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Abstract
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depends on his beliefs about what motivated the leader’s choice to engage. We provide conditions for

the leader’s value of acquiring more information to increase with the follower’s expectations. We then
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1 Introduction

Many strategic situations of interest can be thought of as Stackelberg games in which one player, player

L (the leader, “she”) chooses between an “adverse-selection-sensitive” action and an “adverse-selection-

insensitive” one. The reaction of the other player, player F (the follower, “he”) to the adverse-selection-

sensitive action depends on his beliefs about what motivated L’s choice of action. For example, player

L may represent a seller choosing between offering to trade with a buyer (the adverse-selection-sensitive

action) and opting out of the negotiations, as in Akerlof (1970) lemons model. More generally, player

F may still act following the adverse-selection-insensitive action. For example, the latter action may

represent the seller’s decision to disclose hard information proving unambiguously what the seller knows

about the value of the asset. In this case, the decision to disclose hard information is adverse-selection-

insensitive because, once the state is revealed, the price offered by the buyer (the follower’s reaction)

is invariant to his beliefs about what motivated the seller’s decision to disclose. The key assumption is

that information that makes player L eager to engage with player F by choosing the adverse-selection-

sensitive action (for example, by choosing not to disclose what she knows) makes player F react in an

unfriendlier manner. Notable examples of such situations include, in addition to the Akerlof model and

the disclosure game, many entry and partnership games that are central to the Industrial Organization,

Finance, and Organization Economics literatures.1

We enrich this classic model by allowing player L to covertly acquire information about the state

of Nature before making her engagement decision. We are particularly interested in understanding how

player L’s information choice depends on player F ’s expectations (the relationship between the two

naturally reflecting how strategic considerations shape the value of information in the class of games

under consideration). We identify sufficient and/or necessary conditions for expectation conformity (EC)

to emerge in these games, namely for player L to find it more valuable to acquire more information

when player F expects her to do so. Besides being of independent interest, EC plays a major role

in equilibrium analysis and has important policy implications. In particular, EC is often responsible

for equilibrium multiplicity. In its presence, interactions or markets may switch behavior abruptly.

For instance, asset markets can tip from a pattern in which the assets receive little scrutiny and are

frequently traded to one in which they are heavily scrutinized and traded infrequently. Furthermore, EC

may lead to multiplier effects, whereby small changes in the primitive parameters come with significant

changes in outcomes. These phenomena call for policy interventions. We identify conditions under

which it is optimal to subsidize/tax trade and show that these interventions have a double dividend

effect in that, when properly designed, they disincentivize the acquisition of information, facilitating

trade and further boosting welfare. As a result, endogenous information calls for more aggressive policy

interventions (e.g., larger subsidies or more generous asset re-purchase programs) compared to the case

where information is exogenous.

EC also shapes the benefits of disclosure of hard information used to prove to others how much one

has invested in learning the value of trading. Finally, EC plays a key role in the possibility that the

1In the Supplement, we also discuss how some of the results flip in the anti-lemons case, i.e., in environments where the
choice by player L to engage is good news for player F , making the latter react more favorably to L, as in Spence (1973)
signaling model, and present various examples of such interactions.
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players end up in an expectation trap, whereby they suffer from being expected to be more knowledgable,

with the loss in payoff occurring even when the cost of information is small.

Section 2 defines a broad class of generalized lemons environments, in which one of the players,

player L, acquires information covertly and then decides whether or not to engage with another player

(i.e., chooses between an adverse-selection-sensitive action, “trade,” and an adverse-selection-insensitive

one, “no trade”). As we show in the Supplement, a number of games can be reinterpreted within this

framework.

Section 3 introduces the notion of EC. To put flesh on the characterization, we compare information

structures through the mean-preserving-spread (MPS) order, or the more refined rotations order. The

MPS order says that the distribution over the posterior mean under a more informative structure is

a mean-preserving spread of the corresponding distribution under a less informative structure, which

is always the case when the former distribution is obtained through an experiment that Blackwell-

dominates the one generating the latter distribution. The rotations order is a strengthening of the

MPS order that obtains, for instance, under non-directed search, that is when player L’s investment

in information acquisition determines the probability of learning the state of Nature (equivalently, the

value of the interaction with the other player). For more general environments, it is a property of the

family of distributions over player L’s posterior mean (we give examples with Uniform, Pareto and

Exponential distributions).

The analysis delivers a sufficient (and, under further assumptions, necessary) condition for such

games to give rise to EC. This condition says that the choice by player L of a Blackwell-more-informative

experiment (a) aggravates the adverse selection problem, in a well-defined sense, making F ’s reaction

less friendly to player L, and (b) that an unfriendlier reaction by F in turn raises L’s value for a more

informative experiment; or that both conditions are simultaneously reversed.2 The condition for EC is

easier to check than verifying directly that EC prevails. It obtains, for example, when, holding player

F ’s reaction fixed, a more informative experiment reduces the probability of trade, both when such a

probability is computed by player L, given her actual choice of experiment, and by player F , given the

experiment that he expects player L to choose.

In the lemons game under non-directed search where the leader is a seller of an asset and the buyer

a representative of a competitive market, as in the Akerlof model, EC holds when the gains from trade

are large, but not for low gains. This is because large gains from trade induce the competitive buyer

to offer a high price that the seller finds it optimal to accept when uninformed. The choice of a more

informative experiment (which under non-directed search amounts to a higher probability of the seller

learning the true value of the asset) then reduces the probability of trade by making the seller engage

selectively when informed. Information thus unambiguously aggravates adverse selection, inducing the

buyer to lower the price. This in turn raises the cost for the seller of parting with the asset when its

value is high, raising the seller’s value of acquiring more information. Hence, EC holds in this case.

When, instead, the gains from trade are small, the price offered by the buyer is low, which makes the

seller unwilling to trade based on her prior, i.e., when uninformed. Because the seller engages only when

2In the anti-lemons case, the condition for EC is flipped. EC obtains when the choice of a more informative experiment
induces player F to respond in a friendlier manner and the marginal benefit of a more informative experiment increases
(instead of decreases) with the friendliness of player F ’s reaction; or both conditions are simultaneously reversed.
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informed, the choice by the seller of a more informative experiment has no effect on the severity of the

adverse selection problem and hence on the price offered by the buyer. EC thus does not obtain for low

gains from trade.

The paper then derives the economic implications of this characterization in Section 4, focusing on

three closely-related topics: expectation traps, disclosure (of hard information), and cognitive styles.

In generalized lemons games, under the key condition for EC mentioned above (namely, that more

information reduces the probability of trade), the information-acquiring player is worse off in a high

information-intensity equilibrium than in a low information-intensity one. This happens because, under

the key condition for EC, information aggravates adverse selection. Consequently, player F responds

with an unfriendlier reaction when expecting player L to choose a more informative experiment. Impor-

tantly, player L may be trapped into a high information-intensity equilibrium even when information is

free. In this case, the loss in player L’s payoff originates entirely in the unfriendly response by player F

and is unrelated to the cost of acquiring information.

We then modify the game by assuming that the information-acquiring player can disclose evidence

(i.e.. hard information) proving that she devoted external resources to the issue. For example, she can

prove that she conducted an experiment resulting in a signal whose informativeness is no smaller than

some threshold. Importantly, the hard information that the player discloses is about the experiment of

her choice and not its realization. We show that the possibility to engage in this type of disclosure is

mostly irrelevant. The intuition is related to the expectation-trap phenomenon: This type of disclosure

serves to demonstrate that one is knowledgeable, which, under the key condition for EC, is not profitable.

Along a similar vein, we show that it is optimal for player L to pose as an “informational puppy dog,”

e.g., by convincing player F that she is dumb or busy, or more generally that her cost to acquire

information is high.

Section 5 contains policy analysis. It identifies conditions under which subsidies/taxes to trade are

welfare enhancing as well as conditions under which the endogeneity of information calls for larger policy

interventions. We show that, in the Akerlof model, subsidies to trade are optimal when (a) the cost of

public funds is small, (b) the choice of a more informative experiment aggravates the adverse selection

problem, and (c) subsidies reduce the seller’s investment in information acquisition. Furthermore, the

endogeneity of the seller’s information calls for a more generous program: relative to the case where

information is asymmetric but exogenous, the optimal level of the subsidy is larger. This is because

subsidies come with a double dividend under endogenous information: In addition to inducing player

L to engage more often, they discourage player L from acquiring information, with the second effect

further contributing to a reduction in the adverse selection problem and hence to an increase in trade.

Section 6 considers fully flexible information choice. The purpose of the extension is threefold. First,

it establishes the robustness of the key insights (in particular those about EC) to settings in which

player L chooses not only how much information to acquire but also the nature of the information.

Second, it introduces an alternative order over L’s investments that can be used to establish EC (and

its economic implications) when the experiments themselves are not ordered. Third, it shows that there

exist equilibria in which trade does not occur, despite player L not acquiring any information and the

players commonly knowing that there are gains from trade, a novel form of market breakdown different

from those discussed in the adverse selection literature. These equilibria may coexist with fully-efficient
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equilibria in which player L acquires no information and trades with certainty, or equilibria in which

player L invests in information and trades probabilistically as a function of the state. When information

is endogenous and costly, the reason why the market may break down is that, when the buyer does not

expect the seller to engage by putting the asset on sale, he may interpret any deviation by the seller

to engage as coming from the (covert) choice of an experiment (which was not supposed to be selected

on path) revealing that the value of the asset is low. Under such a belief, the buyer may offer a low

price, discouraging the seller from acquiring any information in the first pace and from putting the asset

on sale. Interestingly, these equilibria exist despite the fact that, under the cost functional typically

considered in the rational inattention literature (linked to entropy), the marginal cost of information

vanishes when the signal recommends trading only for a small, vanishing set of fundamentals. The

reason is that the benefit of these signals also vanishes, with the benefit vanishing faster than the cost.

Furthermore, these equilibria survive D1 and most other forward-induction refinements.3

Section 7 concludes. Omitted proofs are in the Appendix at the end of the document. The Supple-

ment, available on our websites, studies how the results flip in the anti-lemons case, presents various

examples of generalized lemons and anti-lemons problems, discusses the connection to other covert in-

vestment games, contains additional results for the Akerlof model with flexible information acquisition

under entropy cost.

Related Literature. The paper is related to various strands of the literature. The first one is

the literature on the lemons problem under alternative information structures. Kartik and Zhong

(2024) consider a bilateral trading environment and characterize the payoffs that can be sustained in

equilibrium under any possible information structure. The analysis parallels the one in Bergemann,

Brooks and Morris (2015) but in a setting with possibly interdependent payoffs and general information

structures whereby either player can be partially informed about the state (Bergemann, Brooks and

Morris (2015) assume the buyer is always fully informed). Related are also Levin (2001), Kessler (2001),

and Bar-Isaac et al. (2018). These papers, as Kartik and Zhong (2024), study how payoffs, the volume

of trade, and the efficiency of bargaining outcomes vary with the information structure in variants of

the Akerlof model. In contrast, we study (a) how the acquisition of information is shaped by other

players’ expectations, (b) how the latter expectations depend on the information acquisition technology

and the effect of information on the severity of the adverse selection problem, (c) how players may

end up in an expectation trap, (d) how policy interventions come with a double dividend due to the

possibility of discouraging information acquisition when the latter aggravates adverse selection, and (e)

the robustness of the analysis to fully flexible information choice.

Dang (2008), Lichtig and Weksler (2023), Thereze (2023), and Madarasz and Pycia (2025) also en-

dogenize the information structure in the Akerlof model. In a setting with two states and fully-revealing

signals, Dang (2008) derives conditions under which, in equilibrium, no information is acquired and trade

does not happen, as well as conditions under which the information-acquiring player receives positive

surplus despite not having any bargaining power at the negotiation stage.4 Lichtig and Weksler (2023)

3In Section 6, we also discuss the robustness of these equilibria to alternative timings of information acquisition and
trade.

4The market breakdown equilibrium we document in Section 6 shares certain similarities with the no-trade equilibrium
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consider a setting in which the seller can choose, at no cost, among a finite set of experiments (i.e.,

distributions over the posterior mean) and show that, when the distributions can be ranked according to

the strict location-independent risk order (a strengthening of second-order stochastic dominance when

distributions have the same mean), in equilibrium, the seller always selects the riskiest distribution.

Thereze (2023) considers a competitive insurance market in which the policy holders’ information af-

fects the insurers’ costs, and investigates how the elasticity of the demand and the market equilibrium

are affected by a change in the cost of information.5 Madarasz and Pycia (2025) consider a class of

bargaining games in which (a) the information-acquiring player knows their preferences, (b) the choice

of an experiment as well as the experiment’s realization are observed by the receiver, and (c) the re-

ceiver has full bargaining power; under these assumptions, they show that the experiments selected in

equilibrium are always the cheapest, irrespective of their content.6 None of these works investigates the

determinants of expectation conformity, the relationship of the latter with the determinacy of equilibria,

the possibility of expectation traps, and the social value of taxing/subsidizing interactions, which are

the focus of the present paper.

A fairly vast literature studies information acquisition in bargaining games with private values. See

for example Ravid (2020), and Ravid, Roesler, and Szentes (2022) and the references therein. The first

paper considers a repeated bargaining setting with a rationally-inattentive buyer. The second paper

investigates the properties of the equilibrium when the cost of the buyer’s information vanishes in a

one-shot ultimatum-bargaining game. Our paper, instead, considers games with interdependent payoffs

(as in the lemons problem). It investigates how the information acquired in equilibrium is shaped by the

effect of information on the severity of the adverse selection problem. It shows how EC is intrinsically

related to the possibility of expectation traps whereby the information-acquiring player is worse off

in a high information-intensity equilibrium than in a low information-intensity one, with these traps

emerging even when information is free and the follower is a representative of a competitive market and

hence obtains no surplus in equilibrium (as in the Akerlof model).

Pavan and Tirole (2024) shares with the present paper the interest in how the possibility to disclose

verifiable/hard information affects equilibrium outcomes in settings with interdependent payoffs. That

paper focuses on the welfare effects of mandatory disclosure laws. The present paper, instead, focuses

on the effects of information on the severity of the adverse selection problem and on policy interventions

aimed at alleviating such a severity. Expectation conformity is also studied in Pavan and Tirole (2023).

The analysis in that paper is not specific to settings with adverse selection and none of the results in

the present paper have counterparts in that paper.

Finally, the discussion of how governments can improve the efficiency of markets affected by adverse

in Dang (2008). In both cases, there is no trade despite the players not acquiring information on path. However, there
are important differences. In Dang (2008), the seller’s choice is between no information and a fully-revealing signal with
fixed cost, whereas in the analysis in Section 6, information is flexible and the cost of information is related to entropy
reduction. As anticipated above, one of the reasons we find the result intriguing is that, under such a specification, the
marginal cost of information is zero starting from no information. Despite this property, the seller optimally refrains from
acquiring any signal when the buyer, expecting no trade, offers a low price.

5In Thereze (2023), the insured acquire information after seeing the prices asked by the insurers. In contrast, in our
model, information acquisition precedes the observation of the prices.

6See also Cremer and Khalil (1992), and Cremer, Khalil, and Rochet (1998) for earlier work on information acquisition
in other contractual settings.
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selection is related to Philippon and Skreta (2012) and Tirole (2012). The sellers’ information in those

papers is exogenous. In Section 5 of the present paper, we discuss how the governments’ programs

should be adjusted to account for the endogeneity of the sellers’ information. In this respect, the

paper is related also to Colombo, Femminis and Pavan (2025) and Pavan, Sundaresan, and Vives

(2025). The first paper studies optimal policy in economies with investment complementarities and

endogenous private information. The second paper studies how governments can influence the efficiency

of financial market where traders acquire private information prior to submitting limit orders. See

also Koenig and Pothier (2022) for an analysis of how certain central banks interventions and macro-

prudential regulations influence the collection of information by fund managers, with implications for

the endogenous degree of adverse selection in the market and the risk of redemption runs and inefficient

liquidity dry-ups caused by self-fulfilling fears of adverse selection.

2 Framework

2.1 Description

Consider the following game between two players, a “leader” (she) and a “follower” (he).

(a) Actions and timing

Player L (the “leader”) first covertly acquires information about a relevant state of Nature. After

updating her beliefs upon observing the realization of the selected information structure (equivalently,

of the selected experiment), she chooses between two actions, a = 0 and a = 1. Player F (the“follower”),

after observing player L’s action a but not L’s choice of an information structure and its realization,

then chooses his reaction to the leader’s action. Player F ’s reaction to a = 0 plays no role in the analysis

and hence we do not formally describe it. His reaction to a = 1, instead, will be denoted by r ∈ R. We

assume a higher r stands for a friendlier response: player L’s utility is increasing in r.7

(b) Information

The state of Nature, say the car’s quality in the lemons model, is denoted by ω ∈ (−∞,+∞), and is

commonly believed to be drawn from a distributionG with prior mean ω0 and support (ω, ω̄). We assume

both players’ preferences are affine in ω, so they care only about the posterior mean m of the state. An

experiment, indexed by ρ ∈ R+, will be taken to be the choice of a cumulative distribution function

G(·; ρ) of the induced posterior mean m, satisfying the martingale property

∫ +∞

−∞
mdG(m; ρ) = ω0 for

all ρ.8 We will assume that the set of experiments (equivalently, of distributions, G(·; ρ)) player L can

choose from has the cardinality of the continuum, and then denote such a set by [0,ρ̄), with ρ̄ ∈ R+.

To ease the exposition, we also assume that the distributions are ordered in such a way that, for any

m ∈ R, the function G(m; ·) is differentiable in ρ with derivative uniformly bounded over (ω, ω̄)× [0, ρ̄),

7Throughout, when we say that a function is increasing (alternatively, decreasing), we mean strictly increasing (alter-
natively, strictly decreasing). When we say that a function is non-increasing (alternatively, non-decreasing), we mean it is
weakly decreasing (alternatively, weakly increasing).

8Note that the support of G(·; ρ) can be a strict subset of R.
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and then denote by Gρ(m; ρ) the partial derivative of G(m; ρ) with respect to ρ.9 We will also assume

that Gρ(·; ρ) is integrable in m. These assumptions permit us to describe some of the key conditions in

a concise form. None of the qualitative insights hinge on these differentiability assumptions. However,

many of the relevant conditions are heavier when the derivatives are replaced with differentials across

information structures.

For most of the results, we will also assume that the family of distributions (G(·; ρ))ρ∈R+
is consistent

with the mean-preserving-spread (MPS) order.10

Assumption 1 (MPS). Player L’s set of feasible information structures is consistent with the MPS order

if, for any ρ and ρ′ > ρ, any m∗ ∈ R,
∫m∗

−∞ G(m; ρ′)dm ≥
∫m∗

−∞ G(m; ρ)dm, with
∫ +∞
−∞ G(m; ρ′)dm =∫ +∞

−∞ G(m; ρ)dm.

Consistently with what we have assumed above, when invoking Assumption 1, we will maintain that

G(m; ρ) is differentiable in ρ, for any m ∈ R. Assumption 1 then boils down to the requirement that,

for any m∗ ∈ R and ρ,
∫m∗

−∞ Gρ(m; ρ)dm ≥ 0, with
∫ +∞
−∞ Gρ(m; ρ)dm = 0. Some of the results below

assume a strengthening of such an order whereby the spreads correspond to “rotations.”

Definition 1 (rotations). The set of information structures Player L can choose from is consistent with

the“rotation”order (equivalently, the distributions are“simple mean-preserving spreads”or experiments

consistent with the “single-crossing property”) if, for any ρ, there exists a rotation point mρ such that

Gρ(m; ρ) ≥ 0 for −∞ < m ≤ mρ and Gρ(m; ρ) ≤ 0 for mρ ≤ m < +∞ (with some inequalities strict).

A simple mean-preserving spread is a mean-preserving spread, but the converse is not true. For example,

a combination of two rotations need not be a rotation, unless they have the same rotation point. As

is well known, however, any mean-preserving spread can be obtained through a sequence of simple

mean-preserving spreads.

A family of distributions G(·; ρ) that are rotations is given by the following example.

Example 1 (non-directed search). Player L learns the true state ω with probability ρ ∈ [0, 1] and

nothing with probability 1− ρ. Then,

G(m; ρ) =

 ρG(m) for m < ω0

ρG(m) + 1− ρ for m ≥ ω0.

In this example, the rotation point is thus equal to the prior mean ω0. Figure 1 below illustrates the

idea for the special case in which G is uniform.

Other examples of rotations include a normally distributed state ω together with a signal that is

normally distributed around the true state (ρ is then the precision of the signal), and the family of

9In other words, the function family {G(m; ·)}m∈(ω, ω̄) is differentiable and equi-Lipschitz continuous in ρ; together
with Assumption 2, these properties permit us to use the envelope theorem (e.g., Milgrom and Segal (2002)) for one of our
results.

10Say that each distribution G(·; ρ) is obtained by observing the realization z ∈ Z of some experiment qρ : Ω → ∆(Z),
where Z is a Polish space of signal realizations. Then if higher ρ index distributions (over the posterior mean) generated by
Blackwell-more-informative experiments, the family (G(·; ρ))ρ∈R+

must be consistent with the MPS order. The contrary,

however, is not true. The MPS order is more permissive than the Blackwell order.
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Figure 1: Cumulative distribution function G(m; ρ) for non-directed search

Pareto, Exponential, and Uniform distributions in Proposition 1 below. See Diamond and Stiglitz

(1974) and Johnston and Myatt (2006) for a broader discussion of rotations and their properties.

Cost of information. Choosing information ρ costs C(ρ) to player L. When invoking Assumption 1, we

will assume that C is non-decreasing, differentiable, and weakly convex.

(c) Preferences

Follower. Let uF (a, r, ω) be player F ’s payoff when player L chooses action a, player F reacts with

action r, and the state is ω. As mentioned above, the key assumption that favors tractability is that

uF (a, r, ω) is affine in ω. Action a = 1 is “adverse-selection-sensitive,” in the sense that player F ’s

reaction to a = 1 depends on his beliefs about what information privately held by player L motivated L

to engage. Consider a fictitious game in which L’s information is exogenously fixed at ρ†. We assume

that, for any ρ†, the equilibrium of this fictitious game is essentially unique and denote by a∗(·; ρ†) and
r(ρ†), respectively, L’s equilibrium engagement strategy and F ’s equilibrium reaction to a = 1 in the

ρ†-game. The function a∗(·; ρ†) specifies, for each posterior mean m, the probability a∗(m; ρ†) ∈ [0, 1]

that player L engages when her posterior mean is m.11 In the game in which information is endogenous,

we assume that, when F expects L to select information ρ†, he also expects L to engage according to

a∗(·; ρ†). We then denote by Ĝ(·; ρ†) the cumulative distribution function describing F ’s beliefs over L’s

posterior mean m, when expecting L to select information ρ† and engaging according to a∗(·; ρ†), after
observing a = 1.12 Given Ĝ(·; ρ†), F maximizes his expected payoff EĜ(·; ρ†)[uF (1, r, m)] by means of

an action r ∈ R, where uF (1, r, m) is F ’s payoff when L engages (i.e., selects a = 1), F ’s reaction is r,

and L’s posterior mean is m.13

By contrast, action a = 0 is “adverse-selection-insensitive.” In some applications, such a in the

Akerlof model below, action a = 0 involves no decision for the follower. More generally, we assume that

11Note that, in any equilibrium in which r = r(ρ†), there exists a cut-off m∗(r(ρ†)) such that a∗(m; ρ†) = 1 for
m < m∗(r(ρ†)) and a∗(m; ρ†) = 0 for m > m∗(r(ρ†)). When we say that the equilibrium is “essentially unique,” we mean
that the value of r(ρ†) is unique and that a∗(m; ρ†) is unique except for m = m∗(r(ρ†)).

12We are interested in situations in which, after choosing information ρ†, player L engages with positive probability. In
this case, when expecting information ρ†, player F , after observing a = 1, updates his beliefs about m using Bayes rule
and the engagement strategy a∗(·; ρ†). Also, in some of the applications of interest, it may be more natural to think of L
as engaging after observing F ’s action r. Our results apply to some of these setting as well.

13The assumption that F ’s payoff is affine in ω implies that uF (1, r, m) is also F ’s ex-post payoff when the state is
ω = m.
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the follower’s reaction to a = 0 is independent of his beliefs about ρ. This is the case, for instance,

when a = 0 corresponds to the decision by player L to disclose hard information proving that the state

(or L’s posterior mean) is m, making F ’s conjecture about L’s choice of information ρ irrelevant.14 In

the Supplement we discuss how the results may accommodate for the possibility that F ’s reaction to

a = 0 also depends on F ’s beliefs about ρ and m, but with a lower sensitivity to these variables than

F ’s reaction to a = 1.15

Leader . Player L’s payoff differential between a = 1 and a = 0 depends on the friendliness r of

F ’s reaction and on player L’s posterior mean m. Let uL(0, m) denote L’s payoff when choosing a = 0.

As just discussed, this payoff may depend on F ’s reaction. However, because the latter is invariant in

F ’s expectations over L’s choice of ρ, we can omit it to ease the notation and interpret uL(0,m) as L’s

payoff in state m given F ’s reaction to a = 0. Similarly let uL(1, r, m) denote L’s payoff when choosing

a = 1 and then denote by

δL(r, m) ≡ uL(1, r, m)− uL(0, m)

L’s payoff differential between a = 1 and a = 0, when F ’s reaction to a = 1 is r and L’s posterior mean

is m.

Assumption 2 (leader’s preferences). Player L’s payoff differential, δL, is Lipschitz continuous and

twice continuously differentiable in each argument, increasing in r, decreasing in m, and such that the

marginal impact of a friendlier reaction is non-decreasing in L’s posterior mean: for any (r,m)

∂2

∂r∂m
δL(r,m) ≥ 0. (1)

That δL is increasing in r reflects the assumption that a higher r represents a friendlier reaction, favoring

a = 1. That δL is decreasing in m implies that a lower m favors a = 1. The strict monotonicity of δL

in m in turn implies that, no matter the actual choice of information ρ, L optimally chooses to engage

if and only if m falls below some cutoff m∗(r) that depends on F ’s reaction r, with the cutoff m∗(r)

solving δL(r, m
∗(r)) = 0 and hence increasing in r. Clearly, in any equilibrium in which L’s actual

information is ρ, the information ρ† expected by F coincides with L’s actual information ρ, and F ’s

reaction is r(ρ), where, as explained above, r(ρ) is F ’s equilibrium reaction in a fictitious game in which

L’s information is exogenously fixed at ρ. Condition (1) in Assumption 2 says that L’s marginal benefit

of a friendlier reaction by F is larger in states in which L’s payoff from engaging is lower. The condition

will be used to determine whether information becomes more or less attractive to player L when player

F behaves in a friendlier way (see the proof of Part (iii) of Proposition 1 below).

Let player F expect information ρ† by player L. Out-of-equilibrium, ρ† can differ from L’s actual

information ρ, because the choice of information is covert. However, suppose for a moment that infor-

mation is exogenous and equal to ρ†. Because player F ’s payoff is affine in ω, the reaction r(ρ†) depends

on the distribution Ĝ(·; ρ†) describing player F ’s beliefs over L’s posterior mean m only through the

mean EĜ(·; ρ†)[m] of Ĝ(·; ρ†). Furthermore, as explained above, when L’s information is exogenously

fixed at ρ†, in equilibrium, player L’s engagement strategy a∗(·; ρ†) takes the form of a cutoff rule, i.e.,

14See example (c) in the Supplement.
15See example (f) in the Supplement.
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L optimally chooses a = 1 if and only if m ≤ m∗, in which case EĜ(·; ρ†)[m] = M−(m∗; ρ†), where, for

any (m∗, ρ†),

M−(m∗; ρ†) ≡ EG(·; ρ†)[m|m ≤ m∗] = m∗ −
∫m∗

−∞G(m; ρ†)dm

G(m∗; ρ†)

denotes the truncated mean of the distribution G(·; ρ†) of m, under information ρ†. An increase in M−

can then be viewed as a reduction of the adverse selection problem.

Assumption 3 (lemons). The friendliness of player F ’s reaction increases with player L’s investment

in information if and only if more information alleviates the adverse selection problem:16

dr(ρ†)

dρ†
sgn
=

∂

∂ρ†
M−(m∗(r(ρ†

)
); ρ†

)
. (2)

In the Supplement, we discuss how some of the results change in the anti-lemonss case, i.e., when

Assumption 3 is replaced with the following assumption, and present various examples of anti-lemons

games.

Assumption 3′ (anti-lemons). The friendliness of player F ’s reaction increases with player L’s in-

vestment in information if and only if more information reduces the truncated mean:

dr(ρ†)

dρ†
sgn
= − ∂

∂ρ†
M−(m∗(r(ρ†

)
); ρ†

)
.

2.2 Examples

The Stackelberg game described above (and its key assumptions, 2 and 3) may look somewhat abstract.

In this subsection, we show how the lemons problem in the Akerlof model, augmented by the seller’s

endogenous covert information acquisition, maps into the general framework described above, and then

briefly discuss other examples developed in the Supplement.

Akerlof model. In Akerlof (1970), player L is a seller of an asset (e.g., a used car). She can put the

asset on sale in the market (a = 1) or keep it for herself for own consumption (a = 0). Player F is a

representative of a set of competitive buyers who choose a price r equal to the expected value of the

asset conditional on the asset being put in the market. Suppose that the players’ gross values for the

asset are m for the seller and m+∆ for the representative buyer, where ∆ parametrizes the gains from

trade, with ∆ ∈ (0, sup{supp(G)}−ω0}), where supp(G) is the support of G.17 Then, r(ρ†) is the price

offered by the competitive buyer when the seller’s information is exogenously fixed at ρ† and is given

16Consistently with what anticipated above, to ease the exposition, we assume that r(·) and M−(m∗(r(ρ†
)
); ·

)
are

differentiable in ρ† and denote by ∂
∂ρ†

M−(m∗(r(ρ†
)
); ρ†

)
the partial derivative of M−(m∗; ρ†) with respect to ρ†, holding

m∗ fixed at m∗ = m∗(r(ρ†
)
), where m∗(r(ρ†

)
) is the engagement threshold for L’s equilibrium strategy a∗(·; ρ†) in the

fictitious game in which L’s information is exogenously fixed at ρ†. These differentiability assumptions permit us to write
Condition (2) in concise terms.

17When ∆ ≥ sup{supp(G)} − ω0, there is no adverse selection; the competitive buyer offers ω0 +∆ and the seller sells
no matter her posterior mean. This case is not interesting.
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by the solution to the following equation

r = EG(·; ρ†) [m+∆|m ≤ r] = M−(r; ρ†) + ∆, (3)

reflecting the fact that the cutoff m∗(r) for L’s equilibrium engagement strategy a∗(·; ρ†) is equal to r.

Consistently with what was explained above, we assume that the solution to (3) is unique, which is the

case, for example, when G(·; ρ†) is absolutely continuous with density g(·; ρ†), and the inverse hazard

rate G(·; ρ†)/g(·; ρ†) of the distribution of m for information ρ† is increasing in m.18 Assumption 3 is

then satisfied. So is Assumption 2, given that, in this application, δL(r,m) = r −m.

Turning to the case in which the seller’s information is endogenous, we then have that L’s optimal choice

of ρ when L anticipates a reaction r by F is given by

max
ρ

{G(r; ρ)r +

∫ ∞

r
mdG(m; ρ)− C(ρ)}.

When C and G are differentiable in ρ and the above objective function for player L satisfies the appro-

priate quasi-concavity conditions (we will maintain these assumptions throughout the entire paper when

referring to this example), the optimal level of ρ is then given by the following first-order condition19

−
∫ +∞

r
Gρ(m; ρ)dm = C ′(ρ). (4)

Other examples. The general model above also admits as a special case a different version of

the Akerlof model in which the buyer, instead of being competitive, has full bargaining power. This

version is the interdependent-value counterpart of the game considered in Ravid, Roesler, and Szentes

(2022). In the Supplement, we show how a number of other games of interest fit into the framework

introduced above. In the first example, a government engages in asset repurchases so as to jump-start

a frozen market. In the second example, the good is divisible (a share in a project); the owner benefits

from the synergies resulting from taking an associate in the project, but is hesitant about sharing the

proceeds if she knows the project is highly profitable. In the third example, the seller may have hard

information about the quality of the good and chooses whether to keep the evidence secret (which

amounts to engaging in this example) or disclose it to the buyer (not engaging). The fourth example

describes herding with interdependent payoffs; for example, by entering a market, a firm may encourage

a rival to follow suit. The fifth example is a marriage game, in which covenants smooth the hardship

of a subsequent divorce, but also signal bad prospects about the marriage. Some of these examples

naturally feature a non-linear δL function which explains the generality introduced above.20 We refer

the reader to the Supplement for the details.

18Then ∂M−(r; ρ†)/∂m∗ ∈ (0, 1), where ∂M−(r; ρ†)/∂m∗ is the partial derivative of M−(m∗; ρ†) with respect to m∗,
evaluated at m∗ = r. See An (1998).

19Note that the FOC for ρ can also be written as
∫ r

−∞ Gρ(m; ρ)dm = C′(ρ). This is because
∫ +∞
−∞ mdG(m; ρ) is invariant

in ρ, implying that
∫ +∞
−∞ Gρ(m; ρ)dm = 0.

20A non-linear δL function also brings additional effects to the analysis, for example by making L’s value for information
depend, among other things, on the induced volatility of m.
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3 Expectation Conformity

We now investigate how L’s choice of information is influenced by F ’s expectations and how the latter in

turn depend on whether L’s information aggravates adverse selection. Adverse selection is here captured

by the truncated mean M−(m∗; ρ†). Consistently with what we discussed above, we will maintain that

M−(m∗; ρ†) is differentiable in ρ.

Definition 2 (impact of information on adverse selection). Starting from information ρ†, an increase in

information by player L

• aggravates adverse selection if ∂
∂ρ†

M−(m∗(r(ρ†)); ρ†) < 0

• alleviates adverse selection if ∂
∂ρ†

M−(m∗(r(ρ†)); ρ†) > 0.

Simple computations show that, for any information ρ† and truncation point m∗,

∂

∂ρ†
M−(m∗; ρ†)

sgn
= A(m∗; ρ†) (5)

where

A(m∗; ρ†) ≡
[
m∗ −M−(m∗; ρ†)

]
Gρ(m

∗; ρ†)−
∫ m∗

−∞
Gρ(m; ρ†)dm. (6)

The first term of A captures the direct effect of a change in the probability that player L engages (which

happens when m ≤ m∗) on player F ’s expectation of the state. Because m∗ ≥ M−(m∗; ρ†), more

information aggravates adverse selection when it reduces the chances that player L engages (i.e., when

Gρ(m
∗; ρ†) < 0), whereas it alleviates it when it increases the probability of such an event (i.e., when

Gρ(m
∗; ρ†) > 0). The second term, of A,

∫m∗

−∞ Gρ(m; ρ†)dm, in turn is related to the effect of information

on the dispersion of L’s posterior mean m. When more information induces more dispersion in the sense

of second-order stochastic dominance (which is always the case when higher ρ index distributions G(·; ρ)
generated by Blackwell-more-informative experiments), this second effect unambiguously contributes to

an aggravation of the adverse selection problem. Hereafter, we will refer to

A(ρ†) ≡ A(m∗(r(ρ†)); ρ†) (7)

as the “adverse-selection effect” of an increase of information at ρ†. Note that, under Assumption 3,

when A(ρ†) > 0 (alternatively, A(ρ†) < 0), starting from ρ† a small increase in the informativeness of

L’s signal triggers a friendlier (alternatively, an unfriendlier) reaction by F .

Now recall that L’s ex-ante payoff (gross of the cost) from choosing information ρ when expecting a

reaction r to her decision to engage is equal to

Π(ρ; r) ≡ supa(·)

{
UL(0) +

∫ +∞
−∞ a(m) δL(r,m)dG(m; ρ)

}
where UL(0) ≡

∫ +∞
−∞ uL(0,m)dG(m) is L’s ex-ante expected payoff when she never engages, and a(m)

represents the probability that L engages when her posterior mean is m.21

21Note that, because uL(0,m) is affine in m,
∫ +∞
−∞ uL(0,m)dG(m; ρ) =

∫ +∞
−∞ uL(0,m)dG(m) for any ρ, implying that
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Then let22

B(ρ; ρ†) ≡ −∂2Π(ρ; r(ρ†))

∂ρ∂r

denote the effect of a reduction in the friendliness of F ’s reaction, starting from r = r(ρ†), on L’s

marginal value of information, evaluated at ρ. Hereafter, we will refer to B(ρ; ρ†) as the “benefit of a

friendlier reaction effect”.

Definition 3 (information incentive effect of unfriendlier reactions). Given (ρ, ρ†), a reduction in the

friendliness of player F ’s reaction starting from r = r(ρ†), raises (alternatively, lowers) player L’s

incentive to invest in information at ρ if B(ρ; ρ†) > 0 (alternatively, if B(ρ; ρ†) < 0).

Using the envelope theorem along with the fact that, for any ρ, the optimal engagement strategy for

L when F expects information ρ†, is to engage if and only if m ≤ m∗(r(ρ†)), and integrating by parts,

we have that23

B(ρ; ρ†) = −∂δL(r(ρ
†),m∗(r(ρ†)))

∂r
Gρ

(
m∗(r(ρ†)); ρ

)
+

∫ m∗(r(ρ†))

−∞

∂2δL(r(ρ
†),m)

∂r∂m
Gρ(m; ρ)dm. (8)

Because δL is increasing in r, the sign of the first term of B(ρ; ρ†) is determined by whether an increase in

information increases or reduces the chances that player L engages. Under Assumption 2, the marginal

benefit of a friendlier reaction by player F is non-decreasing in the posterior mean m. As a result, the

second term of B(ρ; ρ†) is always positive when a higher ρ indexes a mean-preserving spread of the

induced posterior mean.

Next, let VL(ρ; ρ
†) ≡ Π(ρ; r(ρ†)) denote the maximal payoff that player L can obtain by choosing

information ρ when player F expects information ρ† (and hence responds to L’s decision to engage with

action r(ρ†)).

Definition 4 (expectation conformity). Expectation conformity (EC) holds at (ρ, ρ†) if and only if

∂2VL(ρ; ρ
†)

∂ρ∂ρ†
> 0.

Suppose Assumption 1 holds (i.e., information structures are consistent with the MPS order and

higher ρ index more informative experiments). EC then says that the marginal value to player L

from choosing a more informative experiment starting from ρ is higher when player F , starting from

ρ†, expects player L to choose a more informative experiment. When there is an interval [ρ1, ρ2]

such that the property holds for all ρ, ρ† ∈ [ρ1, ρ2], the gross value to player L from moving from

ρ1 to ρ2 is higher when player F expects her to choose ρ2 than when he expects her to choose ρ1:

VL(ρ2; ρ2)−VL(ρ1; ρ2) > VL(ρ2; ρ1)−VL(ρ1; ρ1). In this sense, EC captures a complementarity between

UL(0) is invariant in ρ.
22Consistently with the notation above, ∂2Π(ρ; r(ρ†))/∂ρ∂r is the cross derivative of Π(ρ; r) evaluated at an arbitrary ρ

and at r = r(ρ†).
23Again ∂δL(r(ρ

†),m∗(r(ρ†)))/∂r and ∂2δL(r(ρ
†),m∗(r(ρ†)))/∂r∂m are, respectively, the partial derivative of δL(r,m)

with respect to r and the cross derivative of δL(r,m) evaluated at r = r(ρ†) and m = m∗(r(ρ†)).
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actual and anticipated information choice. In the next section, we relate this property to the determinacy

of equilibria and a few other phenomena of interest. Before doing so, we provide a characterization of

EC.

Proposition 1 (expectation conformity). Suppose that Assumptions 1, 2, and 3 hold.

(i) EC holds at (ρ, ρ†) if and only if the adverse selection effect and the benefit of a friendlier reaction

effect are of opposite sign: A(ρ†)B(ρ; ρ†) < 0.

(ii) Information always aggravates adverse selection at ρ† (i.e., A(ρ†) < 0) when the family of distri-

butions G(·; ρ) from which m is drawn is Uniform, Pareto, or Exponential. For other distributions, a

sufficient condition for information to aggravate adverse selection at ρ† is that Gρ(m
∗(r(ρ†)); ρ†) < 0.

(iii) Starting from r(ρ†), a reduction in the friendliness of player F ’s reaction raises player L’s incentive

to invest in information at ρ (i.e., B(ρ; ρ†) > 0) if Gρ(m
∗(r(ρ†)); ρ) < 0.

(iv) Therefore a sufficient condition for EC at (ρ, ρ†) is that

max
{
Gρ(m

∗(r(ρ†)); ρ†), Gρ(m
∗(r(ρ†)); ρ)

}
< 0. (9)

(v) Suppose that, for any m∗, M−(m∗; ρ) is decreasing in ρ (which is the case for Uniform, Pareto,

and Exponential distributions), implying that, for any ρ†, A(ρ†) < 0. If ∂2δL(r,m)/∂r∂m = 0, as is the

Akerlof model described above, then Gρ(m
∗(r(ρ†)); ρ) < 0 is a necessary and sufficient condition for EC

at (ρ, ρ†).24 When the distributions G(·; ρ) are rotations, in the sense of Definition 1, Gρ(m
∗(r(ρ†)); ρ) <

0 if and only if m∗(r(ρ†)) is to the right of the rotation point mρ.

Hence, EC holds at (ρ, ρ†) when, fixing player F ’s reaction at r(ρ†), an increase in the informative-

ness of player L’s experiment decreases the probability that L engages, both when such an increase is

evaluated from player L’s perspective (i.e., starting from ρ) and when evaluated from player F ’s perspec-

tive (i.e., starting from ρ†)—formally, when Condition (9) holds. This is because, from F ’s perspective,

that player L engages less often (formally, that Gρ(m
∗(r(ρ†)); ρ†) < 0) implies an aggravation in the

adverse selection problem, which induces player F to respond in an unfriendlier manner (part (ii) in

the proposition). That player F responds in an unfriendlier manner, together with the fact that, in the

eyes of player L, more information makes her engage less often (i.e., Gρ(m
∗(r(ρ†)); ρ) < 0), implies a

higher marginal value for player L to acquire more information starting from ρ (part (iii) in the proposi-

tion). Jointly, the above two properties (captured by Condition (9) in the proposition) thus imply that,

when player F expects player L to acquire more information (starting from ρ†), the benefit for player

L to acquire more information (starting from ρ) is higher. That is, EC holds at (ρ, ρ†). Importantly,

Condition (9) is sufficient for EC but not necessary. For example, when the family of distributions

from which the posterior mean is drawn is Uniform, Pareto, or Exponential, more information always

aggravates adverse selection, implying that EC holds at (ρ, ρ†) if, in the eyes of player L, it reduces

the probability of engagement (i.e., if Gρ(m
∗(r(ρ†)); ρ) < 0), irrespectively of whether, in the eyes of

player F , more information increases or decreases the probability of engagement (i.e., irrespectively of

the sign of Gρ(m
∗(r(ρ†)); ρ†)). Furthermore, the sufficiency of Condition (9) hinges on the information

24See also Examples (a), (c), and (d) in the Supplement for alternative games in which ∂2δL(r,m)/∂r∂m = 0.
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structures being consistent with the MPS order. The result is thus perhaps less obvious than what it

may look like.

EC holds at (ρ, ρ†) also when A(ρ†) > 0 and B(ρ; ρ†) < 0, that is, when the choice of a more

informative signal by player L (starting from ρ†) induces player F to respond in a friendlier way because

it alleviates adverse selection, and a friendlier reaction by player F (starting from r(ρ†)) raises player

L’s marginal value for information (starting from ρ).

Finally, the last part of the proposition establishes that, when information always aggravates adverse

selection and L’s payoff is separable in m and r, as in the Akerlof model, the property that more

information reduces the probability of engagement starting from ρ (i.e., that Gρ(m
∗(r(ρ†)); ρ) < 0) is

not only sufficient for EC at (ρ, ρ†), but also necessary.

3.1 Example: Akerlof Model under Non-Directed Search

Under non-directed search, the rotation point is the prior mean. Proposition 1, when applied to the

Akerlof model of Subsection 2.2, thus says that EC holds at (ρ, ρ†) whenever the engagement threshold

m∗ = r(ρ†) is to the right of the prior mean, that is, when the price offered by the competitive buyer is

sufficiently high. In other words, EC arises when the gains from trade (parametrized by ∆) are large,

and it never occurs when they are small.

To gather some intuition, recall that, in the Akerlof model, the seller puts the asset up for sale when

her value for the asset is small (i.e., when the posterior mean is below a threshold m∗ that coincides

with the price r(ρ†) offered by the buyer). Naturally, when the gains from trade ∆ are large, the price

offered by the buyer is also large, in which case r(ρ†) exceeds the rotation point, which coincides with

the prior mean ω0 of the asset’s value for the seller. Economically, what this implies is that the seller

finds it optimal to enter the market both when she is uninformed and when she learns that her value

for the asset, ω, is below the price r(ρ†). Starting from such a situation, the expectation by the buyer

of the seller acquiring more information reduces the quality of the asset perceived by the buyer after

seeing that the asset is on sale. Faced with an exacerbated adverse selection problem, the buyer then

reduces the price offered. But then it becomes even more important for the seller to learn the value of

the asset, that is, to acquire more information starting from ρ. So EC naturally holds for (ρ, ρ†) in this

case.25

While the mechanism just described is fairly natural, it is important to appreciate that it need

not always be in place. In fact, EC fails to obtain in this model when the gains from trade are pos-

itive but small. To see this, note that, when ∆ is small, because of the adverse selection problem,

the price offered by the buyer may well be lower than the ex-ante prior mean of the asset, mean-

ing that r(ρ†) < ω0. Anticipating such a low price, the seller enters the market only if she receives

information that reveals that ω ≤ r(ρ†). The buyer then understands that the expected value of

the asset, conditional on the seller putting it on the market, is invariant in the seller’s information:

M−(r(ρ†); ρ†) =
∫ r(ρ†)
−∞ ωdG(ω)/G(r(ρ†)), which, fixing the price at r(ρ†), is independent of the infor-

mation that the buyer expects the seller to acquire. When this is this case, an increase in the information

25Consistently with the result in Proposition 1, note that, when r(ρ†) > ω0, Condition (9) always holds (see Figure 1).
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expected from the seller by the buyer does not affect the price offered by the buyer, and hence does not

increase L’s incentives to search. We thus have the following result:

Corollary 1 (lemons under non-direct search). In the Akerlof model under non-directed search, EC

holds at (ρ, ρ†) if and only if the gains from trade ∆ are sufficiently large (namely, if and only if the

unique solution r(ρ†) to r = M−(r; ρ†) + ∆ exceeds the prior mean ω0).

3.2 Gains from Engagement

The example in the previous subsection suggests that EC is more likely to obtain when the gains from

engagement for player L are large. The next result shows that this is true more generally.

Proposition 2 (gains from engagement). Suppose that Assumptions 1, 2 and 3 hold, and that infor-

mation structures take the form of rotations, as in Definition 1. Further assume that player L’s payoff

differential from selecting a = 1 instead of a = 0 is δL(m, r) = δ̄L(m, r) + θ, where δ̄L(m, r) is an arbi-

trary function satisfying Assumption 2, and θ ∈ R.26 For all (ρ,ρ†), there exists θ∗(ρ, ρ†) such that, for

all θ ≥ θ∗(ρ, ρ†), EC holds at (ρ,ρ†): EC is more likely, the larger the leader’s gains from engagement.

Proof. See the Appendix.

Proposition 2 says that higher gains from engagement reinforce EC. On the other hand, holding

player F ’s reaction fixed, larger gains from engagement reduce the marginal benefit of acquiring more

information under the sufficient condition for EC identified in Proposition 1, namely that more infor-

mation reduces the probability of trade, i.e., that Gρ(m
∗(r(ρ†; θ), θ); ρ) ≤ 0:

∂2

∂θ∂ρ

[∫ m∗(r(ρ†;θ),θ)

−∞
[δ̄L(r(ρ

†; θ),m) + θ]dG(m; ρ)

]
= Gρ(m

∗(r(ρ†; θ), θ); ρ).

The reason for this last result is the following: holding player F ’s reaction fixed, we have that the

reduction in the probability of engagement brought in by a larger ρ is particularly costly when the gains

from engagement are large. This property helps clarify that it is only because of the effects of information

on the severity of the adverse selection problem that larger gains from engagement contribute to EC.

They make player F respond to the anticipation of player L acquiring more information by reducing r

more sharply, which in turn raises player L’s value of information.

4 Expectation Traps, Disclosure of Hard Information, and Cognitive Styles

We now turn to three phenomena that are intrinsically related to EC in the type of situations described

above.

4.1 Expectation Traps

Proposition 3 (expectation traps). Suppose that Assumptions 2 and 3 hold and that ρ1 and ρ2 are

both equilibrium levels, with ρ1 < ρ2. If, for any ρ† ∈ [ρ1, ρ2], A(ρ
†) < 0 (which is the case, for example,

26For instance, in the examples in Section S.1 in the Supplement, an increase in θ corresponds to an increase in dL−cL in
example (b), a reduction in ∆ in example (c), an increase in πd and/or in πm −πd in example (d), an increase in LL − ℓL,
or a reduction in cL, in example (e), and an increase in K0 in example (f).
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when either the distributions are Uniform, Pareto, or Exponential, or when Assumption 1 holds and

Gρ(m
∗(r(ρ†)); ρ†) < 0 for all ρ† ∈ [ρ1, ρ2]), then player L is better off in the low information-intensity

equilibrium ρ1. Conversely, when for any ρ† ∈ [ρ1, ρ2], A(ρ†) > 0, player L is better off in the high

information-intensity equilibrium ρ2.

Expectation traps do not result just from the fact that, when C(ρ) is increasing, in a high information-

intensity equilibrium, player L spends more resources in information acquisition. In fact, at the margin,

player L’s gain from a more informative structure is equal to the increase in the cost of information

acquisition. Rather, expectation traps occur because player F , anticipating an exacerbated adverse

selection problem when expecting player L to acquire more information, reacts in an unfriendlier way,

which not only forces player L to acquire more information, vindicating player F ’s expectation, but

hurts player L.

To illustrate, consider again the Akerlof model under non-directed search of the previous section.

The equilibrium levels of ρ and the corresponding prices r(ρ) are given by the solutions to Conditions

(3) and (4). For example, when G is Uniform over [0, 1], the cost of information is C(ρ) = ρ2/20, and

∆ = 0.25, there are two equilibria in which the price exceeds the prior mean ω0 = 0.5. In the first

equilibrium ρ1 ≈ 0.48 and r(ρ1) ≈ 0.69; in the second equilibrium, ρ2 ≈ 0.88 and r(ρ2) ≈ 0.58. Because,

for any m∗ > ω0, G(m∗; ρ†) is decreasing in ρ†, information always aggravates adverse selection at ρ†

when r(ρ†) > ω0. In this example, r(ρ†) > ω0 for all ρ† ∈ [ρ1, ρ2], implying that A(ρ†) < 0 for all

ρ† ∈ [ρ1, ρ2]. Hence, the conditions in the previous proposition apply. The seller is better off in the low

information-intensity equilibrium ρ1 than in the high information-intensity equilibrium ρ2.

The result in the previous proposition contrasts with what one obtains in markets with private values

and monopolistic screening. To see this, consider a setting in which player F is a seller maximizing

expected profit p− c (ω) by means of a take-it-or-leave-it offer p, whereas player L is a buyer choosing

how much information ρ to acquire about her gross value ω for the seller’s product and whether or

not to accept the seller’s offer of trading at price p so as to maximize her net payoff ω − p − C(ρ).

When the seller’s cost c is invariant in ω, this model corresponds to the private-value setting of Ravid,

Roesler, and Szentes (2022). In their setting, when information is free and the buyer can choose any

mean-preserving contraction G(·; ρ) of the prior distribution G at no cost, there are multiple equilibria.

All equilibria are Pareto ranked, with each player’s payoff maximized in the equilibrium in which the

buyer fully learns the state. When, instead, payoffs are interdependent and player F is a representative

of a competitive market (as in the Akerlof model above), the result in Proposition 3 implies that, when

more information by the buyer aggravates the adverse selection problem and this leads the seller to ask

for a higher price, then equilibria in which the buyer acquires more information are equilibria in which

the buyer is necessarily worse off, no matter the cost of information.27

The result in Proposition 3 calls for government interventions aimed at discouraging the players from

acquiring information. We discuss some of these interventions in Section 5. Here, instead, we want to

emphasize that expectation traps are intrinsically related to EC. Recall that EC relates to the benefit

of information in strategic settings. It does not depend on the cost of information. When the sufficient

27The payoff of player F (here in the role of a seller) is constant in the equilibrium signal ρ selected by the buyer when
F has no bargaining power, i.e., when he is a representative of a competitive market.
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conditions for EC of Proposition 1 hold, one can identify cost functionals for which multiple equilibria

arise.28 The same conditions then imply that player L is worse-off in the high information-intensity

equilibria.

4.2 Disclosure and Cognitive Style

So far we have assumed that information acquisition is covert. Suppose that it is indeed covert, but

that some form of disclosure prior to F ’s action is feasible. Namely, given her actual choice ρ, player

L can prove that her choice is above any level ρ̂ ≤ ρ. The disclosed information is hard. For example,

player F may prove that she purchased a research study that identifies certain characteristics of the

asset responsible for its value, or that she undertook physical exams that unambiguously reveal elements

of player L’s health status responsible for the value L attaches to the relationship with player F .

For any ρ̂ ∈ R+, let the “ρ̂-constrained game” be the no-disclosure game with modified cost function

Ĉ(ρ; ρ̂) = C(ρ) if ρ ≥ ρ̂ and Ĉ(ρ; ρ̂) = +∞ if ρ < ρ̂. Let E(ρ̂) denote the set of equilibrium levels of ρ

of the ρ̂-constrained game and assume that E(ρ̂) is non-empty for all ρ̂ ∈ R+. We say that the function

e(·) : R+ → R+ is a selection if, for any ρ̂ ∈ R+, e(ρ̂) ∈ E(ρ̂).29

Definition 5 (monotone selections). The selection e(·) is monotone if for all ρ̂ and ρ̂ ′, with ρ̂ < ρ̂ ′,

e(ρ̂) ≤ e(ρ̂ ′).

In words, the selection is monotone if, when L is constrained to choose among levels of ρ that exceed

a certain threshold, in equilibrium, as the threshold increases, L selects a higher level. Note that,

because E(ρ̂) ∩ {ρ | ρ ≥ ρ̂′} ⊆ E(ρ̂′), it is always possible to construct monotone selections.

Definition 6 (regularity). Take any equilibrium of the primitive game with disclosure. The equilibrium

is regular if the selection e(·) describing player L’s choice of information following any possible disclosure

ρ̂ ∈ R+ is monotone and e(0) is an equilibrium of the no-disclosure game.

Clearly, in any pure-strategy equilibrium of the game with disclosure, L selects a unique ρ on path.

In this case, regularity imposes restrictions on the off-path behavior of the players. Namely, for any

pure-strategy equilibrium of the game with disclosure in which player L’s equilibrium investment is ρ∗,

let ρ̂(ρ∗) denote the information L discloses on path. The equilibrium being regular implies, among

other things, that, if L were to disclose any ρ̂ < ρ̂(ρ∗) (alternatively, any ρ̂ > ρ̂(ρ∗)), in the continuation

game, she would then select a ρ weakly below ρ∗ (alternatively, weakly above ρ∗).

Let ρ̄ be the highest level of ρ supported by a pure-strategy equilibrium of the game without dis-

closure. It is easy to see that, without the above refinement, the game with disclosure may admit

pure-strategy equilibria supporting ρ∗ strictly above ρ̄. For example, suppose that information always

28Namely, suppose that Assumptions 1, 2, and 3 hold, and that there exist ρ1 and ρ2, with ρ2 > ρ1, such that
Gρ(m

∗(r(ρ†)); ρ) < 0 for all ρ†, ρ ∈ [ρ1, ρ2]. There exist monotone cost functionals C(·) such that ρ1 and ρ2 are both
equilibrium levels. Furthermore, under any such cost functionals, player L is better off in the low information-intensity
equilibrium ρ1 than in the high information-intensity equilibrium ρ2.

29Shishkin (2024) studies an evidence acquisition game. He shows that, when the probability of obtaining information
is small, the Sender’s optimal policy has a pass/fail structure and reveals only whether the quality is above or below a
threshold. The game considered in this section differs in two respects: First, the acquired information is soft; second, the
acquisition is either overt or “semi-overt” in that the intensity of information acquisition can be disclosed but not the actual
information obtained.
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aggravates adverse selection (i.e., A(ρ†) < 0 for all ρ†, as in the case of Uniform, Pareto, or Exponential

distributions). These equilibria can be sustained by a strategy for player L according to which, on path,

L discloses ρ̂(ρ∗) = ρ∗ > ρ̄ . Off path, after disclosing any ρ̂ < ρ∗, L selects a ρ above ρ∗ anticipating

a low reaction by player F , supported by the expectation of the choice of an experiment by player L

aggravating the adverse selection problem. In other words, without the refinement, there is not enough

connection between the equilibrium information choices of the game with and without disclosure.

Proposition 4 (disclosure). Assume that Assumptions 2 and 3 hold and that A(ρ†) < 0 for all ρ†,

implying that information always aggravates adverse selection.

• Any pure-strategy equilibrium choice of information ρ of the game in which disclosure is not feasible

is also an equilibrium level in the disclosure game.

• Conversely, the largest and smallest levels of ρ sustained by pure-strategy regular equilibria of the

disclosure game are also equilibrium levels in the game without disclosure.

Proof. See the Appendix.

Under Assumption 3, the choice of a more informative experiment by player L, by aggravating

the adverse selection problem, reduces the friendliness of F ’s reaction. Player L then never gains

from proving that her investment in information acquisition is large, when the disclosure of a higher

investment is interpreted as a signal of a higher actual choice. When, in addition, the marginal benefit

to player L of a more informative experiment decreases with the friendliness of F ’s reaction (which, by

virtue of part (iii) of Proposition 1, is the case when more information reduces the probability that L

engages, i.e., when, given ρ†, for any ρ, Gρ(m
∗(r(ρ†)); ρ) < 0), player L benefits from aligning her choice

of information with player F ’s expectations (that is, EC holds) as in the game without disclosure.

In the same vein, one can consider the possibility of transparency, namely a commitment to reveal

the exact amount of investment in information made. In this case, ρ̂ = ρ for any ρ (overt information

acquisition). Clearly, player L is better off committing ex ante to transparency than retaining the

possibility to disclose information voluntary ex post (the case just studied). She is also better off under

transparency than in the game with complete absence of any disclosure. More interestingly, when F ’s

reaction is non-increasing in ρ† (which is the case when information aggravates adverse selection, i.e.,

when A(ρ†) < 0 for all ρ†), under transparency, in equilibrium, player L may choose a level ρ∗ ≤ ρ that

is lower than the lowest equilibrium level in the no-disclosure game. Similar conclusions obtain when

player L cannot reveal her investment in information perfectly, but can prove that it is below some level

ρ̂ of her choice, for example by proving that she is unable to undertake more than a certain number of

informative tests. In such situations, equilibria may exist in which player L proves that her investment

is below the lowest equilibrium level of the no disclosure game.

Another focus of comparative statics concerns player L’s cognitive style. We provide here only an

informal account. Continue to assume that information aggravates adverse selection, but now suppose

that the cost of information C(ρ; ξ) depends on a parameter ξ, interpreted as ability. A higher-ability

player L has a lower marginal cost of information: for any ξ, C(0; ξ) = 0 and Cρ(0; ξ) = 0, whereas for
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any ρ > 0, Cρ(ρ; ξ) > 0, Cρρ(ρ; ξ) > 0, and Cρξ(ρ; ξ) < 0. Under the conditions for EC of Proposition

1, as player L’s ability increases, the equilibrium ρ also increases (in case of multiple equilibria, in

the sense of monotone comparative statics, that is, the lowest and highest levels of the equilibrium set

corresponding to ability ξ increase with ξ). Put it differently, player L’s ability, while directly beneficial,

indirectly hurts her as player F becomes more wary of adverse selection. This suggests that, if player

L has side opportunities to signal her ability, she will want to adopt a dumbed-down profile.

Suppose indeed that player L can be bright (ξH) or dumb (ξL). A bright person can demonstrate

that she is bright (and can always mimic a dumb one), but the reverse is impossible. The set of

equilibrium levels of ρ is monotonically increasing in the posterior probability that ξ = ξH . Assume a

monotone selection in this equilibrium set: Player F ’s reaction r is decreasing in the probability that

she assigns to ξ = ξH (a property automatically satisfied if the equilibrium is unique, for any possible

belief). Then if one adds to this game a disclosure stage in which player L can disclose she is bright if

this is indeed the case, the equilibrium is a pooling one, in which the bright player L does not disclose

her brightness. Conversely, player L will disclose, if she can, that she is overloaded with work (assume

that she cannot prove that she has a low workload), and therefore that her marginal cost of information

is high. In either case, player L poses as an “informational puppy dog” (in the sense of Fudenberg and

Tirole (1984)).

5 Policy Interventions

We now investigate how a benevolent government can improve over the laissez-faire equilibrium by

subsidizing (alternatively, taxing) trade. For simplicity, we focus on the Akerlof model of Subsection

2.2; in the Appendix, we extend the analysis (and generalize the results) to settings in which L’s payoff

differential is an arbitrary function δL(r,m) satisfying Assumption 2, and in which F is a representative

of a competitive market with arbitrary payoff differential δF (r,m) ≡ uF (1, r, m)− uF (0, m).30

5.1 Optimality of Subsidizing/Taxing Trade

Let s denote the subsidy (tax if s < 0) the government promises to pay to player L in case of trade.31 For

any r and s, let m∗(r, s) denote the optimal engagement threshold for player L when player F ’s reaction

is r and the subsidy is s. In the Akerlof model, δL(r,m) = r − m, implying that m∗(r, s) = r + s.

Let ρ∗(s) and r∗(s) denote, respectively, the leader’s equilibrium investment in information and the

follower’s equilibrium response in the continuation game that starts after the government announces

a subsidy equal of s. Throughout, we assume that, for any s, ρ∗(s) and r∗(s) are unique, Lipschitz

continuous, and differentiable. Likewise, we assume that the the distributions G(m; ρ) are differentiable

and Lipschitz-continuous. In addition to facilitating the description of the relevant optimality conditions,

these properties validate a certain envelope theorem that we use in the Appendix to establish some of

30The insights of this section extend to a broader class of problems in which player F is not a representative of a
competitive market and the welfare weight the government assigns to player F is arbitrary. The conditions, however, are
less transparent.

31More generally, both the decision to engage and that of not engage can be subject to taxes and subsidies. For example,
the decision to hold on a car or a security can be taxed. Hence, in the analysis below, s should be interpreted as the
differential in the subsidy/tax when player L engages relative to when she does not engage.
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the results.

For any s, total welfare is given by (up to scalars that are irrelevant for the analysis)

W (s) ≡
∫ m∗(r∗(s),s)

−∞
(δL(r

∗(s),m) + s) dG(m; ρ∗(s))− C(ρ∗(s))− (1 + λ)sG(m∗(r(s), s); ρ∗(s)),

where λ ≥ 0 is the unit cost of public funds (linked to the deadweight loss of non-uniform taxation).

The first two terms of W (s) represent the leader’s payoff, whereas the last term represents the cost of

the program to the government. Hereafter, we assume that W is strictly quasi-concave.

Proposition 5 (social value of subsidizing/taxing trade). Consider the Akerlof model of Subsection

2.2 and suppose that Assumption 3 holds. A strictly positive subsidy is optimal when

∂

∂m∗M
−(r∗(0); ρ∗(0)) +

∂

∂ρ
M−(r∗(0); ρ∗(0))

dρ∗(0)

ds
> λ,

whereas a tax on trade is optimal when the above inequality is reversed.32

Whether subsiding trade is preferable to taxing it depends on whether, fixing F ’s reaction at the

laissez-faire level r∗(0), subsidizing (alternatively, taxing) trade has a strong enough effect on the alle-

viation of the adverse selection problem to compensate for the cost of the program. When information

is endogenous, there are two channels through which a subsidy alleviates (alternatively, aggravates) the

adverse selection problem. The first one is through its effect on the leader’s engagement, as captured

by the threshold m∗. The second one is through its effect on the leader’s information, ρ. A higher

subsidy always increases the engagement threshold m∗(r, s) = r + s. Because, for any ρ, M− is in-

creasing in m∗, the first effect always contributes to an alleviation of the adverse selection problem

(i.e., to an increase in M−). The second effect, instead, can be either positive or negative, depending

on whether information aggravates or alleviates the adverse selection problem, and whether a posi-

tive subsidy increases or decreases the leader’s investment in information ρ. From Proposition 1, we

know that, when information structures are consistent with the MPS order (i.e., when Assumption 1

holds), information aggravates the adverse selection problem when it reduces the probability of trade,

i.e., when Gρ(r
∗(0); ρ∗(0)) < 0.33 Under this condition, a small subsidy induces the leader to invest

less in information (i.e., dρ∗(0)/ds < 0) when the comparative statics of the equilibrium have the same

monotonicities as those of the best responses.34

32As we show in the Appendix, for more general payoff functions δL for the leader, the result in the proposi-
tion becomes the following: there exists a positive scalar K > 0 such that a strictly positive scalar is optimal if
d
ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣
s=0

> K, whereas a strictly positive tax is optimal if the above inequality is reversed. As
we discuss in the Supplement, the conclusion flips in the anti-lemons case (i.e., when Assumption 3 is replaced by
Assumption 3’): in this case, there exists a negative scalar K < 0 such that a strictly positive subsidy is optimal if
d
ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣
s=0

< K, whereas a tax on engagement is optimal if d
ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣
s=0

> K.
33Also recall that information always aggravates adverse selection, no matter whether it reduces or increases the proba-

bility of trade, when the distributions from which the mean m is drawn are Uniform, Pareto, or Exponential.
34Note that, holding the leader’s choice of ρ fixed at ρ∗(0), an increase in the subsidy, starting from s = 0, always

increases the friendliness of the follower’s reaction. Likewise, holding r fixed at r∗(0), an increase in the subsidy, starting
from s = 0, always reduces the leader’s choice of ρ when Gρ(r

∗(0); ρ∗(0)) < 0.
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5.2 Effects of Endogeneity of Information on Optimal Policy

Let s∗ denote the optimal policy when information is endogenous. Now suppose information is exogenous

and equal to ρ = ρ∗(s∗), where ρ∗(s∗) is the equilibrium choice by L when information is endogenous

and the policy is s∗. For any s, let W#(s) denote welfare when the policy is s and information is

exogenous and equal to ρ∗(s∗). Assume that W#(s) is strictly quasi-concave and then denote by s∗∗

the level of the policy that maximizes W#(s).

Proposition 6 (subsidy double dividend). Consider the Akerlof model of Subsection 2.2. Let s∗

denote the optimal subsidy when information is endogenous. Assume that G(m; ρ∗(s∗))/g(m; ρ∗(s∗))

is increasing in m, Assumption 1 holds, and Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗)) < 0 (meaning that information

aggravates adverse selection). Then, when information is exogenous and equal to ρ∗(s∗), the optimal

subsidy, s∗∗, satisfies s∗∗ < s∗.

Recall that the property that G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m guarantees that Assump-

tion 3 holds in the Akerlof model (that is, the friendliness of the follower’s reaction increases with ρ if

and only if a larger ρ alleviates the adverse selection problem, i.e., it increases the truncated mean). In

the context of the problem under consideration, this assumption guarantees that, starting from ρ∗(s∗),

a larger ρ decreases M−(m∗(r∗(s∗), s∗); ρ∗(s∗))). That information structures are consistent with the

MPS order and Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗)) < 0 in turn implies that, under the optimal subsidy s∗, in-

formation aggravates adverse selection (see Proposition 1). Because information aggravates adverse

selection, starting from s∗, if the government were to cut the subsidy, it would trigger a larger reduction

in the price offered by the buyer when information is endogenous than when it is exogenous. This is

because, when information is endogenous, a smaller subsidy, by inducing the buyer to lower the price

expecting the seller to engage less often, it also induces the seller to invest more in information acquisi-

tion which further aggravates adverse selection resulting in a sharper price reduction. As a result, the

optimal subsidy is larger under endogenous information. Similar conclusions apply to Example (a) in

the Supplement where we consider the design of government asset purchase problems. In the context of

that example, the government directly controls the price at which the sellers can trade in their assets.

Proposition 6 implies that, relative to the case in which information is exogenous, when information is

endogenous, the government should run a more generous program, i.e., offer a higher price.

The results above point to a general insight. When increasing trade is socially beneficial, information

aggravates adverse selection, and a friendlier reaction by player F reduces the marginal benefit of

acquiring more information for player L, the social value of subsidizing trade is higher when information

is endogenous than when it is exogenous. This is because subsidizing trade comes with a double dividend :

in addition to inducing player L to engage more often, it induces L to acquire less information which in

turn alleviates adverse selection and further boosts welfare.

Table 1 in the Appendix summarizes some of the key insights, both in the lemons problem considered

in this section and the previous ones as well as in the anti-lemons case discussed in the Supplement.
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6 Flexible Information

The results in the previous sections assume that the experiments player L has access to lead to distribu-

tions (over the posterior mean) consistent with the MPS order — Assumption 1. In this section, we relax

this assumption. We first establish that results similar to those in Proposition 1 obtain under two cost

functionals that received prominent attention in the literature. We do so by introducing an alternative

order over L’s investments that accommodates for the possibility that the experiments themselves are

not ordered. Equipped with these results we then investigate the possibility of multiple equilibria when

the cost of information takes the form in the rational inattention literature. We show that fully-efficient

equilibria in which trade occurs with probability one may coexist with equilibria in which player L

invests and trades selectively, but also equilibria in which the market breaks down despite player L not

acquiring any information and all players recognizing that there are gains from trade.

6.1 Entropy and Max-Slope Cost Functionals

Consider an arbitrary experiment q : Ω → ∆(Z) mapping states into probability distributions over a

rich (Polish) space of signal realizations Z. Note that any such experiment, when combined with the

prior G over Ω, leads to a distribution Gq of the posterior mean, m. Furthermore, when combined with

the optimal engagement strategy (that is, the rule that specifies to engage if and only m ≤ m∗, where

m∗ naturally depends on player L’s expectation of player F ’s reaction, r), the experiment q leads to a

stochastic choice rule σq : Ω → [0, 1] specifying the probability that player L engages in each state ω.

Following the rational inattention literature, one can think of player L as choosing directly the rule

σ : Ω → [0, 1] subject to an appropriate specification of the cost functional C(σ), with the interpretation

that, for any σ, C(σ) is the cost of the cheapest experiment q : Ω → ∆(Z) among those that permit

L to implement the stochastic choice rule σ. A couple of cost functionals that have received attention

in the literature are those linked to “mutual information” and “maximal slope”. Below we discuss both

specifications and explain how our results are broadly consistent with these specifications.

Entropy. For any experiment q, let

Iq =

∫
ω

∫
z
ln(q(z|ω))q(dz|ω)dG(ω)−

∫
z
ln

(∫
ω
q(z|ω)dG(ω)

)∫
ω
q(z|ω)dG(ω)

denote the mutual information between the random variables ω and z, where z is the random variable

obtained by combining the prior G with the signal q. Now suppose that there exists a function c :

R+ → R+ such that, for any q, the cost of experiment q is given by C(q) = c(Iq). To facilitate the

comparison with the analysis in the previous sections, assume ρ determines the easiness by which L

can process information (equivalently, can reduce entropy). Specifically, assume that, for any ρ ∈ R+,

player L’s marginal cost of entropy reduction is 1/ρ. To be able to process information at marginal

cost 1/ρ, player L must make an investment (e.g., train herself) whose cost is C(ρ), with the function

C satisfying the same assumptions as in the baseline model. The difference is that, once ρ is chosen,

player L can now pick any experiment q of her choice, with each experiment costing her c(Iq)/ρ. For

simplicity, one can then assume that c is the identity function (i.e., c(Iq) = Iq for any q) so that the
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cost of each experiment q is given by the mutual information between its realizations z and the state

ω (equivalently, by the reduction in entropy brought by the experiment), scaled by (the inverse of) L’s

investment ρ.

Alternatively, one can let ρ ∈ R+ denote player L’s“information capacity.” Under this interpretation,

L first purchases capacity ρ at cost C(ρ), and then chooses the experiment that maximizes her expected

payoff among those for which the mutual information between ω and the realization z of the selected

experiment is no greater than ρ. The reason for allowing player L to choose both ρ and q is that, with

flexible information, a change in the experiment expected by player F cannot, in general, be interpreted

as player L acquiring “more/less” information. On the contrary, the anticipation of a larger choice of ρ

can be interpreted, unambiguously, as player L “investing more in learning how to process information”.

This in turn facilitates the comparison with the analysis in the previous sections.

It is well known that, for any investment ρ and any anticipated reaction r by player F , the experiment

qρ,r that maximizes player L’s expected payoff net of the above cost is binary, i.e., for any ω, it assigns

positive probability only to two signal realizations. Without loss of generality, label these realizations by

z = 1 and z = 0, and interpret z = 1 as a “recommendation to engage” and z = 0 as a “recommendation

to not engage.” Letting qρ,r(1|ω) denote the probability that signal qρ,r recommends z = 1 when the

state is ω and qρ,r(1) ≡
∫
ω qρ,r(1|ω)dG(ω) the total probability that player L engages under qρ,r, we have

that, when qρ,r(1) ∈ (0, 1), i.e., when q makes player L respond to the state, the optimal signal is given

by the solution to the following functional equation (see, e.g., Woodford (2009) and Yang (2015)):35

δL(r, ω) =
1

ρ

[
ln

(
qρ,r(1|ω)

1− qρ,r(1|ω)

)
− ln

(
qρ,r(1)

1− qρ,r(1)

)]
.

That is, under the optimal signal, the change in the log-likelihood of player L engaging in state ω (relative

to the prior) is proportional to player L’s payoff differential between engaging and not engaging at state

ω, given the reaction r.

Max-slope. Next, consider the case in which the cost of inducing a stochastic choice rule σ : Ω → [0, 1]

is given by C(σ) = c (sup {|σ′(ω)|}), where the function c : R+∪{+∞} → R+∪{+∞} is non-decreasing

and satisfies c(0) = 0 and c(k) < ∞ for all k ∈ R+. Here σ
′(ω) is the derivative of σ at ω. At any point of

discontinuity of σ, σ′(ω) = +∞, whereas at any point ω at which σ is continuous but non-differentiable,

σ′(ω) is the maximum between the left and the right derivative. Examples of this cost functional can

be found in Robson (2001), Rayo and Becker (2007), Netzer (2009), and more recently Morris and Yang

(2022).

Again, to facilitate the connection with the analysis in the previous sections, assume ρ is the maximal

slope of player L’s stochastic choice rule, selected at cost C(ρ) with C satisfying the same properties

as in the baseline model. Given ρ, player L then selects the experiment that maximizes her expected

payoff, among those inducing a stochastic choice rule σ whose maximal slope is no greater than ρ. For

35The formula is for when 1/ρ measures the marginal cost of entropy reduction. Conclusions similar to those reported
below hold for the case where ρ determines the information capacity, i.e., the maximal level of entropy reduction, as in
Sims (2003)’s original work on rational inattention (see also Mackowiak and Wiederholt (2009)).
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any ρ and r, the optimal experiment can be taken to be binary and, when

inf(supp{G}) ≤ m∗(r)− 1

2ρ
< m∗(r) +

1

2ρ
≤ sup(supp{G}),

for any ω, it recommends z = 1 (i.e., engagement) with probability qρ,r(1|ω) given by

qρ,r(1|ω) =


1 if ω ≤ m∗(r)− 1

2ρ
1
2 − ρ(ω −m∗(r)) if m∗(r)− 1

2ρ < ω ≤ m∗(r) + 1
2ρ

0 if ω > m∗(r) + 1
2ρ

where m∗(r) is the same engagement cutoff as in the previous sections.

What distinguishes the two examples of flexible information acquisition above from the analysis in

the previous sections is that, for any choice of ρ, there are multiple experiments that share the same

cost C(ρ) and that need not be rankable in the MPS order. After choosing ρ, player L chooses the

experiment that maximizes her expected payoff, with the optimal choice depending on the anticipated

reaction r by player F .

It is evident that, in each of the two cases of flexible information acquisition described above, under

the optimal experiment qρ,r, when player L observes z = 1 (equivalently, when she engages), her posterior

mean, which is given by

E[ω|z = 1; qρ,r] =

∫
ω
qρ,r(1|ω)
qρ,r(1)

dG(ω),

is less than m∗(r), and likewise, when she observes z = 0,

E[ω|z = 0; qρ,r] =

∫
ω
1− qρ,r(1|ω)
1− qρ,r(1)

dG(ω)

is greater than m∗(r).

6.2 Expectation Conformity under Entropy and Max-Slope

For any choice ρ† anticipated by F , any reaction r by player F , and any cutoff m∗, let M−(m∗; ρ†, r)

denote the expected value of m conditional on m ≤ m∗, when player L chooses ρ† and then selects

the optimal experiment qρ
†,r anticipating a reaction r by player F . Then note that, for any ρ† and r,

when the cutoff is equal to m∗(r), M−(m∗(r); ρ†, r) = E[ω|z = 1; qρ
†,r], and ∂M−(m∗(r); ρ†, r)/∂ρ†

sgn
=

A(m∗(r); ρ†, r), with

A(m∗(r); ρ†, r) ≡
[
m∗(r)−M−(m∗(r); ρ†, r)

]
Gρ(m

∗(r); ρ†, r)−
∫ m∗(r)

−∞
Gρ(m; ρ†, r)dm

where, for any m, G(m; ρ†, r) denotes the probability that L’s posterior mean is less than m under the

experiment qρ
†,r and where Gρ(m; ρ†, r) denotes the partial derivative of such a probability with respect

to ρ, evaluated at ρ = ρ†; such a derivative is computed accounting for the fact that, when ρ changes,

the optimal experiment qρ,r (which also depends on the expected reaction r) changes.
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As in the baseline model, the sign of A determines whether a higher value of ρ† anticipated by

player F aggravates or alleviates the adverse selection problem. Consistently with the baseline model,

we then continue to interpret A(ρ†) ≡ A(m∗(r(ρ†)); ρ†, r(ρ†)) as the “adverse selection effect.” As in

the baseline model, r(ρ†) denotes the equilibrium reaction by player F in a fictitious setting in which

player L’s choice of ρ is exogenously fixed at ρ†. However, differently from the baseline model, in this

fictitious setting, player L chooses the distribution G(·; ρ†, q) over her posterior mean m by selecting

an experiment q : Ω → ∆(Z).36 The equilibrium reaction r(ρ†) is thus computed jointly with the

equilibrium choice of experiment q and the equilibrium engagement strategy a(·).
Next, let

Π(ρ; r) ≡ UL(0) +

∫ m∗(r)

−∞
δL(r,m)dG(m; ρ, r) = UL(0) +

∫ +∞

−∞
δL(r, ω)q

ρ,r(1|ω)dG(ω)

denote the payoff, gross of the cost, that player L obtains by choosing ρ when expecting a reaction r

by player F (with the expectation computed accounting for the choice of the optimal experiment qρ,r

given ρ and r). Then let

B(ρ; ρ†) ≡ −∂2Π(ρ; r(ρ†))

∂ρ∂r
= −

∫ m∗(r(ρ†))

−∞

∂δL(r(ρ
†),m)

∂r
dGρ(m; ρ, r(ρ†))

= −∂δL(r(ρ
†),m∗(r(ρ†)))

∂r
Gρ

(
m∗(r(ρ†)); ρ, r(ρ†)

)
+

∫ m∗(r(ρ†))

−∞

∂2δL(r(ρ
†),m)

∂r∂m
Gρ(m; ρ, r(ρ†))dm.

As in the baseline model, the function B(ρ; ρ†) measures how a reduction in the friendliness of F ’s

reaction around r(ρ†) affects L’s marginal benefit of expanding her investment in information processing,

starting from ρ. Again, the difference with the baseline model is that now B(ρ; ρ†) accounts for player

L’s optimal choice of an experiment following her choice of ρ.

Consistently with the baseline model, we will continue to refer to B(ρ; ρ†) as the “benefit of friendlier

reactions” effect.

The following proposition establishes the precise sense in which results analogous to those in Propo-

sition 1 extend to a setting in which information is flexible and the cost of information is determined

by either entropy reduction or the maximum slope of the induced stochastic choice rule (recall that

these cost functionals permit us to interpret a higher ρ as a larger investment in information, even if

the subsequent experiment qρ,r need not be ranked according to any usual order).

Proposition 7 (EC under flexible information acquisition). Suppose that Assumptions 2 and 3

hold and that ρ determines either the marginal cost of entropy reduction or the maximum-slope of the

induced stochastic choice rule.

(i) EC holds at (ρ, ρ†) if and only if the adverse selection and the benefit of friendlier reactions effects

are of opposite sign: A(ρ†)B(ρ; ρ†) < 0.

36Recall that ρ† only pins down the marginal cost of entropy reduction (alternatively, the maximal level of entropy
reduction) or the maximal slope of the induced stochastic choice rule, leaving player L with flexibility over her choice of
experiment q : Ω → ∆(Z).
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(ii) A sufficient condition for an increase in ρ to aggravate adverse selection at ρ = ρ† (i.e., for

A(ρ†) < 0) is that, qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) is increasing in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for

ω > m∗(r(ρ†)) at ρ = ρ†.

(iii) A sufficient condition for a reduction in the friendliness of F ’s reaction at r(ρ†) to raise L’s

marginal value of ρ (i.e., for B(ρ; ρ†) > 0) is that, in addition to qρ,r(ρ
†) satisfying the condition in part

(ii), the total probability qρ,r(ρ
†)(1) ≡

∫
qρ,r(ρ

†)(1|ω)dG(ω) player L engages is non-increasing in ρ.

(iv) Therefore, a sufficient condition for EC to hold at (ρ, ρ†) is that the conditions in parts (ii) and

(iii) jointly hold.

(v) Suppose that M−(m∗(r(ρ†)); ρ, r(ρ†)) is decreasing in ρ at ρ = ρ†, implying that A(ρ†) < 0, and

that ∂2δL(r,m)/∂r∂m = 0. Then qρ,r(ρ
†)(1) non-increasing in ρ at ρ = ρ† is necessary and sufficient

for EC at (ρ, ρ†).

As in the baseline model, EC obtains when, and only when, the adverse-selection effect is of opposite

sign than the benefit of friendlier reactions effect, i.e., when A(ρ†)B(ρ; ρ†) < 0. The intuition is the

same as in the baseline model.

When information is flexible, an increase in ρ (starting from ρ†) aggravates the severity of the

adverse selection problem when it induces L to select an experiment that makes her engage with a

higher probability at low states (namely for ω < m∗(r(ρ†))) and with a lower probability at high states

(namely for ω > m∗(r(ρ†))), relative to the total probability qρ,r(ρ
†)(1) of engaging. This is because,

in the eyes of player F , such changes make the engagement decision by player L a more informative

signal of the state being less favorable to player F . When, in addition to the last property described,

a higher ρ also reduces the overall probability qρ,r(ρ
†)(1) that player L engages, starting from the

actual level ρ selected by player L, a reduction in the friendliness of player F ’s reaction (starting from

r(ρ†)) increases L’s marginal value of expanding ρ. The property that qρ,r(ρ
†)(1) decreases with ρ is

equivalent to the property in the baseline model that a higher ρ reduces the probability of trade (i.e.,

Gρ

(
m∗(r(ρ†)); ρ)) < 0). This condition is both necessary and sufficient for EC when L’s payoff is

separable in r and ω (as in the Akerlof model) and a higher ρ always aggravates the adverse selection

problem in the eyes of player F . The results above are the analogs of those established in Proposition

1 for the case where ρ is a mean-preserving-spread index, thus establishing the robustness of the key

insights to the flexible information structures considered in this section.

6.3 Akerlof Model with Entropy Cost

In this subsection, we specialize the analysis to the Akerlof model introduced above and assume that the

cost of any signal q : Ω → ∆(Z) is given by Iq/ρ, that is, it is proportional to its entropy reduction. As

anticipated above, ρ ∈ [0,+∞) parametrizes the seller’s ability to process information. For simplicity,

we assume here that ρ is exogenous. Allowing for an endogenous ρ serves primarily to establish EC in

the absence of an order over the experiments themselves. In the Supplement, we expand the analysis in

this subsection by endogenizing ρ under a quadratic cost C(ρ).

In solving for the seller’s optimal signal, we can restrict attention to “action recommendations,” that

is, binary signals that recommend to engage (i.e., to sell) with probability q(1|ω) when the state is ω.

Given any offer r by the buyer anticipated by the seller, the seller’s payoff under any such a signal is
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equal to ∫
(r − ω)q(1|ω)dG(ω) + ω0 −

Iq

ρ
, (10)

where Iq =
∫
ϕ(q(1|ω))dG(ω)− ϕ(q(1)) is the entropy reduction brought by the experiment, with

q(1) ≡
∫
q(1|ω)dG(ω)

and where ϕ is the function defined by ϕ(0) = ϕ(1) ≡ 0 and, for any q ∈ (0, 1),

ϕ(q) ≡ q ln(q) + (1− q) ln(1− q).

Let r(ρ) and r(ρ) be implicitly defined by, respectively, the following two equations∫
e−ρωdG(ω) = e−ρr and

∫
eρωdG(ω) = eρr

and note that ω0 ∈ (r(ρ), r(ρ)). Next, for any r ∈ (r(ρ), r(ρ)), let ω̃(r; ρ) be implicitly defined by

ω̃ = r +
1

ρ
ln

( ∫
1

1+eρ(ω−ω̃)dG(ω)

1−
∫

1
1+eρ(ω−ω̃)dG(ω)

)
. (11)

Following Woodford (2008) and Yang (2015), one can show that, for any r, the seller’s optimal signal is

such that, for all ω,

qρ,r(1|ω) =


0 if r ≤ r(ρ)

1
1+eρ(ω−ω̃(r;ρ)) if r ∈ (r(ρ), r(ρ))

1 if r ≥ r̄(ρ).

(12)

Intuitively, when r ≤ r(ρ) (alternatively, r ≥ r̄(ρ)) the seller expects the realized value of ω to be greater

(alternatively, smaller) than r with very high probability. She then finds it optimal not to acquire any

information and refrain from selling (alternatively, sell) with probability one. It is only for intermediate

values of r, namely for r ∈ (r(ρ), r(ρ)), that the seller acquires information. When this is the case, the

optimal signal is a logistic function indexed by the position parameter ω̃(r; ρ). Figure 2 below illustrates

the shape of the logistic function qρ,r(1|ω), when r ∈ (r(ρ), r(ρ)).
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Figure 2: Shape of the optimal signal when the latter is interior.

An important implication of (12) is that, when the seller acquires information, the optimal signal

depends on the buyer’s price r only through the location parameter ω̃(r; ρ). We use this property below

to conveniently characterize the equilibria of this game.

Because the buyer is a representative of a competitive market, for any binary experiment q by the

seller followed by an engagement strategy prescribing to sell if z = 1 and not to sell if z = 0, the price

offered by the buyer is equal to

r = E[ω|z = 1; q] + ∆ =

∫
ω
q(1|ω)
q(1)

dG(ω) + ∆.

Using the characterization of the seller’s optimal signal above, we thus have that when, in equilib-

rium, the seller selects a non-degenerate signal, the equilibrium is given by a pair (ω̃, r) that solves the

following conditions 
ω̃ = r + 1

ρ ln

( ∫
1

1+eρ(ω−ω̃)
dG(ω)

1−
∫

1

1+eρ(ω−ω̃)
dG(ω)

)
,

r =
∫
ω

1

1+eρ(ω−ω̃)∫
1

1+eρ(ω−ω̃)
dG(ω)

dG(ω) + ∆,

r ∈ (r(ρ), r(ρ)).

(13)

The first equation represents how the seller’s optimal signal depends on the (anticipated) price offered

by the buyer, r. The second equation is the buyer’s break-even condition, when expecting the seller

to choose the logistic binary signal q indexed by the position parameter ω̃ and engage if and only if

z = 1. The last condition is a (necessary and sufficient) condition guaranteeing that the seller prefers

to acquire some information to either holding the good or selling it without learning the state.

Figure 3 illustrates the solution to the above system of equations when ω ∼ U [0, 1], ρ = 8, and

∆ = 0.15. The shaded light grey area are pairs (ω̃, r) for which r ∈ (r(ρ), r(ρ)). The solid blue curve

represents the combination of ω̃ and r solving the first equation in (13). This curve thus describes the

seller’s reaction (when the latter takes the form of an interior signal). The red dashed line represents the

combination of ω̃ and r solving the second equation in (13), which is the buyer’s break-even condition.
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Figure 3: Solution of system (13) for ω ∼ U [0, 1], ρ = 8 and ∆ = 0.15: r∗ ≈ 0.305, ω̃∗ ≈ 0.046. The
solid blue curve is the seller’s reaction, the dashed red curve is the buyer’s break-even condition.

When the gains from trade ∆ are larger, the buyer’s break-even curve is higher, implying a larger

r∗ and ω̃∗. Numerical simulations also show that, when the seller’s marginal cost of entropy reduction

is larger (i.e., when ρ is smaller), the equilibrium price is larger: The buyer responds to the seller being

a worse learner by offering a higher price, anticipating that the seller will trade less selectively as a

function of the state, which in turn alleviates adverse selection.

The interaction between the buyer and the seller can also result in equilibria in which the seller does

not acquire any information and then either never engages or always engages.

Consider first equilibria in which trade does not occur. In any of these equilibria, the seller acquires

no information. Whether such a behavior can be sustained in equilibrium depends on how the buyer

responds in case the seller deviates and puts the asset on sale. Suppose that the buyer responds with a

price r ≤ r(ρ). When the seller anticipates such a low price, it is indeed optimal for her not to acquire

any information and refrain from putting the asset on sale. Providing that ω + ∆ < r(ρ), such a low

price can be consistent with the buyer’s rationality. In fact, if the buyer interprets the seller’s deviation

as reflecting the acquisition of a signal whose realization reveals that the state is low (say close to ω)

with a high probability, then it is optimal for the buyer to offer such a price. Note that, because the

signal that recommends to the seller to put the asset on sale only when the asset’s value is the lowest

(here ω = ω) is costless, such equilibria survive most forward-induction refinements such as D1. We

then have the following result:

Proposition 8 (new form of market breakdown). Fix G and ∆ and assume that ω+∆ < ω0. There

exists ρ(G,∆) > 0 such that an equilibrium in which the seller does not acquire any information and

does not put the asset on sale exists if and only if ρ ≤ ρ(G,∆).

As anticipated in the Introduction, Proposition 8 identifies a novel form of market breakdown

whereby the seller does not put the asset on sale despite the buyer knowing that the seller does not pos-

sess any private information and that his value for the asset is higher than the seller’s. These equilibria

are sustained by the fact that, if the seller were to deviate and put the asset on sale, the representative
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buyer would respond with a very low price, sustained by the belief that the seller deviated and acquired

information revealing that the asset’s value is low.

That these equilibria can emerge under non-flexible information, i.e., when the seller has access only

to signals of a specific structure, should not surprise. What is interesting is that they also exist under

fully flexible information. Also note that, when the cost is linked to entropy reduction, the marginal

cost is zero when the seller acquires a signal that recommends to sell (with strictly positive probability,

possibly equal to one) only for very low states (arbitrarily close to ω). The reason is that, as anticipated

in the Introduction, the benefit of these signals is also very limited, with the benefit vanishing faster

than the cost as q(1|ω) converges to zero for such low states.

Such equilibria cease to exist under an alternative timing whereby the buyer offers a price after the

seller acquired information but before the seller decides to engage (i.e., to put the asset on sale). In

this case, if the buyer anticipates that the seller did not acquire any information, she necessarily offers

r = ω0+∆, which the seller accepts in the absence of any information. However, whether such equilibria

exist depends on whether, anticipating a price r = ω0 + ∆, it is indeed optimal for the seller not to

acquire any information, which we address next.37

As explained above, in any equilibrium in which the seller does not acquire any information and

trades with certainty, the price offered by the buyer is r = ω0 + ∆. The seller finds it optimal not to

acquire any information and put the asset on sale with certainty if and only if r ≥ r(ρ). The following

is then true:

Proposition 9 (efficient equilibrium). Fix G and ∆, and assume that ω0 + ∆ < ω. There exists

ρ̄(G,∆) > 0 such that an efficient equilibrium in which the seller does not acquire any information, puts

the asset on sale with probability one, and trades with certainty exists if and only if ρ ≤ ρ̄(G,∆).

Together, the last two propositions imply the following:

Corollary 2 (multiple corner equilibria). Fix G and ∆ and assume that ω+∆ < ω0 < ω−∆. For any

ρ ≤ min{ρ(G,∆), ρ̄(G,∆)} an efficient equilibrium in which the seller does not acquire any information

and trades with certainty coexists with one in which the market breaks down despite the fact that it is

common knowledge between the buyer and the seller that there is no asymmetric information and there

are strictly positive gains from trade.38

37Note that equilibria in which the market breaks down without the seller acquiring any information also exist in a
different variant of the model in which the seller’s choice of an experiment follows the observation of the price offered by
the buyer. These equilibria exist if, for any r ∈ [r(ρ), r̄(ρ)],

r >

∫
ω

1

1+eρ(ω−ω̃)∫
1

1+eρ(ω−ω̃) dG(ω)
dG(ω) + ∆,

with ω̃ = r+ 1
ρ
ln

( ∫ 1

1+eρ(ω−ω̃)
dG(ω)

1−
∫ 1

1+eρ(ω−ω̃)
dG(ω)

)
, and r̄(ρ) > ω0 +∆. In this case, all equilibria feature no trade and are sustained

by the buyer offering a price r(ρ) < r(ρ), with the understanding that any deviation to a any price r < r(ρ) induces no
trade, any deviation to a price r ∈ [r(ρ), r̄(ρ)] induces the seller to acquire a logistic signal under which the buyer incurs
a loss when the signal recommends to the seller to accept the buyer’s price, and any deviation to a price r > r̄(ρ) induces
the seller to sell with certainty but again results in a loss for the buyer.

38If ω0 > ω − ∆ the efficient equilibrium exists for any ρ. If, instead, ω0 < ω + ∆, the market breakdown equilibrium
does not exist, for any ρ.

31



Provided the cost of public funds is small enough, the market failure documented in Corollary 2 can

be corrected by subsiding trade, along the lines of what discussed in Section 5. In fact, for any ρ and

any subsidy s, an equilibrium with no trade exists if and only if ω + ∆ < r(ρ) − s. Equivalently, for

any s, there exists a threshold ρ#(G,∆, s) < ρ(G,∆) such that, when ρ ∈ (ρ#(G,∆, s), ρ(G,∆)], the

market may break down in the laissez-faire economy but not when trade is subsidized.

We now turn to equilibria with partial information acquisition. These equilibria do not exist for

low levels of ρ whereas, for large ρ, they are given by the solution to the system in (13). Simulations

suggest that, when they exist, such equilibria are unique and are such that r(ρ) is decreasing in ρ. This

is because the logistic signal optimally acquired by the seller when the cost of entropy reduction is lower

(equivalently, ρ is higher) induces the seller to trade more selectively as a function of the state (in the

sense of part (ii) of Proposition 7) aggravating adverse selection and inducing the buyer to respond with

a lower price.

Figure 4 summarizes the findings above for the case where ω is drawn from a Uniform distribution

over [0, 1] and ∆ = 0.15. The figure describes how the equilibrium price correspondence changes with

the (inverse of the) seller’s marginal cost of entropy reduction, ρ. For low levels of ρ (namely, for ρ <

ρ̄(G,∆)), there is no interior equilibrium with information acquisition, whereas the two corner equilibria

of Corollary 2 coexist. As ρ becomes larger (formally, for ρ ∈ [ρ̄(G,∆), ρ(G,∆)]), the equilibrium in

which the seller trades with certainty disappears and is replaced by the interior equilibrium in which

the seller acquires a logistic signal and trades selectively as a function of the state, ω. Finally, when

the seller becomes a very good learner (ρ > ρ(G,∆)]), the equilibrium with market breakdown also

disappears and only the interior equilibrium exists. This latter equilibrium converges to the one in

Akerlof as ρ → ∞.

Figure 4: Equilibrium price correspondence (orange solid curve) when ω ∼ U [0, 1] and ∆ = 0.15. Dashed
red curves correspond to min and max prices compatible with interior solutions, r(ρ) and r(ρ).
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7 Conclusions

We investigate properties of generalized lemons (and anti-lemons) problems in which the information

possessed by the engaging player is endogenous. We show how expectation conformity, i.e., the value

to conform to the expectations held by other players, is affected by (a) the impact of information on

the severity of the adverse selection problem, (b) the sensitivity of the marginal value of information to

the friendliness of other players’ reactions, and (c) the overall value of engagement, as captured by the

size of the gains from trade. We then use the characterization to shed light on the connection between

expectation conformity and the multiplicity of equilibria, the possibility of expectation traps (whereby

the information acquiring player may be worse off in a high information-intensity equilibrium than in a

low information-intensity one), and the role of disclosure of hard information in such games (whereby

players engage in activities that prove how well or poorly informed they are). We then use the model to

investigate how a benevolent government can improve upon the laissez-faire equilibrium by subsidizing

(alternatively, taxing) trade and identify conditions under which the endogeneity of information calls

for more generous programs. Finally, we show how the results can accommodate for fully flexible

information acquisition.

There are many venues for future research. For example, in more applied work geared at under-

standing the role of endogenous information in financial trading, it would be interesting to study how

public disclosures by benevolent governments impact the incentives for private information acquisition.

In the context of stress testing, the announcement that a bank failed a test may induce a conservative

response by potential asset buyers which may induce asset owners to collect more information, which

in turn aggravates the severity of the adverse selection problem. To the best of our knowledge, this

dimension has not been accounted for in the design of optimal stress tests. It would also be interesting

to extend the analysis by allowing both sides of the market to acquire information and investigate how

strategic complementarity/substitutability in information acquisition is affected by the adverse selection

problem.
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8 Appendix

Proof of Proposition 1 (i) By the chain rule and the definitions of the VL and B functions, we have that

∂2VL(ρ; ρ
†)

∂ρ∂ρ†
= −B(ρ; ρ†)

dr(ρ†)

dρ†
.

Assumption 3, together with Conditions (5), (6), and (7) imply that dr(ρ†)/dρ† is of the same sign as
A(ρ†). EC thus holds at (ρ, ρ†) if, and only if, A(ρ†) and B(ρ; ρ†) are of opposite sign.

(ii) Using Condition (5), we have that, for any m∗ ∈ R and ρ†, the sign of ∂M−(m∗; ρ†)/∂ρ† is given by
the sign of A(m∗; ρ†), with A(m∗; ρ†) as defined in (6). Because a higher ρ indexes a mean-preserving
spread, the second term of (6) is always negative. Hence, starting from ρ†, information always aggravates
adverse selection (that is, A(ρ†) < 0) when the first term of (6) is also negative, which is the case when
Gρ(m

∗(r(ρ†)); ρ†) < 0. Note, however, that this condition is sufficient but not necessary for A(ρ†) < 0.
For a number of distributions, ∂M−(m∗(r(ρ†)); ρ†)/∂ρ† < 0 regardless of the sign of Gρ(m

∗(r(ρ†)); ρ†).
These distributions include the Uniform, Pareto, and Exponential distributions, as shown below.

• Uniform distribution: m is drawn uniformly from [m(ρ), m̄(ρ)], with m(ρ) decreasing in ρ and
satisfying m(ρ) ≤ ω0 for all ρ, and m̄(ρ) = 2ω0 − m(ρ) for all ρ (mean preservation). Then for
any m ∈ [m(ρ), m̄(ρ)], G(m; ρ) = (m−m(ρ)) /[2(ω0 − m(ρ))]. This family of distributions is
thus consistent with the rotation order of Definition 1, with rotation point mρ = ω0 for all ρ.
Furthermore, for any m∗ ∈ [m(ρ), m̄(ρ)], M−(m∗; ρ) = 1

2 (m
∗ +m(ρ)) which is decreasing in ρ.

• Pareto distribution: m is drawn from [m(ρ),+∞) according to the survival function 1−G(m; ρ) =
(m(ρ)/m)α(ρ), with m(ρ) decreasing in ρ and α(ρ) = ω0/(ω0 −m(ρ)) for all ρ.39 This family of
distributions too is consistent with the rotation order of Definition 1. For each ρ, the rotation
point is mρ = m(ρ) exp ((ω0 −m(ρ)) /m(ρ)). Furthermore, for any m∗ > m(ρ),

M−(m∗; ρ) = ω0

1−
(
m(ρ)
m∗

)α(ρ)−1

1−
(
m(ρ)
m∗

)α(ρ)
which is decreasing in ρ.

39Note that the function α(ρ) is constructed so that, for any ρ, given m(ρ), EG(·;ρ)[m; ρ] =α(ρ)m(ρ)
α(ρ)−1

= ω0 (mean preser-

vation).
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• Exponential distribution: m is drawn from [m(ρ),+∞) according to the survival function 1 −
G(m; ρ) = e−λ(ρ)(m−m(ρ)), with m(ρ) decreasing in ρ and λ(ρ) = 1/(ω0 −m(ρ)) for all ρ.40 One
can verify that an increase in ρ induces a rotation of G(m; ρ) in the sense of Definition 1, with
rotation point mρ = ω0 for all ρ. Furthermore, for any m∗ > m(ρ),

M−(m∗; ρ) = ω0 −
(m∗ −m(ρ)) e−λ(ρ)(m∗−m(ρ))

1− e−λ(ρ)(m∗−m(ρ))

which is decreasing in ρ.

(iii) Recall that, starting from r = r(ρ†), a reduction in the friendliness of F ’s reaction raises the
incentive to acquire information at ρ if and only if B(ρ; ρ†) > 0, with B(ρ; ρ†) satisfying Condition
(8). Note that the second term in the right-hand side of (8) is positive because, by Assumption 1, ρ
is a mean-preserving-spread index and ∂2δL/∂r∂m is positive (by Assumption 2) and constant in m
(by the assumption that δL is affine in m). Because δL is increasing in r by Assumption 2, the first

term in the right-hand-side of (8) is positive provided that Gρ

(
m∗(r(ρ†)); ρ) < 0. Hence, starting from

r = r(ρ†), a reduction in the friendliness of F ’s reaction raises the incentive to acquire information at ρ

if Gρ

(
m∗(r(ρ†)); ρ) < 0.

(iv) The result follow from parts (i)-(iii) in the proposition.

(v) The result follows from parts (i)-(iii) in the proposition, along with the fact that, in this case,
the second term in the right-hand-side of (8) is zero. Because δL is increasing in r, we thus have that

B(ρ; ρ†)
sgn
= −Gρ

(
m∗(r(ρ†)); ρ). Hence, B(ρ; ρ†) > 0 if and only if Gρ

(
m∗(r(ρ†)); ρ) < 0. ■

Proof of Proposition 2. For any (r, θ), let m∗(r; θ) denote the optimal cut-off below which player
L engages when the gains from engagement are parametrized by θ and F ’s reaction is r. For any
(ρ†, θ), then let r(ρ†; θ) denote player F ’s response when player L’s information is exogenously fixed at
ρ† and the gains from engagement are parametrized by θ. Observe that, under Assumption 2, given
r, the engagement threshold m∗(r; θ), which is implicitly defined by the solution to δ̄L(r,m) + θ = 0,
is increasing in θ. Also observe that, under Assumption 3, given ρ†, r(ρ†; θ) is increasing in θ; this is
because, fixing r and ρ†, a higher θ implies a higher engagement point m∗(r; θ), and hence a higher
truncated mean M−(m∗(r; θ); ρ†) which in turn implies a higher equilibrium response r(ρ†; θ) by virtue
of Assumption 3. Because, for any θ, m∗(r; θ) is also increasing in r, we conclude that, for any ρ†, and
any θ′′ > θ′,

m∗(r(ρ†; θ′′); θ′′) ≥ m∗(r(ρ†; θ′); θ′). (14)

Now take any (ρ, ρ†, θ′) such that

max
{
Gρ(m

∗(r(ρ†; θ′), θ′); ρ†), Gρ(m
∗(r(ρ†; θ′), θ′); ρ)

}
< 0. (15)

Proposition 1 (part (iv)) implies that, when θ = θ′, EC holds at (ρ, ρ†). That information structures
are rotations in turn implies that max{mρ,mρ†} ≤ m∗(r(ρ†; θ′), θ′), which along with Condition (14),

implies that max{mρ,mρ†} ≤ m∗(r(ρ†; θ′′), θ′′) and hence that

max
{
Gρ(m

∗(r(ρ†; θ′′), θ′′); ρ†), Gρ(m
∗(r(ρ†; θ′′), θ′′); ρ)

}
< 0. (16)

Hence, when EC holds at (ρ,ρ†) for θ = θ′, it also holds at (ρ, ρ†) for θ = θ′′. ■

40Again, the function λ(ρ) is constructed so that, for any ρ, given m(ρ), EG(·;ρ)[m; ρ] =m(ρ) + 1
λ(ρ)

= ω0 (mean

preservation).
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Proof of Proposition 3 Under Assumptions 2 and 3, for any ρ† ∈ [ρ1, ρ2], dr(ρ
†)/dρ†

sgn
= A(ρ†). For

any given r, player L’s welfare is given by

V(r) = sup
ρ

{
UL(0) +

∫ m∗(r)

−∞
δL(r,m)dG(m; ρ)− C(ρ)

}
.

The envelope theorem (e.g., Milgrom and Segal (2002)), along with the property that δL(r,m) is in-
creasing in r under Assumption 2, imply that dV(r)/dr > 0. The result then follows from the fact
that r(ρ2) < r(ρ1) when A(ρ†) < 0 for all ρ† ∈ [ρ1, ρ2], whereas r(ρ2) > r(ρ1) when A(ρ†) > 0 for all
ρ† ∈ [ρ1, ρ2]. ■

Proof of Proposition 4. (i) The logic is similar to the one behind Proposition 3. Consider a pure-
strategy equilibrium of the game without disclosure in which player L selects ρ∗. To see that ρ∗ can
also be supported in a pure-strategy equilibrium of the game with disclosure, for any ρ̂ ∈ R+, let e(ρ̂)
denote the choice of information by L when disclosing ρ̂. Consider the following strategy for L in the
game with disclosure. For any ρ̂ ≤ ρ∗, e(ρ̂) = ρ∗, whereas for any ρ̂ > ρ∗, e(ρ̂) ≥ ρ̂ (the precise
value is not important). Under Assumption 3, that A(ρ†) < 0 for all ρ† implies that F ’s reaction
r(ρ†) is non-increasing in the choice ρ† anticipated by player F . Hence, for any ρ̂ > ρ∗, F ’s reaction is
r(e(ρ̂)) ≤ r∗ ≡ r(ρ∗), whereas, for any ρ̂ ≤ ρ∗, F ’s reaction is r(e(ρ̂)) = r∗. These properties imply that

sup
{ρ,ρ̂}

{∫ m∗(r(e(ρ̂)))

−∞
δL(r(e(ρ̂)),m)dG(m; ρ)− C(ρ)

}
=

∫ m∗(r∗)

−∞
δL(r

∗,m)dG(m; ρ∗)− C(ρ∗),

where the equality follow from the fact that ρ∗ is an equilibrium of the no-disclosure game along with
the fact that L’s payoff is increasing in F ’s reaction by Assumption 2.

(ii) Conversely, let ρ∗ be an information choice supported by a regular equilibrium of the disclosure
game (with associated disclosure ρ̂(ρ∗) ≤ ρ∗ and reaction r∗ ≡ r(ρ∗)). Suppose that ρ∗ < ρ, where ρ is
the lowest equilibrium level of the no-disclosure game. That the equilibrium supporting ρ∗ is regular,
along with the fact that r(·) is non-increasing in ρ† (by virtue of the assumption that A(ρ†) < 0 for
all ρ†) implies that, for any ρ̂ <ρ̂(ρ∗), e(ρ̂) = ρ∗ and hence r(e(ρ̂)) = r∗—otherwise, L has a profitable
deviation—and that, for any ρ̂ > ρ̂(ρ∗), e(ρ̂) ≥ ρ∗ and hence r(e(ρ̂)) ≤ r∗. Hence, given any actual
choice ρ, the most profitable disclosure for player L induces a reaction r∗. This means that, under
the reaction r∗, the payoff that L obtains by selecting ρ∗ is weakly higher than the payoff that she
obtains by selecting any other level ρ. Therefore, ρ∗ can also be sustained in the no-disclosure game, a
contradiction. Similar arguments imply that the highest level of ρ that can be sustained in any regular
equilibrium of the disclosure game is ρ̄, where ρ̄ is the largest equilibrium level in the no-disclosure
game. ■

Proof of Proposition 5. As explained in the main text, we consider here a more general setting in
which L’s payoff differential is an arbitrary function δL(r,m) satisfying Assumption 2, and in which F
is a representative of a competitive market with arbitrary payoff differential δF (r,m) ≡ uF (1, r, m) −
uF (0, m). Hence, uF (1, r, m) is F ’s payoff from responding with reaction r to L’s choice of engaging,
when the posterior mean (equivalently, the state) is m, whereas uF (0, m) is her payoff in case L does
not engage. The payoff functions δL(r,m) and δF (r,m), as well as the distributions G(m; ρ), are
differentiable and equi-Lipschitz-continuous. As indicated in the main text, we also maintain that, for
any s, the equilibrium choices ρ∗(s) and r∗(s) are unique, Lipschitz continuous, and differentiable, and
the welfare function

W (s) ≡
∫ m∗(r∗(s),s)

−∞
(δL(r

∗(s),m) + s) dG(m; ρ∗(s))− C(ρ∗(s))− (1 + λ)sG(m∗(r(s), s); ρ∗(s)
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is quasi-concave. Note that, under the more general payoff functions introduced above, for any r and
s, the engagement threshold m∗(r, s) is implicitly defined by the solution to δL(r,m

∗) + s = 0 and the
follower’s reaction r∗(s) satisfies∫ m∗(r∗(s),s)

−∞
δF (r

∗(s),m)dG(m; ρ∗(s)) = 0.

Lemma 1. Suppose the environment satisfies the conditions above and Assumptions 2 and 3 hold. There
exists a thresholdK > 0 such that a strictly positive subsidy is optimal if d

dsM
−(m∗(r∗(0), s); ρ∗(s))

∣∣
s=0

>

K, whereas a tax on engagement is optimal when the above inequality is reversed.41

Proof of Lemma 1. Using the envelope theorem, we have that42

W ′(s) =
∫m∗(r∗(s),s)
−∞

[
∂δL(r

∗(s),m)
∂r

dr∗(s)
ds + 1

]
dG(m; ρ∗(s))

− d
ds [(1 + λ)sG(m∗(r∗(s), s); ρ∗(s))] .

The first line is simply the effect of a change in the subsidy on the leader’s expected payoff (holding
ρ∗(s) and m∗(r∗(s), s) fixed by usual envelope-theorem arguments). The second line is the (total) effect
of a change in the subsidy on the cost of the program to the government.

Note that W
′
(s) can be expressed as

W
′
(s) = dr∗(s)

ds

∫m∗(r∗(s),s)
−∞

∂δL(r
∗(s),m)
∂r dG(m; ρ∗(s))− s(1 + λ) d

ds [G(m∗(r∗(s), s); ρ∗(s))]

−λG(m∗(r∗(s), s); ρ∗(s)).

Because W (s) is quasi-concave in s, the optimal s is strictly positive when

W
′
(0) =

dr∗(0)

ds

∫ m∗(r∗(0),0)

−∞

∂δL(r
∗(0),m)

∂r
dG(m; ρ∗(0))− λG(m∗(r∗(0), 0); ρ∗(0)) > 0

and strictly negative when the above inequality is reversed.

Because δL is affine in m, it can be expressed as δL(r,m) = aL(r)m+bL(r), for some functions aL(r)
and bL(r). Assumption 2 then implies that, for any r and m, aL(r) < 0 and a′L(r)m+ b′L(r) > 0. This

means that W
′
(0) > 0 when dr∗(0)/ds > r#, whereas W ′(0) < 0 when dr∗(0)/ds < r#, where

r# ≡ λ
∂
∂rδL(r

∗(0),M−(m∗(r∗(0), 0); ρ∗(0))

is a strictly positive constant that depends on the primitives of the problem. For example, in the Akerlof
model of Subsection 2.2, δL(r,m) = r −m, in which case r# = λ.

41As the proof below shows, when Assumption 3 is replaced by Assumption A3’ (i.e., in the anti-lemons case), the
conclusion in the Lemma flips as follows: there exists a negative threshold K < 0 such that a strictly positive subsidy
is optimal if d

ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣
s=0

< K, whereas a tax on engagement is optimal when the above inequality is
reversed.

42Here we are using the fact that, given s and r∗(s), m∗(r∗(s), s) and ρ∗(s) maximize the leader’s payoff∫ m̂

−∞ (δL(r
∗(s),m) + s) dG(m; ρ)− C(ρ) over (m̂, ρ).
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Next, observe that, for any s, ρ∗(s) and r∗(s) jointly solve the following two conditions:∫ m∗(r∗,s)

−∞
δF (r

∗,m)dG(m; ρ∗) = 0, (17)

and

ρ∗ = argmax
ρ

{∫ m∗(r∗,s)

−∞
(δL(r

∗,m) + s) dG(m; ρ)− C(ρ)

}
. (18)

Because δF is affine in m, it can be expressed as δF (r,m) = aF (r)m+ bF (r), for some functions aF (r)
and bF (r), with aF (r) > 0 when Assumption 3 holds (lemons), and aF (r) < 0 when Assumption 3’
holds (anti-lemons).43

Hence, for any s, r∗(s) solves δF (r
∗,M−(m∗(r∗, s); ρ∗(s))) = 0. Using the implicit-function theorem,

we have that
dr∗(s)
ds = −

d
ds

δF (r,M−(m∗(r,s);ρ∗(s)))|
r=r∗(s)

d
dr

δF (r,M−(m∗(r,s);ρ∗(s)))|
r=r∗(s)

where the denominator is negative, by assumption. We thus have that dr∗(0)/ds > r# if

d

ds
δF (r

∗(0),M−(m∗(r∗(0), s); ρ∗(s)))

∣∣∣∣
s=0

> Λ ≡ λ

∣∣∣∣∣
d
drδF (r,M

−(m∗(r, 0); ρ∗(0)))
∣∣
r=r∗(0)

d
drδL(r,M

−(m∗(r, 0); ρ∗(0)))
∣∣
r=r∗(0)

∣∣∣∣∣
whereas dr∗(0)/ds < r# if the above inequality is reversed. The condition says that, at the laissez-faire
equilibrium, holding the follower’s reaction fixed at r∗(0), a small subsidy to engagement has a strong
enough positive effect on the follower’s payoff, accounting for the effect that the subsidy has on both
the leader’s engagement threshold and her choice of information.

Clearly,

d

ds
δF (r

∗(0),M−(m∗(r∗(0), s); ρ∗(s)))

∣∣∣∣
s=0

= aF (r
∗(0))

d

ds
M−(m∗(r∗(0), s); ρ∗(s))

∣∣∣∣
s=0

.

The result in the lemma then follows by letting K ≡ Λ/aF (r
∗(0)) and noting that K > 0 when

aF (r
∗(0)) > 0, i.e., when Assumption 3 (lemons) holds, whereas K < 0 when aF (r

∗(0)) < 0, i.e., when
Assumption 3’ (anti-lemons) holds. Q.E.D.

Now to see how the lemma, when applied to the Akerlof model, implies the result in the proposition,
observe that, in this case, Λ = λ and aF (r

∗(0)) = 1, implying that K = λ, and that

d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

= ∂
∂m∗M−(r∗(0); ρ∗(0)) + ∂

∂ρM
−(r∗(0); ρ∗(0))dρ

∗(0)
ds .

■

Proof of Proposition 6. As in the proof of Proposition 5, we consider a more general settings in which

43To see this, note that, for any m∗, ρ, and r,
∫m∗

−∞ δF (r,m)dG(m; ρ) = G(m∗; ρ)δF (r,M
−(m∗; ρ)). Now fix s and drop

it. The equilibrium r thus solves aF (r)M
−(m∗(r); ρ) + bF (r) = 0. Hence,

dr
dρ

= −
aF (r) ∂

∂ρ
M−(m∗(r);ρ)

∂
∂r

δF (r,M−(m∗(r);ρ))
.

The denominator in the above expression is negative, by assumption. It follows that dr/dρ
sgn
= aF (r)

∂
∂ρ

M−(m∗(r); ρ).
Hence, aF (r) > 0 when Assumption 3 holds, whereas aF (r) < 0 when Assumption 3’ holds.
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L’s payoff differential is δL(r,m), with δL satisfying Assumption 2, and in which F is a representative of
a competitive market with payoff differential δF (r,m) ≡ uF (1, r, m)−uF (0, m), with δL(r,m), δF (r,m)
and G(m; ρ) differentiable and equi-Lipschitz continuous.

For any s, let r̂(s) denote the follower’s equilibrium reaction when the subsidy is equal to s and
information is exogenous and equal to ρ∗(s∗), where s∗ is the optimal policy when information is en-
dogenous. Clearly, for s = s∗, r̂(s∗) = r∗(s∗), where r∗(s∗) is the equilibrium reaction when information
is endogenous. Recall that, for any r and s, the engagement threshold m∗(r, s) is implicitly defined
by the solution to δL(r,m) + s = 0, and that, for any s, when ρ = ρ∗(s∗), the follower’s reaction r̂(s)
satisfies ∫ m∗(r̂(s),s)

−∞
δF (r̂(s),m)dG(m; ρ∗(s∗)) = 0.

For any (r, s), then let

Ŵ (r, s) ≡
∫ m∗(r,s)

−∞
(δL(r,m) + s) dG(m; ρ∗(s∗))− C(ρ∗(s∗))− (1 + λ)sG(m∗(r, s); ρ∗(s∗))

denote the level of welfare that is attained when information is exogenous and equal to ρ = ρ∗(s∗), the
follower’s reaction is r, the subsidy is s, and the leader engages if and only if m < m∗(r, s). 44

We start with the following lemma:

Lemma 2 (effect of endogeneity of information on optimal policy). The endogeneity of the
leader’s information calls for larger policy interventions (i.e., s∗ > s∗∗) if(

dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))
dρ∗(s∗)

ds
< 0,

whereas the opposite is true (i.e., s∗ < s∗∗) if the above inequality is reversed.

The lemma says that the endogeneity of the leader’s information calls for larger policy interventions
when (a) ∂Ŵ (r∗(s∗), s∗)/∂r > 0, meaning that the social value of increasing the follower’s reaction
beyond r∗(s∗) is positive, accounting for the fact that a friendlier reaction induces more engagement
which in turn comes with a larger cost to the government (due to the deadweight-loss of non-uniform
taxation), (b) an increase in the subsidy, starting from s∗, triggers a larger response by the follower
when information is endogenous than when it is exogenous, i.e., dr∗(s∗)/ds > dr̂(s∗)/ds, and (c) the
extra cost

(1 + λ)s∗Gρ(m
∗(r(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
(19)

that the government incurs to fund the program due to the endogeneity of information is small. Note
that, when (i) s∗ > 0, (ii) Gρ(m

∗(r(s∗), s∗); ρ∗(s∗)) < 0 (recall that, under the MPS order, i.e., when
Assumption 1 holds, this is the key condition for EC in Proposition 1), and (iii) dρ∗(s∗)/ds < 0, the
term in (19) is positive: the government expects to pay s∗ more often when the leader reduces her
information in response to an increase in the subsidy. As a result, this last effect contributes to a lower
level of the optimal policy when information is endogenous.

Proof of Lemma 2. Under the maintained assumptions that both W and W# are quasi-concave, the
optimal value of s∗ solves dW (s∗)/ds = 0. That is, s∗ solves

44Observe that W#(s) = Ŵ (r̂(s), s), where W# is welfare under the subsidy s when ρ is exogenously fixed at ρ = ρ∗(s∗).
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dr∗(s∗)
ds

∫m∗(r∗(s∗),s∗)
−∞

∂δL(r
∗(s∗),m)
∂r dG(m; ρ∗(s∗))

−(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))
[
∂m∗(r∗(s∗),s∗)

∂r
dr∗(s∗)

ds + ∂m∗(r∗(s∗),s∗)
∂s

]
−(1 + λ)s∗ dρ

∗(s∗)
ds Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))− λG(m∗(r∗(s∗), s∗); ρ∗(s∗)) = 0.

(20)

Next, use the envelope theorem along with the fact that r̂(s∗) = r∗(s∗) and, for any s, W#(s) =

Ŵ (r̂(s), s), to observe that

dW#(s∗)

ds
=

∂Ŵ (r∗(s∗), s∗)

∂r

dr̂(s∗)

ds
+

∂Ŵ (r∗(s∗), s∗)

∂s

where
∂Ŵ (r∗(s∗),s∗)

∂r =
∫m∗(r∗(s∗),s∗)
−∞

∂δL(r
∗(s∗),m)
∂r dG(m; ρ∗(s∗))

−(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m
∗(r∗(s∗),s∗)

∂r

and

∂Ŵ (r∗(s∗),s∗)
∂s = −(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m

∗(r∗(s∗),s∗)
∂s − λG(m∗(r∗(s∗), s∗); ρ∗(s∗)).

Using (20), we thus have that

dW#(s∗)

ds
=

(
dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)).

Because W#(s) is strictly quasi-concave and because s∗∗ is obviously finite, we then have that s∗∗ < s∗

if dW#(s∗)/ds < 0 and s∗∗ > s∗ if the above inequality is reversed, which establishes the lemma. Q.E.D.

Next observe that the optimality of s∗ when information is endogenous reveals that

dr∗(s∗)
ds

∂Ŵ (r∗(s∗),s∗)
∂r = (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))∂m

∗(r∗(s∗),s∗)
∂s + λG(m∗(r∗(s∗), s∗); ρ∗(s∗))

+(1 + λ)s∗ dρ
∗(s∗)
ds Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)).

Hence, when (A) s∗ > 0, (B) dr∗(s∗)/ds > 0, and (C)

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)) > 0,

necessarily ∂Ŵ (r∗(s∗), s∗)/∂r > 0. That is, under the welfare-maximizing policy s∗, welfare always
increases with the friendliness of the follower’s response when information reduces the probability of
engagement (i.e., when Gρ(m

∗(r(s∗), s∗); ρ∗(s∗)) < 0) and the comparative statics of the equilibrium r
and ρ have the same monotonicity as those of the best responses (i.e., r∗ increases and ρ∗ decreases
with the subsidy).
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Also note that

dr∗(s∗)

ds
− dr̂(s∗)

ds

sgn
=

∂δF (r
∗(s∗),m)

∂m

∂

∂ρ
M−(m∗(r∗(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
,

where ∂δF (r
∗(s∗),m)/∂m is the sensitivity of the follower’s payoff to the state (which is invariant in

m under the maintained assumption that δF is affine in m). Hence, in the lemons case (i.e., when
Assumption 3 holds, in which case ∂δF (r

∗(s∗),m)/∂m > 0), an increase in the subsidy leads to a larger
response by the follower under endogenous information when

∂

∂ρ
M−(m∗(r∗(s∗), s∗); ρ∗(s∗))

dρ∗(s∗)

ds
> 0 (21)

and a smaller response when the inequality is reversed. That is, the follower responds more to an
increase in the subsidy when information is endogenous than when it is exogenous when the increase
in the subsidy leads to a reduction in information acquisition and, as a result of it, an alleviation
of the adverse selection problem. The opposite conclusions holds in the anti-lemons case (i.e., under
Assumption 3’, in which case ∂δF (r

∗(s∗),m)/∂m < 0).

Now to see how the above results, when applied to the Akerlof model of Subsection 2.2, imply the
claim in the proposition, observe that, in this example,

dr̂(s∗)

ds
− dr(s∗)

ds
=

∂
∂ρM

−(m∗(r∗(s∗), s∗); ρ∗(s∗))dρ
∗(s∗)
ds

∂
∂m∗M−(m∗(r∗(s), s∗); ρ∗(s∗))− 1

.

Using the fact that

∂

∂ρ
M−(m∗; ρ) =

Gρ(m
∗; ρ)[m∗ −M−(m∗; ρ)]−

∫m∗

−∞Gρ(m; ρ)dm

G(m∗; ρ)

and
∂

∂m∗M
−(m∗; ρ) =

g(m∗; ρ)[m∗ −M−(m∗; ρ)]

G(m∗; ρ)
,

along with the fact that m∗(r∗(s∗), s∗) = r∗(s∗) + s∗ and r∗(s∗) = M−(m∗(r∗(s∗), s∗); ρ∗(s∗)) + ∆, we
have that

dr̂(s∗)
ds − dr(s∗)

ds =
(
(s∗ +∆)Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))−
∫m∗(r∗(s∗),s∗)
−∞ Gρ(m; ρ∗(s∗))dm

) dρ∗(s∗)
ds
D ,

where
D ≡ (s∗ +∆)g(m∗(r∗(s∗), s∗); ρ∗(s∗))−G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < 0

when G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing inm. Hence, when, in addition to this last condition, infor-
mation structures are consistent with the MPS order, Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)) < 0, and dρ∗(s∗)/ds <
0, we have that dr̂(s∗)/ds− dr(s∗)/ds < 0. Furthermore, in this case,

∂Ŵ (r∗(s∗), s∗)

∂r
= G(m∗(r∗(s∗), s∗); ρ∗(s∗))− (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗)).
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Using the fact that

dW#(s∗)

ds
=

(
dr̂(s∗)

ds
− dr∗(s∗)

ds

)
∂Ŵ (r∗(s∗), s∗)

∂r
+ (1 + λ)s∗

dρ∗(s∗)

ds
Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗))

as established in the proof of Lemma 2, we then have that dW#(s∗)/ds = dρ(s∗)
ds

J
D , where

J ≡ (∆− λs∗)Gρ(m
∗(r∗(s∗), s∗); ρ∗(s∗))G(m∗(r∗(s∗), s∗); ρ∗(s∗))

+
(∫m∗(r∗(s∗),s∗)

−∞ Gρ(m; ρ∗(s∗))dm
)
[(1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗))−G(m∗(r∗(s∗), s∗); ρ∗(s∗))] .

Note that J < 0 when information structures are consistent with the MPS order, G(m; ρ∗(s∗))/g(m; ρ∗(s∗))
is increasing in m, and Gρ(m

∗(r∗(s∗), s∗); ρ∗(s∗)) < 0.45

We conclude that, under the assumptions in the proposition, dW#(s∗)/ds
sgn
= dρ(s∗)/ds. To see

that, under the assumptions in the proposition, dρ(s∗)/ds < 0, note that

dr∗(s)
ds

= −
∂M−(m∗(r∗(s),s);ρ∗(s))

dm∗ + ∂M−(m∗(r∗(s),s);ρ∗(s))
dρ

dρ∗(s)
ds

∂M−(m∗(r∗(s),s);ρ∗(s))
dm∗ − 1

.

Under the assumptions in the proposition,

∂M−(m∗(r∗(s), s); ρ∗(s))

dm∗ − 1 = D ·G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < 0

and ∂M−(m∗(r∗(s), s); ρ∗(s))/dρ < 0. Hence, dr∗(s)/ds < 0 if dρ(s∗)/ds > 0. This cannot be consistent
with the optimality of s∗. In fact, by cutting the subsidy, the planner would induce a friendlier reaction
by the follower, permit the leader to economize on her investment in information, and save on the costs of
public funds. The optimality of s∗ thus implies that dρ(s∗)/ds < 0. We conclude that dW#(s∗)/ds < 0.
The strict quasi-concavity of W# then implies that s∗∗ < s∗. ■

Proof of Proposition 7. (i) The proof follows from the same arguments that establish part (i) of

Proposition 1. (ii) Recall that

∂

∂ρ
M−

(
m∗(r(ρ†)); ρ, r(ρ†)

)
=

∂

∂ρ

(∫
ω
qρ,r(ρ

†)(1|ω)
qρ,r(ρ†)(1)

dG(ω)

)
.

Both when the cost of information is given by entropy reduction and when it is given by maximum slope,

qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) is a decreasing function of ω. Hence, when qρ,r(ρ

†)(1|ω)/qρ,r(ρ†)(1) is increasing

in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), the collection of distributions
(
F ρ,r(ρ†)

)
ρ
,

indexed by ρ, with each cdf F ρ,r(ρ†) defined by the density

fρ,r(ρ†)(ω) ≡ qρ,r(ρ
†)(1|ω)

qρ,r(ρ†)(1)
g(ω)

45Note that, under the optimal subsidy s∗, welfare is equal to G(m∗(r∗(s∗), s∗); ρ∗(s∗)) (∆− λs∗)−C(ρ∗(s∗)). Because
welfare is non-negative under the laissez-faire equilibrium (i.e., when s = 0), it must be that ∆ > λs∗. Also note that, when
∆ > λs∗, (1 + λ)s∗g(m∗(r∗(s∗), s∗); ρ∗(s∗)) − G(m∗(r∗(s∗), s∗); ρ∗(s∗)) < D and hence the second line in J is negative
when information structures are consistent with the MPS order and G(m; ρ∗(s∗))/g(m; ρ∗(s∗)) is increasing in m.
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can be ranked according to FOSD, with F ρ,r(ρ†) ≻ F ρ′,r(ρ†) for any ρ < ρ′. This means thatM−(m∗(r(ρ†)); ρ, r(ρ†))
is decreasing in ρ at ρ = ρ† which implies that A(ρ†) < 0, implying that information aggravates adverse
selection.

(iii) Note that

∂Π(ρ; r(ρ†))

∂r
= qρ,r(ρ

†)(1)

∫
∂δL(r(ρ

†), ω)

∂r

qρ,r(ρ
†)(1|ω)

qρ,r(ρ†)(1)
dG(ω). (22)

Under Assumption 2, ∂δL(r(ρ
†), ω)/∂r is increasing in ω. Hence, when qρ,r(ρ

†)(1|ω)/qρ,r(ρ†)(1) is in-
creasing in ρ for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), the integral term in (22)
is decreasing in ρ (the arguments are the same as in part (ii)). Hence, a sufficient condition for
B(ρ; ρ†) = −∂2Π(ρ; r(ρ†))/∂ρ∂r to be positive (equivalently, for a reduction in r around r(ρ†) to raise

the marginal value of expanding ρ) is that, in addition to qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) to be increasing in ρ

for ω < m∗(r(ρ†)) and decreasing in ρ for ω > m∗(r(ρ†)), qρ,r(ρ
†)(1) is weakly decreasing in ρ.

(iv) The proof is an immediate implication of parts (ii) and (iii).

(v) The proof follows from the fact that, in this case,

B(ρ; ρ†) = −
∂δL

(
r(ρ†),m∗(r(ρ†))

)
∂r

Gρ

(
m∗(r(ρ†)); ρ, r(ρ†)).

Because A(ρ†) < 0, the result in part (i) implies that a necessary and sufficient condition for expectation

conformity to hold at (ρ, ρ†) is thatB(ρ; ρ†) > 0 which is the case if and only ifGρ

(
m∗(r(ρ†)); ρ, r(ρ†))) <

0. Because, for any ρ,

G
(
m∗(r(ρ†)); ρ, r(ρ†))) =

∫
qρ,r(ρ

†)(1|ω)dG(ω) ≡ qρ,r(ρ
†)(1)

the latter property is equivalent to qρ,r(ρ
†)(1) being non-increasing in ρ. ■

Proof of Proposition 8. A market-breakdown equilibrium in which the seller does not acquire any
information and does not put the asset on sale exists if and only if ω + ∆ ≤ r(ρ), where r(ρ) solves∫
e−ρωdG(ω) = e−ρr. This is because acquiring no information and refraining from putting the asset

on sale is optimal for the seller when the buyer responds to the seller’s decision to put the asset on
sale with a price of r if and only if r ≤ r(ρ). In turn, the lowest price consistent with the buyer’s
sequential rationality is r = ω+∆. Note that r(·) is a decreasing function, satisfying limρ→0+ r(ρ) = ω0

and limρ→+∞ r(ρ) = ω. It follows that there exists ρ(G,∆) > 0 such that ω +∆ ≤ r(ρ) if and only if
ρ ≤ ρ(G,∆). ■

Proof of Proposition 9. An efficient equilibrium in which the seller does not acquire any information,
puts the asset on sale with probability one, and trades with certainty exists if and only if ω0+∆ ≥ r̄(ρ),
where r̄(ρ) solves

∫
eρωdG(ω) = eρr. This is because, when expecting a price r, acquiring no information

and putting the asset on sale with certainty is optimal for the seller if and only if r ≥ r̄(ρ). In turn,
the only price consistent with the buyer’s sequential rationality when expecting the seller to acquire
no information and put the asset on sale with certainty is r = ω0 +∆. Note that r̄(·) is an increasing
function, satisfying limρ→0+ r̄(ρ) = ω0 and limρ→+∞ r̄(ρ) = ω̄. It follows that, when ω0 +∆ < ω̄, there
exists ρ̄(G,∆) > 0 such that ω0 +∆ ≥ r̄(ρ) if and only if ρ ≤ ρ̄(G,∆). ■
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Lemons
dr(ρ†)
dρ†

sgn
= ∂

∂ρ†M
−(m∗(r(ρ†)); ρ†)

Anti-lemons
dr(ρ†)
dρ†

sgn
= ∂

∂ρ†M
−(m∗(r(ρ†))

Does more information lead

to an unfriendlier response?

(dr(ρ†)/dρ† < 0)

Yes if

• MPS and

Gρ(m
∗(r(ρ†)); ρ†) < 0

• or information always

aggravates adverse

selection (e.g., uniform,

Pareto, exp.)

No if

• MPS and

Gρ(m
∗(r(ρ†)); ρ†) < 0

• or information always

aggravates adverse

selection (e.g., uniform,

Pareto, exp.)

Does an unfriendlier

response increase L’s

demand for information?(
− ∂2Π(ρ; r(ρ†))

∂r∂ρ
> 0
)

• Yes if MPS and

Gρ(m
∗(r(ρ†)); ρ) < 0

• No if

Gρ(m
∗(r(ρ†)); ρ) ≥ 0 and

∂2δL
∂m∂r

= 0 (Akerlof model

+ex. a, c, d in

Supplement)

• Yes if MPS and

Gρ(m
∗(r(ρ†)); ρ) < 0

• No if

Gρ(m
∗(r(ρ†)); ρ) ≥ 0 and

∂2δL
∂m∂r

= 0 (ex. e, f, h in

Supplement)

EC / expectation traps

• Yes if MPS,

Gρ(m
∗(r(ρ†)); ρ†) < 0 and

Gρ(m
∗(r(ρ†)); ρ)

• Gρ(m
∗(r(ρ†)); ρ) < 0 is

NSC for EC if info always

aggravates adverse

selection and ∂2δL
∂m∂r = 0

• Yes if information always

aggravates adverse

selection,

Gρ(m
∗(r(ρ†)); ρ) > 0 and

∂2δL
∂m∂r = 0

Engagement channel of

subsidy
∂

∂m∗M
−(m∗; ρ†)∂m

∗

∂s

• Benefits player L • Hurts player L

Information channel of

subsidy
∂

∂ρ†M
−(m∗; ρ†)dρ

†

ds

• Benefits player L if MPS

and Gρ(m
∗(r(ρ†)); ρ) < 0

• Hurts player L if MPS

and Gρ(m
∗(r(ρ†)); ρ) < 0

Total effect of subsidy on

welfare

• positive if engagement +

information channels

> K > 0

• negative if engagement +

information channels

> K < 0

Table 1: summary of a few results
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