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1 Introduction

The selection of new members of a board of directors, a corporation, a cooperative, a trade or mone-
tary union, an academic department or a polity, underlies institutional dynamics and determines whether
the organization succeeds or is consigned to oblivion. New members most often are coopted1, occasion-
ally under constraints imposed by internal rules or external intervention.

In coopting new members, existing members are safely predicted to pursue their own agenda, raising
the question of whether the organization takes on a life of its own or fulfills its primary mission. The
process of cooptation indeed gives rise to three types of externalities: onto minority members, whose
voice may not be heard; onto potential members, who may not benefit from equal opportunity and mer-
itocracy; and onto society/third parties whom the organization is meant to serve. Will the organization
go astray by reveling in clubishness and contravening meritocracy? If so, can we think of interventions
that serve better either its members or its mission? Can the organization by itself engage in costly
policies that will later avert a slippery slope? These are examples of questions that this paper is meant
to address.

The paper accordingly analyzes the Markovian dynamics, the discrimination in hiring and promotion,
and the welfare properties of an organization whose members’ cooptation decisions are driven by two
motives: quality and homophily.

Our running theme is that meritocracy is fragile. A preference for in-group membership (along
gender, religion, ethnicity, politics, scientific field or approach, values, friendship, class loyalty or an-
other dimension) creates a benefit from control and leads to various degrees of violations of meritocracy.
Strong forms of entrenchment are to be expected when (a) members are better at assessing the ability
of in-group candidates than that of out-group ones, or (b) absenteeism or an imperfect identification of
group allegiance can generate unexpected switches in the majority, or else (c) homophily benefits are
paramount.

A small increase in homophily benefits or in patience may lead the majority to opt for entrenchment.
Outside options add to the fragility: small variations in the initial quality or diversity of the organization
(due to staffing disruptions, technological shocks, globalization. . . ) may lead to virtuous or vicious spirals
and totally different steady states. For, talented minorities may refuse to join an organization that lacks
diversity (all the more so when its average quality is low). The higher the initial diversity and the higher
the initial quality, the more likely is the organization to converge to a high-quality, high-diversity steady
state. If the quality and diversity are initially low, the organization will not attract talented minorities,
and possibly even stop at some point attracting talented majority candidates. There is a region, though,
over which, in order to avoid depriving itself of its talent pool, an organization voluntarily engages in
affirmative action, picking minority candidates over at-least-equally talented majority candidates.

We then turn to hierarchical organizations and to the possibility that women (or minorities) experi-
ence difficulties in rising beyond a certain level in the hierarchy. Even if male dominance and favoritism
contribute to discrimination against women, it is not a priori obvious that they imply a lower rate of

1We focus on “cooptation” in the sense of “periodic selection of new members to join the group”. A second and
equally important acception of “cooptation”, associated with Selznick (1948, 1949), argues that absorbing new elements
in an organization can be a means of averting threats to its stability or existence. We refer to the literature building on
Acemoglu and Robinson (2000)’s celebrated analysis on the extension of the franchise to avoid upheaval (threat-averting
cooptation involves the entire threatening group in Acemoglu-Robinson, and only a sub-group in Bertocchi-Spagat 2001).
We briefly discuss the link between the two meanings of "cooptation" in the conclusion.
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promotion for women and therefore a glass ceiling. We show nonetheless that a glass ceiling results from
control being located at the senior level. This operates through two channels: 1) Concern for control:
control allows the dominant group to engage in favoritism. Because it is located at the senior level, the
dominant group discriminates at the promotion stage while possibly applying meritocracy at the hiring
stage. 2) Differential mingling effect: For organizational reasons, senior members tend to hang around
more with senior members than with junior ones. Their homophily concerns are therefore higher for
promotions than for hiring decisions.

Finally, we consider the normative implications of our analysis. To be certain, entrenchment is not
always bad. First, friendship circles for example are often naturally based on homophily in tastes. Sec-
ond, competition among organizations to attract talent may also imply that in situations of an exogenous
supply of talent, organizations may engage in “talent-stealing” rather than promote homophily benefits.
But one would expect meritocracy to be violated in many other environments. Accordingly, the paper
investigates which policy interventions among mandated affirmative action, quality assessment exercises,
and the overruling of majority decisions may have unintended consequences for the minority whom they
are meant to benefit. For example, the external overruling of majority hiring decisions, even if justified on
a stand-alone basis, may be welfare-reducing, as it leads the majority to build a larger majority cushion
in order to reduce the probability that occasional interventions lead to a shift in control.

The paper then concludes by discussing alleys for future research. Omitted proofs can be found in
the Appendix.

Related literature This research is related to several strands of the literature.
Discrimination theory. It shares with the literature on the economics of discrimination initiated by

Becker (1957) the idea that homophily may lead organizations to disfavor minority members in their
hiring decisions. Becker, though, famously emphasized that competitive market forces under some condi-
tions make such discrimination vacuous, while we look at organizations facing imperfect market pressure.
Also, Becker’s analysis is static while the focus of our study is on the evolution of the organization.

In thinking about policies that protect minorities, our work is akin to the extensive literature on
affirmative action (see Fryer-Loury 2005 for an overview). In Coate-Loury (1993), employers have a
taste for discrimination and a principal wants to boost minority workers’ incentives to invest in skills.
Affirmative action gives the minority prospects and boosts minority incentives if modest, but creates a
“patronizing equilibrium” and reduces incentives if extensive. In Rosen (1997)’s statistical discrimination
model, a group of workers who find it hard to get a job in competition with candidates from the outgroup
become less choosy; they apply for jobs for which they are less suited, and knowing this, firms rationally
discriminate against group members and in favor of the outgroup.

Looking for mediocre recruits. In Carmichael (1988) and Friebel-Raith (2004), meritocracy fails be-
cause talented recruits are a nuisance for incumbent members. Carmichael argues that academic tenure
makes members of a university’s departments willing to hire the best possible candidates. His starting
point is that an academic department coopts its new members (incumbent members of the department
have better information about the potential of candidates than the administration)2. Tenure eliminates
the incumbent members’ fear of replacement by talented recruits. Similarly, Friebel and Raith consider
a three-tier hierarchy (upper-level management/superior/subordinate). Because an unproductive supe-

2In contrast, the owner a baseball team, say, and not the players themselves, selects new recruits.
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rior may in the future be replaced by a more productive subordinate, the superior deliberately hires
mediocre subordinates. Hierarchical communication, which prohibits the subordinate from interacting
directly with the upper-level management (and so cuts the flow of information about her talent), restores
the superior’s incentive to hire productive subordinates. While our model shares with these two models
the view that private agendas may hinder meritocracy, the two papers involve very different modeling
and study rather unrelated questions. In Mattozzi-Merlo (2015), parties pre-select candidates to build
platforms and then select one of them to run in the general election. A party may pre-select a mediocre
candidate over a talented one so as to preserve a level-playing field and thereby incentivize effort in the
party primary.

Recruiting like-minded candidates. Our emphasis on cooptation is reminiscent of the theories of clubs
(initiated by Buchanan 1965) and of local public goods (e.g. Tiebout 1956, Jehiel-Scotchmer 1997). A
couple of contributions examine the dynamics of organizational membership assuming, as we do, that
current members think through the impact of joiners on future recruitment decisions. They consider
contexts rather different from ours, though. In particular, they stress the time variation of the size of the
organization. Barberà et al (2001) look at clubs in which each member can bring on board any candidate
without the assent of other members. They are interested in the forces that determine the growth or
the stagnation of organizations. A member’s (unilateral) decision of coopting a candidate hinges on
the number of additional candidates whom the newly admitted one brings in the future; for instance, a
member may not vote for his friend, because his friend may bring enemies to the group. Roberts (2015),
like us, assumes majority rule, but posits that individuals care only about the (endogenous) size of the
organization; there is a well-determined order of cooptation, with new members being more favorable to
expansion than previous ones and therefore, if admitted, taking incumbent members into dynamics they
may not wish3. Acemoglu et al (2012) also looks at the long-term consequences of reforms that benefit
the rulers in the short run, but may imply a transfer of control in the future; for instance, a controlling
elite may not want to liberalize (give political or religious rights to other citizens) by fear of a slippery
slope that would later entail a loss of control.

Recruiting talent under incomplete information. Section 3.1 on homogamic evaluation capability
bears resemblance with Board et al (2019). The latter paper assumes that talented people are better
at identifying new talents, from which it derives rich dynamics. Section 3.1 also considers homogamic
evaluation capability, but in the horizontal dimension rather than the vertical one; there may then be a
separation between information and control, unlike in Board et al. Board et al also obtains virtuous and
vicious spirals, but for a different reason: talented members make fewer mistakes in selecting employees,
while in Section 4 of our paper, talented minority (and perhaps also talented majority) candidates turn
down an organization that lacks diversity and/or talent.4

3A small literature on organizational dynamics looks at factors of hysteresis other than control over membership. In
Tirole (1996) groups’ reputations reflect the past behavior of their members, while members themselves have reputations
based on incomplete data (that is why the individuals with whom they interact take into account the group’s reputation
as well). That paper shows that (uniquely determined) dynamics may converge to a high- or low- group reputation steady
state, and that group reputations are fragile and hard to reconstruct once destroyed, so that a temporary shock may
permanently confine a group to a low-quality trap. Sobel (2000) looks at an organization in which new recruits must
"maintain the standard" of the existing population of members. He shows how, with such a rule, shocks may decrease, but
not increase standards.

4Moldovanu and Shi (2013) model also exhibits heterogeneous evaluation capabilities. Members of a committee sequen-
tially assessing candidates for a job and coopting using the unanimity rule each have a superior expertise in evaluating
a candidate’s performance along the dimension he cares most about. The focus is on the acceptance standards and the
comparison between a dictator and a committee; given the focus on a single job opening, the dynamics of control are not
investigated. In Egorov and Polborn (2011), similar backgrounds (homophily dimension) facilitate the estimation of others’
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Trade-off between talent and like-mindedness. Cai et al (2018) analyze the dynamics of a three-
member club. Like in this paper, players are characterized by a vertical and a horizontal type, and
(what we label) meritocratic and entrenched equilibria may arise. Sections 2 and 3 thus generalize their
analysis to an arbitrary-size organization, allowing for super-entrenchment and other types of equilib-
rium5. An interesting insight of their analysis that is not (but could be) present in our model is the
possibility of “intertemporal free riding”: Even in a homogenous population (which corresponds to b = 0
in our model), current members will not maximize social welfare; for, members in Cai et al engage in
costly search for candidates. As current members are not infinitely lived and thus will not get the benefits
of quality recrutement as long as the organization, they underinvest in search.6

Glass ceiling. In Athey et al (2000), players also have a horizontal (gender) and vertical (talent) types.
Ability to fill a senior position depends on intrinsic talent and on mentoring received as a junior member.
Mentoring is type-based, and so majority juniors receive more mentoring and are favored in promotions.
The upper level may therefore become homogenous. The organizations however may (depending on the
mentoring technology’s concavity) want to bias the promotion decision in favor of minority juniors, so
as to create diversity and more efficient mentoring. Control is not a focus of their paper, unlike ours.

Empirical evidence. There is growing evidence that meritocracy may not prevail even in organiza-
tions that are incentivized to behave efficiently. Zinovyeva and Bagues (2015) show that in the Spanish
centralized process for promoting researchers to the ranks of full and associate professor, the promotion
rate is higher when evaluated by the PhD advisor, a colleague or coauthor and that the bias dominates
the informational gain (that exists with weaker connections). Bagues et al (2017) by contrast find that
the presence of women on (Italian and Spanish) committees may not increase the quantity and the
quality of female promotions; but male evaluators become less favorable to women if a woman joins the
evaluation committee. Hoffman et al (2018) show that under discretionary hiring, the availability of test
scores raises the quality of appointments (as measured by subsequent job tenure), but that the overrul-
ing of test score ranking lowers quality7. Rivera (2012) finds evidence of biased hiring based on shared
leisure activities. Bertrand et al (2018)’s study of affirmative action on Norwegian boards (a mandated
40% female representation), together with the evidence showing that qualifications of women on boards
increased rather than decreased suggests that discrimination, perhaps based on prejudice, was at stake
prior to the reform8.

2 Model

There is an infinite time horizon with periods t ∈ (−∞,+∞). The organization is composed of
N = 2k members. At the beginning of each period, one member of the organization, drawn randomly

ability. A force pushing toward homogeneity of organizations is then the winner’s curse: competition among employers
makes it more likely that organizations will hire majority candidates, on whom they have superior information.

5Less importantly, homophily benefits are not constant in our model, while they are constant-sum (the sharing of spoils)
in Cai et al.

6A similar effect is present in Schmeiser (2012), who analyses the dynamics of board composition and the potential
benefits of outside-directors rules and nominating committee regulations. In his paper, even outside directors may not
stand for shareholders’ best interests, even if they can be ascertained to have no connection with insiders. The point is
that, in the absence of delayed compensation, outside directors favor immediate benefits due to their limited tenure.

7Suggesting either homophily objectives or poor judgment.
8The gender gap and glass ceiling glass have a number of potential explanations, as stressed by Bertrand in her 2018

survey: difference in education (mainly in the best educational tracks), in psychological traits (higher aversion to com-
petition/relative performance evaluation, higher risk aversion), women’s demand for flexibility (particularly penalizing in
professions that highly reward long hours), higher demands on time (non-market work, child penalty).
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Figure 1: Timing.

from the uniform distribution, departs. We denote by δ the "life-adjusted discount factor", i.e. the pure-
time discount factor times the probability of being still a member of the organization in the following
period: letting δ0 ∈ (0, 1) denote the pure-time discount factor, then δ ≡ δ0(1− 1/N). The departure is
immediately followed by a recruitment. The intra-period timing is summarized in Figure 1.

Each individual has a two-dimensional type. The vertical type captures ability or talent and takes
one of two possible values {0, s̃}, where s̃ > 0 is the incremental per-period contribution of a talented
individual to each other member’s payoff. The horizontal type stands for race/gender/tastes/opinions
and can take two values {A,B}. A member of a given horizontal type exerts per-period externality b̃ > 0
on members of the same type, but not on members of the opposite type, and this regardless of their
talent.9,10,11

We thus assume that each member derives utility from:

(i) colleagues’ ability, i.e. the vertical attributes of members of the organization,

(ii) homophily over tastes: ceteris paribus, each member prefers colleagues who share their horizontal
type.

In each period, there are two candidates for the opening, one with the same horizontal type as the orga-
nization’s majority, the other with the same horizontal type as the organization’s minority. Candidates
apply to become members only once12. The candidates’ types are observable prior to the vote13. The
emergence of candidates is for the moment exogenous. The two-candidate assumption involves no loss
of generality as all members of the organization always prefer the best candidate of a given horizontal
type to any candidate of the same type but with lesser talent, and are indifferent if there are multiple

9We refer to a majority member as "he", to a minority member as "she", to a generic organization member as "they"
(using the classic form of the epicene singular pronoun), and to the principal – whenever there is one – as "it".

10The case b̃ < 0, corresponding to negative homophily – e.g. envy towards the likes, or extreme preference for diversity,
etc. (see for instance Bagues and Esteve-Volart 2010) – can be easily accommodated in our model. Indeed, anticipating
on the notation and our model’s behavior, the set of possible flow payoffs in any period writes as {s̃, 0, s̃+ b̃, b̃}. Hence, for
b̃ < 0, two cases must be distinguished:
• s̃+ b̃ < 0 (i.e. −1 < s̃/b̃ < 0): the majority always votes for the minority candidate. The majority size converges to
k, which is an absorbing state. The majority then switches and control alternates between the two groups.

• s̃ + b̃ > 0 (i.e. s̃/b̃ < −1): the majority votes for the most talented candidate with a tie-breaking rule in favour of
the minority candidate.

The simplicity of the analysis when b̃ < 0 stems from the fact that there is then no trade-off between "quality" and "control"
for the majority.

11Members may enjoy direct homophily benefits, associated with the desire of sharing identity (political or other) or
interests (say, similar leisure activities) with fellow members. Homophily benefits may be more instrumental/ indirect.
Having like-minded members on board allows one to weigh on organizational decisions and the sharing of private benefits:
more committees are filled by in-group members and more suggestions favorable to the group are made. As an illustration,
suppose that each member looks for a project and that search is optimally directed towards projects that favor the in-group
more than the out-group (but are nonetheless rubberstamped by the out-group). Then homophily benefits are linear if
projects are unrelated, and concave if there is rivalry among them (see Section 2.4 for non-linear homophily benefits).

12We relax this "non-storability" assumption in Section 5.1. It is made in the baseline model for the sake of exposition,
as we thereby avoid the introduction of a second state variable.

13We relax this assumption in Section 3.1.
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"best" candidates of a given horizontal type.
Let s ≡ s̃/

[
1− δ0(1− 2/N)

]
denote the expected incremental lifetime contribution of a new talented

(relative to mediocre) addition to each current member of the organization14. We similarly denote by
b ≡ b̃/

[
1− δ0(1− 2/N)

]
the expected lifetime homophily utility for an incumbent member generated by

a new in-group member. So, member ι receives date-t flow payoff

uι,t = n−ι,ts̃+m−ι,tb̃

where n−ι,t ≤ N − 1 is the number of talented colleagues and m−ι,t ≤ N − 1 is the number of in-group
colleagues at date t.15

The decision rule is the majority rule, with each of the 2k − 1 members of the organization at the
time of the vote having one vote. We denote in the following the size of (number of individuals in) the
majority by M ∈ {k, k + 1, ..., 2k − 1}. We will say that the majority is tight if M = k.

In order to make things interesting, we assume s > b. Otherwise, systematically voting for the
majority candidate would yield the highest possible continuation payoff for the majority, and the majority
would always move toward perfect homogeneity; put differently, when s < b, quality considerations do
not affect electoral outcomes and the majority keeps coopting majority candidates.

We let x denote the probability that the majority (or minority) candidate is more talented (i.e. has
vertical type s while the other candidate has vertical type 0), and thus (1 − 2x) is the probability that
they are equally talented (either both of quality s or both of quality 0). Let α denote the probability
that both are of talent s conditional on both being equally talented. Thus the probability of an in- or
out-group candidate being of type s is equal to x ≡ x+ (1− 2x)α.

Our basic equilibrium concept is perfect equilibrium in sequentially weakly undominated strategies16.
We rule out weakly dominated strategies so as to ignore coordination failures in which, say, a majority
member votes for an unfavored candidate because other majority members also do. Concretely, each
majority member votes as if he were pivotal, i.e. as if he chose the candidate.17

A specific subclass of equilibria restricts attention to strategies that further satisfy symmetry and
Markov Perfection. Such strategies embody both symmetry (the behavior of A and B majorities are the
same) and Markov Perfection (as the talents of incumbent members are no longer payoff-relevant in the
sense of Maskin-Tirole 2001: a majority member’s von Neumann-Morgenstern payoff function does not
depend on their own talent or that of other majority or minority members). We call these symmetric
Markov Perfect Equilibria (symmetric MPEs).

Within this latter class, we will first look for equilibria in strategies satisfying:

(i) Members of the majority (all) vote for the majority candidate if the latter is equal or superior in
talent.

14The term δ0(1−2/N) stems from the conditioning on both the current member and the newly recruited one still being
in the organization in the next period.

15Alternatively we could assume that a talented member derives a "quality payoff" from her own talent, which would thus
write as s̃/(1 − δ) 6= s. Such an assumption would leave the existence conditions unchanged, and would only marginally
alter the expressions of welfare in Sections 2.2 and 6, while leaving the insights unchanged. We thus omit this possibility
for notational simplicity.

16We refer to Acemoglu et al (2009) for a theoretical treatment of refinements in voting games. Technically, the relevant
concept is their “Markov Trembling Hand Perfect Equilibrium”, since the sequential elimination of weakly dominated
stategies is feasible only with a finite horizon.

17Since we rule out coordination failures within the majority, the minority’s behaviour is irrelevant (there is no absenteeism
for the moment).
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(ii) Members of the majority (all) vote for the majority candidate with probabilities {σ(M)}M∈{k,...,N−1}

with σ(M) ∈ {0, 1}, when the minority member is more talented.

We will say that the majority switches if it changes side. Consequently, for any symmetric MPE such
that majority never switches, the majority candidate is chosen with probability 1 whenever the majority
is tight (i.e. σ(k) = 1). We will say that the organization (or, equivalently, the majority) is:

• meritocratic if σ(M) = 0 for all M ;

• entrenched if it favors a mediocre majority candidate over a talented minority one only when
majority is tight (M = k), i.e. if σ(k) = 1 and σ(M) = 0 for all M ≥ k + 1;

• entrenched at level l if σ(M) = 1 for M ∈ {k, ..., k + l}, and σ(M) = 0 for M ≥ k + l + 1.
Correspondingly, the organization (or the majority) is super-entrenched if it is entrenched at some
level l ≥ 1;

• fully entrenched if σ(M) = 1 for all M .

For future use, we will refer to the meritocratic and entrenched equilibria as the canonical equilibria.

2.1 Equilibrium characterization and existence results

Since in a Markov Perfect equilibrium, the present discounted value of benefits from other incumbent
members plays no role, we do not include the legacy term in the expression of the value functions. For
any group size i ∈ {1, ..., N − 1} just before candidacies are declared, we denote the value function of an
individual in the given group by Vi: Vi is the expected discounted value of flow payoffs brought about by
colleagues who will be coopted later in the period and in the future. Vi is a majority (resp. a minority)
member’s value function when i ≥ k (resp. i < k).18

We focus on the two types of equilibrium which we refer to as "canonical equilibria". This specific
attention will later be vindicated by Proposition 1, which establishes that (a) there always exists a
canonical equilibrium, and that (a) all symmetric Markov Perfect equilibria are canonical.

Before deriving the necessary and sufficient conditions for the existence of each canonical equilibrium,
we briefly investigate some properties of the value functions of majority and minority members under
such strategies. Figure 2 illustrates the following lemma.

Lemma 1. (Properties of value functions in the meritocratic (m) and in the entrenched (e)
equilibria)

(i) (Majority value function) For i ∈ {k, ..., 2k − 2}, V e
i is increasing in i and has decreasing dif-

ferences19, strictly so if and only if s > b and x > 0. Similarly, V m
i is increasing in i and has

decreasing differences, strictly so if and only if b > 0 and x < 1/2.
18Put differently, for any majority sizeM ∈ {k, ..., N−1}, VM is the value function of a majority member, while VN−1−M

is the value function of a minority member.
19By "decreasing differences" (resp. "increasing differences"), we refer to the following concavity (resp. convexity)

property:

|Vi+1 − Vi| ≤ |Vj+1 − Vj |
(
resp. |Vi+1 − Vi| ≥ |Vj+1 − Vj |

)
whenever j < i

7



Figure 2: Properties of value functions in the meritocratic and in the entrenched equilibria.

(ii) (Minority value function) For i ∈ {1, ..., k−2}, V e
i is decreasing in i and has increasing differences

in i, strictly so if and only if b > 0, or s > 0 and x > 0. By contrast, for i ∈ {1, ..., k − 1}, V m
i is

increasing in i and has increasing differences in i, strictly so if and only if b > 0 and x < 1/2.

(iii) (Control benefits) For r ∈ {e,m} and any i ≥ k, V r
i ≥ V r

N−1−i, strictly so if and only if b > 0 and
x < 1/2 when r = m, if and only if b > 0, or s > 0 and x > 0 when r = e.

Intuition. The three parts of Lemma 1 can be grasped as follows:

(i) The majority always picks its "myopically optimal" favorite candidate except in the entrenched
equilibrium when M = k, where "myopically optimal" refers to the choice it would make in the
absence of future elections or, equivalently, if future decisions did not hinge on the current one.
The higher M is, the more remote the picking of a myopically suboptimal decision (entrenched
equilibrium) or the loss of control (meritocratic equilibrium).

(ii) The intuition underlying the concavity/convexity of the value function for minority members is
analogous to the one for majority members. The impact of moving further away from the tight-
majority state fades progressively. The sign of the impact depends on the equilibrium: in the
entrenched (resp. meritocratic) equilibrium, the further away from minority’s size k − 1, the
smaller the additional loss (resp. benefit) of getting one step closer to k − 1.

(iii) As discussed above, there is a benefit from control – if only because the majority members could
vote like the minority members if they wanted to –. More precisely, the majority’s benefit from
control stems from the majority’s homophily rent, i.e. the homophily payoff that accrues to majority
members whenever candidates have the same talent (and which involves no loss of efficiency).

Proposition 1. (Canonical Equilibria)

(i) All symmetric Markov Perfect equilibria in weakly undominated strategies are canonical.
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Figure 3: Existence regions for meritocratic and entrenched equilibria over the s/b line.

There exists finite thresholds ρe and ρm satisfying: 1 ≤ ρm < ρe < +∞, such that

(ii) The entrenched equilibrium exists if and only if s/b ≤ ρe,

(iii) The meritocratic equilibrium exists if and only if s/b ≥ ρm.

(iv) Patience fosters entrenchment: for any δ, ∂ρm/∂δ ≥ 0, and ∂ρe/∂δ ≥ 0.

Figure 3 describes the existence regions over the line s/b for given x, δ. For s/b close to 1, there
is little cost for the majority to select an untalented peer over a better qualified minority candidate.
But there is a benefit from keeping control: whenever both candidates have the same ability, majority
and minority voters differ on the candidate they would like to recruit, regardless of any control benefit.
Hence, being in the majority allows to pick the majority candidate, yielding a homophily benefit and no
cost in terms of quality. And so the majority is entrenched.

As the ratio quality/homophily payoffs s/b increases, the cooptation game moves from a (bounded)
region where only the entrenched equilibrium exists, to an intermediate (bounded) interval where both
equilibria coexist. As s/b continues to increase, it reaches the (half-line) region where only the merito-
cratic equilibrium exists.

As the discount factor increases, the existence region of the meritocratic equilibrium shrinks while
that of the entrenched equilibrium widens. These comparative statics are intuitive as when members
become more patient, the cost of losing the majority to the outgroup increases.

Remark. If x = 1/2, i.e. the probability that both candidates have the same vertical type is nil, then
ρm = 1: for any s ≥ b, there exists a meritocratic equilibrium. The result is intuitive, as there is no pure
benefit from control.

2.2 Welfare

2.2.1 Non-ergodic welfare.

We first consider current members’ welfare, defined as their total surplus (generated by both quality
and homophily), at any given legacy and period. We refer to this welfare notion as "non-ergodic welfare".
As it turns out, the meritocratic equilibrium is preferred to the entrenched equilibrium by all members of
the organization. At any given majority size, minority members obviously prefer the meritocratic equi-
librium, while majority members, who can always select to be entrenched, weakly prefer the meritocratic
equilibrium which delivers a higher payoff when surrendering control.

Proposition 2. (Non-ergodic welfare) Whenever the meritocratic and the entrenched MPE coexist,
i.e. for s/b ∈ (ρm, ρe), at any majority size the meritocratic equilibrium is preferred by all members of
the organization to the entrenched equilibrium.
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2.2.2 Ergodic aggregate welfare.

We now draw an aggregate-welfare comparison between entrenchment and meritocracy in their re-
spective ergodic distribution from the ("objective") perspective of a principal or third-party putting at
least as much weight on quality as on homophily benefits. We first describe the ergodic distributions
of majority sizes. Since payoffs in a given period accrue after the current-period vote and before the
next-period departure, we are interested in the end-of-period distribution of majority sizes. Index the
end-of-period majority size by i ∈ {k, ..., N}. Let νr

i denote the ergodic probability of state i at the end
of a period in regime r ∈ {e,m} (see Appendix E for their expressions).

Lemma 2. (End-of-period ergodic distributions) The probability distribution {νe
i } strictly first-

order stochastically dominates {νm
i }.

Ergodic quality. By taking the fixed point of the dynamic equation for (expected) aggregate quality
in the ergodic state20, one has

Sm ≡ N(N − 1)
(
x+ x

)
s̃

Se ≡ N(N − 1)
[
νe
k+1

k + 1
N

x+
(

1− νe
k+1

k + 1
N

)(
x+ x

)]
s̃

Unsurprisingly, the ergodic efficiency of a meritocratic organization always exceeds that of an entrenched
one:

Sm − Se = N(N − 1)νe
k+1

k + 1
N

xs̃ > 0.

Ergodic homophily benefit. For regime r ∈ {e,m}, the aggregate per-period homophily benefit writes

Br ≡
N∑
i=k

νr
i

[
i(i− 1) + (N − i)(N − i− 1)

]
b̃

An entrenched organization always dominates a meritocratic one in terms of ergodic aggregate ho-
mophily benefit (Bm < Be): (a) the function

(
i 7→ i(i − 1) + (N − i)(N − i − 1)

)
is strictly increasing

for i ∈ {k, ..., 2k}, and (b) the probability distribution {νe
i } strictly first-order stochastically dominates

{νm
i } from Lemma 2.

Ergodic aggregate welfare. Define the ergodic per-period aggregate welfare in regime r ∈ {e,m} as
W r ≡ qSr +Br, with q ≥ 1, allowing for external spillovers of the organization’s quality.

Proposition 3. (Ergodic per-period aggregate welfare) For any s > b, Wm > W e, i.e. the
meritocratic equilibrium dominates the entrenchment equilibrium in terms of ergodic per-period aggregate

20The aggregate quality at the end of period t+1 is the aggregate quality at the end of period t minus the (expected) loss
due to a member’s departure, plus the (expected) contribution of the recruited candidate. For the meritocratic equilibrium,

Sm
t+1 =

N − 1
N

Sm
t + (N − 1)[x+ x]s̃

Similarly for the entrenched equilibrium,

Se
t+1 =

N − 1
N

Se
t + (N − 1)

[
νe
k+1

k + 1
N

x+
(

1− νe
k+1

k + 1
N

)[
x+ x

]]
s̃
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welfare, when the latter puts at least as much weight on quality as on homogamy.

2.3 A continuum of vertical types

We have assumed so far that talent can take only two values. We show in this section that our
previous insights still hold when talent is continuously distributed within a class of equilibria: (i) a
stronger majority engages in more meritocratic recruitments, and (ii) whenever several equilibria coexist,
they can be ranked from more to less meritocratic, and Pareto-compared.

We look for equilibria that can be described as a sequence of cut-offs (∆M )M∈{k,...,N−1} such that
whenever a majority of size M recruits the out-group candidate with (discounted) talent ŝ against the
in-group candidate with (discounted) talent s if and only if ŝ− s > ∆M where ∆M > b (so the question
now is not whether there is discrimination, but how much discrimination there is). Lastly, we denote by
≺ the order relation defined over the set of decision rules such that ∆ ≺ ∆′ if and only if ∆M < ∆′M for
all M ∈ {k, ..., N − 1}. We will then say that the former decision rule is more meritocratic.

Let G be the set of continuous joint distributions of (s, ŝ), i.e. resp. the quality of the majority
and the minority candidate, with support21 [0,+∞)2 such that E[max(ŝ, s + b)] < ∞, and (ŝ − s) is
symmetrically distributed around 0 with P(ŝ − s > b) > 0 and such that, letting the function h be
defined by

h(∆) ≡ E
[
(s+ ∆)1{ŝ− s ≤ ∆}

]
+ E

[
ŝ1{ŝ− s > ∆}

]
,

the functions [h(∆)−∆/2] and [∆− h(∆)] are strictly increasing with ∆ ∈ (b, s) where s = sup(ŝ− s).
This set includes the set of (full support) continuous joint symmetric distributions. It also includes the
case where the majority candidate has a fixed type s ≥ 0 and the minority candidate a type s + D

where D is a (full support) random variable with a continuously differentiable distribution over (−s, s)
symmetric around 0.

Proposition 4. (A continuum of vertical types) Assume talent is distributed according to a joint
distribution G ∈ G. Then there exists a non-empty class of equilibria such that the sequence (∆M )M is
strictly decreasing: a stronger majority discriminates less than a weaker majority. Moreover, any two
equilibria within this class, with distinct decision rules ∆ and ∆′, can be ranked by the order relation ≺.
If ∆ ≺ ∆′, then the equilibrium characterized by the decision rule ∆ (which is more meritocratic than
the one described by ∆′) is preferred, for δ small, at any majority size by all members of the organization
to the latter.22,23

2.4 Non-linear homophily benefit

A non-linear homophily benefit does not require enlarging the state space, as the size of the majority
is still a sufficient statistics looking forward. While the homophily benefit of an extra in-group member

21We show the result more generally (i.e. also for distributions with finite support) in Appendix G.
22We further show in the Appendix that for any δ, any "meritocratic" equilibrium (i.e. with ∆k < s) is preferred at any

majority size by all majority members to the entrenched equilibrium (∆k = s), if these coexist.
23As a consequence, given a joint distribution G ∈ G, in any equilibrium within this class, whenever the majority is not

tight, it recruits a minority candidate with a strictly positive probability. In addition, we show that for distributions such
that P(ŝ− s > ∆) > 0 for any ∆ <∞, in any equilibrium within this class, the majority recruits a minority candidate with
a strictly positive probability at any majority size. Hence control switches happen with strictly positive probability.
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depends on future hirings under a non-linear homophily benefit, the key trade-offs (driven by meritocracy
vs. control) are not affected.

Let B̃(i) denote the per-period homophily benefit enjoyed by a member whose in-group has size i
(thus, in the linear case, B̃(i) ≡ (i− 1)b̃).

(a) Concave homophily benefit. Suppose, first, that B̃(i) is concave in the number of in-group mem-
bers i, and that B̃(k+ 1)− B̃(k) < s̃ (otherwise super-entrenchment obtains24). The same analysis as in
Section 2.1 shows that the equilibrium is either meritocratic or entrenched.

The concavity of B̃(i) may favor entrenchment or meritocracy. If B̃(i) ≡ (i − 1)b̃ for i ≥ k, then
concavity favors entrenchment, as the payoff under entrenchment is the same as in the fully-linear-
homophily-benefit case, while the payoff under meritocracy is smaller. Symmetrically, if B̃(i) ≡ (i− 1)b̃
for i ≤ k, the benefits of entrenchment are smaller under concavity while losing control has identical
costs. Overall, concavity has ambiguous effects on the prevalent equilibrium.

(b) Convex homophily benefit. The analysis requires some adaptation in the case of convex homophily
benefits25. We do not offer a full analysis, and content ourselves with the following observation. Suppose
that the homophily benefit is linear up to i = N −1, but a large payoff accrues from full homogeneity (so
that B̃(N)− B̃(N − 1) is larger than s̃). Then the organization may be meritocratic for small majorities
and no longer so for large ones: the majority’s expected cost of building a full majority (and maintain-
ing it thereafter) becomes smaller as the majority size increases. While the ergodic state exhibits full
entrenchment, the dynamics differ from the other instances of full entrenchment exhibited in the paper
and may be meritocratic for a while.

Observation 1. The analysis carries over to concave homophily benefits. By contrast, convex
homophily benefits may give rise to new organizational dynamics.

3 Super-entrenchment

The most obvious case for super-entrenchment is s ≤ b, which indeed leads to full entrenchment. We
just noted that concave homophily benefits may lead to super-entrenchment. Section 6 will show that
some well-meaning interventions may have the unintended consequence of incentivizing the majority to
be super-entrenched. Besides these three reasons, four other drivers of super- and full-entrenchment are
studied in this section.

3.1 Homogamic evaluation capability

We have assumed so far that all members are equally proficient at evaluating the talents of in- and
out-group candidates. However some environments exhibit an asymmetry in this ability. For example,
econometricians are better placed than development economists to evaluate an econometrician, and con-

24Namely, if there exists l ∈ {1, ..., k − 1} such that

B̃(k + l)− B̃(k + l − 1) > s̃ > B̃(k + l + 1)− B̃(k + l),

then the only equilibrium is super-entrenchment at level l. Indeed, the myopically optimal choice allows the majority to
keep control. Hence it can guarantee itself the upper bound on its payoff.

25Convexity may arise for instance when facilities or regulations must be added to accommodate the existence of a
minority, or if a group’s reaching a critical size delivers additional opportunities to its members.
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versely. This section investigates how the analysis is affected when only in-group evaluation is feasible.26

The majority still selects the majority candidate if the latter has quality s. So we can focus on
the situation in which the majority candidate has quality 0. The conditional quality of the minority
candidate is then

s† ≡ x

x+ (1− 2x)(1− α)s = x

1− xs

Two mutually exclusive cases must be distinguished.
Case 1: b ≥ s†. This case arises when correlation is high (x low) and average quality low (x low),

so the majority is pessimistic about the minority candidate’s talent when its own candidate lacks talent.
[Departing from the Bayesian framework, case 1 would also be more likely if the majority members had
a rather negative stereotype about minority members’ talent.]

When b ≥ s†, the majority is fully entrenched: it keeps admitting solely majority candidates and ends
up being homogeneous. This implies that imperfect information (in the form of homogamic evaluation
capability) may transform an entrenched or meritocratic organization into a fully entrenched one.

Case 2: b < s†. For case 2 to arise, majority members need to be sufficiently optimistic about the
average quality of minority candidates. That is, the draws in talent must be sufficiently uncorrelated (i.e.
x large) and the average ability of a candidate high enough (i.e. x large). [Had we assumed non-Bayesian
beliefs, a further condition would have been the absence of prejudice about the minority.]

We provide intuition for the results before starting the analysis. When b < s†, the model becomes
similar to our baseline setup, yet with two crucial changes:

(i) The probability that the minority candidate is assessed by majority members as strictly more
talented (in expectation) than the majority one increases from x to x† ≡ x+ (1− 2x)(1− α) > x.
In other words, minority candidates may get the benefit of the doubt.

(ii) The stand-alone cost of an entrenched vote is smaller as s† − b < s− b.

We show that, except perhaps when the majority is tight (M = k), whenever the majority candidate
lacks talent, the majority gives the benefit of the doubt to, and picks the minority candidate. This
means that the minority candidate may be selected even though the two candidates are equally talented.
The majority candidate is selected with probability 1 − x† and the minority candidate is selected with
probability x†. The homogamic choice has probability below 1/2 if and only if α < 1/2. Even more
strikingly, for α < 1/2, the majority’s choice then makes the minority happier about the choice than the
majority itself: the expected quality benefit from the appointment is the same for both groups, while the
homophily benefit is (1−x†)b for a majority member and x†b > (1−x†)b for a minority member. Hence,
there is a curse of control27. We show that for α < 1/2 the two canonical equilibria still obtain: as is
intuitive, the meritocratic one then exists for any s† > b, while the entrenchment one exists in a bounded
region. Indeed, while the existence of the latter might seem surprising, it results from the following

26Our analysis in this section is related to literature on asymmetric evaluation capability – see for instance Moldovanu-Shi
(2013) –, although to our knowledge, our cooptation-oriented approach is new.

27This effect may depend on our modelling assumptions. When the majority candidate lacks talent, majority members
would presumably prefer to postpone the recruitment, de facto deneging the benefit of the doubt to the minority candidate.
Our model rules out this option by assuming a recruitement must be made in each period – e.g. because it is too costly
for the organization to go under-staffed for one period.
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trade-off: although the minority benefits more from the new recruit than the majority whenever the
majority size is not tight, the opposite holds when M = k, which happens frequently since x† is high.

The same arguments as with perfect information apply, with the appropriate changes in payoffs and
with x† replacing x in the transition probabilities. We focus on the following two equilibria which are
the analogs of the perfect-information canonical equilibria.28

Proposition 5. (Canonical equilibria with homogamic evaluation capability)

(i) If b ≥ s†, the majority coopts only candidates of the in-group and therefore becomes homogeneous.

(ii) If b < s† (i.e. s/b > x†/x), there exists an equilibrium in which for all M ≥ k + 1, the majority
votes for the majority’s candidate if talented, and for the minority’s candidate (of unknown talent)
otherwise. There exist finite thresholds ρe† and ρm† satisfying29

• The entrenched equilibrium (in which the majority always chooses the majority candidate for
M = k) exists if and only if s/b ≤ ρe†.

• The meritocratic equilibrium (in which the minority candidate is elected against an untalented
majority candidate even for M = k) exists if and only if s/b ≥ ρm†.

Remark: Cheap talk. One may wonder whether communication could help the majority select a
candidate. The answer is that, for x† ≤ 1/2, cheap talk cannot operate in this environment due to a
form of winner’s curse. Because the majority picks its candidate whenever talented, the minority infers
that whatever message it sends can only have an impact when the majority candidate is untalented.
Conditional on a low-quality majority candidate, the minority always prefers its own candidate, and so
any message sent to the majority is necessarily uninformative.

Remark: Intermediate assessment abilities. We have so far assumed that a group is able to access the
quality of outgroup members either perfectly or not at all. Intermediate assessment abilities would give
rise to additional and interesting insights. One might imagine in particular that having more minority
members in the organization brings more familiarity with their characteristics and therefore an enhanced
ability to assess outgroup candidates’ ability. We conjecture that dynamics similar to those of Section
4 for endogenous candidacies would then arise: the majority may then want to voluntarily engage in
(limited) affirmative action for “talent intelligence” purposes; virtuous and vicious circles would similarly
emerge.

3.2 Uncertain voting participation and absenteeism

We have assumed so far that all members of the organization vote. Absenteeism, whether due to
illness or alternative obligations, may incentivize the majority to secure majorities of more than one vote
so as to minimize the probability of a majority switch. Even large polities may find it optimal to stand
in the way of talented minority candidates.

Returning to symmetric evaluation capability, we first model absenteeism in a general fashion before
providing an explicit illustration. Namely, for any majority size M ∈ {k, ..., N − 1}, let Λ(M) be the
probability that, because of absenteeism, a majority of size M loses the vote, i.e. that the minority’s

28As with perfect information, our equilibrium concept rules out coordination failures within the majority, and thus the
minority’s behaviour becomes irrelevant.

29If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the meritocratic equilibrium exists for all s/b ≥ x†/x.
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opinion prevails30. We assume that the majority is strictly more likely than the minority to win the vote,
and the more so, the greater the majority size, and is certain to win for sufficiently large majority sizes
(perhaps N − 1)31: Λ decreases with respect to majority size M

Λ(M) ∈ (0, 1/2) for any M ∈ {k, ..., k + l − 1}, and Λ(M) = 0 for any M ≥ k + l
(1)

While the Λ function can capture correlation in absenteeism, either within groups or across the entire
population of members, an interesting case occurs when absences are i.i.d. (the Bernoulli case). That
case satisfies (1) with Λ(M) > 0 for all M < N − 1. While we allow for a wide range of absenteeism
functions (in particular as we allow for correlation in voting turnout), condition (1) may not always be
warranted if voting participation is strategic rather than caused by exogenous events.

We look for monotonic32 symmetric MPEs in weakly undominated strategies, which indeed exist.
Remark. In contrast to the baseline model, the minority’s strategy now matters at any majority

size. Because the minority’s probability of being pivotal is positive for M ≤ k + l − 1, it is in fact an
equilibrium requirement for minority members to behave as if they picked the outcome.

Proposition 6. (Absenteeism and super-entrenchment) Let Λ satisfy (1) and x < 1/2. For s/b
sufficiently close to 1, super-entrenchment at level l is the unique symmetric MPE in weakly undominated
strategies such that a stronger majority makes (weakly) more meritocratic recruitments. The minority’s
equilibrium strategy consists in always voting for its own candidate at any majority size M ≤ k + l − 1.
Furthermore, for s/b sufficiently close to 1, in any symmetric MPE in weakly undominated strategies,
the majority is entrenched when it has size k + l.

In particular, if l = k − 1 as in the Bernoulli case, the possibility of absenteeism may trigger full-
entrenchment for any s/b sufficiently close to 1.

When Λ satisfies (1) with l < k − 1, the majority is "safe" at any majority size M ≥ k + l as it still
controls the outcome with probability 1. Therefore, meritocracy, i.e. picking the minority candidate
whenever she is strictly more talented, is optimal at these majority sizes.

3.3 Other drivers of the size of entrenchment

The model captures the private and social costs and benefits of entrenchment. The strong ability of
the majority to control majority switches underestimates, for at least two more reasons, the extent to
which entrenched organizations actually keep talented minority candidates at bay.33

(a) Imperfect identification of group allegiance. We introduce the possibility that a candidate be able
30We assume that absenteeism in a given period is independent of the candidates’ qualities in that given period: in

particular, absenteeism does not result from members’ strategic decisions given candidates’ types.
31Absenteeism raises the question of what happens when the numbers of majority and minority members who show up

are equal (or if no-one shows up). The key assumption behind the statement of the Λ function is that a process is in place,
which will guarantee a decision in case of such draws. One can envision a variety of such processes. For example, the
majority leader might take the decision. Or the assembly of members might reconvene as many times as is needed to break
the tie (technically, an infinite number of times if one wants to reach a decision with probability 1. Otherwise the results
are just limit results). Similarly, one could add a quorum rule given such reconvening; this quorum, for a given absenteeism
process, would generate a different Λ function, but still one satisfying our assumptions. The Λ function captures all kinds
of processes and all forms of correlation among members’ absences, as long as the process delivers an outcome.

32In the sense that a stronger majority makes more meritocratic recruitments.
33Moreover, if vertical types are continuously distributed (see Section 2.3), then in any of the equilibria of Proposition

4, the organization is never fully meritocratic.
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to mascarade as belonging to the other group and thereby be elected. Namely, we assume there is a
probability ϑ ∈ (0, 1/2) that the best candidate of the majority group34 is incorrectly identified (tagged
as belonging to majority group, when actually belonging to the minority group). To avoid having to
consider complicated disclosure strategies of misidentified members, we further assume that the real
identity of the newly elected member is revealed after the vote and before curent-period payoffs accrue.

The probability of a fully-entrenched majority with size M = N − 1 losing control, is strictly positive
and proportional to ϑk, as it takes k consecutive occurrences of “bad luck” to topple its grip on the
organization. By the usual argument35, there exists a non-empty neighbourhood of 1 such that for s/b
in this neighbourhood, the (only monotone) equilibrium is the fully-entrenched equilibrium.

This analysis of turncoats presumes that candidates identified as sympathetic to the majority may ac-
tually favor the minority. A milder version of the same idea is that candidates identified as pro-majority
may actually prefer a majority candidate, but with an intensity that is not observable at the moment
of their election. So a majority recruit may put more weight on talent relative to homophily than the
average majority member36 and therefore resist the entrenched strategy. Anticipating this possibility,
the majority might again want to be super-entrenched, so as to minimize the probability of a switch in
control.

(b) Supermajority clause for some decisions. The case in which each period, a non-hiring decision
is subject to a supermajority is similar to (locally) convex homophily benefits. We illustrate this by
considering unanimity. Assume the decision yields b̃+ for majority members where b̃+ + b̃ is significantly
larger than s̃ (and maybe yields something very negative for minority members to justify the rule). Then
the setting is similar to the example we gave for convex homophily benefits.

Observation 2. The imperfect identification of group allegiance, and the existence of supermajority
requirements for some non-hiring decisions may both give rise to super- or full-entrenchment.

4 Endogenous candidacies: Voluntary affirmative action and

virtuous/vicious spirals

Organizations may not be able to hire talents who have attractive outside options. This section first
fully characterizes organizational dynamics when outside options are exogenous, and then obtains partial
results when organizations compete. The key insights are (a) the emergence of vicious spirals in which
talented minority members, and then possibly talented majority members turn down offers, and (b) the
possibility that the organization voluntarily adopts affirmative action so as to later make itself more
attractive to talented minority candidates.

34We implicitly assume that all candidates of the majority group are equally "unreliable" (incorrectly identified with the
same probability). Alternatively, a richer modelling would allow for heterogeneity within a group: an untalented yet fully
"reliable" candidate (i.e. identified as perfectly belonging to the majority) may then be preferred to talented yet "unreliable"
candidates.

35The same argument as in Section 3.2 applies, with the probability of the majority losing the vote becoming the
probability of recruiting a minority candidate incorrectly identified.

36For example, a small fraction of majority candidates might have homophily benefit zb, where z < 1, and a preference
for the meritocratic strategy over the entrenched one favored by their colleagues in the majority.
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4.1 Exogenous outside options

We endogenize candidacies. In order to keep the model tractable, we focus on large organizations
and furthermore study the continuous-time limit of the discrete model37. When candidates have outside
options, their decision to apply to, or to accept joining the organization is both forward- and backward-
looking. It depends on the identity of the majority group, the size of its majority and the average quality
of incumbent members. The complexity added by the legacy quality’s relevance leads us to focus on a
large organization, for which the equilibrium can be described through a phase diagram.

The organization has a unit mass of members. Time is continuous. Between times t and t + dt, a
fraction χdt of incumbent members exits, and χdt new members are coopted. During this interval of
time, there is a large number of untalented candidates of each group, as well as xχdt talented candidates
from each group, where x < 1/2. Candidates have a death rate equal to χ inside or outside the organi-
zation (their discount rate is r + χ, where r is the pure rate of time preference).

Talented and untalented candidates differ in their outside option. Talented candidates obtain flow
payoff ũdt outside the organization, untalented ones a zero flow payoff. So a talented candidate accepts
an offer if and only if their utility, i.e. the discounted sum of their flow payoffs, is greater than or equal
to the outside option ũ/(r+χ), while an untalented candidate always accepts an offer. We will first look
for equilibria in which only the talented minority candidates’ participation constraint is binding.

Candidates’ participation decisions are intertemporal strategic complements. For the sake of simplic-
ity, we shall focus on equilibria in which there are no intertemporal coordination failures among talented
candidates of the same group or different groups.

Letting M ∈ [1/2, 1] denote the majority’s size and S the fraction of talented members (so that the
current quality of the organization is equal to Ss̃), the flow payoff of a minority member is

Ss̃+ (1−M)b̃

Let σ1 (resp. σ2) denote the fraction of talented candidates of the majority (resp. minority) who are
selected by the majority – later on, we will note that in equilibrium σ1 = σ2 = 1. Let σ0 denote the
fraction of remaining slots

(
1− x(σ1 + σ2)

)
that are allocated to untalented majority candidates. Thus,

σ0 < 1 indicates some voluntary affirmative action (the majority selects untalented in-group candidates
over equally untalented out-group ones).

First, note that in large organizations the majority is freed from the vagaries of a random pool of
candidates, and, due to symmetry, never faces a tradeoff between sacrificing quality and losing control38.

37For the sake of consistency, we investigated the discrete model for an arbitrary size, under a minimal information
assumption; the material is available upon request from the authors.

38 The main drawback of this deterministic model of large organizations is that control is no longer an issue (indeed,
meritocracy allows the majority to keep control in the bare-bones version of the model). This feature is inconsequential for
the investigations of various dynamics under entrenchment, as is the case here. Furthermore, one can reintroduce control
concerns in the large-organization model by adding persistent shocks. For example, the relative absenteeism of the majority
vs. minority members might follow a Brownian motion.
Another (but asymmetric) case would be one in which there are more talented B-candidates than talented A-candidates:

xA < xB . If xB > 1/2 and if there is still a benefit from control (xA + xB < 1), then an A-majority may face a tradeoff
between engaging in affirmative action in order to attract talented B-candidates, and retaining control. We provide an
illustration in the case where there are no outside options. Assume for instance that between times t and t+ dt, there are
xAχdt (resp. xBχdt) talented candidates from group A (resp. B), where xA < 1/2 < xB and xA + xB ≤ 1 (as well as a
large number of untalented candidates of each group, as before). Whenever control is not at stake, the majority still favours
talented out-group candidates over untalented in-group ones. Yet consider an A-majority with size 1/2. The majority may
then either relinquish control, in which case the flow quality (resp. homophily) payoff of A-members will converge toward
(xA+xB)s̃ (resp. xAb̃), or keep control, in which case the flow quality (resp. homophily) payoff of A-members will converge
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We look for an equilibrium such that the majority solves an optimal control problem, without having
to worry about the possibility of losing control39. Given that control is no longer a consideration in
formulating strategies, both the majority and the minority prefer to take talented candidates as long as
the extra flow payoff from a talented candidate exceeds the homophily benefit, which we keep assuming,
and so σ1 = σ2 = 1 whenever the participation constraint of each type is met.

Lastly, we define the expected intertemporal utilities: s ≡ s̃/(r + 2χ), b ≡ b̃/(r + 2χ) and u ≡
ũ/(r + 2χ).

We make the following assumptions:
(The organization may attract minority talents) Under parity and meritocracy, talented members receive
a positive net surplus:

u < 2xs+ b

2 (2)

(Minority talents’ outside option constrains the majority) A talented minority candidate does not want to
join a strongly homogenous organization, even a high-quality one: A steady-state absence of affirmative
action (namely, σ0 = σ1 = σ2 = 1) is bound to put off talented minority candidates:

2xs+ xb < u (3)

These two assumptions together will later guarantee the existence of an interior steady state with majority
size:

1
2 < M∗ ≡ 2xs+ b− u

b
< 1

In the region of the parameter space in which talented minority candidates accept to become members
(regions 1 and 2 below), the flow-quality dynamics are given by

dS

dt
= χ

[
− S + 2x

]
These dynamics are autonomous and converge monotonically to S∗ ≡ 2x. Those for the majority size
by contrast depend on the majority’s strategy and therefore on the state {St,Mt} of the organization:

dM

dt
= χ

[
−M + x+ (1− 2x)σ0(S,M)

]
toward (xA + 1/2)s̃ (resp. b̃/2). Hence an A-majority with size 1/2 chooses to relinquish control if and only if

ˆ ∞
0

e−(r+χ)t
[[
S0 − (xA + xB)

]
s̃e−χt + (xA + xB)s̃+

[
1/2− xA

]
b̃e−χt + xAb̃

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S0 − (xA + 1/2)

]
s̃e−χt + (xA + 1/2)s̃+ b̃/2

]
dt

i.e. if and only if s/b ≥ (1/2− xA)
/

(xB − 1/2).
39Namely, the majority’s program writes as

max
σ0,σ1,σ2

ˆ +∞

0
e−(r+χ)t

[
Sts̃+Mtb̃

]
dt

subject to the participation constraints of talented candidates, and the induced dynamics of St and Mt.
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The equilibrium exhibits (at most) four regions when the talented majority candidate’s outside option
is not binding:

• Region 1 (standard favoritism): when Ss+(1−M)b > u (talented minority members enjoy a surplus
in the organization), the majority favors its own candidates in the untalented group (σ0 = 1):

dM

dt
= χ

[
−M + (1− x)

]
• Region 2 (mild affirmative action to keep talented minority candidates on board): when Ss+ (1−
M)b = u, the majority selects candidates so as to maintain minority indifference between being in
the organization or outside the organization:

s
dS

dt
= b

dM

dt
⇐⇒ σ0 = 2xs+ (1− x)b− u

(1− 2x)b ≡ σ∗0

The assumption on the viability of a meritocratic organization implies that σ∗0 > 0, while the
assumption that talented minority candidates’ outside option constrains the majority implies that
σ∗0 ≤ 1. Whenever the organization reaches region 2, it monotonically converges to the steady state
(S∗,M∗), which lies in region 2.40

• Region 3 (strong affirmative action to make the organization attractive to the minority again):
when M ≤ φ(S) (for some increasing φ satisfying Ss + (1 − φ(S))b < u), the majority selects
σ0 = 0. Talented minority candidates turn down offers (they receive negative net utility until
region 2 is reached and zero net utility thereafter). Dynamics are given by

dS

dt
= χ

[
− S + x

]
, and dM

dt
= χ

[
−M + x

]
• Region 4 (giving up on minority candidates): the majority selects only majority candidates, as the
"investment cost" to make the organization sufficiently attractive to talented minority candidates
is too large. Dynamics are described by

dS

dt
= χ

[
− S̃ + x

]
, and dM

dt
= χ

[
−M + 1

]
Hence, whenever the organization reaches region 4, it monotonically converges to the steady state
(x, 1), which lies in the interior of the region.

Figure 4 depicts the phase diagram of the organization’s current quality S and majority size M when
u ∈ [2xs+ xb, 2xs+ b/2] and u < max(xs+ (1− x)b, b/2, 3xs).41

Being willing to do what it takes to attract talented minority members requires that the quality
payoff s be sufficiently high. We therefore henceforth assume:
(Affirmative action may be attractive) The majority’s flow payoff from newcomers is higher in the high-

40By contrast, if u ∈ [2xs, 2xs+ xb), region 2 would never be reached and the steady state would be given by (S∗, 1− x)
and be interior to Region 1.

41Figure 4 for complete generality allows s to exceed 2x; for instance, there might have been a more favorable supply of
talent prior to date 0.
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Figure 4: Phase diagram of the organization’s current quality S and majority size M
when u ∈ [2xs+ xb, 2xs+ b/2] and u < max(xs+ (1− x)b, b/2, 3xs).

quality steady state than in the low-quality one:

2xs+ xb+ (1− 2x)σ∗0b > xs+ b, i.e. 3xs > u, (4)

Let us check the optimality of talented minority members’ joining decision (they join the organiza-
tion in regions 1 and 2, but not in the other regions). We can distinguish two groups of regions: R+

is composed of regions 1 and 2, in which talented minority members enjoy either a strictly positive in-
stantaneous net surplus (region 1) or a zero net surplus (region 2). Because R+ is absorbing, a talented
minority member enjoys a non-negative net surplus in each future period, implying the optimality of
acceptance. R− is composed of regions 3 and 4 (and possibly 5, see below), which all deliver a strictly
negative instantaneous net surplus; even if organizational dynamics converge to region 2, which gives
them a zero net surplus, their net utility of joining overall is strictly negative.

We show in Appendix J.1 that region 3 is non-empty if and only if the following condition holds:
(Affirmative action can lure back talented minority candidates)42,43

xs+ (1− x)b− u > 0 (5)

If (5) holds, then whenever u ≤ b/2, region 3 is given by the set of states (M0, S0) such that the majority’s

42With full affirmative action (σ0 = 0), the dynamics for (Ss−Mb) write as
d

dt
(Ss−Mb) = χ

[
− Ss+Mb+ x(s− b)

]
.

Hence the minority will ever be willing to join the organization only if lim
t→+∞

(Sts+(1−Mt)b) > u, i.e. xs+(1−x)b−u > 0.
43The assumption that u ∈ [2xs+ xb, 2xs+ b/2] combined with (5) implies in particular that x < 1/3.
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sacrifice is worth the trouble starting at (M0, S0): for S0s−M0b < u− b,44

ˆ T

0
e−(r+χ)t(1− x)b

[
1− e−χt

]
dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− e−χT

]
e−χ(t−T )dt

≤
ˆ +∞

T

e−(r+χ)t(3xs− u)[1− e−χ(t−T )]dt (6)

where T is given by

T ≡ 1
χ

ln
[
M0b− S0s+ x(s− b)
xs+ (1− x)b− u

]
≥ 0

Condition (6) may thus be rewritten as: u < S0s+ (1−M0)b < u for some u > 0.
The outside option u is non-binding for talented majority members if the organization is attractive

to talented minority members (regions 1 and 2): let us thus consider their participation constraint when
Ss + (1 −M)b < u. A fifth region may exist in which the organization fails to attract any talented
candidate, and subsequently converges towards homogeneity and zero-quality. A necessary condition
for this "region 5" to be non-empty is u > b/2. Then, if this inequality holds, region 5 is in particular
non-empty for χ sufficiently close to 0 and (with additional conditions) for χ sufficiently high, i.e. if
turnover is sufficiently low or sufficiently high. The intuition underlying this result is that when turnover
is too low, the organization fails to renew its composition fast enough, whereas when turnout is too high,
members are likely to quit the organization before they could reap the benefits of quality improvement.
We provide more details in the Appendix, and summarize the key messages in Proposition 7.

Proposition 7. (Endogenous candidacies, voluntary affirmative action and virtuous/vicious
spirals in large organizations) Assume (2)-(3). There exists an MPE satisfying:

(i) Equilibrium uniqueness and steady states: There exist at least two steady states if talented can-
didates have an outside option: (M∗, S∗) ∈ {(x + (1 − 2x)σ∗0 , 2x), (1, x)}. A third steady state,
(1, 0), may exist. Both majority and minority members rank the steady state (x + (1− 2x)σ∗0 , 2x)
first, (1, x) second and (1, 0) third. There are at most 5 regions in the state space {(M,S) |M ∈
[1/2, 1], S ∈ [0, 1]}. Starting from an initial state, there exists a unique equilibrium; the organization
converges to the region’s steady state (which may or may not be interior to the region).

(ii) Path dependence: A lower initial quality S0 generates a lower steady-state quality for the organi-
zation, and a lower steady-state utility for both the majority and the minority members (if any)45.
Similarly, absent an outside option for talented majority candidates or if u − b/2 < xs, a larger
initial majority size M0 has a long-run impact pointing in the same direction as a lower initial
quality S0. By contrast, if talented majority candidates also have the outside option u and if u > b

(resp. u− b/2 < xs), a larger initial majority size M0 may enhance the organization’s steady-state
quality if it allows the organization to attract talented majority candidates and converge towards the

44As the LHS in (6) is strictly positive for T = 0 (from assumption (4)), condition (6) holds by continuity for T in a
neighbourhood of 0, i.e. for any couple (M0, S0) in a neighbourhood of the line {(M,S) |Mb− Ss = b− u}. Furthermore,
since the LHS in (6) strictly increases with T while the RHS strictly decreases with T , if condition (6) is satisfied by a
couple (M0, S0), then it holds by continuity for any initial state (M ′0, S0) such that M ′0 ≤ M0. Lastly, by monotonicity,
there exists a unique T such that (6) holds with equality. Hence the boundary between Regions 3 and 4 is an (increasing)
line in the plane (M,S).

45As S∗, M∗b+ S∗s and (1−M∗)b+ S∗s weakly increase with S0.
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steady states (x+ (1− 2x)σ∗0 , 2x) or (1, x) instead of (1, 0) (i.e. move out of region 5 into regions
3 or 4).46

(iii) Voluntary affirmative action: There exists a range of initial states (region 3)47 in which the majority
engages in voluntary affirmative action in order to get talented minority candidates back on board
in the future (and subsequently weakly reducing affirmative action).

(iv) Vicious spirals: The union of regions 4 and 5 is absorbing. The organization either converges
towards (M∗, S∗) = (1, x) or (1, 0) (the latter if and only if the initial state lies in region 5 and
u > b).

(v) Who drops out first when quality decays: In the long run, as the initial quality S0 decreases, talented
minority candidates reject the organization’s offers before talented majority candidates do.

Remark: Quits. If the organization’s talented current members also have access to the same outside
option, then the organization may lose all its talented minority members at once. Intuitively, this would
put an additional constraint on the profitability of engaging in affirmative action, thus reducing region
3. Upon losing all its talented minority members, the organization goes from a state (Mt− , St−) to a
state (Mt+ , St+) where Mt+ and St+ depend on the initial distribution of quality within each group.

4.2 Competition for talent

Competition among organizations is a rich object of study, which we leave for future work. We here
content ourselves with a partial result highlighting the analogy with endogenous candidacies; the key
difference with the case of endogenous candidacies is that outside options are strategically determined
by rival platforms.

Suppose there are two large organizations j = 1, 2. As earlier, in each time interval [t, t+ dt], there is
a mass χdt of departing members in each organization, and a mass χxdt of talented candidates of each
group, together with an unlimited supply of untalented candidates of either type. Each organization
ranks-order candidates; when confronted with multiple acceptances, candidates pick their preferred or-
ganization and the market clears by moving down the organizations’ pecking order. There are now five
state variables: {Mj(t), Sj(t)}j∈{1,2} together with whether the majoritarian groups are the same in the
two organizations. When considering an organization’s offer, candidates have no other outside option
than the other organization’s (potential) offer.

We say that an equilibrium is "group-coalition proof" if talented candidates of a group cannot deviate
from their acceptance strategies and all be better off; the equilibrium is "population-coalition proof" if
talented candidates of both groups cannot deviate from their acceptance strategies and all be better
off48. We focus on "increasing-dominance equilibria", i.e. equilibria such that (a) both organizations
recruit all talented candidates willing to join the organization, and apply homogamic favoritism among
untalented candidates; (b) one organization attracts all talented candidates; and (c) the equilibrium is

46In the steady state of region 2, the relative talent of majority vs. minority members is strictly below 1 and higher than
in the "objective state" of region 1. The talent ratio of majority vs. minority members decreases over region 5. It may
increase or decrease over regions 1, 2, 3 and 4 depending on the initial composition of the organization.

47Region 3 is non-empty if and only if (4)-(5) hold.
48These notions are in the spirit of Bernheim et al (1987).
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group-coalition proof49.
Assume organization 1 starts with a higher quality (S2(0) < S1(0) ≤ 2x)50 and, say, majoritarian

group A, while organization 2 starts with a B majority51. If all talented candidates choose organization
1, the dynamics of the state variables are given by:

dS1

dt
= χ(−S1 + 2x), dS2

dt
= −χS2,

dM1

dt
= χ(−M1 + 1− x), dM2

dt
= χ(−M2 + 1)

Group-coalition proofness for talented B-candidates is satisfied if they would not contemplate a collective
deviation to joining organization 2:

ˆ ∞
0

e−(r+χ)t
[[
S1(0)− 2x

]
s̃e−χt + 2xs̃+

(
1−

[
M1(0)− (1− x)

]
e−χt − (1− x)

)
b̃

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S2(0)− x

]
s̃e−χt + xs̃+

[
M2(0)− 1

]
b̃e−χt + b̃

]
dt

i.e. if and only if the differential in the initial value proposition exceeds a (turnover-and-interest-rate
weighted) long-term loss (benefit if negative):52

[
S1(0)− S2(0)

]
s+

[(
1−M1(0)

)
−M2(0)

]
b ≥ χ

r + χ

[
(1− x)b− xs

]
(7)

Pursuing the analysis along these lines, we can show:

Proposition 8. (Increasing-dominance equilibria) Suppose that organization 1 starts with an A-majority
and higher quality (S1(0) > S2(0)) than organization 2, which starts with a B-majority. There exists
ρ0 > 0 such that

• for s/b < ρ0, there exists no increasing-dominance equilibrium,

• for s/b ≥ ρ0, there exists an increasing-dominance equilibrium in which all talented candidates
join organization 1. There is no other such equilibrium if the initial quality differential is large
(S1(0) − S2(0) > xχ/(r + χ)), while for a smaller initial differential and if s/b is greater than
some threshold ρ1 ≥ ρ0, there exists another such equilibrium, in which all talented candidates join
organization 2.

5 Anterooms for appointments

We have so far viewed the appointment process as an organizational choice between coopting candi-
dates and letting them go away for good. While a first step, this assumption ignores the possibility that
appointments may result from a dynamic process operating outside or inside the organization. First,
turned-away candidates may be persistent and later reapply. Second, the organization may groom ju-

49Appendix K investigates the population-coalition proofness of these equilibria, showing in particular that this property
is self-reinforcing over time.

50Our analysis applies to any initial qualities Sj(0) ∈ [0, 1], yet for the sake of exposition we assume Sj(0) ≤ 2x.
51Alternatively, insights are unaltered if it starts with an A majority (see Appendix K).
52The group-coalition proofness condition for talented A-group candidates is a fortiori satisfied when (7) is:[

S1(0)− S2(0)
]
s+
[
M1(0)−

(
1−M2(0)

)]
b ≥ −

χ

r + χ

[
(1− 2x)b+ xs

]
.
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nior members for possible promotion to senior positions. This section analyzes in sequence these two
possibilities, which display several similarities.

5.1 Candidates can re-apply

We investigate the consequences of unselected candidates being able to re-apply. "Stored" candidates
keep re-applying until they are recruited53. For the sake of exposition, we make a further simplyfing
assumption: α = 0, so that in any period, the new majority and the minority candidates are equally
talented if and only if they both are untalented (which happens with probability (1 − 2x)), and the
unconditional probability that a new candidate is talented is given by x = x. This assumption implies
that under meritocratic hiring, talented candidates are always hired and so the ability to re-apply is
irrelevant on an equilibrium path.

Proposition 9. (Reapplying for membership) Assume α = 0. Entrenchment yields the majority
a higher value when candidates reapply than when they cannot: being able to "keep in store" a talented
minority candidate when the majority is tight reduces the cost for the majority of turning down her
application. Moreover, the existence region for the meritocratic equilibrium shrinks when the organization
can store applications.

5.2 Hierarchies and the glass ceiling

The expression “glass ceiling” refers to the difficulty for women (or minorities) to rise beyond a certain
level in a hierarchy. While there are various hypotheses for its existence, whose relevance is reviewed
in Bertrand (2018), we here investigate whether non-meritocratic cooptation might be a factor. Even
if male dominance and favoritism contribute to discrimination against women, it is not a priori obvious
that they imply a lower rate of promotion for women and therefore a glass ceiling.

Consider a large two-tier organization with a mass 1 of senior positions and a mass J > 1 of junior
positions. A higher J corresponds to a “more pyramidal” organization. Between times t and t + dt,
a fraction χSdt of seniors departs and is replaced by juniors promoted to seniority; a fraction χJJdt

of juniors departs as well. To offset these two flows out of the junior pool, a fraction χ̂Jdt of new
juniors is recruited (where Jχ̂ = χS +JχJ). The flow of talented majority (minority) candidates is Xdt.
We will assume that X ≤ Jχ̂ (otherwise the organization would be homogenous, and the absence of
minority juniors would deprive us of an analysis of the glass ceiling). Seniors have control over hiring
and promotion decisions.

A glass ceiling in such hierarchical organizations results from control being located at the senior level.
This operates through two channels:

• Concern for control: as earlier in the paper, control allows groups to engage in favoritism. Because
control is located at the senior level, this in turn implies some discrimination in promotions, which
in general exceeds that at the hiring level (if any). As noted in Section 4.1, a concern for control
and the concomitant discrimination may arise even in large organizations, either because of shocks,
or because the talent pool is larger in the minority (see footnote 38).

53Our results would still hold if we assumed instead that "stored" candidates stopped re-applying following some Poisson
process.
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• Differential mingling effect: for organizational reasons, senior members tend to hang around more
with senior members than with junior ones. Their homophily concerns are therefore higher for
promotions than for hiring decisions.

Because the second effect is at this stage of the paper newer, we illustrate it through a simple example,
which can be much enriched in ways that we later discuss. Assume that senior members enjoy (expected
lifetime) homophily benefits from in-group senior and junior members, which we denote respectively by
bS and bJ . The differential mingling effect is captured by bS > bJ . A fraction x ≤ 1/2 of new hires are
in-group talented juniors, and similarly for the out-group ones: xJχ̂dt = Xdt. Talent is observed prior
to hiring. A talented member brings quality benefits to seniors equal to sJ when junior, and sS > sJ

when senior. Assume that sl > bl at both levels l ∈ {J, S}, and that sS − sJ > bS − bJ (these two
conditions generalize the previous assumption that quality matters to the majority).

In this framework, majority members are never worried about losing control, as the promotion of
those who wil bring them the highest net benefits will always be tilted in favor of in-group juniors.
This leads us to focus on the majority’s pecking order : A promotion yields discounted net benefit to
a majority senior member equal to 1) sS − sJ + bS − bJ in the case of an in-group talented member;
2) sS − sJ for an out-group talented member; 3) bS − bJ for an in-group untalented member; 4) 0 for
an out-group untalented member. This pecking order implies that promotion decisions will be tilted in
favor of in-group members (except in the non-generic case in which all talented juniors are promoted
and no untalented one is). In contrast, the junior population is balanced in composition; indeed, there
is no rationale for the majority to discriminate at the hiring state as long as sJ > bJ .

When X < χS < 2X, i.e. equivalently x < 1
/[

1 + JχJ/χS
]
< 2x, in steady state the organization

promotes all talented in-group juniors, a fraction z of talented out-group juniors, and no untalented
juniors. The flows in and out of the junior and senior pools must balance, yielding respectively: Jχ̂ =
χS + JχJ , and Jχ̂x(1 + z) = χS .

We define the glass ceiling index as the relative probability of promotion of talented majority and
minority members, minus 1:54

γ ≡ 1
z
− 1 = 2X − χS

χS −X
∈ (0,∞)

In this region, the glass ceiling index is invariant with how pyramidal the organization is (J)55, decreases
with the frequency of senior-level vacancies (χS) and increases with the flow of talented candidates (X).
Covering all parameter regions, the glass ceiling index is monotonic with χS/X.56

Proposition 10. (Glass ceiling) In the hierarchical organization’s steady state, hiring at the junior
level is meritocratic57. By contrast, there exists a glass ceiling for minority juniors.

54This definition of the glass ceiling index only looks at flows and is a conservative estimate of the glass ceiling; indeed,
were we to look at stock, the glass ceiling effect would be stronger because the share of talented minority juniors promoted
to seniority (over the whole stock of such juniors) would be below z (whenever z < x, the steady state of the junior pool
features a mixture of talented minority and untalented majority juniors).

55An increase in J has two opposite effects: it makes it more difficult for a junior to be promoted, and talented minority
members are the first to be left out; but it also makes talented juniors scarcer in the junior pool, increasing the minority
members’ probability of promotion.

56Indeed, for χS > 2X, the senior majority hires all talented juniors and (some) untalented in-group juniors, and thus
γ = 0, whereas for χS < X, it promotes no out-group talented juniors, only talented in-group ones, and thus we set
γ = +∞.

57In line with Carmichael (1988) and Friebel-Raith (2004), it is thus optimal for the seniors’ majority not to let current
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This environment can be enriched in interesting ways. First, one may distinguish between talent and
"senior potential"; only a fraction of talented members have the potential to make a more important
contribution at the senior level; furthermore it may take time for the organization to discover who
has such senior potential (there is a time of reckoning). Second, talented members may have outside
opportunities, as in Section 4. Talented women may then quit the organization due to a discouragment
effect: either they have been identified as lacking senior potential (their male counterparts by contrast
staying in the organization), or the delay in being promoted is not worth the wait. Finally, the possibility
of outside recruitment at the senior level would impact the glass ceiling effect.

6 Policy

We investigate the consequences of different interventions a principal could carry on. We successively
consider two distinct informational environments:

(i) The principal at least occasionnally observes the candidates’ talent but does not observe the
candidates’ and members’ horizontal types. The principal may indeed have more information about
quality than about horizontal attributes: a provost may use external letters or a visiting committee
to assess the quality of a department or candidates, and a government may use a research assessment
exercise to evaluate a university or its components. By contrast the provost, say, may not know whether
the department is hiring buddies or researchers in a declining field that is their own. In a number of
countries (such as France) the hiring of civil servants is merit based, in the sense that new civil servants
take a competitive exam; in the US by contrast, “civil servants” are often political appointees. Exams
for entering the civil service can be viewed as obtaining a signal of s that is informative.

(ii) The principal observes the candidates’ and members’ horizontal types, but only the incumbent
members observe talent. Many public interventions such as affirmative action policies are based on
gender, race, disability or religion, but not necessarily on quality.

In what follows, we take efficiency (quality plus homophily benefits), as the principal’s objective
function. Namely, denoting by S the organization’s aggregate quality, by B the aggregate homophily
benefits, and by T the transfer (if any) to the organization with ξ the cost of public funds, the principal’s
objective writes

W ≡ qS +B − ξT

where q ≥ 1 is the (relative) weight on quality.
In order to resolve the multiplicity of equilibria when two equilibria coexist in the absence of inter-

vention (cf. Proposition 1), we assume that members coordinate on the Pareto-dominating meritocratic
equilibrium (cf. Proposition 2).

Anticipating on the formal analysis, the consequences of the interventions we investigate are guided
by three main forces:

• Control is less appealing: the constraints put on the majority’s freedom reduce the value of control,
favoring meritocracy over entrenchment.

juniors coopt new juniors as a majority of out-group juniors may engage in un-meritocratic hiring in order to increase their
chances of being appointed to the senior board. This optimality result may not hold if for instance, juniors are better able
than seniors at scouting talented candidates.
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• Quality matters more (in the case of talent-based interventions), which also favors meritocracy.

• Entrenched majorities may fight back: on the other hand, if the intervention has milder conse-
quences for larger majorities, then the intervention may promote super-entrenchment.

6.1 Quality-based interventions

Assuming that the principal has only talent information, we consider two policies by the principal:
(i) stepping in by choosing the new member (which does not assume commitment by the principal), and
(ii) rewarding quality (which does as the intervention is backward looking).

Discretionary overruling of majority decisions. We assume that in each period, the majority
selects among the two candidates and then the principal can overrule the majority and pick the losing
candidate. None of the players (principal, majority, and minority) can commit.

Suppose that the principal occasionally receives a signal. Namely, in each period the principal learns
the quality of the candidates (or at least their quality differential) with probability λ and receives no
signal with probability (1− λ).

We look for equilibria (a) with level of entrenchment l ≥ 0, and (b) in which the principal overrules
the majority if and only if informed that the majority is violating meritocracy. Hence the probability η
of intervention is given by η = λx if M ≤ k + l, and η = 0 otherwise. The equilibrium nature of this
intervention policy is motivated by the observations that (i) it is indeed efficient for the principal not
to intervene without information, and (ii) the principal can obtain a one-period benefit when informed
that meritocracy is violated.

For talent-blind discretionary interventions (λ = 0), it is an equilibrium for the principal not to
engage in quality-blind interventions58; and so the meritocratic and entrenchment equilibria exist for
the same parameter values as in the absence of intervention. So the impact of external interventions is
here tied to the availability of evaluative information. When λ = 1, the principal can select the best
candidate in each period, and there is no real “cooptation”. So let us assume that 0 < λ < 1.

The condition of existence of a meritocratic equilibrium is unchanged, as the principal has no reason to
intervene in such an equilibrium. This property however does not hold for the entrenchment equilibrium.
Intuitively, the possibility of intervention has two opposite effects on the principal’s welfare. In the
absence of behavioral response by the majority, the principal can occasionally overrule the majority and
impose the meritocratic choice. But the majority may become wary of losing control when M = k

and so may decide to be super-entrenched so as to lower the probability of its losing control (without
annihilating it completely, which is impossible).

The next proposition establishes that "well-meaning policies" systematically backfire for s/b close to
1 by generating full entrenchment.

Proposition 11. (Perverse effects of discretionary quality-based interventions) Let x < 1/2.
58The intuition for the result stems from two observations: (a) from the perspective of the principal (with q ≥ 1), the

majority takes the socially optimal decision for any majority size M ≥ k + 1, and if it is meritocratic, also when M = k,
whereas if it is entrenched and tight, it takes the optimal decision with probability 1 − x ≥ 1/2; (b) if the majority is
entrenched and tight, then its choice of candidate reveals no information on the latter’s quality to the principal, and thus
a talent-blind principal cannot outperform the majority’s choice.
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(i) The possibility of an informed overruling of majority decisions (with a strictly positive probability)
results in full entrenchment for any s/b in a non-empty neighbourhood of 1, with s/b ≥ 1.

(ii) The principal might achieve a higher welfare if it could commit not to intervene.

Remark. Fixing s/b, the principal’s (ergodic aggregate) payoff increases with its probability λ of being
informed on any interval such that the Pareto-dominating equilibrium remains unchanged. As the latter
changes (a higher λ generating a higher level of entrenchment), the principal’s payoff drops to a strictly
lower value (see Figure 5 in Appendix M).

Rewarding quality. We now assume that the principal implements a quality assessment exercise
according to a Poisson process of rate η, and this after the period-t election. A quality assessment
exercise in period t results in an end-of-period bonus accruing to the organization and shared equally
among the N members. We assume the bonus is one-shot, i.e. it is received at date t. Alternatively
we could have assumed the bonus is split across several periods, yet frontloading the bonus is more
effective59. For the sake of simplicity, we also assume the bonus is linear in the number of talented
members in the organization: for each talented member in the organization at the end of period t,
each member receives y. Consequently, the expected incremental lifetime contribution of a new talented
(relative to mediocre) addition to each current member of the organization now writes as

s+(η, y) ≡ s+ η
y

1− δ0(1− 2/N) = s

(
1 + η

y

s̃

)
> s

while the expected lifetime utility for an incumbent member generated by the homophily payoff per new
member sharing their opinion is still given by b.60

Proposition 12. (Rewarding quality) For any positive cost of public funds ξ , there exists ρξ ∈
[1, ρm), strictly increasing with ξ and satisfying ρ0 = 1, such that quality assessment exercises raise
welfare (measured by ergodic quality minus cost of public funds, i.e. with per-period welfare W = qS +
B − ξT ) if and only if s/b ∈ [ρξ, ρm).

The intuition behind Proposition 12 is that for high s/b, the organization embraces meritocracy by
itself and so spending public funds is wasteful. When instead the organization has little appetance for
meritocracy (s/b small), the principal must pour large amounts of money on the organization to be
effective, and this may prove too costly. It is thus only in the intermediate range that a boost promotes
meritocracy and quality at a reasonable cost.61

6.2 Affirmative action

Suppose that the principal mandates diversity by setting a "representation threshold" – i.e. commit-
ting to imposing that the minority count at least R members at the end of any given period. Since it

59Because members may quit – and thus δ ≤ (N − 1)/N < 1 –, frontloading the bonus maximizes the incentive for good
recruitment.

60Computations go through as in the main model with a quality-payoff-over-homophily-benefit ratio now given by s+/b
instead of s/b. Hence, whenever ρe <∞, for η, y sufficiently high, the ratio s+/b is sufficiently high for the organization to
reach the region where the unique symmetric MPE in weakly undominated strategies is the meritocratic equilibrium.

61We conjecture that when organizations compete with each other for talent (as in Section 4.2), rewarding quality may
destabilize competition and create a mediocrity trap for the weakest and less diversified ones.
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is suboptimal for the principal to impose parity62, we focus on weaker forms of affirmative action with
representation thresholds R ≤ k − 1.

Quality is reduced if at the moment of the vote, the representation threshold binds (i.e. M = N −R)
and the majority candidate is more talented. Moreover, homophily benefits are also reduced on average.
However there is an indirect effect: control is less appealing both because the majority is constrained
and because the minority is favored. That effect might make the “constrained meritocratic” equilibrium
(the choice is meritocratic except perhaps when M = N − R at the moment of the vote) more likely,
which might actually benefit the principal.

However, when s/b is very high, the efficiency loss at M = N − R becomes extremely costly and
majority members might be willing to pick the minority candidate at lower majority sizes whenever
the latter is as talented as the majority one in order to avoid reaching a majority size of M = N − R
at a later period. We refer to such an equilibrium as meritocracy with reverse favoritism: members
vote for their candidate if and only if he or she is strictly more talented than the rival candidate. In
other words, the reverse-favoritism meritocratic (resp. constrained meritocratic) equilibrium features
the most talented candidate being recruited with ties broken in favour of the minority (resp. majority)
candidate – motivating its name63. Lastly, note that the (constrained) reverse-favoritism meritocracy
equilibrium and the (constrained) meritocratic one are equivalent in terms of current-period efficiency
for a given majority size, yet not in terms of average efficiency as the induced paths over majority sizes
differ: reverse-favoritism meritocracy is on average more efficient.

Yet, affirmative action comes at a cost, both in terms of efficiency and homophily. Assuming s/b < ρm,
we compare the ergodic aggregate welfare in the entrenchment equilibrium under laissez-faire and the
meritocratic equilibrium under affirmative action of level R. So entrenchment is the unique equilibrium
under laissez-faire, while constrained meritocracy is also an equilibrium under affirmative action, further
assuming meritocracy is selected whenever it co-exists with entrenchment in equilibrium.64

Proposition 13. (Affirmative action)
(i) Existence regions. Affirmative action in the form of a representation threshold R ≤ k − 1 ex-
pands the existence region of meritocracy.65 Furthermore, for s/b sufficiently high, meritocracy with
reverse favoritism is an equilibrium, while meritocracy with standard favoritism is not. (ii) Ergodic
aggregate welfare. (a) The homophily (ergodic aggregate) payoff is strictly lower in the meritocratic
equilibrium under affirmative action with representation threshold R than in the entrenchment equilib-
rium under laissez-faire. (b) There exists xAA(R) ∈ (0, 1/2) such that for any x ∈

(
0, xAA(R)

)
(resp.

62Suppose that the principal imposes parity (so at the end of the period the two groups are equally represented). Then
the average quality of the coopted member (xs) is smaller than in both the entrenched and meritocratic equilibria and
homophily benefits are minimized.

63In order to alleviate the labels, we may omit the epithete "constrained" when referring to these equilibria whenever
there is no ambiguity.

64When N = 4, explicit computations yield that for the organization to be meritocratic with reverse favoritism under
affirmative action, it would have to be meritocratic under laissez-faire, in which case affirmative action is strictly dominated
by laissez-faire whenever the principal internalizes the homophily payoffs. This motivates our comparing constrained
meritocracy (and not reverse-favoritism meritocracy) under affirmative action to entrenchment under laissez-faire.

65Whenever a representation threshold is implemented, we refer to the "existence region of meritocracy" as the set of
values of s/b for which there exists an equilibrium in which meritocratic recruitments take place whenever possible. [For
N = 4, the existence regions of the constrained meritocratic and reverse-favoritism meritocratic equilibria have a non-empty
intersection. Yet the existence region of meritocracy may differ in general from the union of the existence regions of the
constrained meritocratic and the reverse-favoritism meritocratic equilibria, as the two may not overlap. Nonetheless, we
show that for intermediate values of s/b, there exist other "meritocratic" equilibria depending on how ties are broken –
in particular, "mixed-favoritism" meritocratic equilibria where ties are broken in favour of the majority (resp. minority)
candidate when the majority size is far from (resp. close to) its upper bound. Hence we show that the existence region of
meritocracy as defined is a convex set, namely a half-line.]
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x ∈
(
xAA(R), 1/2

)
), the quality (ergodic aggregate) payoff is strictly lower (resp. strictly higher) in the

meritocratic equilibrium under affirmative action with representation threshold R than in the entrench-
ment equilibrium under laissez-faire (the two being equal for x = xAA(R)). The cutoff xAA(R) strictly
increases with R: the higher the representation threshold, the thinner the range of correlations for which
meritocracy under affirmative action dominates entrenchment under laissez-faire.

Remark. Affirmative action policies may have further positive welfare effects if candidacies are en-
dogenous (and if for instance, candidates choose whether to invest in their talents).66

6.3 Supermajority electoral rules

We last consider a set of policies which could be implemented by an uninformed principal, namely
voting rules requiring at least k + l votes for a candidate to be elected for a given l ≥ 1. We refer to
Appendix P for details and only state here our main results.

We assume that the principal does not observe the candidates’ talent. In line with our assumption
of an uninformed principal, we posit that if no candidate reaches the election threshold, the principal
picks one among the two at random67. Consequently, the principal’s blindess makes failing to reach the
election threshold costly for majority members. Consistently with this section’s previous insights68, we
show that for x < 1/2, (i) for s/b sufficiently close to 1, super-entrenchment at level l is the unique
symmetric MPE in weakly undominated strategies such that a stronger majority makes (weakly) more
meritocratic recruitments; (ii) for δ sufficiently low, the existence region of meritocracy widens with
respect to laissez-faire.

7 Alleys for future research

The introduction covered the main insights of our analysis. Consequently, these concluding remarks
will focus on some of the (many) areas that would benefit from future research.

(a) More than two groups and coalitions. While a two-group structure is natural in a number of
environments, exercising control over appointments may require building up a majoritarian coalition in
others. As is well-known from academic departments or politics, such coalitions may be unstable over
time, as a partner in a coalition may be evicted for the benefit of another or may be wary that the
dominant coalition group becomes hegemonic. Studying such dynamics may involve a quantum leap in
the complexity of the analysis, but would be very rewarding.69

(b) Human capital investment. Section 4 showed how quickly an entrenched organization can disin-
tegrate when talented candidates have outside options. In the same spirit, one could enrich the model
by adding an ex-ante investment in human capital, which increases the probability of being “talented”.
The new feature relatively to the endogenous-candidacy section would be that the availability of talented

66Moreover, whenever such a policy disentrenches the organization, the higher expected homophily benefit for minority
candidates may more than compensate the potential loss in aggregate quality, and thus enable the organization to attract
talented minority candidates at higher outside options than an entrenched organization under laissez-faire.

67Admittedly, the intervention may rather be not to appoint any candidate in such circumstances. The organization
would then face a deadlock as groups engage in a war of attrition.

68Here, two opposite effects drive the results: (a) the principal’s blind intervention if the supermajority is not reached may
make meritocracy relatively more attractive and prevent the organization from being entrenched; (b) super-entrenchment
at level l shields the entrenched majority from the principal’s intervention.

69One could use the Shapley value in order to compute a group’s ability to select a candidate.
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minorities (determined by their incentive to invest in human capital) would be a public good from the
point of view of organizations, as it is reasonable to assume that agents do not invest in human capital
with a specific organization in mind. There might be self-fulfilling outcomes in which minorities do not
invest because organizations are homogenous, and organizations are homogenous because they cannot
find competent minorities. The multiplicity would then differ from the traditional one encountered in
the theory of statistical discrimination70, which is based on asymmetric information about the talent of
a prospective candidate.

(c) Quits and competition. Another variant on the theme of equilibrium-determined membership
decisions on the agent side would allow members of the organization to depart from the organization
they are a member of, either because the quality has fallen or because the organization has become more
entrenched.

(d) Heterogeneous tastes for homophily. We assumed that members have similar preferences for ho-
mophily. This need not be the case. A specialization may then arise, in which agents sort themselves
out in their applications between highly entrenched organizations (the gentlemen’s clubs of England and
the Commonwealth countries) and more tolerant/open structures.

(e) Heterogeneous time discount factors and internal structure of power. Members’ heterogeneous
horizons in the organization affect their willingness to invest for the future. As we showed, discrimi-
nation against (resp. affirmative action in favor of) the minority is an investment benefitting patient
majority members when the organization is attractive (resp. experiences difficulty in attracting talented
minority candidates). Would "older" members (i.e. with a shorter time horizon) be more meritocratic
than "younger" members? Or, to the contrary, would the young be more willing than the old to engage
in voluntary affirmative action as candidates have outside options? The internal structure of power may
thus balance the old’s stronger preference for meritocracy when control may switch, with the young’s
greater propensity to invest in affirmative action when the organization fails to be attractive to minority
talented candidates.

(f) Integrity of quality assessment exercises. One of our insights on the policy side is that quality
assessment exercises promote meritocracy and diversity, and that, leaving their cost aside, they do not
generate the perverse entrenchment effects that plague some other interventions. We however presumed
that these assessments were accurate. Casual empiricism suggest that integrity is not to be taken for
granted. Dominant groups may control not only the organizations themselves, but also the panels that
are supposed to assess them. At the same time, minority groups may be minorities not because they
suffer from some innate trait that is unrelated to quality (gender, ethnicity. . . ), but because they are
perceived as lower-quality agents by the majority group. Mandating diversity in the assessment panels
may then be less appealing than when horizontal traits are really perceived to be horizontal. Capturing
this may require a diversity of beliefs as to what constitutes high-quality work, and would for example
shed much light on how science progresses.

(g) Cooptation as manipulation. This paper assumes that individuals outside the organization have
no capability of causing harm to it. Introducing the possibility that coopting outsiders may change their
behaviour and reduce nuisance would allow us to capture the second meaning of “cooptation” originating
with Selznick.71

70See e.g., Arrow (1973), Coate-Loury (1993), Loury (2002), Phelps (1972) and Rosen (1997).
71One of many ways of capturing the cooptation of members with sufficient nuisance power outside is to assume that

the probability that the organization continues falls sharply when it is too monolithic – e.g. due to the prospect of a
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(g) Searching for talented candidates. Talented candidates, even if they are willing to join the or-
ganization, may not become members because they are unaware of an opening or have misconceptions
about their chance of being coopted. Search raises a host of interesting questions: does it result from
members’ initiative or is it conducted through a search committee? In the former case, does the ma-
jority benefit from its larger size (which is unclear: a larger membership size increases the number of
coincidental thoughts as well as the extent of free riding; social pressure within groups may also differ)?
Is the intuition that search will be mainly directed toward in-group candidates correct?72

(h) Empirical investigations. Last, but certainly not least, the model could be tested, from its basic
assumptions to its predictions. For instance, the homophily incentive b has in recent years increased in
some dimensions (political polarization) and decreased in others (as when the law or social norms penal-
ize a lack of diversity); depending on factors such as initial conditions, the nature of inside interactions,
or the competitiveness of the talent market, this evolution should impact dependent variables such as
the quality of recruitments, the heterogeneity among organizations and their divergent paths.
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Appendix

A Value functions for majority and minority members

Value function for a majority member. Under restrictions (i)-(ii) on the majority’s strategy, let V −i
denote the expected value function conditional on the minority candidate being more talented, and V +

i

denote the expected value function conditional on the complementary event. The value function for a
majority member (see below for that of a minority member) writes for any k ≤M ≤ N − 173,

VM = xV −M + (1− x)V +
M (8)

where



V −M = max
{
b+ δ

(
M

N − 1VM +
(
1− M

N − 1
)
VM+1

)
,

s+ δ

(
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1
)
VM

)}
V +
M = b+ x

1− xs+ δ

(
M

N − 1VM +
(

1− M

N − 1

)
VM+1

)
With probability x, the majority faces a trade-off between selecting a talented minority member (yield-
ing payoff s) and picking the less talented majority candidate (yielding payoff b). With probability
1− x, the choice is a no-brainer and the majority candidate brings average payoff b+ xs/(1− x) where
x/(1− x) is the conditional probability of that candidate’s being talented. Furthermore, for a majority
member, recruiting a majority candidate when the majority has size M in period t yields an ex-ante
(i.e. before departure) majority size of M + 1. Three events might then happen at the beginning of
period t + 1 before the vote takes place: (i) with probability 1/N (which is already embodied in the
discount factor δ), the majority member quits the organization, which gives him zero payoff; (ii) with
probability M/N , another majority member quits, and thus the majority size decreases to M ; (iii) with
probability (N−M−1)/N , a minority member quits, and thus the majority size remains equal toM+1.

Value function for a minority member. If the majority recruits the majority candidate in period
t, then at the beginning of period t + 1: (i) with probability 1/N , the minority member quits the
organization, which gives her zero payoff; (ii) with probability (M+1)/N , a majority member quits, and
thus the majority size decreases to M ; (iii) with probability (N −M − 2)/N , another minority member
quits, and thus the majority size remains equal to M + 1.

Let σ(M) ∈ {0, 1} be defined for any k ≤M ≤ N − 1 as

σ(M) =


1 if b+ δ

(
M

N − 1VM +
(
1− M

N − 1
)
VM+1

)
> s+ δ

(
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1
)
VM

)
0 otherwise.

73Equation (8) applies even when M = N − 1 as the majority size M + 1 becomes irrelevant (its probability being nil).
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The value function for a minority member writes for any k ≤M ≤ N − 2:

VN−M−1 = xV −N−M−1 + (1− x)V +
N−M−1 (9)

where



V −N−M−1 = σ(M)δ
(
M + 1
N − 1 VN−M−1 +

(
1− M + 1

N − 1
)
VN−M−2

)
+(1− σ(M))

[
s+ b+ δ

(
M

N − 1VN−M +
(
1− M

N − 1
)
VN−M−1

)]
V +
N−M−1 = x

1− xs+ δ

(
M + 1
N − 1 VN−M−1 +

(
1− M + 1

N − 1

)
VN−M−2

)

B Proof of Lemma 1

The result for N = 4 derives from straightforward computations74. We assume in the following
N ≥ 6. Assume s > b > 0 and x ∈ (0, 1/2).

Proof of (i). Consider, first, the entrenched equilibrium. We omit the e superscript in order to
alleviate the notation. For any M ∈ {k− 1, ..., N − 2}, let uM ≡ VM+1 − VM . By writing the expression
of the value function from (8) in M ∈ {k + 1, ..., N − 1} (thus writing VM as a function of VM−1, VM
and VM+1), and then substracting the expression in M from the expression in M + 1 yields for any
M ∈ {k + 1, ..., N − 2}75,

VM+1 − VM = δx

[
M − 1
N − 1 (VM − VM−1) +

(
1− M

N − 1

)
(VM+1 − VM )

]
+ δ(1− x)

[
M

N − 1(VM+1 − VM ) +
(

1− M + 1
N − 1

)
(VM+2 − VM+1)

]
i.e. by rearranging the terms,[

1− δx
(

1− M

N − 1

)
− δ(1− x) M

N − 1

]
uM = δx

M − 1
N − 1 uM−1 + δ(1− x)

(
1− M + 1

N − 1

)
uM+1 (10)

We show the result by contradiction. The intuition is as follows: if the majority were to prefer being in
N − 2 to N − 1 (i.e. if uN−2 ≤ 0), then by induction, it would prefer being in k over all majority sizes.
Yet this is not possible as by definition of the entrenched equilibrium, the majority would then prefer
to be in k + 1 in order to avoid the current-period loss of efficiency due to entrenchment in k. Hence a
contradiction and thus the majority prefers being in N − 1 than in N − 2. The result obtains with a
similar induction argument yielding: uk > uk+1 > ... > uN−2 > 0.

74Using (8) and (9), for the entrenched equilibrium, one has[
1−

2δ
3

(1− x)
]

(V e
3 − V

e
2 ) = x(s− b)

and thus V e
1 = xs/(1− δ) < (b+ xs)/(1− δ) < V e

2 < V e
3 . Similarly for the meritocratic equilibrium:

[
1−

xδ

3
−

2δ
3

(1− x)
]

(V m
3 − V

m
2 ) =

xδ

3
(V m

2 − V
m
1 )[

1− δ(1− x)
]
(V m

2 − V
m
1 ) = (1− 2x)b+ δ

(1− x)
3

(V m
3 − V

m
2 )

and thus V m
1 < V m

2 < V m
3 , and V m

2 − V
m
1 > V m

3 − V
m
1 .

75With the abuse of notation uN−1 = 0, which is irrelevant since the coefficient of uN−1 is nil.
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Suppose uN−2 ≤ 0. Then Equation (10) for M = N − 2 implies[
1− δ x

N − 1 − δ(1− x)N − 2
N − 1

]
uN−2 = δx

N − 3
N − 1uN−3

Therefore, uN−3 ≤ 0 and uN−3 ≤ uN−2. We then proceed by induction to show that for any M ∈
{k + 1, ..., N − 2}, uM−1 ≤ uM ≤ 0. Assume the result holds for all indices in {M + 1, ..., N − 2}. Then
Equation (10) implies[

1− δx
(

1− M

N − 1

)
− δ(1− x) M

N − 1

]
uM ≥ δx

M − 1
N − 1 uM−1 + δ(1− x)

(
1− M + 1

N − 1

)
uM

i.e.
[
1− δx

(
1− M

N − 1

)
− δ(1− x)N − 2

N − 1

]
uM ≥ δx

M − 1
N − 1 uM−1

Consequently, uM−1 ≤ uM ≤ 0. Hence the result by induction. In particular, one has uk ≤ 0, i.e.
Vk+1 − Vk ≤ 0. However, writing Equation (8) in k + 1 and k and taking the difference yields

uk = x(s− b) + δ(1− x)
[(

1− k + 1
N − 1

)
uk+1 + k

N − 1uk
]

(11)

and thus

0 ≥
[
1− δ(1− x)N − 2

N − 1

]
uk ≥ x(s− b) > 0,

which is a contradiction. Therefore VN−1 − VN−2 = uN−2 > 0. It is then easy to see that the same
induction argument used above, using repeatedly Equation (10), shows that uM−1 > uM > 0 for any
M ∈ {k + 1, ..., N − 2}. Hence the result for the entrenched equilibrium.

Consider now the meritocratic equilibrium. We again omit the superscript on the value function
in order to alleviate the notation. Let ui ≡ Vi+1 − Vi for any i ∈ {1, ..., N − 2}. Note that Equation
(10) holds for any M ∈ {k, ..., N − 2}. The argument is similar to the one used in the entrenched
equilibrium: the idea is again to suppose that the majority prefers being in N − 2 over N − 1 and reach
a contradiction. Note that there are two differences with respect to the entrenchment setup, as (a) the
contradiction stems from the loss of homophily payoff (when candidates have same talent) associated
with losing the majority, and (b) since there is no entrenchment and majorities switch, in order to reach
the contradiction, the induction needs to go down until a group size of 1.

Assume by contradiction that uN−2 ≤ 0. Then, by induction, this implies that for anyM ∈ {k, ..., N−
2}, uM−1 ≤ uM ≤ 0, and thus in particular uk−1 ≤ uk ≤ 0.

Consider now u1. Note that by writing the expression of the value function from (9) in M ∈ {k +
1, ..., N−1} (thus writing VN−M−1 as a function of VN−M−2, VN−M−1 and VN−M ), and then substracting
the expression in (N −M − 1) from the expression in (N −M) (and rearranging) yields for any M ∈
{k + 2, ..., N − 2}:[

1− δ(1− x) M

N − 1 − δx
(

1− M

N − 1

)]
uN−M−1 = δ(1− x)

(
1− M + 1

N − 1

)
uN−M−2 + δx

M − 1
N − 1 uN−M

(12)
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and in particular, [
1− δ x

N − 1 − δ(1− x)N − 2
N − 1

]
u1 = δx

N − 3
N − 1u2

By the usual induction argument using (12), u1 > 0 implies 0 < u1 < u2 < ... < uk−2 < uk−1, which
contradicts uk−1 ≤ 0. Hence u1 ≤ 0 and the same induction argument now implies 0 ≥ u1 ≥ u2 ≥ ... ≥
uk−2 ≥ uk−1.

However, substracting Equation (8) in k and Equation (9) in k − 1 yields after rearranging:[
1− δ(1− x)

]
uk−1 = (1− 2x)b+ δ(1− x)

[(
1− k

N − 1

)
uk +

(
1− k + 1

N − 1

)
uk−2

]
(13)

The contradiction then obtains by summing the above equation together with Equations (10) and (12)
over all indexes (and rearranging), which gives:

(
1− δ x

N − 1 − δ(1− x)
)

(u1 + uN−2) +
(
1− δ

)N−3∑
i=2

ui = (1− 2x)b > 0

This contradicts the fact that ui ≤ 0 for all i ∈ {1, ..., N − 2}. Therefore uN−2 > 0. Using repeatedly
the usual induction argument with Equation (10) yields the result.

The proof of claim (ii) relies on the same arguments as the proof of (i) and is thus omitted for the
sake of brevity.

Claim (iii) derives from arguments analogous to the ones used in the proofs of (i) and (ii). The result
is obvious with (i) for the meritocratic equilibrium. The result for the entrenchment equilibrium obtains
by considering the sequence Vi − VN−1−i for i ∈ {k, ..., N − 2} and using (8)-(9).76

Suppose by contradiction that Vk − Vk−1 < 0. This implies that Vk+1 − Vk−2 < Vk − Vk−1 < 0, and
thus by induction that VN−1−V1 < VN−2−V1 < ... < Vk−Vk−1 < 0, which contradicts VN−1 ≥ VN−2 as
shown above. (Another contradiction would be reached by summing as above the analogues of (10)-(12)
and noting that the RHS is positive whenever x ≤ 1/2). Hence Vk − Vk−1 ≥ 0. If Vk+1 − Vk−2 < 0,
the same contradiction is reached again as then VN−1 − V1 < VN−2 − V1 < ... < Vk+1 − Vk < 0 (Again,
one could sum over i ∈ {k + 1, ..., N − 2} the analogues of (10)-(12) and note that the RHS is positive
whenever x ≤ 1/2). The result obtains by induction: for any i ∈ {k, ..., N −2}, Vi−VN−1−i ≥ 0. Details
of the proof show that the inequality is strict if and only if b > 0, or x > 0 and s > 0.

76Namely, for M ∈ {k + 1, ..., N − 3},[
1− δ(1− x)

M

N − 1
− δx

(
1−

M − 1
N − 1

)]
(VM − VN−M−1)− (1− 2x)b+

δ

N − 1

[
(1− x)uN−M−2 + xuN−M−1

]
= δ(1− x)

(
1−

M

N − 1

)
(VM+1 − VN−M−2) + δx

M − 1
N − 1

(VM−1 − VN−M )

while for M = k and M = N − 2,[
1− δ

k

N − 1

]
(Vk − Vk−1) = b−

δ

N − 1
uk−2 + δ

(
1−

k

N − 1

)
(Vk+1 − Vk−2),[

1− δ(1− x)
N − 2
N − 1

− δx
2

N − 1

]
(VN−2 − V1) = (1− 2x)b−

δx

N − 1
u1 + δ

(1− x)
N − 1

(VN−1 − V1) + δx
N − 3
N − 1

(VN−3 − V2)

Recall that in the entrenched equilibrium, ui ≤ 0 for any i ≤ k − 2, strictly so if and only if x(s+ b) > 0.
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C Proof of Proposition 1

C.1 Proof of Proposition 1-(i)

The proof unfolds in two steps. Firstly we show that for any Vk−1 in a compact convex set, there
exists a unique equilibrium sequence of majority value functions (Vk, ..., VN−1). Secondly we show that,
for any Vk−1, either the entrenched or the meritocratic strategies satisfy the Bellman equations. The two
steps combined establish that for any Vk−1, only the entrenched or meritocratic strategies can satisfy
the Bellman equations and that exactly one of them does so, yielding the result. Let v (resp. w) denote
the value brought to a member of the majority by the minority (resp. majority) candidate. So v ∈ {0, s}
and w ∈ {b, b+ s}.

Step 1. Consider the compact convex set C ≡
[
0, (s + b)/(1 − δ)

]k. All vectors of value function
(Vk, .., VN−1) necessarily belong to C. Fix an arbitrary value of Vk−1 ∈ C and consider the mapping T
from C into itself, T : V ≡ (Vk, ..., VN−1) 7−→ TV ≡ (TVk, ..., TVN−1) defined for any i ≥ k by

TVi ≡ Ev,w
[

max
{
v + δ

(
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

)
, w + δ

(
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

)}]
≡ Ev,w[Ṽi(v, w)]

We show that T is a contraction mapping. We use the norm defined for any V ∈ Rk by ‖V ‖ ≡ max
i
|Vi|.

Let V, V ′ ∈ C and consider a given realization of (v, w) and i ∈ {k, ..., N − 1}. Three different cases may
arise:

• the inequality: v+ δ

[
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

]
≥ w+ δ

[
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
holds

for both sequences V and V ′, and thus

|Ṽ ′i (v, w)− Ṽi(v, w)| = δ

∣∣∣∣ i− 1
N − 1(V ′i−1 − Vi−1) +

(
1− i− 1

N − 1

)
(V ′i − Vi)

∣∣∣∣ ≤ δ‖V ′ − V ‖
• the inequality: v+ δ

[
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

]
≤ w+ δ

[
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
holds

for both sequences V and V ′, and thus

|Ṽ ′i (v, w)− Ṽi(v, w)| = δ

∣∣∣∣ i

N − 1(V ′i − Vi) +
(

1− i

N − 1

)
(V ′i+1 − Vi+1)

∣∣∣∣ ≤ δ‖V ′ − V ‖
• otherwise, the following inequalities hold (possibly inverting the roles of V and V ′):


v + δ

[
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

]
≤ w + δ

[
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
v + δ

[
i− 1
N − 1V

′
i−1 +

(
1− i− 1

N − 1

)
V ′i

]
≥ w + δ

[
i

N − 1V
′
i +

(
1− i

N − 1

)
V ′i+1

] (14)
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and thus 
Ṽi(v, w) = w + δ

[
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
Ṽ ′i (v, w) = v + δ

[
i− 1
N − 1V

′
i−1 +

(
1− i− 1

N − 1

)
V ′i

]
Then,

o either Ṽ ′i (v, w) ≥ Ṽi(v, w), and by the first inequality in (14),

|Ṽ ′i (v, w)− Ṽi(v, w)| ≤ δ
∣∣∣∣ i− 1
N − 1(V ′i−1 − Vi−1) +

(
1− i− 1

N − 1

)
(V ′i − Vi)

∣∣∣∣ ≤ δ‖V ′ − V ‖,
o or Ṽ ′i (v, w) < Ṽi(v, w), and by the second inequality in (14),

|Ṽ ′i (v, w)− Ṽi(v, w)| ≤ δ
∣∣∣∣ i

N − 1(V ′i − Vi) +
(

1− i

N − 1

)
(V ′i+1 − Vi+1)

∣∣∣∣ ≤ δ‖V ′ − V ‖
Therefore, taking the expectation over all realizations of (v, w) and taking the maximum over indices
yields: ‖TV ′ − TV ‖ ≤ δ‖V ′ − V ‖ (where δ < 1). Hence T is a contraction mapping over the compact
convex set C, and thus by Banach fixed-point theorem, it has a unique fixed point. Note that since
T depends on Vk−1, we have shown that for any Vk−1, there exists a unique equilibrium sequence of
majority value functions Vk, ..., VN−1.

Step 2. We first prove the following lemma:

Lemma 3. Conditional on there being no profitable deviation when M = k and the minority candidate
is strictly more talented, there exists no profitable one-shot deviation from a canonical strategy (i) at any
majority size and whenever the majority candidate is at least as talented as the minority candidate, and
(ii) at any majority size M ≥ k + 1 and whenever the minority candidate is strictly more talented.

Proof. In both canonical equilibria, ui ≡ Vi+1 − Vi is positive and decreasing for i ≥ k from Lemma 1.
Hence, for any profile of candidates’ "values" (v, w) ∈ {(0, b), (0, b + s), (s, b + s)}, this implies that for
any M ≥ k,

δ

(
1− M

N − 1

)[
VM+1 − VM

]
+ δ

M − 1
N − 1

[
VM − VM−1

]
≥ 0 ≥ v − w,

and thus by construction, the canonical strategies are optimal at any majority size whenever the majority
candidate is at least as talented as the minority one: the majority then optimally selects its own candidate.
Hence it remains to show that the canonical strategies are optimal at any majority size M ≥ k + 1
whenever the minority candidate is strictly more talented ((v, w) = (s, b)).

The proof unfolds in two steps:

(a) Entrenchment equilibrium: we show that, conditional on entrenchment at M = k being optimal,
the canonical entrenchment strategy is optimal at any other majority size and any other candidates’
vertical types.

(b) Meritocratic equilibrium: we show similarly that meritocracy is optimal at any majority size con-
ditional on being optimal at M = k.
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(a) Assume entrenchment is optimal when M = k, i.e. the majority is better off voting for an untalented
majority candidate against a talented minority one. Then, letting V e denote the value function in the
entrenchment equilibrium – hence with V e

k−1 determined by the minority’s entrenchment strategy –, (8)
implies:

δ

(
1− k

N − 1

)[
V e
k+1 − V e

k

]
+ δ

k − 1
N − 1

[
V e
k − V e

k−1

]
≥ s− b,

i.e. using the notation ue
i ≡ V e

i+1 − V e
i ,

δ
k − 1
N − 1u

e
k + δ

k − 1
N − 1u

e
k−1 ≥ s− b

Similarly, it is optimal for the majority to recruit a talented minority candidate against an untalented
majority one at majority size M if and only if:

δ

(
1− M

N − 1

)
ue
M + δ

M − 1
N − 1 u

e
M−1 ≤ s− b,

Equation (11) implies that

δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
= 1

1− x

(
ue
k − x(s− b)

)
Using the previous equation together with the inequality ue

k+1 ≤ ue
k from Lemma 1 yields

[
1− δ(1− x)N − 2

N − 1

]
ue
k ≤ x(s− b)

Therefore, since δ < (N − 1)/N ,

δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
≤

δx
N − 2
N − 1

1− δ(1− x)N − 2
N − 1

(s− b) < s− b,

and hence it is indeed optimal for the majority to pick a talented minority candidate against an untal-
ented majority one whenM = k+1. The result extends to any majority sizeM ≥ k+1 by monotonicity
of the sequence (ue

i )i which decreases with respect to i.

(b) Assume meritocracy is optimal when M = k, i.e. the majority is better off voting for a talented
minority candidate against an untalented majority one. Hence, with the usual notation, (8) implies:

δ
k − 1
N − 1u

m
k + δ

k − 1
N − 1u

m
k−1 ≤ s− b

Therefore, by Lemma 1, the monotonicity of the sequence (um
i )i which decreases with respect to i yields

that for any M ≥ k + 1,

δ

(
1− M

N − 1

)
um
M + δ

M − 1
N − 1 u

m
M−1 ≤ s− b,
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which concludes the proof of the Lemma.

Fix Vk−1 and consider the unique equilibrium sequence of majority value functions Vk, ..., VN−1 solving
the Bellman equations with Vk−1. Consider majority size k. For s > b, exactly one of the following
equations holds:

either Vk = Ew[w] + δ

[
k

N − 1Vk +
(

1− k

N − 1

)
Vk+1

]
(15)

or Vk > Ew[w] + δ

[
k

N − 1Vk +
(

1− k

N − 1

)
Vk+1

]
(16)

Note that (15) (resp. (16)) is equivalent to entrenchment (resp. meritocracy) in k in the sense that an
untalented majority candidate is elected (resp. not elected) against a talented minority one.

Assume (15) holds. Then Lemma 3 (see below) applies with entrenchment being optimal in M = k.
Therefore the value function of the entrenched equilibrium solves the Bellman equations. By step 1
(since T is a contraction mapping), we further have that the entrenched strategy is the unique strategy
that satisfies the Bellman equations for Vk−1 such that (15) holds.

Conversely, a similar argument relying on Lemma 3 (and ultimately on Lemma 1) shows that, for
Vk−1 such that (16) holds, the meritocratic strategy is the unique strategy that satisfies the Bellman
equations. In conclusion, for each value of Vk−1, either the entrenched or the meritocratic strategy solves
the Bellman equations.

Therefore, all symmetric Markov Perfect equilibria in weakly undominated strategies are canonical.

C.2 Proof of Proposition 1-(ii)-(iii)-(iv)

Transition probabilities depend on one’s perspective: either "objective" (i.e. the one of an outsider), or
"subjective" (i.e. the one of a majority or minority member). This observation motivates our introducing
the following notation: For any given group, we refer to the transition probability, say from group sizes
i to j, from a group member’s perspective as the probability that the group’s size goes from i to j

conditional on this group member being still a member next period.
For regime r ∈ {e,m}, let pr

i,j be the transition probability from a majority member’s perspective,
i.e. the probability that the majority size moves from i ≥ k to j ∈ {i− 1, i, i+ 1}77 (note that pr

i,j = 0 if
|i−j| > 1) from one period to another conditional on the majority member still being in the organization
in the following period78 (which has probability (N−1)/N). Then, for anyM > k and in the entrenched
equilibrium (r = e):

pe
M,M+1 = (1− x)

(
1− M + 1

N

)
N

N − 1 = (1− x)
(

1− M

N − 1

)
pe
M,M =

[
(1− x)M

N
+ x

(
1− M

N

)]
N

N − 1 = (1− x) M

N − 1 + x

(
1− M − 1

N − 1

)
pe
M,M−1 = x

M − 1
N

N

N − 1 = x
M − 1
N − 1

(17)

77If j = k − 1, then the majority becomes the minority and the new majority is of size k.
78Consistently with our notation throughout the paper, the conditioning on the majority member still being in the

organization in the following period makes the relevant discount factor be δ, i.e. the life-adjusted discount factor. We
could have equivalently written the unconditioned transition probabilities, i.e. the probability of majority size going from
i to j and the majority member still being in the organization in the following period, which would have led to using the
pure-time discount δ0.
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and 
pe
k,k+1 =

(
1− k + 1

N

)
N

N − 1 = 1− k

N − 1
pe
k,k = k

N

N

N − 1 = k

N − 1
pe
k,k−1 = 0

(18)

For any i, j ∈ {1, ..., N − 1} and t ∈ N+, let πe
i,j(t) be the t-period transition probability from i to

j in the entrenched equilibrium from a majority member’s perspective79. In other words, πe
i,j(t) is the

probability that starting from i, the majority size is equal to j after t periods conditional on the majority
member still being in the organization80. Hence, for any i ∈ {k, ..., N − 1} and t ≥ 0,

πe
i,M (t+ 1) = pe

M−1,Mπ
e
i,M−1(t) + pe

M,Mπ
e
i,M (t) + pe

M+1,Mπ
e
i,M+1(t)

We similarly explicit the transition probabilities from the perspective of a minority member. Let p̂e
i,j be

the transition probability from a minority member’s perspective, i.e. the probability that the majority
size moves from i ≥ k to j from one period to another conditional on the minority member still being in
the organization in the following period (which has probability (N − 1)/N). Then, for any M > k and
in the entrenched equilibrium:

p̂e
M,M+1 = (1− x)

(
1− M + 2

N

)
N

N − 1 = (1− x)
(

1− M + 1
N − 1

)
p̂e
M,M =

[
(1− x)M + 1

N
+ x

(
1− M + 1

N

)]
N

N − 1 = (1− x)M + 1
N − 1 + x

(
1− M

N − 1

)
p̂e
M,M−1 = x

M

N

N

N − 1 = x
M

N − 1

(19)

and 
p̂e
k,k+1 =

(
1− k + 2

N

)
N

N − 1 = 1− k + 1
N − 1

p̂e
k,k = k + 1

N

N

N − 1 = k + 1
N − 1

p̂e
k,k−1 = 0

(20)

For any i, j ∈ {1, ..., N − 1}, and t ∈ N+, let π̂e
i,j(t) be the t-period transition probability from i to j

in the entrenchment equilibrium from a minority member’s perspective. In other words, π̂e
i,j(t) is the

probability that starting from i, the minority size is equal to j after t periods conditional on the minority
member still being in the organization. Hence, for any i ∈ {k, ..., N − 1} and t ≥ 0,

π̂e
i,M (t+ 1) = p̂e

M−1,M π̂
e
i,M−1(t) + p̂e

M,M π̂
e
i,M (t) + p̂e

M+1,M π̂
e
i,M+1(t)

For the meritocratic equilibrium, transition probabilities are given by (17) for majority members, and
by (19) for minority members.

79We focus on the entrenched equilibrium for the sake of exposition. Transition probabilities in the meritocratic regime
have a more complex expression, with πm

i,j(t) defined as the t-period transition probability from i to j from the perspective
of a member of the group initially of size i.

80So in particular πe
i,i(0) = 1 and πe

i,j(0) = 0 for any j 6= i.
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For the meritocratic equilibrium, transition probabilities are given accordingly, depending on one’s
perspective.81

Note that because probabilities sum to 1,

( N−1∑
i=k+1

π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)
= −

(
π̂e
k,k(t)− πe

k+1,k(t)
)

(N−1∑
i=k

πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)
= −

[( k−1∑
i=1

πm
k+1,i(t)

)
−
( k−1∑
i=1

πm
k−1,i(t)

)] (21)

Proof of claims (ii) and (iii). We now turn to the statement of the existence result. Because the ma-
jority’s choice when the majority candidate brings higher value than (or the same value as) the minority
one is a no-brainer, let us examine the case in which the majority is tight and the minority candidate is
more talented. The optimality decision hinges on the choice of the size and identity of the future majority.

Condition for existence of the meritocratic equilibrium. Leaving aside control considerations, choosing
the less-deserving majority candidate when the majority is tight involves a cost s − b. To evaluate the
impact of a potential switch of control, which will occur as we just saw with conditional probability
(k − 1)/(N − 1), note that in a meritocratic equilibrium, the present discounted expected quality of
future appointees does not depend on the allocation of control. The only impact of the change in
control is linked to homophily benefits when the two candidates have equal quality standing (which
has probability 1 − 2x), as control allows one to select the group’s candidate. The present discounted
probability of exercising control in future periods is higher if the majority keeps control next period than
if it surrenders it. So overall a necessary condition of existence of a meritocratic equilibrium is:

s− b ≥ δ k − 1
N − 1(1− 2x)b

+∞∑
t=0

δt
[(N−1∑

i=k
πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)]

And so the meritocratic equilibrium exists only if

s

b
≥ ρm ≡ 1 + δ

k − 1
N − 1(1− 2x)

+∞∑
t=0

δt
[(N−1∑

i=k
πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)]

Lemma 3 implies that this condition is in fact also sufficient: as is intuitive, deviations from meritocracy
are less appealing further away from a tight majority size, i.e. from immediate control considerations.

Condition for existence of the entrenched equilibrium. Again, choosing the less talented majority
candidate yields a direct payoff loss s − b. Then, with probability (k − 1)/(N − 1), the surrendering of
control translates into a permanent loss of homophily benefits whenever the two candidates have equal
quality standing, which has probability 1− 2x. This cost is equal to

δ

1− δ (1− 2x)b

81For instance, transition probabilities for M > k are given by (17) for majority members, and by (19) for minority
members.
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Moreover, because the new majority will itself be entrenched, i.e. always voting for its own candidate
whenever the majority is tight, the surrendering of control entails a further additional loss of homophily
benefit proportional to 2xb whenever the majority is tight, along with the difference in homophily ben-
efits associated with meritocratic decisions, i.e. choosing a talented minority candidate instead of an
untalented majority candidate, at any majority size M ≥ k + 1. The latter would seem unwarranted as
the two groups then agree on the decision to pick the more talented candidate; its existence comes from
the fact that transition probabilities depend on one’s perspective. Put together, these two terms add up
to

δ
k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t)− δ k − 1

N − 1xb
+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

Another way to interpret the homophily payoff terms consists in noticing that the expected per-period
payoff of a majority (resp. minority) member is equal to (1 − x)b (resp. xb) whenever the majority is
not tight (M ≥ k + 1), while it is equal to b (resp. 0) when majority is tight (M = k).

Finally, again because the new majority is itself entrenched, and since the shift in control implies
that perspectives change, the surrendering of control yields a quality payoff equal to

δ
k − 1
N − 1(x+ x)s

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
π̂e
k,k(t)− πe

k+1,k(t)
)

So overall a necessary condition for the existence of an entrenched equilibrium is

b− s ≥ δ k − 1
N − 1(x+ x)s

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
π̂e
k,k(t)− πe

k+1,k(t)
)
− k − 1
N − 1

δ

1− δ (1− 2x)b

− δ k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t) + δ

k − 1
N − 1xb

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

Let (22) be the inequality:

1 + δ
k − 1
N − 1x

+∞∑
t=0

δt
(
πe
k+1,k(t)− π̂e

k,k(t)
)
> 0. (22)

Define ρe as

ρe ≡


1 + k − 1

N − 1
δ

1− δ (1− 2x) + δ
k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe
k+1,k(t) + π̂e

k,k(t)
)

1 + δ
k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe
k+1,k(t)− π̂e

k,k(t)
) if (22) holds,

+∞ otherwise.

Then the above argument suggests that the entrenched equilibrium exists only if s/b ≤ ρe. As the series
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term in (22) is negative for all t (see Lemma 4 below), there might exist an entrenched equilibrium for
all values of s and b (and in particular for b = 0) for δ sufficiently close to 1, and thus we set ρe = +∞.
Nonetheless, for a positive rate of time preference (which we assumed) – i.e. δ < (N − 1)/N –, the
entrenched equilibrium exists only on a finite interval: ρe < +∞.82

As hinted above, Lemma 3 yields that these necessary conditions are also sufficient for these equilib-
ria to exist. Hence, the entrenched (resp. meritocratic) equilibrium exists if and only if s/b ≤ ρe (resp.
s/b ≥ ρm).

Lastly, we show that the bounds ρe and ρm satisfy the following inequalities:83

1 ≤ 1 + δ
k − 1
N − 1(1− 2x) ≤ ρm ≤ 1 + δ

1− δ
k − 1
N − 1(1− 2x) < ρe < +∞ (23)

The upper and lower bounds on ρm may be decomposed as follows: (1 − 2x) is the probability of a
homophily benefit from control, (k−1)/(N−1) the (conditional) probability of losing the majority when
its end-of-period size is k, while δ (resp. δ/(1 − δ)) are the time-discounted weights corresponding to a
transient (resp. permanent) loss of control.84

The bounds on ρe and ρm in Inequality (23) derive from the following lemma.

Lemma 4. For all t ≥ 0,

(i) πe
k+1,k(t) ≤ π̂e

k,k(t)

(ii)
∑
i≥k

πm
k+1,i(t) ≥

∑
i≥k

πm
k−1,i(t)

Proof. We use a result relying on the properties of monotone Markov chains (see Daley 1968, Keilson-
Kester 1977).
(i) Let P (resp. P̂ ) be the stochastic matrix associated with the process M(t) (resp. M̂(t)) defined as
the probability distribution over majority sizes {k, ..., N − 1} from a majority (resp. minority) member’s
perspective85. Namely, for any i, j ∈ {1, ..., k},

Pij = pe
k+i−1,k+j−1, and P̂ij = p̂e

k+i−1,k+j−1

We first note that both P and P̂ are (strictly) stochastically-monotone as Pi· stochastically dominates
Pi′· whenever i > i′ (and similarly for P̂ )86. We then note that P and P̂ are stochastically comparable
with Pi· stochastically dominating P̂i· for any i ∈ {1, ..., k}. Furthermore, the process M(t) starts from
the initial state M(0) = (0, 1, 0, ...) which stochastically dominates the initial state of the process M̂(t),

82See Section C.3 for the proof of this result.
83The proof that ρe < +∞ is delayed to Section C.3.
84Note that ρm reaches its upper bound as x goes to 0. In the limit, it is equal to 1+

δ

1− δ
k − 1
N − 1

, which is intuitive: the
majority weights the current-period payoff s−b against the constant homophily loss in future periods due to the permanent
loss of control (times its probability of occurrence (k − 1)/(N − 1)).

85The i-th component of M(t) is the probability (from the perspective of a majority member) that the majority be of
size k + 1 − i at period t. In particular, if at time 0 the majority is known to have size k + 1, then M(0) = (0, 1, 0, ..., 0),
and at any later time t, M(t) =

(
πe
k+1,k(t), ..., πe

k+1,N−1(t)
)
. Similarly, if at time 0 the majority is known to have size k,

then M̂(0) = (1, 0, , ..., 0), and at any later time t, M̂(t) =
(
π̂e
k,k(t), ..., π̂e

k,N−1(t)
)
.

86Namely, for any j∗ ∈ {1, ..., k}, Σj≥j∗Pij ≥ Σj≥j∗Pi′j .
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that is M̂(0) = (1, 0, , 0, ...).
Hence, a standard argument implies that for any t > 0, the distributionM(t) stochastically dominates

the distribution M̂(t) 87. In particular, we have that for any t > 0,

N−1∑
i=k+1

πe
k+1,i(t) ≥

N−1∑
i=k+1

π̂e
k,i(t),

which, since probabilities sum to 1, is equivalent to: πe
k+1,k(t) ≤ π̂e

k,k(t).

(ii) In order to establish the lower bound on ρm and thus Inequality (23), we note that:(∑
i≥k

πm
k+1,i(t)

)
−
(∑
i≥k

πm
k−1,i(t)

)
> 0 ∀t ≥ 0

This inequality can be shown with the same technique as the one used in the proof of claim (i) by
considering the process of one’s successive in-group sizes in the meritocratic equilibrium, either starting
from the initial state k + 1 or k − 1. Indeed, the same conditions are satisfied, as (a) both processes (of
probability distribution over one’s successive in-group sizes) share the same transition matrix88 which
is stochastically monotone, and (b) the initial state with mass 1 in k + 1 stochastically dominates the
initial state with mass 1 in k − 1. Hence the stochastic-comparison argument applies, yielding that the
process of one’s in-group size starting from k+ 1 stochastically dominates at any time t ≥ 0 the process
starting from k − 1, and thus in particular,

∑
i≥k

πm
k+1,i(t) >

∑
i≥k

πm
k−1,i(t)

Proof of claim (iii). The result derives from the explicit expressions of the existence thresholds
together with Lemma 4. Indeed, by the proof of Lemma 4 and Proposition 1, we have that for all t ≥ 0,

πe
k+1,k(t)− π̂e

k,k(t) ≤ 0, and
(∑
i≥k

πm
k+1,i(t)

)
−
(∑
i≥k

πm
k−1,i(t)

)
≥ 0

Using term-by-term differentiation of the series yields the result: ∂ρm/∂δ ≥ 0, ∂ρe/∂δ ≥ 0 for all δ ∈
[0, 1). Moreover, using term-by-term differentiation of the series for ρm and explicit computations for ρe

yields

∂ρm

∂δ

∣∣∣∣
δ=0

= k − 1
N − 1(1− 2x) and ∂ρe

∂δ

∣∣∣∣
δ=0

= k − 1
N − 1

87A sketch of the proof is as follows. Proceed by induction on t. The result for t = 0 holds as noted in the text. Suppose
that M(t) stochastically dominates M̂(t). Then, since P stochastically dominates P̂ , we have that M̂(t)P stochastically
dominates M̂(t)P̂ . Since P is stochastically-monotone, M(t)P stochastically dominates M̂(t)P . Thus, by transitivity,
M(t)P stochastically dominates M̂(t)P̂ . In other words, M(t+ 1) stochastically dominates M̂(t+ 1), which concludes the
proof.

88Namely, the matrix Pm with components Pij = pm
i,j for any i, j ∈ {1, ..., N − 1}.
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C.3 Proof of Proposition 1: Entrenchment exists only on a finite interval
(ρe <∞)

We show in this section that ρe < ∞ 89. The result is trivial for k = 2 (e.g. using the explicit
expression of ρe). Let k ≥ 3. The result is obvious for x = 0 (again by the explicit expression of ρe). We
thus consider the case x > 0.

Let V e
i denote the value function in the entrenched equilibrium, and define as before ue

i ≡ V e
i+1−V e

i .
Fix s > 0. For any i ∈ {1, ..., N − 2}, ue

i is clearly continuous with respect to b ∈ [0,+∞).
The (one-shot) deviation differential payoff from entrenchment to meritocracy in M = k writes:

s− b+ δ
k − 1
N − 1(Vk−1 − Vk+1) = s− b− δ k − 1

N − 1(ue
k−1 + ue

k)

Fix b = 0. If the above payoff is strictly positive for b = 0, then by continuity, it must be so on a
neighbourhood of 0. Hence there exists ρ > 0 such that for any s/b > ρ, there exists a strictly profitable
deviation from entrenchment to meritocracy, which yields the result: ρe < ∞. We thus show that for
b = 0:

s− δ k − 1
N − 1(ue

k−1 + ue
k) > 0 (24)

We first show that the above inequality can be written as

δx
k − 1
N − 1

1− δx− δ(1− x)
[
k + 1
N − 1 + k − 2

N − 1ak+1

] (25)

×

(
1−

δx
k

N − 1

1− δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

] − δx
k − 2
N − 1

1− δ(1− x)
[
k + 1
N − 1 + k − 3

N − 1bk+2

]) < 1

where the vectors (ak+l)k−2
l=1 , (bk+l)k−2

l=1 are defined recursively by

ak+l =
δx

k + l

N − 1

1− δ(1− x)
[
k + l + 1
N − 1 + k − l − 2

N − 1 ak+l+1

]
− δxk − l − 1

N − 1

aN−2 =
δx
N − 2
N − 1

1− δ(1− x)− δ x

N − 1
89The proof also yields that ρe† |s†>b <∞ (thus in particular for x† ≥ 1/2).
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and 

bk+l =
δx
k + l − 1
N − 1

1− δ(1− x)
[
k + l

N − 1 + k − l − 2
N − 1 bk+l+1

]
− δxk − l − 1

N − 1

bN−2 =
δx
N − 3
N − 1

1− δ(1− x)N − 2
N − 1 − δ

x

N − 1

Indeed, computations using (8)-(9) and (10)-(12) for the entrenchment equilibrium, give that:



[
1− δ(1− x) k + 1

N − 1 − δx
](
V e
k+1 − V e

k−1
)

= xs+ δ(1− x) k − 2
N − 1

(
V e
k+2 − V e

k−2
)
− δx k

N − 1u
e
k + δx

k − 2
N − 1u

e
k−2

V e
k+2 − V e

k−2 = ak+1
(
V e
k+1 − V e

k−1
)

ue
k+1 = bk+1u

e
k

ue
k−3 = bk+2u

e
k−2

and thus, by rearranging90, (24) is equivalent to (25).
Remark. By construction, (ak+l) and (bk+l) are increasing with l, and for any l, bk+l < ak+l < 1.

Moreover, for any l, ak+l and bk+l are increasing with respect to x and δ.91

We show that for any x ∈ [0, 1] and δ ∈ [0, (N − 1)/N), inequality (25) is satisfied92. The above
remark on the properties of (ak+l)k−2

l=1 , (bk+l)k−2
l=1 , yields that the term on the first line (resp. second line)

is strictly increasing (resp. decreasing) with respect to x and δ. Moreover, by continuity, (25) is clearly
satisfied for (x, δ) in a neighbourhood of (0, δ), (x, 0), and most interestingly of (1, (N − 1)/N).

90Using in particular that (8)-(9) imply:
ue
k = xs+ δ(1− x)

[(
1−

k + 1
N − 1

)
ue
k+1 +

k

N − 1
ue
k

]
ue
k−2 = −xs+ δ(1− x)

[
k + 1
N − 1

ue
k−2 +

(
1−

k + 2
N − 1

)
ue
k−3

]
91These results can be shown by downward induction starting from l = N − 2.
92The case x ≥ 1/2 is equivalent to the homogamic-evaluation-capability setting with x† ≥ 1/2. Indeed, the homogamic-

evaluation-capability equivalent of (24) is:

δx
k − 1
N − 1

1− δx† − δ(1− x†)
[
k + 1
N − 1

+
k − 2
N − 1

a†
k+1

]
×
(

1−
δx†

k

N − 1

1− δ(1− x†)
[

k

N − 1
+

k − 2
N − 1

b†
k+1

] − δx†
k − 2
N − 1

1− δ(1− x†)
[
k + 1
N − 1

+
k − 3
N − 1

b†
k+2

]) <
x

x†

with the corresponding families (a†
k+l)

k−2
l=1 , (b†

k+l)
k−2
l=1 defined as before by replacing x with x†.
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Using the inequality bk+1 < bk+2 < 1, a sufficient condition for (25) to be satisfied is

δx
k − 1
N − 1

(
1− δxN − 2

N − 1 − δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

])
(26)

/

[(
1− δ(1− x)

[
k

N − 1 + k − 2
N − 1bk+1

])(
1− δx− δ(1− x)

[
k + 1
N − 1 + k − 2

N − 1ak+1

])]
< 1

or equivalently,

δx
k − 1
N − 1

(
1− δxN − 2

N − 1 − δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

])
(27)

−

(
1− δ(1− x)

[
k

N − 1 + k − 2
N − 1bk+1

])(
1− δx− δ(1− x)

[
k + 1
N − 1 + k − 2

N − 1ak+1

])
< 0

The above inequalities are strictly stronger than (25) for any x ∈ (0, 1), and coincide with (25) in
x = 1. Moreover, it holds for any (x, δ) = (1, δ) where δ ∈ [0, (N − 1)/N ].

We show that for any x ∈ [0, 1], (i) the LHS in (27) increases with δ over [0, (N − 1)/N ], and (ii) this
maximum (LHS with δ = (N − 1)/N) is strictly negative.

(i) In order to alleviate the notation, let Ca and Cb be defined as

Ca ≡
k + 1
N − 1 + k − 2

N − 1ak+1, and Cb ≡
k

N − 1 + k − 2
N − 1bk+1

Since bk+1 < ak+1 < 1, then Cb < Ca < 1. The derivative of the LHS in (27) with respect to δ writes
after rearranging:

ϕ(δ) ≡ x
(

1 + k − 1
N − 1

)
+ (1− x)(Ca + Cb)− 2δ

[
x(1− x)

(
1 + k − 1

N − 1

)
Cb + (1− x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1

]

+ δ(1− x) k − 2
N − 1

(
∂ak+1

∂δ

[
1− δ(1− x)Cb

]
+ ∂bk+1

∂δ

[
1− δ(1− x)Ca − δx

(
1 + k − 1

N − 1

)])

Using a downward induction argument on the sequences (ak+l)l, (bk+l)l yields that ∂ak+1/∂δ > ∂bk+1/∂δ.93

93The result follows from the observation that

∂aN−2
∂δ

=
x
N − 2
N − 1(

1− δ(1− x)− δ
x

N − 1

)2 >

x
N − 3
N − 1(

1− δ(1− x)
N − 2
N − 1

− δ
x

N − 1

)2 =
∂bN−2
∂δ

and for any l ∈ {1, ..., k − 3},

∂ak+l
∂δ

=
x
k + l

N − 1
+ δ2x(1− x)

k + l

N − 1
k − l − 2
N − 1

∂ak+l+1
∂δ(

1− δ(1− x)
[
k + l + 1
N − 1

+
k − l − 2
N − 1

ak+l+1

]
− δx

k − l − 1
N − 1

)2

>

x
k + l− 1
N − 1

+ δ2x(1− x)
k + l − 1
N − 1

k − l − 2
N − 1

∂bk+l+1
∂δ(

1− δ(1− x)
[
k + l

N − 1
+
k − l − 2
N − 1

bk+l+1

]
− δx

k − l − 1
N − 1

)2 =
∂bk+l
∂δ
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Therefore,

φ(δ) ≡ ∂ak+1

∂δ

[
1− δ(1− x)Cb

]
+ ∂bk+1

∂δ

[
1− δ(1− x)Ca − δx

(
1 + k − 1

N − 1

)]
≥ ∂bk+1

∂δ

[
2− δ(1− x)(Ca + Cb)− δx

(
1 + k − 1

N − 1

)]
> 0

Let ψ(δ) ≡ ϕ(δ)− δ(1− x) k − 2
N − 1φ(δ). Then, by rearranging,

ψ(δ) = x

(
1 + k − 1

N − 1

)
+ (1− x)(Ca + Cb)− 2δ

[
x(1− x)

(
1 + k − 1

N − 1

)
Cb + (1− x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1

]

= x

[
1 + k − 1

N − 1 − δ(1− x)
(

1 + k − 1
N − 1

)
Cb − δx

(
N − 2
N − 1

)2
]

+ (1− x)
[(

Ca − δxCb − δ(1− x)CaCb
)

+
(
Cb − δx

k − 1
N − 1Cb − δ(1− x)CaCb

)]
≥ 0

where the last inequality stems from the fact that k/(N − 1) < Cb < Ca < 1. Hence ϕ(δ) > 0 for any
x ∈ [0, 1]. Consequently, the LHS in (27) is strictly increasing with respect to δ, and thus reaches its
maximum over [0, (N − 1)/N ] in δ = (N − 1)/N .

(ii) We now let δ = (N−1)/N and show that the LHS in (27) with δ = (N−1)/N is strictly negative.
The latter then writes as

LHS ≡ xk − 1
N

(
1− xN − 2

N
− (1− x)

[
k

N
+ k − 2

N
bk+1

])

−

(
1− (1− x)

[
k

N
+ k − 2

N
bk+1

])(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

= x
k − 1
N

(
1
N

+ (1− x)k − 2
N

(ak+1 − bk+1)
)

−
(
k + 1
N
− 1− x

N
− (1− x)k − 2

N
bk+1

)(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

where bk+1 and ak+1 are evaluated in δ = (N − 1)/N . By using that bk+1 < 1 and rearranging, we get
that

LHS ≤ xk − 1
N

(
1
N

+ (1− x)k − 2
N

(ak+1 − bk+1)
)

−

(
2
N

+ x
k − 1
N

)(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

= − 2
N2 − (1− x) 2

N

k − 2
N

[
1− ak+1

]
− x(1− x)k − 1

N

k − 2
N

[
1− 2ak+1 + bk+1

]
Hence, a sufficient condition for the LHS in (27) to be strictly negative is that 1 − 2ak+1 + bk+1 > 0.
This actually holds, which concludes the proof: it can in fact be shown that for any l ∈ {1, ..., k − 2},
1− 2ak+l + bk+l ≥ 0 (with strict inequality whenever x < 1).94

94The argument is as follows. One first notes that since for any l ∈ {1, ..., k − 2}, ∂ak+l/∂δ ≥ ∂bk+l/∂δ > 0, the term
[1−2ak+l+bk+l] is strictly bounded below by its value for δ = (N−1)/N . The rest of the argument derives from downward
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D Proof of Proposition 2

The result for minority members is obvious. We show the one for majority members. For any
i ∈ {k, ..., N − 1}, let vi ≡ V m

i − V e
i . Note that by construction, for any i ≥ k + 1,

vi = δ(1− x)
[

i

N − 1vi +
(

1− i

N − 1

)
vi+1

]
+ δx

[
i− 1
N − 1vi−1 +

(
1− i− 1

N − 1

)
vi

]
and therefore,[

1− δ(1− x) i

N − 1 − δx
(

1− i− 1
N − 1

)]
vi = δ(1− x)

(
1− i

N − 1

)
vi+1 + δx

i− 1
N − 1vi−1, (28)

while for i = k,

vk = ∆ + δ

[
k

N − 1vk +
(

1− k

N − 1

)
vk+1

]

where ∆ ≡ x(s− b) + δx
k − 1
N − 1

(
V m
k−1 − V m

k+1
)
≥ 0 – this last inequality stems from the definition of the

meritocratic equilibrium and from the proof of Lemma 1: it is strict whenever x > 0 and either b > 0 or
s > b –, and thus [

1− δ k

N − 1

]
vk = ∆ + δ

(
1− k

N − 1

)
vk+1 (29)

Assume by contradiction that vN−1 < 0. Then, Equation (28) for i = N−1 implies that vN−2 < vN−1 <

0, and thus by induction that vk < vk+1 < ... < vN−1 < 0. However, Equation (29) then yields

0 > (1− δ)vk > ∆ ≥ 0,

induction showing the result for any l with δ = (N − 1)/N . Explicit computations yield that for δ = (N − 1)/N ,

[
1− 2aN−2 + bN−2

]
=

(1− x)
2
N2(

1− (1− x)
N − 1
N

−
x

N

)(
1− (1− x)

N − 2
N

−
x

N

) ≥ 0

Then, for any l ∈ {1, ..., k − 3}, the term [1− 2ak+l + bk+l] with δ = (N − 1)/N has the same sign as(
1− (1− x)

[
k + l + 1

N
+
k − l − 2

N
ak+l+1

]
− x

k − l − 1
N

)(
1− (1− x)

[
k + l

N
+
k − l − 2

N
bk+l+1

]
− x

k − l − 1
N

)
− 2x

k + l

N

(
1− (1− x)

[
k + l

N
+
k − l − 2

N
bk+l+1

]
− x

k − l − 1
N

)
+ x

k + l − 1
N

(
1− (1− x)

[
k + l + 1

N
+
k − l − 2

N
ak+l+1

]
− x

k − l − 1
N

)
= (1− x)

[
k − l − 1

N
−
k − l − 2

N
ak+l+1

][
k − l
N
− x

k − l − 2
N

− (1− x)
k − l − 2

N
bk+l+1

]
+ x(1− x)

k + l − 1
N

2
N

+ x(1− x)
k + l − 1

N

k − l − 2
N

[
1− 2ak+l+1 + bk+l+1

]
≥ x(1− x)

k + l − 1
N

k − l − 2
N

[
1− 2ak+l+1 + bk+l+1

]
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which is a contradiction. Hence, vN−1 ≥ 0, and by induction using Equation (28), vk ≥ vk+1 ≥ ... ≥
vN−1 ≥ 0. In other words, for any i ∈ {k, ..., N − 1},

V m
i − V e

i ≥ 0,

which concludes the proof. Note that the inequalities are strict whenever ∆ > 0, i.e. whenever b > 0
and x > 0 (with s > b if x = 1/2). Moreover, the gap between the value functions in the two equilibria,
V m
i − V e

i , decreases as the majority size moves further away from M = k.

E Proof of Lemma 2

We show successively that:

(i) νe
k = 0

(ii) for any i ≥ k + 1, we have that:
νe
i+1
νe
i

=
νm
i+1
νm
i

= 1− x
x

N − i
i+ 1 ,

(iii) νe
k + νe

k+1 < νm
k + νm

k+1

and so, that the probability distribution {νe
i } strictly first-order stochastically dominates {νm

i }.

Claim (i) derives from the fact that i refers to the size of the majority at the end of the period
i ∈ {k, ..., 2k}. Note that in regime r ∈ {e,m},

νr
N = (1− x)νr

N + 1− x
N

νr
N−1

and for k + 2 ≤ i < N, νr
i = (1− x)N − (i− 1)

N
νr
i−1 +

[
(1− x) i

N
+ x

N − i
N

]
νr
i + x

i+ 1
N

νr
i+1

Claim (ii) follows by backward induction starting from i = N and going down until k + 2 included.
Note that the explicit expression of the ergodic distribution in the entrenched equilibrium obtains with
claims (i) and (ii) by writing ΣNi=k+1ν

e
i = 1. The explicit expression of the ergodic distribution in the

meritocratic equilibrium obtains similarly noting that (1−x)Nνm
k = x(k+1)νm

k+1. One has in particular
that 

νm
k+1

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

]
= 1

νe
k+1

[
1 +

k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

]
= 1

Lastly, claims (i) and (ii) together imply claim (iii).
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F Proof of Proposition 3

Let ρW be uniquely defined by

qN(N − 1)
[
1 + x

1− x
k + 1
N

+
k−1∑
l=1

(
1− x
x

)l l∏
j=1

k − j
k + 1 + j

]
ρW

= 2
1− x

[
1 +

k−1∑
l=1

(l + 1)2
(

1− x
x

)l l∏
j=1

k − j
k + 1 + j

]

We show that Wm ≥ W e if and only if s/b ≥ ρW . The result thus obtains by showing that ρW < 1 for
all parameter values.

We first establish the explicit expression of ρW . By construction, we have that

Bm −Be =
N∑
i=k

(
νm
i − νe

i

)[
i(i− 1) + (N − i)(N − i− 1)

]
b̃

Hence, computations using the explicit expressions of the ergodic distributions (see Section E above)
yield after rearranging:[

x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

][
1 +

k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

](
Bm −Be)

= − 2x
1− x

k + 1
N

[
1 +

k−1∑
l=1

(l + 1)2
(

1− x
x

)l l∏
j=1

k − j
k + 1 + j

]
b̃

Similar computations for (Sm − Se) yield:

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

][
1 +

k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

](
Sm − Se)

= N(N − 1)xk + 1
N

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

]
s̃

The expression of ρW follows. Lastly, the inequality ρW < 1 derives from the observations that for any
x ∈ [0, 1/2], N(N − 1) > 2(l + 1)2/(1− x) for any l ≤ k − 2, and that95

N(N − 1)
[

1 +
(

1− x
x

)k−1 k−1∏
l=1

k − l
k + 1 + l

]
>

2
1− x

[
1 + k2

(
1− x
x

)k−1 k−1∏
l=1

k − l
k + 1 + l

]
95Indeed, as the inequality N(N − 1) < 2k2/(1 − x) holds if and only if x > (k − 1)/(N − 1), we have that for any

x ∈ [0, 1/2], the difference between the LHS minus the RHS is bounded below by

N(N − 1)
[

1 +
(

k

k − 1

)k−1 k−1∏
l=1

k − l
k + 1 + l

]
− 4
[

1 + k2
(

k

k − 1

)k−1 k−1∏
l=1

k − l
k + 1 + l

]
> N(N − 1)− 4−N > 0

where the first inequality derives from
(

k

k − 1

)k−1 k−1∏
l=1

k − l
k + 1 + l

< 1, while the second holds for any N ≥ 4.
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G Proof of Proposition 4

We use a fixed-point argument to prove the existence of a class of equilibria characterized by a weakly
decreasing decision rule (∆M )M 96. Let u be given by

u ≡ 1
1− δ

(
E
[
(s+ b)1{ŝ− s ≤ b}

]
+ E

[
ŝ1{ŝ− s > b}

])

Note that
(
E
[
(s + b)1{ŝ − s ≤ b}

]
+ E

[
ŝ1{ŝ − s > b}

])
is the highest flow payoff a majority member

can guarantee, and consequently, u represents an upper bound on the majority’s expected utility from
a recruitment (i.e. its expected utility in the absence of control consideration). We define K as the set
of sequences (uM )M∈{k−1,...,N−2} such that (i) for any M , uM ∈

[
0, u
]
and (ii) the sequence (uM )M is

weakly decreasing. By construction, the set K is non-empty, compact and convex.
As earlier, let {Vi} denote the value functions and V ≡ (V1, ..., VN−1). For i ∈ {k − 1, ..., N − 2},

let ui ≡ Vi+1 − Vi. In the equilibria we look for, whenever the majority has size M ∈ {k, ..., N − 1}, it
favours a majority candidate with (discounted) talent s against a minority candidate with (discounted)
talent ŝ if and only if97

ŝ+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
≤ s+ b+ δ

[
M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
,

i.e. if and only if

ŝ− s ≤ b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
We denote by s ∈ [b,+∞) the lowest real number such that P(ŝ− s ≤ s) = 1 if it exists, and let s = +∞
otherwise. We first consider the "decision-rule" (cutoff) mapping D : K −→

[
0,min(b + δu, s)

]k
, u 7−→

(DM )M∈{k,...,N−1}, where

DM (u) ≡


b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
if b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< s

s otherwise

Taking Vk−1 ≥ 0 as fixed, we consider the "value-function" mapping T defined as T :
[
0,+∞

]k ×[
b, s
]k −→ [

0,+∞
]k
,
(
(VM )M , (∆M )M

)
7−→ (TM )M , where

TM (V,∆) ≡ E
[
(s+ b)1{ŝ− s ≤ ∆M}

]
+ δP(ŝ− s ≤ ∆M )

[
M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
+ E

[
ŝ1{ŝ− s > ∆M}

]
+ δP(ŝ− s > ∆M )

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
96We thus focus on equilibria such that the decision rule only depends on the majority size.
97The assumption that ties are broken in favour of the majority candidate comes withouth loss of generality when vertical

types are continuously distributed within each group.
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In order to alleviate the notation, we define the functions h and h1 as h(X) ≡ E
[
(s+X)1{ŝ− s ≤ X}

]
+ E

[
ŝ1{ŝ− s > X}

]
h1(X) ≡ X − h(X)

Fix Vk−1 ≥ 0. For a sequence u ≡ (uM )M∈{k−1,...,N−2} ∈ K. We define the sequence V (u) ≡
(VM )M∈{k,...,N−1} by upward induction by letting VM ≡ uM−1 + VM−1. Lastly, we define the map-
ping Υ : u 7−→ Υ(u) from K into itself by

ΥM (u) ≡ min
{
TM+1

(
V (u), D(u)

)
− TM

(
V (u), D(u)

)
, h(b)/(1− δ)

}

for any M ∈ {k − 1, ..., N − 2} (with the convention that Tk−1
(
V (u), D(u)

)
≡ Vk−1). While bounding

above Υ(u) is necessary to the argument, it does not threaten the existence of an equilibrium: indeed,
h(b) is the highest flow payoff (quality and homophily) that a majority member can guarantee98. Hence
we have by construction that for any u ∈ K and any i ∈ {k − 1, ..., N − 2}, Υi(u) ≤ u. With an abuse
of notation, we omit in the following the min operator.

We now check that the mapping Υ is well-defined, i.e. that Υ(u) ∈ K for any u ∈ K.

TM
(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM (u)}

]
+ E

[
ŝ1{ŝ− s > DM (u)}

]
+ P(ŝ− s ≤ DM (u))

[
b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]]
+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
We thus distinguish two cases.

(A) If DM (u) < s for all M ≥ k, then99

TM
(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM}

]
+ E

[
ŝ1{ŝ− s > DM}

]
+ P(ŝ− s ≤ DM )DM

+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
= h(DM ) + δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
(30)

Consequently, if DM (u) < s 100, plugging the above expressions in the equality ΥM (u) = TM+1(V,D)−
TM (V,D), and using the expression of DM as a function of u, yields

ΥM (u) = h(DM+1)− h(DM ) + δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
= h(DM+1) + h1(DM )− b (31)

98Indeed, for any joint distribution of types, the quantity

E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

decreases with X ≥ b.
99Note that in this case the mapping T can be defined as T :

[
0, Vk−1 + ku

]k
×
[
b, b+ u

]k
−→

[
0, Vk−1 + ku

]k
.

100By monotonicity (as u ∈ K), DM (u) < s implies that DM′ < s for any M ′ > M .
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Since u ∈ K, we have that (i) uM ≥ 0 for anyM and thus by construction DM ≥ b, and (ii) the sequence
(uM )M is decreasing, and thus so is the sequence (DM )M . As a consequence, DM ≥ DM+1 ≥ b.

Henceforth, we restrict our attention to joint distributions such that the functions h1 and (h−h1) are
strictly increasing over [b,+∞) ∩ Supp(ŝ − s) 101. This set notably includes the set of continuous joint
symmetric distributions102, as well as the case where the majority candidate has a fixed type s ≥ 0 and
the minority candidate a type s + D where D is a (full support) random variable with a continuously
differentiable distribution over (−s, s) symmetric around 0.103

As a consequence, for any u ∈ K, ΥM (u) ≥ 0 and the sequence (ΥM (u))M≥k is decreasing as it
inherits the monotonicity of the sequence (DM )M . Moreover, for any M ≥ k,

ΥM (u) ≤ h(DM ) + h1(DM )− b = δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< δ

N − 2
N − 1uk−1 ≤ u

It thus remains to check that Υk−1(u) ≥ Υk(u). By monotonicity of h and (h− h1) and using the above
computations, a sufficient condition for this inequality to hold writes as:

(1− δ)Vk−1 ≤ h(b)

This condition imposes an upper bound on Vk−1. Recall that h(b) is the highest flow payoff (quality and
homophily) that a majority member can guarantee. Therefore, for any symmetric joint distribution of
types, any (increasing and concave) equilibrium value function must satisfy Vk−1 < h(b)/(1− δ). Hence
assuming this inequality hold does not threaten the existence of an equilibrium. We thus fix in the
following Vk−1 such that the above inequality holds. Hence, under the above conditions, Υ(u) ∈ K.

(B) We now consider the case where s < +∞ and DM (u) = s for some M . (Note that as uM ≤ u <∞,
the case DM (u) = s can only arise when s <∞.)

We first note that, within the class of equilibria with u ∈ K (and thus a decreasing sequence (∆M )M ),
∆k = s implies that ∆k+1 < s. Hence, whenever the majority is not tight, it recruits a minority candidate
with a strictly positive probability: ∆M < s for any M ≥ k + 1.104

101Note that (h− h1) being strictly increasing implies that h is strictly increasing, as h(X)− h1(X) = 2h(X)−X.
102Indeed, letting F be the marginal c.d.f. of s and ŝ, then

∀∆ > 0, h(∆) =
ˆ s

0
(s+ ∆)F (s+ ∆)dF (s) +

ˆ s
∆
ŝF (ŝ−∆)dF (ŝ),

and thus, for any ∆ ∈ (0, s),

h′(∆) =
ˆ s

0
F (s+ ∆)dF (s) +

ˆ s−∆

0
(s+ ∆)f(s+ ∆)dF (s)−

ˆ s
∆
ŝf(ŝ−∆)dF (ŝ) =

ˆ s
0
F (s+ ∆)dF (s) ∈ (1/2, 1)

since
ˆ s

0
F (s)dF (s) = 1/2.

103Indeed, denoting by F the c.d.f. of D, we have for any ∆ ∈ (0, s),

h(∆) =
ˆ ∆

−s
(s+ ∆)dF (D) +

ˆ s
∆

(s+D)dF (D), and thus h′(∆) = F (∆) ∈ (1/2, 1)

104Indeed, suppose by contradiction that ∆k = ∆k+1 = s. Then, by construction,

uk = δ

[
k

N − 1
uk +

k − 2
N − 1

uk+1

]
Since u ∈ K, this yields that uk = uk+1 = 0, which contradicts the initial assumption as b < s.
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Consequently, we only need to consider the case where Dk+1(u) < Dk(u) = s <∞ 105. We first show
that Υk(u) ∈ [Υk+1(u), u]. By construction,

Tk
(
V (u), D(u)

)
= E[s] + b+ δ

[
k

N − 1Vk +
(

1− k

N − 1

)
Vk+1

]
,

and thus, since Dk+1 < s implies that Tk+1(V,D) is given by (30),

Υk(u) = h(Dk+1)− E[s]− b

By monotonicity of the sequence (DM )M and since the functions h and h1 are increasing, we have that
Υk(u) ≥ Υk+1(u). It thus remains to check that Υk−1(u) ≥ Υk(u). A sufficient condition for this
inequality to hold writes as106

(1− δ)Vk−1 ≤ E[s] + b+ k

N − 2(s− b)

This second inequality is looser than the condition107 in case (A) and is thus satisfied for Vk−1 ≤
h(b)/(1− δ) (which must be the case in any equilibrium as discussed above).

Therefore, fixing Vk−1 ∈ [0, h(b)/(1− δ)], Υ is a well-defined continuous mapping from K into itself.
By Brouwer’s fixed point theorem, it admits a fixed point. This establishes existence.

We prove that in any equilibrium in this class, the sequence (∆M )M is strictly decreasing. For the
sake of exposition, we focus on the case ∆k < s (the case ∆k = s relies on a similar – and shorter –
argument108). We suppose by contradiction that for some M , ∆M = ∆M+1 and note with (31) that this

105Indeed, note that if Dk+1(u) < s, then Dk+1(Υ(u)) < s as

Dk+1(Υ(u)) < b+ δ

[
k

N − 1

(
h(Dk+1(u))− E[s]− b

)
+

k − 2
N − 1

(
h(Dk+2(u) + h1(Dk+1(u))− b

)]
<

(
1− δ

N − 2
N − 1

)
b+ δ

[
k

N − 1
(
h(Dk+1(u))− E[s]

)
+

k − 2
N − 1

Dk+1(u)
]

<

(
1− δ

N − 2
N − 1

)
b+ δ

N − 2
N − 1

s < s

106Indeed, a sufficient condition for Υk−1(u) ≥ Υk(u) is

2(E[s] + b)− (1− δ)Vk−1 + δuk−1 ≥ h
(
b+ δ

N − 2
N − 1

uk

)
− δ

k − 1
N − 1

uk,

which by monotonicity of h and h− h1 holds in particular if

2(E[s] + b)− (1− δ)Vk−1 + δuk−1 ≥ h
(
b+ δ

N − 2
N − 1

uk−1

)
− δ

k − 1
N − 1

uk−1,

i.e. (1− δ)Vk−1 ≤ 2(E[s] + b)− h
(
b+ δ

N − 2
N − 1

uk−1

)
+ δ

(
1 +

k − 1
N − 1

)
uk−1

Hence, by monotonicity of X 7→ X − h(X) and since uk−1 must satisfy δ(N − 2)/(N − 1)uk−1 ≥ (s − b), a sufficient
condition for this inequality to hold is

(1− δ)Vk−1 ≤ 2(E[s] + b)− h(s) + (s− b) +
k

N − 2
(s− b),

which yields the result as h(s) = E[s] + s.
107Indeed, for any joint distribution such that (ŝ− s) is symmetrically distributed around 0,

h(b) ≤ E[s] + b+
k

N − 2
(s− b)

108Indeed, we know from before that ∆k = s implies ∆k+1 < ∆k.
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implies ∆M = ∆M ′ for any M,M ′ 109, and consequently uM = uM ′ for any M,M ′. Hence (31) implies
that

uM = h(∆M ) + h1(∆M )− b = ∆M − b = δ
N − 2
N − 1uM ,

where the last equality follows by definition of ∆M , and thus uM = 0 and ∆M = b for all M ≥ k.
Therefore, uk−1 = 0. Hence, considering the minority’s value function yields similarly that ui = 0 for
all i ≤ k − 1 110. However, by summing the expression of ui for all i ∈ {1, ..., N − 2} and rearrang-
ing, yields on the LHS a weighted sum of ui, which is thus equal to 0, while on the RHS the term
b
[
P(ŝ−s ≤ b)−P(ŝ−s > b)

] 111, which is strictly positive as (ŝ−s) is symmetrically distributed around
0. Hence we reach a contradiction, and therefore, the sequence (∆M )M≥k is strictly decreasing.

We now turn to ranking equilibria from more to less meritocratic. Consider the class of equilibria
characterized by a decreasing decision rule (∆M )M∈{k,...,N−1}. We refer in the following to an equilibrium
by its decision rule ∆ ≡ (∆M )M∈{k,...,N−1}. Let ∆ and ∆′ be two equilibria within this class. We now
show that

(i) ∆k < ∆′k implies that ∆M < ∆′M for any M ≥ k + 1,

(ii) ∆k = ∆′k ∈ [b, s] implies that ∆M = ∆′M < s for any M ≥ k + 1,

(i) Assume that ∆k < ∆′k < s (computations are analogous in the case ∆k < ∆′k = s). By monotonicity,
∆M < s and ∆′M < s for any M ≥ k + 1, and thus, with the above notation,

∆M = b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
=
(

1− δN − 2
N − 1

)
b+ δ

[
M − 1
N − 1

[
h(∆M ) + h1(∆M−1)

]
+
(

1− M

N − 1

)[
h(∆M+1) + h1(∆M )

]]
Consequently, for any M ≥ k + 1,

h2,M (∆M )− h2,M (∆′M ) = δ
M − 1
N − 1

[
h1(∆M−1)− h1(∆′M−1)

]
+ δ

(
1− M

N − 1

)[
h(∆M+1)− h(∆′M+1)

]
(32)

109Indeed, using the expression of ∆M (for ∆M < s), ∆M = ∆M+1 first gives that

M − 1
N − 1

(uM − uM−1) +
(

1−
M + 1
N − 1

)
(uM+1 − uM ) = 0,

and thus, since the sequence (uM )M is decreasing, uM−1 = uM = uM+1. The expression of u as a function of ∆ (i.e.
(31)), together with the strict monotonicity of the functions h and h1 then implies that ∆M−1 = ∆M = ∆M+1 = ∆M+2.

110Indeed, when ∆M = b for all M ≥ k, then for any i ≤ k − 2,

ui = δP(ŝ− s ≤ b)
[
i− 1
N − 1

ui−1 +
(

1−
i

N − 1

)
ui

]
+ δP(ŝ− s > b)

[
i

N − 1
ui +

(
1−

i+ 1
N − 1

)
ui+1

]
,

The result follows by induction.
111Indeed, computations yield that

uk−1 = b
[
P(ŝ− s ≤ b)− P(ŝ− s > b)

]
+ δP(ŝ− s ≤ b)

[
k − 2
N − 1

uk−2 + uk−1 +
k − 1
N − 1

uk

]
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where the function h2,M is given by

h2,M (X) ≡ X − δM − 1
N − 1 h(X)− δ

(
1− M

N − 1

)
h1(X),

We note that h2,M is strictly increasing over [b, s] 112. By monotonicity of h1, we get for M = k+ 1 that

h2,k+1(∆k+1)− h2,k+1(∆′k+1) < δ

(
1− k + 1

N − 1

)[
h(∆k+2)− h(∆′k+2)

]
Suppose by contradiction that ∆k+1 ≥ ∆′k+1. Then by monotonicity, ∆k+2 ≥ ∆′k+2. By summing
Equation (32) in k + 1 and k + 2 and rearranging, we get that[

h2,k+1(∆k+1)− δ k + 1
N − 1h1(∆k+1)

]
−
[
h2,k+1(∆′k+1)− δ k + 1

N − 1h1(∆′k+1)
]

+
[
h2,k+2(∆k+2)− δ k − 2

N − 1h(∆k+2)
]
−
[
h2,k+2(∆′k+2)− δ k − 2

N − 1h(∆′k+2)
]

= δ
k

N − 1

[
h1(∆k)− h1(∆′k)

]
+ δ

(
1− k + 2

N − 1

)[
h(∆k+3)− h(∆′k+3)

]

Since for any M ≥ k + 1, the functions h2,M − δ
M

N − 1h1 and h2,M − δ
N −M
N − 1 h are strictly increasing

over [b, s], the above equality implies that ∆k+3 ≥ ∆′k+3. We now proceed by induction: suppose that
∆j ≥ ∆′j for any j ∈ {k + 1, ...,M}. Then by summing Equation (32) over the indices k + 1, ...,M and
rearranging,[

h2,k+1(∆k+1)− δ k

N − 1h1(∆k+1)
]
−
[
h2,k+1(∆′k+1)− δ k

N − 1h1(∆′k+1)
]

+
[
h2,M (∆M )− δN −M

N − 1 h(∆M )
]
−
[
h2,M (∆′M )− δN −M

N − 1 h(∆′M )
]

+
M−1∑
j=k+2

([
h2,j(∆j)− δ

j

N − 1h1(∆j)− δ
N − j
N − 1h(∆j)

]
−
[
h2,j(∆′j)− δ

j

N − 1h1(∆′j)− δ
N − j
N − 1h(∆′j)

])

= δ
k − 1
N − 1

[
h1(∆k)− h1(∆′k)

]
+ δ

(
1− M

N − 1

)[
h(∆M+1)− h(∆′M+1)

]

Since for any j ≥ k + 1, the functions h2,j − δ
j

N − 1h1 − δ
N − j
N − 1h are strictly increasing over [b, s], we

get that ∆M+1 ≥ ∆′M+1. Hence by induction, we have that ∆M ≥ ∆′M for any M ≥ k + 1. But by
summing (32) over all these indices and rearranging yields

0 ≤
[
h2,k+1(∆k+1)− δ k

N − 1h1(∆k+1)
]
−
[
h2,k+1(∆′k+1)− δ k

N − 1h1(∆′k+1)
]

+
[
h2,N−1(∆N−1)− δ 1

N − 1h(∆N−1)
]
−
[
h2,N−1(∆′N−1)− δ 1

N − 1h(∆′N−1)
]

+
N−2∑
j=k+2

([
h2,M (∆M )− δ M

N − 1h1(∆M )− δN −M
N − 1 h(∆M )

]
−
[
h2,M (∆′M )− δ M

N − 1h1(∆′M )− δN −M
N − 1 h(∆′M )

])

= δ
k − 1
N − 1

[
h1(∆k)− h1(∆′k)

]
< 0

112Indeed, we may rewrite the function h2,M as: h2,M (X) =
[

1− δ
(

1−
M

N − 1

)]
h1(X) +

[
1− δ

M − 1
N − 1

]
h(X).
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which is a contradiction. Therefore, ∆k+1 < ∆′k+1. The result then obtains by induction, supposing by
contradiction that ∆j < ∆′j for any j ∈ {k, ...,M − 1} and that ∆M ≥ ∆′M , and considering the sums of
(32) over appropriate indices so as to reach a contradiction.
(ii) We note that the above argument yields that if ∆k = ∆′k ∈ [b, s], then ∆M = ∆′M for anyM ≥ k+1.
As a consequence, any two distinct equilibria with a decreasing decision rule satisfy either "∆M < ∆′M
for all M ≥ k", or "∆M > ∆′M for all M ≥ k".

Lastly, we turn to Pareto-comparing the equilibria. Consider two equilibria within this class, described
by a decreasing decision rule denoted respectively by ∆ and ∆′ such that ∆ ≺ ∆′, and let (Vi)i∈{1,...,N−1}

and (V ′i )i∈{1,...,N−1} be the corresponding equilibrium value functions. For any M ≥ k, we have by
construction that

VM = E[(s+ b)1{ŝ− s ≤ ∆M}] + E[ŝ1{ŝ− s > ∆M}] + δP(ŝ− s ≤ ∆M )
[

M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
+ δ
(
1− P(ŝ− s ≤ ∆M )

)[M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]

Note that ∆k < ∆′k implies that ∆k < s. Hence, using that for any M ≥ k, ∆M = b+ δ

[
M − 1
N − 1 uM−1 +

N −M − 1
N − 1 uM

]
, yields

[
1− δ

(
1− M − 1

N − 1

)[
1− P(ŝ− s ≤ ∆′M )

]
− δ M

N − 1P(ŝ− s ≤ ∆′M )
)]

(VM − V ′M ) (33)

= E
[
(ŝ− s−∆M )1{∆M < ŝ− s ≤ ∆′M}

]
+ δP(ŝ− s ≤ ∆′M )

(
1− M

N − 1

)
(VM+1 − V ′M+1)

+ δ
(
1− P(ŝ− s ≤ ∆′M )

)M − 1
N − 1 (VM−1 − V ′M−1)

Two cases arise depending on whether ∆′k = s. If so, then the result for majority members follows
by the usual argument (by contradiction and by induction). Hence, for any δ ∈ [0, (N − 1)/N), any
"meritocratic" equilibrium (i.e. with ∆k < s) is preferred at any majority size by all majority members
to the entrenched equilibrium (∆′k = s).

By contrast, if ∆′k < s, one needs to investigate the minority value function as well. We thus focus on
the case ∆′k < s. We use the same argument as in the proof of Lemma 1 and Proposition 2. Suppose by
contradiction that VN−1 ≤ V ′N−1. Then equation (33) implies that VN−2 − V ′N−2 ≤ VN−1 − V ′N−1 ≤ 0,
and thus by induction that Vk−1 − V ′k−1 ≤ Vk − V ′k ≤ ... ≤ VN−1 − V ′N−1 ≤ 0.

Similarly, for any i ≤ k − 1, we have by construction that

Vi = E[s1{ŝ− s ≤ ∆N−1−i}] + E[(ŝ+ b)1{ŝ− s > ∆N−1−i}]

+ δP(ŝ− s ≤ ∆N−1−i)
[
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

]
+ δ
(
1− P(ŝ− s ≤ ∆N−1−i)

)[ i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
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Hence, for any i ≤ k − 1,[
1− δ

(
1− i− 1

N − 1

)
P(ŝ− s ≤ ∆′N−1−i)− δ

i

N − 1
[
1− P(ŝ− s ≤ ∆′N−1−i)

]]
(Vi − V ′i ) (34)

= E

[[
ŝ− s+ b+ δ

(
i− 1
N − 1ui−1 + N − 1− i

N − 1 ui

)]
1{∆N−1−i < ŝ− s ≤ ∆′N−1−i}

]

+ δP(ŝ− s ≤ ∆′N−1−i)
i− 1
N − 1(Vi−1 − V ′i−1) + δ

(
1− P(ŝ− s ≤ ∆′N−1−i)

)(
1− i

N − 1

)
(Vi+1 − V ′i+1)

Hence, for δ close to 0, the expectation term on the RHS of (34) is strictly positive. Suppose by
contradiction that V1 ≤ V ′1 . Then, by induction, equation (34) yields that Vk − V ′k ≤ ... ≤ V1 − V ′1 ≤ 0.
However, by summing (33) and (34) over all indices and rearranging yields on one side a (positively)
weighted sum of differences (Vi − V ′i ), which is thus negative, while on the other side the sum of flow
payoffs, i.e. the sum of the expectation terms on the RHS of (33) and (34), which is strictly positive.
Hence a contradiction. Therefore, V1 > V ′1 .

Working in a similar fashion – by contradiction and by induction, reaching the desired contradiction
by considering sums of (33) and (34) over appropriate indices – yields the result: for all i ∈ {1, ..., N−1},
Vi > V ′i .

H Proof of Proposition 5

The properties of the value functions of the two canonical equilibria with homogamic evaluation
capability depend on whether x† ≤ 1/2. If x† ≤ 1/2, they exhibit the same features – monotonicity
and concavity/convexity – as their perfect-information counterparts (indeed, the proof of Lemma 1 goes
through replacing x by x†). By contrast, if x† > 1/2, the value function in the meritocratic equilibrium
(if it exists) now decreases with group size i ∈ {1, ..., N −1} [This observation immediately gives that for
x† > 1/2, the meritocratic equilibrium exists for any s† > b.], and is concave for the minority (i ≤ k− 1)
and convex for the majority (i ≥ k). Similarly, in the entrenched equilibrium (if it exists), the value
function increases less over {k, ..., N − 1} than it decreases over {1, ..., k − 1}, whereas with x† ≤ 1/2,
the opposite holds: the distinction stems from the fact that the (weighted) sum of differences V e

i+1 − V e
i

is equal to (1 − 2x†)b. As a consequence, with x† ≥ 1/2, in the entrenchment equilibrium, it is not the
case in general that V e

i ≥ V e
N−i−1 for any i ≥ k, while in the meritocratic equilibrium, V m

i ≤ V m
N−i−1 for

any i ≥ k (the curse of control in action).

Let the quantities Y † and Z† be given by
Y † ≡ 1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂e†

k,k(t)
)

Z† ≡ 1 + k − 1
N − 1

δ

1− δ (1− 2x†) + δ
k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t) + π̂e†

k,k(t)
)

where the probabilities πe†
i,j(t) (resp. π̂

e†
i,j(t)) are taken (a) following the entrenched equilibrium strategies

described in Proposition 5, and (b) from a majority member’s perspective (resp. minority member’s
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perspective) with transition parameter x† instead of x. Define then ρe† as

ρe† ≡


x†

x

Z†

Y †
if Y † > 0

+∞ otherwise.

The same argument as the one used in the proof of ρe < +∞ 113 yields that for any δ ∈ [0, (N − 1)/N)
and x† ∈ [0, 1), ρe† <∞.

Similarly, let ρm† be defined as

ρm† ≡ x†

x

[
1 + k − 1

N − 1(1− 2x†)δ
+∞∑
t=0

δt
[(N−1∑

i=k
πm†
k+1,i(t)

)
−
(N−1∑

i=k
πm†
k−1,i(t)

)]]

where the probabilities πm†
i,j (t) are taken (a) following the meritocratic equilibrium strategies described in

Proposition 5, and (b) from the perspective of a member of the group with initial size i, with transition
parameter x† instead of x. We show that the thresholds ρm† and ρe† are the homogamic-evaluation-
capability counterparts of ρm and ρe in the baseline setting.

The proof of Proposition 5 is analogous to that of Proposition 1. As mentioned, when x† ≤ 1/2,
the value functions in the entrenched and meritocratic equilibria with homogamic evaluation capability
exhibit features similar to the ones of their perfect-information counterparts. Namely, the sequence
(V e†
M )M≥k remains increasing and concave. By contrast, the monotonicity of the sequence (V m†

M )M≥k
may differ: it is increasing (and concave) if x† ≤ 1/2, whereas it is decreasing (and convex) if x† > 1/2.
Moreover, in this latter case it may then be that V e†

k < V e†
k−1. Nonetheless, for x† > 1/2, the sequence

(V m†
M )M≥k being decreasing implies that its differences (V m†

M+1−V
m†
M ) are negative and thus recruiting the

minority candidate against an untalented majority candidate is optimal (as s† > b): hence, for x† > 1/2,
the meritocratic equilibrium exists whenever s† > b. Lastly, in both cases, because of discounting, a
talented majority candidate is still preferred to the minority candidate (with unknown talent) at any
majority size.

We thus consider x† ∈ [0, 1] henceforth. As noted above, the argument used in step 1 of the proof
of Proposition 1 applies to both equilibria114, thus yielding that (except in the meritocratic equilibrium
for x† > 1/2), the most profitable deviation from these candidate equilibria is when the majority is tight
and faces an untalented majority candidate together with an unknown-quality minority one. We thus
focus on step 2 and consider one-shot deviations in majority size M = k when the majority candidate is
untalented.

Note that the difference between the expected maximum of both candidates’ talents and the expected
quality of the majority candidate writes as before (x+ (1− x)x/x†)s− xs = xs.

113Cf. Section C.3.
114For both equilibria when x† ≤ 1/2 and for the entrenchment equilibrium when x† ≥ 1/2, the argument goes through
replacing x by x† and s by s† when appropriate. In particular, in the entrenched equilibrium, for x† ∈ [0, 1], analogous
computations yield that

δ

(
k − 2
N − 1

ue
k+1 +

k

N − 1
ue
k

)
≤

δ
k

N − 1

1− δ
k

N − 1

1
1− x

(
xs− (1− x)b

)
< s† − b
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Hence a (one-shot) deviation in majority size k from the entrenched strategy (defined in Proposition
5), i.e. picking the minority candidate (of unknown talent) instead of the untalented majority candidate,
yields a payoff equal to:

∆e,† ≡ s† − b+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂e†

k,k(t)
)

+ δ
k − 1
N − 1x

†b

+∞∑
t=0

δt
( ∑
i≥k+1

π̂e†
k,i(t)

)

− δ k − 1
N − 1x

†b

+∞∑
t=0

δtπe†
k+1,k(t)− k − 1

N − 1
δ

1− δ (1− x†)b

where the probabilities πe†
i,j(t) (resp. π̂

e†
i,j(t)) are taken (a) following the entrenched equilibrium strategies

described in Proposition 5, and (b) from a majority member’s perspective (resp. minority member’s
perspective) with transition parameter x† instead of x. By construction, s†/s = x/x†. Rearranging
yields

∆e,† = x

x†
s

[
1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂e†

k,k(t)
)]

− b
[
1 + k − 1

N − 1
δ

1− δ (1− 2x†) + δ
k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t) + π̂e†

k,k(t)
)]

which yields the result for the existence region of the entrenched equilibrium.

Similarly for the meritocratic equilibrium, consider the (one-shot) deviation of a majority member
voting in k the untalented majority candidate instead of the minority one. Such a deviation yields a
payoff equal to:

∆m,† = b− s† + δ
(k − 1)
N − 1 (1− x†)b

+∞∑
t=0

δt
[(∑

i≥k

πm†
k+1,i(t)

)
−
(∑
i≥k

πm†
k−1,i(t)

)]

+ δ
(k − 1)
N − 1 x

†b

+∞∑
t=0

δt
[( ∑

i≤k−1
πm†
k+1,i(t)

)
−
( ∑
i≤k−1

πm†
k−1,i(t)

)]

i.e. by rearranging,

∆m,† = − x

x†
s+ b

[
1 + δ(1− 2x†) (k − 1)

N − 1

+∞∑
t=0

δt
[(∑

i≥k

πm†
k+1,i(t)

)
−
(∑
i≥k

πm†
k−1,i(t)

)]]

The result for the existence region of the meritocratic equilibrium follows. Lastly, the proof for ρe,† < +∞
is in Section C.3.

Note moreover that Lemma 4 holds with the transition probabilities πe† and πm† 115, and this
establishes the inequality ρm† < ρe† for x† ≤ 1/2, as well as the inequality ρm† ≤ x†/x for x† ≥ 1/2
(noted in the text).116

115Indeed, the proof holds for any x ∈ [0, 1] as the stochastic matrices P and P̂ (introduced in the proof of Lemma 4)
remain stochastically monotone and stochastically comparable (with P stochastically dominating P̂ ) for any x ∈ [0, 1].

116If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the meritocratic equilibrium exists for all s/b ≥ x†/x. Lastly, s†
and x† both depend on x, and thus the value of x† constrains the possible values of s†: in particular, for x† ≥ 1/2 (and
thus α ≤ 1/2), s† decreases with x†, and s† = 0 when x† = 1. As a consequence, for any b > 0, the inequality s† > b can
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I Proof of Proposition 6

For the sake of exposition, we first focus on the case l = k − 2, before turning to the general proof
for l ∈ {1, ..., k − 2}, which derives from the same argument.

We first show existence. The argument is analogous to the one used in the proof of Proposition
11. Put succinctly, we show that for s = b(> 0) the strategies of Proposition 6 describe a symmetric
MPE in weakly undominated strategies. Since for s = b, any deviation from the equilibrium strategy
is strictly unprofitable and since the deviation differential payoffs are continuous with respect to s, the
result then obtains for s/b in a neighbourhood of 1. Next we claim that this equilibrium is in fact the
unique monotone equilibrium for s/b sufficiently close to 1.

We define as before ui ≡ Vi+1−Vi for any i ∈ {1, ..., N −2}. As emphasized in the text, the majority
controls the outcome of the vote for majority sizes N − 2 and N − 1, and thus the usual argument yields
that meritocratic decisions are optimal from the majority’s perspective in N−1 for any s ≥ b. Moreover,
with the strategies described in Proposition 6,[

1− δ(1− x)N − 2
N − 1

]
uN−2 = x(s− b) ≥ 0,

and thus in particular uN−2 = 0 when s = b. Hence we thereafter focus on deviations for majority and
minority members in majority sizes strictly below N − 1. Explicit computations then give that with the
strategies in Proposition 6, for any M ∈ {k, ..., N − 3}:[

1− δΛ(M)
(

1− M

N − 1

)
− δ(1− Λ(M + 1)) M

N − 1

]
uM (35)

= [Λ(M)− Λ(M + 1)]b+ δΛ(M)M − 1
N − 1 uM−1 + δ(1− Λ(M + 1))

(
1− M + 1

N − 1

)
uM+1,

and[
1− δΛ(M)

(
1− M + 1

N − 1

)
− δ(1− Λ(M + 1))M + 1

N − 1

]
uN−M−2 (36)

= [Λ(M)− Λ(M + 1)]b+ δΛ(M) M

N − 1uN−M−1 + δ(1− Λ(M + 1))
(

1− M + 2
N − 1

)
uN−M−3,

while for i = k − 1,

[1− δ(1− Λ(k))]uk−1 = (1− 2Λ(k))b+ δ(1− Λ(k)) k − 1
N − 1uk + δ(1− Λ(k)) k − 2

N − 1uk−2 (37)

The proof derives from the following observation: for s = b, the one-shot deviation differential payoff
from the strategies in Proposition 6 is a weighted sum of two consecutives terms Vi−Vi+1 = −ui for some
i ∈ {1, ..., N − 3} 117. Hence in order to reach the desired result, we show that for any i ∈ {1, ..., N − 3},
ui > 0.

only hold for x† sufficiently below 1.
117Namely, for s = b, the one-shot deviation differential payoff at group size i writes as

−δ
(

1−
i

N − 1

)
ui − δ

i− 1
N − 1

ui−1
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We proceed by contradiction, adapting the argument used in the proof of Lemma 1. Suppose by
contradiction that uN−3 ≤ 0. Then, Equation (35) implies that ui ≤ 0 for any i ∈ {k, ..., N −4}. Indeed,
this can be shown by induction: uN−3 ≤ 0 and Equation (35) inM = N−3 give that uN−4 ≤ uN−3 ≤ 0.
Equation (35) for M = N − 4 then implies that

0 ≥
[
1− δΛ(N − 4)

(
1− N − 4

N − 1

)
− δN − 4

N − 1

]
uN−4 ≥ [Λ(N − 4)− Λ(N − 5)]b+ δΛ(N − 4)N − 5

N − 1uN−5

and thus uN−5 ≤ uN−4 ≤ 0. The result thus obtains by downward induction on the majority size
(supposing the result holds for any majority size strictly above M , supposing by contradiction it does
not forM , and summing (35) for all the majority sizes strictly aboveM in order to reach a contradiction).

Similarly, if u1 ≤ 0, then the same induction argument implies that ui ≤ 0 for any i ∈ {2, ..., k − 1}.
However, by summing (35)-(36)-(37) on all indexes, one obtains that

0 ≥ (1− δ)
N−3∑
i=1

ui = b+ δ

N − 1uN−2 > 0,

which is a contradiction. Hence u1 > 0. If u2 ≤ 0, then by the same argument as above: ui ≤ 0 for any
i ∈ {2, ..., k − 1}. Yet by summmation again,

0 ≥
[
1− δ + δΛ(N − 3)N − 3

N − 1

]
u2 + (1− δ)

N−3∑
i=3

ui

= (1− Λ(N − 3))b+ δ

N − 1uN−2 + δ
1− Λ(N − 3)

N − 1 u1 > 0,

which is again a contradiction, and thus u2 > 0. Hence, by induction (supposing the result holds for
any minority size strictly below i, supposing by contradiction it does not for i, and summing (35) for all
the minority sizes weakly above i and all majority sizes up to N − 3 in order to reach a contradiction),
ui > 0 for any i ≤ k − 2. Yet then, by summation of (35) over indices k − 1 to N − 3,

0 ≥
[
1− δ + δΛ(k) k

N − 1

]
uk−1 + (1− δ)

N−3∑
i=k

ui

= (1− Λ(k)− Λ(N − 2))b+ δ(1− Λ(k)) k − 2
N − 1uk−2 + δ

N − 1uN−2 > 0,

which is a contradiction and therefore, uN−3 > 0. The argument is then repeated by assuming by contra-
diction that uN−4 ≤ 0 and considering the appropriate summations and the same induction arguments
in order to reach a contradiction.

Consequently, when s = b, ui > 0 for i ∈ {1, ..., N − 3} and hence the strategies in Proposition 6
describe a symmetric MPE in weakly undominated strategies. Since all deviation differential payoffs
are strictly negative, the argument extends by continuity to s in an upper neighbourhood of b. This
establishes the existence of the equilibrium.

General proof of existence. Let s = b > 0. Consider any l ∈ {1, ..., k − 2} and the strategy of
super-entrenchment to level l, denoting by Vi the corresponding value function and ui its first-difference.
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Since s = b, the usual computations118 (see proof of Lemma 1) yield that for any i ≥ k + l and for any
i ≤ k− 2− l, ui = 0. The above computations then apply, using (35) for group sizes i ∈ {k, ..., k+ l− 1},
(36) for group sizes i ∈ {k−2− l, ..., k−2}, and (37) for group size k−1. The result obtains by continuity
for s/b in a neighbourhood of 1.

Proof of uniqueness. We now show that, for s/b close to 1, super-entrenchment at level l is the
unique symmetric MPE such that a stronger majority makes more meritocratic recruitments. Hence, we
consider the class of equilibria such that a stronger majority makes more meritocratic recruitments, and
show that, for any candidate equilibrium within this class, for s = b > 0, the majority is super-entrenched
in k + l. By monotonicity, this implies that all candidate equilibria within this class must feature an
entrenched majority at majority sizes M ∈ {k, ..., k+ l}. We then show that the minority best-replies to
this strategy by voting for the in-group candidate whenever it may be pivotal, i.e. at any majority size
M ≤ k + l − 1.

We begin by noting that when s = b, a group’s flow payoff whenever it is pivotal does not depend
on its being meritocratic or entrenched (as the difference between the two writes as x(s − b) = 0).
Moreover, for s = b, the flow differential payoff in the expression of ui writes as [Λ(i)− Λ(i+ 1)]b (resp.
[Λ(i)−Λ(i+1)](1−2x)b) if the minority follows entrenchment (resp. meritocracy) at majority sizes i and
i+1, as [Λ(i)−Λ(i+1)]b−2xΛ(i)b if the minority follows meritocracy at majority size i and entrenchment
at majority size i + 1, and as [Λ(i) − Λ(i + 1)]b + 2xΛ(i + 1)b if the minority follows entrenchment at
majority size i and meritocracy at majority size i+1. In particular, the flow-payoff term in uk+l−1 writes
as Λ(k + l − 1)b if the minority is entrenched at majority size k + l − 1 (resp. Λ(k + l − 1)(1− 2x)b if it
votes meritocratically). By contrast, for any i ≥ k + l, the flow payoff term in ui is equal to 0.

We now show that the majority is always entrenched in k + l, i.e. that in any equilibrium,

k + l − 1
N − 1 uk+l−1 +

(
1− k + l

N − 1

)
uk+l > 0

Suppose by contradiction that the majority votes meritocratically at size k + l (i.e. that the above LHS
is weakly lower than 0). Suppose first that uk+l ≤ 0. Hence, the recursive expression of ui for i ≥ k + l

yields that uk+l−1 ≤ uk+l ≤ ... ≤ uN−2 ≤ 0. Then, the recursive expression of uk+l−1 together with
the above remark (positivity of the flow-payoff term) implies that uk+l−2 < uk+l−1 ≤ 0. We proceed
by induction in order to show that ui < 0 for any i ∈ {k − 1, ..., k + l − 2}. Let M ∈ {k, ..., k + l − 2},
and suppose ui ≤ 0 for any i ≥M . Summing (and rearranging as usual) the recursive expressions of the
differential value function ui over indices i ∈ {M, ..., N − 2} then gives on the LHS a weighted sum of ui
for i ∈ {M, ..., N − 2}, which is weakly negative with the induction hypothesis, while on the RHS a first
term proportional to uM−1 and a second term which is the sum of the flow-differential payoffs, equal
either to Λ(M)(1 − 2x)b, Λ(M)b or [Λ(M) + Λ(M + 1)2x]b, which is thus strictly positive. Therefore,
uM−1 < 0.

Hence, by induction, ui < 0 for any i ∈ {k − 1, ..., k + l − 2}. Therefore the majority is meritocratic
at any majority size i ≥ k. As a consequence, the flow differential payoffs in the expression of ui for
i ≤ k−1 write as [Λ(i)−Λ(i+1)](1−2x)b > 0 for any i ∈ {k− l−1, ..., k−2}, and 0 for any i ≤ k− l−2.

118This could be seen by using the recursive expressions for the sequence (ui)i and supposing by contradiction that ui 6= 0
for some i ≥ k + l or ≤ k − 2− l.
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Suppose by contradiction that uk−l−1 ≤ 0. Then the recursive expression of ui for i ≤ k − l − 2
yield that uk−l−1 ≤ ... ≤ u1 ≤ 0. Furthermore, since the flow differential payoffs are positive for
i ∈ {k − l − 1, ..., k − 2}, we have that ui ≤ 0 for i ∈ {1, ..., k − 1}. Therefore the minority votes
meritocratically whenever it is pivotal. Hence, the sum of the flow differential payoffs over all indices
i ∈ {1, ..., N − 2} writes as

2Λ(k)(1− 2x)b+ [1− 2Λ(k)](1− 2x)b = (1− 2x)b > 0

where the second term is the flow differential payoff in uk−1. Yet this contradicts ui ≤ 0 for all
i ∈ {1, ..., N − 2}.

Hence uk−l−1 > 0. The recursive expressions of the differential value function now yield 0 < u1 <

... < uk−l−1. Supposing by contradiction that uk−l ≤ 0 yields again that ui ≤ 0 for i ∈ {k− l, ..., k− 1}.
Hence by summing the recursive expressions of ui for i ∈ {k − l, ..., N − 2} and rearranging yields on
the LHS a weighted sum of the differential value function ui for i ∈ {k − l, ..., N − 2}, which is weakly
negative, while on the RHS, a term proportional to uk−l−1 (and thus strictly positive) and the sum of
the flow differential payoffs, which is strictly positive. This is a contradiction, and thus uk−l > 0. Using
repeatedly the same argument, we have by induction that ui > 0 for any i ≤ k−2, and as a consequence,
the minority is entrenched whenever it has size i ∈ {k − l, ..., k − 2}, i.e. whenever the majority has size
i ∈ {k+1, ..., k+ l−1}. Summing again the recursive expression of the differential value function ui over
indices i ≥ k−1 yields after rearranging, on the LHS a weighted sum of the differential value function ui
for i ∈ {k− 1, ..., N − 2}, which is weakly negative, while on the RHS, a term proportional to uk−2 (and
thus strictly positive) and the sum of the flow differential payoffs, which is equal to [1−Λ(k)](1−2x) > 0.
Hence the RHS is strictly positive, which is a contradiction. Therefore, uk+l > 0, and thus using the
recursive expression of ui for i ≥ k + l, we have that uk+l−1 > uk+l > uk+l+1 > ... > uN−2 > 0 (as we
suppose that the majority votes meritocratically at size k+ l). This establishes that the majority would
strictly benefit by deviating to entrenchment when it has size k+ l, and thus contradicts the assumption
that the majority votes meritocratically at size k + l.

Hence the majority is entrenched when it has size k+ l. Note that this implies that uk+l = uk+l+1 =
... = uN−2 = 0. This establishes the uniqueness of the super-entrenchment at level l within the class of
equilibria such that a stronger majority makes more meritocratic recruitments. Furthermore, the argu-
ment implies that in any symmetric MPE in weakly undominated strategies, the majority is entrenched
when it has size k + l.

J Endogenous candidacies: Proofs

A simple result used repeatedly in this section is the following: let X(t) follow dX

dt
= χ(−X + X∗)

(with X∗ the steady state value). Then X(t) = (X(0)−X∗)e−χt +X∗, and the PDV of the flow X(t)dt
(weighted by time preference and exit probability) is a convex combination of the initial value and the

steady state value:
ˆ ∞

0
e−(r+χ)tX(t)dt = 1

r + χ

(
(r + χ)X(0) + χX∗

r + 2χ

)
.

68



J.1 Endogenous candidacies when only talented minority candidates have
an outside option and u ≤ b/2

(A) Suppose first that only talented minority candidates have an opportunity cost for joining the orga-
nization.

(A.1) Suppose u ≤ b/2. The majority’s program writes as

max
σ0,σ1,σ2

ˆ +∞

0
e−(r+χ)t

[
Sts̃+Mtb̃

]
dt

subject to

(i) if Sts−Mtb ≥ u− b,

dMt

dt
= χ

[
−Mt + x(σ1 + 1− σ2) + (1− 2x)σ0

]
, and dSt

dt
= χ

[
− St + x(σ1 + σ2)

]
(ii) if Sts−Mtb < u− b,

dMt

dt
= χ

[
−Mt + xσ1 + (1− x)σ0

]
, and dSt

dt
= χ

[
− St + xσ1

]
Proposition 14. (Only talented minority candidates have an outside option) Assume (5) is
satisfied, and u ≤ b/2. The following is a solution to the majority’s optimal control problem:

• (Region 1) If Sts−Mtb > u− b, the majority selects σ1 = σ2 = σ0 = 1.

• (Region 2) If Sts−Mtb = u− b, the majority selects σ1 = σ2 = 1 and σ0 = σ∗0 .

• (Region 3) If Sts−Mtb < u− b and (M0, S0) satisfies (6), the majority selects σ1 = 1 and σ0 = 0.

• (Region 4) If Sts−Mtb < u−b and (M0, S0) does not satisfy (6), the majority selects σ1 = σ0 = 1.

If (5) is not satisfied, then Region 3 is empty, and whenever Sts −Mtb < u − b, the majority selects
σ1 = σ0 = 1.

Proof. Consider a solution (σ0, σ1, σ2) to the majority’s optimal control problem.
That region 2 is absorbing for ũ ∈ [2xs̃+ xb̃, 2xs̃+ b̃/2] derives from the above discussion. Moreover,

for constant controls σ1 and σ2, the dynamics of S̃t over the sets {(ut, S̃t)|ut + ũ ≤ 2S̃t + b̃} and
{(ut, S̃t)|ut + ũ > 2S̃t + b̃} do not depend on the majority’s size M nor on the control σ0.

Consider region 1, i.e. the set {(ut, S̃t)|ut + ũ < 2S̃t + b̃}. We first note that region 2 is reached in a
finite time from region 1. Indeed, if region 2 is never reached, our initial assumptions on ũ imply that
σ0 < 1 or σ2 < 1 (or both) on a non-empty interval, and thus that the majority could strictly improve
its welfare by slightly increasing σ0 (since b̃ > 0) or σ2 (since s̃ ≥ b̃) on this interval, still without ever
reaching region 2.

Lemma 5. For a time T <∞ of arrival in region 2, let V ((M(T ), S(T ))) denote the continuation value
function for the majority. Then,

∂V

∂M(T ) (M(T ), S(T )) = b, and ∂V

∂S(T ) (M(T ), S(T )) = s (38)
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Indeed, using the dynamics of M and S over region 2 yields that for all t ≥ T ,

M(t) =
[
M(T )− x− (1− 2x)σ∗0

]
e−χ(t−T ) + x+ (1− 2x)σ∗0 ,

S(t) =
[
S(T )− 2x

]
e−χ(t−T ) + 2x

Consequently,

V (M(T ), S(T )) =
ˆ ∞

0
e−(r+χ)tb̃

([
M(T )− x− (1− 2x)σ∗0

]
e−χt + x+ (1− 2x)σ∗0

)
dt

+
ˆ ∞

0
e−(r+χ)ts̃

([
S(T )− 2x

]
e−χt + 2x

)
dt

= M(T )b+ S(T )s+ χ

r + χ

([
x+ (1− 2x)σ∗0

]
b+ 2xs

)

And thus by differentiation,

∂V

∂M(T ) (M(T ), S(T )) = b,

∂V

∂M(T ) (M(T ), S(T )) = s

The majority’s optimal control problem in region 1. The majority solves:

max
σ0,σ1,σ2,T

{ˆ T

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)TV ((M(T ), S(T )))

}

subject to (39) and (40), which are respectively the final time constraint

sS(T )− bM(T ) = u− b (39)

and the state dynamics

dM

dt
= χ

[
−M + x(σ1 + 1− σ2) + (1− 2x)σ0

]
, and dS

dt
= χ

[
− S + x(σ1 + σ2)

]
(40)

So the Hamiltonian writes as

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + x(σ1 + 1− σ2) + (1− 2x)σ0

]
+ χq(t)

[
− S + x(σ1 + σ2)

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint (39),

p(T ) = e−(r+χ)T ∂V

∂M
(M(T ), S(T ))− ψb, and q(T ) = e−(r+χ)T ∂V

∂S
(M(T ), S(T )) + ψs
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which together with (38) imply that

p(t) = be−(r+χ)t − ψbe−χ(T−t), and q(t) = se−(r+χ)t + ψse−χ(T−t),

the Hamiltonian’s partial derivatives write as

∂H

∂σ0
= χ

(
e−(r+χ)t − ψe−χ(T−t)

)
(1− 2x)b,

∂H

∂σ1
= χe−(r+χ)tx(s+ b) + ψχe−χ(T−t)x(s− b),

∂H

∂σ2
= χe−(r+χ)tx(s− b) + ψχe−χ(T−t)x(s+ b)

(41)

Pontryagin’s maximum principle with variable horizon thus yields that the optimal control σ satisfies
σ1 = σ2 = 1, and the sum of the Hamiltonian and the partial derivative of the final cost with respect to
the final time, evaluated at the final time T , must be nil:

e−(r+χ)T [s̃S(T ) + b̃M(T )
]

+ χp(T )
[
−M(T ) + x(σ1 + 1− σ2) + (1− 2x)σ0

]
+ χq(T )

[
− S(T ) + x(σ1 + σ2)

]
= (r + χ)e−(r+χ)TV (M(T ), S(T ))

i.e. by using the final time constraint (39), replacing the controls σ1 and σ2 with their optimal values
σ1 = σ2 = 1, and rearranging,

e−(r+χ)T (1− 2x)(σ0 − σ∗0)b = ψ
[
2(1− x)b+ (1− 2x)(σ0 − σ∗0)b

]
Hence, ψ < e−(r+χ)T , and thus σ0 = 1.119

The majority’s optimal control problem in regions 3 and 4. We first suppose region 2 is reached
in a finite time T and apply the same arguments as above in order to derive the optimal controls and
finite time for region 2 to be reached. We then compare this (optimal) value of reaching region 2 in a
finite time to the (optimal) value of never reaching it. The cutoff condition – which is condition (6) in
the text – draws the line between regions 3 and 4.

(i) Suppose region 2 is reached at time T < ∞. Then (38) holds. The majority’s optimization
problem writes as

max
σ0,σ1,σ2,T

{ˆ T

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)TV ((M(T ), S(T )))

}

subject to (42) and (43) which are respectively the final time constraint

sS(T )− bM(T ) = u− b (42)

119An intuition for ψ < e−(r+χ)T is that the continuation value upon reaching region 2 is lower than the value of being
in region 1. Conversely, in the Pontryagin maximization problem in regions 3 and 4, ψ > e−(r+χ)T as the continuation
value upon reaching region 2 is higher than the value of being in region 3.
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and the state dynamics

dM

dt
= χ

[
−M + xσ1 + (1− x)σ0

]
, and dS

dt
= χ

[
− S + xσ1

]
(43)

The Hamiltonian writes

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + xσ1 + (1− x)σ0

]
+ χq(t)

[
− S + xσ1

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint (42),

p(T ) = e−(r+χ)T ∂V

∂M
(M(T ), S(T ))− ψb, and q(T ) = e−(r+χ)T ∂V

∂S
(M(T ), S(T )) + ψs

which together with (38) imply that

p(t) = be−(r+χ)t − ψbe−χ(T−t), and q(t) = se−(r+χ)t + ψse−χ(T−t),

the Hamiltonian’s partial derivatives write as
∂H

∂σ0
= χ(1− x)

(
be−(r+χ)t − ψbe−χ(T−t)

)
,

∂H

∂σ1
= χx

(
e−(r+χ)t(s+ b) + ψχe−χ(T−t)(s− b)

) (44)

Pontryagin’s maximum principle with variable horizon yields that the optimal control σ satisfies σ1 = 1,
and the sum of the Hamiltonian and the partial derivative of the final cost with respect to the final time,
evaluated at the final time T , must be nil:

e−(r+χ)T [s̃S(T ) + b̃M(T )
]

+ χp(T )
[
−M(T ) + xσ1 + (1− x)σ0

]
+ χq(T )

[
− S(T ) + xσ1

]
= (r + χ)e−(r+χ)TV (M(T ), S(T ))

i.e. by using the final time constraint (42), replacing the control σ1 with its optimal value (σ1 = 1), and
rearranging,

e−(r+χ)T
[
u− (1− x)(1− σ0)b− 3xs

]
= ψ

[
u− (1− x)(1− σ0)b− xs

]
Since we assumed that u < 3xs (which is a necessary condition for region 2 to exist, see condition (4) in
the text), the LHS is always negative. Hence, for a solution to exist, it must be that u < xs+ (1− x)b
(which is condition (5) in the text). And therefore, ψ > e−(r+χ)T , and thus σ0 = 0.

(ii) It thus remains to compare the value of reaching region 2 in a finite time with the optimal controls,
to the value of never reaching region 2 (which clearly yields σ1 = σ0 = 1). This is transcribed in the
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following condition on the initial state (M0, S0) (which is condition (6) in the text):

ˆ T

0
e−(r+χ)t(1− x)b

[
1− e−χt

]
dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− e−χT

]
e−χ(t−T )dt

≤
ˆ +∞

T

e−(r+χ)t(3xs− u)[1− e−χ(t−T )]dt (45)

where T < ∞ is the time at which region 2 is reached from an optimal path starting from initial state
(M0, S0), and is thus given by

T ≡ 1
χ

ln
[
M0b− S0s+ x(s− b)
xs+ (1− x)b− u

]
≥ 0

Indeed, let ut ≡ Mtb + Sts be the majority’s flow utility. Starting from a couple (M0, S0) such that
S0s−M0b < u− b, the majority’s flow utility without affirmative action (σ0 = 1) writes as

∀t ≥ 0, u
(4)
t = [M0b+ S0s− xs− b]e−χt + xs+ b,

whereas with full affirmative action (σ0 = 0), it writes as

∀t ∈ [0, T ], u
(3)
t = [M0b+ S0s− xs− xb]e−χt + xs+ xb,

where T is the time at which region 2 is reached and is thus given by: u(3)
T − 2ST = b− u, i.e.

[M0b− S0s+ x(s− b)]e−χT = xs+ (1− x)b− u

For any t > T , the organization remains in region 2, and the majority’s utility thus writes as

u
(2)
t =

[
u

(3)
T − 2xs− xb− (1− 2x)σ∗0b

]
e−χ(t−T ) + 2xs+ xb+ (1− 2x)σ∗0b

where u(3)
T = [M0b+S0s−xs−xb]e−χT +xs+xb. The majority’s sacrifice in region 3 is then worthwhile

if and only if

ˆ ∞
0

e−(r+χ)tu
(4)
t dt ≤

ˆ T

0
e−(r+χ)tu

(3)
t dt+

ˆ ∞
T

e−(r+χ)tu
(2)
t dt

Condition (6) obtains by rearranging and using the definition of σ∗0 .

J.2 Endogenous candidacies: General exposition

We assume in the following that condition (5) is satisfied.
(A.2) Now suppose u > b/2. The analysis in region 1 is left unchanged. By contrast, region 2 now

cuts the vertical axis before the horizontal one : namely, the point
(
1/2, u− b/2

s

)
is the intersection of

region 2 with the vertical axis. The above analysis for regions 3 and 4 is thus altered as some trajectories
with σ1 = 1− σ0 = 1 ("full affirmative action") which were previously in region 3, now reach the vertical
axis before reaching region 2 120. The analysis now depends on the sign of u− b/2− xs.

120Indeed, any such trajectory aims for M = x < 1/2 and S = x.
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(A.2.a) If u−b/2 > xs, then any "affirmative action" trajectory (σ0 < 1) coming from below region 2
and reaching the vertical axis below region 2121, subsequently converges towards a fixed point ((1/2, x))
which is on the vertical axis, yet strictly below region 2. Hence region 2 is never reached, and thus
optimality requires that, starting from any point on this trajectory, the majority select σ1 = σ0 = 1. In
other words, any such point belongs to region 4.

Moreover, for u − b/2 > xs, region 2 is reached in a finite time from an initial state (M0, S0) if and
only if the full-affirmative action trajectory starting from (M0, S0) reaches region 2 in a finite time. In
addition, the previous analysis still applies yielding that among the values of σ0 such that region 2 is
reached in a finite time, the lowest one is optimal.

As a consequence, the frontier between regions 3 and 4 is now given first by the "full-affirmative-
action" trajectory (σ1 = 1− σ0 = 1) which cuts the vertical axis in

(
1/2, u− b/2

s

)
, until this trajectory

reaches the line defined by (6), after which the frontier is given as before by the latter, which is an
increasing line parallel to region 2 122: Region 3 is the set of initial states below region 2 and above this
frontier.

(A.2.b) If u − b/2 < xs, then if the organization reaches the vertical axis before region 2, it subse-
quently goes up the vertical axis towards the point (1/2, x). Since this point is strictly above region 2,
the latter is reached in a finite time. Yet by choosing a lower intensity of affirmative action (σ0 ≥ 0), the
organization can reach the vertical axis at its intersection with region 2. We show in Appendix J.3 that
among all intensities of affirmative action such that region 2 is reached in a finite time, it is optimal for
the majority to choose the lowest possible σ0 such that region 2 is reached before the vertical axis123.
Namely, the organization engages in full affirmative action (σ0 = 0) whenever it can, and otherwise
selects σ0 > 0 defined as the value for which the organization reaches region 2 on the vertical axis, i.e.
at the point

(
1/2, u− b/2

s

)
.

121And thus a fortiori any trajectory with a lower degree of affirmative action yet still reaching the vertical axis in a finite
time.

122Indeed, our previous analysis of the optimal control problem still applies to any point on this trajectory, yielding that
among all levels of affirmative action, full affirmative action is optimal. Condition (6) then ensures that full affirmative
action is optimal with respect to standard favoritism.

123An intuition underlying this result is as follows:
• σ1 = 1 is optimal for the same reasons as before,
• consider the (closure of the) set of strategies σ0 such that region 2 is reached before the vertical axis: the previous

analysis applies, yielding that the lowest such σ0 is optimal.
• consider the (closure of the) set of strategies σ0 such that the vertical axis is reached before region 2. We observe

that (i) all these trajectories ultimately reach region 2 at the same point (i.e. (
(
1/2,

u− b/2
s

)
), and (ii) the dynamics

of S0 withing a region do not depend on the value of the control. Therefore, all these trajectories reach region 2
at the same time. The result thus follows from the observation that picking the highest possible σ0 within this set
grants the highest homophily flow benefits, without any quality losses nor delay in reaching region 2.

74



Namely, given the initial state (M0, S0), σ0 is given whenever it exists by124


[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

It remains to compare, whenever it applies, affirmative action with intensity σ0 to standard favoritism
(σ1 = σ0 = 1). It it thus optimal for the organization to aim for region 2 starting from an initial state
such that full affirmative action would lead to the vertical axis before region 2, if and only if125

ˆ T

0
e−(r+χ)t(1− x)b

[
1− σ0

]
(1− e−χt)dt+

ˆ ∞
T

e−(r+χ)t(1− x)b
[
1− σ0

](
1− e−χT

)
e−χ(t−T )dt

≤
ˆ ∞
T

e−(r+χ)t(3xs− u)
[
1− e−χ(t−T )]dt (46)

Given an initial state S0 (and thus given T ), condition (46) with equality uniquely defines σ0 (and thus
gives a unique M0). Hence, since σ0 increases with S0 and decreases with M0, condition (46) with
equality defines an upward-sloping curve in the plane (M,S), which we denote by Γ′. Moreover, since
the LHS in (46) decreases with σ0, any point on the left of Γ′ satisfies the condition.

Let ΓAA be the full affirmative-action trajectory (σ1 = 1 − σ0 = 1) which cuts the vertical axis in(
1/2, u− b/2

s

)
. The frontier between regions 3 and 4 is now given by the set of points in {(M,S) |M ∈

[1/2, 1], S ∈ [0, 1]} below region 2 and either (i) below line ΓAA and above line Γ′, or (ii) above line ΓAA
and to the left of the line defined by (6).126

(B) We now assume that both the majority’s and the minority’s talented candidates have the same
(normalized) opportunity cost of joining the organization u. Then there may exist an additional region
where the organization fails to recruit such candidates (which we refer to as "region 5").

The set of states such that the majority’s flow utility equals its outside option is given by the line
Γ ≡ {(M,S) |Mb + Ss = u}. The line Γ is an upper bound on the frontier between regions 4 and 5.
Indeed, for any point below this line, Mb + Ss < u and thus, if the organization remains below Γ, the
participation constraint of talented majority candidates is not met. Yet it may be that the organization
does not remain below Γ (see below), in which case the frontier between regions 4 and 5 lies strictly
below Γ.

Moreover, whenever the organization falls in region 5, it is left with a single control which is the
fraction of untalented majority candidates. Yet because talented candidates of both sides have the same
outside option, sacrificing homophily is strictly suboptimal for the majority. The state dynamics in

124Note that the "frontier" defined by σ0 = 0 (i.e. the set of largest initial majority sizes such that the system has a
solution given an initial quality) is a decreasing line in the plane (M,S), given by the set of initial states satisfying

b

s

M0 − x
S0 − x

=

b

2
− x

u−
b

2
− xs

125See Appendix J.3 for details.
126Indeed, our previous analysis of the optimal control problem still applies to any point above this trajectory, yielding
that among all levels of affirmative action, full affirmative action is optimal. Condition (6) then ensures that full affirmative
action is optimal with respect to standard favoritism.
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region 5 are thus given by

dM

dt
= χ(−M + 1), and dS

dt
= −χS

Hence any trajectory starting from region 5 converges towards the point (1, 0): this point may or may
not be interior to region 5 as the line Γ has vertical coordinate (u− b)/s for M = 1 (see below).

A necessary condition for region 5 to be non-empty is thus u > b/2, i.e. that Γ cross the vertical axis
strictly above the horizontal axis. 127

When talented candidates of both groups have an outside option, the majority’s optimal control
problem when the organization is on the right of region 2 may differ from when only talented minority
candidates have such an option. We refer to the next section (Appendix J.3) for a detailed descrip-
tion of the phase diagram. We only mention here that for u ≤ b/2, the participation constraint of
talented majority candidates is never binding as they are always guaranteed at least b/2 upon joining
the organization. Hence for u ≤ b/2, the above analysis remains unchanged (and region 5 is empty).

J.3 Proof of Proposition 7

Case A.2.b. We first establish that, starting from an initial state such that a full affirmative action
would lead to the vertical axis strictly below its intersection with region 2, if region 2 is reached in a finite
time, then the affirmative action trajectory that reaches region 2 at its intersection with the vertical axis
(σ0 = σ0) is optimal. Yet since some trajectories may reach the vertical axis before region 2, there may
be a discontinuity in the dynamics ofM . We thus show the result by considering two distinct Pontryagin
maximization problems and compare their optimal values.

It can be shown (with Pontryagin arguments on well chosen parameter sets) that σ1 = 1 is always
optimal. We thus focus on the choice of σ0. Let (as before) σ0 be the parameter value such that the
trajectory with control σ0 = σ0 reaches the point (M,S) =

(
1/2, u− b/2

s

)
. Hence σ0 is the lowest

parameter value for control σ0 such that the trajectory reaches region 2 before the vertical axis. Namely,
given the initial state (M0, S0), σ0 is given whenever it exists by

[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

We thus distinguish two sets of admissible values for the control σ0:

• For σ0 ∈ [σ0, 1], the previous Pontryagin maximization problem yields that σ0 is optimal. The
organization thus reaches region 2 at time T at the point

(
1/2, u− b/2

s

)
.

• For σ0 ∈ [0, σ0], the problem writes differently as the vertical axis is reached before region 2. Let
(1/2, S) be the point on the vertical axis reached by a given trajectory at time T1. The continuation

127Moreover, the line Γ and the line defining region 2 reach the vertical axis in the same point, namely
(
1/2,

u− b/2
s

)
.

Indeed, talented candidates of both sides have the same outside option and for M = 1/2, they enjoy the same flow utility.
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value from state (1/2, S(T1)) reached at time T1, denoted by V †(T1, 1/2, S(T1)) writes as

ˆ T2−T1

0
e−(r+χ)t b̃

2dt+
ˆ T2−T1

0
e−(r+χ)t

[
(S(T1)− x)s̃e−χt + xs̃

]
dt

+
ˆ ∞
T2−T1

e−(r+χ)t
[(
ũ− 2xs̃− (x+ (1− 2x)σ∗0)b̃

)
e−χ(t−T2+T1) + 2xs̃+ (x+ (1− 2x)σ∗0)b̃

]
dt

where T2 is given by

[
S0 − x

]
se−χT2 + xs = u− b

2

The majority’s optimization problem writes as

max
σ0∈[0,σ0],T1

{ˆ T1

0
e−(r+χ)t

[
s̃S(t) + b̃M(t)

]
dt+ e−(r+χ)T1V †(T1, 1/2, S(T1)))

}

subject to the final time constraint M(T1) = 1/2 and the state dynamics

dM

dt
= χ

[
−M + x+ (1− x)σ0

]
, and dS

dt
= χ

[
− S + x

]
The Hamiltonian writes

H ≡ e−(r+χ)t[s̃S + b̃M
]

+ χp(t)
[
−M + x+ (1− x)σ0

]
+ χq(t)

[
− S + x

]
Hence, requiring that

−dp
dt

= ∂H

∂M
= b̃e−(r+χ)t − χp, and − dq

dt
= ∂H

∂S
= s̃e−(r+χ)t − χq

and, letting ψ > 0 be the multiplier for the final time constraint,

p(T1) = ψ, and q(T1) = e−(r+χ)T1
∂V †

∂S
(T1, 1/2, S) = e−(r+χ)T1

(
1− e−(r+2χ)(T2−T1)

)
s

which implies that

p(t) = be−(r+χ)t + ψe−χ(T1−t),

the Hamiltonian’s partial derivative with respect to σ0 writes as

∂H

∂σ0
= χ(1− x)

[
be−(r+χ)t + ψe−χ(T1−t)

]
> 0

Hence Pontryagin’s maximum principle with variable horizon yields that128 the optimal control σ0

128Moreover, the sum of the Hamiltonian and the partial derivative of the final cost with respect to the final time, evaluated
at the final time T1, must be nil, and thus:

e−(r+χ)T1
[
b̃

2
+ S(T1)s̃

]
+ p(T1)

[
− 1/2 + x+ (1− x)σ0

]
+ q(T1)

[
− S(T1) + x

]
= e−(r+χ)T1

[
(r + χ)V †(T1, 1/2, S(T1))−

∂V †

∂T1
(T1, 1/2, S(T1))

]
,
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must be the highest possible, i.e. σ0 = σ0.

Therefore, if region 2 is reached in a finite time, then optimality requires σ0 = σ0 (and σ1 = 1) as long
as region 2 is not reached.

It thus remains to compare the value of reaching region 2 at its intersection with the vertical axis,
namely at the point

(1
2 ,
u− b/2

s

)
with the value of standard favoritism. The argument for the optimality

condition is similar to the one in case A.1. By construction of σ0 and T , the condition for the optimality
of level-σ0 affirmative action with respect to standard favoritism writes as

ˆ T

0
e−(r+χ)t

[[
S0s+M0b− xs−

(
x+ (1− x)σ0

)
b
]
e−χt + xs+

(
x+ (1− x)σ0

)
b

]
dt

+
ˆ ∞
T

e−(r+χ)t
[[
u− 2xs−

(
x+ (1− 2x)σ∗0

)
b
]
e−χ(t−T ) + 2xs+

(
x+ (1− 2x)σ∗0

)
b

]
dt

≥
ˆ ∞

0
e−(r+χ)t

[[
S0s+M0b− xs− b

]
e−χt + xs+ b

]
dt

which yields (46) after rearranging.

Talented majority candidates have a participation constraint. Consider an "affirmative action"
trajectory that reaches the interior of region 5 before the vertical axis. Then such a trajectory henceforth
converges towards (1, 0), possibly exiting region 5 towards region 4 in a finite time. Hence, because of
discounting, this strategy is dominated by "standard favoritism" from t = 0 onward, which leads to a
weakly more favourable steady state. Moreover, consider an initial state (M0, S0) such that the full-
affirmative action trajectory (σ0 = 0) starting from this state, reaches region 2 in a finite time. Consider
any less-than-full affirmative action trajectory (σ0 > 0) starting from the same initial state (M0, S0).
Then,

• if this less-than-full affirmative action trajectory does not reach region 2 in a finite time, it is clearly
dominated by "standard favoritism" (σ0 = 1 and if possible σ1 = 1).

• if this less-than-full affirmative action trajectory reaches region 2 in a finite time, the above analysis
applies, yielding that this trajectory is dominated by a full-affirmative action trajectory if it reaches
region 2 before the vertical axis, or by the affirmative action trajectory such that region 2 is reached
at its intersection with the vertical axis.

Hence the initial state (M0, S0) belongs to region 3 only if either (6) or (46) hold, and belongs to regions
4 or 5 otherwise.

(B.1) Suppose u ≤ b/2. Then region 5 is empty. The above analysis (A.1) is unchanged: the par-
ticipation constraint of talented majority candidates never binds as they are always guaranteed at least

which implies that:

ψ =

[
x− S(T1)

]
(1− χ)s

1
2
− x− (1− x)σ0

[
e−(r+2χ)T1 − e−(r+2χ)T2

]
> 0
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b/2 upon joining the organization.

(B.2) Suppose u > b/2.
(B.2.a) If u−b/2 ≥ xs, then region 5 and region 3 have no shared boundary129. Region 5 is given by

the set of states below its boundary with region 4 (see case B.2.c below). Anticipating on B.2.c, region
5 is non-empty if and only if the initial state (1/2, 0) satisfies (see (48) below)

ˆ ∞
0

e−(r+χ)t
[
xs̃
(
1− e−χt

)
− b̃

2e
−χt + b̃

]
dt <

ˆ ∞
0

e−(r+χ)tũdt,

i.e. if and only if

χxs+ (r + 3χ) b2 < (r + 2χ)u

In particular, region 5 is thus non-empty for any χ sufficiently low. If in addition xs + 3b/2 > 2u, it is
also non-empty for any χ sufficiently high.

(B.2.b) If u − b/2 < xs, then regions 5 and 3 may have a shared boundary. Region 5 lies be-
low the curve Γ, while for any initial state (M0, S0) below Γ, region 3 is defined by (46). Hence the
boundary between region 5 and region 3 is given by the set of initial states (M0, S0) (satisfiying (46)
with equality) such that

ˆ T

0
e−(r+χ)t

[
[S0 − x]s̃e−χt + xs̃+ [M0 − x− (1− x)σ0]b̃e−χt + xb̃+ (1− x)σ0b̃

]
dt

+
ˆ ∞
T

e−(r+χ)t
[(
ũ− b̃

2 − 2xs̃
)
e−χ(t−T ) + 2xs̃+

(
b̃

2 − (x+ (1− 2x)σ∗0)b̃
)
e−χ(t−T ) + [x+ (1− 2x)σ∗0 ]b̃

]
dt

=
ˆ ∞

0
e−(r+χ)tũdt (47)

where T > 0, σ0 ∈ [0, 1] are given whenever they exist130 by
[
M0 − x− (1− x)σ0

]
e−χT + x+ (1− x)σ0 = 1

2[
S0 − x

]
se−χT + xs = u− b

2

The LHS in (47) strictly increases with respect to M0, and for T � 1 (i.e. S0s close to u− b/2), as well
129Indeed, region 5 lies below the line Γ which is decreasing, while region 3 lies above the full-affirmative-action trajectory
going reaching region 2 on the vertical axis, which is increasing. [Recall that the line Γ crosses the vertical axis in(
1/2,

u− b/2
s

)
.]

130Recall that the "frontier" defined by σ0 = 0 (i.e. the set of largest initial majority size such that the system has a
solution given an initial quality) is a decreasing line in the plane (M,S), given by the set of initial states satisfying

b

s

M0 − x
S0 − x

=

b

2
− x

u−
b

2
− xs
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as for T � 1 (i.e. S0 close to 0 and u− b/2 close to xs), with respect to S0.131. Therefore, the frontier
between regions 3 and 5 has a decreasing slope in the plane (M,S) whenever (i) S0s is close to u− b/2,
or (ii) S0 is close to 0 (with u− b/2 close to xs).

As a consequence, if the state (M0, S0) = (1/2, 0) satisfies (46)132, then region 5 is non-empty if it
includes the state (1/2, 0), i.e. if

ˆ T 0

0
e−(r+χ)t

[
xs̃[1− e−χt] + b̃

2

]
dt

+
ˆ ∞
T 0

e−(r+χ)t
[(
ũ− b̃

2 − 2xs̃
)
e−χ(t−T 0) + 2xs̃+

(
b̃

2 − (x+ (1− 2x)σ∗0)b̃
)
e−χ(t−T 0) + [x+ (1− 2x)σ∗0 ]b̃

]
dt

<

ˆ ∞
0

e−(r+χ)tũdt

where T 0 is given by

xs[1− e−χT 0 ] = u− b

2 , i.e. T 0 = 1
χ

ln
(

xs

xs− u− b/2

)
The above condition writes after rearranging (assuming xs > 0):

(r + χ)− (r + 2χ)e−χT 0 − 2χe−(r+χ)T 0 + (2r + χ)e−(r+2χ)T 0 > 0

131Indeed, explicit computations yield

∂LHS

∂M0
= b
[
1− e−(r+2χ)T

]
−

b̃e−χT

1− e−χT

( 1
r + χ

[
1− e−(r+χ)T

]
+

1
r + 2χ

[
1− e−(r+2χ)T

])
=

b

(r + χ)[1− e−χT ]

[
(r + χ)− (r + 2χ)e−χT + χe−(r+2χ)T

]
> 0

Similarly,

∂LHS

∂S0
= s
[
1− e−(r+2χ)T

]
+

1
r + χ

1[
1− e−χT

]2 1
S0 − x

[
(r + χ)

(
2u− 4xs− b

)[
1− e−χT

]2
e−(r+χ)T

+
(
M0 −

b

2

)
e−χT

[
χ− (r + 2χ)e−(r+χ)T + (r + χ)e−(r+2χ)T

]]
i.e. after rearranging,

(r + χ)
[
1− e−χT

]2
(S0 − x)

∂LHS

∂S0
=
[
1− e−χT

]2
(r + χ)

[(
u−

b

2
− xs

)
eχT + (u− 3xs)e−(r+χ)T −

b

2
e−(r+χ)T

]
+
(
M0b−

b

2

)
e−χT

[
χ− (r + 2χ)e−(r+χ)T + (r + χ)e−(r+2χ)T

]
Therefore, since u− b/2 < xs, u < 3xs, S0 < x, and M0 < eχT

[
1/2− x

]
+ x, we have that

∂LHS

∂S0
> 0 for T � 1 (using a

second-order Taylor expansion), as well as for T � 1.
132(1/2, 0) satisfies (46) if and only if
ˆ T0

0
e−(r+χ)t b

2
(1− e−χt)dt+

ˆ ∞
T0

e−(r+χ)t b

2
(
1− e−χT0

)
e−χ(t−T0)dt ≤

ˆ ∞
T0

e−(r+χ)t(3xs− u)
[
1− e−χ(t−T0)

]
dt,

i.e. if and only if (
3xs+

b

2
− u
)
e−(r+χ)T0 ≥

b

2

where T 0 is given by

xs
[
1− e−χT0

]
= u−

b

2
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Hence in particular, region 5 is non-empty for χ sufficiently close to 0 and for χ sufficiently high, i.e. if
turnover is sufficiently low or sufficiently high. The intuition underlying this result is that when turnover
is too low, the organization fails to renew its composition fast enough, whereas when turnover is too
high, members are likely to quit the organization before they could reap the benefits of membership.

By contrast, if the state (M0, S0) = (1/2, 0) violates (46), then a necessary and sufficient condition
for region 5 to be non-empty is given by the condition stated in B.2.a, namely

χxs+ (r + 3χ) b2 < (r + 2χ)u

Again, region 5 is non-empty for any χ sufficiently low. If in addition xs+3b/2 > 2u, it is also non-empty
for any χ sufficiently high.

(B.2.c) The frontier between regions 5 and 4 is given by the set of states (violating (46) if u−b/2 < xs)
such that

ˆ ∞
0

e−(r+χ)t
[
[S0 − x]s̃e−χt + xs̃+ [M0 − 1]b̃e−χt + b̃

]
dt =

ˆ ∞
0

e−(r+χ)tũdt (48)

Since the LHS in (48) is strictly increasing with respect to S0 and M0, the frontier between regions 5
and 4 has a decreasing slope in the plane (M,S). As a consequence, the state (M,S) = (1, 0) is interior
to region 5 if and only if

ˆ ∞
0

e−(r+χ)t
[
xs̃
(
1− e−χt

)
+ b̃

]
dt <

ˆ ∞
0

e−(r+χ)tũdt,

i.e. if

u > b+ χ

r + 2χxs (49)

Hence, if (49) holds, then whenever the organization starts in region 5, it converges to the steady state
(M,S) = (1, 0). There is no escape from region 5.

By contrast, if (49) does not hold, then the point (1, 0) is outside region 5. (Put differently, the frontier
between regions 4 and 5 crosses the horizontal axis before reaching M = 1). Hence any trajectory from
region 5 exits the region, and reaches either region 3 or region 4 in a finite time. If it reaches the latter,
it then converges towards region 4’s steady-state (1, x).133

K Proof of Proposition 8

The dynamics of quality dominance. If (7) is satisfied at date 0, then [S1−S2] converges towards 2x,
while [M2− (1−M1)] converges towards (1− x). (Recall that (7) is the non-profitability condition for a
collective deviation by all talented B-candidates from joining organization 1 to joining organization 2).
Hence if (7) is satisfied at time 0, then by convexity, it is satisfied at any later time t > 0 if and only if

133The condition u < xs+ (1− x)b (condition (10) in the paper) implies that the fixed point of region 4 is interior to the
region (xs+ b > u).
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the steady state satisfies (7), i.e. if and only if134

2xs− (1− x)b ≥ χ

r + χ

[
(1− x)b− xs

]
, (50)

which is equivalent to (2r + 3χ)xs ≥ (r + 2χ)(1− x)b.
If (50) is violated, then there is no quality dominance in the long run, and the quality and majority

sizes of both organizations follow the same dynamics and thus converge towards the same values (resp.
x and 1) as talented candidates split between the two organizations (A-group ones joining organization
1, and B-group ones joining organization 2).135

By contrast, if (7) and (50) hold, then whenever the initial state verifies (7), [S1 − S2] converges
towards 2x, while [M2 −M1] converges towards x: there is quality dominance in the long run. In line
with the rest of this section, one organization converges to a diverse, high-quality organization, while the
other ends up being fully homogenous and without any talent.

Let ∆U ≡
[
(S1−S2)s+(1−M1−M2)b

]
be the difference in the utility of talented B-group candidates

from joining organization 1 instead of organization 2 – we refer to ∆U as the "comparative advantage"
of organization 1 with respect to organization 2 from the perspective of (talented) B-group candidates.
Condition (7) can thus be written as

∆U(0) ≥ χ

r + χ

[
(1− x)b− xs

]
If (7) and (50) hold, then the dynamics of ∆U are given by

d

dt
∆U = χ

[
−∆U + 2xs− (1− x)b

]
Hence the comparative advantage of organization 1 increases over time if and only if ∆U(0) ≤ 2xs −
(1− x)b. (Note that (50) implies that 2xs ≥ (1− x)b.)

Group-coalition proofness: Applying the group-deviation criterion, a necessary condition for organi-
zation 1 to be increasingly dominant is that all talented B-candidates prefer joining organization 1 to
collectively deviating to organisation 2; and symmetrically for organisation 2, for which A-candidates
would be most eager to deviate (the “weakest link”). This gives us two necessary conditions for the

134Talented A-group candidates always prefer joining organzation 1 if they do so at time 0 as the steady state satisfies:

2xs+ (1− x)b ≥ −
χ

r + χ

[
(1− 2x)b+ xs

]
135Indeed, if (50) is violated, then there exists a later (finite) time at which (7) is violated: talented B-group candidates
now choose organization 2 from that date onwards. Hence, because decisions are anticipated, talented B-group candidates
should start joining organization 2 strictly before that date. By induction, talented B-group candidates should thus join
organization 2 starting from date 0.
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co-existence of two increasing-dominance equilibria136


[S1(0)− S2(0)]s+ [1−M1(0)−M2(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
[S2(0)− S1(0)]s+ [1−M2(0)−M1(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
i.e. if and only if

[S2(0)− S1(0)]s+ [1−M1(0)−M2(0)]b ≥ χ

r + χ

[
(1− x)b− xs

]
Hence, let ρ0 be given by

ρ0 ≡ max
{
r + 2χ
2r + 3χ

1− x
x

;
(

χ

r + χ
(1− x) +M1(0) +M2(0)− 1

)/(
χ

r + χ
x+ S1(0)− S2(0)

)}
,

and, if [xχ/(r + χ) + S2(0)− S1(0)] > 0, define ρ1 as

ρ1 ≡ max
{
ρ0;

(
χ

r + χ
(1− x) +M1(0) +M2(0)− 1

)/(
χ

r + χ
x− S1(0) + S2(0)

)}
,

The following existence regions obtain, depending on the value of s/b,

• for s/b < ρ0, there exists no increasing-dominance equilibrium,

• if [xχ/(r+χ)+S2(0)−S1(0)] > 0, then for ρ0 ≤ s/b < ρ1, there exists a single increasing-dominance
equilibrium (which is the one in which all talented candidates join organization 1) – note that this
range may be empty –, while for ρ1 ≤ s/b, there exist two increasing-dominance equilibria.

• if [xχ/(r + χ) + S2(0) − S1(0)] ≤ 0, then for s/b ≥ ρ0, there exists a single increasing-dominance
equilibrium (which is the one in which all talented candidates join organization 1).

Remark: Alternative assumption on initial majorities. If organization 2 starts with an A-majority, then
the equilibrium in which all talented candidates join organization 1 exists if and only if137


[
S1(0)− S2(0)

]
s+

[
M2(0)−M1(0)

]
b ≥ − χ

r + χ
xs[

S1(0)− S2(0)
]
s+

[
M1(0)−M2(0)

]
b ≥ − χ

r + χ
x(s− b)

Similarly, the equilibrium in which all talented candidates join organization 2 exists if and only if the
above system holds when switching the indices 1 and 2. Hence the two increasing-dominance equilibra
coexist if and only if their initial states are sufficiently close.

136As noted in the text, taking as given that talented B-group (resp. A-group) candidates choose organization 1 (resp.
2), talented A-group (resp. B-group) best-reply by choosing the same organization, i.e. organization 1 (resp.2) – that
is, the organization where they are the majority. Hence the condition for talented candidates of a given group to join
the organization where they are not the majority is necessary and sufficient for the existence of an increasing-dominance
equilibria. The first (resp. second) equation thus gives the non-profitability condition for a deviation by talented B-
candidates (resp. A-candidates) towards joining organization 2 (resp. 1) when talented candidates from the other group
join organization 1 (resp. 2).

137Note that the steady state satisfies the above conditions as for any s/b ≥ 1,

2xs+ xb ≥ −
χ

r + χ
xs, and 2xs− xb ≥ −

χ

r + χ
x(s− b)
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Population-coalition proofness of the increasing-dominance equilibria. By construction, the above
equilibria are immune to a joint deviation by talented candidates of a given group. The equilibrium
in which all talented candidates join organization 1 is always immune to a deviation by all talented
candidates138, whereas the equilibrium in which all talented candidates join organization 2 is immune to
a deviation by all talented candidates if and only if talented B-candidates would not support an overall
deviation to organisation 1 (they are the weakest link for such a deviation)139

[
S2(0)− S1(0)

]
s+

[
M1(0) +M2(0)− 1

]
b ≥ − χ

r + χ
(1− 2x)b (51)

Therefore, the equilibrium in which all talented candidates join organization 1 is population-coalition
proof whenever it exists (and remains so at any later date), while by contrast, the equilibrium in which
all talented candidates join organization 2 is population-coalition proof whenever it exists if and only if
(51) is satisfied. In other words, this equilibrium is population-coalition proof if and only if the initial
additional homophily benefit for talented B-group candidates (at least) compensates the initial quality
loss in choosing organization 2 instead of organization 1. Moreover, since in the equilibrium in which
all talented candidates join organization 2, the LHS in (51) converges to 2xs + (1 − x)b > 0 140, this
equilibrium remains population-coalition proof if it is so at date 0, and becomes population-coalition
proof past a finite time (and remains so henceforth) if it is not already at time 0.

L Proof of Proposition 9

We first show that meritocratic equilibrium strategies are no longer so when candidates reapply, for
s/b in some interval [1, ρm + ε) with ε > 0. We then show that the meritocratic equilibrium path start-
ing from an initial state with empty storage is no longer an equilibrium path for s/b in some interval
[1, ρm + ε) with ε > 0: an equilibrium may be observationally equivalent to a meritocratic equilibrium
by exhibiting the same recruitment path, without necessarily be meritocratic off the equilibrium path
(more on this below).

We define the meritocratic equilibrium as an equilibrium in which the majority always recruits the
best candidate available141 for any stocks of candidates, and look for necessary conditions for the meri-
tocratic equilibrium to exist. We show the latter are more often binding when candidates reapply than
when they cannot. Namely, when candidates reapply, we exhibit one deviation that is profitable for s/b

138The deviation by all talented candidates is strictly profitable for talented candidates from both groups if and only if
[
S1(0)− S2(0)

]
s+
[
M1(0) +M2(0)− 1

]
b < −

χ

r + χ
(1− 2x)b[

S1(0)− S2(0)
]
s− b

[
M1(0) +M2(0)− 1

]
b <

χ

r + χ
(1− 2x)b

139The deviation by all talented candidates is strictly profitable for talented candidates from both groups if and only if
[
S2(0)− S1(0)

]
s−
[
M1(0) +M2(0)− 1

]
b <

χ

r + χ
(1− 2x)b[

S2(0)− S1(0)
]
s+
[
M1(0) +M2(0)− 1

]
b < −

χ

r + χ
(1− 2x)b

In particular, since we assumed S1(0) > S2(0), talented A-group candidates always strictly benefit from such a collective
deviation. Hence the equilibrium in which all talented candidates join organization 2 is immune to a deviation by all
talented candidates if and only if the latter is unprofitable for talented B-group candidates.

140The observation that in that equilibrium, (S2 − S1) converges to 2xs ≥ 0 would also yield the result.
141Namely the best candidate among current-period and stored candidates, breaking ties in favour of in-group candidates
as before.
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a bit above ρm (and for all s/b ∈ [1, ρm]). Note that we do not derive a sufficient condition for existence.
Two effects (which we will successively illustrate) are at play, shrinking the existence region of mer-

itocracy: (i) the ability to recall a talented minority candidate increases the value of entrenchment;
and (ii) the preferential treatment given by the majority to its in-group talented candidate(s) in store
makes an incumbent majority with a large number of talented minority candidates in store less willing
to relinquish control.

To illustrate both forces at play, consider first x = 1/2 (so that ρm = 1), and s/b = 1. Suppose the
majority has size k, and no talented majority candidate available142 but an infinite number of talented
minority ones in store. Recruiting a talented minority candidate instead of an untalented majority one
gives a differential payoff equal to

s− b+ δ
k − 1
N − 1

(
s

1− δ − Vk+1,0,∞

)
= δ

k − 1
N − 1

(
s

1− δ − Vk+1,0,∞

)
where Vk+1,0,∞ is the majority value function when it has size k+1, no talented majority candidate in store
and an infinite number of talented minority ones in store. Since for x = 1/2, a majority with size k+1 can
secure in each period an (expected) flow quality payoff equal to s̃, and for at least the first two periods,
an (expected) flow homophily payoff equal to b̃/2 143, we have that Vk+1,0,∞ > s/(1−δ). Furthermore, as
the majority cannot do better than s̃ in terms of flow quality payoff, the term [s/(1− δ)−Vk+1,0,∞] does
not decrease with s, but strictly decreases with b. Therefore, the above differential payoff is strictly neg-
ative for any s/b in an upper neighbourhood of 1. Because of time discounting (δ0 < 1), the result holds
when the majority has in store a sufficiently large finite number of talented minority candidates. Hence,
for x = 1/2, there exists a strictly profitable deviation away from meritocracy for s/b ∈ [ρm, ρm + ε).

Consider now x < 1/2 (so that ρm > 1), and s/b = ρm. A necessary condition for the meritocratic
equilibrium to exist is that a repeated deviation towards entrenchment whenever the majority is tight
(M = k) and has no talented majority candidate available and exactly one talented minority candidate
available, be non profitable. Upon permanently deviating to entrenchment, the majority has one talented
minority candidate in store, and either size k or k + 1. Yet, for x < 1/2, an entrenched majority’s value
function strictly increases with the number of talented minority candidates in store144. Hence, when
candidates reapply, a permanent deviation away from meritocracy becomes more profitable. Further-
more, an inspection of the additional payoff due to storability shows that the latter increases with s

and decreases with b. Intuitively, this derives from the fact that having a talented minority candidate
in store leads to the latter being recruited (at some point, with strictly positive probability) instead
of a (talented or untalented) in-group candidate or an untalented out-group candidate, thus yielding a
positive quality gain and a positive homophily loss with respect to the payoff when candidates cannot

142Namely, it has no such candidate in store, and the current-period majority candidate is untalented.
143In particular, reverting to the meritocratic strategy yields to the current majority group an (expected) flow payoff
equal to s̃+ b̃/2 as long as it retains control over the organization, and s̃ after it has relinquished it to the other group.

144Indeed, an entrenched majority solves an optimal control problem. Moreover, as x < 1/2, the majority faces two
untalented current-period candidates with a strictly positive probability (1 − 2x > 0), in which case, whenever it is not
tight (M > k) and whenever it has a talented minority candidate in store, it recruits the latter, thus receiving a strictly
positive differential payoff with respect to the empty-storage state. Indeed, the differential payoff from recruiting a stored
talented minority candidate instead of an untalented majority candidate whenever the majority is not tight, is bounded
below by:

s− b− x(s− b)
δk/(N − 1)

1− δk/(N − 1)
> (1− x)(s− b) > 0
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reapply. Therefore, since in the absence of storability, we have the equivalence between the profitability
of one-shot and permanent deviations145, there exists a profitable deviation away from meritocracy for
s/b > ρm (and for all s/b ∈ [1, ρm]) , i.e. the existence region of meritocracy shrinks.

Finally we show that the meritocratic equilibrium path starting from an initial state with empty
storage is no longer an equilibrium path for s/b in some interval [ρm, ρm + ε) with ε > 0. We first note
that, on the meritocratic equilibrium path starting from an initial state with empty storage, storage is
never used146. Hence, considering the repeated deviation to entrenchment described above yields that,
for x < 1/2, there exists a strictly profitable deviation away from this equilibrium path for s/b slightly
above ρm (and for all s/b ∈ [1, ρm]). As a consequence, when x < 1/2, then for s/b in some interval
[ρm, ρm + ε) with ε > 0, the meritocratic equilibrium path starting from an initial state with empty
storage is no longer so.

M Proof of Proposition 11

We first show the validity of the remark in the text on a blind principal (λ = 0), before establishing
Proposition M.

If the principal does not observe horizontal types and in particular the majority size, it worsens the
efficiency of its interventions as it cannot fine-tune its interventions. Hence if it is an equilibrium for
the principal not to intervene when it observes horizontal types, it is also an equilibrium to do so when
the principal is totally blind. We thus consider the case where the principal observes horizontal types
and show that, taking as given members’ beliefs on the principal’s strategy, it is optimal for the latter
not to engage in interventions. There is clearly no benefit for the principal to intervene whenever the
majority is not tight (M ≥ k + 1) – or whenever it is tight and meritocratic – as then the majority’s
choice maximizes the organization’s quality and, by resolving ties in favour of the majority candidate,
also maximizes the homophily payoff conditional on maximizing the organization’s quality. Hence, for
s > b and q ≥ 1, the majority’s choice is optimal from the principal’s point of view.147

Thus we now need to show that it is optimal148 for the principal not to intervene in the entrenchment
equilibrium when majority is tight (M = k). Since a tight entrenched majority always votes for its own
candidate, its vote carries no information on the candidates’ respective talents: the principal cannot
do better by observing horizontal types than it can without. Hence, from the quality perspective, the
principal picks the (of "a" if there is a tie) right candidate with probability 1/2, whereas the majority
does so with probability (1−x) ≥ 1/2. Similarly, the majority takes the homophily-maximizing decision
with probability 1, while the principal can at best replicate this probability if it observes horizontal
types, and can only do so with probability 1/2 if it does not. Hence the principal cannot outperform the
majority’s decision.

145Hence, when candidates cannot reapply, the above repeated deviation yields a zero differential payoff for s/b = ρm.
146Indeed, as we assume α = 0, the organization faces at most one new talented candidate each period, and on the
meritocratic equilibrium path, recruits her/him.

147Fix s > b. Since the quality payoff accrues to all members of the organization, while the homophily benefit only accrues
to the in-group members, this optimality persists for q in a lower neighbourhood of 1. Furthermore, the neighbourhood
expands toward 0 as the ratio s/b increases.

148Strictly so if there is any small cost of intervention, or if the principal internalizes members’ homophily benefits.
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We now turn to the proof of Proposition 11.
Proof of claim (i). Let λ > 0 be the probability that the principal learns the quality of the candidates.
The proof unfolds in two steps:

(a) We show that for s/b sufficiently close to 1, there exists a profitable deviation from canonical
entrenchment in k + 1 (the unique outcome when s/b is close to 1 and λ = 0) toward super-
entrenchment at level 1. The argument then extends to full-entrenchment.

(b) We show that for s/b sufficiently close to 1, there can be no profitable deviation from full entrench-
ment.

(a). For i ≥ k, let Vi be the majority value function in the canonical entrenchment equilibrium with
probability of intervention η = xλ > 0. In order to alleviate the notation, we drop the superscript e
and the notation for the dependence on λ. Consider a deviation from canonical entrenchment to super-
entrenchment in k+ 1, i.e. the majority voting its own, less talented candidate against the strictly more
talented minority one, and being overruled with probability λ. The (one-shot) differential payoff from
the deviation at M = k + 1 writes

∆ ≡ (1− λ)
[
b− s+ δ

(
k + 1
N − 1Vk+1 + k − 2

N − 1Vk+2

)
− δ
(

k

N − 1Vk + k − 1
N − 1Vk+1

)]
= (1− λ)

[
b− s+ δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)]

where ui = Vi+1−Vi. The sequence (ui)1≤i≤N−2 satisfies Equation (10) for any i ≥ k+ 1, and Equation
(12) for any i ≤ k − 3, while



[
1− δ(1− x) k

N − 1 − δxλ
k − 1
N − 1

]
uk = x(1− λ)(s− b) + δ(1− x) k − 2

N − 1uk+1 + δxλ
k − 1
N − 1uk−1[

1− δ(1− xλ)
]
uk−1 = (1− 2xλ)b+ δ(1− xλ)

[
k − 2
N − 1uk−2 + k − 1

N − 1uk
]

[
1− δ(1− x) k + 1

N − 1 − δxλ
k − 2
N − 1

]
uk−2 = −x(1− λ)(s+ b) + δ(1− x) k − 3

N − 1uk−3 + δxλ
k

N − 1uk−1

(52)

Summing up on all indices yields149

[
1− δ x

N − 1 − δ(1− x)
]
(u1 + uN−2) +

(
1− δ

)N−3∑
i=2

ui = (1− 2x)b > 0 (53)

Fix b > 0. For any s ≥ b, the same argument as the one used in the proof of Lemma 1 yields
uk > uk+1 > ... > uN−2 > 0. Put succinctly, one supposes by contradiction that uN−2 ≤ 0 and reaches
a contradiction showing by induction, using (10) together with the above system, that this implies
uk−1 ≤ 0. Then, if u1 ≤ 0, (12) implies ui ≤ 0 for all i, which contradicts (53); whereas if u1 > 0, (12)
implies uk−1 > 0 and we reach again a contradiction. Hence uN−2 > 0 and the same induction argument
using (10) thus brings the result.

149Assuming k ≥ 4. The expression for k ∈ {2, 3} writes differently on the LHS but has the same implication.
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The differential deviation payoff is thus strictly positive if and only if

δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)
> s− b (54)

Consequently, for s = b, (54) is satisfied as it writes

δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)
> 0

Lastly, since for fixed b, (ui)i is continuous with respect to s, this implies that for any s/b sufficiently
close to 1, there exists a strictly profitable (one-shot) deviation from canonical entrenchment to super-
entrenchment.

As a by-product of the proof, we have by the same argument that whenever η = 0, there exists no
profitable deviation from canonical entrenchment to super-entrenchment as then150

δ

[
k − 2
N − 1uk+1(λ = 0) + k

N − 1uk(λ = 0)
]
<

x

1− x

[(
1− δ(1− x) k

N − 1

)−1
− 1
]
(s− b) < s− b

The same argument shows that, for s/b sufficiently close to 1, there exist profitable deviations from
any level l ≥ 0 of entrenchment toward entrenchment at a higher level, and thus in particular toward
full-entrenchment.

Lastly, we argue that this establishes the uniqueness of the full-entrenchment equilibrium among all
symmetric MPEs in weakly undominated strategies. To this end, we show that, for s/b in a neighbour-
hood of 1, any symmetric MPE in weakly undominated strategies is monotonic, in the sense that a
stronger majority makes more meritocratic recruitments. The result crucially relies on the fact that the
minority is never pivotal – as opposed to the absenteeism (Section 3.2) and supermajority rules (Section
6.3) settings.

Let s = b > 0. We show that in any symmetric MPE in weakly undominated strategies, the sequence
of differential value function (uM )M≥k−1 is strictly positive and strictly decreases with M . As a conse-
quence, by continuity, it is so for s/b in a neighbourhood of 1, and this in turn implies that, for s/b in
such a neighbourhood, any symmetric MPE in weakly undominated strategies is monotonic as deviation
differential payoffs at majority size M towards meritocracy write as

s− b− δ
[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
and are thus increasing with M .

150Indeed, [
1− δ(1− x)

k

N − 1

]
uk(λ = 0) = x(s− b) + δ(1− x)

(
1−

k + 1
N − 1

)
uk+1(λ = 0) < x(s− b)
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For s = b > 0, we have that
uk−1 = (1− 2xλ)b+ δ(1− xλ)

[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk
]

in an equilibrium in which the majority

is entrenched in k,

uk−1 = (1− 2x)b+ δ(1− x)
[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk
]

in an equilibrium in which it is meritocratic in k

and for any majority size M ≤ N − 2,

uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is entrenched in M,M + 1,

uM = δ(1− x)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is meritocratic in M,M + 1,

uM = δ(1− x)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is entrenched (resp. meritocratic) in M(resp. M + 1),

uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 + uM +

(
1− M + 1

N − 1

)
uM+1

]
in an equilibrium in which the majority is meritocratic (resp. entrenched) in M(resp. M + 1),

together with similar expressions for ui when i ≤ k − 2.
Hence, we apply the usual argument: supposing by contradiction that uN−2 ≤ 0, and working by

induction using the sums of ui over appropriate indices in order to reach the contradiction – which
ultimately derives from the fact that there is a unique flow differential payoff, and that it is equal ei-
ther to (1 − 2xλ)b or (1 − 2x)b, which are both strictly positive. This yields that in any equilibrium,
uN−2 > 0, and the above system then implies that ui > 0 for all i ∈ {k−1, ..., N−2} as was to be shown.

(b). We now show existence, i.e. that for s/b sufficiently close to 1 there can be no profitable
deviation from full entrenchment. The argument is analogous to the one just used. In order to alleviate
the notation, we again omit the superscript and the dependence on η and simply write V for the value
function and u for its first difference.

The deviation differential payoff from full-entrenchment to entrenchment at a lower level inM = N−1
whenever the minority candidate is more talented writes

∆ ≡ (1− λ)
[
s− b− δN − 2

N − 1uN−2

]
Explicit computation with (8)-(9) yield:

uN−2 = δ(1− xλ)N − 2
N − 1uN−2 + δxλ

[
N − 3
N − 1uN−3 + 1

N − 1uN−2

]
and more generally for any M ≥ k,

uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
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while for any i ≤ k − 2,

ui = δ(1− xλ)
[
i− 1
N − 1ui−1 +

(
1− i

N − 1

)
ui

]
+ δxλ

[
i− 1
N − 1ui +

(
1− i+ 1

N − 1

)
ui+1

]
with [

1− δ
(
1− xλ

)]
uk−1 = (1− 2xλ)b+ δ(1− xλ)

[
k − 1
N − 1uk + k − 2

N − 1uk−2

]
Summing up over all indices yields

[
1− δ

(
1− xλN − 2

N − 1

)]
uN−2 +

[
1− δ

(
1− xλ

N − 1

)]
u1 + (1− δ)

N−3∑
i=2

ui = (1− 2xλ)b > 0 (55)

Fix b > 0 and let s = b. The usual argument implies that uN−2 > 0. Indeed, if not, then the above
equations imply by induction that uk ≤ uk+1 ≤ ... ≤ uN−2 ≤ 0 and thus 0 ≥ u1 ≥ u2 ≥ ... ≥ uk−1,
which yields to a contradiction with (55). Therefore, uN−2 > 0, and by induction again uk > uk+1 >

... > uN−2 > 0. Hence the differential deviation payoff when the majority has size N − 2 writes for s = b

as

∆ = −(1− λ)δN − 2
N − 1uN−2 < 0

The result for s = b obtains by noting that since uk > uk+1 > ... > uN−2 > 0, the one-shot devia-
tion when majority has size N − 1 is the most profitable one-shot deviation from the full-entrenchment
strategy. The result then extends to s/b in a neighbourhood of 1 by continuity.

Proof of claim (ii). The principal cannot expand the existence region of meritocracy by its inter-
ventions as the prospect of its overruling a majority’s decision only scales down (by a strictly positive
factor) the one-shot deviation differential payoff from meritocracy to entrenchment. Hence, under our
assumption that the meritocratic equilibrium is selected whenever it exists, the principal fails to expand
the region where one should expect meritocracy.

Whenever informed, the principal has a profitable (one-shot) deviation from no-intervention. Hence,
if the principal cannot commit, majority members anticipate the principal steps in whenever informed.
Proposition 11 then implies that an entrenched organization at best remains (canonically) entrenched
or meritocratic, and otherwise goes super-entrenched – and most notably fully-entrenched for s/b in a
non-empty neighbourhood of 1.

Hence in particular, for s/b sufficiently close to 1, the organization is fully-entrenched. Since the prin-
cipal is only informed with probability strictly below 1, it cannot compensate all the "un-meritocratic"
decisions made by the organizations. Hence, at any majority size M ≥ k + 1, the principal would be
better off in terms of flow-payoffs, if it could commit not to intervene.

By contrast, whenever the majority is tight, entrenchment would have prevailed, and so the principal
may find it optimal to intervene. Fix a probability λ ∈ (0, 1) of the principal’s being informed, and
consider any s/b sufficiently close to 1 such that, given λ, the unique equilibrium is full entrenchment.
Suppose the principal values only ergodic efficiency. Then it would be better off committing not to
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Figure 5: Principal’s ergodic aggregate welfare as a function of λ (for N = 12).

intervene if and only if

N(N − 1)(1− λ)xs > N(N − 1)νe
k+1

k + 1
N

xs, i.e. λ < 1− νe
k+1

k + 1
N

Lastly, Figure 5 depicts the principal’s ergodic aggregate payoff as a functionits probability λ of being
informed for fixed s/b < ρe, assuming equilibrium selection and that the principal values only ergodic
aggregate quality.

N Proof of Proposition 12

Consider an entrenched organization. Because of the Pareto-dominance selection (meritocracy pre-
vails whenever it exists as an equilibrium), s/b < ρm. Let T ≡ ηy denote equal the minimal expected
bonus per member needed for the organization to move from entrenchment to meritocracy151 For the
sake of exposition, assume the principal does not value members’ homophily benefits, and thus letting ξ
be the cost of public funds152, the principal’s objective function writes as the ergodic welfare with per-
period welfare given by W = qS − ξT 153. Note that such an objective constitutes an upper bound on
the admissible cost of a policy as homophily decreases when the organization goes from entrenchment to

151Namely,

s+(η, y)
b

= ρm, i.e. ηy =
(
b

s
ρm − 1

)
s̃ > 0

152The interpretation of ξ depends on the principal’s welfare objective. If it is solely concerned with maximizing the
(ergodic aggregate) quality of the organization, then ξ is the total cost of intervention, i.e. the sum of the payment and
its shadow cost. By contrast, if the principal internalizes the "material" welfare of members, i.e. the sum of their quality
payoffs and (possibly) rewards for quality (as opposed to their non-material welfare which consists of homophily benefits),
then ξ is only the shadow cost of public funds.

153This objective may be interpreted as the limit of the main objective for q, ξ →∞.
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meritocracy (see Section 2.2.2). From previous computations on ergodic welfare, the (ergodic) efficiency
gain from disentrenchment writes as Sm − Se = N(N − 1)νe

k+1
k + 1
N

x
s̃

1− δ > 0. Rewarding quality is
thus optimal for the principal if and only if

ξηyN2(x+ x) ≤ N(N − 1)νe
k+1

k + 1
N

xs̃

where N [x+ x] is the average number of talented members in a meritocratic organization, and νe
k+1 the

objective ergodic probability of majority size k+1 in the entrenched equilibrium (see Section 2.2.2). The
above inequality rewrites as a condition on the administrative cost of public funds:154

ξ ≤ (k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
= (k + 1)(N − 1)

N2 .
xνe

k+1
x+ x

.

s

b

ρm − s

b

Note that the RHS strictly increases with s/b and goes to +∞ as s/b goes to ρm 155. The result follows.
The same argument applies if the principal’s objective writes as W = qS +B− ξT , yielding a higher

threshold ρξ (as Bm < Be).

O Proof of Proposition 13

O.1 Proof of Proposition 13-(i): Affirmative action expands the existence
region of meritocracy

The result is (almost) immediate156 for a representation threshold of 1. For the sake of exposition
and in order to get the spirit of the proof, we first focus on a representation threshold of k− 1, whereby
the minority size at the end of any period must be at least equal to k − 1, before turning to the general
proof for any representation threshold R ∈ {1, ..., k − 1}.

Case R = k−1. We first show that the representation constraint strictly decreases the lower bound of
the existence region of the meritocratic equilibrium, denoted by ρm

AA. We then prove that the existence
region of meritocracy writes as [ρm

AA,+∞) ⊃ [ρm,+∞). Because we focus on the existence of meritocratic
equilibria, we henceforth omit the superscript "m".

For any i ∈ {1, ..., N − 1}, let Vi (resp. for any i ∈ {k− 2, ..., k + 1}, Ṽi) denote the value function of
being in a group of size i in the meritocratic equilibrium in the baseline model (resp. with a representation
threshold of k− 1). We first show that Ṽk−1 − Ṽk+1 > Vk−1 − Vk+1, i.e. letting for any i, ui ≡ Vi+1 − Vi

154By Inequality (23), a lower bound on the RHS of the above equation is given by

(k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
≥

(k + 1)(N − 1)2

(k − 1)N2 .
x(1− 2x)νe

k+1
x+ x

.
(1− δ)
δ

155The monotonicity of the RHS with respect to N is non-trivial. Namely, although the first two terms decrease with
N ≥ 4, so that (k+ 1)(N − 1)νe

k+1/N
2 decreases with N , the comparative statics of ρm with respect to N are non-trivial.

Nonetheless, for N large, the first two terms (k + 1)(N − 1)νe
k+1/N

2 are in O(1/N), while for δ0 < 1, ρm is in 0(1).
Therefore, the RHS is in 0(1/N) for N large, which is intuitive: the upper bound on the admissible cost of public funds
is inversely proportional to the size of the organization, i.e. to the number of individuals to whom the bonus must be
distributed.

156The argument is significantly shorter in this case than with R ≥ 2 since the minority’s value function in the canonical
entrenched equilibrium writes as in the baseline model with no affirmative action (due to the conditioning on still being a
member next period).
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and ũi ≡ Ṽi+1 − Ṽi, that ũk + ũk−1 − (uk + uk−1) < 0.
The representation threshold is binding when the majority has size k+1 at the beginning of a period,

or equivalently when the minority has size k − 2. So the majority must coopt the out-group candidate.
Intuitively, this lowers the valuation for the majority when M = k + 1 and increases it for the minority
(i = k − 2). Formally,


Ṽk+1 = xs+ δ

[
k

N − 1 Ṽk + k − 1
N − 1 Ṽk+1

]
Ṽk−2 = xs+ b+ δ

[
k − 2
N − 1 Ṽk−2 + k + 1

N − 1 Ṽk−1

]
Hence, by using (8)-(9) and the monotonicity of the value function (Lemma 1, whose proof also applies
to affirmative action environment),157


[
1− δ k − 1

N − 1

](
Vk−1 − Ṽk−1

)
> xs+ (1− x)b+ δ

k

N − 1
(
Vk − Ṽk

)
[
1− δ k − 2

N − 1

](
Ṽk−2 − Vk−2

)
> −xs+ (1− x)b+ δ

k + 1
N − 1

(
Ṽk−1 − Vk−1

)
Since both Vi and Ṽi satisfy (8)-(9) for i ∈ {k − 1, k}, computations yield that

[
1− δx k − 1

N − 1

](
ũk − uk

)
< −xs− (1− x)b+ δx

k − 1
N − 1

(
ũk−1 − uk−1

)
[
1− δx k − 2

N − 1

](
ũk−2 − uk−2

)
< xs− (1− x)b+ δx

k

N − 1
(
ũk−1 − uk−1

) (56)

Because (13) (which relates uk−1 to uk−2 and uk) also applies to the affirmative action environment,

[
1− δ(1− x)

](
ũk−1 − uk−1

)
= δ(1− x)

[
k − 1
N − 1

(
ũk − uk

)
+ k − 2
N − 1

(
ũk−2 − uk−2

)]
,

(56) implies that: ũk−1 − uk−1 < 0, and thus by (56) again, that: ũk − uk < 0, which yields the result.
Consequently, for any s, b, a (one-shot) deviation from meritocracy to entrenchment when the majority

has size k is strictly less profitable with a representation threshold of k − 1 than without:

s− b+ δ
k − 1
N − 1(Ṽk−1 − Ṽk+1) > s− b+ δ

k − 1
N − 1(Vk−1 − Vk+1)

The above computations together with the usual argument further imply that the LHS in the above in-
equality is linear in s and b, decreases158 with b, increases with s, and thus increases with s/b. Therefore,

157Namely,
[

1− δ
k − 1
N − 1

](
Vk−1 − Ṽk−1

)
= xs+ (1− x)b+ δ

k

N − 1
(
Vk − Ṽk

)
+ δ(1− x)

[
k − 2
N − 1

uk+1 +
k

N − 1
uk

]
[

1− δ
k − 2
N − 1

](
Ṽk−2 − Vk−2

)
= −xs+ (1− x)b+ δ

k + 1
N − 1

(
Ṽk−1 − Vk−1

)
+ δ(1− x)

[
k − 3
N − 1

uk−3 +
k + 1
N − 1

uk−2

]
158Indeed, note that the omitted terms in (56) – i.e. the negative terms replaced by their upper bound of 0 –, write for
the first equation as

−δ(1− x)
[
k + l − 1
N − 1

uk+l−1 +
k − l − 1
N − 1

uk+l

]
,

which is thus proportional to (−b) (see proof of Lemma 1 for details). Similarly for the second equation.
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denoting by ρm
AA the value of s/b for which the LHS is equal to 0, we have that ρm

AA < ρm.
Lastly, the same argument as in the proof of Proposition 1 (cf. Section C.2) yields that (a) for any

s/b ≥ ρm
AA, (constrained) meritocratic choices are an equilibrium, with ties possibly broken in favour

of the minority candidate, and that (b) for any s/b < ρm
AA, there can be no meritocratic recruitment

in equilibrium when the majority is tight. Consequently, the existence region of meritocracy writes as
[ρm
AA,+∞) ⊃ [ρm,+∞).

General proof for (i). Consider a representation threshold of R = k − l with l ∈ {1, ..., k − 2}.
Then, denoting by Ṽ the value function under affirmative action with representation threshold R, in any
equilibrium 

Ṽk+l = xs+ δ

[
k + l − 1
N − 1 Ṽk+l−1 + k − l

N − 1 Ṽk+l

]
Ṽk−l−1 = xs+ δ

[
k − l − 1
N − 1 Ṽk−l−1 + k + l

N − 1 Ṽk−l
]

Specializing to the meritocratic equilibrium (we omit superscripts for ease of notation),
ũk+l−1 = −xs− (1− x)b+ δx

[
k − l
N − 1 ũk+l−1 + k + l − 2

N − 1 ũk+l−2

]
ũk−l−1 = xs− (1− x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

]
We will first show that the sequence (ũi)i≥k−1 satisfies at least one of the following assertions: (A1) it
decreases with i, or (A2) it is always strictly negative; and that in particular ũk+l−1 < 0 159. As in the
baseline case, the monotonicity property (A1) implies that the most tempting deviation from meritocracy
to entrenchment is when the majority has size k and faces an untalented ingroup candidate and a talented
outgroup candidate, while if (A2) holds, then all deviations to entrenchment are non-profitable as they
yield a deviation payoff equal to

−(s− b) + δ

[(
1− i

N − 1

)
ũi + i− 1

N − 1 ũi−1

]
< 0

By contrast, the sign of ũk+l−1 suggests there may be profitable deviations from meritocracy with ties
broken in favour of the majority candidate to meritocracy with ties broken in favour of the minority
candidate when s/b is high enough. (Lastly, because of discounting, there can be no profitable deviation
consisting in voting an untalented minority candidate instead of a talented majority one.)

We first suppose by contradiction that ũk+l−1 ≥ 0. The usual induction argument relying on (10)
then yields that ũk−1 > ũk > ... > ũk+l−1 ≥ 0. Yet, summing as in the proof of Lemma 1, the above
recursive expression for ũk+l−1 with (13) and (10) over indices k to k+ l− 2, and rearranging, yields on

159A sketch of the proof is as follows: suppose by contradiction that ũk+l−1 ≥ 0, then by induction using (10), ũk−1 >
... > ũk+l−1 ≥ 0. Yet summing the recursive expession of ũi for i ∈ {k− 1, ..., k+ l− 1} implies that ũk−2 ≥ 0 as the sum
of flow differential payoffs is equal to −xs − (1 − x)b + (1 − 2x)b = −x(s + b) < 0. Using repeatedly the same argument
gives that ui ≥ 0 for all i ∈ {k− l− 1, ..., k+ l− 1}. A contradiction then obtains by summing the recursive expressions of
ui over the indices i ∈ {k − l − 1, ..., k + l − 1}, and noting that the sum of flow differential payoffs is equal to −b < 0.
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the LHS a weighted sum of ũk−1, ..., ũk+l−1 which is strictly positive, while on the RHS:

−xs− (1− x)b+ (1− 2x)b+ δ
k − 2
N − 1 ũk−2 = −x(s+ b) + δ(1− x) k − 2

N − 1 ũk−2,

and so ũk−2 > 0. Summing (12) in k−2 to the above sum, and rearranging, yields on the LHS a weighted
sum of ũk−1, ..., ũk+l−1 which is strictly positive, and on the RHS:

−x(s+ b) + δ(1− x) k − 3
N − 1 ũk−3,

Hence, ũk−3 > 0, and by repeating this argument, ũi > 0 for any i ∈ {k − l − 1, ..., k + l − 1}. Yet
summing the above recursive expressions of ũk−l−1 and ũk+l−1 together with (10)-(12)-(13) for i ∈
{k − l, ..., k + l − 2}, yields after rearranging, on the LHS a weighted sum of all ũi which is strictly
positive, while on the RHS: −x(s+ b) + xs− (1− x)b = −b < 0, which is a contradiction. Consequently,
ũk+l−1 < 0.

In order to show that the sequence (ũi)i≥k−1 satisfies either (A1) or (A2) (or both), we proceed by
induction considering the lowest index i− such that ũi < 0 for any i ≥ i−. We first note that if i− ≥ k,
then (10) brings by induction that160

ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 < ũi−−1 < ũi−−2 < ... < ũk−1,

which yields that (A1) holds. If i− ≤ k−1, then (A2) holds. By contrast, in the baseline setting without
affirmative action, the sequence (ui)i≥k−1 is positive for any i and decreases with i.

Consequently, in order to show that the existence region of meritocracy expands for low s/b with
affirmative action, we only need to consider deviations from meritocracy to entrenchment when the
majority is tight and faces an untalented ingroup candidate and a talented outgroup one, and show that
the condition for non-profitability is looser with affirmative action than in the baseline setting.

Explicit computations yield
ũk+l−1 = −xs− (1− x)b+ δx

[
k − l
N − 1 ũk+l−1 + k + l − 2

N − 1 ũk+l−2

]
ũk−l−1 = xs− (1− x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

]
Thus using (10) in k + l − 1 and (12) in k − l − 1, together with the fact that ui ≥ 0 for all i in the
baseline setting, one gets161


[
1− δx k − l

N − 1

](
ũk+l−1 − uk+l−1

)
< −xs− (1− x)b+ δx

k + l − 2
N − 1

(
ũk+l−2 − uk+l−2

)
[
1− δxk − l − 1

N − 1

](
ũk−l−1 − uk−l−1

)
< xs− (1− x)b+ δx

k + l − 2
N − 1

(
ũk−l − uk−l

)
160The inequalities ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 can be established by induction using the recursive
expressions of the ũi from i = i− up to i = k + l − 2.

161 Note that the omitted terms write for the first equation as

−δ(1− x)
[
k + l − 1
N − 1

uk+l−1 +
k − l − 1
N − 1

uk+l

]
,

which is thus proportional to (−b) (see proof of Lemma 1 for details). Similarly for the second equation.
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Therefore, using (10) in k + l − 2 and (12) in k − l, one gets



[
1− δxk − l + 1

N − 1 − δ(1− x)k + l − 2
N − 1 − δ(1− x) k − l

N − 1

δx
k + l − 2
N − 1

1− δx k − l
N − 1

](
ũk+l−2 − uk+l−2

)

<
δ(1− x) k − l

N − 1

1− δx k − l
N − 1

[
− xs− (1− x)b

]
+ δx

k + l − 3
N − 1

(
ũk+l−3 − uk+l−3

)
[

1− δx k − l
N − 1 − δ(1− x)k + l − 1

N − 1 − δ(1− x)k − l − 1
N − 1

δx
k + l − 1
N − 1

1− δxk − l − 1
N − 1

](
ũk−l − uk−l

)

<
δ(1− x)k − l − 1

N − 1

1− δxk − l − 1
N − 1

[
xs− (1− x)b

]
+ δx

k + l − 2
N − 1

(
ũk−l+1 − uk−l+1

)

We begin by noting that

k − l
N − 1

[
1− δxk − l − 1

N − 1

]
>
k − l − 1
N − 1

[
1− δx k − l

N − 1

]
, and

δ(1− x) k − l
N − 1

1− δx k − l
N − 1

>
δ(1− x)k − l − 1

N − 1

1− δxk − l − 1
N − 1

We then observe that: (k − l)(k + l− 2) = (k − l+ 1)(k + l− 1)− (2k − 1), and as a consequence, using
the above inequality,

(
k − l
N − 1

)2
k + l − 2
N − 1

[
1− δxk − l − 1

N − 1

]
>
k − l + 1
N − 1

k − l − 1
N − 1

k + l − 1
N − 1

[
1− δx k − l

N − 1

]
− k − l
N − 1

[
1− δxk − l − 1

N − 1

]
1

N − 1 ,

Using the fact that δ(1− x) k − l
N − 1 < 1− δx k − l

N − 1 , we get that

δxδ(1− x)
(
k − l
N − 1

)2
k + l − 2
N − 1

[
1− δxk − l − 1

N − 1

]
> δxδ(1− x)k − l + 1

N − 1
k − l − 1
N − 1

k + l − 1
N − 1

[
1− δx k − l

N − 1

]
− δx

N − 1 ,

Hence, since

k − l + 1
N − 1

[
1− δ(1− x)k + l − 1

N − 1

]
= k − l
N − 1

[
1− δ(1− x)k + l − 2

N − 1

]
+ 1− δ(1− x)

N − 1
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we get that,

k − l + 1
N − 1

[
1− δx k − l

N − 1 − δ(1− x)k + l − 1
N − 1 − δ(1− x)k − l − 1

N − 1

δx
k + l − 1
N − 1

1− δxk − l − 1
N − 1

]

>
k − l
N − 1

[
1− δxk − l + 1

N − 1 − δ(1− x)k + l − 2
N − 1 − δ(1− x) k − l

N − 1

δx
k + l − 2
N − 1

1− δx k − l
N − 1

]

By downward (resp. upward) induction on (ũi − ui) for i ≥ k (resp. for i ≤ k − 2), we will get that

C1
(
ũk−1 − uk−1

)
< −C2xs− C3(1− x)b < 0

where C1, C2 and C3 are strictly positive constants that depend on the parameters k, l and x. We sketch
the induction argument. Using (10)-(12), we obtain two sequences (aj)0≤j≤l−2 and (bj)0≤j≤l−2 such
that for any j ≤ l − 2,



aj
(
ũk+j − uk+j

)
< −

[
xs+ (1− x)b

]δ(1− x) k − l
N − 1

1− δx k − l
N − 1

l−2∏
n=j+1

(
δ(1− x)
an

k − n− 1
N − 1

)
+ δx

k + j − 1
N − 1

(
ũk+j−1 − uk+j−1

)

bj
(
ũk−j−2 − uk−j−2

)
<
[
xs− (1− x)b

]δ(1− x)k − l − 1
N − 1

1− δxk − l − 1
N − 1

l−2∏
n=j+1

(
δ(1− x)
bn

k − n− 2
N − 1

)
+ δx

k + j

N − 1
(
ũk−j−1 − uk−j−1

)

where 
aj−1 = 1− δx k − j

N − 1 − δ(1− x)k + j − 1
N − 1 − δ(1− x)k − j − 1

N − 1

δx
k + j − 1
N − 1
aj

bj−1 = 1− δxk − j − 1
N − 1 − δ(1− x) k + j

N − 1 − δ(1− x)k − j − 2
N − 1

δx
k + j

N − 1
bj

We first note that by induction162

∀j ≤ l − 1, δ(1− x)
aj

k − j − 1
N − 1 < 1 (57)

We then show by downward induction on j that for any j ≤ l − 2,

1
aj

k − j − 1
N − 1 >

1
bj

k − j − 2
N − 1 ,

which yields the result. The initialization (j = l − 2) has been established above. As for the induction,
162The initialization with j = l − 1 stems from the observation that

δ(1− x)
k − l
N − 1

< 1− δx
k − l
N − 1
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i.e. to show that aj−1(k − j − 1) < bj−1(k − j), one notes that for any j ≥ 0,

k − j
N − 1

[
1− δ(1− x) k + j

N − 1

]
= k − j − 1

N − 1

[
1− δ(1− x)k + j − 1

N − 1

]
+ 1− δ(1− x)

N − 1

and (k − j − 1)(k + j − 1) = (k − j)(k + j)− (2k − 1), which implies with the induction hypothesis that

k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 >

k − j
N − 1

k + j

N − 1
1
bj

k − j − 2
N − 1 − 1

aj

k − j − 1
N − 1

1
N − 1

and thus, using (57),

δxδ(1− x)k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 > δxδ(1− x) k − j

N − 1
k + j

N − 1
1
bj

k − j − 2
N − 1 − δx

N − 1

Therefore, using the recursive expression of aj−1 and bj−1, we have that

aj−1(k − j − 1) < bj−1(k − j)− 1− δ
N − 1 < bj−1(k − j),

as was to be shown.
This in turn implies that

(
ũk − uk

)
< 0. Therefore, the non-profitability conditions for deviations

from meritocracy to entrenchment is (strictly) looser with a representation threshold R than without.
Moreover, since C2 and C3 are strictly positive, and since the omitted negative terms are all proportional
to (−b) (see footnote 161), the existence region of meritocracy expands downward (i.e. for low values of
s/b).163

For s/b sufficiently high, meritocracy with reverse favoritism is an equilibrium: the majority always
picks the most talented candidate and breaks ties in favour of the minority candidate. We let b = 0 < s.
We first note that in the unconstrained meritocratic equilibrium, this implies that ui = 0 for any
i ∈ {1, ..., N − 2}. The above computations then apply, switching the weights 1 − x and x (except for
the flow payoffs of ũk+l−1 and ũk−l−1 which remain respectively given by −xs and xs). Hence ũi < 0
for any i ≥ k − 1. Consequently, the deviation differential payoff from reverse-favoritism meritocracy to
standard-favoritism meritocracy at majority size M is given by

δ

(
M − 1
N − 1 ũ

m
M−1 + N − 1−M

N − 1 ũm
M

)
< 0,

which yields the result. By contrast, the same argument implies that meritocracy with standard fa-
voritism is no longer an equilibrium for s/b sufficiently high.164

O.2 Proof of Proposition 13-(ii)

LetN ≥ 4 and 1 ≤ l ≤ k−1. The ergodic aggregate efficiency of a canonically entrenched organization
under laissez-faire and a meritocratic one under affirmative action with representation threshold l write

163Moreover, since either (A1) or (A2) hold, we have by monotonicity with respect to b and s that for any value of the
ratio s/b such that meritocracy exists, then for any higher value of the ratio, there can be no profitable deviations towards
entrenchment (i.e. un-meritocratic decisions are always unprofitable). This establishes that meritocratic decisions – with
ties broken either in favour of the majority or the minority – happen on a half-line, i.e. for any s/b sufficiently high.

164Considering b = 0 < s, and observing that in the unconstrained meritocratic equilibrium, ui = 0 for any i ∈ {1, ..., N−2}
and using the above computations in order to get that ũi < 0.
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respectively:


Se = N(N − 1)

[
k + 1
N

νe
k+1x+

(
1− k + 1

N
νe
k+1

)(
x+ x

)]
s̃

Sm,AA = N(N − 1)
[
l

N
νm,AA
N−l x+

(
1− l

N
νm,AA
N−l

)(
x+ x

)]
s̃

and thus:

Sm,AA − Se = N(N − 1)
[
k + 1
N

νe
k+1 −

l

N
νm,AA
N−l

]
xs̃

Explicit computations (see Lemma 2 and its proof in Section E) yield:
νe
k+1

[
1 +

k−1∑
i=1

(
1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
= 1

νm,AA
N−l

[
1 +

k−l−1∑
i=1

(
x

1− x

)i i∏
j=1

N − l + 1− j
l + j

+
(

x

1− x

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]
= 1

Consequently, Sm,AA − Se has same sign as

(k + 1)
[

1 +
k−l−1∑
i=1

(
x

1− x

)i i∏
j=1

N − l + 1− j
l + j

+
(

x

1− x

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]

− l

[
1 +

k−1∑
i=1

(
1− x
x

)i i∏
j=1

k − j
k + 1 + j

]

We then note that the above expression is strictly negative for x in a neighbourhood of 0, and strictly
positive for x in a neighbourhood of 1. Moreover, since x/(1 − x) (resp. (1 − x)/x) strictly increases
(resp. decreases) with x ∈ (0, 1/2), there exists a unique xAA(l) ∈ (0, 1/2] such that for any x < xAA(l)
(resp. x > xAA(l)), the above expression is strictly negative (resp. positive).

Lastly, we note that by construction, xAA(l) is such that

(k + 1)
[

1 +
k−l−1∑
i=1

(
xAA(l)

1− xAA(l)

)i i∏
j=1

N − l + 1− j
l + j

+
(

xAA(l)
1− xAA(l)

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]

= l

[
1 +

k−1∑
i=1

(
1− xAA(l)
xAA(l)

)i i∏
j=1

k − j
k + 1 + j

]

The LHS in the above equation strictly decreases with l for any given x fixed, and strictly increases with
x for any fixed l. By contrast, the RHS strictly increases with l for any fixed x, and strictly decreases
with x for any fixed l. Hence xAA(l) strictly increases with l.

P Supermajority electoral rules

We assume that the principal does not observe the candidates’ talent. Hence if no candidate reaches
the election threshold, the principal picks one among the two at random. Consequently, the principal’s
blindness makes failing to reach the election threshold costly for majority members.
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With a majority+l voting rule, whenever the majority has size M ≥ k + l, the principal does not
intervene. By contrast, for any lower majority size, minority members are pivotal. Consequently, two
opposite effects drive the results:

• The principal’s blind intervention if the supermajority is not reached may make meritocracy rela-
tively more attractive and prevent the organization from being entrenched.

• Super-entrenchment at level l shields the entrenched majority from the principal’s intervention.

We define the "meritocratic equilibrium" as an equilibrium in which each group votes for its own candidate
if and only if she is at least as talented as the rival candidate. We say the minority is entrenched if,
whenever it is sufficiently large so as to be able to block nominations, it always votes for its own candidate,
and define the "level-l entrenched equilibrium" as the equilibrium in which the minority is entrenched and
the majority super-entrenched at level l. We look for monotonic symmetric MPEs in weakly undominated
strategies, which indeed exist.

Proposition 15. (Supermajority electoral rules) Let x < 1/2. Let l ≥ 1 and consider the majority+l
voting rule.

(i) For s/b sufficiently close to 1, super-entrenchment at level l is the unique symmetric MPE in
weakly undominated strategies such that a stronger majority makes (weakly) more meritocratic
recruitments.

(ii) For δ sufficiently low, the existence region of meritocracy widens with respect to laissez-faire.

As a by-product of the proof, we show that for any supermajority rule with parameter l (with l = 0
corresponding to the baseline model), (a) meritocracy exists if and only if there is no one-shot profitable
deviation for the majority whenever it has size k + l and faces a talented minority candidate and an
untalented majority one (in other words, as intuitive, this is the most tempting situation for a group to
deviate from meritocracy); and (b) for a low δ, the existence region of meritocracy is minimal for l = 0,
i.e. with the simple majority rule.

We first prove that, for δ close to 0, the existence region of meritocracy widens (step (a)), before
establishing the uniqueness within the class of monotonic symmetric MPEs, and existence of the level-l
super-entrenchment equilibrium in a neighbourhood of 1 (steps (b) and (c)). We stress that we only
show claim (a) for δ in a neighbourhood of 0, while we establish claims (b) and (c) for any discount
factor δ ∈ [0, (N − 1)/N).

(a) Consider the meritocratic strategy for both groups. Whenever the majority size is (weakly above)
k+ l – or equivalently the minority size is (weakly) below (N − k− l− 1) –, the majority picks the most
talented candidate, breaking ties in favor of its own candidate. For any majority sizeM ∈ {k, ..., k+l−1},

• if candidates’ abilities differ, the most talented candidate is recruited,

• if both candidates are equally talented, the recruited candidate is drawn at random among the two
(with equal probability).

Hence, for any majority size M ∈ {k, ..., k+ l−1}, the average quality of a candidate is equal to (x+x)s̃
as in the baseline meritocracy, yet the average homophily payoff accruing to majority and minority
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members is equal to b̃/2 instead of respectively (1− x)b̃ and xb̃.
For any i ∈ {1, ..., N − 2}, let ũm

i ≡ Ṽ m
i+1 − Ṽ m

i where Ṽ m
i is the value function at group size i in the

meritocratic equilibrium. By the usual argument (e.g. cf. proof of Proposition 1), the existence region of
meritocracy strictly widens with respect to laissez-faire if and only if the meritocracy-to-entrenchment
deviation differential payoffs are strictly lower than the highest such differential payoff under laissez-faire,
i.e. if and only if for any i ∈ {k − l, ..., N − 1},

∆̃i ≡
i− 1
N − 1 ũ

m
i−1 +

(
1− i

N − 1

)
ũm
i <

k − 1
N − 1

(
um
k−1 + um

k

)
≡ ∆k

The result thus clearly holds for δ in a neighbourhood of 0 165. We assume in the following that δ > 0. We
establish a few additional facts in favour of our conjecture that the result holds for any δ ∈ [0, (N−1)/N).

Namely, the sequence (um
i )i is given by Equations (10)-(12)-(13), while the sequence (ũm

i )i satisfies
(10) for any i ≥ k + l, and (12) for any i ≤ k − l − 2. By contrast, for any i ∈ {k − l − 1, ..., k + l − 1},
ũm
i is given by166



ũm
k+l−1 = 1− 2x

2 b+ δ(1− x)
[
k + l − 1
N − 1 ũm

k+l−1 +
(

1− k + l

N − 1

)
ũm
k+l

]
+δ

2

[
k + l − 2
N − 1 ũm

k+l−2 +
(

1− k + l − 1
N − 1

)
ũm
k+l−1

]
ũm
i = δ

2

[
i− 1
N − 1 ũ

m
i−1 +

(
1− i

N − 1

)
ũm
i

]
+ δ

2

[
i

N − 1 ũ
m
i +

(
1− i+ 1

N − 1

)
ũm
i+1

]
, ∀i ∈ {k − l, ..., k + l − 2}

ũm
k−l−1 = 1− 2x

2 b+ δ(1− x)
[
k − l − 2
N − 1 ũm

k−l−2 +
(

1− k − l − 1
N − 1

)
ũm
k−l−1

]
+δ

2

[
k − l − 1
N − 1 ũm

k−l−1 +
(

1− k − l
N − 1

)
ũm
k−l

]
(58)

The usual arguments (see below the proof of claim (b)) yield that for any discount factor, 0 < ũm
1 < ... <

ũm
k−l−1 and ũm

k+l−1 > ... > ũm
N−2 > 0 167. Moreover, (58) implies that the sequence (ũm

i )i does not reach
its global maximum for i ∈ {k − l, ..., k + l − 2}. Hence the maximum of the sequence (ũm

i )i is either
ũm
k−l−1 or ũm

k+l−1.
Similarly, by definition of ∆̃ and by rearranging, for any i,

∆̃i+1 − ∆̃i = i− 1
N − 1(ũm

i − ũm
i−1) +

(
1− i+ 1

N − 1

)
(ũm
i+1 − ũm

i ),

and thus the sequence (∆̃i)i inherits the monotonicity (if any) of the sequence (ũi)i. Moreover, (58)
165For δ = 0, one has um

k−1 = (1 − 2x)b = 2ũk−l−1 = 2ũk+l−1, while ui = 0 for any i 6= k − 1, and ũi = 0 for any
i /∈ {k − l − 1, k + l − 1}. Therefore,

max
i∈{k−l,...,N−1}

∆̃i = ∆̃k+l =
k + l − 1
N − 1

1− 2x
2

b ≤
k − 1
N − 1

(1− 2x)b

166The system derives from the explicit expression of the value functions after rearranging.
167Note that this implies that

∆̃i =
i− 1
N − 1

ũm
i−1 +

(
1−

i

N − 1

)
ũm
i

increases (resp. decreases) with i ∈ {1, ..., k − l − 1} (resp. i ∈ {k + l − 1, ..., N − 2}), which implies that an equivalence
condition for our result needs only consider deviation differential payoffs at sizes i ∈ {k − l, ..., k + l} instead of the larger
set of sizes {k − l, ..., N − 1}.
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implies that for any i ∈ {k − l + 1, ..., k + l − 2},

∆̃i = δ

2

[
i− 1
N − 1

(
∆̃i−1 + ∆̃i

)
+
(

1− i

N − 1

)(
∆̃i + ∆̃i+1

)]
, (59)

and thus the sequence (∆̃i)i does not reach its global maximum over {k− l+1, ..., k+ l−2} (namely, the
sequence (∆̃i)i is either monotonic or U-shaped on {k− l, ..., k+ l− 1}).. Therefore the sequence reaches
its maximum in one of the elements of the set {k − l − 1, k − l, k + l − 1, k + l}. Hence, the existence
region of meritocracy strictly widens with respect to laissez-faire if and only if 168

max
{

∆̃k−l, ∆̃k+l−1, ∆̃k+l

}
≤ ∆k

By construction, for δ = 0, we have that for any l ∈ {1..., k − 1},

∆̃k+l = k + l − 1
N − 1

1− 2x
2 b, ∆̃k+l−1 = k − l

N − 1
1− 2x

2 b, ∆̃k−l = k − l − 1
N − 1

1− 2x
2 b,

∆̃k−l−1 = k + l

N − 1
1− 2x

2 b, and ∆̃i = 0 for any i /∈ {k − l − 1, k − l, k + l − 1, k + l},

while

∆k = N − 2
N − 1

1− 2x
2 b, ∆k−1 = N

N − 1
1− 2x

2 b, and ∆i = 0 for any i /∈ {k − 1, k}

Hence, the above discussion implies that for δ small, the existence region of meritocracy strictly widens
with respect to laissez-faire for any l ∈ {1, ..., k − 2}. Lastly, a first-order Taylor expansion for δ small
in the case l = k − 1 yields169


∆̃N−1 = k − 1

N − 1(1− 2x)b+ δ(1− 2x)b k − 1
N − 1

[
1

2(N − 1) + (1− x)N − 2
N − 1

]
+O(δ2)

∆k = k − 1
N − 1(1− 2x)b+ δ(1− 2x)b k − 1

N − 1

[
x
k − 1
N − 1 + 1− x

]
+O(δ2)

and thus, ∆̃N−1 < ∆k. In other terms, for δ close to 0, the existence region of meritocracy strictly
widens under the unanimity rule with respect to laissez-faire.

(b) The uniqueness of the level-l super-entrenchment equilibrium within the class of symmetric MPEs
such that a stronger majority makes more meritocratic recruitments for s/b in a neighbourhood of 1 de-
rives from the argument in the proof of Proposition 6 (see Section I) with the probabilities of the majority
losing the vote being equal to Λ(M) = 1/2 forM ∈ {k, ..., k+ l−1} and to Λ(M) = 0 for anyM ≥ k+ l}.

(c) We resort to the usual argument for the existence of the level-l super-entrenchment equilibrium.
Consider s = b > 0, and let the superscript "e+" denote super-entrenchment at level l. The deviation

168Recall that ∆̃k−l−1 plays no role since the minority has no control when it has size k− l− 1. Moreover, one can show
that for any discount factor,

max
{

∆̃k−l, ∆̃k+l−1, ∆̃k+l

}
= ∆̃k+l

169Indeed, for δ in a neighbourhood of 0, max
{

∆̃k−l, ∆̃k+l−1, ∆̃k+l
}

= ∆̃k+l.
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differential payoff from super-entrenchment at level l to a lower level of super-entrenchment in i ∈
{k − l, ..., k + l} writes as

− i− 1
N − 1 ũ

e+
i−1 −

(
1− i

N − 1

)
ũe+
i ≤ 0,

where the inequality derives from standard computations which yield that ũe+
i ≥ 0 for any i ≥ k − 1

(where the inequality is strict whenever i ∈ {k − 1, ..., k + l − 1} and with ui = 0 for any i ≥ k + l, see
above and proof of Lemma 1). Hence, by continuity, super-entrenchment at level l is an equilibrium for
s/b in a neighbourhood of 1.
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