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Abstract

This document contains additional material mentioned in the paper. All sections,

conditions, and results specific to this document have the suffix “S” to avoid confusion

with the corresponding parts in the main text. Section S.1 contains examples of gen-

eralized lemons games, as well as an example in which the follower’s reaction to both

the leader’s choice to engage as well as not to engage depends on his beliefs of what

motivated the leader’s action. Section S.2 introduces anti-lemons games and shows how

the condition for expectation conformity changes when Assumption 3 in the main text is

replaced by its anti-lemon counterpart, Assumption 3’. Section S.3 discusses the connec-

tion to other covert investment games. Section S.4 contains a few results for the outer

game in the Akerlof model with flexible information acquisition under entropy cost in

which the marginal cost of entropy reduction is endogenized.

S.1 Examples of Generalized Lemons Games

In this section, we show how a number of games of interest fit into the general model of Section 2

in the paper.

(a) Jumpstarting frozen markets and related asset-purchasing programs. The suboptimal

volume of trade in Akerlof’s model motivates policy interventions (see also the analysis in Section

5 in the paper). Consider a government that, in the context of the Akerlof model in the main text,

maximizes total welfare. The government can neither coerce the agents to trade nor prevent the

existence of a free private market. However, it can influence the market outcome by purchasing

some of the assets. The shadow cost of public funds used for such purchases is 1+λ, with λ > 0. The
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government, just like private buyers, does not know ω and values the assets at ω +∆. Philippon-

Skreta (2012) and Tirole (2012) show that, when the sellers’ information is exogenous, the optimal

policy has a simple form: The government purchases the lowest-quality assets, the market the

intermediate-quality ones, and the best-quality assets are kept by the sellers. Furthermore, the

optimum can be implemented by the government setting a price r so as to maximize

max
r

{
G(r; ρ†)

[
∆− λ

(
r −M−(r; ρ†)−∆

)]}
, (S.1)

where ρ† indexes the sellers’ information.1 The first-term in the square bracket is the gain from

trade, whereas the second term in the square brackets represents the deadweight loss on the deficit,

reflecting the fact that, when the competitive private market breaks even, it is as if the government

purchases all tendered assets itself.2 The first-order condition for the optimal choice of r is3

g(r; ρ†)

G(r; ρ†)
=

λ

(1 + λ)∆
. (S.2)

Under the same differentiability and convexity assumptions as in the Akerlof model in the main

text, we then have that the sellers’ choice of information satisfies −
∫ +∞
r Gρ(m; ρ)dm = C ′(ρ), as in

the Akerlof model. The only difference is that r is now chosen by the government instead of being

determined by the market.

(b) Partnerships. Player L has a project. She can associate player F to it or do it alone.

Bringing player F on board creates synergies (lowers the cost of implementation), but forces L to

share the gains, which she does not want to do if the project is a good one. Player L’s payoff is

ω− dL if she does it alone and rω− cL if it is a joint project, where r is the value share left to L by

(competitive) player F and cL is player L’s reduced cost of project implementation. Let cF denote

player F ’s cost, with cL+ cF < dL. Given her posterior mean m, player L chooses a = 1 if and only

if δL(r,m) = dL − cL − (1 − r)m ≥ 0. Provided that m > 0, Assumption 2 (monotonicity) is then

1To see this, letmg denote the critical threshold below which a seller of an asset of qualitym sells to the government.
The social cost of the government’s program is then equal to λ

{
r − EG(·; ρ†) [m|m ≤ mg]−∆

}
G(mg; ρ†), which

accounts for the fact that the government can resell the assets at price EG(·; ρ†) [m|m ≤ mg] + ∆, and the proceeding
from the sale can be used to reduce the distortions associated with future needs to collect money from taxpayers. The
non-arbitrage condition between the government’s program and the private market, along with the fact that buyers
are competitive, then implies that r = EG(·; ρ†) [m|m ∈ [mg, r]] + ∆. Combining the two conditions above and using
the law of iterated expectations, we have that

M−(r; ρ†) =
G(mg; ρ†)

G(r; ρ†)
EG(·; ρ†) [m|m ≤ mg] +

G(r; ρ†)−G(mg; ρ†)

G(r; ρ†)
EG(·; ρ†) [m|m ∈ [mg, r]]

which gives the formula in (S.1).
2It is important, though, that the government does not buy all these assets and lets the market rebound. Otherwise,

the market would nonetheless rebound, and the sellers’ anticipation of this rebound would force the planner to buy
assets at an even higher price: See the papers mentioned above for details.

3The condition uses the fact that ∂M−(r; ρ†)/∂m∗ = g(r; ρ†)[r −M−(r; ρ†)]/G(r; ρ†).
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satisfied. Finally, r = r(ρ†) solves

(1− r)M−
(
dL − cL
1− r

; ρ†
)

= cF . (S.3)

Provided that (S.3) has one and only one solution, then Assumption 3 (lemons) is also satisfied.4

(c) Disclosure of Hard Information . In another important variant of Akerlof’s model, the

seller wants to sell for sure (she has no value for the good, say), and either has no information

about ω (with probability 1 − ρ) or knows ω (with probability ρ), as in Dye’s (1985) model. So

G(m; ρ) = ρG(m) for m < ω0 and G(m; ρ) = ρG(m)+1−ρ for m ≥ ω0, where ω0 is the prior mean

of G (note that this is the same structure as in the directed-search technology in the main text). In

contrast with Akerlof’s soft-information lemons game, the seller’s decision is not whether to put the

good for sale (a foregone conclusion), but whether to reveal the state of Nature when knowing it. A

well-established literature, surveyed by Milgrom (2008), has studied such an incentive to disclose.

A natural extension of the disclosure model consists in thinking of ρ (the precision of information)

as endogenous.

In order to apply the general results, we must define the actions and the corresponding δL

function. Let a = 1 stand for the decision of non disclosing and a = 0 for the decision of disclosing the

state of Nature. The rationale for this choice is that player F ’s beliefs about player L’s information

matter only if there is no disclosure. As in the Akerlof model in the main text and in Example (a)

above, let ω +∆ denote the buyer’s utility. Then let r denote the price offered by the buyer in the

absence of disclosure. The seller thus obtains m+∆ if she discloses, and r if she does not disclose,

so that δL(r,m) = r − (m + ∆), implying that Assumption 2 (monotonicity) in the main text is

satisfied.

To compute r(ρ†), note that, when information is exogenously fixed at ρ†, the seller discloses if

and only if she is informed and m > m∗(r) = r −∆. Hence r(ρ†) solves

r =

(1− ρ†)ω0 + ρ†
∫ r−∆

−∞
mdG(m)

1− ρ† + ρ†G(r −∆)
+∆. (S.4)

In this setting, the expected value of m conditional on player L engaging (i.e., not disclosing) does

not coincide withM− (
m∗(r(ρ†)); ρ†

)
. This is because player L, when not receiving any information,

has no choice but to engage, irrespective of whether her posterior expected value of ω (which is equal

to ω0) is below or above m∗.5 The analog of Assumption 3 (lemons) in the main text in this setting

4Note that for (S.3) to admit one and only one solution it must be that M− (
dL − cL; ρ

†) ≥ cF . When this
condition holds, (S.3) admits at least one solution. Such a solution is unique if, and only if, in addition to the

condition above, cF − ∂
∂m∗M

−
(

dL−cL
1−r

; ρ†
)
(dL − cL) > 0 for any r that solves (S.3). The last property always holds

when G(m; ρ†)/g(m; ρ†) is increasing in m and cF > dL − cL for, in this case, ∂
∂m∗M

−
(

dL−cL
1−r

; ρ†
)
∈ (0, 1).

5Furthermore, it is easy to see that any solution to (S.4) is such that ω0 > r −∆ = m∗(r).
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is that the sign of dr(ρ†)/dρ† coincides with the sign of ∂M̂
(
r(ρ†); ρ†

)
/∂ρ† where, for any (r, ρ†)

M̂
(
r; ρ†

)
≡

(1− ρ†)ω0 + ρ†
∫ r−∆

−∞
mdG(m)

1− ρ† + ρ†G(r −∆)

denotes the expected value of m conditional on L engaging optimally against a reaction of r by F ,

under information ρ†. It is easy to see that this is the case whenever the solution to (S.4) is unique,

which is always the case when r − M̂
(
r; ρ†

)
is increasing in r.

(d) (Interdependent herding) entry games. Firm L decides whether to enter a market.

Firm F then decides whether to follow suit. Firm F uses the information revealed by firm L’s

decision, but, in contrast with most herding models, payoffs are interdependent and so externalities

are not purely informational. Suppose for instance that L and F are rivals, with per-customer

profit πm under monopoly and πd < πm under duopoly.6 The state of Nature ω here represents

information correlated with the two firms’ entry costs. Specifically, assume that firm L’s entry cost

is ω whereas firm F ’s entry cost is ω + ε, where ε is drawn from R, according to the distribution

H(ε) with density h(ε), independently from ω. Importantly, the realization of ε is unknown to firm

L when it decides whether to enter. Let r denote the probability of non-entry by firm F and let m

denote firm L’s posterior expected value of ω. We then have that

δL(r,m) ≡
[
rπm + (1− r)πd

]
−m,

implying that m∗(r) = r
(
πm − πd

)
+ πd. Assumption 2 (monotonicity) is thus satisfied. In this

application, r(ρ†) is then the solution to r = 1−H(πd −M−(m∗(r); ρ†
)
). Assumption 3 (lemons)

is satisfied whenever the solution to this equation is unique, which is the case if the density h of H

satisfies h(πd −M−(m∗(r); ρ†
)
) < 1, the distribution G(m; ρ†) of m is such that G(m; ρ†)/g(m; ρ†)

is increasing in m, which implies that ∂M−(m∗(r); ρ†)/∂m∗ < 1, and πm − πd ∈ (0, 1).

(e) Marriage . Consider the following variant of Spier (1992)’s model, augmented with endoge-

nous information. Players L and F decide whether to get married. Getting married has value vL

and vF for L and F , respectively, provided that all goes well, which has probability ω distributed on

[0, 1]. With probability 1−ω, instead, things go wrong in which case the players divorce, obtaining

utility vi−Li, i = L,F . The divorce can, however, be made less painful (raising the utility to vi−ℓi,
with 0 < ℓi < Li, i = L,F ) through a covenant spelling out the outcome in case of divorce. Adding

the covenant costs a fixed amount ci < Li− ℓi to player i = L,F , implying that it is efficient to add

the covenant if the parties want to marry but expect to divorce with a sufficiently high probability.

The value of vL is large enough that player L wants to marry regardless of whether the covenant

is introduced (vL ≥ LL). In contrast, player F ’s value vF is distributed on [(1 − ω0)LF ,+∞)

according to the c.d.f. H and is F ’s private information. Player L may acquire information about

6One can also perform the analysis for complementors, with πd > πm.
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ω and then chooses between a contract with (a = 1) and without (a = 0) covenant.7 Player F

then decides whether to accept to marry. Because vF − (1 − ω0)LF ≥ 0, in the absence of any

information and any covenant, player F always accepts to marry, no matter the realization of vF .

Let r denote the probability that player F accepts to marry when the proposed contract includes

the covenant (i.e., when player L engages). This game also satisfies Assumptions 2 (monotonicity)

and 3 (lemons). To see this, first note that8

δL(r,m) = r[vL − (1−m)ℓL − cL] + (1− r) · 0− [vL − (1−m)LL].

Hence, δL(r,m) satisfies Assumption 2. Next, note that, in this example, m∗(r) is given by

m∗(r) = max

{
r(vL − ℓL − cL)− (vL − LL)

LL − rℓL
; 0

}
.

Hence r(ρ†) is given by the solution to r = 1−H(ℓF + cF −M−(m∗(r); ρ†)ℓF ). Provided that the

above equation admits a unique solution (which is the case when r+H(ℓF +cF −M−(m∗(r); ρ†)ℓF )

is increasing in r) Assumption 3 holds in this example too.

(f) Power of incentive scheme (relative adverse selection sensitivity). In the main

text, as well in all the examples above, F ’s reaction to a = 0 does not depend on F ’s beliefs about ρ

and m. As mentioned in the paper, we expect the results to extend to certain settings in which F ’s

reaction to both of L’s actions depends on his beliefs of what motivated L to engage (alternatively

to not engage), but with a lower sensitivity when L chooses a = 0 than when she chooses a = 1.

The following example illustrates. Player L is an employee who can choose between a high- and

a low-powered incentive scheme (for brevity, HPIS and LPIS). Action a = 0 corresponds to the

decision to choose HPIS, whereas a = 1 corresponds to the decision to choose LPIS. Let ya denote

the employee’s “skin in the game,” e.g., the amount of shares of the firm held, with 0 ≤ y1 < y0 ≤ 1.

Player F is a (competitive) employer whose payoff is κ+(1−ya)(ea+m)−ra, where κ is a constant,

ea is the effort optimally exerted by the employee (at increasing and convex private cost ψ(e)) after

choosing action a ∈ {0, 1}, and ra is a fixed wage paid by F to L on top of the money paid through

the incentive payment ya. Hence, in this application, there are two reactions by player F , r1 and

r0, and each may depend on ρ†. Let UL(a, ra,m) and UF (a, ra,m) denote the two players’ payoffs

when player L takes action a, player F reacts with action ra, and L’s posterior mean is m. Then

UL(a, ra,m) ≡ maxe{ra + ya(e + m) − ψ(e)} and UF (a, ra,m) ≡ κ + (1 − ya)(ea + m) − ra. Let

r ≡ r1 − r0 and K0 ≡ y1e1 − ψ(e1)− (y0e0 − ψ(e0)). Then,

δL(r,m) ≡ UL(1, r1,m)− UL(0, r0,m) = r − (y0 − y1)m+K0.

For any r, the engagement threshold is then given by m∗(r) = (r + K0)/(y0 − y1). Let z ≡
7As anticipated above, in this application, both actions are adverse-selection sensitive, but a = 0 is less so than

a = 1.
8Observe that the absence of a covenant is “good news” about m.
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(1−y0)/(1−y1) < 1 andK1 ≡ (1−y1)e1−(1−y0)e0 and, for anym∗ and ρ†, denote byM+(m∗; ρ†) ≡
EG(·; ρ†)[m|m > m∗] the expected value of m under the distribution G(·; ρ†), conditional on m

exceeding m∗. Because F is competitive, for any ρ†, r(ρ†) is then given by the solution to

r = K1 + (1− y1)
[
M−(m∗(r); ρ†)− zM+(m∗(r); ρ†)

]
.

In the model in the main text, z = 0. We expect the results to extend to this type of settings

provided that (1) δL depends only on r and m and satisfies Assumption 1 in the paper (as in this

example), (2) z is small so that action a = 0 is relatively less “adverse-selection-sensitive” than

a = 1, and (c) Assumption 3 in the paper holds with respect to M− − zM+ instead of M− (which

is the case, for example, when m is drawn from a Uniform or a Pareto distribution).

S.2 Anti-Lemons

The analysis in the paper can be adapted to certain environments that do not satisfy Assumption 3.

To see this, suppose that the choice of a more informative experiment by L increases the friendliness

of F ’s reaction, instead of reducing it, when it reduces the truncated mean. Assumption 3 in the

paper is then reversed and replaced by the following assumption:

Assumption 3′ (anti-lemons). The friendliness of player F ;s reaction increases with player L’s

investment in information if and only if more information reduces the truncated mean:

dr(ρ†)

dρ†
sgn
= − ∂

∂ρ†
M−(m∗(r(ρ†

)
); ρ†

)
.

The following examples illustrate.

(g) Spencian signaling . An agent (player L) has an uncertain disutility of effort ω for

studying which is negatively correlated with the agent’s productivity θ = a − bω from working

on the relevant job after leaving school. The labor market is populated by competitive employers

(player F ) offering the agent a wage r equal to the agent’s expected productivity, as in Spence (1973).

Normalizing L’s payoff from not engaging to zero, we have that, in this model, δL(r,m) = r−m−p,
where p is the cost of enrolling in the school program under consideration (say, an MBA). Hence,

the agent enrolls if and only if the perceived cost of studying is low, that is, m < m∗(r) = r − p,

with r satisfying r = a− bM−(m∗(r); ρ†).

(h) Start-up followed by liquidation . An entrepreneur (player L) must decide whether to

start a new business. Starting the business costs the entrepreneur cL > 0 and generates cash flows

equal to 1− ω. Before being able to collect the project’s cash flows, the entrepreneur may need to

liquidate the project (for example, because of a preference shock that makes consumption at the time

the project pays off no longer valuable to L, as in Diamond and Dybvig (1983)). Early liquidation

6



occurs with probability p and results in the entrepreneur collecting a price r for the assets from a

pool of risk-neutral competitive investors (player F ). The entrepreneur’s value from starting the

project (i.e., the engagement decision in this application) is equal to δL = (1− p)(1−m) + pr− cL.

The entrepreneur thus starts the project if and only if m < m∗(r) = (1 − p + pr − cL)/(1 − p).

Assuming, for simplicity, that the value of the project in the investors’ hands is also equal to 1−m,

we then have that r = 1−M−(m∗(r); ρ). Hence Assumptions 2 (monotonicity) and 3’ (anti-lemon)

are satisfied.

(i) Warfare . Country L is a potential invader and must decide whether to engage in a fight

(a = 1) or abstain from doing so (a = 0). The state of Nature ω represents the probability that

country F wins in case of a fight. Let r denote the probability that country F surrenders without

fighting back. The payoff that L obtains in case of victory is 1, whereas the cost of a defeat is cL,

implying that δL(r,m) = r + (1 − r)(1 − m − mcL). Hence Assumption 2 (monotonicity) holds.

Furthermore, in this game, L engages if and only if m ≤ m∗(r) where

m∗(r) =
1

(1− r)(1 + cL)
.

Similarly, letting country F ’s payoff from victory be equal to 1 and its loss in case of defeat be

equal to cF , we have that country F concedes if and only if

M−(m∗(r(ρ†)); ρ†)−
(
1−M−(m∗(r(ρ†)); ρ†)

)
cF ≤ 0.

Assuming that cF is drawn from some cumulative distribution H, we then have that r(ρ†) is given

by the solution to

r(ρ†) = 1−H

(
M−(m∗(r(ρ†)); ρ†)

1−M−(m∗(r(ρ†)); ρ†)

)
. (S.5)

Hence, this is an anti-lemon problem, in that the decision by player L to engage carries information

that the state is one in which, if player F were to fight back, he would likely lose, thus making

F play in a friendlier way towards player L. Whenever equation (S.5) admits a unique solution,

Assumption 3’ (anti-lemon) then holds: a larger investment in information by player L, when it leads

to a reduction in M−(m∗(r(ρ†)); ρ†), induces player F to respond with an action that is friendlier

to L (i.e., he surrounds more often).

(j) Leadership. Like in Hermalin (1998)’s theory of leadership, consider a setting in which

a leader has information about the profitability of a project and benefits from binging on board a

partner. Contrary to Hermalin (1998), however, assume that the leader’s information is endogenous.

Specifically, suppose that player L’s gain from starting the project is δL(r,m) = 1 −m + r − cL,

where 1−m is the probability that the project succeeds, r is the probability that player F joins the

venture, and cL is L’s cost of initiating the project. Hence, Assumption 1 holds. Player F , after

observing L’s decision to initiate the project, decides whether to join. If he does, his payoff is equal
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to 1−m+1− cF , whereas, if he does not, it is equal to zero. Again, this is an anti-lemon problem,

in that the decision by L to engage (here to start a project) is good news for player F , instead of

bad news. Assuming that cF is drawn from some cumulative distribution function H, we then have

that the probability that F joins is given by the solution to

r(ρ†) = H
(
2−M−

(
1 + r(ρ†)− cL; ρ

†
))

. (S.6)

Hence, Assumption 3’ (anti-lemon) holds whenever equation (S.6) admits a unique solution.

S.2.1 Expectation Conformity

Under Assumption 3′, EC at (ρ, ρ†) requires that A(ρ†)B(ρ; ρ†) > 0 (the opposite of the condition

in Proposition 1 in the paper). Because A(ρ†) < 0 <B(ρ; ρ†) under the key condition for EC in

Proposition 1, namely when

max
{
Gρ(m

∗(r(ρ†)); ρ†), Gρ(m
∗(r(ρ†)); ρ)

}
≤ 0,

EC never arises when, under the above condition, Assumption 3 in the paper is replaced with

Assumption 3’. This is because, when Gρ(m
∗(r(ρ†)), ρ†) ≤ 0, an increase in the informativeness

of L’s signal triggers a friendlier reaction by player F . In turn, because the marginal value of

information decreases with the friendliness of player F ’s reaction when Gρ(m
∗(r(ρ†)), ρ) ≤ 0, an

increase in the informativeness of L’s signal anticipated by player F (starting from ρ†) reduces the

value for L to acquire more information at ρ. Hence EC never arises under the key condition for

EC in Proposition 1 in the paper.

The following result summarizes the relationship between expectations and incentives for infor-

mation acquisition in the anti-lemons case:

Proposition S.1 (expectation conformity – anti-lemons). Suppose that Assumptions 1 and

2 in the paper hold and that Assumption 3 is replaced by Assumption 3’. Further suppose that

information reduces the truncated mean M−(m∗(r(ρ†
)
); ρ†

)
, i.e., A(ρ†) < 0 (recall that the last

property holds when information structures are Uniform, Pareto, or Exponential, or, more generally,

when Gρ

(
m∗(r(ρ†)); ρ†) < 0). Then EC holds at (ρ, ρ†) only if

Gρ

(
m∗(r(ρ†)); ρ) > 0,

that is, only if, in L’s eyes, a higher ρ increases the probability that L engages. Furthermore,

Gρ

(
m∗(r(ρ†)); ρ) > 0 is both necessary and sufficient for EC at (ρ, ρ†) if ∂2δL(m, r)/∂m∂r = 0 for

all m and r.

Proof: The proof follows from the arguments above.
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Hence, in the case of rotations, EC holds at
(
ρ, ρ†

)
when mρ† < m∗(r(ρ†)) < mρ, that is, when

the engagement threshold is between the rotation points mρ† and mρ that are relevant for F and L,

respectively. This condition is quite stringent. For example, it is never satisfied under non-directed

search, for, in that case, mρ†=mρ = ω0.

Naturally, many of the results in the paper are reversed when Assumption 3 (lemons) is replaced

with Assumption 3’ (anti-lemons). For example, disclosure can be effective, and player L may want

to appear an “inoffensive fat cat” (in the sense of Fudenberg and Tirole (1984)) in the anti-lemons

case. Similarly, it is optimal to subsidize (alternatively, tax) trade when d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

<

K (alternatively, when d
dsM

−(m∗(r∗(0), s); ρ∗(s))
∣∣
s=0

> K), where, contrary to the lemons’ case,

K is a negative scalar.

S.3 Relation to Other Covert Investment Games

The paper’s emphasis is on information acquisition, a choice motivated both by the applications

and by the fact that many investments are ultimately investments in information processing. But

the results may also be useful for other covert investments: capacity acquisition, learning by doing,

arms buildup, and so on.

Suppose that there are two players, playing a “second-stage” normal-form game with actions aL,

aF ∈ R. One of the players, here player L, makes a “first-stage” investment ρ ∈ R at an increasing

investment cost C(ρ).9 Payoffs are ϕL(aL, aF ) − ψ(aL, ρ) − C(ρ) for player L and ϕF (aL, aF ) for

player F , where all functions are C2 and satisfy ∂2ψ/∂aL∂ρ < 0 and

∂2ϕi
∂ai∂aj


> 0 (SC)

or

< 0 (SS)

for i, j = L,F, j ̸= i.

That is, the investment ρ lowers player L’s marginal cost of action aL, and the strategic inter-

action between the two players involves either strategic complementarity (SC) or strategic substi-

tutability (SS). For example, ai may stand for firm i’s output, ρ an investment that lowers the

marginal cost of production, and the two firms’ output choices may be either strategic complements

or substitutes.

Assume, for simplicity, that, if player L’s investment was common knowledge, the normal-form

game in (a1, a2) would have a unique and stable equilibrium. In such a game, player F ’s equilibrium

action aF (ρ
†) as a function of player L’s anticipated investment ρ†, is increasing in ρ† under SC and

decreasing in ρ† under SS.

Consistently with the analysis in the main text, suppose that player L’s actual investment ρ is

not observed by player F (so de facto the game is a simultaneous-move game in actions (ρ, aL), for

player L, and aF , for player F ). One can then define player L’s optimal action when she deviates

9The analysis can be extended to the case where both players make period-1 investments. The insights are not
fundamentally different from those discussed here.
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from her equilibrium investment. The above assumptions imply that player L’s optimal action

aL(ρ, ρ
†) when player F expects ρ† and player L’s actual investment is ρ is non-decreasing in ρ†

under either SC or SS.

This environment is similar to that considered in the industrial organization literature on the

taxonomy of business strategies10, except for one important twist. The investment choice ρ is not

observed by player F and so has no commitment effect; rather, what matters for the outcome of the

normal-form game is the anticipation ρ† by firm F of firm L’s choice as well as the actual choice ρ

by firm L (of course, in a pure-strategy equilibrium, ρ† = ρ).

Let TL(ρ, ρ
†) ≡ maxaL

{
ϕL(aL, aF (ρ

†))− ψ(aL, ρ)− C(ρ)
}

denote player L’s payoff when her

actual investment is ρ and player F anticipates investment ρ†. The above assumptions imply that,

whether SC or SS prevails, for all (ρ, ρ†) and (ρ̂, ρ̂†) with ρ̂ ≥ ρ and ρ̂† ≥ ρ†, the following

“expectation conformity” condition is satisfied:

TL(ρ̂, ρ̂
†)− TL(ρ, ρ̂

†) ≥ TL(ρ̂, ρ
†)− TL(ρ, ρ

†).

Consequently, let ρ (alternatively, ρ̂) denote player L’s optimal investment when player F expects

investment ρ† (alternatively, ρ̂†).11 Expectation conformity implies that there is complementarity

between investment and anticipation of investment: (ρ̂1 − ρ1)(ρ̂
†
1 − ρ†1) ≥ 0. This is so both when

the stage-2 game involves strategic substitutes or strategic complements.

The intuition goes as follows: Suppose that firm F expects L to invest more and therefore to

produce more output. It then raises its output under SC and decreases it under SS. In either case,

firm L is induced to raise its output, vindicating a higher investment in the first place. It can also

be checked that when there are two equilibria (ρ = ρ† and ρ̂ = ρ̂†), player L is better off in the

high-investment one, again regardless of the type of strategic interaction (SC or SS).

Let us draw a formal analogy between the generalized lemons game of the paper and the covert

investment game described above. The investment ρ in the paper is player L’s choice of a more

informative signal. To interpret the generalized lemons game as a covert investment game, it suffices

to assume that, in the “stage-2” game, player L wants to take an action equal to her investment.

For example, one can think of aL as the information used by player L in the stage-2 game. In this

spirit, the assumption that L maximizes her payoff by choosing aL = ρ simply reflects the idea that

player L makes full use of the acquired information. In this case, ψ(aL, ρ) = 0 if aL = ρ, whereas

ψ(aL, ρ) = −∞ otherwise, which is a discontinuous version of the complementarity relationship

10See, e.g., Bulow et al (1985), and Fudenberg and Tirole (1984).
11That is, given ρ†, (aL, ρ) is such that

(aL, ρ) ∈ argmax
ρ̃,ãL

{
ϕL(ãL, aF (ρ

†))− ψL(ãL, ρ̃)− C(ρ̃)
}

with {aL(ρ†), aF (ρ†)} denoting the Nash equilibrium of the normal-form game under common knowledge that L
invested ρ† (i.e., under symmetric information).
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∂2ψL/∂aL∂ρ < 0 in the investment game. Letting aF = r, we then have that

ϕL(aL, r) ≡
∫ m∗(r)

−∞
δL(m, r)dG(m; aL)

and so ∂2ϕL(r(ρ
†), aL)/∂aL∂r < 0 whenever condition B(ρ, ρ†) > 0 in Proposition 1 in the main text

is satisfied, for aL = ρ. Furthermore, Condition A(ρ†) < 0 in Proposition 1 implies that dr/daL < 0.

Summarizing, when the Condition of part (iv) of Proposition 1 is met, the lemons game can be seen

as an investment game with strategic substitutes (SS). In contrast, many anti-lemon games are

investment games with strategic complements.

S.4 Outer Game in Akerlof ’s Model with Flexible Information and En-

tropy Cost

In this section, we endogenize ρ in the Akerlof model with flexible information of Subsection 6.3

in the main text. We first show that the game with endogenous ρ also typically admits multiple

equilibria. We then investigate whether the conditions for expectation conformity of Proposition 7

in the main text hold.

S.4.1 Multiple Equilibria in the Outer Game

Recall that the seller’s payoff when she covertly chooses ρ, the buyer offers r, and the seller selects

an arbitrary (binary) signal q and then engages for z = 1 and does not engage for z = 0 is equal to

Π(r, q; ρ) ≡
∫
ω
(r − ω)q(1|ω)dG(ω) + ω0 −

Iq

ρ
− C(ρ). (S.7)

Then let Π∗(r, ρ) ≡ Π(r, qρ,r; ρ) denote the seller’s maximal payoff when she responds to the buyer

offering a price of r with a choice of ρ, where qρ,r is the optimal signal given (ρ, r). As shown in the

main text, the latter is given by

qρ,r(1|ω) =


0 ∀ω if r ≤ r(ρ)

1
1+eρ(ω−ω̃(r;ρ)) if r ∈ (r(ρ), r(ρ))

1 ∀ω if r ≥ r̄(ρ).

(S.8)

We use the Envelope Theorem to describe the seller’s marginal value of investing in becoming a

better learner (formally, in expanding ρ). Because Π(r, q; ρ) is not Lipschitz continuous in ρ across

all possible (r, q; ρ), a little care is needed in establishing the result, which we provide in the following

lemma.

Lemma S.1 (envelope theorem). For any r, there exists ρ(r) > 0 such that, for any ρ > ρ(r), any
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q, Π(r, q; ρ) ≤ ω0, whereas, for any ρ≤ ρ(r), Π∗(r, ρ) is absolutely continuous in ρ with

∂Π∗(r, ρ)

∂ρ
=
∂Π(r, qρ,r; ρ)

∂ρ
=
Iq

ρ,r

ρ2
− C ′(ρ) (S.9)

for almost all ρ≤ ρ(r).

Proof of Lemma S.1. Fix r and note that the seller’s gross payoff
∫
ω(r − ω)q(1|ω)dG(ω) + ω0

from trading with the buyer is bounded from above by∫
ω
(r − ω)I[ω ≤ r]dG(ω) + ω0,

which is the seller’s gross payoff under a signal that recommends to trade if and only if ω ≤ r

(hereafter, we refer to such a signal as “fully-responsive”). Because C is increasing and convex,

limρ→∞C(ρ) = +∞. Now let ρ(r) be defined by∫
ω
(r − ω)I[ω ≤ r]dG(ω) = C(ρ).

Clearly, for any ρ > ρ(r), any q,

Π(r, q; ρ) =
∫
ω(r − ω)q(1|ω)dG(ω) + ω0 − Iq

ρ − C(ρ)

≤
∫
ω(r − ω)I[ω ≤ r]dG(ω) + ω0 − C(ρ)

< ω0,

which establishes that selecting ρ above ρ(r) is never optimal for the seller.

Next, let ρ(r) be the smallest value of ρ for which the inner problem admits an interior solution.

For any ρ < ρ(r), the optimal signal qρ,r entails no information acquisition and hence Iq
ρ,r

= 0.

This means that, for any ρ < ρ(r),

Π∗(r, ρ) ≡ Π(r, qρ,r; ρ) = ω0 − C(ρ)

when the optimal signal prescribes never to sell and

Π∗(r, ρ) ≡ Π(r, qρ,r; ρ) = r − C(ρ)

when it prescribes to sell for all possible ω. In either case, (S.9) holds.

Finally, consider ρ ∈ [ρ(r), ρ(r)]. Let Q(r) denote the set of signals q for which Iq ≤ −ϕ(G(r))
and observe that this set includes the fully-responsive signal q(1|ω) = I[ω ≤ r] for which the entropy

cost is Iq = −ϕ(G(r))). Clearly, for any ρ ∈ [ρ(r), ρ(r)], and any q /∈ Q(r),

Π(r, q; ρ) <

∫
ω
(r − ω)I[ω ≤ r]dG(ω) + ω0 −

−ϕ(G(r))
ρ

− C(ρ),

where the right-hand side is the seller’s payoff under the fully-responsive signal q(1|ω) = I[ω ≤ r].
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For any ρ ∈ [ρ(r), ρ(r)], the choice of q can thus be restricted to Q(r). It is easy to see that, for

any ρ ∈ [ρ(r), ρ(r)], any q ∈ Q(r), Π(r, q; ρ) is differentiable in ρ with derivative uniformly bounded

over [ρ(r), ρ(r)]×Q(r). That Π∗(r, ρ) is absolutely continuous in ρ over [ρ(r), ρ(r)] with derivative

satisfying (S.9) then follows from Milgrom and Segal (2002). ■

Using the result in the lemma, for any r, the seller never chooses any ρ > ρ(r). Furthermore,

when the optimal ρ is interior, the following optimality condition must hold

C ′(ρ) =
Iq

ρ,r

ρ2
.

This additional condition must be satisfied along with the conditions
ω̃ = r + 1

ρ ln

( ∫
1

1+eρ(ω−ω̃)
dG(ω)

1−
∫

1

1+eρ(ω−ω̃)
dG(ω)

)
,

r =
∫
ω

1

1+eρ(ω−ω̃)∫
1

1+eρ(ω−ω̃)
dG(ω)

dG(ω) + ∆,

r ∈ (r(ρ), r(ρ)).

(S.10)

of the inner game in any equilibrium in the full game in which ρ > 0. As an illustration, suppose

that ω is drawn from a uniform distribution over [0, 1], ∆ = 0.15, and C(ρ) is given by

C(ρ) =

{
a
K

ρ2

2 if ρ ≤ 10

+∞ otherwise
(S.11)

with a ≈ 1.46 and K = 1, 000. The reason for taking a very low value of a/K is that this

guarantees an interior solution when the other parameters are as above. One can then show that

the full game admits a unique equilibrium with information acquisition and, in such an equilibrium,

(ρ∗, r∗) ≈ (4.7, 0.45).

Such an interior equilibrium coexists with an efficient equilibrium (ρA, rA) = (0, 0.65) in which

the seller does not invest in learning how to process information (ρA = 0), acquires no information,

and then sells with certainty at a price rA = ω0 +∆ = 0.65, and a market-breakdown equilibrium

(ρN , rN ) = (0, 0.15) in which the seller does not invest in learning how to process information

(ρN = 0), acquires no information, and does not trade (in such an equilibrium, if the seller were

to deviate and put the asset on sale, the buyer would offer rN = ∆ = 0.15, with such a price

supported by the belief that the seller learnt that the state is ω = 0). Because the buyer breaks

even in each equilibrium, the three equilibria are Pareto ranked, with the highest welfare attained

in the equilibrium with full trade, and the lowest in the equilibrium with no trade—welfare in the

equilibrium in which the seller invests in learning how to process information is in between the level

of welfare in the two corner equilibria.

The game thus features a form of expectation traps between the two equilibria in which trade

occurs with positive probability. When the buyer expects the seller to choose ρA = 0 and trade

without acquiring information, she responds with a high price r = rA that gives a lot of surplus to
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the seller and induces the latter not to acquire any information. When, instead, the buyer expects

the seller to invest ρ∗ and then acquire information and trade selectively as a function of ω, she

lowers her price to r∗, which forces the seller to acquire information and leaves her with a lower

payoff.

S.4.2 Expectation Conformity

We conclude by investigating whether expectation conformity holds under this model specification.

We do so by using Proposition 7 in the main text.

Recall that Proposition 7 assumes that Assumption 3 in the main text holds, which requires

that, in the inner game, higher values of ρ are associated with higher equilibrium prices r(ρ) if and

only if higher values of ρ lead to an increase in the truncated mean:

dr(ρ)

dρ

∣∣∣∣
ρ=ρ†

sgn
=

∂

∂ρ
M−(m∗(r(ρ†)); ρ, r(ρ†))

∣∣∣∣
ρ=ρ†

=
∂

∂ρ
E[ω|z = 1; qρ,r(ρ

†)]

∣∣∣∣
ρ=ρ†

=
∂

∂ρ

∫
ω
qρ,r(ρ

†)(1|ω)
qρ,r(ρ†)(1)

dG(ω)

∣∣∣∣
ρ=ρ†

.

Under flexible information, for any ρ > 0, the equilibrium price r(ρ) is implicitly defined by the

condition

r =

∫
ω
qρ,r(1|ω)
qρ,r(1)

dG(ω) + ∆. (S.12)

Suppose again that ω is drawn from a uniform distribution over [0, 1] and that ∆ = 0.15. One can

then show that Assumption 3 holds for example when ρ† = 4.2, 4.3, 4.5, 5. Starting from these levels

of ρ, a local increase in ρ leads to the choice of experiments resulting in a smaller truncated mean

and to a reduction in the equilibrium price in the inner game. We can then use Proposition 7 in

the main text to verify whether expectation conformity holds. We have already established that

A(ρ†) < 0 for ρ† = 4.2, 4.3, 4.5, 5. Thus consider the function B(ρ; ρ†). Fix some ρ† and recall that

V ∗(r, ρ) ≡
∫
(r − ω)qρ,r(1|ω)dG(ω) + ω0 −

Iq
ρ,r

ρ

is the seller’s gross payoff under the optimal signal qρ,r. Using the envelope theorem

∂V ∗(r, ρ)

∂ρ
=
Iq

ρ,r

ρ2
.

Recall that B(ρ†; ρ†) measures how the marginal value ∂V ∗(r, ρ)/∂ρ of the seller’s investment in ρ

changes with r, around r = r(ρ†), when ρ = ρ†. Numerical results indicate that, in this example,

B(ρ†; ρ†) > 0 when r(ρ†) > ω0 = 0.5, whereas B(ρ†; ρ†) < 0 when r(ρ†) < ω0. In other words, when

r(ρ†) > ω0, a local reduction in r around r(ρ†) increases the marginal value of ρ around ρ†, whereas
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the opposite is true when r(ρ†) < ω0. These results indicate that the marginal value of information

∂V ∗(r, ρ)/∂ρ is single-peaked at r = ω0, as illustrated in Figure 1.

Figure 1: Effects of changes in r on ∂V ∗(r, ρ)/∂ρ for different values of ρ, when ω ∼ U [0, 1].

Recall that Part (i) of Proposition 7 establishes that expectation conformity holds at ρ = ρ†

if A(ρ†) and B(ρ†; ρ†) have opposite signs. In this example, this happens when ρ = ρ† = 4.2 and

ρ = ρ† = 4.3 but not when ρ = ρ† = 4.5 and ρ = ρ† = 5.

Part (ii) of Proposition 7 in turn establishes that a sufficient condition for an increase in ρ

to aggravate adverse selection at ρ = ρ† (that is, for A(ρ†) < 0) is that qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) is

increasing in ρ for ω < r(ρ†) and decreasing in ρ for ω > r(ρ†) at ρ = ρ†. These properties hold in

the example under consideration for ρ† = 4.2, 4.3, 4.5, 5.

Finally, Part (iii) of Proposition 7 establishes that a sufficient condition for a reduction in r

around r(ρ†) to raise L’s marginal value of ρ at ρ = ρ† (i.e., for B(ρ†; ρ†) > 0) is that, in addition

to qρ,r(ρ
†)(1|ω)/qρ,r(ρ†)(1) to be increasing in ρ at ρ = ρ† for ω < r(ρ†) and decreasing in ρ at ρ = ρ†

for ω > r(ρ†), the total probability qρ,r(ρ
†)(1) ≡

∫
qρ,r(ρ

†)(1|ω)dG(ω) the seller puts the asset on

sale is non-increasing in ρ at ρ = ρ†. The numerical simulations show that, in the example under

consideration, the total probability qρ,r(1) the seller puts the asset on sale is increasing in ρ when

r < ω0 and decreasing in ρ when r > ω0. Part (iii) of Proposition 9 then implies that, when ρ†

is such that r(ρ†) > ω0, B(ρ†; ρ†) > 0. When, instead, ρ† is such that r(ρ†) < ω0, because part

(iii) of Proposition 9 provides only sufficient conditions for B(ρ†; ρ†) > 0, we cannot conclude from

the above monotonicity that B(ρ†; ρ†) < 0 at ρ = ρ†. However, because in the Akerlof model

∂2δL(r,m)/∂r∂m = 0, and because M−(m∗(r(ρ†)); ρ, r(ρ†)) is decreasing in ρ at ρ = ρ† = 4.5, 5 (as

shown above), part (v) in Proposition 7 implies that, when ρ† = 4.5, 5, because A(ρ†) < 0 and qρ,r(1)

is increasing in ρ at (ρ, r) = (ρ†, r(ρ†)), expectation conformity does not obtain at (ρ, ρ†) = (4.5, 4.5)

and (ρ, ρ†) = (5, 5).
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