of

a supporter of the likely loser) than from a large one (as that of a supporter of the likely winner).

Hence, for any fixed increase in the probability of electing the preferred candidate generated

by the act of voting, the supporters of the expected loser will find electoral participation more

costly.

In reality, in the most common electoral systems1, the increase in the probability of electing

the preferred candidate from the act of voting is larger for a supporter of the expected losing

candidate than for a supporter of the expected winner. This higher probability of being pivotal

is what drives the underdog effect in the standard pivotal voter model, by making abstention, as

opposed to the effect of concavity, more attractive to a supporter of the expected winner. The

total effect then depends on which of the two forces prevails: if the utility function is concave

1Such as the majority rule system that I consider in the following sections, but also a proportional representation
system (Kartal 2015).
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enough, the agent would turn out more frequently when he supports the likely winner, despite

the lower probability of being pivotal.

I then extend the foregoing model to a game-theoretic framework. Building on the costly voting

literature (Börgers 2004; Goeree and Grosser 2007; Taylor and Yildirim 2010b), I present a

model in which n risk-averse agents can vote for two candidates, who are defined relatively

to the expected sizes of their supporters’ groups. In this case, the expected winner and loser

are determined in equilibrium by the turnout rates of the two groups and the bandwagon and

underdog effects are defined, more appropriately, as a higher turnout rate by the (stochastic)

majority and minority respectively. I show that an equilibrium of such a model always exists

and that, as the number of agents grows without bounds, the turnout rates of both groups

tend to zero. In a simpler version of the model in which there are only two agents (n = 2),

any equilibrium displays the same property of the decision-theoretic model: the underdog effect

prevails for low degrees of risk aversion and the bandwagon effect for high ones. The general

model with n agents is technically cumbersome but, solving the model numerically, I find that

the presence of an equilibrium with the previous property is robust to the increase in n. However,

as it turns out, the general model can also have equilibria in which the underdog effect emerges

even if agents are very risk-averse. The reason is that in the game-theoretic model both the

majority and the minority candidates can end up being the expected winner depending on the

turnout rates and, according to the logic of the decision-theoretic model, concavity can thus

make participation more costly for either group. Nonetheless, I argue that bandwagon should be

expected for sufficiently high degrees of risk aversion, since coordination would be easier on an

equilibrium in which the candidate supported by the majority is the expected winner. Overall,

both the decision-theoretic and the game-theoretic frameworks make clear that the underdog

result of the standard pivotal voter model is not robust to the introduction of concavity.

The remainder of the paper is organized as follows. Section 2 discusses the previous literature

on bandwagon. Section 3 recalls the standard pivotal voter model and its main results. The

decision-theoretic and the game-theoretic models with risk aversion are presented in sections 4

and 5, respectively. Section 6 offers a concluding discussion on the relevance of risk aversion in

voting experiments.

2 Previous literature on bandwagon

The bandwagon effect has been the object of a large literature in political science and public

choice. The literature prior to 2000 is surveyed carefully in Irwin and Van Holsteyn (2000), who

analyze 79 articles on the effects of public opinion polls. Even though the total evidence is far from

being definitive, the authors show how, after 1980, the literature has found bandwagon effects

more frequently than underdog effects. The literature reviews in Marsh (1985), McAllister and

Studlar (1991), and Nadeau et al (1993) also provide valuable summaries of the previous research
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and offer new evidence of bandwagon. Because of the difficulty in isolating the causal effects of

polls on election outcomes, experiments, in which preferences and information can be controlled

for, often have been preferred to studies based on opinion polls. Many recent experimental studies

have found new evidence of bandwagon effects: Klor and Winter (2007), Duffy and Tavits (2008),

Grosser and Schram (2010), Agranov et al (2015), and Morton and Ou (2015). In these studies,

the bandwagon effect is generated by higher participation rates among the majority’s supporters

than among the supporters of the minority,2 even though Morton and Ou (2015) also find evidence

of bandwagon vote choices (i.e. vote switching). Some recent papers also exploit district-level

electoral data: Hodgson and Maloney (2013) find evidence of bandwagon in British elections

over the 1885-1910 period, while Kiss and Simonovits (2014) describe strong bandwagon effects

in the 2002 and 2006 general elections in Hungary. Morton et al (2015) examine France’s 2005

voting reform, which changed the order of voting between the mainland and the western overseas

territories, showing that the knowledge of exit polls increased bandwagon voting. During the

2000 US presidential election, the national media mistakenly called the Florida election as being

over and assigned the victory to the Democratic Party, while the polling stations were still open

in the western Panhandle counties. In these counties, Lott (2005) documented a large drop-off

in the turnout rate of the republican supporters relative to that of the democratic supporters,

following the wrong announcement. These results make the debate on polls’ effects lean in

favor of bandwagon and align the empirical research with the widespread perception that the

bandwagon effect exists. Given the current status of the theoretical research, they also call for

further work in trying to identify the underlying mechanisms of bandwagon.

The formal theory of bandwagon started with Simon (1954), who was concerned about the

possibility of forecasting in the social sciences. Theoretical models of bandwagon have mainly

fallen into two groups: one that explains bandwagon with a psychological desire to stand on

the winner’s side and one that provides a rational explanation according to which following the

polls is the best strategy for voters who are uninformed about candidates’ qualities.3 Social

psychologists have long since observed a preference for conformity in many domains. Callander

(2007) analyzed rigorously the consequences of introducing a desire to conform with the majority

in a sequential voting game, proving the existence of an equilibrium in which bandwagon effects

start with probability 1. The informational hypothesis has been developed by McKelvey and

Ordeshook (1985) and Cukierman (1991) in the context of voting, and by Banerjee (1992) in

a more general framework of herd behavior. The idea is that, in the presence of uncertainty

concerning candidates’ qualities, it is rational for citizens who are uninformed to take candidates’

support in the polls as a signal of quality and thus vote for the likely winner because he is the

2The studies by Levine and Palfrey (2007) and Herrera et al (2014) find, however, higher turnout rates among
the minority than the majority.

3Two other possible explanations have been proposed: Hong and Konrad (1998) argue that bandwagon can
be caused by aversion to the uncertainty associated with an election; Morton and Ou (2015) study the possible
role of other-regarding motives.
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best candidate in expectation.

This paper proposes another explanation for bandwagon, based on the different turnout rates

of the majority and minority supporters often observed in the experimental literature. I argue

that, if agents are risk-averse, the underdog’s supporters will find voting more costly and thus

will participate at a lower rate. The relationship between risk attitudes and turnout choices has

received very little attention. Kam (2012) finds a positive relationship between risk-acceptance

and general political participation, but no effect of risk attitudes on turnout in elections. However,

the author does not look at whether the interaction between risk-attitudes and preferences for a

favorite or underdog candidate affects the turnout decision.

3 The pivotal voter model

The pivotal voter model studies citizens’ participation decisions in elections contested by two

candidates (where participation is always followed by sincere voting for the preferred candidate)

and assumes that the citizens’ aim is to influence the outcome of the election (instrumental vot-

ing). According to the model, every citizen decides whether or not to vote based on a comparison

between the benefit of electing the preferred candidate, discounted by the probability of casting

the pivotal vote, and the cost of voting. The cost of voting captures the opportunity cost in

terms of time to go to the polls and vote as well as the cost of getting information to identify

the preferred candidate.

This formulation dates back to Downs (1957) and Riker and Ordeshook (1968). Ledyard (1984)

and Palfrey and Rosenthal (1983, 1985) adapted it to a game-theoretic framework, in which

the probability of being pivotal is not exogenous, but depends on the electorate’s participation

decisions, so that it is jointly determined with turnout rates in equilibrium. A recent strand

of literature refined Palfrey and Rosenthal results by proving the uniqueness of a symmetric

Bayesian equilibrium (in which all supporters of the same candidate use the same strategy) in a

game-theoretic model of costly voting with privately known political preferences (Börgers 2004;

Goeree and Grosser 2007; Krasa and Polborn 2009; Taylor and Yildirim 2010a,b; Kartal 2015).

The empirical validity of the pivotal voter model is debated. Such a model is definitely not able

to give a complete account of voters’ behavior: the main drawback is the strong prediction, even

in a game-theoretic framework, of very small turnout in large elections, because the probability

of being pivotal quickly goes to zero. This result is clearly contradicted by reality.4 On the other

hand, it is hard to reject the model as useless, given the evidence that citizens do take the costs

and benefits of participation into account when they have to decide whether to vote or abstain

(Shachar and Nalebuff 1999; Blais 2000; Levine and Palfrey 2007). In particular, the empirical

4Solutions to the so-called paradox of voting include introducing ethical (or group-utilitarian) voters (Coate and
Conlin 2004; Feddersen and Sandroni 2006; Evren 2012), assuming that mandate matters for the implementation of
the winning platform after the election (Castanheira 2003), or introducing aggregate uncertainty about candidates’
support (Myatt 2015). For a survey on voter turnout models and a comparison between the pivotal voter and the
ethical voter models, see Merlo (2006).
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relationship between turnout and elections’ closeness gives strong confirmation of the model’s

prediction that citizens will participate more if the election is tight, given the larger probability

of being pivotal. Such strategic voting behavior calls for caution in discarding the pivotal voter

model, at least with respect to its comparative statics results.

The recent theoretical literature has agreed on a further result: in the standard pivotal voter

model the turnout rate of the minority is greater than that of the majority; hence, the model

yields the underdog effect (Goeree and Grosser 2007; Taylor and Yildirim 2010b; Herrera et al

2014; Kartal 2015). The underdog effect follows from the fact that, in the most common electoral

systems, the probability of being pivotal is larger for the underdog’s supporters than for those

backing the leading candidate, which implies that in equilibrium the threshold cost that makes

a citizen indifferent between voting and abstaining has as well to be larger for the underdog’s

supporters. Hence, in the presence of the same cost distribution in the two groups, minority

supporters participate at a higher rate in equilibrium. The underdog effect is only partial in the

presence of heterogeneous costs and complete (i.e. toss-up election) if the costs of voting are

homogeneous (Taylor and Yildirim 2010b; Kartal 2015). As I already wrote, the robustness of

this theoretical result is at odds with the empirical and experimental evidence on the presence

of bandwagon effects in elections, generated by the majority’s higher turnout rates.5 In the next

sections, I show how the pivotal voter model can be reconciled with the empirical relevance of

bandwagon by modifying the assumption of a linear voter’s utility function in favor of a concave

one.

4 Decision-theoretic model

An agent in the standard pivotal voter model decides to vote if the expected relative benefit from

the victory of his preferred candidate, discounted by the probability of being pivotal, is greater

than his cost of voting, i.e. if

pB > c (1)

However, this formulation follows, quite implicitly in all the previous literature, from an assump-

tion of linearity of the voter’s utility function in the election outcome benefit and in the cost of

voting. In fact, the decision of whether to vote or not in an election gives the agent a choice

between two lotteries. Suppose two candidates only and consider the choice of the agent. If he

abstains, then he gets a lottery in which his preferred candidate wins with some probability and

the other candidate wins with the complementary probability. By voting (sincerely), the agent

5However, it should be noticed that an important assumption for the underdog result is the presence of
uncertainty concerning the preferences of the electorate. Indeed, a bandwagon effect may in some cases be
compatible with the standard pivotal voter model under the assumption that the supporters’ group size is known
with certainty. This is often the case in lab experiments, where the majority and minority group sizes are held
fixed in order to make the experiment easier to understand for the participants. The evidence of bandwagon is
however much greater than the one that could be explained by such cases.
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gets instead a lottery in which the probability of victory for his preferred candidate increases by

some amount and the payoff from either election outcome is reduced by the cost of voting. The

amount by which the probability of victory for his preferred candidate increases is the probabil-

ity that the agent will be pivotal. I denote by B > 0 the expected benefit from the victory of

the preferred candidate and I normalize to 0 the expected benefit from the victory of the other

candidate. The cost of voting is c ≥ 0. Finally, I denote by q the probability that the preferred

candidate wins if the agent abstains and by p the probability of being pivotal.6 I assume that

the agent’s preferences over lotteries have an expected utility form, whose corresponding util-

ity function u is differentiable and strictly increasing. Then if the agent abstains, he gets the

following lottery

(u(B), q;u(0), 1− q)

which gives as payoff the benefit B from the victory of his preferred candidate with probability

q and the 0 benefit from the victory of the other candidate with probability 1− q. By voting, he

gets instead the following lottery

(u(B − c), q + p;u(−c), 1− q − p)

where the probability of his preferred candidate’s victory is increased by p, but the benefits from

both election outcomes are reduced by the cost of voting. By comparing the two lotteries we see

that the agent will vote if

(q + p)u(B − c) + (1− q − p)u(−c) > qu(B) + (1− q)u(0) (2)

This condition7 is different from the one derived in the standard pivotal voter model because it

does not assume linearity of the agent’s utility function. If linearity is assumed, then the two

conditions are equivalent.8 In the presence of non-linearity, the equation that defines the agent’s

decision depends on the probability q assigned to the victory of the preferred candidate in the

case of personal abstention.

An important observation is that the agent should reasonably perceive the probability of being

pivotal differently depending on the value of q, in particular higher if the election is expected to

be close (q ≈ 1
2 ). In what follows, I take this observation into account by letting p be itself a

function of q.

In studying the agent’s decision between voting and abstaining, it is instructive to look at the

cost of voting that makes him indifferent between the two options and at how this value of the

cost c varies with respect to the parameters B, q and p(q). A higher voting cost necessary for

6Clearly, I assume q + p ≤ 1.
7In Appendix C, I propose a graphical representation of the decision-theoretic model through the analysis of

equation (2).
8Indeed, if u(x) = x, then (q+ p)(B− c) + (1− q− p)(−c) > q(B) + (1− q)0⇒ pB > c. Riker and Ordeshook

(1968) derive (1) from (2) but do not discuss the underlying hypothesis of linearity.
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indifference implies, if the voting cost is a random variable, a greater likelihood of voting rather

than abstaining. The value of c that makes the agent indifferent between voting and abstaining

solves equation (2) with equality, which can be rewritten as

qu(B) + (1− q)u(0)− (q + p)u(B − c)− (1− q − p)u(−c) = 0 (3)

where p is a function p(q). Equation (3) has a unique solution.

Proposition 1. For any values of B, q and p(q) > 0, there exists a unique c ∈ (0, B) such that

equation (3) holds.

The proofs of this and the following propositions are in Appendix B. The next result describes

how the cost that yields indifference varies with B and p, when q is fixed and p(q) can thus be

seen as a parameter.

Proposition 2. (i) For any fixed B and q, equation (3) implicitly defines a unique continuous

function c(p) which gives the cost of voting that yields indifference as a function of the probability

of being pivotal p. Such c(p) is increasing in p.

(ii) For any fixed q and p, equation (3) implicitly defines a unique continuous function, c(B),

which gives the cost of voting that yields indifference as a function of the benefit from electing

the preferred candidate B. If u is (weakly) concave, such c(B) is increasing in B.

The first part of proposition 2 confirms the result of the standard pivotal voter model that the

agent will be more likely to vote if the probability of being pivotal is higher. The second part of

the proposition claims that if the utility function is not linear, then the result that the agent will

be more likely to vote in higher-stakes elections is confirmed under the assumption of concavity

of u, but is not guaranteed if u is strictly convex.9 The intuition for this second result is that, if

u is convex, the negative effect of the cost of voting on the voter’s utility is stronger, the greater

is the election outcome benefit B, for any q 6= 0. If this effect of convexity is strong enough to

offset the positive effect given by the increase by p in the probability of getting a larger B, the

agent would find participation more costly and thus will be less likely to vote when elections are

high-stakes.

The relationship between the cost that yields indifference c and q will give results concerning

the bandwagon or underdog effect. Indeed, if such cost is higher when q > 1
2 than when q < 1

2 ,

the model predicts bandwagon; if the opposite is true, the model predicts underdog. However,

how the solution c in equation (3) varies with q depends on the assumptions on p(q) and this

brings out the issue concerning how the agent forms estimates of q and p(q). Since specifying

a functional form for p(q) in such a decision-theoretic model would be difficult and arbitrary, I

9The fact that people are more likely to vote in elections that they deem more important is well-established.
This is not a peculiar prediction of the pivotal voter model, which is characterized by the claim that the effect of
B on the agent’s decision is discounted by the probability of being pivotal.
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simply assume that the agent has some given subjective estimates of these probabilities. It is

then useful to fix the probabilities of victory for the two candidates in case of agent’s abstention,

q and 1− q, and the two associated probabilities of being pivotal p(q) and p(1− q), and to look

at the cost that makes the agent indifferent both in the case he supports the likely winner and

in the case he supports the likely loser. Without loss of generality, I fix q < 1
2 , so that the

candidate with probability of victory equal to q is the expected loser. Then p(q) is the subjective

probability of being pivotal if the agent supports the likely loser and p(1 − q) is the subjective

probability of being pivotal if the agent supports the likely winner. In this framework, I only

need an assumption on the two values p(q) and p(1 − q): in order to be consistent with the

previous literature, which identified a driver of the underdog effect in the higher probability of

being pivotal for the expected loser’s supporters, I assume

p(1− q) ≤ p(q)

and, since q is fixed, I relabel the two as

p(q) = p

p(1− q) = p− δ

with δ ≥ 0. The equations that define the cost that yields indifference can then be rewritten

as follows. If the agent supports the likely loser, then the cost of voting that yields indifference

solves the same equation as before

qu(B) + (1− q)u(0)− (q + p)u(B − c)− (1− q − p)u(−c) = 0 (4)

If he instead supports the likely winner, then the cost that yields indifference solves

(1− q)u(B) + qu(0)− (1− q + p− δ)u(B − c)− (q − p+ δ)u(−c) = 0 (5)

Proposition 1 applies to both equations; hence, they both have a unique solution in (0, B). Let’s

denote cl the solution of equation (4) and cw the solution of equation (5). It is useful to study

first what happens if δ = 0 and then to let δ be strictly positive.

Proposition 3. Assume that δ = 0. Then ∀q ∈ (0, 12 ), cl < cw if and only if u is strictly

concave.

Hence, under the assumption of concavity of u, if the agent has the same subjective probability

of being pivotal both when he supports the likely winner and when he supports the likely loser,

the cost of voting that makes him indifferent between voting and abstaining is higher when he

supports the likely winner. This result implies that, if the voting cost is a random variable,

the agent is more likely to vote if he supports the likely winner. The interpretation is again
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straightforward if we consider the decreasing marginal benefits property of a concave function.

The benefit of voting given by the larger probability of electing the preferred candidate is the

same in both cases if δ = 0, but decreasing marginal benefits imply that the cost of voting has

a stronger negative effect on utility if it is subtracted from an election outcome benefit that is

likely low (as that of a supporter of the probable loser) than if it is subtracted from a likely high

election outcome benefit (as that of a supporter of the probable winner). Concavity thus makes

voting relatively more costly for the underdog’s supporters.

Let’s assume now that δ > 0. The following result follows from Proposition 2(i).

Proposition 4. For any fixed B, q and p, equation (5) implicitly defines a unique continuous

function cw(δ) which gives the cost of voting that yields indifference to a supporter of the likely

winner as a function of δ. Such cw(δ) is strictly decreasing in δ (and it reaches 0 when δ = p).

Hence, a strictly positive δ pushes the cost that yields indifference for a supporter of the likely

winner down. Since cl does not depend on δ, this result has two implications. First, there exists

a unique value δ∗ of δ for which the agent has the same cost of voting that yields indifference

both when he supports the likely winner and when he supports the likely loser. Second, if δ is

small enough (i.e. δ < δ∗) then the cost that yields indifference is still higher when the agent

supports the likely winner.

How low is low enough? Can we be sure that the agent will have a larger cost that yields

indifference if he supports the likely winner? The next proposition shows that this is the case if

the utility function is concave enough (i.e. if the agent is risk-averse enough).

Proposition 5. Consider the agent in two cases: when his utility function is u and when it is

h, a concave transformation of u (i.e. h = f ◦ u, with f ′ > 0, f ′′ < 0). The resulting δ∗ when

utility is u is strictly smaller than the resulting δ∗ when utility is h.

The result implies that, no matter what the subjective probabilities of being pivotal are, if the

agent is risk-averse enough, the cost that yields indifference will be higher if the agent supports

the likely winner than if he supports the likely loser.

5 Game-theoretic model

In this section, I shall verify whether the result of the previous model can be preserved in a game-

theoretic framework. Game-theoretic voting models are more compelling than decision-theoretic

ones: the outcomes of elections are indeed determined by the turnout rates of the competing

groups rather than by their sizes and it is reasonable to assume that citizens take expectations

about the electorate’s participation into account when they decide whether to vote or abstain

(Ledyard 1984; Palfrey and Rosenthal 1983, 1985). In a game-theoretic model the electorate’s

turnout decisions, candidates’ probability of victory and voters’ probability of being pivotal are
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jointly determined in equilibrium.

I present a model that follows closely some of the recent costly voting literature (Börgers 2004;

Goeree and Grosser 2007; Taylor and Yildirim 2010a,b; Kartal 2015). The original contribution

is that I assume the agents’ utility function to be concave instead of linear. The model features

an electorate composed of n agents, who can vote in a majority-rule election contested by two

candidates (1 and 2). In case of a tie, each candidate wins with probability 1
2 . The agents’

preferences follow expected utility, with a continuous, strictly increasing, and strictly concave

utility function u. It is common knowledge that each agent prefers candidate 1 with probability

π and candidate 2 with probability 1 − π and that each agent has a cost of voting drawn

independently from a uniform distribution on [0, 1]. The agents, however, observe only their

own realizations of the preferred candidate and the cost of voting.10 Without loss of generality,

I assume π > 1
2 , so that the supporters of candidate 1 are the majority group in expectation.

These assumptions allow one to calculate the probabilities of victory for the candidates in the

case of an agent’s abstention as well as the probability of being pivotal as functions of the

electorate’s participation decisions. Following the previous literature, I look for a symmetric

Bayesian equilibrium, in which all supporters of the same candidate use the same strategy.

A strategy is defined by a cutoff cost that makes the agent indifferent between voting and

abstaining: the agent votes if his voting cost is below the cutoff and abstains if it is above. The

symmetric Bayesian equilibrium is then defined by the two cutoff costs for the two candidates’

groups of supporters. Given the assumption of a uniform voting cost distribution over [0, 1], the

cutoffs also identify the ex-ante probability of voting for an agent in the two groups and thus the

expected turnout rates of the two groups. Each agent’s decision problem and the equation that

defines indifference between voting and abstention are the same as in the previous section, but

now the key probabilities are functions of the participation decisions of the two groups. I denote

the two cutoff costs for the supporters of candidate 1 and 2 respectively cb and cs.
11 These are

then solutions of the following system of equationsqu(B) + (1− q)u(0)− (q + p1)u(B − cb)− (1− q − p1)u(−cb) = 0

(1− q)u(B) + qu(0)− (1− q + p2)u(B − cs)− (q − p2)u(−cs) = 0
(6)

where q = q(cb, cs) denotes the probability of victory for candidate 1 in case of agent’s abstention,

while p1 = p1(cb, cs) and p2 = p2(cb, cs) are the probabilities of being pivotal respectively for

a supporter of candidate 1 and 2. As already highlighted by the previous literature, note that

each agent is pivotal only in two cases: either when the rest of the voting agents is split equally

10The assumption of heterogeneity in voting costs turns out to be a crucial one for a bandwagon result. In
Appendix D, I show that in the presence of homogeneous costs of voting the model would yield the same full
underdog result as in the standard linear pivotal voter model.

11With respect to the previous section, I change the subscripts from w (winner) and l (loser) to b (bigger) and s
(smaller) because in the game-theoretic model, even if candidate 1 has a larger group of supporters, the expected
winning candidate is determined by the turnout rates.
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between the two candidates (turning a draw into a victory) or when the opposing candidate

would win by one vote if the agent abstains (turning a loss into a draw). The expressions of the

probabilities p1, p2 and q are derived from the model’s assumptions in Appendix A, as a function

of the turnout rates cb and cs and of the parameters n and π.

Any solution (cb, cs) for system (6) then represents a couple of equilibrium cutoffs for the two

groups of supporters. The following proposition guarantees that a solution to the system exists.

Proposition 6. If B ≤ 1, system (6) has a solution (c∗b , c
∗
s) such that ∀n, π both c∗b ∈ (0, 1) and

c∗s ∈ (0, 1).

The condition on B is needed only to make sure that cb, cs < 1. A cost that yields indifference

greater than 1 for a group of supporters would imply full turnout by the members of that group,

which is not an interesting case for the interpretation. The uniqueness of the solution is, however,

not guaranteed and, unfortunately, even for simple specifications of the function u, the system

does not have analytical solutions.

Before turning to the bandwagon or underdog effect, I prove that the well-known zero-asymptotic-

turnout result of the pivotal voter model in large elections, first shown by Palfrey and Rosenthal

(1985), holds in the risk-aversion framework as well.

Proposition 7. In equilibrium limn→∞ c∗b = limn→∞ c∗s = 0

As proposition 7 establishes, if the number of agents becomes arbitrarily large, the turnout rates

of both groups tend to zero, since the probability of being pivotal becomes negligible.

In order to have results concerning the bandwagon or underdog effects, I specify u as a constant

absolute risk aversion (CARA) utility function, with a coefficient of absolute risk aversion equal

to γ > 0, which allows one to study the relationship between the two cutoffs for different degrees

of risk aversion:

u(x) = −e−γx (7)

Moreover, in light of proposition 6, I assume from now on that

B = 1 (8)

The simplest case of only two agents (n = 2) is more tractable and allows me to derive a result

in line with the decision-theoretic model. The general case n > 2 is more complicated and I have

to rely on some graphical results obtained by solving the system numerically. I discuss these two

cases separately.
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5.1 Case n = 2

If one assumes only two agents, the system becomes simpler (yet not solvable analytically).

Indeed the key probabilities simplify to

q =
1

2
πcb −

1

2
(1− π)cs +

1

2

p1 =
1

2
− 1

2
πcb

p2 =
1

2
− 1

2
(1− π)cs

and thus the system (6) - (8) becomes
[
π

2
cb −

1− π
2

cs +
1

2
]e−γ + [

1− π
2

cs −
π

2
cb +

1

2
]− [1− 1− π

2
cs]e

−γ(1−cb) − 1− π
2

cse
γcb = 0

[
1− π

2
cs −

π

2
cb +

1

2
]e−γ + [

π

2
cb −

1− π
2

cs +
1

2
]− [1− π

2
cb]e
−γ(1−cs) − π

2
cbe

γcs = 0

(9)

The following result shows a characterization of any solution12 of system (9) which replicates the

result of the decision-theoretic model.

Proposition 8. (i) There exists a threshold γ̄ such that any solution (c∗b , c
∗
s) of system (9)

satisfies c∗b = c∗s if γ = γ̄, c∗b < c∗s if γ < γ̄, and c∗b > c∗s if γ > γ̄.

(ii) γ̄ ≈ 1.54. It is the unique solution of

e
γ( 3e−γ−1

e−γ−1
)

= 2 (10)

Note that the threshold γ̄ does not depend on π, that is, on how more likely the two agents

support candidate 1 rather than candidate 2.13

The logic of the decision-theoretic model thus extends to the game-theoretic model in the simple

case of two agents: in the symmetric Bayesian equilibrium, the members of the expected majority

turn out at a lower rate than those of the expected minority for low degrees of risk aversion, and

at a higher rate for high degrees of risk aversion.14 Hence, also in a game-theoretic framework,

the underdog result of the standard pivotal voter model is not robust to the introduction of risk

aversion.

12In fact, the solution of system (9) is unique in all my numerical computations.
13The value 1.54 might seem very high compared to the usual estimates of an absolute risk-aversion parameter,

but it comes from the fact that I only evaluate the utility function in the small range (-c,1) with c ∈ (0, 1).
My numerical computations show that proposition 8(i) would still be true if I specify a constant relative risk
aversion (CRRA) utility function (bound by 1 to the left to make sure that the numerator is positive, i.e.

u(x) =
(x+1)1−γ

1−γ ), instead of a CARA function. In this case, the threshold for the relative risk-aversion parameter

would be approximately equal to 1.77, which is lower than its usual estimates. For an agent with an absolute
risk-aversion parameter equal to 1.54, the certainty equivalent of a lottery that yields a payoff of either 1 or 0
both with probability one-half is 0.32.

14With two agents, the expected number of candidate 1 supporters is 2π (> 1) and the expected number of
candidate 2 supporters is 2(1− π) (< 1).
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5.2 Case n > 2

The technical difficulty of the model prevents me from deriving a result similar to proposition 8

for the general case with n > 2 agents; I thus rely on numerical solutions and graphical results

to study the equilibria. I have run simulations for different choices of the parameters n, π and γ.

Concerning n, I have restricted the analysis to small electorates, which are the ones the literature

on the pivotal voter model usually refers to, given the zero-asymptotic-turnout result and the

quickly increasing computational time-cost.

From the graphical results, two main observations emerge. First, there is always one equilibrium

that shows the same pattern as the one in the n = 2 case. In particular, for any n there exists

a threshold γ̄ such that there exists an equilibrium for which cs = cb if γ = γ̄, cs > cb if γ < γ̄,

and cb > cs if γ > γ̄. Second, multiple solutions, which correspond to multiple equilibria, exist

in some regions of the parameter space when n > 2.

As an example, Figure 1 shows the implicit plot of system (6) - (8) in the (cb, cs) plane for

n = 50, π = 0.55 and for three values of the risk aversion parameter γ (γ = 0.01, 1, 5), which

allow one to compare the two relevant cases in terms of uniqueness or multiplicity of equilibria.

The solutions to the system, and thus the equilibria of the model, are given by the intersections

of the two curves. The graphs also display the 45◦ line: any intersection above that line implies

a higher turnout rate by the smaller group (cs > cb) and any intersection below implies a higher

turnout rate by the larger group (cb > cs).

Figure 1: Implicit plot of system (6) - (8): n = 50, π = 0.55
γ: (a) = 0.01; (b) = 1; (c) = 5

As it turns out, for some values of γ the equilibrium is unique (γ ∈ {0.01, 1}), while for some

others multiple (three) equilibria exist (γ = 5). The intersection of the two curves in graph (a)

moves continuously to that in graph (b) and then to the one below the 45◦ line in graph (c) as γ

increases continuously from 0.01 to 1 and then to 5. Hence, the equilibria in (a), in (b), and the

one below the 45◦ line in (c) can be seen as representing an equilibrium that, as a function of

γ, moves continuously from above the 45◦ line to below it, when γ increases. Such equilibrium
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features the supporters of the smaller group turning out at a higher rate for low degrees of risk

aversion and at a lower rate for high degrees of risk aversion, thus replicating the result of the

n = 2 case. Its existence and property are robust to other specifications of the parameters n and

π.15

Graph (c) of Figure 1, however, shows a case in which multiple (three) equilibria exist. Inter-

estingly, these yield opposite predictions in terms of which group of supporters turns out at a

higher rate. As we can see, for some (high) degrees of risk aversion, there can be equilibria both

for which cb > cs and equilibria for which cs > cb. Even though multiple equilibria seem to exist

only in small regions of the parameter space16, this result may look very unsatisfactory because

it prevents unambiguous predictions and seems to contradict the logic of the decision-theoretic

model. As I discuss in the next section, however, such a conclusion would be fallacious: the

equilibria with opposing predictions are all consistent with the results of the decision-theoretic

model.

To conclude this section, it is interesting to look at the value of the threshold γ̄, which determines

the minimum degree of the agents’ risk aversion in order for the model to have an equilibrium

displaying a bandwagon effect. For the general case of n > 2 agents, this value γ̄ is also a function

of π, i.e. of the expected sizes of the two groups. Figure 2 shows the computations of γ̄ as a

function of n ∈ [2, 250] for two specifications of π = 0.51, 0.75.

Figure 2: Discrete plot of γ̄(n), π: (a) = 0.51; (b) = 0.75

According to Figure 2, the threshold γ̄ is generally declining in n in small electorates.17 This

suggests that, as n grows, the model can yield a bandwagon effect in equilibrium even for a mild

degree of agents’ risk aversion. For example, in a close election where π = 0.51, while γ̄ ≈ 1.54

for n = 2, the value falls to γ̄ ≈ 0.27 if n = 250.18

15Owing to computational difficulties, I have run simulations only for n ≤ 250.
16They disappear for higher values of π, lower values of n and higher and lower values of γ.
17However, for extreme values of π (e.g. π = 0.95), my computations show that γ̄(n) is first decreasing and

then again increasing in n.
18For an agent with a constant absolute risk aversion parameter equal to 0.27, the certainty equivalent of a

lottery that yields a payoff of either 1 or 0 both with probability one-half is 0.47.
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5.3 On the multiplicity of equilibria

The existence of different equilibria in the game-theoretic model is explained by the way in which

the majority and minority groups are defined and by the fact that the key variable for predictions

in the decision-theoretic model is determined endogenously in equilibrium in the game-theoretic

model. This key variable is q, which identifies the expected winner: the decision-theoretic model

predicts that for sufficiently high degrees of risk aversion the agent turns out more likely if he

supports the expected winner, while for low degrees of risk aversion the agent turns out more

likely if he supports the expected loser. Now, in the decision-theoretic model, which candidate

is the expected winner is given exogenously and the result can be interpreted unambiguously

in terms of the majority and minority groups if we reasonably define the majority group as the

expected winner’s supporters. In the game-theoretic model, instead, the majority and minority

groups are defined in terms of their expected sizes (i.e. relatively to π) and the expected winning

candidate is determined in equilibrium by the turnout rates of the two groups. In particular,

candidate 1 is the expected winner if cb is greater than cs or if cs is greater than cb, but not

enough to offset the size advantage, while candidate 2 is the expected winner if cs is enough

greater than cb to offset the size advantage. These two possibilities create scope for different

equilibria, all consistent with the decision-theoretic model. Consider, indeed, the case of high

degrees of risk aversion: both options cb > cs and cs > cb are in principle compatible with a

higher turnout rate by the expected winner’s supporters as long as the cutoffs make candidate

1 the expected winner in the first case and candidate 2 the expected winner in the second case.

Thus, the game-theoretic model embeds a coordination game that makes both groups able to

end up being the expected majority of the voting agents, no matter their expected sizes.

Note that the existence of different equilibria is instead not possible for low degrees of risk

aversion. In this case, following the logic of the decision-theoretic model, we expect the supporters

of the expected loser to participate at a higher rate. That is not compatible with cb > cs:

candidate 1, indeed, could not be the expected loser, since his group of supporters is bigger in

expectation and would turn out at a higher rate. Hence, for low degrees of risk aversion, we

expect only equilibria in which cs > cb.

How many and which equilibria effectively exist depends on the specification of the utility function

and the model’s parameters. The presence of an equilibrium in which cb > cs when agents are

risk-averse implies that the bandwagon prediction of the decision-theoretic model also can hold in

a general game-theoretic framework. Furthermore, whenever both kinds of equilibria are possible,

I also find it reasonable to expect easier coordination to the equilibrium in which cb > cs: indeed,

if the agents were to coordinate on the equilibrium in which cs > cb, the members of the smaller

group would not only have to participate at a higher rate than the members of the bigger group,

but also to do it to the extent necessary to offset the expected difference in sizes and thereby

make their candidate the expected winner. The empirical and experimental evidence in favor of
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bandwagon that I reviewed in the previous sections also suggests much easier coordination on

the equilibrium in which the larger group votes at a higher rate.

6 Conclusion

The paper presents a theoretical mechanism able to produce a bandwagon effect in line with what

is observed in many empirical studies. The key assumption for the result is concavity of voters’

utility function, i.e. risk-averse voters. I have presented both a decision-theoretic model and a

game-theoretic model. In the decision-theoretic model, I have shown that an agent who is risk-

averse enough would participate more likely when he supports the expected winning candidate,

despite the smaller probability of casting a pivotal vote. In the game-theoretic model, I have

found the existence of an equilibrium in which the members of the majority participate at a higher

rate than those of the minority for high degrees of risk aversion and at a lower rate for low degrees

of risk aversion. Hence, in the presence of risk-averse agents, both the decision-theoretic and the

game-theoretic models yield a bandwagon effect. These results show how the apparently robust

underdog effect highlighted by the previous theoretical literature depends on an assumption of

linearity. Finally, I have shown the possibility of multiple equilibria in the game-theoretic model,

which can also display an underdog effect for high degrees of risk aversion, due to the model’s

dual endogeneity of turnout rates and the identity of the expected winning candidate.

Whether citizens’ utility functions are concave in a voting context is an interesting question.

Any answer is complicated by the fact that the benefit from the election outcome and the

cost of voting in real elections are supposed to be measured in different units. It is a central

assumption of economic modeling that the utils derived from these two variables can be summed,

but any assumption on the shape of the utility function over the sum of these utils may well

seem arbitrary. Nonetheless, concavity identifies regular properties (risk aversion and decreasing

marginal benefits) that are supposed to hold in many different contexts and, in the voting setting,

it conveys the reasonable idea that people might perceive electoral participation to be more costly

if they are likely to be let down by the outcome.

On the other hand, the mechanism that I have described gives a clear justification for the result

of higher turnout rates for the members of the majority group observed in the experimental

studies. In these experiments, both the benefit from the election outcome and the cost of voting

are usually given in monetary terms: hence, the assumption of a concave utility over money is a

very natural one.
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A Expressions for p1, p2 and q

I derive here the expressions for p1, p2 and q in system (6). For the calculation of p1 and p2, I draw on

the analysis in Goeree and Grosser (2007). An agent is pivotal only when either the rest of the voting

agents is equally split between the two candidates (turning a draw into a victory) or when the opposing

candidate would win by one vote if the agent abstains (turning a loss into a draw). Given the tie-breaking

rule in the case of a draw, in both cases the probability of being pivotal is divided by one-half. Clearly

the first scenario can happen if the number of other voters is even, while the second if such number is

odd. The two cases can be combined using the floor operator b·c. Consider first a supporter of candidate

1, supposing that k other agents also prefer candidate 1, n − k − 1 prefer candidate 2 and a total of l

agents vote. Assuming that the cutoff costs cb and cs are both in (0, 1), the probability of being pivotal

p1 is equal to

p1(cb, cs) =
1

2

n−1∑
l=0

n−1−b l+1
2
c∑

k=b l
2
c

(
n− 1

k

)
πk(1− π)n−k−1

(
k

b l
2
c

)(
n− k − 1

b l+1
2
c

)
×

×(cb)
b l
2
c(1− cb)k−b

l
2
c(cs)

b l+1
2
c(1− cs)n−k−1−b l+1

2
c

(11)

Analogously for a supporter of candidate 2, the probability of being pivotal p2 is equal to

p2(cb, cs) =
1

2

n−1∑
l=0

n−1−b l+1
2
c∑

k=b l
2
c

(
n− 1

k

)
(1− π)kπn−k−1

(
k

b l
2
c

)(
n− k − 1

b l+1
2
c

)
×

×(cs)
b l
2
c(1− cs)k−b

l
2
c(cb)

b l+1
2
c(1− cb)n−k−1−b l+1

2
c

(12)

In addition to p1 and p2, I need to calculate the probability q, which emerges in the agent’s decision

problem if the assumption of linearity in the utility function is relaxed. To do so, notice that when l

other agents vote, candidate 1 wins if at least l
2

+ 1 agents vote for him for l even, or at least l+1
2

for l

odd. The two cases can again be combined using the floor operator: if l agents vote, candidate 1 wins

if at least b l
2

+ 1c vote for him. Moreover, by the assumption on the tie-breaking, candidate 1 also wins

with probability one-half if the voters are equally split between the two candidates (l must be even).

Hence, assuming cb and cs both in (0, 1), q is equal to

q(cb, cs) =

n−1∑
l=0

n−1−l+v∑
k=v

l∑
v=b l

2
+1c

(
n− 1

k

)
πk(1− π)n−k−1

(
k

v

)(
n− k − 1

l − v

)
×

×(cb)
v(1− cb)k−v(cs)

l−v(1− cs)n−k−1−l+v

+
1

2

n−1∑
l even, l=0

n−1− l
2∑

k= l
2

(
n− 1

k

)
πk(1− π)n−k−1

(
k
l
2

)(
n− k − 1

l
2

)
×

×(cb)
l
2 (1− cb)k−

l
2 (cs)

l
2 (1− cs)n−k−1− l

2

(13)

The probabilities p1, p2 and q are strictly positive also in the case that cb or cs are equal to zero (see

the proof of proposition 6 in Appendix B). In particular, p1 = p2 = q = 1
2

if cb = cs = 0.

22



B Proofs

Proof of proposition 1. Since u is continuous and strictly increasing in its argument, the left-hand

side of equation (3) is continuous and strictly increasing in c. Moreover, for any values of B, q and

p(q) > 0, if c = 0 the left-hand side of (3) is negative, while if c = B it is positive. Hence, by the

intermediate value theorem, for any values of B, q and p(q) > 0, there exists a unique c ∈ (0, B) such

that equation (3) holds.

In proposition (2), (3) and (4) I use the following version of the implicit function theorem, whose hy-

potheses are verified in the proof of proposition 1.

Implicit Function Theorem. Given the equation g(x, y) = 0, if (i) g is continuous and (ii) strictly

monotone in y for any fixed x and if (iii) g changes sign as y varies for any fixed x, then there exists a

unique continuous function f(x) such that g(x, f(x)) = 0.

Proof of proposition 2. (i) Existence and uniqueness of the implicit function are guaranteed by the

implicit function theorem (see above). By implicit differentiation of equation (3) with respect to p, we

have

(q + p)u′(B − c) ∂c
∂p

+ (1− q − p)u′(c) ∂c
∂p
− (u(B − c)− u(−c)) = 0

⇒ ∂c

∂p
=

u(B − c)− u(−c)
(q + p)u′(B + c) + (1− q − p)u′(c) > 0

(ii) Existence and uniqueness of the implicit function are guaranteed by the implicit function theorem.

By implicit differentiation with respect to B, we have

qu′(B)− (q + p)u′(B − c)(1− ∂c

∂B
) + (1− q − p)u′(−c) ∂c

∂B
= 0

⇒ ∂c

∂B
=

q(u′(B − c)− u′(B)) + pu′(B − c)
(q + p)u′(B − c) + (1− q − p)u′(−c)

which is (strictly) positive if u is weakly concave.

Proof of proposition 3. If δ = 0, equations (4) and (5) are both of the form

xu(B) + (1− x)u(0)− (x+ p)u(B − c)− (1− x− p)u(−c) = 0 (14)

where x = q < 1
2

in equation (4) and x = 1 − q > 1
2

in equation (5). By the implicit function theorem

(see above), equation (14) implicitly defines a unique continuous function c(x). It suffices then to show

that c(x) is strictly increasing in x if u is strictly concave and weakly decreasing if u is weakly convex.

By implicit differentiation with respect to x, we have

u(B)− u(0)− u(B − c) + (x+ p)u′(B − c) ∂c
∂x

+ u(−c) + (1− x− p)u′(−c) ∂c
∂x

= 0

⇒ ∂c

∂x
= − u(B)− u(0)− (u(B − c)− u(−c))

(x+ p)u′(B − c) + (1− x− p)u′(−c)
which is strictly positive if u is strictly concave and weakly negative if u is weakly convex.
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Proof of proposition 4. Existence and uniqueness of the implicit function are guaranteed by the

implicit function theorem (see above). By implicit differentiation of equation (5) with respect to δ, we

have

(1− q + p− δ)u′(B − c)∂c
∂δ

+ (q − p+ δ)u′(−c)∂c
∂δ

+ (u(B − c)− u(−c)) = 0

⇒ ∂c

∂δ
= − u(B − c)− u(−c)

(1− q + p− δ)u′(B − c) + (q − p+ δ)u′(−c) < 0

Proof of proposition 5. The value δ∗ is determined, together with the associated value of c, by the

following system of equationsqu(B) + (1− q)u(0)− (q + p)u(B − c)− (1− q − p)u(−c) = 0

(1− q)u(B) + qu(0)− (1− q + p− δ∗)u(B − c)− (q − p+ δ∗)u(−c) = 0
(15)

which yields

δ∗ = (2q − 1)(
u(B)− u(0)

u(B − c)− u(−c) − 1) (16)

Clearly ∀ q < 1
2
, δ∗ is positive if u is concave and negative if u is convex. Moreover u(B)−u(0)

u(B−c)−u(−c) >
h(B)−h(0)

h(B−c)−h(−c) , so δ∗ is greater if the utility is h.

Proof of proposition 6. The proposition is true by the Poincaré-Miranda theorem.

Theorem (Poincaré-Miranda). Let In := [a, b]n and let f = (f1, ..., fn) : In → Rn be a continuous

map such that ∀i ≤ n, fi(I
−
i ) ⊂ (−∞, 0] and fi(I

+
i ) ⊂ [0,∞), where I−i := {x ∈ In : x(i) = a} and

I+i := {x ∈ In : x(i) = b}. Then there exists a point c ∈ In such that f(c) = 0.

In our case f = (f1, f2) is the left-hand side of system (6), In = [0, B]2 and ∀B,n, π

f1(cb = 0) < 0 and f1(cb = B) > 0 ∀cs

f2(cs = 0) < 0 and f2(cs = B) > 0 ∀cb

Hence if B ≤ 1, there exists a solution (cb, cs) ∈ (0, 1)× (0, 1).

Note that the theorem requires to evaluate system (6) at cb = 0 and cs = 0, where equations (11)-(13)

are not defined. Hence, I briefly sketch the calculation of p1, p2 and q in these cases. If cb = 0 (i.e. the

other supporters of candidate 1 don’t vote), a voting supporter of candidate 1 is pivotal when either no

supporters of candidate 2 vote or only one supporter of candidate 2 votes (in both cases with probability

1
2
, given the tie-breaking rule). Hence

p1(cb = 0, cs) =
1

2

n−1∑
k=0

(
n− 1

k

)
(1− π)kπn−k−1[(1− cs)k + kcs(1− cs)k−1]

Analogously, we have

p2(cb, cs = 0) =
1

2

n−1∑
k=0

(
n− 1

k

)
πk(1− π)n−k−1[(1− cb)k + kcb(1− cb)k−1]
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Concerning q, the probability that candidate 1 wins when cb = 0 (i.e. his supporters don’t vote) is the

probability that also no supporter of candidate 2 votes, times one half because of the tie-breaking rule.

That is,

q(cb = 0, cs) =
1

2

n−1∑
k=0

(
n− 1

k

)
(1− π)kπn−k−1(1− cs)k

while the probability that candidate 1 wins when cs = 0 (i.e. the supporters of candidate 2 don’t vote)

is the probability that at least one supporter of candidate 1 votes plus one half the probability that no

supporter of candidate 1 votes, because of the tie-breaking rule. That is,

q(cb, cs = 0) =

n−1∑
k=0

k∑
v=1

(
n− 1

k

)
πk(1− π)n−k−1

(
n− 1

k

)
(cb)

v(1− cb)k−v+

+
1

2

n−1∑
k=0

(
n− 1

k

)
πk(1− π)n−k−1(1− cb)k

By analogous reasoning, the probabilities p1, p2 and q are strictly positive for any combination of

cb, cs ∈ {0, 1}.

Proof of proposition 7. The proof is based on the result that the probability of being pivotal goes to

zero in large elections, that I report below as a lemma and for which I refer to Taylor and Yildirim (2010b).

Lemma: Fix (cb, cs) ∈ [0, B]×[0, B] such that (cb, cs) 6= (0, 0). Then limn→∞ p1(cb, cs, n) = limn→∞ p2(cb, cs, n) =

0

Proof. See Lemma A1 in Taylor and Yildirim (2010b).

Then suppose that limn→∞ c
∗
b 6= 0. This means that there exists a subsequence of c∗b(n) that is bounded

away from zero. Since c∗b(n) ∈ [0, B], by Bolzano-Weierstrass theorem, there also exists a subsequence

ĉ∗b(n) that converges to some l > 0. This implies ĉ∗b(n) > 0 for n large enough and thus, by the lemma,

limn→∞ p1(ĉ∗b(n), c∗s , n) = 0. Then, at the limit the first line of system (6) becomes

q[u(B)− u(B − c∗b)] + (1− q)[u(0)− u(−c∗b)] = 0

which is a contradiction since the left-hand side is strictly positive, for any limit value of q in [0, 1].

Analogously, suppose that limn→∞ c
∗
s 6= 0. By the same reasoning, at the limit the second line of system

(6) becomes

(1− q)[u(B)− u(B − c∗s)] + q[u(0)− u(−c∗s)] = 0

which is a contradiction since the left-hand side is strictly positive, for any limit value of q in [0, 1].

Proof of proposition 8. Summing and subtracting the two equations of system (9), we can rewrite

it as 
(e−γ + 1)− e−γ(eγcb + eγcs) + (e−γ − 1)[

1− π
2

cse
γcb +

π

2
cbe

γcs ] = 0

(e−γ − 1)[πcb(1−
1

2
eγcs)− (1− π)cs(1−

1

2
eγcb)]− e−γ(eγcb − eγcs) = 0

(17)

Imposing cb = cs in (17) yields after some algebra

eγcb = 2 and cb =
3e−γ − 1

e−γ − 1
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from which (10) follows. Imposing cb = cs + ε with ε > 0, from the second equation of (17) we get

(e−γ − 1)(2π − 1)cs(1−
1

2
eγcs) + ψ = 0 (18)

where ψ = (e−γ − 1)(1 − π)cs
1
2
eγcs(eγε − 1) + (e−γ − 1)πε(1 − 1

2
eγcs) − e−γ(eγcs(eγε − 1)) < 0 and

eγcs < 2. From (18) we get

eγcs = 2 + ϕ (19)

where ϕ = 2ψ
(e−γ−1)(2π−1)cs

> 0. From the first equation of (17) we get

(e−γ + 1)− e−γ(2eγcs) + (e−γ − 1)(
1

2
cse

γcs) + ζ = 0 (20)

where ζ = e−γeγcs(1− eγε) + (e−γ − 1)[ 1−π
2
cse

γcs(eγε − 1) + π
2
εeγcs ] < 0. Substituting (19) in (20) we

get

cs =
3e−γ − 1

e−γ − 1
+ ξ = 0 (21)

where ξ = − 1
2
csϕ+ 2ϕe−γ

e−γ−1
− ζ

e−γ−1
< 0. Substituting (21) in (19) we get

e
γ( 3e−γ−1

e−γ−1
)

= 2 + φ (22)

where φ = ϕ− eγ(
3e−γ−1

e−γ−1
)
(eγξ − 1) > 0.

If instead ε < 0, then eγcs > 2, ψ > 0, ϕ < 0, ζ > 0, ξ > 0 and φ < 0. Hence φ > 0 if ε > 0 and φ < 0 if

ε < 0, which, since the left-hand side of (22) is monotonically increasing in γ, yields the result.

C A graphical analysis of the decision-theoretic model

In this section, I present a graphical illustration of the decision-theoretic model of section 4 in the paper.

According to the model (equation 2), the agent prefers voting over abstention if

(q + p)u(B − c) + (1− q − p)u(−c) > qu(B) + (1− q)u(0) (23)

which can be rewritten as

q >
1− pu(B−c)−u(−c)

u(0)−u(−c)

1− u(B)−u(B−c)
u(0)−u(−c)

(24)

Equation (24) defines a straight line in the (p, q) plane, which divides the region in which the agent votes

and the one in which the agent abstains. The line has a slope equal to

− 1

1− u(B)−u(0)
u(B−c)−u(−c)

(25)

from which we can see that it is vertical if the agent is risk-neutral (u linear) and downward-sloping

if the agent is risk-averse (u concave). In Figure 3, the dashed vertical line represents the case of risk

neutrality, while the downward-sloping black line the case of a concave utility function u.

Note that, since the left-hand side of (23) is strictly decreasing in c, an increase in the agent’s cost of

voting c implies a shift of the line to the north-east of the graph.

26



Figure 3: Graphical representation of the agent’s decision in the (p, q) plane

Consider now the case δ = 0. This corresponds to comparing two different points of the plane that have

the same coordinate on the p-axis. Since the point that identifies the agent when he supports the likely

winner is always above the point that identifies him when he supports the likely loser, the negative slope

of the line makes it impossible for the agent to vote when he supports the likely loser, but abstain when

he supports the likely winner. For some values of the cost of voting the opposite happens instead: the

agent votes if he supports the likely winner, but abstains if he supports the likely loser. This case is

shown in Figure 3 by the two red dots labeled l and w.

The case δ > 0 corresponds instead to comparing two points in the plane that do not have the same

coordinate on the p-axis anymore, because the point above (which identifies the expected winner’s

supporter) moves to the left. In this case, even if the line has a negative slope, it could be possible

for the agent to vote if he supports the likely loser but abstain if he supports the likely winner. This

possibility is shown in Figure 3 by comparing between the two red dots denoted l and w′. But, as we

can see from (25), if the agent becomes more risk averse, the slope of the line declines in absolute value

and the line thus rotates counterclockwise. Such rotation makes sure that, if the agent is risk-averse

enough, he will vote if he supports the likely winner and abstain if he supports the likely loser. This

case is shown in Figure 3 by the blue line, which corresponds to a utility function h that is a concave

transformation of u.

D Homogeneous costs

In this section, I show that if agents are risk-averse but have homogeneous voting costs, the model of

section 5 in the paper cannot overcome the full underdog result of the linear pivotal voter model. Suppose

then that the agents in both groups have the same (deterministic) voting cost equal to c. In this case,

the equilibrium (in which turnout is partial in both groups) is given by mixed strategies, according to

which every agent in both groups is indifferent between voting and abstaining. Calling cb and cs the

probability of voting in the equilibrium mixed strategies for an agent in the big group and an agent in the
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small group respectively (which now do not identify threshold costs anymore), these solve the following

system of equationsqu(B) + (1− q)u(0)− (q + p1)u(B − c)− (1− q − p1)u(−c) = 0

(1− q)u(B) + qu(0)− (1− q + p2)u(B − c)− (q − p2)u(−c) = 0
(26)

where q(cb, cs), p1(cb, cs), and p2(cb, cs) are given by (13), (11), and (12) respectively and c is the

cost of voting. Note that if voting costs are homogeneous, the agents’ strategies only determine the

probability of victory for the candidates and the probability of being pivotal but do not enter the agents’

utility function u. In system (6) instead, in which voting costs are heterogeneous, the agent’s strategies

determine the threshold costs and thus enter also the utility of the indifferent agents in the two groups.

I focus on the case of two agents (n = 2); in my numerical examples the result extends to the general

case with n agents. If n = 2 we have

q =
1

2
πcb −

1

2
(1− π)cs +

1

2

p1 =
1

2
− 1

2
πcb

p2 =
1

2
− 1

2
(1− π)cs

(27)

and system (26) simplifies to
[
π

2
cb −

1− π
2

cs +
1

2
]u(B) + [

1− π
2

cs −
π

2
cb +

1

2
]u(0)− [1− 1− π

2
cs]u(B − c)− 1− π

2
csu(−c) = 0

[
1− π

2
cs −

π

2
cb +

1

2
]u(B) + [

π

2
cb −

1− π
2

cs +
1

2
]u(0)− [1− π

2
cb]u(B − c)− π

2
cbu(−c) = 0

(28)

Now subtracting the second equation from the first in (28) we get

[πcb − (1− π)cs][u(B)− u(0)− 1

2
(u(B − c)− u(−c))] = 0 (29)

from which we see that unless the term in the second brackets is zero (which is a very strong

condition), in equilibrium we must have

πcb = (1− π)cs (30)

i.e. full underdog (the turnout rates completely offset the size advantage and the election be-

comes toss-up). Hence if everyone has to be indifferent between voting and abstaining, the only

possible equilibrium is that the system yields the underdog effect, while, as the model in the

paper shows, if the equilibrium determines also who the indifferent agents are in the two groups,

there can be a bandwagon effect in equilibrium.

However, note that in principle it would be possible to imagine an equilibrium in which band-

wagon occurs but still all supporters of both groups are indifferent between voting and abstaining:

the benefit of voting for the supporters of the big group would be smaller than for those of the

small group, since the probability of being pivotal would be smaller, but also the effect of the
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cost of voting on utility would be smaller because of concavity.

In order to see better why such equilibrium does not exist, we can look at the expression for δ∗

in section 4, which gives the difference in the probabilities of being pivotal that would make the

agent indifferent between voting and abstaining in both the case he supports candidate 1 and the

case he supports candidate 2 for a given cost of voting c (see also equation (16), in the proofs’

section):

δ∗ = p1 − p2 = (2q − 1)(
u(B)− u(0)

u(B − c)− u(−c)
− 1) (31)

The term in the last brackets in (31) is negative because of concavity. Now, from the expressions

for p1, p2 and q in (27), we have that

p1 − p2 = −1

2
(2q − 1) (32)

which implies that (31) can only hold if p1 = p2 and thus if πcb = (1− π)cs.

Hence, the existence of an equilibrium with bandwagon is prevented by the fact that in the

model the difference in the probabilities of being pivotal is proportional to the difference in the

probabilities of victory for the preferred candidate in case of abstention, i.e.

p2 − p1 ∝ q − (1− q) (33)

Note that equation (33) is true also in the model with heterogeneous costs; however, the addi-

tional degree of freedom given by the fact that the equilibrium determines also the threshold

costs allows to get a bandwagon effect in equilibrium.
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