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1 Introduction

The paper analyzes hiring by a large organization whose members’ cooptation decisions are

driven by two motives: quality and homophily. It shows that small exogenous variations in the

initial quality or diversity of the organization (e.g. due to staffing disruptions, technological

shocks, globalization. . . ) may lead to virtuous or vicious spirals and markedly different steady

states. For, talented minorities may refuse to join an organization that lacks diversity (all the

more so when its average quality is low). The higher the initial diversity and the higher the

initial quality, the more likely is the organization to converge to a high-quality, high-diversity

steady state. If the quality and diversity are initially low, the organization does not attract

talented minorities. For an even worse quality-diversity mix, it even stops attracting talented

majority candidates. There is a region, though, over which, in order to avoid depriving itself

of its talent pool, an organization voluntarily engages in affirmative action, picking minority

candidates over at-least-equally talented majority candidates.

Our model has continuous time. At each instant, there is a flow of departing and incoming

members; the latter are selected through majority voting by existing members. There are two

groups (differing in gender, religion, ethnicity, background, politics, scientific field or approach,

values, etc.). The hiring pool includes candidates of both groups, but only a subset of those

are talented: talent is in short supply. A talented hire brings extra utility (knowledge, pres-

tige, budgets, etc.) to all other members, while homophily benefits accrue only to members of

the same group. To avoid trivial dynamics in which all recruiting is in-group, we assume that

quality benefits exceed homophily ones. Members are forward looking, and so are potential

hires. Talented candidates have higher outside options than untalented ones. They can be

attracted only if the present discounted value of the payoff in the organization exceeds the

outside option; this comparison requires anticipating on the evolution of the organization.

We thus analyze a dynamic game whose players are far-sighted incumbent members, mi-

nority and majority candidates, and their future counterparts. We look for a Markov perfect

equilibrium, guess strategies in the state space and verify that these strategies are indeed op-

timal for all players. As announced, its dynamics involve both affirmative action and virtuous

and vicious spirals, depending on the starting point.

Related literature. We will not review the large literature on hiring discrimination1. Our

paper, to the best of our knowledge, is the first to show that voluntary affirmative action may

result from a concern for not being sufficiently attractive to minority employees.

In its emphasis on virtuous and vicious spirals, the paper is most closely related to Board et
1See e.g. the literature reviews in Board et al (2019), Cai et al (2018) – another paper stressing the mix of

talent and homogamy concerns in hiring, but with a different emphasis –, and Moisson-Tirole (2020).
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al (2019). The latter contribution derives rich dynamics from the reasonable assumption that

talented people are better at identifying new talents. It shows that high-skill firms post high

wages, screen applicants first, extract talent from the applicant pool, and exert a negative

compositional externality on low-skill, low-wage firms. Consequently, talent is a source of

sustainable competitive advantage. Their virtuous and vicious spirals have a different origin

from ours: a stronger organization makes better hiring choices. Their analysis focuses on

the vertical (quality) dimension. In our paper, talented minority (and perhaps also talented

majority) candidates turn down an organization that lacks diversity and/or talent.

2 Model

Payoffs in organization and outside options

Like in Cai et al (2018) and Moisson-Tirole (2020), organizational members have a two-

dimensional type; they differ in their talent and the group they belong to. Time is continuous

rather than discrete. The horizon is infinite: t ∈ (−∞,+∞). The organization has a unit

mass of members. Each individual has a two-dimensional type. The vertical type captures

ability or talent and takes one of two possible values {0, s̃}, where s̃dt > 0 is the incremental

flow contribution of a talented individual to each other member’s payoff. The horizontal type

stands for race/gender/tastes/opinions and can take two values {A,B}. A member of a given

horizontal type exerts flow externality b̃dt > 0 (where b̃ > 0) on members of the same type,

but not on members of the opposite type, and this regardless of their talent.

The organization is characterized by a state X ≡ {M,S}: M ∈ [1/2, 1] is the majority’s

size (where majority and minority are defined with respect to horizontal types) and S the

fraction of talented members (so that the current quality of the organization is equal to Ss̃),

the flow payoffs of a majority and a minority member are, respectively

[Ss̃+Mb̃]dt and [Ss̃+ (1−M)b̃]dt.

Between times t and t+dt, a fraction χdt of incumbent members exits, and χdt new members

are coopted. During this interval of time, there is a large number (an excess supply) of untal-

ented candidates of each group, as well as xχdt talented candidates from each group, where

x < 1/2. Candidates can enter the organization when they arrive (and only then) and have a

death rate equal to χ inside or outside the organization (their discount rate is r + χ, where r

is the pure rate of time preference).

Talented and untalented candidates differ in their outside option. Talented candidates

obtain flow payoff ũdt outside the organization, untalented ones a zero flow payoff. So, a tal-

ented candidate accepts an offer if and only if their utility, i.e. the discounted sum of their flow
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payoffs, is greater than or equal to that in the outside option ũ/(r + χ), while an untalented

candidate always accepts an offer. We will first look for equilibria in which only the talented

minority candidates’ participation constraint is binding.

While an agent’s effective discount factor is r+χ, the (quality or homophily) benefits that

a new member brings to a given current member must be discounted by r+ 2χ since the flow

probability that either the current member or the new member exits the organization is 2χdt.

We accordingly define the expected intertemporal utilities: s ≡ s̃/(r+ 2χ), b ≡ b̃/(r+ 2χ). To

keep surpluses comparable, we similarly define u ≡ ũ/(r + 2χ).

Hiring and acceptance strategies

Candidates’ participation decisions are intertemporal strategic complements: a candidate

is more willing to join the organization today if she knows that talented candidates will be

more prone to join it in the future. For the sake of simplicity, we shall focus on equilibria in

which there are no intertemporal coordination failures among talented candidates of the same

group or different groups.

Let σ1 (resp. σ2) denote the (state-contingent) fraction of talented candidates of the

majority (resp. minority) who are selected by the majority – later on, we will note that in

equilibrium σ1 = σ2 = 1. Let σ0 denote the fraction of remaining slots
(
1−x(σ1 +σ2)

)
that are

allocated to untalented majority candidates. Thus, σ0 < 1 indicates some voluntary affirmative

action (the majority selects untalented out-group candidates over equally untalented in-group

ones).2

Note that in large organizations facing a symmetric talent pool, the majority is freed from

the vagaries of a random pool of candidates, and never faces a tradeoff between sacrificing

quality and losing control. We therefore look for an equilibrium in which the majority solves

an optimal control problem, without having to worry about the possibility of losing control.

The majority’s program writes as

max
σ0,σ1,σ2

ˆ +∞

0
e−(r+χ)t

[
Sts̃+Mtb̃

]
dt

subject to the participation constraints of talented candidates, and the induced dynamics of

St and Mt.

We make two assumptions, that together will guarantee the existence of a steady state at

which all talented candidates are willing to join the organization (which does not mean that

they will do so in other states).

Assumption 1. (The organization may attract minority talents) Under parity and attractive-
2This of course can be viewed as a weak form of affirmative action. However, the same dynamics would hold

if the in-group untalented candidates were slightly more productive than their out-group counterparts.
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ness for talented candidates, talented members receive a positive net surplus:

u < 2xs+ b

2 . (1)

Assumption 2. (Minority talents’ outside option constrains the majority) A talented minority

candidate does not want to join a strongly homogenous organization, even a high-quality one:

A steady-state absence of affirmative action (namely, σ0 = σ1 = σ2 = 1) is bound to put off

talented minority candidates:

2xs+ xb < u. (2)

Let

1
2 < M∗ ≡ 2xs+ b− u

b
< 1.

3 Equilibrium dynamics

When talented minority and majority candidates accept to become members (regions 1

and 2 below), the flow-quality dynamics are given by

dS

dt
= χ

[
− S + 2x

]
These dynamics are autonomous and converge monotonically to S∗ ≡ 2x. Those for the

majority size by contrast depend on the majority’s strategy and therefore on the state {St,Mt}

of the organization:

dM

dt
= χ

[
−M + x+ (1− 2x)σ0(S,M)

]
The equilibrium exhibits (at most) four regions when the talented majority candidate’s outside

option is not binding:

• Region 1 (standard favoritism): when Ss + (1 −M)b > u (talented minority members

enjoy a flow surplus in the organization), the majority favors its own candidates in the

untalented group (σ0 = 1):

dM

dt
= χ

[
−M + (1− x)

]

• Region 2 (mild affirmative action to keep talented minority candidates on board): when

Ss+(1−M)b = u, the majority selects candidates so as to maintain minority indifference
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between being in the organization or outside the organization:

s
dS

dt
= b

dM

dt
⇐⇒ σ0 = 2xs+ (1− x)b− u

(1− 2x)b ≡ σ∗0

Assumption 1 implies that σ∗0 > 0, while Assumption 2 implies that σ∗0 < 1. When-

ever the organization reaches region 2, it monotonically converges to the steady state

(S∗,M∗), which lies in region 2.3

• Region 3 (strong affirmative action to make the organization attractive to the minority

again): when M ≤ φ(S) (for some increasing φ satisfying Ss + (1 − φ(S))b < u), the

majority selects σ0 = 0. Talented minority candidates turn down offers (they receive

negative net utility until region 2 is reached and zero net utility thereafter). Dynamics

are given by

dS

dt
= χ

[
− S + x

]
, and dM

dt
= χ

[
−M + x

]

• Region 4 (giving up on minority candidates): the majority selects only majority candi-

dates, as the "investment cost" to make the organization sufficiently attractive to talented

minority candidates is too large. Dynamics are described by

dS

dt
= χ

[
− S̃ + x

]
, and dM

dt
= χ

[
−M + 1

]
Hence, whenever the organization reaches region 4, it monotonically converges to the

steady state (x, 1), which lies in the interior of the region.

Being willing to do what it takes to attract talented minority members requires that the

quality payoff s be sufficiently high. We therefore henceforth assume:

Assumption 3. (Affirmative action may be attractive) The majority’s flow payoff from new-

comers is higher in the high-quality steady state than in the low-quality one:

2xs+ xb+ (1− 2x)σ∗0b > xs+ b ⇐⇒ 3xs > u. (3)

Let us check the optimality of talented minority members’ joining decision (they join the

organization in regions 1 and 2, but not in the other regions). We can distinguish two groups

of regions: R+ is composed of regions 1 and 2, in which talented minority members enjoy

either a strictly positive instantaneous net surplus (region 1) or a zero net surplus (region 2).
3By contrast, if u ∈ [2xs, 2xs + xb), region 2 would never be reached and the steady state would be given

by (S∗, 1− x) and be interior to Region 1.
4Figure 1 for complete generality allows s to exceed 2x; for instance, there might have been a more favorable

supply of talent prior to date 0.
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Figure 1: Phase diagram of the organization’s current quality S and majority size M
when u ∈ [2xs+ xb, 2xs+ b/2] and u < max(xs+ (1− x)b, b/2, 3xs),

so region 5 does not exist.4

Because R+ is absorbing, a talented minority member enjoys a non-negative net surplus in

each future period, implying the optimality of acceptance. R− is composed of regions 3 and

4 (and possibly 5, see below), which all deliver a strictly negative instantaneous net surplus;

even if organizational dynamics converge to absorbing region 2, which gives them a zero net

surplus, their net utility of joining overall is strictly negative.

The Online Appendix shows that region 3 is non-empty if and only if the following condition

holds:

Assumption 4. (Affirmative action can lure back talented minority candidates).5,6 New hires

under full affirmative action bring positive net surplus to the minority and therefore improve

the organization’s attractiveness relative to legacy outside regions 1 and 2 (which yields mi-

5With full affirmative action (σ0 = 0), the dynamics for (Ss−Mb) write as d

dt
(Ss−Mb) = χ

[
−Ss+Mb+

x(s− b)
]
. Hence the minority will ever be willing to join the organization only if lim

t→+∞
(Sts+ (1−Mt)b) > u,

i.e. xs+ (1− x)b− u > 0.
6The assumption that u ∈ [2xs+ xb, 2xs+ b/2] combined with (4) implies in particular that x < 1/3.
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nority members a negative net surplus)

xs+ (1− x)b− u > 0 (4)

If (4) holds, then whenever u ≤ b/2, region 3 is given by the set of states (M0, S0) such

that the majority’s sacrifice is worth the trouble starting at (M0, S0): for S0s−M0b < u− b,7

ˆ T

0
e−(r+χ)t(1− x)b

[
1− e−χt

]
dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− e−χT

]
e−χ(t−T )dt

≤
ˆ +∞

T
e−(r+χ)t(3xs− u)[1− e−χ(t−T )]dt (5)

where T is given by

T ≡ 1
χ

ln
[
M0b− S0s+ x(s− b)
xs+ (1− x)b− u

]
≥ 0

Condition (5) may thus be rewritten in terms of initial attractiveness for the minority: u <

S0s+ (1−M0)b < u for some u > 0.

Failing to attract talented majority members. The outside option u is non-binding for

talented majority members if the organization is attractive to talented minority members

(regions 1 and 2): let us thus consider their participation constraint when Ss+ (1−M)b < u.

A fifth region may exist in which the organization fails to attract any talented candidate, and

subsequently converges towards homogeneity and zero-quality (M∗3 = 0, S∗3 = 0). A necessary

condition for this "region 5" to be non-empty is u > b/2. Then, if this inequality holds, region

5 is in particular non-empty for χ sufficiently close to 0 and (with additional conditions) for χ

sufficiently high, i.e. if turnover is sufficiently low or sufficiently high. The intuition underlying

this result is that when turnover is too low, the organization fails to renew its composition

fast enough, whereas when turnout is too high, members are likely to quit the organization

before they could reap the benefits of quality improvement. We provide more details in the

Online Appendix, and summarize the key messages in Proposition 1.

Proposition 1. (Voluntary affirmative action and virtuous/vicious spirals) Under

Assumptions 1 and 2, there exists an MPE satisfying:

(i) Path uniqueness and steady states: There exist at least two steady states: (M∗1 , S∗1) =
7As the LHS in (5) is strictly positive for T = 0 (from assumption (3)), condition (5) holds by continuity for

T in a neighbourhood of 0, i.e. for any couple (M0, S0) in a neighbourhood of the line {(M,S) |Mb−Ss = b−u}.
Furthermore, since the LHS in (5) strictly increases with T while the RHS strictly decreases with T , if condition
(5) is satisfied by a couple (M0, S0), then it holds by continuity for any initial state (M ′0, S0) such thatM ′0 ≤M0.
Lastly, by monotonicity, there exists a unique T such that (5) holds with equality. Hence the boundary between
Regions 3 and 4 is an (increasing) line in the plane (M,S).
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(x + (1 − 2x)σ∗0, 2x) and (M∗2 , S∗2) = (1, x). A third steady state, (M∗3 , S∗3) = (1, 0),

may exist. Both majority and minority members rank the steady state (M∗1 , S∗1) first,

(M∗2 , S∗2) second and (M∗3 , S∗3) third. There are at most 5 regions in the state space

{(M,S) |M ∈ [1/2, 1], S ∈ [0, 1]}. Starting from an initial state8, there exists a unique

equilibrium; the organization converges to the region’s steady state (which may or may

not be interior to the region).

(ii) Path dependence: A lower initial quality S0 generates a lower steady-state quality for

the organization, and a lower steady-state utility for both the majority and the minority

members (if any)9. Similarly, absent an outside option for talented majority candidates

or if u − b/2 < xs, a larger initial majority size M0 has a long-run impact pointing

in the same direction as a lower initial quality S0. By contrast, if talented majority

candidates also have the outside option u and if u > b (resp. u − b/2 < xs), a larger

initial majority size M0 may enhance the organization’s steady-state quality if it allows

the organization to attract talented majority candidates and converge towards the steady

states (x+(1−2x)σ∗0, 2x) or (1, x) instead of (1, 0) (i.e. move out of region 5 into regions

3 or 4).10

(iii) Voluntary affirmative action: Under Assumptions 3 and 4, there exists a range of initial

states (region 3) in which the majority engages in voluntary affirmative action in order

to get talented minority candidates back on board in the future (and subsequently weakly

reducing affirmative action).

(iv) Vicious spirals: The union of regions 4 and 5 is absorbing. The organization either

converges towards (M∗2 , S∗2) or (M∗3 , S∗3) (the latter if and only if the initial state lies in

region 5 and u > b).11

Remark 1: Quits. If the organization’s talented current members also have access to the same

outside option as outside candidates, then the organization may lose all its talented minority

members at once. This would put an additional constraint on the profitability of engaging in

affirmative action, thus reducing the size of region 3. Upon losing all its talented minority

members, the organization goes from a state (Mt− , St−) to a state (Mt+ , St+) where Mt+ and
8Except along the non-generic line M = φ(S), and the boundary between regions 4 and 5, if any.
9As S∗, M∗b+ S∗s and (1−M∗)b+ S∗s weakly increase with S0.

10In the steady state of region 2, the relative talent of majority vs. minority members is strictly below 1 and
higher than in the "objective state" of region 1. The talent ratio of majority vs. minority members decreases
over region 5. It may increase or decrease over regions 1, 2, 3 and 4 depending on the initial composition of
the organization.

11Moreover, it can be shown that in some cases at least, in the long run, as the quality decreases from its
initial level S0, talented minority candidates reject the organization’s offers before talented majority candidates
do.
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St+ depend on the initial distribution of quality within each group.

Remark 2. Deterministic, symmetric models of large organizations imply that control is no

longer an issue: Meritocracy allows the majority to keep control. This feature is inconse-

quential for the investigations of various dynamics under entrenchment, as is the case here.

Furthermore, one can introduce control concerns in the large-organization model by adding

persistent shocks. For example, members may not always vote and the relative absenteeism

of the majority vs. minority members might follow a Brownian motion. Another (but asym-

metric) environment in which control is a concern for the majority arises when there are more

talented B-candidates than talented A-candidates: xA < xB and group A initially has the

majority.12

4 Competition for talent

Competition among organizations is a rich object of study, which we leave for future work.

We here content ourselves with a partial result highlighting the analogy with endogenous can-

didacies; the key difference with the case of endogenous candidacies is that outside options

are strategically determined by rival platforms.

Suppose there are two large organizations j = 1, 2. As earlier, in each time interval [t, t+dt],

there is a mass χdt of departing members in each organization, and a mass χxdt of talented

candidates of each group, together with an unlimited supply of untalented candidates of either

type. Each organization ranks-order candidates; when confronted with multiple acceptances,

candidates pick their preferred organization and the market clears by moving down the organi-

zations’ pecking order. There are now five state variables: {Mj(t), Sj(t)}j∈{1,2} together with

whether the majoritarian groups are the same in the two organizations. When considering

an organization’s offer, candidates have no other outside option than the other organization’s
12If xB > 1/2 and if there is a benefit from control (xA + xB < 1), then an A-majority may face a tradeoff

between engaging in affirmative action in order to attract talented B-candidates, and retaining control. We
provide an illustration in the case where there are no outside options. Assume for instance that between times
t and t+ dt, there are xAχdt (resp. xBχdt) talented candidates from group A (resp. B), where xA < 1/2 < xB
and xA + xB ≤ 1 (as well as a large number of untalented candidates of each group, as before). Whenever
control is not at stake, the majority still favours talented out-group candidates over untalented in-group ones.
Yet consider an A-majority with size 1/2. The majority may then either relinquish control, in which case the
flow quality (resp. homophily) payoff of A-members will converge toward (xA + xB)s̃ (resp. xAb̃), or keep
control, in which case the flow quality (resp. homophily) payoff of A-members will converge toward (xA+1/2)s̃
(resp. b̃/2). Hence an A-majority with size 1/2 chooses to relinquish control if and only if

ˆ ∞
0

e−(r+χ)t
[[
S0 − (xA + xB)

]
s̃e−χt + (xA + xB)s̃+

[
1/2− xA

]
b̃e−χt + xAb̃

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S0 − (xA + 1/2)

]
s̃e−χt + (xA + 1/2)s̃+ b̃/2

]
dt

i.e. if and only if s/b ≥ (1/2− xA)
/

(xB − 1/2).
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(potential) offer.

We say that an equilibrium is "group-coalition proof" if talented candidates of a group

cannot deviate from their acceptance strategies and all be better off; the equilibrium is

"population-coalition proof" if talented candidates of both groups cannot deviate from their

acceptance strategies and all be better off13. We focus on "increasing-dominance equilibria",

i.e. equilibria such that (a) both organizations recruit all talented candidates willing to join

the organization, and apply homogamic favoritism among untalented candidates; (b) one or-

ganization attracts all talented candidates; and (c) the equilibrium is group-coalition proof14.

Assume organization 1 starts with a higher quality (S2(0) < S1(0) ≤ 2x)15 and, say, ma-

joritarian group A, while organization 2 starts with a B majority16. If all talented candidates

choose organization 1, the dynamics of the state variables are given by:

dS1
dt

= χ(−S1 + 2x), dS2
dt

= −χS2,
dM1
dt

= χ(−M1 + 1− x), dM2
dt

= χ(−M2 + 1)

Group-coalition proofness for talented B-candidates is satisfied if they would not contemplate

a collective deviation to joining organization 2:

ˆ ∞
0

e−(r+χ)t
[[
S1(0)− 2x

]
s̃e−χt + 2xs̃+

(
1−

[
M1(0)− (1− x)

]
e−χt − (1− x)

)
b̃

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S2(0)− x

]
s̃e−χt + xs̃+

[
M2(0)− 1

]
b̃e−χt + b̃

]
dt

i.e. if and only if the differential in the initial value proposition exceeds a (turnover-and-

interest-rate weighted) long-term loss (benefit if negative):17

[
S1(0)− S2(0)

]
s+

[(
1−M1(0)

)
−M2(0)

]
b ≥ χ

r + χ

[
(1− x)b− xs

]
(6)

Pursuing the analysis along these lines, we can show:

Proposition 2. (Increasing-dominance equilibria) Suppose that organization 1 starts with

an A-majority and higher quality (S1(0) > S2(0)) than organization 2, which starts with a

B-majority. There exists ρ0 > 0 such that

• for s/b < ρ0, there exists no increasing-dominance equilibrium,
13These notions are in the spirit of Bernheim et al (1987).
14Online Appendix E investigates the population-coalition proofness of these equilibria, showing in particular

that this property is self-reinforcing over time.
15Our analysis applies to any initial qualities Sj(0) ∈ [0, 1], yet for the sake of exposition we assume Sj(0) ≤

2x.
16Alternatively, insights are unaltered if it starts with an A majority (see Online Appendix E).
17The group-coalition proofness condition for talented A-group candidates is a fortiori satisfied when (6) is:[

S1(0)− S2(0)
]
s+
[
M1(0)−

(
1−M2(0)

)]
b ≥ − χ

r + χ

[
(1− 2x)b+ xs

]
.
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• for s/b ≥ ρ0, there exists an increasing-dominance equilibrium in which all talented

candidates join organization 1. There is no other such equilibrium if the initial quality

differential is large (S1(0)− S2(0) > xχ/(r + χ)), while for a smaller initial differential

and if s/b is greater than some threshold ρ1 ≥ ρ0, there exists another such equilibrium,

in which all talented candidates join organization 2.

5 Conclusion

The paper’s two main insights, organizational spirals and voluntary affirmative action,

were covered in the introduction. Obvious areas for future research include the introduction

of concerns for control (see footnote 10 for an example) as well as a full treatment of compe-

tition for talent. On the latter front, it would be interesting to understand when affirmative

action can become a norm; if some organizations (say public ones) put more emphasis on

diversity, other organizations may need to match that diversity to woo minorities (strategic

complementarity) or to the contrary may give up on it, finding it even harder to attract mi-

nority talent (strategic substitutability).

The paper focused on diversity and quality as determinants of attractiveness. Another

dimension is financial compensation. Lagging departments or firms sometimes throw money

at stars to jumpstart a virtuous spiral. But this strategy’s success is not a foregone conclu-

sion. Like in this paper, adverse expectations may thwart the attempt. A credible long purse

allowing management to do “whatever it takes” may help, as does the choice of a credible lead-

ership. But in the end, quality and diversity will always be determinants of which dynamic

the organization will enter.
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Online Appendix

A A preliminary result

A simple result used repeatedly is the following: let X(t) follow dX/dt = χ(−X + X∗)

(with X∗ the steady state value). Then X(t) = (X(0) −X∗)e−χt + X∗, and the PDV of the

flow X(t)dt (weighted by time preference and exit probability) is a convex combination of the

initial value and the steady state value:

ˆ ∞
0

e−(r+χ)tX(t)dt = 1
r + χ

((r + χ)X(0) + χX∗

r + 2χ

)
.

B Only talented minority candidates have an outside option

and u ≤ b/2

(A) Suppose first that only talented minority candidates have an opportunity cost for joining

the organization. [In case (B), both majority and minority talented candidates will have the

same opportunity cost for joining the organization (see Online Appendix C).]

Within case (A), we distinguish two subcases depending on the parameters’ values:

(A.1) u ≤ b/2,

(A.2) u > b/2, with (A.2.a): u− b/2 > xs, and (A.2.b): u− b/2 < xs.

(A.1) Suppose u ≤ b/2. The majority’s program writes as

max
σ0,σ1,σ2

ˆ +∞

0
e−(r+χ)t

[
Sts̃+Mtb̃

]
dt

subject to

(i) if Sts−Mtb ≥ u− b,

dMt

dt
= χ

[
−Mt + x(σ1 + 1− σ2) + (1− 2x)σ0

]
, and dSt

dt
= χ

[
− St + x(σ1 + σ2)

]

(ii) if Sts−Mtb < u− b,

dMt

dt
= χ

[
−Mt + xσ1 + (1− x)σ0

]
, and dSt

dt
= χ

[
− St + xσ1

]

12



Proposition B.1. (Only talented minority candidates have an outside option) As-

sume (4) is satisfied, and u ≤ b/2. The following is a solution to the majority’s optimal control

problem:

• (Region 1) If Sts−Mtb > u− b, the majority selects σ1 = σ2 = σ0 = 1.

• (Region 2) If Sts−Mtb = u− b, the majority selects σ1 = σ2 = 1 and σ0 = σ∗0.

• (Region 3) If Sts −Mtb < u − b and (M0, S0) satisfies (5), the majority selects σ1 = 1

and σ0 = 0.

• (Region 4) If Sts −Mtb < u − b and (M0, S0) does not satisfy (5), the majority selects

σ1 = σ0 = 1.

If (4) is not satisfied, then Region 3 is empty, and whenever Sts−Mtb < u− b, the majority

selects σ1 = σ0 = 1.

Proof. Consider a solution (σ0, σ1, σ2) to the majority’s optimal control problem.

That region 2 is absorbing for ũ ∈ [2xs̃+ xb̃, 2xs̃+ b̃/2] derives from the above discussion.

Moreover, for constant controls σ1 and σ2, the dynamics of S̃t over the sets {(ut, S̃t)|ut + ũ ≤

2S̃t + b̃} and {(ut, S̃t)|ut + ũ > 2S̃t + b̃} do not depend on the majority’s size M nor on the

control σ0.

Consider region 1, i.e. the set {(ut, S̃t)|ut + ũ < 2S̃t + b̃}. We first note that region 2

is reached in a finite time from region 1. Indeed, if region 2 is never reached, our initial

assumptions on ũ imply that σ0 < 1 or σ2 < 1 (or both) on a non-empty interval, and thus

that the majority could strictly improve its welfare by slightly increasing σ0 (since b̃ > 0) or

σ2 (since s̃ ≥ b̃) on this interval, still without ever reaching region 2.

Lemma B.2. For a time T < ∞ of arrival in region 2, let V ((M(T ), S(T ))) denote the

continuation value function for the majority. Then,

∂V

∂M(T )(M(T ), S(T )) = b, and ∂V

∂S(T )(M(T ), S(T )) = s (7)

Indeed, using the dynamics of M and S over region 2 yields that for all t ≥ T ,

M(t) =
[
M(T )− x− (1− 2x)σ∗0

]
e−χ(t−T ) + x+ (1− 2x)σ∗0,

S(t) =
[
S(T )− 2x

]
e−χ(t−T ) + 2x

13



Consequently,

V (M(T ), S(T )) =
ˆ ∞

0
e−(r+χ)tb̃

([
M(T )− x− (1− 2x)σ∗0

]
e−χt + x+ (1− 2x)σ∗0

)
dt

+
ˆ ∞

0
e−(r+χ)ts̃

([
S(T )− 2x

]
e−χt + 2x

)
dt

= M(T )b+ S(T )s+ χ

r + χ

([
x+ (1− 2x)σ∗0

]
b+ 2xs

)

And thus by differentiation,

∂V

∂M(T )(M(T ), S(T )) = b,

∂V

∂M(T )(M(T ), S(T )) = s

The majority’s optimal control problem in region 1. The majority solves:

max
σ0,σ1,σ2,T

{ˆ T

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)TV ((M(T ), S(T )))

}

subject to (8) and (9), which are respectively the final time constraint

sS(T )− bM(T ) = u− b (8)

and the state dynamics

dM

dt
= χ

[
−M + x(σ1 + 1− σ2) + (1− 2x)σ0

]
, and dS

dt
= χ

[
− S + x(σ1 + σ2)

]
(9)

So the Hamiltonian writes as

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + x(σ1 + 1− σ2) + (1− 2x)σ0

]
+ χq(t)

[
− S + x(σ1 + σ2)

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint (8),

p(T ) = e−(r+χ)T ∂V

∂M
(M(T ), S(T ))− ψb, and q(T ) = e−(r+χ)T ∂V

∂S
(M(T ), S(T )) + ψs
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which together with (7) imply that

p(t) = be−(r+χ)t − ψbe−χ(T−t), and q(t) = se−(r+χ)t + ψse−χ(T−t),

the Hamiltonian’s partial derivatives write as



∂H

∂σ0
= χ

(
e−(r+χ)t − ψe−χ(T−t)

)
(1− 2x)b,

∂H

∂σ1
= χe−(r+χ)tx(s+ b) + ψχe−χ(T−t)x(s− b),

∂H

∂σ2
= χe−(r+χ)tx(s− b) + ψχe−χ(T−t)x(s+ b)

(10)

Pontryagin’s maximum principle with variable horizon thus yields that the optimal control σ

satisfies σ1 = σ2 = 1, and the sum of the Hamiltonian and the partial derivative of the final

cost with respect to the final time, evaluated at the final time T , must be nil:

e−(r+χ)T [s̃S(T ) + b̃M(T )
]

+ χp(T )
[
−M(T ) + x(σ1 + 1− σ2) + (1− 2x)σ0

]
+ χq(T )

[
− S(T ) + x(σ1 + σ2)

]
= (r + χ)e−(r+χ)TV (M(T ), S(T ))

i.e. by using the final time constraint (8), replacing the controls σ1 and σ2 with their optimal

values σ1 = σ2 = 1, and rearranging,

e−(r+χ)T (1− 2x)(σ0 − σ∗0)b = ψ
[
2(1− x)b+ (1− 2x)(σ0 − σ∗0)b

]
Hence, ψ < e−(r+χ)T , and thus σ0 = 1.18

The majority’s optimal control problem in regions 3 and 4. We first suppose region

2 is reached in a finite time T and apply the same arguments as above in order to derive the

optimal controls and finite time for region 2 to be reached. We then compare this (optimal)

value of reaching region 2 in a finite time to the (optimal) value of never reaching it. The

cutoff condition – which is condition (5) in the text – draws the line between regions 3 and 4.

(i) Suppose region 2 is reached at time T <∞. Then (7) holds. The majority’s optimiza-
18An intuition for ψ < e−(r+χ)T is that the continuation value upon reaching region 2 is lower than the value

of being in region 1. Conversely, in the Pontryagin maximization problem in regions 3 and 4, ψ > e−(r+χ)T as
the continuation value upon reaching region 2 is higher than the value of being in region 3.
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tion problem writes as

max
σ0,σ1,σ2,T

{ˆ T

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)TV ((M(T ), S(T )))

}

subject to (11) and (12) which are respectively the final time constraint

sS(T )− bM(T ) = u− b (11)

and the state dynamics

dM

dt
= χ

[
−M + xσ1 + (1− x)σ0

]
, and dS

dt
= χ

[
− S + xσ1

]
(12)

The Hamiltonian writes

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + xσ1 + (1− x)σ0

]
+ χq(t)

[
− S + xσ1

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint (11),

p(T ) = e−(r+χ)T ∂V

∂M
(M(T ), S(T ))− ψb, and q(T ) = e−(r+χ)T ∂V

∂S
(M(T ), S(T )) + ψs

which together with (7) imply that

p(t) = be−(r+χ)t − ψbe−χ(T−t), and q(t) = se−(r+χ)t + ψse−χ(T−t),

the Hamiltonian’s partial derivatives write as


∂H

∂σ0
= χ(1− x)

(
be−(r+χ)t − ψbe−χ(T−t)

)
,

∂H

∂σ1
= χx

(
e−(r+χ)t(s+ b) + ψχe−χ(T−t)(s− b)

) (13)

Pontryagin’s maximum principle with variable horizon yields that the optimal control σ sat-

isfies σ1 = 1, and the sum of the Hamiltonian and the partial derivative of the final cost with
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respect to the final time, evaluated at the final time T , must be nil:

e−(r+χ)T [s̃S(T ) + b̃M(T )
]

+ χp(T )
[
−M(T ) + xσ1 + (1− x)σ0

]
+ χq(T )

[
− S(T ) + xσ1

]
= (r + χ)e−(r+χ)TV (M(T ), S(T ))

i.e. by using the final time constraint (11), replacing the control σ1 with its optimal value

(σ1 = 1), and rearranging,

e−(r+χ)T
[
u− (1− x)(1− σ0)b− 3xs

]
= ψ

[
u− (1− x)(1− σ0)b− xs

]

Since we assumed that u < 3xs (which is a necessary condition for region 2 to exist, see

condition (3) in the text), the LHS is always negative. Hence, for a solution to exist, it must

be that u < xs + (1 − x)b (which is condition (4) in the text). And therefore, ψ > e−(r+χ)T ,

and thus σ0 = 0.

(ii) It thus remains to compare the value of reaching region 2 in a finite time with the

optimal controls, to the value of never reaching region 2 (which clearly yields σ1 = σ0 = 1).

This is transcribed in the following condition on the initial state (M0, S0) (which is condition

(5) in the text):

ˆ T

0
e−(r+χ)t(1− x)b

[
1− e−χt

]
dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− e−χT

]
e−χ(t−T )dt

≤
ˆ +∞

T
e−(r+χ)t(3xs− u)[1− e−χ(t−T )]dt (14)

where T < ∞ is the time at which region 2 is reached from an optimal path starting from

initial state (M0, S0), and is thus given by

T ≡ 1
χ

ln
[
M0b− S0s+ x(s− b)
xs+ (1− x)b− u

]
≥ 0

Indeed, let ut ≡Mtb+Sts be the majority’s flow utility. Starting from a couple (M0, S0) such

that S0s−M0b < u− b, the majority’s flow utility without affirmative action (σ0 = 1) writes

as

∀t ≥ 0, u
(4)
t = [M0b+ S0s− xs− b]e−χt + xs+ b,

whereas with full affirmative action (σ0 = 0), it writes as

∀t ∈ [0, T ], u
(3)
t = [M0b+ S0s− xs− xb]e−χt + xs+ xb,
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where T is the time at which region 2 is reached and is thus given by: u(3)
T − 2ST = b− u, i.e.

[M0b− S0s+ x(s− b)]e−χT = xs+ (1− x)b− u

For any t > T , the organization remains in region 2, and the majority’s utility thus writes as

u
(2)
t =

[
u

(3)
T − 2xs− xb− (1− 2x)σ∗0b

]
e−χ(t−T ) + 2xs+ xb+ (1− 2x)σ∗0b

where u(3)
T = [M0b+S0s− xs− xb]e−χT + xs+ xb. The majority’s sacrifice in region 3 is then

worthwhile if and only if

ˆ ∞
0

e−(r+χ)tu
(4)
t dt ≤

ˆ T

0
e−(r+χ)tu

(3)
t dt+

ˆ ∞
T

e−(r+χ)tu
(2)
t dt

Condition (5) obtains by rearranging and using the definition of σ∗0.

C General exposition

We assume in the following that condition (4) is satisfied. We describe the dynamics in

cases (A.2) and (B). Proofs are delayed to Online Appendix D.

(A.2) Suppose u > b/2. The analysis in region 1 is left unchanged. By contrast, region

2 now cuts the vertical axis before the horizontal one : namely, the point
(
1/2, u− b/2

s

)
is

the intersection of region 2 with the vertical axis. The above analysis for regions 3 and 4 is

thus altered as some trajectories with σ1 = 1 − σ0 = 1 ("full affirmative action") which were

previously in region 3, now reach the vertical axis before reaching region 2 19. The analysis

now depends on the sign of u− b/2− xs.

(A.2.a) If u − b/2 > xs, then any "affirmative action" trajectory (σ0 < 1) coming from

below region 2 and reaching the vertical axis below region 220, subsequently converges towards

a fixed point ((1/2, x)) which is on the vertical axis, yet strictly below region 2. Hence region 2

is never reached, and thus optimality requires that, starting from any point on this trajectory,

the majority selects σ1 = σ0 = 1. In other words, any such point belongs to region 4.

Moreover, for u−b/2 > xs, region 2 is reached in a finite time from an initial state (M0, S0)

if and only if the full-affirmative action trajectory starting from (M0, S0) reaches region 2 in

a finite time. In addition, the previous analysis still applies yielding that among the values of
19Indeed, any such trajectory aims for M = x < 1/2 and S = x.
20And thus a fortiori any trajectory with a lower degree of affirmative action yet still reaching the vertical

axis in a finite time.
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σ0 such that region 2 is reached in a finite time, the lowest one is optimal.

As a consequence, starting from the vertical axis, the frontier between regions 3 and 4 is

now given first by the "full-affirmative-action" trajectory (σ1 = 1 − σ0 = 1) which cuts the

vertical axis in
(
1/2, u− b/2

s

)
, until this trajectory reaches the line defined by (5), after which

the frontier is given as before by the latter, which is an increasing line parallel to region 2 21:

Region 3 is the set of initial states below region 2 and above this frontier.

(A.2.b) If u − b/2 < xs, then if the organization starts from region 3 and reaches the

vertical axis before region 2, it subsequently goes up the vertical axis towards the state (1/2, x).

Since this state is strictly above region 2, the latter is reached in a finite time. Yet by choosing

a lower intensity of affirmative action (σ0 ≥ 0), the organization can reach the vertical axis at

its intersection with region 2. We show in Online Appendix D that among all intensities of

affirmative action such that region 2 is reached in a finite time, it is optimal for the majority

to choose the lowest possible σ0 such that region 2 is reached before the vertical axis22. As a

consequence, the organization engages in full affirmative action (σ0 = 0) whenever the latter

makes the organization reach region 2 before the vertical axis, and otherwise selects σ0 > 0

defined as the value for which the organization reaches region 2 on the vertical axis, i.e. at

the point
(
1/2, u− b/2

s

)
.

21Indeed, our previous analysis of the optimal control problem still applies to any point on this trajectory,
yielding that among all levels of affirmative action, full affirmative action is optimal. Condition (5) then ensures
that full affirmative action is optimal with respect to standard favoritism.

22An intuition underlying this result is as follows:
• σ1 = 1 is optimal for the same reasons as before,
• consider the (closure of the) set of strategies σ0 such that region 2 is reached before the vertical axis:

the previous analysis applies, yielding that the lowest such σ0 is optimal.
• consider the (closure of the) set of strategies σ0 such that the vertical axis is reached before region 2. We

observe that (i) all these trajectories ultimately reach region 2 at the same point (i.e. (
(
1/2, u− b/2

s

)
),

and (ii) the dynamics of S0 withing a region do not depend on the value of the control. Therefore, all
these trajectories reach region 2 at the same time. The result thus follows from the observation that
picking the highest possible σ0 within this set grants the highest homophily flow benefits, without any
quality losses nor delay in reaching region 2.
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Namely, given the initial state (M0, S0), σ0 is given whenever it exists by23


[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

It remains to compare, whenever it applies, affirmative action with intensity σ0 to standard

favoritism (σ1 = σ0 = 1). It it thus optimal for the organization to aim for region 2 starting

from an initial state such that full affirmative action would lead to the vertical axis before

region 2, if and only if24

ˆ T

0
e−(r+χ)t(1− x)b

[
1− σ0

]
(1− e−χt)dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− σ0

](
1− e−χT

)
e−χ(t−T )dt

≤
ˆ ∞
T

e−(r+χ)t(3xs− u)
[
1− e−χ(t−T )]dt (15)

Given an initial state S0 (and thus given T ), condition (15) with equality uniquely defines

σ0 (and thus gives a unique M0). Hence, since σ0 increases with S0 and decreases with M0,

condition (15) with equality defines an upward-sloping curve in the plane (M,S), which we

denote by Γ′. Moreover, since the LHS in (15) decreases with σ0, any point on the left of Γ′

satisfies the condition.

Let ΓAA be the full affirmative-action trajectory (σ1 = 1− σ0 = 1) which cuts the vertical

axis in
(
1/2, u− b/2

s

)
. The frontier between regions 3 and 4 is now given by the set of points

in {(M,S) |M ∈ [1/2, 1], S ∈ [0, 1]} below region 2 and either (i) below line ΓAA and above

line Γ′, or (ii) above line ΓAA and to the left of the line defined by (5).25

(B) We now assume that both the majority’s and the minority’s talented candidates have the

same (normalized) opportunity cost for joining the organization u. Then there may exist an

additional region where the organization fails to recruit such candidates (which we refer to as

"region 5").

The set of states such that the majority’s flow utility equals its outside option is given
23Note that the "frontier" defined by σ0 = 0 (i.e. the set of largest initial majority sizes such that the system

has a solution given an initial quality) is a decreasing line in the plane (M,S), given by the set of initial states
satisfying

b

s

M0 − x
S0 − x

=

b

2 − x

u− b

2 − xs

24See Online Appendix D for details.
25Indeed, our previous analysis of the optimal control problem still applies to any point above this trajectory,

yielding that among all levels of affirmative action, full affirmative action is optimal. Condition (5) then ensures
that full affirmative action is optimal with respect to standard favoritism.
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by the line Γ ≡ {(M,S) |Mb + Ss = u}. The line Γ is an upper bound on the frontier

between regions 4 and 5. Indeed, for any point below this line, Mb+ Ss < u and thus, if the

organization remains below Γ, the participation constraint of talented majority candidates is

not met. Yet it may be that the organization does not remain below Γ (see below), in which

case the frontier between regions 4 and 5 lies strictly below Γ.

Moreover, whenever the organization falls in region 5, it is left with a single control which is

the fraction of untalented majority candidates. Yet because talented candidates of both sides

have the same outside option, sacrificing homophily is strictly suboptimal for the majority.

The state dynamics in region 5 are thus given by

dM

dt
= χ(−M + 1), and dS

dt
= −χS

Hence any trajectory starting from region 5 converges towards the point (1, 0): this point may

or may not be interior to region 5 as the line Γ has vertical coordinate (u − b)/s for M = 1

(see below).

A necessary condition for region 5 to be non-empty is thus u > b/2, i.e. that Γ cross the

vertical axis strictly above the horizontal axis. 26

When talented candidates of both groups have an outside option, the majority’s optimal

control problem when the organization is on the right of region 2 may differ from when only

talented minority candidates have such an option. We refer to Online Appendix D for a

detailed description of the phase diagram. We only mention here that for u ≤ b/2, the

participation constraint of talented majority candidates is never binding as they are always

guaranteed at least b/2 upon joining the organization. Hence for u ≤ b/2, the above analysis

remains unchanged (and region 5 is empty).

D Proof of Proposition 1

(A.2.b.) Only talented minority candidates have an opportunity cost for joining
the organization, and b/2 < u < xs + b/2. We first establish that, starting from an

initial state such that a full affirmative action would lead to the vertical axis strictly below

its intersection with region 2, if region 2 is reached in a finite time, then the affirmative

action trajectory that reaches region 2 at its intersection with the vertical axis (σ0 = σ0) is

optimal. Yet since some trajectories may reach the vertical axis before region 2, there may be
26Moreover, the line Γ and the line defining region 2 reach the vertical axis in the same point, namely(

1/2, u− b/2
s

)
. Indeed, talented candidates of both sides have the same outside option and for M = 1/2, they

enjoy the same flow utility.
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a discontinuity in the dynamics of M . We thus show the result by considering two distinct

Pontryagin maximization problems and compare their optimal values.

It can be shown (with Pontryagin arguments on well chosen parameter sets) that σ1 = 1

is always optimal. We thus focus on the choice of σ0. Let (as before) σ0 be the parameter

value such that the trajectory with control σ0 = σ0 reaches the point (M,S) =
(
1/2, u− b/2

s

)
.

Hence σ0 is the lowest parameter value for control σ0 such that the trajectory reaches region

2 before the vertical axis. Namely, given the initial state (M0, S0), σ0 is given whenever it

exists by 
[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

We thus distinguish two sets of admissible values for the control σ0:

• For σ0 ∈ [σ0, 1], the previous Pontryagin maximization problem yields that σ0 is optimal.

The organization thus reaches region 2 at time T at the point
(
1/2, u− b/2

s

)
.

• For σ0 ∈ [0, σ0], the problem writes differently as the vertical axis is reached before

region 2. Let (1/2, S) be the point on the vertical axis reached by a given trajectory at

time T1. The continuation value from state (1/2, S(T1)) reached at time T1, denoted by

V †(T1, 1/2, S(T1)) writes as

ˆ T2−T1

0
e−(r+χ)t b̃

2dt+
ˆ T2−T1

0
e−(r+χ)t

[
(S(T1)− x)s̃e−χt + xs̃

]
dt

+
ˆ ∞
T2−T1

e−(r+χ)t
[(
ũ− 2xs̃− (x+ (1− 2x)σ∗0)b̃

)
e−χ(t−T2+T1) + 2xs̃+ (x+ (1− 2x)σ∗0)b̃

]
dt

where T2 is given by

[
S0 − x

]
se−χT2 + xs = u− b

2

The majority’s optimization problem writes as

max
σ0∈[0,σ0],T1

{ˆ T1

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)T1V †(T1, 1/2, S(T1)))

}

subject to the final time constraint M(T1) = 1/2 and the state dynamics

dM

dt
= χ

[
−M + x+ (1− x)σ0

]
, and dS

dt
= χ

[
− S + x

]
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The Hamiltonian writes

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + x+ (1− x)σ0

]
+ χq(t)

[
− S + x

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint,

p(T1) = ψ, and q(T1) = e−(r+χ)T1 ∂V
†

∂S
(T1, 1/2, S) = e−(r+χ)T1

(
1− e−(r+2χ)(T2−T1)

)
s

which implies that

p(t) = be−(r+χ)t + ψe−χ(T1−t),

the Hamiltonian’s partial derivative with respect to σ0 writes as

∂H

∂σ0
= χ(1− x)

[
be−(r+χ)t + ψe−χ(T1−t)

]
> 0

Hence Pontryagin’s maximum principle with variable horizon yields that27 the optimal

control σ0 must be the highest possible, i.e. σ0 = σ0.

Therefore, if region 2 is reached in a finite time, then optimality requires σ0 = σ0 (and σ1 = 1)

as long as region 2 is not reached.

It thus remains to compare the value of reaching region 2 at its intersection with the

vertical axis, namely at the point
(1
2 ,
u− b/2

s

)
with the value of standard favoritism. The

argument for the optimality condition is similar to the one in case A.1. By construction of σ0

and T , the condition for the optimality of level-σ0 affirmative action with respect to standard
27Moreover, the sum of the Hamiltonian and the partial derivative of the final cost with respect to the final

time, evaluated at the final time T1, must be nil, and thus:

e−(r+χ)T1

[
b̃

2 + S(T1)s̃
]

+ p(T1)
[
− 1/2 + x+ (1− x)σ0

]
+ q(T1)

[
− S(T1) + x

]
= e−(r+χ)T1

[
(r + χ)V †(T1, 1/2, S(T1))− ∂V †

∂T1
(T1, 1/2, S(T1))

]
,

which implies that:

ψ =
[
x− S(T1)

]
(1− χ)s

1
2 − x− (1− x)σ0

[
e−(r+2χ)T1 − e−(r+2χ)T2

]
> 0

23



favoritism writes as

ˆ T

0
e−(r+χ)t

[[
S0s+M0b− xs−

(
x+ (1− x)σ0

)
b
]
e−χt + xs+

(
x+ (1− x)σ0

)
b

]
dt

+
ˆ ∞
T

e−(r+χ)t
[[
u− 2xs−

(
x+ (1− 2x)σ∗0

)
b
]
e−χ(t−T ) + 2xs+

(
x+ (1− 2x)σ∗0

)
b

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S0s+M0b− xs− b

]
e−χt + xs+ b

]
dt

which yields (15) after rearranging.

(B) Both majority and minority talented candidates have an opportunity cost
for joining the organization. We first provide an intuition for the results. Consider an

"affirmative action" trajectory that reaches the interior of region 5 before the vertical axis. Such

a trajectory henceforth converges towards (1, 0), possibly exiting region 5 towards region 4 in a

finite time. Hence, because of discounting, this strategy is dominated by "standard favoritism"

from t = 0 onward, which leads to a weakly more favourable steady state. Moreover, consider

an initial state (M0, S0) such that the full-affirmative action trajectory (σ0 = 0) starting from

this state, reaches region 2 in a finite time. Consider any less-than-full affirmative action

trajectory (σ0 > 0) starting from the same initial state (M0, S0). Then,

• if this less-than-full affirmative action trajectory does not reach region 2 in a finite time,

it is clearly dominated by "standard favoritism" (σ0 = 1 and if possible σ1 = 1).

• if this less-than-full affirmative action trajectory reaches region 2 in a finite time, the

above analysis applies, yielding that this trajectory is dominated by a full-affirmative

action trajectory if it reaches region 2 before the vertical axis, or by the affirmative

action trajectory such that region 2 is reached at its intersection with the vertical axis.

Hence the initial state (M0, S0) belongs to region 3 only if either (5) or (15) hold, and belongs

to regions 4 or 5 otherwise.

As with case (A), we distinguish within case (B) two subcases:

(B.1) u ≤ b/2,

(B.2) u > b/2, with (B.2.a): u− b/2 ≥ xs, and (B.2.b): u− b/2 < xs.

(B.1) Suppose u ≤ b/2. Then region 5 is empty. The above analysis of case (A.1) is un-

changed: the participation constraint of talented majority candidates never binds as they are

always guaranteed at least b/2 upon joining the organization.
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(B.2) Suppose u > b/2.

Whenever u ≤ b/2, the frontier between regions 5 and 4 is given by the set of states

(violating (15) if u− b/2 < xs) such that

ˆ ∞
0

e−(r+χ)t
[
[S0 − x]s̃e−χt + xs̃+ [M0 − 1]b̃e−χt + b̃

]
dt =

ˆ ∞
0

e−(r+χ)tũdt (16)

Since the LHS in (16) is strictly increasing with respect to S0 and M0, the frontier between

regions 5 and 4 has a decreasing slope in the plane (M,S). As a consequence, the state

(M,S) = (1, 0) is interior to region 5 if and only if

ˆ ∞
0

e−(r+χ)t
[
xs̃
(
1− e−χt

)
+ b̃

]
dt <

ˆ ∞
0

e−(r+χ)tũdt,

i.e. if

u > b+ χ

r + 2χxs (17)

Hence, if (17) holds, then whenever the organization starts in region 5, it converges to the

steady state (M,S) = (1, 0). There is no escape from region 5.

By contrast, if (17) does not hold, then the point (1, 0) is outside region 5. (Put differently,

the frontier between regions 4 and 5 crosses the horizontal axis before reachingM = 1). Hence

any trajectory from region 5 exits the region, and reaches either region 3 or region 4 in a finite

time. If it reaches the latter, it then converges towards region 4’s steady-state (1, x).28

(B.2.a) If u − b/2 ≥ xs, then region 5 and region 3 have no shared boundary29. Region

5 is given by the set of states below its boundary with region 4 (see case B.2.c below). As a

consequence, region 5 is non-empty if and only if the initial state (1/2, 0) satisfies (see (16)

below)

ˆ ∞
0

e−(r+χ)t
[
xs̃
(
1− e−χt

)
− b̃

2e
−χt + b̃

]
dt <

ˆ ∞
0

e−(r+χ)tũdt,

i.e. if and only if

χxs+ (r + 3χ) b2 < (r + 2χ)u

28The condition u < xs + (1 − x)b (condition (10) in the paper) implies that the fixed point of region 4 is
interior to the region (xs+ b > u).

29Indeed, region 5 lies below the line Γ which is decreasing, while region 3 lies above the full-affirmative-action
trajectory going reaching region 2 on the vertical axis, which is increasing. [Recall that the line Γ crosses the

vertical axis in
(
1/2, u− b/2

s

)
.]
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In particular, region 5 is thus non-empty for any χ sufficiently low. If in addition xs+ 3b/2 >

2u, it is also non-empty for any χ sufficiently high.

(B.2.b) If u − b/2 < xs, then regions 5 and 3 may have a shared boundary. Region

5 lies below the curve Γ, while for any initial state (M0, S0) below Γ, region 3 is defined by

(15). Hence the boundary between region 5 and region 3 is given by the set of initial states

(M0, S0) (satisfiying (15) with equality) such that

ˆ T

0
e−(r+χ)t

[
[S0 − x]s̃e−χt + xs̃+ [M0 − x− (1− x)σ0]b̃e−χt + xb̃+ (1− x)σ0b̃

]
dt

+
ˆ ∞
T

e−(r+χ)t
[(
ũ− b̃

2 − 2xs̃
)
e−χ(t−T ) + 2xs̃

+
(
b̃

2 − (x+ (1− 2x)σ∗0)b̃
)
e−χ(t−T ) + [x+ (1− 2x)σ∗0]b̃

]
dt

=
ˆ ∞

0
e−(r+χ)tũdt (18)

where T > 0, σ0 ∈ [0, 1] are given whenever they exist30 by


[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

The LHS in (18) strictly increases with respect to M0, and for T � 1 (i.e. S0s close to

u− b/2), as well as for T � 1 (i.e. S0 close to 0 and u− b/2 close to xs), with respect to S0.31.

Therefore, the frontier between regions 3 and 5 has a decreasing slope in the plane (M,S)
30Recall that the "frontier" defined by σ0 = 0 (i.e. the set of largest initial majority size such that the system

has a solution given an initial quality) is a decreasing line in the plane (M,S), given by the set of initial states
satisfying

b

s

M0 − x
S0 − x

=

b

2 − x

u− b

2 − xs

31Indeed, explicit computations yield

∂LHS

∂M0
= b
[
1− e−(r+2χ)T ]− b̃e−χT

1− e−χT

(
1

r + χ

[
1− e−(r+χ)T ]+ 1

r + 2χ
[
1− e−(r+2χ)T ])

= b

(r + χ)[1− e−χT ]

[
(r + χ)− (r + 2χ)e−χT + χe−(r+2χ)T

]
> 0

Similarly,

∂LHS

∂S0
= s
[
1− e−(r+2χ)T ]+ 1

r + χ

1[
1− e−χT

]2
1

S0 − x

[
(r + χ)

(
2u− 4xs− b

)[
1− e−χT

]2
e−(r+χ)T

+
(
M0 −

b

2

)
e−χT

[
χ− (r + 2χ)e−(r+χ)T + (r + χ)e−(r+2χ)T ]]
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whenever (i) S0s is close to u− b/2, or (ii) S0 is close to 0 (with u− b/2 close to xs).

As a consequence, if the state (M0, S0) = (1/2, 0) satisfies (15)32, then region 5 is non-

empty if it includes the state (1/2, 0), i.e. if

ˆ T 0

0
e−(r+χ)t

[
xs̃[1− e−χt] + b̃

2

]
dt

+
ˆ ∞
T 0

e−(r+χ)t
[(
ũ− b̃

2 − 2xs̃
)
e−χ(t−T 0) + 2xs̃

+
(
b̃

2 − (x+ (1− 2x)σ∗0)b̃
)
e−χ(t−T 0) + [x+ (1− 2x)σ∗0]b̃

]
dt

<

ˆ ∞
0

e−(r+χ)tũdt

where T 0 is given by

xs[1− e−χT 0 ] = u− b

2 , i.e. T 0 = 1
χ

ln
(

xs

xs− u− b/2

)

The above condition writes after rearranging (assuming xs > 0):

(r + χ)− (r + 2χ)e−χT 0 − 2χe−(r+χ)T 0 + (2r + χ)e−(r+2χ)T 0 > 0

Hence in particular, region 5 is non-empty for χ sufficiently close to 0 and for χ sufficiently

high, i.e. if turnover is sufficiently low or sufficiently high. The intuition underlying this result

is that when turnover is too low, the organization fails to renew its composition fast enough,

i.e. after rearranging,

(r + χ)
[
1− e−χT

]2(S0 − x)∂LHS
∂S0

=
[
1− e−χT

]2(r + χ)

[(
u− b

2 − xs
)
eχT + (u− 3xs)e−(r+χ)T − b

2e
−(r+χ)T

]

+
(
M0b−

b

2

)
e−χT

[
χ− (r + 2χ)e−(r+χ)T + (r + χ)e−(r+2χ)T ]

Therefore, since u − b/2 < xs, u < 3xs, S0 < x, and M0 < eχT
[
1/2 − x

]
+ x, we have that ∂LHS

∂S0
> 0 for

T � 1 (using a second-order Taylor expansion), as well as for T � 1.
32(1/2, 0) satisfies (15) if and only if
ˆ T0

0
e−(r+χ)t b

2(1− e−χt)dt+
ˆ ∞
T0

e−(r+χ)t b

2
(
1− e−χT0

)
e−χ(t−T0)dt ≤

ˆ ∞
T0

e−(r+χ)t(3xs− u)
[
1− e−χ(t−T0)]dt,

i.e. if and only if (
3xs+ b

2 − u
)
e−(r+χ)T0 ≥ b

2

where T 0 is given by

xs
[
1− e−χT0

]
= u− b

2
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whereas when turnover is too high, members are likely to quit the organization before they

could reap the benefits of membership.

By contrast, if the state (M0, S0) = (1/2, 0) violates (15), then a necessary and sufficient

condition for region 5 to be non-empty is given by the condition stated in case (B.2.a), namely

χxs+ (r + 3χ) b2 < (r + 2χ)u

Again, region 5 is non-empty for any χ sufficiently low. If in addition xs + 3b/2 > 2u, it is

also non-empty for any χ sufficiently high.

E Proof of Proposition 2

The dynamics of quality dominance. Inequality (6) is the non-profitability condition for a

collective deviation by all talented B-candidates from joining organization 1 to joining organi-

zation 2. If (6) is satisfied at date 0, then [S1−S2] converges towards 2x, while [M2−(1−M1)]

converges towards (1− x). Hence if (6) is satisfied at time 0, then by convexity, it is satisfied

at any later time t > 0 if and only if the steady state satisfies (6), i.e. if and only if33

2xs− (1− x)b ≥ χ

r + χ

[
(1− x)b− xs

]
, (19)

which is equivalent to (2r + 3χ)xs ≥ (r + 2χ)(1− x)b.

If (19) is violated, then there is no quality dominance in the long run, and the quality

and majority sizes of both organizations follow the same dynamics and thus converge towards

the same values (resp. x and 1) as talented candidates split between the two organizations

(A-group ones joining organization 1, and B-group ones joining organization 2).34

By contrast, if (6) and (19) hold, then whenever the initial state verifies (6), [S1 − S2]

converges towards 2x, while [M2 −M1] converges towards x: there is quality dominance in

the long run, i.e. one organization converges to a diverse, high-quality organization, while the

other ends up being fully homogenous and without any talent.

Let ∆U ≡
[
(S1 − S2)s + (1 −M1 −M2)b

]
be the difference in the utility of talented B-

group candidates from joining organization 1 instead of organization 2. We refer to ∆U as the
33Talented A-group candidates always prefer joining organzation 1 if they do so at time 0 as the steady state

satisfies:

2xs+ (1− x)b ≥ − χ

r + χ

[
(1− 2x)b+ xs

]
34Indeed, if (19) is violated, then there exists a later (finite) time at which (6) is violated: talented B-

group candidates now choose organization 2 from that date onwards. Hence, because decisions are anticipated,
talented B-group candidates should start joining organization 2 strictly before that date. By induction, talented
B-group candidates should thus join organization 2 starting from date 0.
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"comparative advantage" of organization 1 with respect to organization 2 from the perspective

of (talented) B-group candidates. Condition (6) can thus be written as

∆U(0) ≥ χ

r + χ

[
(1− x)b− xs

]
If (6) and (19) hold, then the dynamics of ∆U are given by

d

dt
∆U = χ

[
−∆U + 2xs− (1− x)b

]
Hence the comparative advantage of organization 1 increases over time if and only if ∆U(0) ≤

2xs− (1− x)b. (Note that (19) implies that 2xs ≥ (1− x)b.)

Group-coalition proofness: Applying the group-deviation criterion, a necessary condition

for organization 1 to be increasingly dominant is that all talented B-candidates prefer joining

organization 1 to collectively deviating to organisation 2; and symmetrically for organisation

2, for which A-candidates would be most eager to deviate (the “weakest link”). This gives us

two necessary conditions for the co-existence of two increasing-dominance equilibria35


[S1(0)− S2(0)]s+ [1−M1(0)−M2(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
[S2(0)− S1(0)]s+ [1−M2(0)−M1(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
i.e. if and only if

[S2(0)− S1(0)]s+ [1−M1(0)−M2(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
Hence, let ρ0 be given by

ρ0 ≡ max
{
r + 2χ
2r + 3χ

1− x
x

;
(

χ

r + χ
(1− x) +M1(0) +M2(0)− 1

)/(
χ

r + χ
x+ S1(0)− S2(0)

)}
,

and, if [xχ/(r + χ) + S2(0)− S1(0)] > 0, define ρ1 as

ρ1 ≡ max
{
ρ0;

(
χ

r + χ
(1− x) +M1(0) +M2(0)− 1

)/(
χ

r + χ
x− S1(0) + S2(0)

)}
,

The following existence regions obtain, depending on the value of s/b,
35As noted in the text, taking as given that talented B-group (resp. A-group) candidates choose organization

1 (resp. 2), talented A-group (resp. B-group) best-reply by choosing the same organization, i.e. organization
1 (resp.2) – that is, the organization where they are the majority. Hence the condition for talented candidates
of a given group to join the organization where they are not the majority is necessary and sufficient for the
existence of an increasing-dominance equilibria. The first (resp. second) equation thus gives the non-profitability
condition for a deviation by talented B-candidates (resp. A-candidates) towards joining organization 2 (resp.
1) when talented candidates from the other group join organization 1 (resp. 2).
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• for s/b < ρ0, there exists no increasing-dominance equilibrium,

• if [xχ/(r + χ) + S2(0) − S1(0)] > 0, then for ρ0 ≤ s/b < ρ1, there exists a single

increasing-dominance equilibrium (which is the one in which all talented candidates join

organization 1) – note that this range may be empty –, while for ρ1 ≤ s/b, there exist

two increasing-dominance equilibria.

• if [xχ/(r + χ) + S2(0) − S1(0)] ≤ 0, then for s/b ≥ ρ0, there exists a single increasing-

dominance equilibrium (which is the one in which all talented candidates join organiza-

tion 1).

Remark: Alternative assumption on initial majorities. If organization 2 starts with an A-

majority, then the equilibrium in which all talented candidates join organization 1 exists if

and only if36


[
S1(0)− S2(0)

]
s+

[
M2(0)−M1(0)

]
b ≥ − χ

r + χ
xs[

S1(0)− S2(0)
]
s+

[
M1(0)−M2(0)

]
b ≥ − χ

r + χ
x(s− b)

Similarly, the equilibrium in which all talented candidates join organization 2 exists if and

only if the above system holds when switching the indices 1 and 2. Hence the two increasing-

dominance equilibra coexist if and only if their initial states are sufficiently close.

Population-coalition proofness of the increasing-dominance equilibria. By construction,

the above equilibria are immune to a joint deviation by talented candidates of a given group.

The equilibrium in which all talented candidates join organization 1 is always immune to a

deviation by all talented candidates37, whereas the equilibrium in which all talented candidates

join organization 2 is immune to a deviation by all talented candidates if and only if talented

B-candidates would not support an overall deviation to organisation 1 (they are the weakest
36Note that the steady state satisfies the above conditions as for any s/b ≥ 1,

2xs+ xb ≥ − χ

r + χ
xs, and 2xs− xb ≥ − χ

r + χ
x(s− b)

37The deviation by all talented candidates is strictly profitable for talented candidates from both groups if
and only if 

[
S1(0)− S2(0)

]
s+
[
M1(0) +M2(0)− 1

]
b < − χ

r + χ
(1− 2x)b[

S1(0)− S2(0)
]
s− b

[
M1(0) +M2(0)− 1

]
b <

χ

r + χ
(1− 2x)b
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link for such a deviation)38

[
S2(0)− S1(0)

]
s+

[
M1(0) +M2(0)− 1

]
b ≥ − χ

r + χ
(1− 2x)b (20)

Therefore, the equilibrium in which all talented candidates join organization 1 is population-

coalition proof whenever it exists (and remains so at any later date), while by contrast, the

equilibrium in which all talented candidates join organization 2 is population-coalition proof

whenever it exists if and only if (20) is satisfied. In other words, this equilibrium is population-

coalition proof if and only if the initial additional homophily benefit for talented B-group

candidates (at least) compensates the initial quality loss in choosing organization 2 instead

of organization 1. Moreover, since in the equilibrium in which all talented candidates join

organization 2, the LHS in (20) converges to 2xs + (1 − x)b > 0 39, this equilibrium remains

population-coalition proof if it is so at date 0, and becomes population-coalition proof past a

finite time (and remains so henceforth) if it is not already at time 0.

38The deviation by all talented candidates is strictly profitable for talented candidates from both groups if
and only if 

[
S2(0)− S1(0)

]
s−
[
M1(0) +M2(0)− 1

]
b <

χ

r + χ
(1− 2x)b[

S2(0)− S1(0)
]
s+
[
M1(0) +M2(0)− 1

]
b < − χ

r + χ
(1− 2x)b

In particular, since we assumed S1(0) > S2(0), talented A-group candidates always strictly benefit from such a
collective deviation. Hence the equilibrium in which all talented candidates join organization 2 is immune to a
deviation by all talented candidates if and only if the latter is unprofitable for talented B-group candidates.

39The observation that in that equilibrium, (S2 − S1) converges to 2xs ≥ 0 would also yield the result.
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