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Abstract

We model the optimal regulation of continuous, irreversible, capacity expansion, where a regulated �rm

has private information about capacity costs, investments are �nanced from the �rm's cash �ows, and demand

is stochastic. The optimal mechanism can be implemented as a revenue tax that increases with the level of

the price cap. If the asymmetric information has large support, then the optimal mechanism consists of a

laissez-faire regime for low-cost �rms. That is, the �rm's price cap corresponds to that of an unregulated

monopolist, and it is not taxed. This `maximal distortion at the top' is necessary to provide information

rents, as direct subsidies are not feasible.
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1 Introduction

Since the nineties many regulated network industries switched from cost-plus (or rate-of-return) to incentive

regulation, often under some form of price cap regulation. This switch was motivated by the fear that cost-

plus regulated �rms would �gold-plate� their networks and over-invest in capital (Averch and Johnson, 1962)

and the realization that a price cap provides high-powered incentives for cost-e�ciency (Cabral and Riordan,

1989).1 However, in recent years stakeholders have argued that with high powered incentive regulation, �rms

postpone socially e�cient investments in durable assets, especially in risky environments, and that a di�erent

form of regulation is necessary. For instance, in response to large investment needs, the UK electricity and

gas regulator OFGEM modernized its price cap mechanism by explicitly taking into account these investment

needs. 2 European energy directives allow speci�c network investments to be exempted from regulation in

order to foster investments if uncertainty is large. 3 For the telecom sector, ETNO, the industry association

representing European telecom operators, recommends relaxing access regulation, as it sees it as the main reason

for European infrastructure investments lagging those in the U.S. (Williamson, Lewin and Wood, 2016). 4 Also

academic scholars recognize that implementing price cap regulation is challenging for durable investments and

when uncertainty is important (Guthrie, 2006; Armstrong and Sappington, 2007).

In this article we contribute to this debate by studying the optimal regulation of capacity investments in

a dynamic setting in which investment prospects are uncertain. For this we consider a regulated private �rm

that has to gradually expand its network to cope with a growth in demand for network access, needs to fund its

investments from operating pro�ts and has superior information on investments costs. The regulator contracts

with the �rm about when it should expand capacity (and when it would be better to delay), at which price the

capacity should be sold, and which fraction of its revenues it may keep. The regulator acts as a social planner

and maximizes the expected discounted sum of consumers' surplus and the �rm's pro�t.

In the optimal regulatory mechanism existing capacity is always used e�ciently: prices for network access

are equal to the short-run marginal cost of transportation as long as there is spare capacity, and prices are

above marginal cost when there is congestion. Capacity is expanded, whenever the price for capacity reaches a

threshold value. This price threshold increases with investment costs, and is always higher than under the �rst

best symmetric information optimum with demand uncertainty. Hence, investments are delayed.5

As we assume that the �rm does not receive subsidies, investment costs need to be paid from market revenues.

However, any operating pro�ts that remain after those costs have been paid for, could be taxed by the regulator.

Under optimal regulation the regulator does not tax the �rms which reveal to be relatively e�cient, whereas the

1See for instance Sappington (2002) for an overview of the perceived drawbacks of rate of return regulation.
2The UK was one of the �rst countries to introduce the RPI-X price cap model (Beesley and Littlechild, 1989). After a review,

a new set of regulatory principles was introduced, the RIIO-model. This is still a form of price regulation but includes output
obligations and additional funds for experimentation (OFGEM, 2010b).

3Exemptions can be granted if among others �the level of risk attached to the investment is such that the investment would
not take place unless an exemption was granted�. (Regulation EC 714/2009, Art.17 & Directive 2009/73/EC, Art. 36). Until 2015
there were 35 exemption requests, most of which were (partially) granted.

4In contrast to the energy sector, the European Commission does not allow regulatory exemptions for the telecommunication
sector and it successfully appealed the decision of the German government to grant Deutsche Telekom an exemption. (Commission
v. Germany 2009, case number C-424/07, the European Court of Justice.)

5Note that the �rst best investment expansion plan already delays investments to take into account the real option value of
network expansion.
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tax rate for the less e�cient �rms increases with their levels of ine�ciency. Those low tax rates are necessary

to provide the e�cient �rms with information rents.

If the information asymmetry between the regulator and the �rm has large support, then the relatively

e�cient �rms will be allowed to invest as if they were unregulated monopolists, as this provides the largest

possible information rents. Hence, a laissez-faire regime is optimal for those �rms. In the case with small

support, the regulator will bunch the more e�cient �rms and require identical investment levels for these.

Hence, optimal regulation no longer results in an equilibrium with full separation of types.

In our model demand growth is not fully predictable (i.e. stochastic) and network investments are sunk.

Hence the �rm is continuously forecasting demand and balancing the bene�ts of expanding capacity now (and

obtaining additional revenue) and delaying investments (and obtaining superior information about future de-

mand). In other words, it needs to take into account the real option value of investments (Dixit and Pindyck,

1994). McDonald and Siegel (1986) show that an unregulated monopolist delays investments under uncertainty,

and Pindyck (1988) extends this result to a continuous investment model. Although also �rst-best investment

involves a delay, under monopoly, this delay is longer. If a regulator would try to correct this situation with

only the price cap instrument at its disposal, then the �rst best outcome cannot be reached (Dobbs, 2004), as

one instrument is used for two goals: e�cient investments ex-ante and optimal consumption ex-post. Building

on Dobbs, but introducing scale economics for capacity expansion � in which case grouping investments across

time is cost e�cient � Evans and Guthrie (2012) show that the price cap should be lowered and that it might

be e�cient to allow some demand rationing to increase the size of subsequent expansions. Roques and Savva

(2009) extend Dobbs' model to a Cournot duopoly with a price cap. Our article also starts from Dobbs' model

but includes asymmetric information, a self-�nancing constraint and assumes that the regulator has additional

instruments to enforce investments. As we assume constant returns to scale in capacity expansion, it is never

optimal to group investments or to ration demand, in contrast to Evans and Guthrie (2012).

In order to model the interaction between the regulator and the �rm, we rely on the assumption that the

�rm has superior information about its own investment costs as in the seminal article by Baron and Myerson

(1982). Whereas most adverse selection types of models allow for lump-sum transfers to the agent, we impose

a self-�nancing constraint which limits transfers. In Baron and Myerson, the most e�cient �rm invests at the

e�cient level, i.e. there is �no distortion at the top�, and gains information rents by receiving a large lump-sum

transfer. In our model, information rents can only be obtained by being more pro�table in the market, and

hence investment levels need to be distorted away from the e�cient level. In fact, we �nd that if the maximum

cost level is large, compared to the most e�cient �rm's cost, monopoly level investments are optimal for the

most e�cient �rms. So we �nd what could be called �maximal distortion at the top�. If information asymmetries

are small, we �nd a bunching equilibrium for the most e�cient �rms. Our model di�ers in a number of ways

from Baron and Myerson. (1) Instead of choosing production output, the �rm invests in additional capacity.6

(2) The objective of the regulator gives the same weight to consumers' surplus and the �rm's rents. Instead,

the cost of leaving information rents is endogenous, arising from a self-�nancing constraint. (3) We consider a

6Constant elasticity demand in our model ensures that all capacity is subsequently used.
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multi-period setting.7

We allow the regulator to tax, but not to make subsidies to the �rm. This re�ects the fact regulators are

often legally forbidden to subsidize �rms.8,9 In our model, we allow for one-way state-contingent payments from

the �rm to the regulator. This is in contrast with the delegation literature in which any transfer is ruled out, and

the regulator decides only on the amount of discretion for the agent.10 Our results are similar to the principal

agent model of Gautier and Mitra (2006). They assume that the regulator can provide lump-sum transfers

but is limited by its budget constraint, which is determined exogenously. In our model, the transfers that the

�rm can receive are determined endogenously by its investment decisions and the revenues those investments

generate.

One strand of the literature on incentive regulation and durable investments highlights the lack of commit-

ment by the regulator.11 If a regulator cannot commit to a price level for a su�ciently long period, it will

lower prices once investment has taken place as those prices are ex-post e�cient. This will lead to hold-up

and lower investments ex-ante. In order to address this commitment problem Gans and King (2004) propose

a regulatory holiday in which the regulator commits not to regulate prices for a limited duration, under the

implicit assumption that it is easier to commit not to regulate than to commit to a high regulated price. We

�nd that even if the regulator has full commitment power, it might be optimal to provide an exemption from

regulation to the most e�cient �rms, as this provides information rents for �rms who want to invest earlier and

with larger quantities. Note that the regulatory exemption in our model is not of a limited duration and not

unconditional. If a �rm invests too late, then a fraction of its operating pro�ts should be taxed. We assume

the regulator fully commits to a long-term, non-renegotiable contract.12

Many network industries are characterized by features similar to the ones of our model. They have capital

intensive networks with relatively long-lived assets. Examples include the local-loop in telecommunications

markets, low voltage distribution and high voltage transmission networks in power markets. Growing demand

by network users both in volume and service quality require continuous upgrades and expansions of switches

in local central o�ces, voltage transformers and new communication equipment in power networks.13 Recent

7Baron and Besanko (1984) extend Baron and Myerson (1982) to a multi-period setting in which the �rm's types might be
correlated across time periods. In the extreme, with perfect correlation, as in our model, output is distorted to the same extent for
all time periods.

8The lack of subsidies can also be motivated by regulatory collusion and commitment problems (La�ont and Tirole, 1993, 1991)
or to prevent regulatory competition, and justi�es much of the literature on Ramsey pricing. Armstrong and Sappington (2007)
indicate that normative models on optimal contracting have limited real-world applications as, among others, transfers to the �rms
are assumed to be feasible.

9European state-aid guidelines require prior authorization of subsidies for energy infrastructure investments, i.a. to prevent
indirect subsidies to the energy intensive industry. Only when they correct for positive externalities they are allowed (OCJ/C
200/1).

10If the �rm's and regulator's preferences are su�ciently aligned, then the optimal delegation set is a closed interval of decisions
that the �rm might choose from (Alonso and Matouschek, 2008). If not, the set contains gaps: the �rm is forbidden to take
intermediate actions. In a Baron and Myerson model without transfers, unimodally distributed costs and linear or constant elastic
demand, the regulator cannot do better than a price cap.

11Another strand of literature discusses practical challenges for price cap regulation and long term investments. Joskow (2008)
reports problems with measuring cost of capital and setting prices at the end of a regulatory period. In a dynamic Ramsey pricing
model, Evans and Guthrie (2005) show that prices should not be based on the ex-post optimized replacement value of assets.

12Renegotiation generally increases agency costs, as e�cient �rms require more information rents early on (Bester and Strausz,
2001; Hart and Tirole, 1988; La�ont and Tirole, 1990; Battaglini, 2007). With Repeated short-term contracts the agent faces
ex-post hold-up, which is costly to compensate ex-ante (La�ont and Tirole, 1988), unless the mutual threat of punishment restores
incentives (Salant and Woroch, 1992; Gilbert and Newbery, 1994).

13Instead of a growth of demand volume, a di�erent interpretation would be that demand for quality increases over time. Equiv-
alently, we could assume constant demand and network capacity which degrades over time and where the �rm builds replacement
capacity when necessary. Mathematically this model would be very similar.
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technological changes have put those investments requirements to the forefront. Video on demand and cloud

computing creates additional pressure on telecommunication networks, the large scale introduction of renewable

energy and decentralized production requires substantial upgrade of power networks. Many network �rms have

been privatized and governments are not keen on subsidizing investments.

The characterization of the telecom sector by the European association of telecom operators highlights many

of our assumptions:

The bulk of the investment required to meet policy objectives for the Digital Single Market will

need to come from private investment in Europe's access networks. This private investment is a

continuous and incremental, rather than a one-o�, process. Investment decisions are constrained

by the annual cash �ows generated by the businesses.... Market players are better placed to make

e�cient investment decisions than NRAs [National Regulatory Authorities] or governments. They

have far more information on both the incremental costs of deploying new technologies and the

incremental revenues which might �ow from investing (Williamson, Lewin and Wood 2016, Pg.2-3).

In our model we assume that the regulator not only regulates the �rm's revenue (by setting which fraction

of operating pro�t the �rm is allowed to keep), but also enforces the required investments levels. Such dual

requirements are also found in practice. For instance under the new RIIO regulatory model for the UK energy

markets, the regulator not only speci�es a certain price level, but also agrees on speci�c output parameters. If

�rms are unable to reach those output targets they will lose their operating license (OFGEM, 2010a).

We also show that the optimal mechanisms can be implemented as a revenue tax, which depends positively on

the maximal amount of congestion which is re�ected in high scarcity prices for bottleneck capacity. In practice

those congestion prices might not be directly observable or very stochastic. However, often several proxies for

congestion levels can be relied on as a basis for regulation (packages lost in telecom networks, redispatch cost

in electricity markets).14

In our article we do not consider one-o� (lumpy) investments. Moreover, we consider information asymmetry

on a static parameter (costs) and assume that the information asymmetry is not related to the stochastic demand

realization, although those features might sometimes be present in practice. We refer to two companion articles

for those aspects of regulation: Broer and Zwart (2013) assume that investments are lumpy and only occur once;

Arve and Zwart (2014) assume asymmetric information with respect to stochastic parameters instead of static

ones, and allow for lump sum transfers to the �rm. These models do not exhibit the pooling and monopoly

pricing regimes arising from the budget constraint that is central in this article.

Finally, our regulated �rm both builds and operates the network under a long-term procurement contract and

it faces substantial risk. Its regulatory contract therefore has the characteristics of a Private-Public-Partnership

(Iossa and Martimort, 2015). Our article complements this literature by highlighting the downsides of having

such projects funded by user fees alone.15

14See for instance Lesieutre and Eto (2003) for a discussion on measuring congestion in electricity networks.
15We do not study how agency costs can be reduced by bundling tasks and by relying on private funding. Bundling investment

and operation improves the agent's incentives to internalize externalities across tasks due to economies of scope in agency costs
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2 Model

We consider a continuous-time, continuous investment model of a principal, the regulator, contracting with

a monopolist to make irreversible investments dQ(t) to expand network capacity Q(t), as in Dobbs (2004).

Capacity is a continuous variable, and capacity expansions come at a constant marginal cost c. There is no

depreciation of capacity.16 Initial capacity at t = 0, the time of contracting, is Q(0) = 0, i.e. we consider a

green�eld project.17 Marginal cost c is drawn from a cumulative distribution F (c) with full support [cL, cH ],

and density f(c) > 0. A su�cient condition that the solution of the �rst-order conditions actually corresponds

to a maximum, is that the density is downward sloping f ′(c) ≤ 0 on its support [cL, cH ]. We will assume this.18

At each moment in time, the capacity Q(t) is sold to users at a price p(t) (we will drop the t-dependence of

price and other variables in subsequent notation).

The demand for network capacity has constant elasticity,

p = AQ−γ (1)

where 0 < γ < 1 is the inverse of demand elasticity. The associated �ow of gross consumer surplus from using

Q is then AQ1−γ/(1− γ).19

The demand shift parameter A is stochastic, and satis�es a geometrical Brownian motion,

dA = µAdt+ σAdz, (2)

where µ and σ > 0 are the associated drift and volatility parameters. As A grows over time, demand for capacity

will increase, making capacity investment more valuable. Let A0 be the demand shift A(0) at t = 0. We will

assume that demand A and capacity Q are observable and veri�able by the regulator, but the realization of

investment cost c is private information.

Irreversible investments, dQ(t) ≥ 0, at time t, will be governed by an investment rule, which will be part of

the contract between the regulator and the monopolist. Such an investment rule will specify that capacity is to

be expanded as soon as demand reaches some threshold value. We denote by Ā(Q) the threshold value for A,

given Q, at which investment occurs.20

The principal's objective is to maximize expected total welfare which is the di�erence of gross consumers'

(Martimort and Pouyet, 2008; Iossa and Martimort, 2012), or because reallocating property rights reduces hold-up (Hart, 2003;
Bennett and Iossa, 2006). In our model operational costs are common knowledge and normalized to zero. Private funding can
lower agency costs if investors have superior information (Iossa and Martimort, 2012, 2015) or improve project selection (Maskin
and Tirole, 2008; de Bettignies and Ross, 2009).

16It would be a straightforward extension of the model to assume a constant depreciation rate.
17Alternatively, we demand that the regulator also needs to remunerate the monopolist for its existing investments in e�cient

capacity.
18Below we will show that our condition will only be relevant for costs above a certain (endogenously determined) threshold

level. If local �rst order conditions are not su�cient, then the optimal contract will need additional ironing as in Guesnerie and
La�ont (1984).

19Note that with such constant elasticity demand, it is always optimal to use all available capacity.
20Note that because there is no exogenous dependence on time other than through A, the optimal policy, as well as total welfare,

cannot explicitly depend on time t.

6



surplus and investment costs. The �ow of total welfare, given an investment threshold Ā(Q) and costs c, equals

U(A(t), Q(t)|Ā, c) dt =
A(t)Q(t)1−γ

1− γ
dt− cdQ(t). (3)

The continuation value of total expected welfare, then equals the expected discounted sum of these welfare

�ows,

W (A(t), Q(t)|Ā, c) = E
A

[ˆ ∞
t

e−r(τ−t)U(A(τ), QĀ(τ), c) dτ

]
(4)

where E denotes the expectation over the future demand shock paths A(t). QĀ(τ) for τ > t represents the

future capacity path, which will be determined by the evolution of A and the investment threshold Ā(Q). r is

the risk-free rate, and we assume r > µ.

The regulator contracts with the monopolist to achieve optimal investment. A contract speci�es the invest-

ment rule Ā(Q), as well as a monetary transfer to the agent that remunerates him.

We focus on a regulatory contract that is written at time t = 0, when demand A = A0, for a green�eld

investment, Q = 0. Let W0(Ā, c) be the expected welfare of a green�eld investment according to investment

rule Ā, at expansion cost c:

W0(Ā, c) ≡W (A0, 0|Ā, c).

The regulator designs a menu of contracts to maximize expected welfare of green�eld investments across all

types c,

W =

ˆ cH

cL

W0(Ā, c) dF (c).

where the chosen investment rule will typically vary for the di�erent cost types.

When choosing from the regulatory menu, the monopolist's goal is pro�t maximization. Pro�ts are deter-

mined by the expected present value of the total remunerations minus costs of capacity expansion. We assume

these remunerations to be payments from the regulator to the �rm, �nanced out of the proceeds of the sale of

capacity. We denote total expected present value of future remunerations promised to the monopolist at time

t, with current state (A(t), Q(t)), by T (A(t), Q(t)).

We can then state the following ongoing budget constraints: under a given investment rule Ā(Q), total

expected future remunerations T cannot exceed the total expected proceeds from the capacity sale,

T (A(t), Q(t)) ≤ E
A

[ˆ ∞
τ=t

e−r(τ−t)p(A(τ), QĀ(τ))QĀ(τ) dτ

]
. (5)

In addition, we impose the ongoing participation constraint on the monopolist that total expected pro�ts should

be non-negative at any time period, for any given cost c:

Π(A(t), Q(t)|Ā, c) = T (A(t), Q(t))− E
A

[ˆ ∞
τ=t

e−r(τ−t)cdQĀ(τ)

]
≥ 0. (6)
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3 First-best and monopoly benchmarks

As a benchmark, we �rst explore the �rst-best outcome (as analyzed in Pindyck, 1988). In the absence of

asymmetric information, the principal sets Ā(Q), the threshold value for A given Q, at which investment occurs

to optimize total continuation welfare W in equation (4). The standard method of solving for W is �rst to note

that in the region A < Ā(Q) where no investment occurs, W satis�es a Bellman equation (Dixit and Pindyck,

1994) (See �gure 1),

rW =
AQ1−γ

1− γ
+ µA

∂W

∂A
+ 1

2σ
2A2 ∂

2W

∂A2
. (7)

Imposing the boundary condition thatW vanishes when A→ 0, the general solution to this di�erential equation

takes the form,

W (A,Q|·) =
AQ1−γ

(1− γ)(r − µ)
+ g(Q)Aλ, (8)

where g(Q) is any function ofQ, and λ is the positive solution to the fundamental quadratic r = µλ+ 1
2σ

2λ(λ−1).

In this expression, the �rst term represents the expected present value from using existing capacity Q (without

any future expansions), whereas the second term is the value of the option to expand capacity beyond its current

level if demand rises.

Next, we solve for g(Q) by imposing the boundary condition at the point of investment Ā(Q), that the

marginal bene�t of increasing Q should equal the marginal cost of investment,

∂W

∂Q
(Ā(Q), Q|·) = c.

Substituting for W , we �nd a condition on the derivative of g(Q),

∂g(Q)

∂Q
= Ā(Q)−λ

(
c− Ā(Q)Q−γ

r − µ

)
.

We impose that as Q goes to in�nity, there is no longer any (option) value to further investment (g(Q) → 0),

to �nd

g(Q) =

ˆ ∞
Q

Ā(q)−λ
(
Ā(q)q−γ

r − µ
− c
)

dq, (9)

which speci�es, jointly with equation (8), total welfare W , given an investment threshold Ā(Q) Note that

welfare W is an increasing function of g(Q). The optimal investment threshold then follows from point-wise

maximization of the integrand, and is given by

Āc(Q)Q−γ =
λ

λ− 1
(r − µ)c ≡ p̄c(c), (10)

or in other words, investing whenever price p reaches the level p̄c.21 Superscript c refers to the �competitive�

benchmark. The price at which optimal investment occurs exceeds the annualized costs by the factor λ/(λ−1) >

21The fact that optimal investment occurs at a �xed price level, independent of the level of the demand shock A, is related to the
demand function being of the form Q = AD(p) for some function D. Elasticity of demand at a given price level is then independent
of A.
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1, which itself depends on the parameters of the stochastic process and in particular grows as volatility σ

increases. This is a re�ection of the well-known option value of delaying investment (McDonald and Siegel,

1986).

At t = 0, when capacity Q = 0, there will be a one-o� investment Qc0 =
(
A0

p̄c

)1/γ

to bring initial price to

the threshold price. Hence, total welfare at t = 0 is equal to

W0(Āc, c) = W (A0, Q
c
0|Āc, c)− cQc0 =

γ

1− γ
γλ

γλ− 1
cQc0.

[Figure 1 about here.]

As a second benchmark, it will be relevant to consider the investment rule that an unregulated monopolist

receiving all revenues from selling capacity would choose. De�ne the �rm's pro�t �ow as

π(A(t), Q(t)|Ā, c) dt = p(A(t), Q(t))Q(t) dt− cdQ(t) = A(t)Q(t)1−γ dt− cdQ(t), (11)

and the associated total expected continuation value of the �rm as

V (A(t), Q(t)|Ā, c) = E
A

[ˆ ∞
t

e−r(τ−t)π(A(τ), QĀ(τ)|Ā, c) dτ

]
. (12)

The unregulated monopolist will then choose an investment threshold Ā(Q) that maximizes that expected value.

The analysis is similar to the total welfare maximization, with �rm value taking the form

V (A(t), Q(t)|·) =
A(t)Q(t)1−γ

r − µ
+A(t)λ

ˆ ∞
Q

Ā(q)−λ
(
Ā(q)q−γ(1− γ)

r − µ
− c
)

dq, (13)

analogously to expressions (8, 9) for total welfare. We can again use point-wise maximization to �nd the pro�t

maximizing investment policy. This is to invest as soon as prices rise to the monopoly price level

p̄m(c) =
λ

λ− 1

(r − µ)c

1− γ
.

This expression di�ers from the welfare optimizing price p̄c in (10) by the 1−γ factor, representing the standard

Lerner markup, (p̄m − p̄c)/p̄m = γ.

Finally, it is useful to evaluate total �rm value V under the �rst-best investment rule, i.e. invest whenever

price reaches p̄c. Substituting the corresponding threshold Āc(Q) in the �rm's value function (13), we �nd that

the �rm just breaks even, including the costs of the initial investment to bring capacity from Q = 0 to a level

consistent with the threshold price. In other words, with symmetric information on costs, the regulator can ask

the �rm to invest according to the �rst-best rule, and remunerate it using the proceeds of the capacity sales,

hence satisfying both the ongoing budget constraint (5), and the �rm's participation constraint (6) at t = 0.

It is not di�cult to verify that also the �rm's ongoing participation constraint holds in this case; we will check

that more generally in the case with adverse selection in section 4. We summarize these benchmark results as

9



Proposition 1. Compared to a welfare optimizing social planner, a monopolist delays investment in capacity.

That is, it waits until demand has risen to higher levels before investing. Threshold prices that trigger investment

are

p̄m =
λ

λ− 1

r − µ
1− γ

c, (14)

p̄c =
λ

λ− 1
(r − µ)c. (15)

for the monopolist and the social planner respectively. When a green�eld �rm invests at the competitive threshold

p̄c, total expected revenues from selling capacity at market clearing prices equal total costs,

V (A0, 0|Āc, c) = 0. (16)

4 Optimal regulation under adverse selection

In this section we turn our attention to regulation with asymmetric information on the �rm's capacity expansion

cost c. We consider the regulator o�ering the �rm a menu of contracts for a capacity expansion schedule that

may depend on demand (or price) realizations, which are observable and contractable. In return, the regulator

o�ers a transfer fee T to the �rm. The fee has to be �nanced out of the expected revenues of the capacity sale

and therefore has to satisfy budget constraint (5). Also, the �rm should earn a non-negative pro�t, as re�ected

by participation constraint (6). We shall �rst focus on the budget and participation constraints at time t = 0,

and hence only consider the t = 0 expected value of all future transfers to the �rm, T0 = T (A0, 0). At the

end of this section we shall see that we can structure the timing of the fee such that also the ongoing budget

and participation constraints are met. The regulator maximizes expected total welfare, which is the di�erence

between gross consumers' surplus and investment costs.

Without asymmetric information on costs, we saw in section 3 that the regulator can achieve the �rst-

best investment levels (invest when prices reach threshold price p̄c), while respecting budget and participation

constraints. With private information on costs, the contracts o�ered will need to respect incentive compatibility

as well, and therefore will need to leave information rents to the �rms. In view of the budget constraint,

distorting the contracts from the �rst-best scheme is now optimal.

In analyzing the optimal scheme, we follow the standard procedure in optimal contract design, and focus

without loss of generality on direct revelation, incentive compatible mechanisms. The regulator o�ers a menu of

contracts to the �rm, consisting of a pairs of transfers and investment thresholds {(T0, Ā(Q))}(ĉ), that depend

on the �rm's reported cost ĉ. We denote the components of these contracts by T0(ĉ) and Ā(Q, ĉ). The �rm, by

reporting costs ĉ, chooses the best option from this menu, which we design such that truthful reporting, ĉ = c,

is optimal.

We saw that both �rst best and pro�t maximization require investing when prices reach threshold level, p̄c

and p̄m respectively, where those thresholds did not depend on capacity. Here, for expositional simplicity, we
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assume likewise that the optimal threshold Ā(Q, ĉ) under adverse selection takes such a form, i.e. there will

exist a threshold price p̄(ĉ) such that Ā(Q, ĉ)Q−γ = p̄(ĉ). In the appendix we demonstrate that this is indeed

optimal. We can then equivalently express the menu of contracts as a set of transfer fees and threshold prices,

{(T0(ĉ), p̄(ĉ))}.

At current demand level A0, a contract specifying price threshold p̄(ĉ) will require a green�eld �rm to

immediately invest capacity Q0 = ( A0

p̄(ĉ) )1/γ to make current price equal the threshold price, so that A0 =

Ā(Q0, ĉ). In addition the �rm will have to increase capacity as demand A grows to ensure prices remain below

the threshold. Total rents R of accepting the contract (T0(ĉ), p̄(ĉ)), for a �rm with actual costs c, are then given

by

R(A0, c, ĉ) = T0(ĉ)− cQ0(p̄(ĉ))−Aλ0
ˆ ∞
Q0(p̄(ĉ))

Ā(q, ĉ)−λcdq

= T0(ĉ)− cQ0(p̄(ĉ))
γλ

γλ− 1
. (17)

In the �rst line, we used the expected present value of the costs of future expansions, computed analogously to

the cost component of the �rm's continuation value V from (13). In the second line, we substituted Ā(Q, ĉ) =

p̄(ĉ)Qγ , to evaluate the integral.

Incentive compatibility now requires that the �rm optimizes this value if it truthfully reveals its costs, ĉ = c,

choosing fee and threshold (T0(c), p̄(c)) from the menu of contracts. Writing the resulting pro�ts from this

optimization as Π(c) = R(A0, c, ĉ = c), we derive the following necessary conditions for incentive compatibility.

Lemma 1. Incentive compatibility requires that total green�eld pro�ts Π vary with costs c as

dΠ

dc
= −Q0(p̄(c))

γλ

γλ− 1
, (18)

and that the investment price threshold p̄(c) is non-decreasing in costs c.

We will analyze the welfare optimizing choice of contracts under incentive compatibility constraint (18), as

well as the t = 0 budget and participation constraints, and ignore the monotonicity requirement on the threshold

for the moment. After �nding an optimal threshold, we will verify that monotonicity indeed holds. As a last

step, we look at the structure of the fees across time and verify that also ongoing constraints can be met.

As a �rst step let us write the welfare function and the budget constraint in terms of the threshold price p̄.

The regulator's objective is to maximize the total welfare, averaged over the possible realizations of costs c. For

a given cost c and threshold price p̄, welfare includes the costs of a one-o� lumpy investment Q0 to bring price

to the threshold at the current value of the demand shift A, the expected welfare generated by this investment

Q0, as well as the expected additional welfare from future network expansions (i.e. real option value). From

11



equation (8),

W0(p̄, c) = −cQ0 +
A0Q

1−γ
0

(1− γ)(r − µ)
+Aλ0

ˆ ∞
Q0

Ā(q, c)−λ
(
Ā(q, c)q−γ

r − µ
− c
)

dq,

=

(
γλ

γλ− 1

)(
λ− 1

λ

)
p̄

r − µ
Q0

1− γ︸ ︷︷ ︸
Cons Surplus(p̄)

−
(

γλ

γλ− 1

)
cQ0︸ ︷︷ ︸

Cost(c,p̄)

=
γλ

γλ− 1
Q0

(
p̄

r − µ
λ− 1

λ

1

1− γ
− c
)
, (19)

where again Q0 = (A0

p̄ )1/γ and we used p̄ = Ā(Q)Q−γ .

At this point, it is useful to note that in the absence of the budget constraint, the regulator can achieve the

�rst-best outcome as in Loeb and Magat (1979), by setting competitive threshold prices p̄(c) = p̄c(c), allowing

the monopolist to keep all consumer payments, and providing an additional subsidy equal to the monopolist's

information rents

γλ

γλ− 1

ˆ cH

c

Q0(p̄c(c′))dc′,

so as to satisfy incentive compatibility (18).22 We now proceed to explore the optimal regulation in the presence

of the budget constraint.23

The budget constraint is that for any cost c, total pro�ts, Π, cannot exceed total revenues minus costs.

Using the expression for continuation value of revenues and costs (equation 13) and again substituting p̄, we

can write this as

Π(c) ≤ −cQ0 +
A0Q

1−γ
0

r − µ
+A0

ˆ ∞
Q0

Ā(q, c)−λ
(
Ā(q, c)q−γ(1− γ)

r − µ
− c
)

dq,

=

(
γλ

γλ− 1

)(
λ− 1

λ

)
p̄

r − µ
Q0︸ ︷︷ ︸

Revenue(p̄)

−
(

γλ

γλ− 1

)
cQ0︸ ︷︷ ︸

Cost(c,p̄)

=
γλ

γλ− 1
Q0

(
p̄

r − µ
λ− 1

λ
− c
)
. (20)

Summing up, we can now state the regulator's optimization program in terms of an optimal control problem,

with state variable Π(c) and control p̄(c), and the Hamiltonian

H(c) =
γλQ(p̄)

γλ− 1

(
f(c)

[
p̄(λ− 1)

(r − µ)λ(1− γ)
− c
]
− ν + φ

[
p̄(λ− 1)

(r − µ)λ
− c
])
− φΠ(c), (21)

with f(c) the density of the distribution of costs, co-state variable ν(c) the multiplier of the incentive constraint

22Recall that with competitive threshold prices, expected production cost equals market revenue (Proposition 1). So, the �rm's
expected pro�t equals the additional subsidy.

23An alternative approach would be to allow for an exogenous social cost associated to leaving rents to the �rm. If the regulator
optimizes W − αΠ, for some constant social penalty for such rents α > 0, a standard computation (as outlined in, e.g., La�ont
and Tirole, 1993) results in an optimal threshold price

p̄(c) =
λ

λ− 1
(r − µ)

(
c+ α

F (c)

f(c)

)
= p̄c(c)

(
1 +

αF (c)

cf(c)

)
,

under the assumption that the `virtual costs' c+ αF/f are monotone. The term αF (c) re�ects the marginal social cost of leaving
rents to a mass F (c) of more e�cient �rms. Our model concerns the case where the cost of leaving those rents is endogenous, and
depends on the shadow price of the budget constraints of more e�cient �rms.
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(18), and φ(c) the multiplier for the budget constraint (20). The resulting �rst-order conditions for the optimum

are

∂H
∂p̄

= 0 (22)

∂H
∂Π

= − dν

dc
(23)

We still have to impose the t = 0 participation constraint for all types. As usual, this can be achieved by

requiring that at the upper boundary of the support of c, pro�ts are zero, Π(cH) = 0. As Π(c) is decreasing in

costs by lemma 2, this makes sure that all types get non-negative rents. At the lower boundary, we have either

ν(cL) = 0, or price is at its monopoly level p̄m(cL).

We note at this point that the stochastic dynamic problem has e�ectively decoupled from the asymmetric

information problem. The Hamiltonian of the system is equivalent to that of a static contracting problem, with

the �rm selecting its output from the menu o�ered by the principal, subject to a no-subsidy constraint. The

information from the dynamics of the model is encoded in the scaling factors on price and quantity. We will

therefore now proceed to solve this essentially static model; later, when we return to the ongoing participation

and budget constraints, the temporal structure of the model will of course play a role again.

The solution to the �rst-order equations is as follows

Lemma 2. Optimal threshold prices fall in one of three regimes:

• Regime I, the markup regime: the budget constraint does not bind, φ = 0 and ν > 0 is constant. In this

regime,

p̄(c) = p̄c(c)

(
1 +

ν

cf(c)

)
. (24)

• Regime II, the bunching regime: the budget constraint binds, p̄ is a constant in between competitive and

monopoly prices p̄m(c) ≥ p̄ ≥ p̄c(c), and

ν(c) = ν(c0)
p̄m(c0)− p̄
p̄m(c)− p̄

+
1

1− γ

´ c
c0

(p̄− p̄c(c′))f(c′) dc′

p̄m(c)− p̄
. (25)

for some c0 within the interval in which this regime holds.

• Regime III, the laissez-faire regime: the budget constraint binds, price is at the monopoly level,

p̄(c) = p̄m(c), and
ν(c)

f(c)
=

γc

1− γ
. (26)

We see that as long as f(c) is non-increasing, prices are non-decreasing in each of the regimes.

The optimal strategy is then a combination of two of the above regimes, joined together such that threshold

price p̄, co-state variable ν and pro�t Π are continuous on the regime boundary:

Proposition 2. Optimal regulation involves either the laissez-faire regime (regime III) for the lowest cost types,
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followed by the markup regime (Regime I) for higher types; or bunching at constant price (Regime II) for the

lowest types, followed by the markup regime (Regime I).

The laissez-faire case obtains if there exists a cost level cm ∈ [cL, cH ] such that

γcm
1− γ

=

ˆ cH

cm

(
(1− γ)

c

cm
+ γ

f(cm)

f(c)

)−1/γ

dc. (27)

If such a cm cannot be found, the optimum will involve bunching at constant price for low cost levels.

In the next section, we provide an illustration of the optimum strategy for the particular case of uniform cost

distribution f(c), when we can do the integrations explicitly. We will see that if the asymmetry of information,

measured as cH/cL, is large enough, we will have the laissez-faire case for the low-cost types, whereas for small

information asymmetry the bunching solution applies.

The intuition for the result is that, as usual, the optimal design balances the minimization of distortions

away from optimality (investing too little too late) with rent extraction. As is standard, distortions for high-cost

types are required to reduce the incentive for lower types to mimick high-cost types: the higher price caps make

sure that investments are delayed longer, which is more costly for low cost types who su�er a reduction in

output over a larger price cost margin.

In our model, leaving rents to the �rms is costly because of the budget constraint: rents can only be paid for

by allowing above competitive prices for low-cost types, which is why, necessarily, there will also be distortions

for those types. There is a maximum to the rents that can be a�orded, however: one cannot generate more

rents than those created by the monopoly investment level. In situations with large rents, we therefore expect

monopoly outcomes on the lower end of the cost distribution.

So far, we focused on the ex ante participation constraint: total ex ante expected rents are su�cient that all

cost types earn non-negative expected rents under the contract. It is in fact possible to structure the payments

of those rents over time such that also ongoing participation constraints are satis�ed for each type: at any

later moment total future expected income under the previously accepted contract are su�cient to cover future

expected costs.

One implementation of the optimal contract that satis�es ongoing participation constraints is a non-linear

revenue tax schedule τ(p̄). The �rm announces at which maximum threshold price level p̄ it will invest, and

is allowed to keep a �xed proportion 1 − τ(p̄) of the revenues of selling capacity. It is obvious that such an

implementation schedule also satis�es an ongoing budget constraint, as payments to the �rm are a fraction of

actual revenues at all times.

Proposition 3. Suppose the regulator remunerates the �rm by allowing the �rm to keep all revenues up to a

revenue tax τ(p̄) which depends on the �rm's chosen investment threshold p̄. The non-linear tax schedule is
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de�ned as:

Π(c) = (1− τ(p̄(c))) · Revenue0(p̄(c))− Cost0(p̄(c), c)

=
γλ

γλ− 1
Q0(p̄(c))

[
(1− τ(c))

1

r − µ
λ− 1

λ
p̄(c)− c

]
(28)

where Π(c) and p̄(c) are the pro�ts and investment threshold from the optimal mechanism. Given this non-linear

tax level τ(p̄), the �rm chooses the second best expansion strategy p̄(c) and earns non-negative expected pro�ts

at any moment t > 0, i.e. the ongoing participation constraints are satis�ed.

The results follow directly from the fact that with a proportional tax, the �rm's objective function at t > 0

is of the same form of that of a green�eld �rm, up to the constant sunk bene�t corresponding to installed

capacity Q(t). Indeed the participation constraint is hardest to satisfy for the green-�eld investor without

installed capacity. Of course, for low c where the budget constraint binds with equality, the revenue tax is zero,

and the �rm keeps all revenues. Only in the markup regime, the higher c values, do we have positive tax rates

τ(p̄). In the next section we will investigate the exact form of τ(p̄) for the particular example with uniform cost

distribution.

5 Example

For an illustration of the optimal regulation, we explore the case with uniform distribution on investment costs,

f(c) = 1
cH−cL . In that case, we can do the required integrations analytically, and use that to solve the model.

As we will see, if the range of costs, measured by cH/cL, is not too large, we will have an optimum in which

lower-cost �rms bunch at a constant price (Regime II), whereas for higher costs �rms, the budget constraint

will not be binding and we are in the markup regime. Conversely, if cost uncertainty is large, the lowest cost

types will end up being unregulated and setting monopoly prices instead.

To �nd the optimum we need to join together the various pricing regimes in a continuous fashion. By

proposition 2 we have either a laissez-faire regime for low costs c ∈ [cL, cm], and the markup regime prevails for

higher cost levels. Or, if we cannot match pro�ts from the two regimes by solving (27), we will instead have a

bunching regime for the low types.

Focusing �rst on the laissez-faire situation, we can work out (27) explicitly as f is constant in the uniform

case. Doing the integration leads to the following

Proposition 4. With uniform cost distribution and a large support cL
cH
≤ ξ ≡ (1 − γ)(γ

γ
γ−1 − γ)−1, we have

the laissez-faire regime with monopoly pricing for c ∈ [cL, cm], and a constant markup on competitive prices for

c ∈ [cm, cH ], with cm = cHξ.

If the range of costs is small, so that cL > cHξ, we cannot match pro�ts at any cm ∈ [cL, cH ] satisfying (27),

but instead have bunching at constant price for low cost levels, c < cb, whereas again we �nd constant markups

for c > cb. To �nd cb, as well as the price and markup levels, we can again use continuity of Π(c), p̄(c) and ν(c),

15



and combine the incentive compatibility equation (18) with the expression for ν in the bunching regime, (25).

The resulting conditions on the transition level cb and the bunching price are as in the following proposition.

Proposition 5. With uniform cost distribution and a small support cL
cH
≥ ξ, we have bunching for c ∈ [cL, cb],

and the markup regime (with constant markup) for c ∈ [cb, cH ], with transition point cb and bunching price

p̄b ≡ (r−µ)λ
λ−1 p̃b determined jointly by the solution to

p̃b − cb =
p̃b(cb − cL)− 1

2 (c2b − c2L)

cb − p̃b(1− γ)

p̃
− 1
γ

b (p̃b − cb) =
γ

γ − 1

(
(p̃b − cb + cH)

γ−1
γ − p̃

γ−1
γ

b

)
.

The �rst equation in the proposition follows from integrating ν between cL and cb, and requiring that its

end value equals the markup in the markup regime. The second equation follows from making sure the pro�ts

at that transition point (where the budget constraint holds with equality) coincide with the integral of the

incentive compatibility constraint, and pro�ts at cH are zero.

We plot the results of the two solutions, one for high cost uncertainty (high cH/cL), �gure 2, and one for

low cost uncertainty (cH/cL nearer to one), �gure 3. In the �rst case, we have monopoly pricing up to cm, and

in the second we see bunching at constant price for low realizations of costs.

[Figure 2 about here.]

With a direct revelation mechanism, the regulator o�ers the menu of contracts {(Π(c), p̄(c))} and the �rm

truthfully announces its type c. As we saw, alternatively, the regulator could o�er a menu of contracts {τ(p̄)}

in which the �rm announces at which maximum threshold price level p̄ it will invest, and the regulator taxes

a fraction τ(p̄) of the revenue of selling capacity. The tax rate τ(p̄) is determined implicitly by equation (28).

For the markup regime we �nd

τ(p̄) =
p̄(cH)− p̄c(cH)

p̄(c)
− γ

1− γ

(
1−

(
p̄(c)

p̄(cH)

) 1−γ
γ

)
,

matching to τ = 0 at the transition point with the laissez-faire or bunching regimes. Figures 4 and 5 plot the

resulting set of pairs of threshold prices p̄ versus required taxes τ . With large cost asymmetry cH/cL, we have

the range of monopoly prices for low costs, accompanied with zero taxation. With smaller cH/cL, we have the

single bunching price for the lower cost realizations. To bene�t from the zero tax rate the �rm needs to invest

early, at a relatively low threshold price. Alternatively, the �rm could invest later, which implies accepting a

higher tax rate.

[Figure 3 about here.]
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6 Discussion and conclusion

In this article we have derived the optimal regulation of network expansion, by combining the real option and

principal-agent literature. We show that a regulatory exemption might sometimes be optimal, not to prevent

hold-up problems created by a lack of commitment power by the regulator as in Gans and King (2004), but

because of the combination of a self-�nancing constraint and information asymmetry: The information rents

of e�cient cost types need to be collected in the market, which require higher prices for network access and

delayed investments. However, such an exemption is not a blanket authorization for the �rm to invest whenever

it feels �t. It implies the requirement, in accordance with the relatively low expansion costs of the e�cient

�rm, for su�ciently early investment. If the support of the asymmetric information is small, the e�cient �rm

requires less information rents and a laissez-faire regime is no longer optimal. Instead the regulator will bunch

the regulatory contracts for the most e�cient �rms, obliging them to invest at a price below the monopoly

price.

Note that whether a laissez-faire regime is socially optimal, does not depend on the level of demand uncer-

tainty, and the riskiness of investments.24 This stands in contrast with the requirement in EU energy markets,

that the risk should be too high for investments to incur without exemption. In our model, the laissez-faire

regime is a reward for the low cost �rm, who invests earlier than the high cost �rm.

In the optimal regulation, ine�cient �rms are subject to an investment requirement, i.e. they are obliged to

invest whenever the price for capacity reaches a threshold level. It is well known from the literature that when

demand is stochastic, a price cap cannot be used to both limit the rents of the regulated �rm and to incentivize

timely investments. Instead the regulator needs to rely on a combination of instruments such as for instance in

the UK where the new regulation sets a price cap but also sets an output obligation on the �rms. Alternatively,

as we show, the regulator can penalize a �rm investing late by increasing its tax level.

Formally, our model considers green�eld investments. The same analysis holds, however, when regulated

�rms are allowed by law to recoup sunk investments cost of previously built assets, as long as these are at or

below the regulated level. Such a principle of no regulatory takings is common. If, on the other hand, some

of the investments have already been fully paid o� at the time of contracting, the participation constraint is

relaxed, and less information rents need to be paid to investors. The laissez-faire regime is then less likely to

be optimal. We also assumed that capacity does not depreciate. This could easily be adjusted by appropriate

shifts in µ and r, as in Dobbs (2004).
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A Proofs

Proof of proposition 1 The expressions for p̄m and p̄c (equations 14 and 15) are derived in the text. The

zero pro�t result for a green�eld �rm (equation 16), follows from substituting A0 = p̄cQγ0 and Ā(q) = p̄cqγ in

the expression for �rm value, equation (13), and integrating. We then �nd

V − cQ0 =
γλQ0

γλ− 1

(
p̄c(λ− 1)

(r − µ)λ
− c
)
,

and by the de�nition of p̄c (15) this vanishes.

Proof of lemma 1 We have

R(c, ĉ) = T0(ĉ)− cQ0(p̄(ĉ))
γλ

γλ− 1
,

and Π(c) = R(c, ĉ = c). If ĉ = c optimizes R, we can use the envelope theorem to �nd

dΠ(c)

dc
=
∂R(c, ĉ)

∂c

∣∣∣∣
ĉ=c

= −Q0(p̄(c))
γλ

γλ− 1
.

To verify that p̄(c) is non-decreasing in c, we note that truthful revelation for a �rm with type c requires that
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R(c, c)−R(c, ĉ) ≥ 0 for any ĉ. Equivalently, for a �rm with type ĉ it must be that R(ĉ, ĉ)−R(ĉ, c) ≥ 0. Hence,

combining both expressions, for any c, ĉ, we must have that:

(R(c, c)−R(ĉ, c))− (R(c, ĉ)−R(ĉ, ĉ)) ≥ 0,

or equivalently:

ˆ c

ĉ

(
∂R

∂c′
(c′, c)− ∂R

∂c′
(c′, ĉ)

)
dc′ =

γλ

γλ− 1
[Q0(p̄(ĉ))−Q0(p̄(c))] (c− ĉ) ≥ 0.

It then follows that for ĉ < c, Q0(p̄(ĉ)) ≥ Q0(p̄(c)), or as demand is downward sloping p̄(ĉ) ≤ p̄(c).

Proof of lemma 2 The �rst-order condition of the Hamiltonian for Π (23) gives the dynamics for ν(c),

dν

dc
= φ.

In cost-regions where the budget constraint (20) does not bind, its multiplier is zero, φ = 0, and hence ν is

constant. Using the short-hand

p̃ =
p̄(λ− 1)

(r − µ)λ
,

we can write the �rst-order condition of the Hamiltonian for p̄ (22) as:

f(c)(p̃− c)− ν + φ (p̃(1− γ)− c) = 0.

With φ = 0 and ν = νcte constant, this leads to

p̃(c) = c+
νcte

f(c)

in this markup regime I. Note that with a zero mark-up, νcte = 0, the threshold price p̃(c) is equal to the

competitive threshold price and the �rm's pro�t Π is equal to zero by proposition 1. This would violate the

�rm's incentive constraint (information rents need to be positive for all c < cH by lemma 1) and can thus not

be optimal. Hence, νcte > 0.

In the cost-regions where the budget constraint (20) does bind, the �rm's pro�t is equal to the revenue from

capacity sales Π = γλQ0(p̃)
γλ−1 (p̃ − c) . From this we can derive the total derivative of pro�ts as a function of the

�rm's type c:

dΠ

dc
=
∂Π

∂p̃

dp̃

dc
− γλQ0(p̃)

γλ− 1

Given the incentive compatibility condition (18), the �rst term on the right hand side is zero, we must then

have that either p̃ is constant, or ∂Π
∂p̃ = 0, and hence monopoly pricing.

In the case of constant p̄, we are in the bunching regime II. From the �rst order condition on p̄, with
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dν/dc = φ, we then have

f(c)(p̃− c)− ν +
dν

dc
(p̃(1− γ)− c) = 0,

with constant p̃. This is a di�erential equation for ν(c), for which the solution is equation (25).

Finally, in the laissez-faire regime III, we have p̃m = c
1−γ , so that the �rst-order equation reduces to

ν(c)

f(c)
= p̃m − c =

γc

γ − 1
. (29)

Proof of proposition 2 With f(c) non-increasing, ν(c)
f(c) is non-decreasing in all three regimes. For the highest

cost realization cH , we have that the information rents are zero, Π(cH) = 0, and therefore a non-binding budget

regime (φ = 0), so we will have the markup regime. Suppose that for lower cost levels, we have a region [c, c̄] in

which the bunching regime at a constant price p̂ applies, cH > c̄ > c > cL. As the lower boundary is assumed to

be strictly larger than cL, the bunching regime is connected from below to one of the other regimes (laissez-faire

or markup regime). Hence, at this point c = c, we have p̂ − c = ν(c)
f(c) , because that relation holds in both

laissez-faire and markup regimes. Similarly, the bunching regime is connected to the laissez-faire or markup

regime from above, so we must have p̂ − c̄ = ν(c̄)
f(c̄) . But this leads to a contradiction as c̄ > c and ν(c)/f(c) is

non-decreasing. Hence we cannot have c > cL, and hence if the bunching regime occurs it is optimal for certain

cost level, it is also the case for all lower cost levels.

We therefore have either the laissez-faire regime in a lower cost segment, c ∈ [cL, cm] for some cm, or bunching

in a lower cost segment c ∈ [cL, cb], for some cb.

To �nd out whether the laissez-faire solution can apply, we need to verify that price, co-state variable ν and

pro�t Π are continuous at the boundary point cm between the laissez-faire and the mark-up regimes.

In the constant markup regime on [cm, cH ], ν = νcte is a constant, and pro�t Π(c) is determined by the

boundary condition Π(cH) = 0 and the incentive compatibility condition which determines dΠ/ dc. On the

other side, in the laissez-faire regime, ν(cm) = f(cm)γcm1−γ , and Π(cm) = γλ
γλ−1

γcm
1−γQ

m
0 . Matching ν from both

regimes at cm gives

νcte

f(cm)
=

γcm
1− γ

,

which determines νcte as a function of cm. The price in the mark-up regime is then determined by p̃ = c+ νcte

f(c) ,

where p̃ = λ−1
λ(r−µ) p̄. To match pro�ts, we use incentive compatibility on Π to write

Π(cm) =
γλ

γλ− 1

ˆ cH

cm

Q0(p̄(c′)) dc′

which produces the condition in the proposition.

Proof of proposition 3 The ongoing participation constraint requires that at t ≥ 0, expected future transfers
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o�set expected future expansion costs. It is su�cient to check the ongoing participation constraint at times t

when price reaches the investment threshold, i.e. A(t)Q(t)−γ = p̄(c). We need to verify that

(1− τ(c))
γλ

γλ− 1
Q(t)

1

r − µ
λ− 1

λ
p̄(c)− 1

γλ− 1
cQ(t) ≥ 0,

where the �rst term represents the after-tax expected revenues at state A(t), Q(t), and the second term the

costs of continuing expansion from this point onward. Notably, compared to equation (20), costs do now not

include the startup costs cQ(t) to bring capacity fro green�eld to level Q(t). These expected future revenues and

expansion costs in state {A(t), Q(t)} at t > 0, are equal to those of a green�eld investor at t = 0 with an initial

demand shift A′0 = A(t) and an additional capital endowment cQ(t). The ongoing participation constraint

therefore rewrites to {
(1− τ(p̄)) · Revenue0(p̄)− Cost0(c, p̄)

}Q(t)

Q0
+ cQ(t) ≥ 0.

The �rst factor in curly brackets re�ects the participation constraint of the green�eld �rm and is therefore

non-negative. The second term is always positive.

Proof of proposition 4 We can directly apply proposition 2 to the uniform case, with f(c) = 1/(cH − cL)

constant. Matching ν/f of both regimes at cm gives

νcte

f
=

γcm
1− γ

,

which determines νcte as a function of cm. Matching pro�ts at the boundary cm between the laissez-faire and

markup regimes, as in (27), we can then work out the required value of cm by doing the integration.

Proof of proposition 5 In the alternative case of the bunching regime for low cost c ∈ [cL, cb] and the markup

regime for higher costs c ∈ [cb, cH ], we again �nd the boundary point cb by matching price p̄, co-stage variable ν

and pro�t Π. The co-state variable ν is de�ned in bunching region by a di�erential equation and the boundary

condition ν(cL) = 0. Pro�t in the mark-up regime is de�ned by the incentive compatibility and the boundary

condition Π(cH) = 0.

We �rst compute ν(cb) from the di�erential equation for ν in the bunching region, with boundary condition

ν(cL) = 0. Doing the integration, this gives

ν(cb)

f
=
p̃b(cb − cL) + 1

2 (c2L − c2b)
cb − p̃b(1− γ)

and this should equal p̃b − cb = νcte

f by matching to the markup region. This is the �rst equation of the

proposition.

From incentive compatibility in the mark-up regime we �nd

Π(cb) =
γλ

γλ− 1

ˆ cH

cm

Q0(p̄(c′)) dc′,
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where p̃(c) = c+ νcte

f = c+ p̃b − cb. Matching this to the pro�ts at cb from the binding budget constraint gives

the second equation of the proposition.

B Constant price thresholds

In this appendix we establish that also in the adverse selection case, the investment threshold occurs at constant

price, p̄(c) = Ā(Q, c)Q−γ . In terms of Ā(Q, c), we have welfare

W0(Ā(Q, c), c) = −cQ0 +
A0Q

1−γ
0

(1− γ)(r − µ)
+Aλ0

ˆ ∞
Q0

Ā(q, c)−λ
(
Ā(q, c)q−γ

r − µ
− c
)

dq,

with Q0(Ā, c) de�ned by Ā(Q, c) = A0. Similarly, the incentive and budget constraints are

dΠ

dc
= −Q0 −Aλ0

ˆ ∞
Q0

Ā(q, c)−λ dq,

Π(c) ≤ −cQ0 +
A0Q

1−γ
0

r − µ
+Aλ0

ˆ ∞
Q0

Ā(q, c)−λ
(
Ā(q, c)q−γ(1− γ)

r − µ
− c
)

dq.

Combining these, we can then write the Hamiltonian

H =
A0Q

1−γ
0

(1− γ)(r − µ)
(f + (1− γ)φ)

+Aλ0

ˆ ∞
Q0

Ā(q, c)−λ
(
Ā(q, c)q−γ

r − µ
(f + (1− γ)φ)− (fc+ ν + φc)

)
dq

− (fc+ ν + φc)Q0 − φΠ(c).

To optimize, we now need to use variational calculus on the function Ā(Q, c). Such a variation also induces

a concomitant variation δQ0 so as to keep Ā(Q, c) = A0 veri�ed. It is now straightforward to see that the δQ0

terms in the variation vanish, leaving us only with the integral,

Aλ0

ˆ ∞
Q0

δĀ(q, c)Ā(q, c)−λ−1

[
(1− λ)

Ā(q, c)q−γ

r − µ
(f + (1− γ)φ) + λ(fc+ ν + φc)

]
dq = 0

Because this holds for any variation δĀ(Q, c), we see that Ā(Q, c)Q−γ is independent from Q, and we regain

the �rst-order equations from the main text.
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Bellman Eq. (7)

W
=

0

∂W
/∂
Q

=
c

Figure 1: Expected welfare function W (A,Q|Ā, c) and its boundary conditions.
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