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This supplementary material document contains the proofs of all theoret-
ical results in the main paper, preceded by auxiliary results and their proofs
(Sections A and B for the main results, and Sections C and D for the worked-
out examples). It also provides further theoretical results related to indirect
estimators in Section E, and further details about our finite-sample proce-
dures and studies in Section F.

APPENDIX A: THEORETICAL TOOLBOX: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma A.1 below is a result on the mean excess function of a sample of heavy-tailed random
variables, used in the proof of Theorem 2.1.

LEMMA A.1. Assume that ε satisfies condition C1(γ) with 0< γ < 1/2 and τn ↑ 1 is such
that n(1− τn)→∞. Let moreover tn→∞ be a nonrandom sequence such that F (tn)/(1−
τn)→ c ∈ (0,∞). Then

1

ntn(1− τn)

n∑
i=1

εi1{εi > tn}
P−→ c

1− γ
.

PROOF. Write first

1

ntn(1− τn)

n∑
i=1

εi1{εi > tn}=
c+ o(1)

ntnF (tn)

n∑
i=1

εi1{εi > tn}.

The idea is now to split the sum on the right-hand side as follows:

1

ntnF (tn)

n∑
i=1

εi1{εi > tn}=
1

nF (tn)

n∑
i=1

1{εi > tn}+
1

ntnF (tn)

n∑
i=1

(εi − tn)1{εi > tn}.

Straightforward expectation and variance calculations yield

E

(
1

nF (tn)

n∑
i=1

1{εi > tn}

)
= 1,

Var

(
1

nF (tn)

n∑
i=1

1{εi > tn}

)
= O

(
1

nF (tn)

)
= O

(
1

n(1− τn)

)
→ 0,
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E

(
1

ntnF (tn)

n∑
i=1

(εi − tn)1{εi > tn}

)
=

1

tn

∫ ∞
tn

F (x)

F (tn)
dx→ γ

1− γ
,

and Var

(
1

ntnF (tn)

n∑
i=1

(εi − tn)1{εi > tn}

)
= O

(
1

nF (tn)

)
= O

(
1

n(1− τn)

)
→ 0.

Therefore

1

ntn(1− τn)

n∑
i=1

εi1{εi > tn}
P−→ c

(
1 +

γ

1− γ

)
=

c

1− γ

as announced.

The next auxiliary result is an extension of Theorem 1 in [4]. It drops the assumption of an
independent sequence and of an increasing underlying distribution function. We note that the
bias term b(γ, ρ) of our result below is simpler than the corresponding bias term of Theorem 1
in [4], due to the assumption of a centred noise variable.

PROPOSITION A.1. Assume that E|ε−|<∞, that condition C2(γ, ρ,A) holds with 0<

γ < 1, and that E(ε) = 0. Let τn ↑ 1 be such that n(1 − τn)→∞,
√
n(1− τn)A((1 −

τn)−1)→ λ ∈R and
√
n(1− τn)/qτn(ε) = O(1). Then, if√
n(1− τn)

(
γ − γ,

qτn(ε)

qτn(ε)
− 1

)
d−→ (Γ,Θ),

we have √
n(1− τn)

(
ξ̃τn(ε)

ξτn(ε)
− 1

)
d−→m(γ)Γ + Θ− λb(γ, ρ)

with m(γ) = (1− γ)−1 − log(γ−1 − 1) and

b(γ, ρ) =
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
.

PROOF. Note that (γ−1 − 1)−γ
P−→ (γ−1 − 1)−γ and qτn(ε)/qτn(ε) − 1

P−→ 0, so that
linearising leads to

ξ̃τn(ε)

ξτn(ε)
− 1 =

(
(γ−1 − 1)−γ

(γ−1 − 1)−γ
− 1

)
+

(
qτn(ε)

qτn(ε)
− 1

)
(1 + oP(1))

+

(
(γ−1 − 1)−γqτn(ε)

ξτn(ε)
− 1

)
(1 + oP(1)).(6)

To control the bias term, use Proposition 1 in [5], of which a consequence is, for the centred
variable ε,√

n(1− τn)

(
(γ−1 − 1)−γqτn(ε)

ξτn(ε)
− 1

)
=−λ

[
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

]
+ o(1)

=−λb(γ, ρ) + o(1).

Reporting this in (6) and using the delta-method, we obtain√
n(1− τn)

(
ξ̃τn(ε)

ξτn(ε)
− 1

)
d−→m(γ)Γ + Θ− λb(γ, ρ).
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This is precisely the required result.

The following rearrangement lemma is an extension of Lemma 1 in [10], which we use in
the proof of Lemma A.3 below.

LEMMA A.2. Let n≥ 2 and (a1, . . . , an) and (b1, . . . , bn) be two n−tuples of real num-
bers such that for all i ∈ {1, . . . , n}, ai ≤ bi. Then for all i ∈ {1, . . . , n}, ai,n ≤ bi,n.

PROOF. See the proof of Lemma 1 in [10], which, although the original result was stated
for n−tuples featuring no ties, carries over to this more general case with no modification.

The following lemma is the key to the proof of Theorem 2.2. In our context, its interpretation
is that the gap between the tail empirical quantile process of the residuals and the analogue
process based on the unobserved errors is bounded above by the gap between errors and
their corresponding residuals; this will be used to give an approximation of the tail empirical
quantile process of the errors by the tail empirical quantile process of the residuals.

LEMMA A.3. Let k = k(n)→∞ be a sequence of integers with k/n→ 0. Assume that
ε has an infinite right endpoint. Suppose further that the εi are independent copies of ε and
that the array of random variables ε̂(n)i , 1≤ i≤ n, satisfies

Rn := max
1≤i≤n

|ε̂(n)i − εi|
1 + |εi|

P−→ 0.

Then we have both

sup
0<s≤1

∣∣∣∣∣∣
ε̂
(n)
n−bksc,n

εn−bksc,n
− 1

∣∣∣∣∣∣= OP(Rn) and sup
0<s≤1

∣∣∣∣∣∣log

 ε̂(n)n−bksc,n

εn−bksc,n

∣∣∣∣∣∣= OP(Rn).

PROOF. Clearly:

∀i ∈ {1, . . . , n}, εi −Rn(1 + |εi|) =: ξi ≤ ε̂(n)i ≤ ζi := εi +Rn(1 + |εi|).

It then follows from Lemma A.2 that

∀i ∈ {1, . . . , n}, ξi,n ≤ ε̂(n)i,n ≤ ζi,n.

Note that for any r ∈ (−1,1), the function x 7→ x+ r(1 + |x|) is increasing. Therefore, on
the event {Rn ≤ 1/4}, whose probability gets arbitrarily high as n increases, we have:

∀i ∈ {1, . . . , n}, εi,n −Rn(1 + |εi,n|) = ξi,n ≤ ε̂(n)i,n ≤ ζi,n = εi,n +Rn(1 + |εi,n|).

Now, by Lemma 3.2.1 in [6] together with the equality ε d
= U(Z) where Z has a unit Pareto

distribution, we get εn−k,n
P−→+∞. On the eventAn := {Rn ≤ 1/4}∩{εn−k,n ≥ 1}, which

likewise has probability arbitrarily large, we obtain

∀i≥ n− k, (1−Rn)εi,n −Rn ≤ ε̂(n)i,n ≤ (1 +Rn)εi,n +Rn.

In other words, on An, and for any s ∈ (0,1],

−2Rn ≤−Rn
(

1 +
1

εn−bksc,n

)
≤
ε̂
(n)
n−bksc,n

εn−bksc,n
− 1≤Rn

(
1 +

1

εn−bksc,n

)
≤ 2Rn.
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This shows that

sup
0<s≤1

∣∣∣∣∣∣
ε̂
(n)
n−bksc,n

εn−bksc,n
− 1

∣∣∣∣∣∣= OP(Rn).

Note further that, on An,

∀s ∈ (0,1], log(1− 2Rn)≤ log

 ε̂(n)n−bksc,n

εn−bksc,n

≤ log(1 + 2Rn).

Since log(1 + x)≤ x and log(1− x)≥−2x for all x ∈ [0,1/2], this yields, on An,

∀s ∈ (0,1],

∣∣∣∣∣∣log

 ε̂(n)n−bksc,n

εn−bksc,n

∣∣∣∣∣∣≤ 4Rn.

As a consequence,

sup
0<s≤1

∣∣∣∣∣∣log

 ε̂(n)n−bksc,n

εn−bksc,n

∣∣∣∣∣∣= OP(Rn).

This concludes the proof.

The final auxiliary result of this section is used as part of Remark 2. It can be seen as a
Breiman-type result, see Proposition 3 in [2] for the original Breiman lemma.

LEMMA A.4. Suppose that the random variable Y can be written Y = Z1 +Z2 ε, where

• Z1 is a bounded random variable,
• Z2 is a (strictly) positive and bounded random variable,
• ε satisfies condition C1(γ),
• Z2 is independent of ε.

Then Y satisfies condition C1(γ).

PROOF. We prove that for all x > 0, P(Y > tx)/P(Y > t)→ x−1/γ as t→∞. Note that
if a1, b1 are such that Z1 ∈ [a1, b1] with probability 1,

P(Z2 ε > tx− a1)
P(Z2 ε > t− b1)

≤ P(Y > tx)

P(Y > t)
≤ P(Z2 ε > tx− b1)

P(Z2 ε > t− a1)
.

This entails, for any fixed ε ∈ (0,1), that for t large enough,

P(Z2 ε > t(x+ ε))

P(Z2 ε > t(1− ε))
≤ P(Y > tx)

P(Y > t)
≤ P(Z2 ε > t(x− ε))

P(Z2 ε > t(1 + ε))
.

Let b2 > 0 be such that Z2 ∈ (0, b2] with probability 1. Since Z2 is independent of ε, we have
for any t > 0

P(Z2 ε > t)

P(ε > t)
=

∫ b2

0

P(ε > t/z)

P(ε > t)
PZ2

(dz).

Use now Potter bounds (see e.g. Proposition B.1.9.5 in [6]) and the dominated convergence
theorem to obtain

P(Z2 ε > t)

P(ε > t)
→
∫ b2

0
zγPZ2

(dz) = E(Zγ2 ) ∈ (0,∞).
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This implies that Z2 ε is, like ε, heavy-tailed with extreme value index γ. In particular

P(Z2 ε > t(x∓ ε))
P(Z2 ε > t(1± ε))

=
P(Z2 ε > t(x∓ ε))

P(Z2 ε > t)

P(Z2 ε > t)

P(Z2 ε > t(1± ε))
→ (1± ε)1/γ(x∓ ε)−1/γ

as t→∞. Conclude that

(1− ε)1/γ(x+ ε)−1/γ ≤ lim inf
t→∞

P(Y > tx)

P(Y > t)
≤ lim sup

t→∞

P(Y > tx)

P(Y > t)
≤ (1 + ε)1/γ(x− ε)−1/γ

for any ε > 0, and let ε ↓ 0 to complete the proof.

APPENDIX B: THEORETICAL TOOLBOX: PROOFS OF THE MAIN RESULTS

PROOF OF THEOREM 2.1. Note that√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)
= arg min

u∈R
χn(u)

with χn(u) :=
1

2ξ2τn(ε)

n∑
i=1

[
ητn

(
ε̂
(n)
i − ξτn(ε)− uξτn(ε)√

n(1− τn)

)
− ητn(ε̂

(n)
i − ξτn(ε))

]
.

Define

ψn(u) :=
1

2ξ2τn(ε)

n∑
i=1

[
ητn

(
εi − ξτn(ε)− uξτn(ε)√

n(1− τn)

)
− ητn(εi − ξτn(ε))

]
.

In other words, ψn(u) is the counterpart of χn(u) based on the true, unobservable errors εi.
Note that for any n, u 7→ ψn(u) is a continuously differentiable convex function. We shall
prove that, pointwise in u, χn(u)− ψn(u)

P−→ 0. The result will then be a straightforward
consequence of a convexity lemma stated as Theorem 5 in [15] together with the convergence

ψn(u)
d−→−uZ

√
2γ

1− 2γ
+
u2

2γ
as n→∞

(in the sense of finite-dimensional convergence, with Z being standard Gaussian) shown in
the proof of Theorem 2 in [4].

We start by recalling that

1

2
(ητ (x− y)− ητ (x)) =−

∫ y

0
ϕτ (x− t)dt

where ϕτ (y) = |τ − 1{y ≤ 0}|y (see Lemma 2 in [4]). Therefore

χn(u)−ψn(u)

=− 1

ξ2τn(ε)

n∑
i=1

∫ uξτn (ε)/
√
n(1−τn)

0
[ϕτn(ε̂

(n)
i − ξτn(ε)− t)−ϕτn(εi − ξτn(ε)− t)]dt.

Set In(u) = [0, |u|ξτn(ε)/
√
n(1− τn)]. Since

|χn(u)−ψn(u)|

≤ |u|
ξτn(ε)

√
n(1− τn)

n∑
i=1

sup
|t|∈In(u)

|ϕτn(ε̂
(n)
i − ξτn(ε)− t)−ϕτn(εi − ξτn(ε)− t)|,
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it is enough to show that

Tn(u) :=
1

ξτn(ε)
√
n(1− τn)

n∑
i=1

sup
|t|∈In(u)

|ϕτn(ε̂
(n)
i − ξτn(ε)− t)−ϕτn(εi − ξτn(ε)− t)|

P−→ 0.(7)

We now apply Lemma 3 in [4], which gives, for any x,h ∈R,

|ϕτ (x− h)−ϕτ (x)| ≤ |h|(1− τ + 21{x >min(h,0)}).

This translates into

|ϕτn(ε̂
(n)
i − ξτn(ε)− t)−ϕτn(εi − ξτn(ε)− t)|

≤ |ε̂(n)i − εi|(1− τn + 21{εi − ξτn(ε)− t >min(εi − ε̂(n)i ,0)}).

Hence the inequality

(8) Tn(u)≤ T1,n + T2,n(u)

with

T1,n :=

√
1− τn

ξτn(ε)
√
n

n∑
i=1

|ε̂(n)i − εi| and

T2,n(u) :=
2

ξτn(ε)
√
n(1− τn)

n∑
i=1

sup
|t|∈In(u)

|ε̂(n)i − εi|1{εi − ξτn(ε)− t >min(εi − ε̂(n)i ,0)}.

We first focus on T1,n. Define Rn,i := |ε̂(n)i − εi|/(1 + |εi|) and Rn = max1≤i≤nRn,i. We
have

T1,n ≤

[√
n(1− τn)

ξτn(ε)
Rn

]
× 1

n

n∑
i=1

(1 + |εi|) = OP

(√
n(1− τn)

ξτn(ε)
Rn

)
by the law of large numbers. Note now that ξτn(ε)→∞ and thus

(9) T1,n = OP

(√
n(1− τn)

qτn(ε)
Rn

)
= oP

(√
n(1− τn)Rn

)
P−→ 0

by assumption. We now turn to the control of T2,n(u), for which we write, for any t,

εi − ξτn(ε)− t >min(εi − ε̂(n)i ,0)⇒ εi − ξτn(ε)− t > 0 or ε̂(n)i − ξτn(ε)− t > 0.

It follows that, for n large enough, we have, for any t such that |t| ∈ In(u),

(10) εi − ξτn(ε)− t >min(εi − ε̂(n)i ,0)⇒ εi >
ξτn(ε)

2
or ε̂(n)i >

ξτn(ε)

2
.

Now, for n large enough and with arbitrarily large probability as n→∞, |ε̂(n)i − εi| ≤ (1 +
|εi|)/2 for any i ∈ {1, . . . , n}, so that after some algebra,

ε̂
(n)
i >

ξτn(ε)

2
⇒ εi +

1

2
|εi|>

1

2
(ξτn(ε)− 1)⇒ εi +

1

2
|εi|>

1

4
ξτn(ε)

because ξτn(ε)→∞. Since the quantity x+ |x|/2 can only be positive if x > 0, it follows
that, with arbitrarily large probability,

(11) ε̂
(n)
i >

ξτn(ε)

2
⇒ εi >

1

6
ξτn(ε).
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Combining (10) and (11) results in the following bound, valid with arbitrarily large probabil-
ity as n→∞:

T2,n(u)≤ 2

ξτn(ε)
√
n(1− τn)

n∑
i=1

|ε̂(n)i − εi|1
{
εi >

1

6
ξτn(ε)

}
.

By assumption on |ε̂(n)i − εi|, this leads to

T2,n(u)≤ 4

[√
n(1− τn)

ξτn(ε)
Rn

]
× 1

n(1− τn)

n∑
i=1

εi1

{
εi >

1

6
ξτn(ε)

}
.

Finally, the regular variation property of F and the asymptotic proportionality relationship
between ξτn(ε) and qτn(ε) ensure that

lim
n→∞

F (ξτn(ε)/6)

1− τn
exists, is positive and finite.

Lemma A.1 then entails

(12) T2,n(u) = OP

(√
n(1− τn)Rn

)
P−→ 0

by assumption. Combining (7), (8), (9) and (12) completes the proof.

PROOF OF THEOREM 2.2. To prove the first expansion, write

ε̂
(n)
n−bksc,n

q1−k/n(ε)
− s−γ =

ε̂
(n)
n−bksc,n

εn−bksc,n

(
εn−bksc,n

q1−k/n(ε)
− s−γ

)
+ s−γ

 ε̂(n)n−bksc,n

εn−bksc,n
− 1

 .

Use Lemma A.3 and Theorem 2.4.8 in [6] to get

ε̂
(n)
n−bksc,n

εn−bksc,n

(
εn−bksc,n

q1−k/n(ε)
− s−γ

)

=
1√
k

[
γs−γ−1Wn(s) +

√
kA(n/k)s−γ

s−ρ − 1

ρ
+ s−γ−1/2−δ oP(1)

]
(13)

uniformly in s ∈ (0,1]. Applying Lemma A.3 again gives

(14) s−γ

∣∣∣∣∣∣
ε̂
(n)
n−bksc,n

εn−bksc,n
− 1

∣∣∣∣∣∣≤ s−γ−1/2−δ
∣∣∣∣∣∣
ε̂
(n)
n−bksc,n

εn−bksc,n
− 1

∣∣∣∣∣∣= s−γ−1/2−δ√
k

oP(1)

uniformly in s ∈ (0,1]. Combine (13) and (14) to complete the proof of the first expansion.
The proof of the second expansion is based on the equality

log

 ε̂
(n)
n−bksc,n

q1−k/n(ε)

= log

(
εn−bksc,n

q1−k/n(ε)

)
+ log

 ε̂(n)n−bksc,n

εn−bksc,n


and follows exactly the same ideas.
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PROOF OF COROLLARY 2.1. Notice that, by Theorem 2.2, there is a sequence Wn of
standard Brownian motions such that, for any δ > 0 sufficiently small:

γ̂k =

∫ 1

0
log

 ε̂(n)n−bksc,n

ε̂
(n)
n−k,n

ds

=

∫ 1

0

{
γ log

1

s
+

γ√
k

[
s−1Wn(s)−Wn(1)

]
+A

(n
k

)[s−ρ − 1

ρ
+ s−1/2−δ oP(1)

]}
ds.

We then obtain that γ̂k can be written

√
k(γ̂k − γ) =

λ

1− ρ
+ γ

∫ 1

0

[
s−1Wn(s)−Wn(1)

]
ds+ oP(1).

Similarly,

√
k

 ε̂
(n)
n−k,n

q1−k/n(ε)
− 1

= γWn(1) + oP(1).

Noting that the Gaussian terms in these two asymptotic expansions are independent com-
pletes the proof.

PROOF OF THEOREM 2.3. The key is to note that

ξ
?
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1 =

(
1 +

g(x)

σ(x)ξτ ′n(ε)

)−1(ξ?τ ′n(ε)

ξτ ′n(ε)
− 1

)

+
g(x)− g(x)

g(x) + σ(x)ξτ ′n(ε)
+

(
1 +

g(x)

σ(x)ξτ ′n(ε)

)−1 σ(x)− σ(x)

σ(x)

ξ
?
τ ′n

(ε)

ξτ ′n(ε)
.

Using the convergence ξτ (ε)/qτ (ε)→ (γ−1 − 1)−γ as τ ↑ 1 and the heavy-tailed condi-
tion, we find 1/ξτ ′n(ε) = o(1/ξτn(ε)) = o(1/qτn(ε)). Our assumptions show that this is a
o(1/

√
n(1− τn)) and therefore√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1

)

=

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(ε)

ξτ ′n(ε)
− 1

)
(1 + oP(1)) + oP(1).

Our result is then shown by adapting the proof of Theorem 5 of [5], with the condition
ρ < 0 being used exclusively to control the bias term appearing naturally because of the
extrapolation procedure applied to the heavy-tailed random variable ε. We omit the details.

APPENDIX C: WORKED-OUT EXAMPLES: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma C.1 gives the rate of convergence of the weighted least squares estimators in
model (M1). Here and throughout all OP(1) statements are meant componentwise.
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LEMMA C.1. Assume that (Xi, Yi)i≥1 are independent random pairs generated from
model (M1). Suppose further that E(ε2)<∞. Then we have

√
n(α̂− α) = OP(1),

√
n(β̂−β) = OP(1) and

√
n(θ̂− θ) = OP(1).

PROOF. We introduce the notation

X =

1X>1
...

...
1X>n

 , Y =

Y1
...
Yn

 and Ω = diag([1 + θ>X1]
2, . . . , [1 + θ>Xn]2).

A preliminary step is to remark that for any a= (a0, a1, . . . , ad)
> ∈Rd+1,

a>X>Xa=

n∑
i=1

[a0 + (a1, . . . , ad)Xi]
2 > 0

and a>X>Ω−1Xa=

n∑
i=1

[
1 + θ>Xi

]−2
[a0 + (a1, . . . , ad)Xi]

2 > 0

with probability 1, because X has a continuous distribution (and as such, does not put mass
on affine hyperplanes of Rd). The symmetric matrices X>X and X>Ω−1X therefore have
full rank with probability 1. Since, by the law of large numbers,

1

n

[
X>X

]
i+1,j+1

P−→ E (XiXj) and
1

n

[
X>Ω−1X

]
i+1,j+1

P−→ E
([

1 + θ>X
]−2

XiXj

)
(where X0 = 1 for notational convenience), the same argument shows that X>X/n and
X>Ω−1X/n converge in probability to symmetric positive definite matrices, Σ1 and Σ2

say.

Our first step is to show that the preliminary estimators α̃, β̃ and θ̃ are
√
n−consistent.

Rewrite model (M1) for the available data as

Y = X

(
α
β

)
+

[
X

(
1
θ

)]
◦ ε,

where ε> = (ε1, . . . , εn) and ◦ denotes the Hadamard (entrywise) product of matrices. By
standard least squares theory, (

α̃

β̃

)
=
(
X>X

)−1
X>Y .

A direct calculation then yields(√
n(α̃− α)√
n(β̃−β)

)
= n

(
X>X

)−1
× 1√

n
X>

{[
X

(
1
θ

)]
◦ ε
}

= n
(
X>X

)−1
×


n−1/2

∑n
i=1

[
1 + θ>Xi

]
εi

n−1/2
∑n

i=1

[
1 + θ>Xi

]
Xi1εi

...
n−1/2

∑n
i=1

[
1 + θ>Xi

]
Xidεi

 .

Set for notational convenienceXi0 = 1. Since, for anym ∈ {0,1 . . . , d}, the random variables[
1 + θ>Xi

]
Ximεi, 1≤ i≤ n, are independent, centred and square-integrable, the standard
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multivariate central limit theorem combined with the convergence n
(
X>X

)−1 P−→ Σ−11
yields

(15)
√
n(α̃− α) = OP(1) and

√
n(β̃−β) = OP(1).

We then prove that
√
n(θ̃− θ) = OP(1). Recalling that

θ̃ =
ν̃

µ̃
and θ =

ν

µ

where µ= E|ε|> 0 and ν = µθ, it is enough to show that
√
n(µ̃−µ) = OP(1) and

√
n(ν̃ −

ν) = OP(1). Defining

Z =

 |Y1 − (α+β>X1)|
...

|Yn − (α+β>Xn)|

= X

(
µ
ν

)
+

[
X

(
1
θ

)]
◦ e,

where e> = (|ε1| −E|ε|, . . . , |εn| −E|ε|), and defining then Z̃ in the obvious way, we have(
µ̃
ν̃

)
=
(
X>X

)−1
X>Z̃.

We therefore obtain(√
n(µ̃− µ)√
n(ν̃ − ν)

)
= n

(
X>X

)−1
× 1√

n
X>

{[
X

(
1
θ

)]
◦ e
}

+ n
(
X>X

)−1
×X>

(
1√
n

[
Z̃ −Z

])
.(16)

Since e= |ε|−E|ε| is independent ofX and has a finite variance, repeating the proof of (15)
gives

(17) n
(
X>X

)−1
× 1√

n
X>

{[
X

(
1
θ

)]
◦ e
}

= OP(1).

Furthermore,

X>
(

1√
n

[
Z̃ −Z

])
=


n−1/2

∑n
i=1

[
Z̃i −Zi

]
n−1/2

∑n
i=1Xi1

[
Z̃i −Zi

]
...

n−1/2
∑n

i=1Xid

[
Z̃i −Zi

]

 .

Recalling that X lies in a compact set, we find that for any m ∈ {0,1, . . . , d},∣∣∣∣∣n−1/2
n∑
i=1

Xim

[
Z̃i −Zi

]∣∣∣∣∣= OP

(√
n max

1≤i≤n
|(α̃− α) + (β̃−β)>Xi|

)
= OP(1)

by (15). Combining this with (16), (17) and the convergence n
(
X>X

)−1 P−→Σ−11 , we get
indeed

√
n(µ̃− µ) = OP(1) and

√
n(ν̃ − ν) = OP(1) and thus

(18)
√
n(θ̃− θ) = OP(1).
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We are now ready to prove the convergence of the weighted estimators α̂, β̂ and θ̂. By
standard weighted least squares theory,(

α̂

β̂

)
=
(
X>Ω̃−1X

)−1
X>Ω̃−1Y .

It follows that

(19)
(√

n(α̂− α)√
n(β̂−β)

)
= n

(
X>Ω̃−1X

)−1
× 1√

n
X>Ω̃−1

{[
X

(
1
θ

)]
◦ ε
}

where Ω̃ is obtained from Ω in the obvious manner. Note that for any i, j ∈ {0, . . . , d},

1

n

[
X>Ω−1X

]
i+1,j+1

=
1

n

n∑
k=1

XkiXkj[
1 + θ>Xk

]2 and

1

n

[
X>Ω̃−1X

]
i+1,j+1

=
1

n

n∑
k=1

XkiXkj[
1 + θ̃>Xk

]2 .
Recalling once again that X lies in a compact set, that 1 + θ>X is bounded from below by
a positive constant, and (18), we find, by the law of large numbers,

(20)
1

n

[
X>Ω̃−1X

]
− 1

n

[
X>Ω−1X

]
P−→ 0 and thus n

(
X>Ω̃−1X

)−1 P−→Σ−12 .

Besides, for any m ∈ {0,1, . . . , d},[
1√
n
X>Ω̃−1

{[
X

(
1
θ

)]
◦ ε
}
− 1√

n
X>Ω−1

{[
X

(
1
θ

)]
◦ ε
}]

m+1

=
1√
n

n∑
i=1

[
1 + θ>Xi

]
Ximεi

 1[
1 + θ̃>Xi

]2 − 1[
1 + θ>Xi

]2


=−
√
n
(
θ̃− θ

)> 1

n

n∑
i=1

Ximεi
2 + θ>Xi + θ̃>Xi[

1 + θ̃>Xi

]2[
1 + θ>Xi

]Xi

 .

Using again the properties of X and (18), some straightforward algebra yields that

Rn :=
√
n max

1≤i≤n

∣∣∣∣∣∣∣
2 + θ>Xi + θ̃>Xi[

1 + θ̃>Xi

]2 − 2

1 + θ>Xi

∣∣∣∣∣∣∣= OP(1).

Conclude that[
1√
n
X>Ω̃−1

{[
X

(
1
θ

)]
◦ ε
}
− 1√

n
X>Ω−1

{[
X

(
1
θ

)]
◦ ε
}]

m+1

=−2
√
n
(
θ̃− θ

)>{ 1

n

n∑
i=1

Ximεi

[
2

[1 + θ>Xi]
2 + OP

(
Rn√
n

)]
Xi

}
.

Since ε is centred and independent ofX , we may combine the properties ofX and (18) with
the law of large numbers to get

(21)
1√
n
X>Ω̃−1

{[
X

(
1
θ

)]
◦ ε
}
− 1√

n
X>Ω−1

{[
X

(
1
θ

)]
◦ ε
}

= oP(1).
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Now clearly [
1√
n
X>Ω−1

{[
X

(
1
θ

)]
◦ ε
}]

m+1

=
1√
n

n∑
i=1

Xim

1 + θ>Xi
εi

so that, by the standard multivariate central limit theorem,

(22)
1√
n
X>Ω−1

{[
X

(
1
θ

)]
◦ ε
}

= OP(1).

Combining (19), (20), (21) and (22) results in
√
n(α̂− α) = OP(1) and

√
n(β̂−β) = OP(1).

We complete the proof by showing that
√
n(θ̂− θ) = OP(1). It is again enough to show that√

n(µ̂− µ) = OP(1) and
√
n(ν̂ − ν) = OP(1). Write(√

n(µ̂− µ)√
n(ν̂ − ν)

)
= n

(
X>Ω̃−1X

)−1
× 1√

n
X>Ω̃−1

{[
X

(
1
θ

)]
◦ e
}

+ n
(
X>Ω̃−1X

)−1
×X>Ω̃−1

(
1√
n

[
Ẑ −Z

])
.

Furthermore,

X>Ω̃−1
(

1√
n

[
Ẑ −Z

])
=



n−1/2
∑n

i=1

[
1 + θ̃>Xi

]−2 [
Ẑi −Zi

]
n−1/2

∑n
i=1Xi1

[
1 + θ̃>Xi

]−2 [
Ẑi −Zi

]
...

n−1/2
∑n

i=1Xid

[
1 + θ̃>Xi

]−2 [
Ẑi −Zi

]


.

Recalling the properties of X and the
√
n−convergence of α̂, β̂ and θ̃, we find that for any

m ∈ {0,1, . . . , d},∣∣∣∣∣n−1/2
n∑
i=1

Xim

[
1 + θ̃>Xi

]−2 [
Ẑi −Zi

]∣∣∣∣∣= OP

(√
n max

1≤i≤n
|(α̂− α) + (β̂−β)>Xi|

)
= OP(1).

Combining this with (20) and straightforward adaptations of (21) and (22) with e in place of
ε, we find

√
n(µ̂− µ) = OP(1) and

√
n(ν̂ − ν) = OP(1) as required.

Lemma C.2 is a general uniform consistency result which is useful for the analysis of the
single-index model (M2).

LEMMA C.2. Assume that (Xi,Yi)i≥1 are independent copies of a bivariate random pair
(X ,Y) such that:

• X has support [a, b], with a < b, and a density function fX which is uniformly bounded
on compact sub-intervals of (a, b).

• There exists δ > 0 such that E|Y|2+δ <∞ and the conditional moment function z 7→
E
[
|Y|2+δ|X = z

]
is uniformly bounded on compact sub-intervals of (a, b).

Let further:



EXTREME CONDITIONAL EXPECTILE ESTIMATION 13

• (Vi) be a sequence of independent copies of a bounded random variable V .
• L be a Lipschitz continuous function with support contained in [−1,1].

Assume finally that nh5n→ c ∈ (0,∞), and tn = nt with 2/(5 + δ)< t < 2/5. Then for any
a1, b1 ∈ [a, b] with a < a1 < b1 < b,

n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Yi1{|Yi| ≤ tn}ViL
(
z −Xi
hn

)
− 1

hn
E
[
Y V L

(
z −X
hn

)]∣∣∣∣∣
= OP(1).

We note that, as a consequence, we have a similar uniform consistency result for the non-
truncated version of the smoothed empirical moment, that is

n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Yi ViL
(
z −Xi
hn

)
− 1

hn
E
[
Y V L

(
z −X
hn

)]∣∣∣∣∣= OP(1)

under the further assumption E|Y|5/2+δ <∞. This follows from noting that

P

(
n⋃
i=1

{|Yi|> tn}

)
≤ nP (|Y|> tn) = O

(
n

t
5/2+δ
n

)
= O

(
n1−(5+2δ)/(5+δ)

)
= o(1)

by Markov’s inequality. The stronger moment assumption E|Y|5/2+δ <∞ already appears
in [17] in the context of local polynomial estimation.

PROOF. The basic idea is to control the oscillation of the random function

z 7→ n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Yi1{|Yi| ≤ tn}ViL
(
z −Xi
hn

)
− 1

hn
E
[
Y V L

(
z −X
hn

)]∣∣∣∣∣
and then use this control to prove that it is sufficient to show uniform consistency over a fine
grid instead, which can be done by using Bernstein’s exponential inequality. Our proof adapts
the method of [12] (proof of Theorem 2).

Define Y
(n)
i := Yi Vi1{|Yi| ≤ tn} and Y(n) := Y V1{|Y| ≤ tn}. Then

n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Yi1{|Yi| ≤ tn}ViL
(
z −Xi
hn

)
− 1

hn
E
[
Y V L

(
z −X
hn

)]∣∣∣∣∣
≤ n2/5√

logn
sup

a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣
+

n2/5√
logn

sup
a1≤z≤b1

1

hn
E
[
|Y| |V|1{|Y|> tn}

∣∣∣∣L(z −Xhn
)∣∣∣∣] .

(23)

The second term on the right-hand side of (23) is controlled by noting that, thanks to a change
of variables,

1

hn
E
[
|Y| |V|1{|Y|> tn}

∣∣∣∣L(z −Xhn
)∣∣∣∣]

= O

(∫ 1

−1
E [|Y|1{|Y|> tn}|X = z − hnu] |L(u)|fX (z − hnu)du

)
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= O

(
t−1−δn

∫ 1

−1
E
[
|Y|2+δ|X = z − hnu

]
|L(u)|fX (z − hnu)du

)
= O(t−1−δn )

uniformly in z ∈ [a1, b1]. Here the boundedness of V , the integrability of |L| and the assump-
tion that the (2 + δ)−conditional moment of Y and the density function fX are uniformly
bounded on compact sub-intervals of (a, b) were all used. Finally

t−1−δn = n−(1+δ)t = o(n−2/5) = o

(√
logn

n2/5

)
so that

(24)
n2/5√
logn

sup
a1≤z≤b1

1

hn
E
[
|Y| |V|1{|Y|> tn}

∣∣∣∣L(z −Xhn
)∣∣∣∣]= o(1).

Combining (23) and (24), we find that it is sufficient to show that

(25)
n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣= OP(1).

We now replace the supremum in (25) by a supremum over a grid by focusing on the oscilla-
tion of the left-hand side. For a given z ∈R, let

An(z) :=

{
z′ ∈ [a1, b1]

∣∣∣∣ |z′ − z| ≤ hn√logn

n2/5

}
.

Then [a1, b1] is covered by the An(zn,j), with

zn,j = a1 + j hn

√
logn

n2/5
, j = 1, . . . ,

⌊
b1 − a1
hn
√
logn
n2/5

⌋
=:Nn,

where b·c denotes the floor function. Besides, writing |L(z′)− L(z)| ≤ CL|z′ − z| by Lips-
chitz continuity of L, we also find

|z′ − z| ≤ 1⇒ |L(z′)−L(z)| ≤ |z′ − z|L(z) with L(z) :=CL1{|z| ≤ 2}.

Let zn,j be a grid point and z ∈ An(zn,j). By construction |z − zn,j |/hn ≤
√

log(n)/n2/5

which converges to 0, so that, for n large enough,

∀i ∈ {1, . . . , n},
∣∣∣∣L(z −Xihn

)
−L

(
zn,j −Xi

hn

)∣∣∣∣≤ √logn

n2/5
L
(
zn,j −Xi

hn

)
.

Then

n2/5√
logn

sup
z∈An(zn,j)

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣
≤ n2/5√

logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
zn,j −Xi

hn

)
− 1

hn
E
[
Y(n)L

(
zn,j −X
hn

)]∣∣∣∣∣
+

1

nhn

n∑
i=1

|Y(n)
i |L

(
zn,j −Xi

hn

)
+

1

hn
E
[
|Y(n)|L

(
zn,j −X
hn

)]

≤ n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
zn,j −Xi

hn

)
− 1

hn
E
[
Y(n)L

(
zn,j −X
hn

)]∣∣∣∣∣
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+

∣∣∣∣∣ 1

nhn

n∑
i=1

|Y(n)
i |L

(
zn,j −Xi

hn

)
− 1

hn
E
[
|Y(n)|L

(
zn,j −X
hn

)]∣∣∣∣∣
+ 2× 1

hn
E
[
|Y(n)|L

(
zn,j −X
hn

)]
.

By the boundedness of V , of fX and of z 7→ E [|Y| |X = z] over compact sub-intervals of
(a, b), we find, for n large enough,

sup
a1≤z≤b1

1

hn
E
[
|Y(n)|L

(
z −X
hn

)]
≤C0

where C0 is a finite constant. Consequently, for any constant C > 2C0,

n2/5√
logn

sup
z∈An(zn,j)

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣
≤ n2/5√

logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
zn,j −Xi

hn

)
− 1

hn
E
[
Y(n)L

(
zn,j −X
hn

)]∣∣∣∣∣
+

n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

|Y(n)
i |L

(
zn,j −Xi

hn

)
− 1

hn
E
[
|Y(n)|L

(
zn,j −X
hn

)]∣∣∣∣∣+C

where the (crude) inequality n2/5/
√

logn≥ 1, for n large enough, was used. Conclude, by
writing [a1, b1]⊂∪1≤j≤NnAn(zn,j), that

P

(
n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣> 3C

)

≤Nn max
1≤j≤Nn

P

(
n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
zn,j −Xi

hn

)
− 1

hn
E
[
Y(n)L

(
zn,j −X
hn

)]∣∣∣∣∣>C

)

+Nn max
1≤j≤Nn

P

(
n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

|Y(n)
i |L

(
zn,j −Xi

hn

)
− 1

hn
E
[
|Y(n)|L

(
zn,j −X
hn

)]∣∣∣∣∣>C

)
.

We finish the proof by showing
(26)

P

(
n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣>C

)
= O

(
1

n

)
and
(27)

P

(
n2/5√
logn

∣∣∣∣∣ 1

nhn

n∑
i=1

|Y(n)
i |L

(
z −Xi
hn

)
− 1

hn
E
[
|Y(n)|L

(
z −X
hn

)]∣∣∣∣∣>C

)
= O

(
1

n

)
for C large enough, uniformly in z ∈ [a1, b1]. Since Nn is of order n2/5/(hn

√
log(n)) ≈

n3/5/
√

log(n) = o(n), this will entail

P

(
n2/5√
logn

sup
a1≤z≤b1

∣∣∣∣∣ 1

nhn

n∑
i=1

Y
(n)
i L

(
z −Xi
hn

)
− 1

hn
E
[
Y(n)L

(
z −X
hn

)]∣∣∣∣∣> 3C

)
= o(1)
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for C large enough, which is sufficient for our purposes. We only show (26) uniformly in
z ∈ [a1, b1]; the proof of (27) is identical. Rewrite the left-hand side of (26) as

P

(∣∣∣∣∣
n∑
i=1

{
Y

(n)
i L

(
z −Xi
hn

)
−E

[
Y(n)L

(
z −X
hn

)]}∣∣∣∣∣>Cun

)
,

with un := n3/5hn
√

logn. Let v be a constant such that |V| ≤ v with probability 1. Note that
for any i we have the crude bound∣∣∣∣Y(n)

i L

(
z −Xi
hn

)
−E

[
Y(n)L

(
z −X
hn

)]∣∣∣∣≤ 2vtn max
−1≤u≤1

|L(u)|.

Remark also that, for n large enough,

Var

(
Y(n)L

(
z −X
hn

))
≤ v2E

[
Y2L2

(
z −X
hn

)]
≤Dhn

for some finite constant D, by uniform boundedness of fX and z 7→ E
[
Y2 |X = z

]
over

compact sub-intervals of (a, b). By the Bernstein exponential inequality we get

P

(∣∣∣∣∣
n∑
i=1

{
Y

(n)
i L

(
z −Xi
hn

)
−E

[
Y(n)L

(
z −X
hn

)]}∣∣∣∣∣>Cun

)

≤ 2 exp

(
− C2u2n/2

Dnhn + 2Cvtnunmax[−1,1] |L|/3

)
.

Recalling that tn = nt with 2/(5+δ)< t < 2/5, un = n3/5hn
√

logn and nh5n→ c ∈ (0,∞),
one finds

1

logn
× C2u2n/2

Dnhn + 2Cvtnunmax[−1,1] |L|/3
→ c1/5C2

2D
as n→∞

and therefore there is a constant C ′ > 0, independent of C , such that for n large enough

P

(∣∣∣∣∣
n∑
i=1

{
Y

(n)
i L

(
z −Xi
hn

)
−E

[
Y(n)L

(
z −X
hn

)]}∣∣∣∣∣>Cun

)
≤ 2 exp

(
−C ′C2 logn

)
uniformly in z ∈ [a1, b1]. For C large enough, this yields

P

(∣∣∣∣∣
n∑
i=1

{
Y

(n)
i L

(
z −Xi
hn

)
−E

[
Y(n)L

(
z −X
hn

)]}∣∣∣∣∣>Cun

)
= O

(
1

n

)
which is equivalent to (26). This completes the proof.

Lemma C.3 provides a uniform control, tailored to the assumptions of Proposition C.1, of the
gap between smoothed moments and their asymptotic equivalents.

LEMMA C.3. Assume that the bivariate random pair (X ,Y) is such that:

• X has support [a, b], with a < b, and a density function fX which has a continuous deriva-
tive on (a, b).

• The conditional moment function mY|X : z 7→ E(Y|X = z) is well-defined and has a con-
tinuous derivative on (a, b).

• L is a bounded measurable function with support contained in [−1,1].

Then, as h→ 0:
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(i) For any a1, b1 ∈ [a, b] with a < a1 < b1 < b, we have, uniformly in z ∈ [a1, b1],

1

h
E
[
Y L

(
z −X
h

)]
=mY|X (z)fX (z)

∫ 1

−1
L(u)du

− h{m′Y|X (z)fX (z) +mY|X (z)f ′X (z)}
∫ 1

−1
uL(u)du+ o(h).

(ii) If moreover fX andmY|X are twice continuously differentiable on (a, b) then, uniformly
in z ∈ [a1, b1],

1

h
E
[
Y L

(
z −X
h

)]
=mY|X (z)fX (z)

∫ 1

−1
L(u)du− h{m′Y|X (z)fX (z) +mY|X (z)f ′X (z)}

∫ 1

−1
uL(u)du

+
h2

2
{m′′Y|X (z)fX (z) + 2m′Y|X (z)f ′X (z) +mY|X (z)f ′′X (z)}

∫ 1

−1
u2L(u)du+ o(h2).

PROOF. Note that

1

h
E
[
Y L

(
z −X
h

)]
=

∫ 1

−1
mY|X (z − hu)fX (z − hu)L(u)du.

Parts (i) and (ii) are obtained by using the following Taylor formulae with integral remainder:

ϕ(z + δ) = ϕ(z) + δϕ′(z) +

∫ z+δ

z
[ϕ′(t)−ϕ′(z)]dt

and

ϕ(z + δ) = ϕ(z) + δϕ′(z) +
δ2

2
ϕ′′(z) +

∫ z+δ

z
(z + δ− t)[ϕ′′(t)−ϕ′′(z)]dt

applied to the function ϕ : z 7→mY|X (z)fX (z). To get a uniform control of the remainders,
use the fact that this function has uniformly continuous derivatives on any compact sub-
interval of [a, b], by Heine’s theorem.

Our next auxiliary result is the uniform consistency (with rate) of the estimators of g and σ
in the heteroscedastic single-index model of Section 3.2.

PROPOSITION C.1. Assume that (Xi, Yi)i≥1 are independent random pairs generated
from the single-index model (M2). Assume further that:

• The functions g and σ > 0 are continuous on Kβ and twice continuously differentiable
on the interior Ko

β of Kβ .
• The projection β>X has a density function fβ>X which is twice continuously differen-
tiable and positive on Ko

β .
• Each of the conditional moment functions z 7→ E(Xj |β>X = z), j ∈ {1, . . . , d} is con-
tinuously differentiable on Ko

β .
• There is δ > 0 such that E|ε|2+δ <∞.
• L is a twice continuously differentiable and symmetric probability density function with

support contained in [−1,1].
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Assume also that nh5n→ c ∈ (0,∞), and tn = nt with 2/(5 + δ) < t < 2/5. Then, for any
compact subset K0 of Ko and any estimator β̂ such that

√
n
(
β̂−β

)
= OP(1), we have

n2/5√
logn

sup
x∈K0

∣∣∣ĝhn,tn (β̂>x)− g(β>x)∣∣∣= OP(1)

and
n2/5√
logn

sup
x∈K0

∣∣∣σ̂hn,tn (β̂>x)− σ(β>x)∣∣∣= OP(1).

Before proving this result, note that when K is convex, its projection Kβ := {β>x, x ∈K},
which is also the support of β>X , is a compact interval containing at least two points (be-
causeK has a nonempty interior). Note also that Proposition C.1 is tailored to our framework
in the sense that the assumption E|ε|2+δ <∞, which puts a constraint on the tail heaviness
of the noise variable, is intuitively close to minimal for the estimation of g and σ by esti-
mators of Nadaraya-Watson type. An inspection of the proof reveals that a similar theorem
holds if ĝhn,tn and σ̂hn,tn are replaced by non-truncated versions, under the stronger moment
assumption E|ε|5/2+δ <∞; see the comment below the statement of Lemma C.2. The regu-
larity assumption on z 7→ E(Xj |β>X = z) is a technical requirement, which is for instance
satisfied if the density function fX is continuously differentiable and positive on K◦.

PROOF. We start by proving the assertion on ĝhn,tn . Define a truncated pseudo-Nadaraya-
Watson estimator by

g̃hn,tn(z) =

n∑
i=1

Yi1{|Yi| ≤ tn}L
(
z −β>Xi

hn

)/ n∑
i=1

L

(
z −β>Xi

hn

)
.

The idea is to write∣∣∣ĝhn,tn (β̂>x)− g(β>x)∣∣∣≤ ∣∣∣g(β̂>x)− g(β>x)∣∣∣
+
∣∣∣g̃hn,tn (β̂>x)− g(β̂>x)∣∣∣

+
∣∣∣ĝhn,tn (β̂>x)− g̃hn,tn (β̂>x)∣∣∣(28)

and control each term on the right-hand side of (28) separately. To control the first term, we
first apply the mean value theorem:∣∣∣g(β̂>x)− g(β>x)∣∣∣≤ ∣∣∣∣(β̂−β)>x∣∣∣∣× sup

λ∈[0,1]

∣∣∣∣g′(β>x+ λ
(
β̂−β

)>
x

)∣∣∣∣ .
Since K0 ⊂ Ko, the distance between the compact set K0 and the (compact) topological
boundary ofK is positive, i.e. ρ := inf{‖x−y‖, x ∈K0, y ∈K \Ko}> 0. It is then straight-
forward to show that, letting Kβ = [u, v], we have β>x ∈ [u+ρ/2, v−ρ/2] for any x ∈K0.
Since β̂ is a consistent estimator of β, we obtain that, with arbitrarily large probability as
n→∞,

(29) ∀λ ∈ [0,1], ∀x ∈K0, β
>x+ λ

(
β̂−β

)>
x ∈ [u+ ρ/4, v− ρ/4].

Because g′ is continuous and therefore bounded on compact intervals contained in (u, v), this
gives

(30)
n2/5√
logn

sup
x∈K0

∣∣∣g(β̂>x)− g(β>x)∣∣∣= OP

(
n2/5√
logn

× 1√
n

)
= oP(1).
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To control the second term, we show the uniform consistency of the regression pseudo-
estimator g̃hn,tn . The assumptions of Lemma C.2 are fulfilled for (X ,Y,V) = (β>X, Y,1) =
(β>X, g

(
β>X

)
+ σ

(
β>X

)
ε,1) and (X ,Y,V) = (β>X,1,1). Recalling that ε is inde-

pendent of X and centred, Lemma C.2 then provides

g̃hn,tn(z) =

1

hn
E
[
Y L

(
z −β>X

hn

)]
+ OP

(√
logn

n2/5

)
1

hn
E
[
L

(
z −β>X

hn

)]
+ OP

(√
logn

n2/5

)
uniformly on any (fixed) compact subset of Ko

β = (u, v). Noting that hn ∼ (c/n)1/5 and∫ 1
−1 uL(u)du= 0 (because L is symmetric), Lemma C.3(ii) therefore entails

g̃hn,tn(z) =

fβ>X(z)g(z) + OP

(√
logn

n2/5

)
fβ>X(z) + OP

(√
logn

n2/5

) = g(z) + OP

(√
logn

n2/5

)

uniformly on any compact subset of (u, v), the last equality being correct because fβ>X is
bounded from below by a positive constant on such sets. Together with (29) for λ = 1, this
yields

(31)
n2/5√
logn

sup
x∈K0

∣∣∣g̃hn,tn (β̂>x)− g(β̂>x)∣∣∣= OP(1).

We conclude by controlling the third term in the right-hand side of (28). The idea is to define
Y

(n)
i := Yi1{|Yi| ≤ tn} and, for any z and p= 0,1,

m̂(p)
n (z) :=

1

nhn

n∑
i=1

[
Y

(n)
i

]p
L

(
z − β̂>Xi

hn

)

and m̃(p)
n (z) :=

1

nhn

n∑
i=1

[
Y

(n)
i

]p
L

(
z −β>Xi

hn

)
.

With this notation,

ĝhn,tn(z)− g̃hn,tn(z) =
m̂

(1)
n (z)

m̂
(0)
n (z)

− m̃
(1)
n (z)

m̃
(0)
n (z)

=
[m̂

(1)
n (z)− m̃(1)

n (z)]m̃
(0)
n (z)− [m̂

(0)
n (z)− m̃(0)

n (z)]m̃
(1)
n (z)

(m̃
(0)
n (z) + [m̂

(0)
n (z)− m̃(0)

n (z)])m̃
(0)
n (z)

.(32)

Since

(33)
∣∣∣m̃(0)

n (z)− fX (z)
∣∣∣= oP(1) and

∣∣∣m̃(1)
n (z)− fX (z)g(z)

∣∣∣= oP(1)

uniformly on any compact subset of (u, v) by Lemmas C.2 and C.3(ii), we concentrate on
differences of the form

m̂(p)
n (z)− m̃(p)

n (z) =
1

nhn

n∑
i=1

[
Y

(n)
i

]p {
L

(
z − β̂>Xi

hn

)
−L

(
z −β>Xi

hn

)}
.
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By Taylor’s theorem with integral remainder applied to the function L, we find

m̂(p)
n (z)− m̃(p)

n (z)

=− 1

nhn

n∑
i=1

[
Y

(n)
i

]p
× (β̂−β)>Xi

hn
L′
(
z −β>Xi

hn

)

+
1

nhn

n∑
i=1

[
Y

(n)
i

]p
× 1

2

{
(β̂−β)>Xi

hn

}2

L′′
(
z −β>Xi

hn

)

+
1

nhn

n∑
i=1

[
Y

(n)
i

]p
×
∫ (z−β̂>Xi)/hn

(z−β>Xi)/hn

(
z − β̂>Xi

hn
− s

){
L′′(s)−L′′

(
z −β>Xi

hn

)}
ds

=: T1,n(z) + T2,n(z) + T3,n(z).
(34)

We handle these three terms separately.

Control of T1,n(z): Note that

T1,n(z) =− 1

hn
(β̂−β)>

[
1

nhn

n∑
i=1

[
Y

(n)
i

]p
L′
(
z −β>Xi

hn

)
Xi

]
.

Recall that X has compact support; Lemma C.2 (choosing V =Xj , 1≤ j ≤ d) then yields

T1,n(z) =− 1

hn
(β̂−β)>

[
1

hn
E
(
Y pL′

(
z −β>X

hn

)
X

)
+ OP

(√
logn

n2/5

)]
uniformly on any compact subset of (u, v). Because for any j ∈ {1, . . . , d},

E(Y pXj |β>X = z) = [1{p= 0}+ g(z)1{p= 1}]E(Xj |β>X = z),

the conditional moment function z 7→ E(Y pXj |β>X = z) satisfies the regularity require-
ments of Lemma C.3(i). By Lemma C.3(i) and the symmetry of L,

1

hn
E
(
Y pL′

(
z −β>X

hn

)
X

)
= O(hn)

uniformly on any compact subset of (u, v). Since β̂−β = OP(1/
√
n), this yields

(35) T1,n(z) = OP

(
1√
n

)
= oP

(√
logn

n2/5

)
uniformly on any compact subset of (u, v).

Control of T2,n(z): Recall that X has compact support, β̂ − β = OP(1/
√
n), and L′′ is

bounded to obtain, using the law of large numbers,
(36)

sup
z∈R
|T2,n(z)|= OP

(
1

nh3n
× 1

n

n∑
i=1

|Yi|p
)

= OP

(
1

nh3n

)
= OP

(
1

n2/5

)
= oP

(√
logn

n2/5

)
.

Control of T3,n(z): Use a change of variables to rewrite the integral term in T3,n(z) as∫ (z−β̂>Xi)/hn

(z−β>Xi)/hn

(
z − β̂>Xi

hn
− s

){
L′′(s)−L′′

(
z −β>Xi

hn

)}
ds

=

∫ (β−β̂)>Xi/hn

0

(
(β− β̂)>Xi

hn
− u

){
L′′
(
z −β>Xi

hn
+ u

)
−L′′

(
z −β>Xi

hn

)}
du.
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Since X has compact support and β̂−β = OP(1/
√
n) we have

max
1≤i≤n

∣∣∣∣∣(β− β̂)>Xi

hn

∣∣∣∣∣= OP

(
1

hn
√
n

)
= oP(1).

By uniform continuity of the continuous and compactly supported function L′′, it follows
that

max
1≤i≤n

sup
z∈R

sup
|u|≤|(β−β̂)>Xi|/hn

∣∣∣∣L′′(z −β>Xi

hn
+ u

)
−L′′

(
z −β>Xi

hn

)∣∣∣∣= oP(1).

We then get

sup
z∈R
|T3,n(z)|= oP

(
1

nhn

n∑
i=1

|Yi|p
∣∣∣∣∣
∫ (β−β̂)>Xi/hn

0

∣∣∣∣∣(β− β̂)>Xi

hn
− u

∣∣∣∣∣du
∣∣∣∣∣
)

= oP

 1

nhn

n∑
i=1

|Yi|p
[

(β− β̂)>Xi

hn

]2
= oP

(
1

nh3n
× 1

n

n∑
i=1

|Yi|p
)

= OP

(
1

nh3n

)
= oP

(√
logn

n2/5

)
.(37)

Combine (32), (33), (34), (35), (36) and (37) to obtain

ĝhn,tn(z)− g̃hn,tn(z) =

oP

(√
logn

n2/5

)
fβ>X(z) + oP

(√
logn

n2/5

) = oP

(√
logn

n2/5

)

uniformly on any compact subset of (u, v). Using (29) again with λ= 1, we get

(38)
n2/5√
logn

sup
x∈K0

∣∣∣ĝhn,tn (β̂>x)− g̃hn,tn (β̂>x)∣∣∣= oP(1).

Combining (28), (30), (31) and (38) concludes the proof of the assertion on ĝhn,tn .

We turn to the control of σ̂hn,tn , where the added difficulty is that the computation of the

estimator is based on the absolute residuals Ẑi,hn,tn =
∣∣∣Yi − ĝhn,tn (β̂>Xi

)∣∣∣ rather than on

the “true values” Zi :=
∣∣Yi − g (β>Xi

)∣∣. We thus introduce its pseudo-estimator analogue
based on the Zi,

σhn,tn(z) :=

n∑
i=1

Zi1{Zi ≤ tn} L

(
z − β̂>Xi

hn

)/
n∑
i=1

L

(
z − β̂>Xi

hn

)
and we seek to control |σ̂hn,tn(z)− σhn,tn(z)|, for z = β̂>x, uniformly in x ∈K0. Write

σ̂hn,tn(z)− σhn,tn(z)

=

n∑
i=1

[
Ẑi,hn,tn1

{
Ẑi,hn,tn ≤ tn

}
−Zi1{Zi ≤ tn}

]
L

(
z − β̂>Xi

hn

)/
n∑
i=1

L

(
z − β̂>Xi

hn

)
.

Note that the only pairs (Xi, Yi) making a nonzero contribution to this difference are those
for which |z − β̂>Xi| ≤ hn. For x ∈K0, we thus focus on controlling

sup
x∈K0

∣∣∣Ẑi,hn,tn1{Ẑi,hn,tn ≤ tn}−Zi1{Zi ≤ tn}∣∣∣1{∣∣∣β̂>x− β̂>Xi

∣∣∣≤ hn} .
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Since
∣∣∣Ẑi,hn,tn −Zi∣∣∣≤ ∣∣∣ĝhn,tn (β̂>Xi

)
− g

(
β>Xi

)∣∣∣, the triangle inequality yields

sup
x∈K0

∣∣∣Ẑi,hn,tn1{Ẑi,hn,tn ≤ tn}−Zi1{Zi ≤ tn}∣∣∣1{∣∣∣β̂>x− β̂>Xi

∣∣∣≤ hn}
≤ sup
x∈K0

max
i: |β̂>x−β̂>Xi|≤hn

∣∣∣ĝhn,tn (β̂>Xi

)
− g

(
β>Xi

)∣∣∣(39)

+ sup
x∈K0

Zi

∣∣∣1{Ẑi,hn,tn ≤ tn}− 1{Zi ≤ tn}∣∣∣1{∣∣∣β̂>x− β̂>Xi

∣∣∣≤ hn} .(40)

We focus on (39) first, where the idea is to use our uniform convergence result on ĝhn,tn .
Write

|β̂>x− β̂>Xi| ≤ hn⇒ |β̂>x−β>Xi| ≤ hn + |(β̂−β)>Xi|= hn + OP

(
1√
n

)
irrespective of the index i and x ∈K0, so that, with arbitrarily large probability as n→∞,

∀i ∈ {1, . . . , n}, ∀x ∈K0, |β̂>x− β̂>Xi| ≤ hn⇒ |β̂>x−β>Xi| ≤ 2hn.

Recall that, by (29), β̂>x ∈ [u+ ρ/4, v − ρ/4] with arbitrarily large probability as n→∞,
irrespective of x ∈K0. Since hn→ 0, this yields, with arbitrarily large probability as n→∞,

∀i ∈ {1, . . . , n}, ∀x ∈K0, |β̂>x− β̂>Xi| ≤ hn⇒ β>Xi ∈ [u+ ρ/8, v− ρ/8].

In other words, for such indices i, Xi belongs to the intersection of K and the inverse image
of the closed interval [u+ ρ/8, v − ρ/8] by the (continuous) projection mapping x 7→ β>x.
This intersection is itself a compact set K1, say, and therefore, with arbitrarily large proba-
bility as n→∞,

∀i ∈ {1, . . . , n}, ∀x ∈K0, |β̂>x− β̂>Xi| ≤ hn⇒Xi ∈K1.

Note also thatK1 ⊂K◦ sinceK1 is contained in the (open) inverse image of the open interval
(u + ρ/16, v − ρ/16) by the same projection mapping. It then follows from our uniform
convergence result on ĝhn,tn that

(41) sup
x∈K0

max
i: |β̂>x−β̂>Xi|≤hn

∣∣∣ĝhn,tn (β̂>Xi

)
− g

(
β>Xi

)∣∣∣= OP

(√
logn

n2/5

)
.

We can now control (40). Clearly∣∣∣1{Ẑi,hn,tn ≤ tn}− 1{Zi ≤ tn}∣∣∣
= 1

{
Ẑi,hn,tn ≤ tn, Zi > tn

}
+ 1

{
Ẑi,hn,tn > tn, Zi ≤ tn

}
.

Recall that
∣∣∣Ẑi,hn,tn −Zi∣∣∣ ≤ ∣∣∣ĝhn,tn (β̂>Xi

)
− g

(
β>Xi

)∣∣∣ and use (41) together with the
assumption tn→∞ to find that, with arbitrarily large probability as n→∞,

∀i ∈ {1, . . . , n}, sup
x∈K0

Zi

∣∣∣1{Ẑi,hn,tn ≤ tn}− 1{Zi ≤ tn}∣∣∣1{∣∣∣β̂>x− β̂>Xi

∣∣∣≤ hn}
≤ Zi1{Zi ≤ 2tn, Zi > tn}+Zi1{Zi > tn/2, Zi ≤ tn}

≤ Zi1{tn/2<Zi ≤ 2tn} .(42)
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Combine (41) and (42) to obtain, with arbitrarily large probability as n→∞,

sup
x∈K0

∣∣∣σ̂hn,tn (β̂>x)− σhn,tn (β̂>x)∣∣∣
≤ sup
x∈K0

[
σhn,2tn

(
β̂>x

)
− σhn,tn/2

(
β̂>x

)]
+ OP

(√
logn

n2/5

)
.(43)

To conclude, note that since E|ε|= 1,

Z :=
∣∣∣Y − g(β>X)∣∣∣= σ

(
β>X

)
+ σ

(
β>X

)
(|ε| −E|ε|).

This single-index model linking Z to X has the same structure as model (M2) and satisfies
our assumptions, with g replaced by σ and ε replaced by |ε| − E|ε|. Since for this model
σhn,tn plays the role of ĝhn,tn , we can use the first part of the Proposition to get

(44)
n2/5√
logn

sup
x∈K0

∣∣∣σhn,tn (β̂>x)− σ(β>x)∣∣∣= OP(1).

The result then follows by using (43) to write

n2/5√
logn

sup
x∈K0

∣∣∣σ̂hn,tn (β̂>x)− σ(β>x)∣∣∣≤ n2/5√
logn

sup
x∈K0

∣∣∣σhn,2tn (β̂>x)− σ(β>x)∣∣∣
+

n2/5√
logn

sup
x∈K0

∣∣∣σhn,tn/2 (β̂>x)− σ(β>x)∣∣∣
+

n2/5√
logn

sup
x∈K0

∣∣∣σhn,tn (β̂>x)− σ(β>x)∣∣∣
+ OP(1)

and then by using (44) as well as its analogues with tn replaced by tn/2 and 2tn.

The following de-conditioning lemma is a stronger version of Lemma 8 in [18].

LEMMA C.4. Let N = N(n)
P−→∞ be a random sequence of integers that, for each

n, takes its values in {0,1, . . . , n}. Suppose that (Gn) and (Hm) are sequences of random
elements taking values in a metric space S endowed with its Borel σ−field. Assume that

∀n≥ 1, ∀m ∈ {1, . . . , n}, Gn | {N(n) =m} d
=Hm.

Then:

(i) If Hm
d−→H as m→∞, we have Gn

d−→H as n→∞.

If moreover S is a linear space endowed with a norm ‖ · ‖, then:

(ii) If ‖Hm‖= OP(1), we have ‖Gn‖= OP(1).

Finally, in the case S = R:

(iii) If Hm
P−→+∞ as m→∞, we have Gn

P−→+∞ as n→∞.



24

PROOF. Use the law of total probability to write, for any positive integer m0 and any
Borel subset A of S,

P(Gn ∈A) = P(Gn ∈A,N(n)≤m0) +

n∑
m=m0+1

P(Gn ∈A |N(n) =m)P(N(n) =m)

= P(Gn ∈A,N(n)≤m0) +

n∑
m=m0+1

P(Hm ∈A)P(N(n) =m).(45)

To show (i), let A be a continuity set of H (in the sense that P(H ∈ ∂A) = 0, where ∂A is the
topological boundary of A). By the Portmanteau theorem, there is an integer m0 such that
for m>m0, |P(Hm ∈A)− P(H ∈A)| ≤ ε/3. With this choice of m0 we have, for n large
enough,

|P(Gn ∈A)− P(H ∈A)|

≤ P(Gn ∈A,N(n)≤m0) + P(H ∈A)P(N(n)≤m0) +
ε

3

n∑
m=m0+1

P(N(n) =m)

≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves (i). To show statements (ii) and (iii), deduce from (45) that for any m0,

P(Gn ∈A)≤ sup
m>m0

P(Hm ∈A) + o(1) as n→∞.

Fix ε > 0. To prove (ii), letC > 0 andm0 be such that P(‖Hm‖>C)≤ ε/2 for anym>m0,
and apply the above inequality with A being the complement of the closed ball with centre
the origin and radius C along with this choice of m0 to get P(‖Gn‖ > C) ≤ ε for n large
enough, which is the desired result. Finally, to prove (iii), pick an arbitrary t and set A =
At = (−∞, t]. There is an integer m0 such that P(Hm ∈ At) ≤ ε/2 for m>m0; applying
the above inequality with this choice of m0 yields P(Gn ∈At)≤ ε for n large enough, which
is (iii).

Our next result is a technical extension of Theorem 2.1 to the case when the sample size n
is random. This will be key to the proof of our main theorems in Sections 3.2 and 3.3, where
one has to work with a selected subset of observations whose size N is indeed random.

LEMMA C.5. Assume that there is δ > 0 such that E|ε−|2+δ <∞, that ε satisfies condi-
tion C1(γ) with 0< γ < 1/2 and τn ↑ 1 is such that n(1− τn)→∞. Let N =N(n)

P−→∞
be a random sequence of integers that, for each n, takes its values in {0,1, . . . , n}. Suppose
that, for any n and on the event {N > 0}, ε̂(n)i and ε(n)i , 1≤ i≤N are given such that

• For any n≥ 1 and any m ∈ {1, . . . , n}, the distribution of (ε
(n)
1 , . . . , ε

(n)
N ) given N =m

is the distribution of m independent copies of ε,
• We have √

N(1− τN ) max
1≤i≤N

|ε̂(n)i − ε
(n)
i |

1 + |ε(n)i |
P−→ 0.

Let finally ξ̂τN (ε) = arg minu∈R
∑N

i=1 ητN (ε̂
(n)
i −u) on {N > 0} and 0 otherwise, as well as

ψN (u) =
1

2ξ2τN (ε)

N∑
i=1

[
ητN

(
ε
(n)
i − ξτN (ε)− uξτN (ε)√

N(1− τN )

)
− ητN (ε

(n)
i − ξτN (ε))

]
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and χN (u) =
1

2ξ2τN (ε)

N∑
i=1

[
ητN

(
ε̂
(n)
i − ξτN (ε)− uξτN (ε)√

N(1− τN )

)
− ητN (ε̂

(n)
i − ξτN (ε))

]

on {N > 0}, and 0 otherwise. Then we have χN (u)−ψN (u)
P−→ 0 as n→∞ and√

N(1− τN )

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

PROOF. To show that χN (u)− ψN (u)
P−→ 0, following the ideas of the proof of Theo-

rem 2.1, it is enough to prove that

(46) T1,N =

√
1− τN

ξτN (ε)
√
N

N∑
i=1

|ε̂(n)i − ε
(n)
i |

P−→ 0

and that, if IN (u) = [0, |u|ξτN (ε)/
√
N(1− τN )],

T2,N (u) =
2

ξτN (ε)
√
N(1− τN )

×
N∑
i=1

sup
|t|∈IN (u)

|ε̂(n)i − ε
(n)
i |1{ε

(n)
i − ξτN (ε)− t >min(ε

(n)
i − ε̂

(n)
i ,0)}

P−→ 0.(47)

Clearly, since N =N(n)
P−→∞ and in particular N > 0 with arbitrarily large probability,

T1,N = oP

(
1

N

N∑
i=1

(1 + |ε(n)i |)

)
= oP(1)

where the law of large numbers is combined with the de-conditioning Lemma C.4(i), to show
that N−1

∑N
i=1(1 + |ε(n)i |)

P−→ 1 + E|ε|<∞. This proves (46). We now turn to the control

of T2,N (u). Use that N =N(n)
P−→∞ and follow the ideas leading to (11) in the proof of

Theorem 2.1 to find, for n large enough,

ε
(n)
i − ξτN (ε)− t >min(ε

(n)
i − ε̂

(n)
i ,0)⇒ ε

(n)
i >

1

6
ξτN (ε)

with arbitrarily large probability, irrespective of i ∈ {1, . . . ,N} and t such that |t| ∈ IN (u).
Therefore, with arbitrarily large probability as n→∞:

T2,N (u)≤ 2

ξτN (ε)
√
N(1− τN )

N∑
i=1

|ε̂(n)i − ε
(n)
i |1

{
ε
(n)
i >

1

6
ξτN (ε)

}

= oP

(
1

NξτN (ε)(1− τN )

N∑
i=1

ε
(n)
i 1

{
ε
(n)
i >

1

6
ξτN (ε)

})
.

Combine Lemma A.1 with the de-conditioning Lemma C.4(i) to get

T2,N (u) = oP(1).
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This is (47). Combine (46) and (47) to get χN (u)−ψN (u)
P−→ 0. Now a combination of the

conclusion of the proof of Theorem 2 in [4] and the de-conditioning Lemma C.4(i) yields

χN (u) = ψN (u) + oP(1)
d−→−uZ

√
2γ

1− 2γ
+
u2

2γ
as n→∞

in the sense of finite-dimensional convergence, with Z being standard Gaussian. Since χN (u)
is convex in u, the conclusion follows using the convexity lemma stated as Theorem 5 in [15].

Lemma C.6(i) below is a technical extension of Lemma A.3 to the case of a random sam-
ple size. It is essential in, among others, proving that the Hill estimator based on a random
number of residuals is asymptotically Gaussian, which is stated below as Lemma C.6(ii); this
will be used extensively in Sections 3.2 and 3.3.

LEMMA C.6. Let k = k(n)→∞ be a sequence of integers with k/n→ 0. Assume that
ε has an infinite right endpoint. Let N = N(n)

P−→∞ be a random sequence of integers
that, for each n, takes its values in {0,1, . . . , n}. Suppose that, for any n and on the event
{N > 0}, ε̂(n)i and ε(n)i , 1≤ i≤N are given such that

• For any n≥ 1 and any m ∈ {1, . . . , n}, the distribution of (ε
(n)
1 , . . . , ε

(n)
N ) given N =m

is the distribution of m independent copies of ε,
• We have

RN := max
1≤i≤N

|ε̂(n)i − ε
(n)
i |

1 + |ε(n)i |
P−→ 0.

(i) Then we have both

sup
0<s≤1

∣∣∣∣∣∣
ε̂
(n)
N−bk(N)sc,N

ε
(n)
N−bk(N)sc,N

− 1

∣∣∣∣∣∣= OP(RN ) and sup
0<s≤1

∣∣∣∣∣∣log

 ε̂(n)N−bk(N)sc,N

ε
(n)
N−bk(N)sc,N

∣∣∣∣∣∣= OP(RN ).

Here by convention ε̂(n)N−bk(N)sc,N and ε(n)N−bk(N)sc,N are equal to 1 on the event {N = 0}.

(ii) If moreover ε satisfies condition C2(γ, ρ,A) and τn ↑ 1 is such that n(1 − τn)→∞,√
n(1− τn)A((1− τn)−1)→ λ ∈R and

√
N(1− τN )RN

P−→ 0, then the Hill estimator

γ̂bN(1−τN )c =
1

bN(1− τN )c

bN(1−τN )c∑
i=1

log
ε̂
(n)
N−i+1,N

ε̂
(n)
N−bN(1−τN )c,N

is such that
√
N(1− τN )(γ̂bN(1−τN )c − γ)

d−→N (λ/(1− ρ), γ2).

PROOF. We follow the proof of Lemma A.3. On the event {N > 0}∩{RN ≤ 1/4}, having
arbitrarily high probability, we may write

∀i ∈ {1, . . . ,N}, ε(n)i,N −RN (1 + |ε(n)i,N |)≤ ε̂
(n)
i,N ≤ ε

(n)
i,N +RN (1 + |ε(n)i,N |).

Given N = m, the random variable ε(n)N−k(N),N has the same distribution as εm−k(m),m,
the (m − k(m))th order statistic of a sample of m independent copies of ε. Since
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εm−k(m),m
P−→ +∞ as m → ∞, we obtain likewise ε

(n)
N−k(N),N

P−→ +∞ by the de-
conditioning Lemma C.4(iii). On the event An := {N > 0} ∩ {RN ≤ 1/4} ∩ {εN−k(N),N ≥
1}, whose probability tends to 1, we have

∀i≥N − k(N), (1−RN )ε
(n)
i,N −RN ≤ ε̂

(n)
i,N ≤ (1 +RN )ε

(n)
i,N +RN .

Therefore, on AN ,

∀s ∈ (0,1], −2RN ≤
ε̂
(n)
N−bk(N)sc,N

ε
(n)
N−bk(N)sc,N

− 1≤ 2RN .

Mimic then the final stages of the proof of Lemma A.3 to conclude the proof of (i).

(ii) Define

γ̃bN(1−τN )c =
1

bN(1− τN )c

bN(1−τN )c∑
i=1

log
ε
(n)
N−i+1,N

ε
(n)
N−bN(1−τN )c,N

.

By (i) and the assumption
√
N(1− τN )RN

P−→ 0,√
N(1− τN )(γ̂bN(1−τN )c − γ) =

√
N(1− τN )(γ̃bN(1−τN )c − γ) + oP(1).

Combine Lemma C.4(i) and Theorem 3.2.5 in [6] to conclude the proof of (ii).

Lemma C.7 contains the crucial arguments behind our construction in Section 3.3.

LEMMA C.7. Work in model (M3). Assume that ε satisfies condition C1(γ) and that K0

is a measurable subset of the support of X such that P(X ∈K0)> 0.

(i) There exists τc ∈ (0,1) such that qτ (Y |x) = g(x) +σ(x)qτ (ε) for any τ ∈ [τc,1] and any
x in the support of X .

(ii) If E|ε−|<∞ and 0< γ < 1, one has

ξτ (Y |x) = g(x) + σ(x)ξτ (max(ε, (y0 − g(x))/σ(x))).

In particular the expectile ξτ (Y |X = x) is asymptotically equivalent to ξτ (g(X) +
σ(X)ε|X = x) as τ ↑ 1.

(iii) The probability P(ε > (y0 − g(X))/σ(X),X ∈K0) is not zero. Let e have the same
distribution as (Y − g(X))/σ(X) given that g(X) + σ(X)ε > y0 and X ∈K0. Then
for t so large that (y0 − g(X))/σ(X)≤ t with probability 1,

P(e > t) =
P(ε > t)

P(ε > (y0 − g(X))/σ(X) |X ∈K0)
.

In particular, e satisfies condition C1(γ).
(iv) Let p= P(ε > (y0−g(X))/σ(X) |X ∈K0). Then qτ (ε)/qτ (e)→ pγ as τ ↑ 1. If more-

over E|ε−|<∞ and 0< γ < 1, then ξτ (ε)/ξτ (e)→ pγ as τ ↑ 1.
(v) If, in addition to E|ε−| <∞ and 0 < γ < 1, the random variable ε satisfies condition
C2(γ, ρ,A), then e satisfies condition C2(γ, ρ, p−ρA) and, as τ ↑ 1,

pγ
ξτ (e)

ξτ (ε)
= 1 + pγ

γ(γ−1 − 1)γ

qτ (ε)

(
E
[
ε

∣∣∣∣ε > y0 − g(X)

σ(X)
,X ∈K0

]
+ o(1)

)
+
p−ρ − 1

ρ

(
1 + ρ

[
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

]
+ o(1)

)
A((1− τ)−1).
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(vi) Under the assumptions of (v), as τ ↑ 1,

ξτ (Y |x)

g(x) + σ(x)ξτ (ε)

= 1 +
γ(γ−1 − 1)γ

qτ (ε)

(
E
[
max

(
ε,
y0 − g(x)

σ(x)

)]
+ o(1)

)
+ o(|A((1− τ)−1)|).

PROOF. The key point is to remark that Y = max(g(X) + σ(X)ε, y0). By independence
between X and ε, the conditional distribution of Y given X = x is then the distribution of
max(g(x) + σ(x)ε, y0) = g(x) + σ(x) max(ε, (y0 − g(x))/σ(x)).

(i) The τ th conditional quantile of Y given X = x is

qτ (Y |x) = g(x) + σ(x) max(qτ (ε), (y0 − g(x))/σ(x)).

Since g and 1/σ are bounded on the support of X and qτ (ε)→∞ as τ ↑ 1, one has qτ (ε)>
(y0 − g(x))/σ(x) for τ large enough, irrespective of x. Conclude that there is τc ∈ (0,1)
with qτ (Y |x) = g(x) + σ(x)qτ (ε) for any τ ∈ [τc,1] and any x in the support of X , as
required.

(ii) By location equivariance and positive homogeneity of expectiles, the τ th conditional
expectile of Y given X = x is

ξτ (Y |x) = g(x) + σ(x)ξτ (max(ε, (y0 − g(x))/σ(x))).

To conclude, it is sufficient to show that for any t0, the extreme expectiles of ε and max(ε, t0)
are asymptotically equivalent. To do so we note that the definition of the τ th unconditional
expectile ξτ (ε) of ε as

ξτ (ε) = arg min
θ∈R

E(ητ (ε− θ)− ητ (ε))

can equivalently be obtained as the τ th quantile associated to the distribution function E
defined as

1−E(y) =
E
[
(ε− y)1{ε>y}

]
2E
[
(ε− y)1{ε>y}

]
+ y−E[ε]

.

See e.g. the final paragraph of p.373 in [1]. Similarly the τ th expectile ξτ (max(ε, t0)) of
max(ε, t0) is obtained as the τ th quantile associated to the distribution function E0 defined
as

1−E0(y) =
E
[
(max(ε, t0)− y)1{max(ε,t0)>y}

]
2E
[
(max(ε, t0)− y)1{max(ε,t0)>y}

]
+ y−E[max(ε, t0)]

.

It is straightforward to check that for y > t0

1−E0(y) =
E
[
(ε− y)1{ε>y}

]
2E
[
(ε− y)1{ε>y}

]
+ y−E[max(ε, t0)]

.

Lemma 3(i) in [18] (with f therein chosen as the identity function and a= 1) entails that y 7→
1/(1−E(y)) and y 7→ 1/(1−E0(y)) are asymptotically equivalent as y→∞ and regularly
varying with positive index. Let U and U0 denote the pertaining tail quantile functions, i.e. the
left-continuous inverses of 1/(1−E) and 1/(1−E0); these are also regularly varying, and
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we will conclude by proving that U and U0 are asymptotically equivalent. A combination of
Equations (1.2.26) and (1.2.28) in [6] and the regular variation property of U entails

lim
t→∞

t−1

(1−E)(U(t))
= lim
t→∞

t−1

(1−E0)(U(t))
= lim
t→∞

t−1

(1−E0)(U0(t))
= 1,

lim
t→∞

t−1U(1/(1−E)(t)) = lim
t→∞

t−1U(1/(1−E0)(t)) = lim
t→∞

t−1U0(1/(1−E0)(t)) = 1.

Apply Proposition B.1.9.10 in [6] to obtain that U and U0 are indeed asymptotically equiva-
lent, thus completing the proof of (ii).

(iii) First of all, if PX denotes the distribution of X ,

P(ε > (y0 − g(X))/σ(X),X ∈K0) =

∫
K0

P(ε > (y0 − g(x))/σ(x))PX(dx)> 0

because P(ε > (y0− g(x))/σ(x))> 0 for any x (since ε is heavy-tailed) and P(X ∈K0)>
0. Write then

P(e > t) = P(ε > t |g(X) + σ(X)ε > y0,X ∈K0)

=
P(ε > t, ε > (y0 − g(X))/σ(X),X ∈K0)

P(ε > (y0 − g(X))/σ(X),X ∈K0)
.

It is indeed possible to take t so large that (y0− g(X))/σ(X)≤ t with probability 1 since g
and 1/σ are bounded on the support of X . For such t,

P(e > t) =
P(ε > t,X ∈K0)

P(ε > (y0 − g(X))/σ(X),X ∈K0)
=

P(ε > t)

P(ε > (y0 − g(X))/σ(X) |X ∈K0)

by independence between X and ε, which is the required result.

(iv) That qτ (ε)/qτ (e)→ pγ as τ ↑ 1 directly follows from the identity P(e > t) = p−1P(ε >
t) for t large enough, and therefore qτ (e) = q1−p(1−τ)(ε) for τ close enough to 1, combined
with the regular variation property of t 7→ U(t) = q1−t−1(ε). The convergence ξτ (ε)/ξτ (e)→
pγ as τ ↑ 1 follows from the asymptotic proportionality relationship between extreme quan-
tiles and expectiles applied to both e and ε (which have the same extreme value index).

(v) Recall from the proof of (iv) that for τ close enough to 1, qτ (e) = q1−p(1−τ)(ε). Set
V (t) = q1−t−1(e) and pick x > 0. For t large enough, we find

V (tx)

V (t)
=
U(p−1tx)

U(p−1t)
= xγ +A(p−1t)

(
xγ
xρ − 1

ρ
+ o(1)

)
= xγ + p−ρA(t)

(
xγ
xρ − 1

ρ
+ o(1)

)
by assumption C2(γ, ρ,A) on ε and regular variation of |A| with index ρ (see Section 2.3
in [6]). This exactly means that e satisfies condition C2(γ, ρ, p−ρA). Write then

(48) pγ
ξτ (e)

ξτ (ε)
= pγ

qτ (e)

qτ (ε)
× (γ−1 − 1)γ

ξτ (e)

qτ (e)
× (γ−1 − 1)−γ

qτ (ε)

ξτ (ε)
.

Use again the identity qτ (e) = q1−p(1−τ)(ε) for τ close enough to 1 to get

(49) pγ
qτ (e)

qτ (ε)
= pγ

U(p−1(1− τ)−1)

U((1− τ)−1)
= 1 +

(
p−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1).
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Proposition 1(i) in [5] applied to the random variable ε (having expectation 0) entails

(γ−1 − 1)−γ
qτ (ε)

ξτ (ε)

= 1−
(

(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1) + o

(
1

qτ (ε)

)
.(50)

This same result applied to the random variable e, which satisfies condition C2(γ, ρ, p−ρA),
gives

(γ−1 − 1)γ
ξτ (e)

qτ (e)
= 1 +

γ(γ−1 − 1)γ

qτ (e)
(E(e) + o(1))

+

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
p−ρA((1− τ)−1)

= 1 + pγ
γ(γ−1 − 1)γ

qτ (ε)

(
E
[
ε

∣∣∣∣ε > y0 − g(X)

σ(X)
,X ∈K0

]
+ o(1)

)
+ p−ρ

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1).(51)

Combine (48), (49), (50) and (51) to get (v).

(vi) From (ii),

ξτ (Y |x)

g(x) + σ(x)ξτ (ε)
− 1 =

σ(x)[ξτ (max(ε, (y0 − g(x))/σ(x)))− ξτ (ε)]

g(x) + σ(x)ξτ (ε)

=

(
ξτ (max(ε, (y0 − g(x))/σ(x)))

ξτ (ε)
− 1

)
(1 + o(1))

because ξτ (ε)→∞ as τ ↑ 1. To complete the proof we show that for any t0,

ξτ (max(ε, t0))

ξτ (ε)
= 1 +

γ(γ−1 − 1)γ

qτ (ε)
(E[max(ε, t0)] + o(1)) + o(|A((1− τ)−1)|)

as τ ↑ 1. This is done by, first, writing

ξτ (max(ε, t0))

ξτ (ε)
=
ξτ (max(ε, t0))

qτ (max(ε, t0))
× qτ (max(ε, t0))

qτ (ε)
× qτ (ε)

ξτ (ε)
=
ξτ (max(ε, t0))

qτ (max(ε, t0))
× qτ (ε)

ξτ (ε)

for τ close enough to 1. Then, using the fact that max(ε, t0) and ε have the same quantile
function for τ large enough, we obtain, by Proposition 1(i) in [5],

(γ−1 − 1)γ
ξτ (max(ε, t0))

qτ (max(ε, t0))
= 1 +

γ(γ−1 − 1)γ

qτ (ε)
(E[max(ε, t0)] + o(1))

+

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ
+ o(1)

)
A((1− τ)−1).

Combining this with (50) completes the proof.

Our final auxiliary result is a direct extension of Theorem 2.1 to the case when the residuals
ε̂
(n)
i approximate an array ε(n)i , with 1 ≤ i ≤ sn→∞. This will be useful to deal with the

case of ARMA and GARCH models.



EXTREME CONDITIONAL EXPECTILE ESTIMATION 31

LEMMA C.8. Let (sn) be a positive sequence of integers tending to infinity. Assume that,
for any n, the ε(n)i , 1≤ i≤ sn, are independent copies of a random variable ε such that there
is δ > 0 with E|ε−|2+δ <∞ and ε satisfies condition C1(γ) with 0 < γ < 1/2. Let τn ↑ 1

be such that sn(1 − τn)→∞. Suppose moreover that the array of random variables ε̂(n)i ,
1≤ i≤ sn, satisfies √

sn(1− τn) max
1≤i≤sn

|ε̂(n)i − ε
(n)
i |

1 + |ε(n)i |
P−→ 0.

Define

ξ̂τn(ε) = arg min
u∈R

sn∑
i=1

ητn(ε̂
(n)
i − u).

Then we have
√
sn(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.

APPENDIX D: WORKED-OUT EXAMPLES: PROOFS OF THE MAIN RESULTS

PROOF OF COROLLARY 3.1. (i) The key is to write√
n(1− τn)

(
ξ̂τn(Y |x)

ξτn(Y |x)
− 1

)

=
(1 + θ>x)ξτn(ε)

α+β>x+ (1 + θ>x)ξτn(ε)
×
√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)

+

√
1− τn

α+β>x+ (1 + θ>x)ξτn(ε)
×
√
n

[
α̂− α+

(
β̂−β

)>
x

]

+

√
1− τn ξ̂τn(ε)

α+β>x+ (1 + θ>x)ξτn(ε)
×
√
n(θ̂− θ)>x.

Now

ε̂
(n)
i − εi =

α− α̂+ (β− β̂)>Xi

1 + θ̂>Xi

+
(θ− θ̂)>Xi

1 + θ̂>Xi

εi.

Then clearly, by Lemma C.1 and since X has a compact support,

(52)
√
n max

1≤i≤n

|ε̂(n)i − εi|
1 + |εi|

= OP(1),

which proves the high-level condition (2). We conclude by combining Lemma C.1, Theo-
rem 2.1 and the convergence ξτn(ε)→∞.

(ii) Combine (i) with the second convergence in Theorem 2.3.

PROOF OF THEOREM 3.1. (i) We first show

(53)
√
N(1− τN )

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
d−→N

(
0,

2γ3

1− 2γ

)
.
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Let ε1,K0
, . . . , εN,K0

be those noise variables whose corresponding covariates Xi ∈K0, and

note that given N = m > 0, (ε1,K0
, . . . , εN,K0

)
d
= (ε1, . . . , εm). Besides, N = N(K0, n) is

a binomial random variable with parameters n and P(X ∈ K0), so that N/n P−→ P(X ∈
K0)> 0. Since τn = 1− n−a with a ∈ (1/5,1),√

N(1− τN ) =N (1−a)/2 = OP(n(1−a)/2) = oP(n2/5/
√

logn)

so that√
N(1− τN ) max

1≤i≤N

|ε̂(n)i,K0
− εi,K0

|
1 + |εi,K0

|
= oP

(
n2/5√
logn

max
1≤i≤n

|ε̂(n)i − εi|
1 + |εi|

1{Xi ∈K0}

)
= oP(1).

Apply then Lemma C.5 to get (53). Statement (i) then follows in a straightforward way from
Proposition C.1 and the representation

ξ̂τN (Y |x)

ξτN (Y |x)
− 1 =

ĝhn,tn(β̂>x)− g(β>x)

g(β>x) + σ(β>x)ξτN (ε)
+

σ̂hn,tn(β̂>x)− σ(β>x)

g(β>x) + σ(β>x)ξτN (ε)
ξ̂τN (ε)

+
σ(β>x)

σ(β>x) + g(β>x)/ξτN (ε)

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
.

(ii) Set ξ̂?τ ′N (ε) =

(
1− τ ′N
1− τN

)−γ
ξ̂τN (ε). Use the ideas of the proof of Theorem 2.3 to find that

√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1

)
and

√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (ε)

ξτ ′N (ε)
− 1

)
have the same asymptotic distribution. Our result is then shown by using the assumption√
N(1− τN )(γ − γ)

d−→ Γ, as well as convergence (53) and by adapting directly the proof
of Theorem 5 of [5] to obtain√

N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (ε)

ξτ ′N (ε)
− 1

)
d−→ Γ.

We omit the details.

PROOF OF THEOREM 3.2. First of all, define

ξ̂τN (ε) :=

(
N

N0

)γ̂bN(1−τN )c

ξ̂τN (e)

so that ξ̂τN (Y |x) = ĝ(x) + σ̂(x)ξ̂τN (ε). Then

ξ̂τN (Y |x)

ξτN (Y |x)
− 1

=

(
ĝ(x) + σ̂(x)ξ̂τN (ε)

g(x) + σ(x)ξτN (ε)
− 1

)
g(x) + σ(x)ξτN (ε)

ξτN (Y |x)

+

(
g(x) + σ(x)ξτN (ε)

ξτN (Y |x)
− 1

)

=

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
(1 + oP(1)) + oP(|ĝ(x)− g(x)|) + OP

(∣∣∣∣ σ̂(x)

σ(x)
− 1

∣∣∣∣)
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− γ(γ−1 − 1)γ

qτN (ε)

(
E
[
max

(
ε,
y0 − g(x)

σ(x)

)]
+ oP(1)

)
+ oP(|A((1− τN )−1)|)

by Lemma C.7(vi), the consistency assumption on ĝ and σ̂, and N = N(n)
P−→∞. Now

1/vn = oP(1/
√
N(1− τN )), because n1−a/v2n→ 0 and N(1 − τN ) = N1−a ≤ n1−a. The

vn−consistency of ĝ and σ̂ then entails√
N(1− τN )

(
ξ̂τN (Y |x)

ξτN (Y |x)
− 1

)
=
√
N(1− τN )

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
(1 + oP(1))

− γ(γ−1 − 1)γE
[
max

(
ε,
y0 − g(x)

σ(x)

)]
µ+ oP(1).(54)

It is therefore sufficient to consider the convergence of ξ̂τN (ε). Write

log

(
ξ̂τN (ε)

ξτN (ε)

)
= (γ̂bN(1−τN )c − γ) log

(
N

N0

)
+ γ

[
log

(
N

N0

)
− log p

]

+ log

(
ξ̂τN (e)

ξτN (e)

)
+ log

(
pγ
ξτN (e)

ξτN (ε)

)
.

The quantity N/N0 is a
√
n−consistent estimator of p > 0, thus making the second term a

OP(1/
√
n) = oP(1/

√
N(1− τN )), and the fourth term is controlled with Lemma C.7(v) and

a Taylor expansion. Therefore

log

(
ξ̂τN (ε)

ξτN (ε)

)
= [log p+ oP(1)](γ̂bN(1−τN )c − γ) + log

(
ξ̂τN (e)

ξτN (e)

)

+ pγγ(γ−1 − 1)γ
(
E
[
ε

∣∣∣∣ε > y0 − g(X)

σ(X)
,X ∈K0

])
µ√

N(1− τN )

+
p−ρ − 1

ρ

(
1 + ρ

[
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

])
λ√

N(1− τN )

+ oP

(
1√

N(1− τN )

)
.(55)

It remains to analyse the joint convergence of γ̂bN(1−τN )c and ξ̂τN (e). First, clearly

max
1≤i≤N

|ê(n)i − ei|
1 + |ei|

= OP(1/vn) = oP(1/
√
N(1− τN )),

which is (2) adapted to the random numberN of noncensored observations (see Lemma C.6).
Here the vn−uniform consistency of ĝ and σ̂ onK0 and boundedness of 1/σ on the support of
X were used, along with again n1−a/v2n→ 0, and the identity N(1− τN ) =N1−a ≤ n1−a.
Set then

γ̂bN(1−τN )c =
1

bN(1− τN )c

bN(1−τN )c∑
i=1

log
ê
(n)
N−i+1,N

ê
(n)
N−bN(1−τN )c,N

and γ̃bN(1−τN )c =
1

bN(1− τN )c

bN(1−τN )c∑
i=1

log
eN−i+1,N

eN−bN(1−τN )c,N
.
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By Lemma C.6(i),

γ̂bN(1−τN )c = γ̃bN(1−τN )c + oP(1/
√
N(1− τN ))

and therefore

(56)
√
N(1− τN )(γ̂bN(1−τN )c − γ) =

√
N(1− τN )(γ̃bN(1−τN )c − γ) + oP(1).

Let further

ξ̂τN (e) = arg min
u∈R

N∑
i=1

ητN (ê
(n)
i − u) and ξ̃τN (e) = arg min

u∈R

N∑
i=1

ητN (ei − u)

along with

ψN (u) =
1

2ξ2τN (e)

N∑
i=1

[
ητN

(
ei − ξτN (e)− uξτN (e)√

N(1− τN )

)
− ητN (ei − ξτN (e))

]

and χN (u) =
1

2ξ2τN (e)

N∑
i=1

[
ητN

(
ê
(n)
i − ξτN (e)− uξτN (e)√

N(1− τN )

)
− ητN (ê

(n)
i − ξτN (e))

]
.

Lemma C.5 entails χN (u) = ψN (u) + oP(1). Recall the notation ϕτ (y) = |τ − 1{y ≤ 0}|y
and write, as in the proof of Theorem 2 in [4], ψN (u) =−uT1,N + T2,N (u) with

T1,N =
1√

N(1− τN )

N∑
i=1

1

ξτN (e)
ϕτN (ei − ξτN (e))

and

T2,N (u)

=− 1

ξ2τN (e)

N∑
i=1

∫ uξτN (e)/
√
N(1−τN )

0
(ϕτN (ei − ξτN (e)− z)−ϕτN (ei − ξτN (e)))dz.

The distribution of the ei, 1 ≤ i ≤ N , given N = m, is the distribution of m independent
copies of e. Using the arguments of the proof of Theorem 2 in [4] and Lemma C.4(i) and (ii),
we obtain T1,N = OP(1) and T2,N (u)

P−→ u2/2γ. It follows that

χN (u) = ψN (u) + oP(1) =
u2

2γ
− uT1,N + oP(1).

Conclude, by the basic corollary on p.2 in [13], that the minimisers of χN and ψN are both
only a oP(1) away from the minimiser of the right-hand side, and thus only a oP(1) away
from each other. This can be rephrased as

(57)
√
N(1− τN )

(
ξ̂τN (e)

ξτN (e)
− 1

)
=
√
N(1− τN )

(
ξ̃τN (e)

ξτN (e)
− 1

)
+ oP(1).

Finally, the distribution of the pair (γ̃bN(1−τN )c, ξ̃τN (e)) given N = m is equal to the dis-
tribution of their counterparts (qγbm(1−τm)c, qξτm(e)) based on m independent copies of e.
Combine then Theorem 3 in [5], which provides the bivariate asymptotic distribution of
(qγbm(1−τm)c, qξτm(e)), with Lemma C.4(i) to get

(58)
√
N(1− τN )

(
γ̃bN(1−τN )c − γ,

ξ̃τN (e)

ξτN (e)
− 1

)
d−→N (B(ρ, p),V(γ))
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with B(ρ, p) = (p−ρλ/(1− ρ),0) (recall that e satisfies condition C2(γ, ρ, p−ρA)) and

V(γ) =


γ2

γ3(γ−1 − 1)γ

(1− γ)2

γ3(γ−1 − 1)γ

(1− γ)2
2γ3

1− 2γ

 .

Combining (54), (55), (56), (57), (58) with the delta method completes the proof of (i).

(ii) Define

ξ̂?τ ′N (ε) :=

(
1− τ ′N
1− τN

)−γ̂bN(1−τN )c
(
N

N0

)γ̂bN(1−τN )c

ξ̂τN (e)

so that ξ̂?τ ′N (Y |x) = ĝ(x) + σ̂(x)ξ̂?τ ′N (ε). Then

ξ̂?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1 =

(
ξ̂?τ ′N (ε)

ξτ ′N (ε)
− 1

)
(1 + oP(1)) + oP(|ĝ(x)− g(x)|) + OP

(∣∣∣∣ σ̂(x)

σ(x)
− 1

∣∣∣∣)
+ OP(1/qτ ′N (ε)) + oP(|A((1− τ ′N )−1)|)

by Lemma C.7(vi), the consistency assumption on ĝ and σ̂, and N =N(n)
P−→∞. Our bias

conditions combined with the regular variation properties of t 7→ q1−t−1(ε) and t 7→ |A(t)|
and the vn−uniform consistency of ĝ and σ̂ on K0 yield

ξ̂?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1 =

(
ξ̂?τ ′N (ε)

ξτ ′N (ε)
− 1

)
(1 + oP(1)) + oP(1/

√
N(1− τN )).

Since, from the proof of (i),√
N(1− τN )(γ̂bN(1−τN )c − γ)

d−→N (p−ρλ/(1− ρ), γ2)

and
√
N(1− τN )

(
ξ̂τN (ε)

ξτN (ε)
− 1

)
= OP(1),

a direct adaptation of the proof of Theorem 5 of [5] produces√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̂?τ ′N (ε)

ξτ ′N (ε)
− 1

)
=
√
N(1− τN )(γ̂bN(1−τN )c − γ) + oP(1)

d−→N
(
p−ρ

λ

1− ρ
, γ2
)
.

We omit the details.

PROOF OF THEOREM 3.3. (i) Write first√
n(1− τn)

(
ξ̂τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)

=
ξτn(ε)∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτn(ε)
×
√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)
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+
√
n(1− τn)

∑p
j=1(φ̂j,n − φj)Yn+1−j∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτn(ε)

+
√
n(1− τn)

∑q
j=1(θ̂j,n − θj)εn+1−j∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτn(ε)

+
√
n(1− τn)

∑q
j=1 θ̂j,n(ε̂

(n)
n+1−j − εn+1−j)∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτn(ε)
.

To control the gap between residuals and unobserved innovations (and hence check the
high-level condition (2)), we rewrite the ARMA model in vector form, namely as Yt,p =
AYt−1,p −Bεt−1,q + εt,q with

Yt,p =


Yt
Yt−1

...
Yt−p+1

 andA=


φ1 · · · · · · · · · φp
1 0 · · · · · · 0
0 1 · · · · · · 0
...

. . . . . . . . .
...

0 · · · · · · 1 0

 ,

εt,q =


εt
εt−1

...
εt−q+1

 andB =


−θ1 · · · · · · · · · −θq

1 0 · · · · · · 0
0 1 · · · · · · 0
...

. . . . . . . . .
...

0 · · · · · · 1 0

 .

Set r = max(p, q). Since ε̂(n)t = Yt −
∑p

j=1 φ̂j,nYt−j −
∑q

j=1 θ̂j,nε̂
(n)
t−j for r+ 1≤ t≤ n, we

have Yt,p = ÂnYt−1,p − B̂nε̂
(n)
t−1,q + ε̂

(n)
t,q , where the notation is defined by replacing the εt,

φj and θj by the ε̂(n)t , φ̂j,n and θ̂j,n. It follows that for such t

ε̂
(n)
t,q − εt,q = (A− Ân)Yt−1,p − (B − B̂n)ε̂

(n)
t−1,q +B(ε̂

(n)
t−1,q − εt−1,q)

=

t−r∑
j=1

Bj−1(A− Ân)Yt−j,p −
t−r∑
j=1

Bj−1(B − B̂n)εt−j,q

−
t−r∑
j=1

Bj−1(B − B̂n)(ε̂
(n)
t−j,q − εt−j,q)−B

t−rεr,q(59)

because ε̂(n)r,q = 0. Observe now that by causality of (Yt)t∈Z, the Yt have the linear rep-
resentation Yt =

∑∞
j=0ψjεt−j , and it is a consequence of the arguments in the proof of

Theorem 3.1.1 in [3] that the ψj define a summable series and decay geometrically fast,
i.e. |ψj | ≤CRj for real constants C > 0 and R ∈ (0,1). Write, for 1≤ t≤ n,

|Yt| ≤
t−1∑
j=0

|ψj ||εt−j |+
∞∑
j=t

|ψj ||εt−j | ≤

 ∞∑
j=0

|ψj |

 max
1≤t≤n

|εt|+CR

∞∑
l=0

Rl|ε−l|.

The last sum on the right-hand side is finite with probability 1 because ε has a finite first mo-
ment. Conclude that max1≤t≤n |Yt|= OP(1 + max1≤t≤n |εt|). Since the εt are independent
and satisfy C1(γ), we find

(60) max
1≤t≤n

|εt|= OP(nγ+ι) and then max
1≤t≤n

|Yt|= OP(nγ+ι) for any ι > 0,
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by condition P(ε > x)/P(|ε| > x)→ ` ∈ (0,1] as x→∞, combined with Theorem 1.1.6
and Lemma 1.2.9 in [6], and Potter bounds (see e.g. Proposition B.1.9.5 in [6]). Notice now
that B is essentially the companion matrix of the polynomial Q(z) = 1 +

∑q
j=1 θjz

j . It is a
standard exercise in linear algebra to show that B has characteristic polynomial

det(λIp −B) = λq +

q∑
j=1

θjλ
q−j = λqQ(1/λ).

Since Q has no root z such that |z| ≤ 1, all eigenvalues of B must then have a modulus
smaller than 1, i.e. its spectral radius ρ(B) is smaller than 1. Let ‖ · ‖ denote indifferently the
supremum norm on Rd spaces and the induced operator norm on square matrices, and recall
that ‖Bj‖1/j → ρ(B) as j →∞ (this is in fact true for any operator norm), which means
in particular that the series

∑
j≥0 ‖Bj‖ is summable. Defining ε̂(n)1 = · · ·= ε̂

(n)
r−q = 0 for the

sake of convenience, we obtain

max
1≤t≤n

|ε̂(n)t − εt| ≤ max
r+1≤t≤n

|ε̂(n)t − εt|+ max
1≤t≤r

|εt|

≤ ‖A− Ân‖
∞∑
j=0

‖Bj‖ max
1≤t≤n

|Yt|+ ‖B − B̂n‖
∞∑
j=0

‖Bj‖ max
1≤t≤n

|εt|

+ ‖B − B̂n‖
∞∑
j=0

‖Bj‖ max
1≤t≤n

|ε̂(n)t − εt|+

(
1 + sup

j≥0
‖Bj‖

)
max
1≤t≤r

|εt|.

By
√
n−consistency of the φ̂j,n and θ̂j,n, ‖A − Ân‖ = OP(n−1/2) and ‖B − B̂n‖ =

OP(n−1/2). Isolate then max1≤t≤n |ε̂(n)t − εt| to conclude that

max
1≤t≤n

|ε̂(n)t − εt|= OP

(
1 + n−1/2

[
max
1≤t≤n

|Yt|+ max
1≤t≤n

|εt|
])

= OP(1)

by (60) and the assumption γ < 1/2. We now use (59) again, this time to control
maxtn≤t≤n |ε̂

(n)
t − εt| to apply Theorem 2.1 (for the sample size n− tn + 1 = n(1 + o(1)),

since the estimator ξ̂τn(ε) is based upon the last n − tn + 1 residuals). For t ≥ tn →∞,
‖Bt−rεr,q‖ ≤ ‖Bt−r‖‖εr,q‖ and t− r ≥ tn/2 for n large enough; hence, by (59), the bound

max
tn≤t≤n

|ε̂(n)t − εt|= OP

(
n−1/2

[
1 + max

1≤t≤n
|Yt|+ max

1≤t≤n
|εt|
]

+ sup
j≥tn/2

‖Bj‖

)
.

Since ‖Bj‖1/j→ ρ(B) ∈ [0,1) as j→∞, we have for n large enough

max
tn≤t≤n

|ε̂(n)t − εt|= OP

(
n−1/2

[
1 + max

1≤t≤n
|Yt|+ max

1≤t≤n
|εt|
]

+ (1− κ)tn
)

for some κ ∈ (0,1). We have
√
n(1− κ)tn→ 0 because tn/ logn→∞. Conclude that

max
tn≤t≤n

|ε̂(n)t − εt|
1 + |εt|

= OP

(
max
tn≤t≤n

|ε̂(n)t − εt|
)

= OP(nγ−1/2+ι) for all ι > 0

and therefore (2) is proved:√
n(1− τn) max

tn≤t≤n

|ε̂(n)t − εt|
1 + |εt|

= oP(1).

Complete the proof by combining the
√
n−consistency of the estimators φ̂j,n and θ̂j,n,

Lemma C.8 (an extension of Theorem 2.1 necessary here since at each step, the indices
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of the relevant εi may not be contained in those relevant to the previous step and thus, strictly
speaking, we do not work with a single i.i.d. sequence) and the convergence ξτn(ε)→∞.

(ii) Set

ξ̂?τ ′n(ε) =

(
1− τ ′n
1− τn

)−γ
ξ̂τn(ε)

and write√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)

=
ξτ ′n(ε)∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτ ′n(ε)
×

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(ε)

ξτ ′n(ε)
− 1

)

+

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
×

∑p
j=1(φ̂j,n − φj)Yn+1−j∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτ ′n(ε)

+

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
×

∑q
j=1(θ̂j,n − θj)εn+1−j∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτ ′n(ε)

+

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]
×

∑q
j=1 θ̂j,n(ε̂

(n)
n+1−j − εn+1−j)∑p

j=1 φjYn+1−j +
∑q

j=1 θjεn+1−j + ξτ ′n(ε)
.

Combine then what was obtained in (i) with the first convergence in Theorem 2.3.

PROOF OF THEOREM 3.4. (i) Recall that ω̂n, the α̂j,n and the β̂j,n are consistent estima-
tors of (strictly) positive parameters, and thus are positive with arbitrarily high probability as
n→∞. In what follows we implicitly work on this high probability event. Write√

n(1− τn)

(
ξ̂τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)
=
√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)

+
√
n(1− τn)

(
σ̂n+1

σn+1
− 1

)
ξ̂τn(ε)

ξτn(ε)
.

Let us first check the high-level condition (2). Define r = max(p, q). For any t with r+ 1≤
t≤ n,

(61)
|ε̂(n)t − εt|
1 + |εt|

≤

∣∣∣∣∣ σtσ̂
(n)
t

− 1

∣∣∣∣∣=
∣∣∣∣∣ σ2t − (σ̂

(n)
t )2

σ̂
(n)
t (σt + σ̂

(n)
t )

∣∣∣∣∣≤
∣∣∣∣∣ σ2t

(σ̂
(n)
t )2

− 1

∣∣∣∣∣ .
We focus on |(σ̂(n)t )2 − σ2t |. Note that vt,p =Zt,q +Bvt−1,p with

vt,p =


σ2t
σ2t−1

...
σ2t−p+1

 , Zt,q =


ω+

∑q
j=1αjY

2
t−j

0
...
0

 and B =


β1 · · · · · · · · · βp
1 0 · · · · · · 0
0 1 · · · · · · 0
...

. . . . . . . . .
...

0 · · · · · · 1 0

 .
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Similarly v̂(n)t,p = Ẑ
(n)
t,q + B̂nv̂

(n)
t−1,p where the notation is defined by replacing the σ2t , ω, the

αj and βj by the (σ̂
(n)
t )2, ω̂n, the α̂j,n and β̂j,n. For r+ 1≤ t≤ n then,

vt,p =

t−r−1∑
j=0

BjZt−j,q +Bt−rvr,p, v̂
(n)
t,p =

t−r−1∑
j=0

B̂j
nẐ

(n)
t−j,q + B̂t−r

n v̂(n)r,p

and therefore

v̂
(n)
t,p − vt,p

=

t−r−1∑
j=0

B̂j
n(Ẑ

(n)
t−j,q −Zt−j,q) +

t−r−1∑
j=0

(B̂j
n −Bj)Zt−j,q + B̂t−r

n v̂(n)r,p −Bt−rvr,p.

This readily provides

(σ̂
(n)
t )2 =

t−r−1∑
j=0

B̂j
n(1,1)

(
ω̂n +

q∑
i=1

α̂i,nY
2
t−j−i

)
+ (B̂t−r

n v̂(n)r,p )(1)

where u(1) denotes the first element of a vector u and A(1,1) the top left element of a
matrix A, and similarly

(σ̂
(n)
t )2 − σ2t =

t−r−1∑
j=0

B̂j
n(1,1)

(
ω̂n − ω+

q∑
i=1

(α̂i,n − αi)Y 2
t−j−i

)

+

t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))

(
ω+

q∑
i=1

αiY
2
t−j−i

)

+ (B̂t−r
n v̂(n)r,p −Bt−rvr,p)(1).(62)

We compare each term in (62) to (σ̂
(n)
t )2. First of all

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

B̂j
n(1,1)

(
ω̂n − ω+

q∑
i=1

(α̂i,n − αi)Y 2
t−j−i

)∣∣∣∣∣∣
≤
∣∣∣∣ ω̂n − ωω̂n

∣∣∣∣+ q∑
i=1

∣∣∣∣ α̂i,n − αiα̂i,n

∣∣∣∣= OP(n−1/2).(63)

Now B and B̂n are positive matrices, so that if κn := max1≤i≤p |β̂i,n − βi|, clearly B̂n ≤
(1 + κn)B elementwise and thus B̂j

n ≤ (1 + κn)jBj elementwise for any j. In particular
B̂j
n(1,1)≤ (1 +κn)jBj(1,1) and likewiseBj(1,1)≤ (1 +κn)jB̂j

n(1,1). Hence the bound

|B̂j
n(1,1)−Bj(1,1)| ≤ [(1 + κn)j − 1] max(Bj(1,1), B̂j

n(1,1))

≤ jκn(1 + κn)j−1 max(Bj(1,1), B̂j
n(1,1))

≤ jκn(1 + κn)2j−1Bj(1,1).(64)

Like in the proof of Theorem 3.3, let ‖ · ‖ denote indifferently the supremum norm on Rd
spaces and the induced operator norm on square matrices. Notice that |Bj(1,1)| ≤ ‖Bj‖;
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since ‖Bj‖1/j → ρ(B) ∈ [0,1) as j→∞ (to check that indeed the spectral radius ρ(B) ∈
[0,1), use Corollary 2.2 in [9]) and κn = OP(1/

√
n), we have

∞∑
j=0

|B̂j
n(1,1)−Bj(1,1)|= OP(κn) = OP(n−1/2).

Recalling that (σ̂
(n)
t )2 ≥ ω̂n

P−→ ω > 0, we therefore obtain

(65) max
r+1≤t≤n

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))

∣∣∣∣∣∣= OP(n−1/2).

Next we write, for any i ∈ {1, . . . , q},

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))αiY

2
t−j−i

∣∣∣∣∣∣≤
t−r−1∑
j=0

|B̂j
n(1,1)−Bj(1,1)|αiY 2

t−j−i

ω̂n + B̂j
n(1,1)α̂i,nY 2

t−j−i
.

Similarly to (64), |B̂j
n(1,1)−Bj(1,1)| ≤ jκn(1 + κn)2j−1B̂j

n(1,1). Thus, for any s > 0,

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))αiY

2
t−j−i

∣∣∣∣∣∣
≤ κn

αi
α̂i,n

t−r−1∑
j=0

j(1 + κn)2j−1
B̂j
n(1,1)α̂i,nY

2
t−j−i/ω̂n

1 + B̂j
n(1,1)α̂i,nY 2

t−j−i/ω̂n

≤ κn
αi
α̂i,n

t−r−1∑
j=0

j(1 + κn)2j−1

(
B̂j
n(1,1)α̂i,nY

2
t−j−i

ω̂n

)s

≤ κn ×
αi
α̂i,n

(
α̂i,n
ω̂n

)s
×
t−r−1∑
j=0

j(1 + κn)2j−1
(
(1 + κn)jBj(1,1)

)s
Y 2s
t−j−i

where the inequality x/(1 + x) ≤ xs, valid for any s and x > 0, was used. Because
|Bj(1,1)| ≤ ‖Bj‖ and ‖Bj‖1/j → ρ(B) ∈ [0,1) as j →∞, as well as κn → 0 in proba-
bility, we have

∞∑
j=0

j(1 + κn)2j−1((1 + κn)jBj(1,1))s <∞

with arbitrarily high probability as n→∞. Hence the bound

max
r+1≤t≤n

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))αiY

2
t−j−i

∣∣∣∣∣∣= OP

(
n−1/2 max

1≤t≤n
Y 2s
t

)
valid for any s > 0. Recall that there is s0 > 0 such that E(Y 2s0

1 ) <∞ (see Corollary 2.3
p.36 in [9]). Using the identity

E(Y 2s0
1 ) =

∫ ∞
0

P(Y 2s0
1 > y)dy <∞
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and noting that the function y 7→ P(Y 2s0
1 > y) is nonnegative and nonincreasing, it is a stan-

dard exercise to show that P(Y 2s0
1 > y) = o(y−1) as y→∞. Conclude that, for any s≤ s0,

nP(Y 2s
1 > ns/s0) = nP(Y 2s0

1 > n) = o(1), and then that

P
(

max
1≤t≤n

Y 2s
t > ns/s0

)
≤ nP(Y 2s

1 > ns/s0) = o(1),

of which a consequence is that max1≤t≤n Y
2s
t = OP(ns/s0) for any s ≤ s0. In particular,

since s can be chosen arbitrarily small,

(66) max
r+1≤t≤n

1

(σ̂
(n)
t )2

∣∣∣∣∣∣
t−r−1∑
j=0

(B̂j
n(1,1)−Bj(1,1))αiY

2
t−j−i

∣∣∣∣∣∣= OP(nι−1/2) for all ι > 0.

Finally, for t≥ tn and n large enough,

max
tn≤t≤n

1

(σ̂
(n)
t )2

|(B̂t−r
n v̂(n)r,p −Bt−rvr,p)(1)|

≤ 1

ω̂n
sup
j≥tn/2

{
‖B̂j

n‖+ ‖Bj‖
}

max
r−p+1≤t≤r

{
σ̂
(n)
t + σt

}
= OP

(
sup
j≥tn/2

{
‖B̂j

n‖+ ‖Bj‖
})

by consistency of ω̂n, definition of σ̂(n)r−p+1, . . . , σ̂
(n)
r and finiteness of at least a fractional

moment of the σt (and hence finiteness of the σt with probability 1; see Corollary 2.3 p.36
in [9]). Besides, it is a simple exercise in linear algebra to show that for a d× d matrix with
nonnegative elements, ‖A‖= max1≤i≤d

∑d
j=1A(i, j); consequently

max
tn≤t≤n

1

(σ̂
(n)
t )2

|(B̂t−r
n v̂(n)r,p −Bt−rvr,p)(1)|= OP

(
sup
j≥tn/2

{
(1 + κn)j‖Bj‖

})
.

Recall that ‖Bj‖1/j→ ρ(B) ∈ [0,1) as j→∞ and κn→ 0 in probability, so that

(67) max
tn≤t≤n

1

(σ̂
(n)
t )2

|(B̂t−r
n v̂(n)r,p −Bt−rvr,p)(1)|= OP(n−1/2)

because tn/ logn→∞. Combine (61), (62), (63), (65), (66), (67) and recall that τn = 1−
n−a to find√

n(1− τn) max
tn≤t≤n

∣∣∣∣∣ σ2t

(σ̂
(n)
t )2

− 1

∣∣∣∣∣ P−→ 0 and then
√
n(1− τn) max

tn≤t≤n

|ε̂(n)t − εt|
1 + |εt|

P−→ 0

by (61). Condition (2) thus holds. Second, the inequality |σ̂n+1/σn+1−1| ≤ |σ̂2n+1/σ
2
n+1−1|

and a similar argument yield √
n(1− τn)

∣∣∣∣ σ̂n+1

σn+1
− 1

∣∣∣∣ P−→ 0.

Conclude by applying Lemma C.8 (for the sample size sn = n − tn + 1 = n(1 + o(1)),
since the estimator ξ̂τn(ε) is based upon the last n− tn + 1 residuals; this array version of
Theorem 2.1 is necessary once again here).

(ii) Set

ξ̂?τ ′n(ε) =

(
1− τ ′n
1− τn

)−γ
ξ̂τn(ε)
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and write √
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)

=

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?τ ′n(ε)

ξτ ′n(ε)
− 1

)

+

√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
σ̂n+1

σn+1
− 1

)
ξ̂?τ ′n(ε)

ξτ ′n(ε)
.

To conclude, combine (i) with the relationship σ̂n+1/σn+1 = 1 + OP(1/
√
n(1− τn)) and

the first convergence in Theorem 2.3.

APPENDIX E: ADDITIONAL RESULTS ON INDIRECT ESTIMATORS AND THEIR
PROOFS

This section focuses on the indirect versions of our extreme expectile estimators. The first
result is an analogue of Corollary 3.1 in the heteroscedastic linear regression model (M1),
for the indirect estimators ξ̃τn(Y |x) and ξ̃?τ ′n(Y |x) defined as

ξ̃τn(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)(γ−1 − 1)−γ ε̂
(n)
n−bn(1−τn)c,n

and ξ̃?τ ′n(Y |x) = α̂+ β̂>x+ (1 + θ̂>x)

(
1− τ ′n
1− τn

)−γ
(γ−1 − 1)−γ ε̂

(n)
n−bn(1−τn)c,n.

Here γ = γ̂bn(1−τn)c is assumed to be the Hill estimator based on residuals, as in Section 2.2.

COROLLARY E.1. Assume that the setup is that of the heteroscedastic linear model (M1).
Suppose that E|ε−|2 <∞. Assume further that ε satisfies condition C2(γ, ρ,A) with 0< γ <
1/2, ρ < 0, and that τn, τ ′n ↑ 1 satisfy (3) and (4). Then for any x ∈K ,√

n(1− τn)

(
ξ̃τn(Y |x)

ξτn(Y |x)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

with the notation of Corollary 2.1, and√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′n(Y |x)

ξτ ′n(Y |x)
− 1

)
d−→N

(
λ

1− ρ
, γ2
)
.

PROOF OF COROLLARY E.1. To obtain the first convergence, repeat the proof of Corol-
lary 3.1, with ξ̂τn(ε) replaced by ξ̃τn(ε) = (γ̂−1bn(1−τn)c− 1)−γ̂bn(1−τn)c ε̂

(n)
n−bn(1−τn)c,n, and ap-

ply Corollary 2.1 rather than Theorem 2.1. The second convergence is obtained by combining
the first convergence with Theorem 2.3.

The second result considers, in the context of the heteroscedastic single-index model (M2),
the indirect estimators ξ̃τN (Y |x) and ξ̃?τ ′N (Y |x) defined, for an x ∈K0, as

ξ̃τN (Y |x) = ĝhn,tn(β̂>x) + σ̂hn,tn(β̂>x)(γ−1 − 1)−γ ε̂
(n)
N−bN(1−τN )c,N,K0

at the intermediate level, and

ξ̃?τ ′N (Y |x) = ĝhn,tn(β̂>x) + σ̂hn,tn(β̂>x)

(
1− τ ′N
1− τN

)−γ
(γ−1 − 1)−γ ε̂

(n)
N−bN(1−τN )c,N,K0
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at the extreme level. Here γ = γ̂bN(1−τN )c is assumed to be the Hill estimator based on the
random number of residuals bN(1− τN )c where N =

∑n
i=1 1{Xi ∈K0}.

THEOREM E.1. Work in model (M2). Assume that ε satisfies condition C2(γ, ρ,A) with
0 < γ < 1/2 and ρ < 0 and that the conditions of Proposition C.1 in Appendix C hold. Let
K0 be a compact subset of K◦ such that P(X ∈K0)> 0, and N =N(K0, n). In addition,
suppose that the sequences τn = 1 − n−a with a ∈ (1/5,1) and τ ′n ↑ 1 satisfy (3) and (4).
Then, for any x ∈K0,√

N(1− τN )

(
ξ̃τN (Y |x)

ξτN (Y |x)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

with the notation of Corollary 2.1, and√
N(1− τN )

log[(1− τN )/(1− τ ′N )]

(
ξ̃?τ ′N (Y |x)

ξτ ′N (Y |x)
− 1

)
d−→N

(
λ

1− ρ
, γ2
)
.

PROOF OF THEOREM E.1. Combine Corollary 2.1 with the de-conditioning Lemma C.4(i)
to obtain√

N(1− τN )

(
ξ̃τN (ε)

ξτN (ε)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

where ξ̃τN (ε) = (γ̂−1bN(1−τN )c− 1)−γ̂bN(1−τN )c ε̂
(n)
N−bN(1−τN )c,N,K0

. Complete the proof by fol-
lowing the final four lines of the proof of Theorem 3.1(i) (this crucially relies on the assump-
tions of Proposition C.1) and the proof of Theorem 3.1(ii).

The third result focuses on the indirect estimators

ξ̃τn(Yn+1 |Fn) =

p∑
j=1

φ̂j,nYn+1−j +

q∑
j=1

θ̂j,nε̂
(n)
n+1−j + (γ−1 − 1)−γqτn(ε)

and ξ̃?τ ′n(Yn+1 |Fn) =

p∑
j=1

φ̂j,nYn+1−j +

q∑
j=1

θ̂j,nε̂
(n)
n+1−j +

(
1− τ ′n
1− τn

)−γ
(γ−1 − 1)−γqτn(ε)

in the ARMA(p, q) model (T1). Here qτn(ε) = ε̂
(n)
n−tn+1−b(n−tn+1)(1−τn)c,n−tn+1 is a top or-

der statistic of the last n − tn + 1 residuals ε̂(n)tn , ε̂
(n)
tn+1, . . . , ε̂

(n)
n , with tn/ logn→∞ and

tn/n→ 0, and γ is assumed to be the Hill estimator based on these residuals.

THEOREM E.2. Work in model (T1). Assume further that ε satisfies condition C2(γ, ρ,A)
with 0 < γ < 1/2 and ρ < 0, and that τn, τ ′n ↑ 1 satisfy (3) and (4). If moreover n2γ+ι(1−
τn)→ 0 for some ι > 0, then√

n(1− τn)

(
ξ̃τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

with the notation of Corollary 2.1, and√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)
d−→N

(
λ

1− ρ
, γ2
)
.
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PROOF OF THEOREM E.2. Mimic the proof of Theorem 3.3, applying (an array version
of) Corollary 2.1 rather than Lemma C.8.

The fourth and final result gives the asymptotic properties of the indirect estimators

ξ̃τn(Yn+1 |Fn) = σ̂n+1(γ
−1 − 1)−γqτn(ε)

and ξ̃?τ ′n(Yn+1 |Fn) = σ̂n+1 ×
(

1− τ ′n
1− τn

)−γ
(γ−1 − 1)−γqτn(ε)

in the GARCH(p, q) model (T2), where again qτn(ε) = ε̂
(n)
n−tn+1−b(n−tn+1)(1−τn)c,n−tn+1 is

a top order statistic of the last n− tn + 1 residuals ε̂(n)tn , ε̂
(n)
tn+1, . . . , ε̂

(n)
n , with tn/ logn→∞

and tn/n→ 0, and γ is assumed to be the Hill estimator based on these residuals.

THEOREM E.3. Work in model (T2). Assume further that ε satisfies condition C2(γ, ρ,A)
with 0< γ < 1/2 and ρ < 0. Suppose also that τn, τ ′n ↑ 1 satisfy (3) and (4) with τn = 1−n−a
for a ∈ (0,1). Then√

n(1− τn)

(
ξ̃τn(Yn+1 |Fn)

ξτn(Yn+1 |Fn)
− 1

)
d−→N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2

[
1 + [m(γ)]2

])
,

with the notation of Corollary 2.1, and√
n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̃?τ ′n(Yn+1 |Fn)

ξτ ′n(Yn+1 |Fn)
− 1

)
d−→N

(
λ

1− ρ
, γ2
)
.

PROOF OF THEOREM E.3. Mimic the proof of Theorem 3.4, applying (an array version
of) Corollary 2.1 rather than Lemma C.8.

APPENDIX F: FINITE-SAMPLE STUDY: DETAILS ON COMPUTATIONAL
PROCEDURES AND FURTHER FINITE-SAMPLE RESULTS

F.1. Optimal choice of the intermediate level τn. In the calculation of our extreme
value estimates, the intermediate level τn is a tuning parameter that has to be chosen. This is
of course essentially equivalent to choosing the parameter kn = bn(1− τn)c representing the
effective sample size in the Hill estimator used for the extrapolation. There are various ways
of choosing kn; we briefly discuss here a procedure based on an asymptotic mean-squared
error minimisation criterion. As highlighted in Equation (3.2.13) p.77 in [6], the asymptotic
mean-squared error of the Hill estimator under C2(γ, ρ,A) is:

AMSE(kn) :=
1

(1− ρ)2

[
A

(
n

kn

)]2
+
γ2

kn
.

Let us consider the typical case of an auxiliary function A(t) = bγtρ, as in our simulation
study. Minimising the AMSE with respect to kn yields an optimal value k∗n given by

k∗n =

⌊(
(1− ρ)2

−2ρb2

)1/(1−2ρ)
n−2ρ/(1−2ρ)

⌋
.

This optimal value of kn fulfills the well-known bias-variance trade-off in extreme value
analysis, by balancing in an optimal way the variance increasing with low kn and the bias
increasing with high kn. In practice, this value of k∗n is of course unavailable because it
depends on the unknown values of γ, b and ρ. In our simulation study where a sample of
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n= 1,000 data points is available, we therefore suggest to use the sample counterpart k̂∗n of
k∗n obtained through plugging in a prior estimate of γ calculated using the bias-reduced Hill
estimator with kn = n/10 = 100, along with estimates of b and ρ obtained using the function
mop from the R package evt0, all based of course on residuals of the model rather than the
unobservable noise variables.

To check the quality of the estimation with this choice k̂∗n of kn, we repeated our simulation
studies in Sections 4.1 and 4.2, with the same parameters but with k̂∗n in place of kn = 100.
Results are reported in Tables F.2 and F.4. It is readily seen there that there is no obvious
advantage in using a data-driven criterion for the choice of kn, and in fact results tend to be
slightly worse. This is most likely because a data-driven choice of kn is itself random and
therefore may contribute to estimation uncertainty.

Model Procedure γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

Linear (G1)

(S1) 2.29 · 10−2 3.56 · 10−2 6.46 · 10−2 1.13 · 10−1

(S1i) 1.37 · 10−2 3.14 · 10−2 6.51 · 10−2 1.21 · 10−1

(S2) 2.73 · 10−2 3.76 · 10−2 6.17 · 10−2 9.86 · 10−2

(S2i) 3.11 · 10−2 3.57 · 10−2 5.93 · 10−2 1.05 · 10−1

(B1) 1.26 · 10−1 8.06 · 10−2 9.89 · 10−2 1.93 · 10−1

(B1i) 1.58 · 10−1 7.85 · 10−2 9.75 · 10−2 1.96 · 10−1

(B2) 1.22 · 10−1 1.09 · 10−1 9.90 · 10−2 1.08 · 10−1

(B3) 2.52 · 10−2 3.93 · 10−2 6.78 · 10−2 1.16 · 10−1

(B4) 4.82 · 10−2 4.13 · 10−2 6.34 · 10−2 1.04 · 10−1

(B4i) 8.15 · 10−3 2.73 · 10−2 6.23 · 10−2 1.18 · 10−1

(B5) 2.26 · 10−2 3.53 · 10−2 6.23 · 10−2 1.06 · 10−1

(B5i) 9.47 · 10−3 3.09 · 10−2 6.38 · 10−2 1.12 · 10−1

Single index (G2)

(S1) 1.83 · 10−1 1.10 · 10−1 8.13 · 10−2 1.09 · 10−1

(S1i) 1.96 · 10−1 1.18 · 10−1 6.97 · 10−2 1.01 · 10−1

(S2) 3.90 · 10−2 4.38 · 10−2 6.89 · 10−2 1.08 · 10−1

(S2i) 5.75 · 10−2 4.27 · 10−2 6.53 · 10−2 1.08 · 10−1

(B1) 1.43 · 10−1 8.89 · 10−2 1.18 · 10−1 2.06 · 10−1

(B1i) 1.74 · 10−1 7.64 · 10−2 1.14 · 10−1 2.05 · 10−1

(B2) 3.46 · 10−1 2.79 · 10−1 2.37 · 10−1 1.95 · 10−1

(B3) 2.97 · 10−2 4.20 · 10−2 7.20 · 10−2 1.20 · 10−1

(B4) 5.84 · 10−2 4.82 · 10−2 7.14 · 10−2 1.13 · 10−1

(B4i) 9.86 · 10−3 3.19 · 10−2 7.01 · 10−2 1.28 · 10−1

(B5) 2.73 · 10−2 4.12 · 10−2 7.01 · 10−2 1.15 · 10−1

(B5i) 1.15 · 10−2 3.61 · 10−2 7.18 · 10−2 1.22 · 10−1

TABLE F.1
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)–(B5i), in models (G1)–(G2). Estimators

based on the fixed intermediate level kn = n/10 = 100.

F.2. Pointwise confidence interval construction. We have explained, following our
simulation studies in Sections 4.1 and 4.2, that most of the uncertainty in the problem of es-
timating extreme conditional expectiles appears indeed to come from the extreme value step.
This seems to be particularly the case as soon as γ ≥ 0.2. One may then use the asymptotic
results developed in this paper to carry out pointwise inference about extreme conditional
quantiles. Indeed, in typical cases the limit law in Theorem 2.3 is standard, and in fact is
even Gaussian, because it is the limiting distribution of the extreme value index estimator
γ; under their respective suitable conditions, all common extreme value index estimators are
asymptotically Gaussian. This is the case for the Hill estimator, of course, as we state in our
Corollary 2.1, but also for, among others, the Pickands estimator, the Maximum Likelihood
estimator constructed using the Generalised Pareto approximation, the moment estimator
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Model Procedure γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

Linear (G1)

(S1) 2.30 · 10−2 3.82 · 10−2 6.55 · 10−2 1.18 · 10−1

(S1i) 1.45 · 10−2 3.36 · 10−2 6.75 · 10−2 1.25 · 10−1

(S2) 2.87 · 10−2 3.98 · 10−2 6.39 · 10−2 1.06 · 10−1

(S2i) 3.25 · 10−2 3.62 · 10−2 6.11 · 10−2 1.08 · 10−1

(B1) 1.26 · 10−1 8.06 · 10−2 9.89 · 10−2 1.93 · 10−1

(B1i) 1.58 · 10−1 7.85 · 10−2 9.75 · 10−2 1.96 · 10−1

(B2) 1.27 · 10−1 1.09 · 10−1 1.01 · 10−1 1.15 · 10−1

(B3) 2.43 · 10−2 3.98 · 10−2 7.31 · 10−2 1.26 · 10−1

(B4) 4.82 · 10−2 4.58 · 10−2 5.97 · 10−2 1.07 · 10−1

(B4i) 9.07 · 10−3 3.12 · 10−2 6.90 · 10−2 1.31 · 10−1

(B5) 2.39 · 10−2 3.67 · 10−2 6.39 · 10−2 1.04 · 10−1

(B5i) 9.65 · 10−3 3.15 · 10−2 6.41 · 10−2 1.11 · 10−1

Single index (G2)

(S1) 1.84 · 10−1 1.11 · 10−1 7.96 · 10−2 1.10 · 10−1

(S1i) 1.96 · 10−1 1.19 · 10−1 7.08 · 10−2 1.03 · 10−1

(S2) 4.04 · 10−2 4.43 · 10−2 6.91 · 10−2 1.11 · 10−1

(S2i) 5.86 · 10−2 4.37 · 10−2 6.51 · 10−2 1.09 · 10−1

(B1) 1.43 · 10−1 8.89 · 10−2 1.18 · 10−1 2.06 · 10−1

(B1i) 1.74 · 10−1 7.64 · 10−2 1.14 · 10−1 2.05 · 10−1

(B2) 3.48 · 10−1 2.79 · 10−1 2.32 · 10−1 1.91 · 10−1

(B3) 2.92 · 10−2 4.38 · 10−2 7.85 · 10−2 1.32 · 10−1

(B4) 5.84 · 10−2 5.35 · 10−2 6.72 · 10−2 1.17 · 10−1

(B4i) 1.10 · 10−2 3.64 · 10−2 7.76 · 10−2 1.43 · 10−1

(B5) 2.89 · 10−2 4.28 · 10−2 7.18 · 10−2 1.14 · 10−1

(B5i) 1.17 · 10−2 3.68 · 10−2 7.21 · 10−2 1.20 · 10−1

TABLE F.2
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)–(B5i), in models (G1)–(G2). Estimators

based on the data-driven intermediate level k̂∗n.

of [7] and probability weighted moment estimators (see respectively Theorems 3.3.5, 3.4.2,
3.5.4 and 3.6.1 in [6]). Asymptotic bias terms depend on γ, the second-order parameter ρ and
the auxiliary function A, while asymptotic variances are functions of γ only. For instance, if
γ is the Hill estimator γ̂bn(1−τn)c as in Corollary 2.1, Theorem 2.3 reads, in model (1),√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
?
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1

)
d−→N

(
λ

1− ρ
, γ2
)
.

Consistent estimators of ρ and A are available from the work of [11], adapted here by using
residuals instead of the unobserved errors. In each case the asymptotic bias and variance
terms can then be estimated, and carrying out inference on the extreme conditional expectile
of interest is, in principle, straightforward.

For consistency with our finite-sample studies and especially our real data analyses, we
discuss the implementation of such confidence intervals based on the bias-reduced es-
timators γ̂RB

k , obtained by a bias reduction of the Hill estimator γ̂k (where throughout
k = bn(1− τn)c) and ξ̂?,RB

τ ′n
(ε), obtained by a bias reduction of the direct extrapolated esti-

mator ξ̂?τ ′n(ε), whose expression can be found at the beginning of Section 4. Combined with
appropriate model structure estimators converging quickly enough, these naturally give rise
to an estimator ξ̂?,RB

τ ′n
(Y |x) which, by Theorem 2.3, should satisfy√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ̂?,RB
τ ′n

(Y |x)

ξτ ′n(Y |x)
− 1

)
d−→N (0, γ2).
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Model Parameters Estimator γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

ARMA

(φ, θ) = (0.1,0.1) Direct 4.75 · 10−2 6.31 · 10−2 9.57 · 10−2 1.37 · 10−1

(estimated) Indirect 3.00 · 10−2 5.43 · 10−2 9.47 · 10−2 1.50 · 10−1

(φ, θ) = (0.1,0.1) Direct 4.49 · 10−2 6.06 · 10−2 9.30 · 10−2 1.37 · 10−1

(known, benchmark) Indirect 1.96 · 10−2 5.32 · 10−2 9.62 · 10−2 1.48 · 10−1

(φ, θ) = (0.1,0.5) Direct 4.69 · 10−2 6.25 · 10−2 9.57 · 10−1 1.38 · 10−1

(estimated) Indirect 3.09 · 10−2 5.36 · 10−2 9.88 · 10−2 1.49 · 10−1

(φ, θ) = (0.1,0.5) Direct 4.46 · 10−2 6.30 · 10−2 9.37 · 10−2 1.36 · 10−1

(known, benchmark) Indirect 2.04 · 10−2 5.45 · 10−2 9.51 · 10−2 1.45 · 10−1

(φ, θ) = (0.5,0.1) Direct 4.93 · 10−2 6.51 · 10−2 9.59 · 10−2 1.37 · 10−1

(estimated) Indirect 3.14 · 10−2 5.79 · 10−2 1.01 · 10−1 1.50 · 10−1

(φ, θ) = (0.5,0.1) Direct 4.53 · 10−2 6.28 · 10−2 9.30 · 10−2 1.36 · 10−1

(known, benchmark) Indirect 2.06 · 10−2 5.47 · 10−2 9.57 · 10−2 1.46 · 10−1

(φ, θ) = (0.5,0.5) Direct 4.51 · 10−2 6.62 · 10−2 9.87 · 10−2 1.42 · 10−1

(estimated) Indirect 3.06 · 10−2 5.91 · 10−2 1.02 · 10−1 1.57 · 10−1

(φ, θ) = (0.5,0.5) Direct 4.17 · 10−2 6.28 · 10−2 9.55 · 10−2 1.35 · 10−1

(known, benchmark) Indirect 1.96 · 10−2 5.53 · 10−2 9.72 · 10−2 1.47 · 10−1

GARCH

(α,β) = (0.1,0.1) Direct 4.42 · 10−2 6.03 · 10−2 9.01 · 10−2 1.31 · 10−1

(estimated) Indirect 1.92 · 10−2 5.22 · 10−2 9.42 · 10−2 1.39 · 10−1

(α,β) = (0.1,0.1) Direct 4.44 · 10−2 6.03 · 10−2 9.34 · 10−2 1.35 · 10−1

(known, benchmark) Indirect 1.88 · 10−2 5.23 · 10−2 9.49 · 10−2 1.45 · 10−1

(α,β) = (0.1,0.45) Direct 4.44 · 10−2 5.99 · 10−2 9.00 · 10−2 1.25 · 10−1

(estimated) Indirect 1.87 · 10−2 5.15 · 10−2 9.06 · 10−2 1.33 · 10−1

(α,β) = (0.1,0.45) Direct 4.44 · 10−2 6.03 · 10−2 9.34 · 10−2 1.35 · 10−1

(known, benchmark) Indirect 1.88 · 10−2 5.23 · 10−2 9.49 · 10−2 1.45 · 10−1

(α,β) = (0.45,0.1) Direct 4.51 · 10−2 6.03 · 10−2 9.30 · 10−2 1.31 · 10−1

(estimated) Indirect 1.92 · 10−2 5.29 · 10−2 9.64 · 10−2 1.39 · 10−1

(α,β) = (0.45,0.1) Direct 4.44 · 10−2 6.03 · 10−2 9.34 · 10−2 1.35 · 10−1

(known, benchmark) Indirect 1.88 · 10−2 5.23 · 10−2 9.49 · 10−2 1.45 · 10−1

(α,β) = (0.1,0.85) Direct 4.50 · 10−2 7.31 · 10−2 9.64 · 10−2 1.20 · 10−1

(estimated) Indirect 2.65 · 10−2 6.68 · 10−2 9.57 · 10−2 1.14 · 10−1

(α,β) = (0.1,0.85) Direct 4.44 · 10−2 6.03 · 10−2 9.34 · 10−2 1.35 · 10−1

(known, benchmark) Indirect 1.88 · 10−2 5.23 · 10−2 9.49 · 10−2 1.45 · 10−1

TABLE F.3
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH

models. Estimators based on the fixed intermediate level kn = n/10 = 100.

In line with standard practice in extreme value analysis for heavy tails, we consider instead
the equivalent version √

n(1− τn)

log[(1− τn)/(1− τ ′n)]
log

(
ξ̂?,RB
τ ′n

(Y |x)

ξτ ′n(Y |x)

)
d−→N (0, γ2)

obtained via the delta-method, as this has been observed several times to yield more reason-
able confidence intervals when using Weissman-type extrapolated estimators (see e.g. [8] in
the context of extreme quantile estimation). This immediately provides an asymptotic point-
wise 95% confidence interval for ξτ ′n(Y |x) as

Î
(1)
τ ′n

(x) =

[
ξ̂?,RB
τ ′n

(Y |x) exp

(
±1.96

log[(1− τn)/(1− τ ′n)]√
n(1− τn)

γ̂RB
bn(1−τn)c

)]
.

A slightly different construction, also motivated by Theorem 2.3, is possible by building the
confidence interval directly on the estimator ξ̂?,RB

τ ′n
(ε) first and combining with location and
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Model Parameters Estimator γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4

ARMA

(φ, θ) = (0.1,0.1) Direct 4.91 · 10−2 6.55 · 10−2 9.72 · 10−2 1.42 · 10−1

(estimated) Indirect 3.05 · 10−2 5.61 · 10−2 9.79 · 10−2 1.51 · 10−1

(φ, θ) = (0.1,0.1) Direct 4.74 · 10−2 6.24 · 10−2 9.70 · 10−2 1.38 · 10−1

(known, benchmark) Indirect 1.93 · 10−2 5.47 · 10−2 9.70 · 10−2 1.48 · 10−1

(φ, θ) = (0.1,0.5) Direct 5.07 · 10−2 6.64 · 10−2 9.51 · 10−2 1.38 · 10−1

(estimated) Indirect 3.17 · 10−2 5.74 · 10−2 9.80 · 10−2 1.48 · 10−1

(φ, θ) = (0.1,0.5) Direct 4.89 · 10−2 6.38 · 10−2 9.81 · 10−2 1.38 · 10−1

(known, benchmark) Indirect 2.04 · 10−2 5.52 · 10−2 9.71 · 10−2 1.48 · 10−1

(φ, θ) = (0.5,0.1) Direct 5.00 · 10−2 6.88 · 10−2 9.94 · 10−2 1.44 · 10−1

(estimated) Indirect 3.13 · 10−2 5.91 · 10−2 1.02 · 10−1 1.54 · 10−1

(φ, θ) = (0.5,0.1) Direct 4.93 · 10−2 6.47 · 10−2 9.79 · 10−2 1.38 · 10−1

(known, benchmark) Indirect 2.13 · 10−2 5.55 · 10−2 9.80 · 10−2 1.50 · 10−1

(φ, θ) = (0.5,0.5) Direct 4.70 · 10−2 7.36 · 10−2 1.01 · 10−1 1.43 · 10−1

(estimated) Indirect 3.09 · 10−2 6.29 · 10−2 1.04 · 10−1 1.56 · 10−1

(φ, θ) = (0.5,0.5) Direct 4.85 · 10−2 6.74 · 10−2 1.01 · 10−1 1.42 · 10−1

(known, benchmark) Indirect 2.00 · 10−2 5.77 · 10−2 1.02 · 10−1 1.52 · 10−1

GARCH

(α,β) = (0.1,0.1) Direct 4.65 · 10−2 6.22 · 10−2 9.22 · 10−2 1.34 · 10−1

(estimated) Indirect 1.90 · 10−2 5.45 · 10−2 9.23 · 10−2 1.39 · 10−1

(α,β) = (0.1,0.1) Direct 4.61 · 10−2 6.19 · 10−2 9.55 · 10−2 1.37 · 10−1

(known, benchmark) Indirect 1.90 · 10−2 5.16 · 10−2 9.56 · 10−2 1.48 · 10−1

(α,β) = (0.1,0.45) Direct 4.72 · 10−2 6.29 · 10−2 9.09 · 10−2 1.28 · 10−1

(estimated) Indirect 1.87 · 10−2 5.33 · 10−2 9.23 · 10−2 1.35 · 10−1

(α,β) = (0.1,0.45) Direct 4.61 · 10−2 6.19 · 10−2 9.55 · 10−2 1.37 · 10−1

(known, benchmark) Indirect 1.90 · 10−2 5.16 · 10−2 9.56 · 10−2 1.48 · 10−1

(α,β) = (0.45,0.1) Direct 4.71 · 10−2 6.30 · 10−2 9.80 · 10−2 1.35 · 10−1

(estimated) Indirect 1.93 · 10−2 5.50 · 10−2 9.86 · 10−2 1.41 · 10−1

(α,β) = (0.45,0.1) Direct 4.61 · 10−2 6.19 · 10−2 9.55 · 10−2 1.37 · 10−1

(known, benchmark) Indirect 1.90 · 10−2 5.16 · 10−2 9.56 · 10−2 1.48 · 10−1

(α,β) = (0.1,0.85) Direct 4.55 · 10−2 7.40 · 10−2 9.71 · 10−2 1.22 · 10−1

(estimated) Indirect 2.67 · 10−2 6.80 · 10−2 9.31 · 10−2 1.14 · 10−1

(α,β) = (0.1,0.85) Direct 4.61 · 10−2 6.19 · 10−2 9.55 · 10−2 1.37 · 10−1

(known, benchmark) Indirect 1.90 · 10−2 5.16 · 10−2 9.56 · 10−2 1.48 · 10−1

TABLE F.4
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH

models. Estimators based on the data-driven intermediate level k̂∗n.

scale afterwards. In this case, an asymptotic pointwise 95% confidence interval for ξτ ′n(ε) is[
ξ̂?,RB
τ ′n

(ε) exp

(
±1.96

log[(1− τn)/(1− τ ′n)]√
n(1− τn)

γ̂RB
bn(1−τn)c

)]
.

In the class of regression models (1) where ξτ ′n(Y |x) = g(x) + σ(x)ξτ ′n(ε), this yields an
alternative asymptotic pointwise 95% confidence interval for ξτ ′n(Y |x) as

Î
(2)
τ ′n

(x) =

[
g(x) + σ(x)ξ̂?,RB

τ ′n
(ε) exp

(
±1.96

log[(1− τn)/(1− τ ′n)]√
n(1− τn)

γ̂RB
bn(1−τn)c

)]
if g and σ are estimated by g and σ sufficiently fast that the asymptotic behaviour of ξ̂?,RB

τ ′n
(ε)

dominates. In a model where the conditional mean is assumed to be 0 (for example GARCH
models), the intervals Î(1)τ ′n

and Î(2)τ ′n
coincide. We illustrate the behaviour of Î(1)τ ′n

(x) (calcu-
lated on the bias-reduced direct estimator) in the top left panel of Figure F.1 below, on the
example of the Vehicle Insurance Customer data of Section 4.3.

Finite-sample coverages of these two intervals at the 95% nominal level are compared in the
setups of Section 4.1 (see Table F.5) and Section 4.2 (see Table F.6) for an extreme value
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index equal to 1/4 = 0.25. Interval Î(1)τ ′n
yields sensible results at a central point x in regres-

sion models, as can be seen from the leftmost table in Table F.5. Interval Î(2)τ ′n
has a lower

coverage probability and seems to be too narrow. It is interesting to note that the difference
between the performance of intervals constructed using estimated model parameters (ignor-
ing the uncertainty incurred at the model estimation step) and of those obtained with the
unrealistic knowledge of model structure is negligible; in the regression case, this can be
seen by comparing procedures (S1) and (S1i) with benchmarks (B5) and (B5i) in the linear
model (G1), and (S2) and (S2i) with benchmarks (B5) and (B5i) in the single-index model
(G2). This illustrates once again that the extreme value step, rather than model estimation,
is indeed the major contributor to estimation uncertainty as long as the model can be esti-
mated efficiently. We illustrate this point further in our time series models, where it can be
seen that for both intervals, the coverage probabilities obtained by assuming knowledge of
the model are essentially identical to those where the model structure has to be estimated. In
our time series examples, coverage of the Gaussian confidence intervals is in fact arguably
quite poor (around 80% in most models), but this will be due to the fact that the sample
size is not yet large enough for the Gaussian approximation to be reasonable for sample
expectiles. This is not due to the uncertainty in model estimation not being accounted for,
since assuming knowledge of the model does not improve coverage substantially. Issues with
finite-sample coverage of Gaussian confidence intervals for the estimation of extreme con-
ditional risk measures such as the Expected Shortfall (closely related to the expectile) have
been reported before, see e.g. [14].

Model Procedure Î
(1)

τ ′n
Î
(2)

τ ′n

Linear (G1)

(S1) 0.910 0.746
(S1i) 0.924 0.758
(S2) 0.924 0.764
(S2i) 0.942 0.780
(B2) 0.816 0.484
(B3) 0.908 0.720
(B4) 0.914 0.760
(B4i) 0.980 0.840
(B5) 0.932 0.774
(B5i) 0.944 0.784

Single index (G2)

(S1) 0.844 0.590
(S1i) 0.862 0.646
(S2) 0.920 0.802
(S2i) 0.932 0.836
(B2) 0.158 0.060
(B3) 0.858 0.750
(B4) 0.872 0.760
(B4i) 0.962 0.840
(B5) 0.896 0.774
(B5i) 0.920 0.784

Model Procedure Î
(1)

τ ′n
Î
(2)

τ ′n

Linear (G1)

(S1) 0.740 0.468
(S1i) 0.740 0.458
(S2) 0.236 0.114
(S2i) 0.230 0.120
(B2) 0.000 0.000
(B3) 0.343 0.154
(B4) 0.932 0.760
(B4i) 0.988 0.840
(B5) 0.944 0.774
(B5i) 0.962 0.784

Single index (G2)

(S1) 0.034 0.026
(S1i) 0.034 0.024
(S2) 0.590 0.442
(S2i) 0.596 0.452
(B2) 0.060 0.081
(B3) 0.242 0.152
(B4) 0.868 0.760
(B4i) 0.952 0.840
(B5) 0.888 0.774
(B5i) 0.908 0.784

TABLE F.5
Empirical coverage probabilities of the Gaussian asymptotic confidence intervals (95% nominal level)
associated with methods (S1), (S2), (S1i) and (S2i), and benchmarks (B2)–(B5i), in models (G1)–(G2).

Estimators based on the fixed intermediate level kn = n/10 = 100, left table: central point
x= (1/2,1/2,1/2,1/3), right table: noncentral point x= (0.1,0.1,0.1,0.1). The extreme value index γ is set
to the value 1/4 = 0.25. Benchmarks (B1) and (B1i) are not location-scale approaches and therefore have been

excluded from this comparative table.
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Model Parameters Estimator Î
(1)

τ ′n
Î
(2)

τ ′n

ARMA

(φ, θ) = (0.1,0.1) Direct 0.769 0.776
(estimated) Indirect 0.785 0.794

(φ, θ) = (0.1,0.1) Direct 0.806 0.804
(known, benchmark) Indirect 0.824 0.822
(φ, θ) = (0.1,0.5) Direct 0.766 0.787

(estimated) Indirect 0.779 0.791
(φ, θ) = (0.1,0.5) Direct 0.773 0.804

(known, benchmark) Indirect 0.792 0.822
(φ, θ) = (0.5,0.1) Direct 0.756 0.776

(estimated) Indirect 0.764 0.794
(φ, θ) = (0.5,0.1) Direct 0.759 0.804

(known, benchmark) Indirect 0.783 0.822
(φ, θ) = (0.5,0.5) Direct 0.698 0.783

(estimated) Indirect 0.707 0.795
(φ, θ) = (0.5,0.5) Direct 0.697 0.804

(known, benchmark) Indirect 0.709 0.822

GARCH

(α,β) = (0.1,0.1) Direct 0.800 0.800
(estimated) Indirect 0.817 0.817

(α,β) = (0.1,0.1) Direct 0.804 0.804
(known, benchmark) Indirect 0.815 0.815
(α,β) = (0.1,0.45) Direct 0.793 0.793

(estimated) Indirect 0.806 0.806
(α,β) = (0.1,0.45) Direct 0.795 0.795
(known, benchmark) Indirect 0.818 0.818
(α,β) = (0.45,0.1) Direct 0.793 0.793

(estimated) Indirect 0.802 0.802
(α,β) = (0.45,0.1) Direct 0.784 0.784
(known, benchmark) Indirect 0.803 0.803
(α,β) = (0.1,0.85) Direct 0.710 0.710

(estimated) Indirect 0.732 0.732
(α,β) = (0.1,0.85) Direct 0.686 0.686
(known, benchmark) Indirect 0.717 0.717

TABLE F.6
Empirical coverage probabilities of the Gaussian asymptotic confidence intervals (95% nominal level)

associated with the (bias-reduced) direct and indirect one-step ahead extreme expectile estimators in ARMA and
GARCH models. Estimators based on the fixed intermediate level kn = n/10 = 100. The extreme value index γ

is set to the value 1/4 = 0.25.

Situations where trusting these Gaussian confidence intervals might be difficult include re-
gression models featuring the estimation of a nonparametric component (such as the het-
eroscedastic single-index model in Section 3.2, used for the analysis of the Vehicle Insurance
Customer data) whose rate of convergence may be close to the rate of convergence of the
extreme value estimator. In such models, disregarding the uncertainty incurred at the model
estimation stage may be problematic in regions where data is relatively sparse. This is illus-
trated in the rightmost table of Table F.5, where it can be seen that a noncentral point x of
the regression problem, coverage of the proposed Gaussian asymptotic confidence intervals
dramatically decreases, especially in the heteroscedastic single-index model. It may then be
more prudent to move away from the asymptotic approximation and use instead an approach
that fully takes into account the uncertainty in the estimation. We propose and contrast here
a couple of alternatives based on regression bootstrap methods. We develop our ideas in the
example of the heteroscedastic single-index model of Section 3.2. Suppose that from a data
set (Xi, Yi)1≤i≤n, we have estimated a direction vector β̂ along with mean and standard
deviation functions ĝ and σ̂. One possibility to describe the uncertainty in the estimation of
ξτ ′n(Y |x) is to use the wild bootstrap, widespread in the heteroscedastic regression literature
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and whose origins can be traced back to [19]. This consists in resampling (Xi, Y
∗
i )1≤i≤n as

follows:

Y ∗i = ĝ(β̂>Xi) + (Yi − ĝ(β̂>Xi))ε
∗
i ,

where (ε∗i )1≤i≤n are i.i.d. copies of a random variable ε∗ having mean 0 and variance 1. A
natural, possible choice for ε∗ is the standard normal distribution. We illustrate this method-
ology on the example of the Vehicle Insurance Customer data of Section 4.3. We simulated
N = 5,000 such bootstrap samples (Xi, Y

∗
i )1≤i≤n; in each sample, we kept the direction vec-

tor β̂ fixed and equal to its estimated value based on the original sample, and we estimated
the functions g and σ using the same method as in the real data analysis in Section 4.3. This
is sensible because the estimator β̂ converges much faster than the nonparametric estimators
of g and σ, and therefore keeping the direction fixed is very unlikely to be incorrect as far as
uncertainty quantification is concerned. Using residuals and the direct, bias-reduced extreme
conditional expectile estimator results in an estimate of ξτ ′n(Y |x) which, for the jth bootstrap
sample, we denote by ξ̂?,RB,(j)

τ ′n
(Y |x). We finally build, for a fixed x, pointwise 95% bootstrap

confidence intervals calculated by taking the empirical quantiles at levels 2.5% and 97.5%

of the ξ̂?,RB,(j)
τ ′n

(Y |x), 1 ≤ j ≤ N . These are reported in the top right panel of Figure F.1.
At extreme levels (say here τ ′n = 1− 1/(nh∗), with h∗ = 0.1) the confidence intervals look
reasonable on the right half of the graph. However, they seem to very substantially overes-
timate the uncertainty in the left half, where data is sparser; this is especially clear around
β̂>x=−0.2, where the estimated extreme conditional expectile curve already extrapolates
far beyond the observations locally relevant, which suggests that the upper bound of the as-
sociated confidence interval should be relatively close to the point estimate, but this is not
the case. Moreover, the wild bootstrap method appears to be very sensitive to the choice
of distribution of ε∗ (alternative choices include the Rademacher distribution or asymmetric
two-point distributions such as the one on p.257 of [16]). Our interpretation is that the wild
bootstrap is too conservative here because it fails to get a good idea of the right tail behaviour
in the data.

To remedy this problem we suggest a second, semiparametric bootstrap method. This time,
the Y ∗i , 1≤ i≤ n, are simulated as

Y ∗i = ĝ(β̂>Xi) + σ̂(β̂>Xi)ε
∗
i ,

where the ε∗i are obtained by

1. Simulating ui from the standard uniform distribution on [0,1],
2. If ui ∈ [p,1 − p], for a fixed p ∈ (0,1), taking ε∗i = F̂−1(ui), where F̂ is the empirical

distribution function of the residuals ε̂i,
3. If ui > 1− p, taking ε∗i = ((1− ui)/p)−γ̂F̂−1(1− p), where γ̂ = γ̂RB is the bias-reduced

Hill estimator (with kn = 200 as in Section 4.3) based on the residuals ε̂1, . . . , ε̂n,
4. If ui < p, taking ε∗i = (ui/p)

−γ̂`F̂−1(p), where γ̂` = γ̂RB
` is the bias-reduced Hill estima-

tor (with kn = 200) based on the negative residuals −ε̂1, . . . ,−ε̂n.

We chose p= 0.001; further investigations, which we do not report here, suggest that results
are not too sensitive to the choice of p as long as p ∈ [0.001,0.01]. The idea of steps 3 and
4 above is to allow the resampling algorithm to give a faithful idea of the right and left tails
of the data through the use of the Pareto approximations of these tails. We call this algorithm
the semiparametric Pareto tail bootstrap. Somewhat similar ideas have appeared before in
the literature, see e.g. [20] whose aim was to approximate the distribution of extreme order
statistics.
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We illustrate this methodology again on the example of the Vehicle Insurance Customer data
of Section 4.3. We simulate N = 5,000 bootstrap samples (Xi, Y

∗
i )1≤i≤n and, like previ-

ously, we keep the direction vector β̂ fixed and estimate the functions g and σ using the same
method as in Section 4.3. This yields extrapolated direct bias-reduced estimates of ξτ ′n(Y |x)
in each sample and therefore pointwise 95% bootstrap confidence intervals calculated by tak-
ing the empirical quantiles at levels 2.5% and 97.5% of these estimates. These intervals are
reported in the bottom left panel of Figure F.1; all three intervals are compared to each other
on the bottom right panel of this Figure. All intervals are roughly similar on the right part
of the graph, but on the left part where data is more sparse, the semiparametric Pareto tail
bootstrap intervals appear to give a much better idea of the type of tail the data exhibits. In
practice, we therefore recommend reporting the Gaussian confidence intervals along with the
semiparametric Pareto tail bootstrap confidence intervals, since the latter may give a more
accurate picture of uncertainty where data is sparser. This is the approach we adopt in the
real data analyses of Sections 4.3 and 4.4.
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A comprehensive analysis of the finite-sample coverage of the proposed semiparametric
Pareto tail bootstrap confidence interval is unfortunately not yet feasible in a reasonable
amount of time because the calculation of these intervals is computationally very expen-
sive: a rough estimation of the amount of time needed to compute the Pareto tail bootstrap
confidence interval in a sample of size n= 1,000 (from any one of the models we examine
in the simulation study) leads to one hour of computational time. Multiplied by the number
of replications (N = 1,000 independent samples in each model), the number of methods and
the number of models we consider, a full study in the spirit of Sections 4.1 and 4.2 would
require at least several months of calculation even if the code were parallelised. To get an idea
of how the proposed bootstrap methodology performs in practice, we suggest the following
small simulation experiment inspired from the kind of general model we consider in this
paper. Consider a sample of (location-scale) random variables Y1, . . . , Yn defined through

Yi =m+ σεi.

Here the mean parameter ism= 2, the standard deviation parameter is σ = 1, and the random
variables ε1, . . . , εn are n = 1,000 independent and identically distributed realisations of a
symmetric rescaled Burr distribution as in Section 4.2, with γ = 0.25 and ρ=−1. The goal
is to infer an extreme expectile of level τ ′n = 1− 5/n= 0.995 of Y by filtering first the mean
and scale components. This very closely resembles the approach adopted throughout the
paper in location-scale heteroscedastic regression models. The following estimation methods
are compared:

(E1) We estimate first m and σ by the empirical mean m and standard deviation σ. We then
construct the residuals ε̂i = (Yi−m)/σ and estimate ξτ ′n(ε) using the bias-reduced direct
and indirect estimators ξ̂?,RB

τ ′n
(ε) and ξ̃?,RB

τ ′n
(ε) calculated on the ε̂i with τn = 1−100/n=

0.9. We finally deduce the two extreme expectile estimators ξ̂?,RB
τ ′n

(Y ) =m+ σξ̂?,RB
τ ′n

(ε)

and ξ̃?,RB
τ ′n

(Y ) =m+ σξ̃?,RB
τ ′n

(ε).

(E2) Same as in (E1), with m and σ calculated using only the first n/2 observations.
(E3) Same as in (E1), with m and σ calculated using only the first n/4 observations.
(E4) Same as in (E1), with m and σ calculated using only the first n/10 observations.

This is compared to the unrealistic benchmark (BE) where m and σ are assumed to be known
and thus the true εi are accessible. Note that, following the discussion at the top of p.83
in [6], this benchmark should be seen as enjoying a strong advantage over (E1)–(E4), since
the shifted variables Yi have a second-order parameter −γ =−1/4, which is much closer to
0 than the original second-order parameter ρ=−1 of the εi. The latter are, strictly speaking,
only accessible in the framework of this unrealistic benchmark (BE). The point of considering
the estimation of the mean and scale components using progressively lower sample sizes is
to assess the influence of the rate of estimation of location-scale model components; in (E4),
there are only 100 variables used to calculatem and σ, meaning that the “rate of convergence”
of m and σ is

√
100 = 10, exactly equal to

√
n(1− τn) which is the rate of convergence of

the extreme value step.

For each method, we compare three confidence intervals. These are, first of all, the two Gaus-
sian asymptotic 95% confidence intervals

Î
(1)
τ ′n

=

[
ξ̂?,RB
τ ′n

(Y ) exp

(
±1.96

log[(1− τn)/(1− τ ′n)]√
n(1− τn)

γ̂RB
bn(1−τn)c

)]
and

Î
(2)
τ ′n

=

[
m+ σξ̂?,RB

τ ′n
(ε) exp

(
±1.96

log[(1− τn)/(1− τ ′n)]√
n(1− τn)

γ̂RB
bn(1−τn)c

)]
.
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Approach Expectile estimator Î
(1)

τ ′n
Î
(2)

τ ′n
Î
(boot)

τ ′n

Benchmark (BE)
Bias-reduced direct 0.994 (1.082) 0.796 (0.516) 0.896 (0.739)

Bias-reduced indirect 0.998 (1.080) 0.798 (0.514) 0.880 (0.679)

Method (E1)
Bias-reduced direct 0.992 (1.083) 0.790 (0.517) 0.898 (0.742)

Bias-reduced indirect 0.998 (1.081) 0.804 (0.515) 0.882 (0.681)

Method (E2)
Bias-reduced direct 0.992 (1.082) 0.792 (0.517) 0.900 (0.739)

Bias-reduced indirect 0.998 (1.080) 0.798 (0.515) 0.880 (0.680)

Method (E3)
Bias-reduced direct 0.996 (1.081) 0.792 (0.516) 0.900 (0.741)

Bias-reduced indirect 1.000 (1.079) 0.800 (0.514) 0.884 (0.682)

Method (E4)
Bias-reduced direct 0.994 (1.083) 0.790 (0.516) 0.896 (0.741)

Bias-reduced indirect 0.994 (1.081) 0.800 (0.514) 0.884 (0.681)
TABLE F.7

Empirical coverage probabilities of the Gaussian asymptotic confidence intervals and semiparametric Pareto
tail bootstrap confidence intervals (95% nominal level) associated with the (bias-reduced) direct and indirect
extreme expectile estimators in the location-scale model Y =m+ σε. Between brackets: associated average

lengths of the confidence intervals.

We compare these intervals with the semiparametric Pareto tail bootstrap 95% confidence
intervals generated as follows: we simulate nb = 500 bootstrap samples ε∗1, . . . , ε

∗
n by

1. Simulating ui from the standard uniform distribution on [0,1],
2. If ui ∈ [p,1−p], for p= 0.001, taking ε∗i = F̂−1(ui), where F̂ is the empirical distribution

function of the residuals ε̂i,
3. If ui > 1− p, taking ε∗i = ((1− ui)/p)−γ̂F̂−1(1− p), where γ̂ = γ̂RB is the bias-reduced

Hill estimator (with k = 200) based on the residuals ε̂1, . . . , ε̂n,
4. If ui < p, taking ε∗i = (ui/p)

−γ̂`F̂−1(p), where γ̂` = γ̂RB
` is the bias-reduced Hill estima-

tor (with k = 200) based on the negative residuals −ε̂1, . . . ,−ε̂n.

We then deduce bootstrap samples (Y ∗1 , . . . , Y
∗
n ) = (m+ σε∗1, . . . ,m+ σε∗n). For each sam-

ple, we estimate the extreme expectile at level τ ′n (the bias-reduced direct estimator is em-
ployed), and take the empirical 0.025 and 0.975 quantiles of the nb estimates to construct our
bootstrap confidence interval Î(boot)τ ′n

. This is the exact analogue of the construction we pro-
posed above, adapted to this simpler location-scale example. We also compare these intervals
with their versions obtained using the bias-reduced indirect estimators. We record empirical
coverage probabilities and average lengths of the intervals. Results are presented in Table F.7.

It is readily seen, first of all, that results are almost completely unaffected by the knowl-
edge of the location-scale model structure, and similarly unaffected by the number of data
points used for the estimation of the mean and scale parameters. It is also seen that the
two Gaussian confidence intervals behave quite poorly, being either too conservative or too
narrow and achieving a coverage rate far from the nominal rate. By contrast, the proposed
semiparametric Pareto tail bootstrap confidence interval behaves fairly well, with a typical
coverage probability of about 90%. This seems to be quite robust to the number of bootstrap
replications: a larger number of bootstrap replications was also considered without chang-
ing results substantially. This constitutes reasonable grounds for recommending the use of
the semiparametric Pareto tail bootstrap confidence interval, although of course a full-scale
simulation study should be carried out in future work to assess its accuracy in the regression
context (subject to computational improvements that are beyond the scope of this article).
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