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A Proof of Lemma 1

A.1 Value functions for majority and minority members with

the canonical strategies

Let us consider the canonical strategies:

(i) Members of the majority (all) vote for the majority candidate if the latter is at least
as talented as the minority candidate.

(ii) When the minority candidate is more talented, members of a type-X majority
(all) vote for the majority candidate with probabilities {σX(M)}M∈{k,...,N−1} with
σX(k) ∈ {0, 1} and σX(M) = 0 if M > k.

Value function for a majority member. In this Subsection only, Let V −
i,X denote the

expected value function conditional on the minority candidate being more talented, and
V +

i,X denote the expected value function conditional on the complementary event.1 The
value function for a majority member writes for any k ≤ M ≤ N − 1,2,

VM,X = xV −
M,X + (1 − x)V +

M,X (3)

where



V −
M,X = σX(M)

[
bX + δ

(
M

N − 1VM,X +
(
1 − M

N − 1
)
VM+1,X

)]

+(1 − σX(M))
[
s+ δ

(
M − 1
N − 1 VM−1,X +

(
1 − M − 1

N − 1
)
VM,X

)]

V +
M,X = bX + x

1 − x
s+ δ

(
M

N − 1VM,X +
(

1 − M

N − 1

)
VM+1,X

)
1To alleviate the notation with respect to the text, we omit the superscript r, r′ referring to the two

groups’ strategies, and use the superscript instead to decompose the value function depending on the
current-period candidates draw (and thus recruit).

2Equation (3) applies even when M = N − 1 as the majority size M + 1 becomes irrelevant (its
probability being nil).
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With probability x, the (type-X) majority faces a trade-off between selecting a talented
minority member (yielding payoff s) and picking the less talented majority candidate
(yielding payoff bX). With probability 1−x, the majority candidate is at least as talented
as the minority one, and the majority candidate brings average payoff bX + xs/(1 − x),
where x/(1−x) is the conditional probability of that candidate’s being talented. Recruit-
ing a majority candidate when the majority has size M in period t yields an end-of-period
majority size of M + 1. From the perspective of a majority member, three events might
then happen at the beginning of period t+1 before the vote takes place: (i) with probabil-
ity 1/N (which is already embedded in the discount factor δ ≡ δ0(1−1/N)), the majority
member quits the organization, which gives him zero payoff; (ii) with probability M/N ,
another majority member quits, and thus the majority size decreases to M ; (iii) with
probability (N−M−1)/N , a minority member quits, and thus the majority size remains
equal to M + 1.

Value function for a minority member. If the majority recruits the majority candidate
in period t, then at the beginning of period t+ 1: (i) with probability 1/N , the minority
member quits the organization, which gives her zero payoff; (ii) with probability (M +
1)/N , a majority member quits, and thus the majority size decreases to M ; (iii) with
probability (N −M − 2)/N , another minority member quits, and thus the majority size
remains equal to M + 1. The value function for a (type-X) minority member writes for
any k ≤ M ≤ N − 2:

VN−M−1,X = xV −
N−M−1,X + (1 − x)V +

N−M−1,X (4)

where



V −
N−M−1,X = σY (M)δ

(
M + 1
N − 1 VN−M−1,X +

(
1 − M + 1

N − 1
)
VN−M−2,X

)

+(1 − σY (M))
[
s+ bX + δ

(
M

N − 1VN−M,X +
(
1 − M

N − 1
)
VN−M−1,X

)]

V +
N−M−1,X = x

1 − x
s+ δ

(
M + 1
N − 1 VN−M−1,X +

(
1 − M + 1

N − 1

)
VN−M−2,X

)

A.2 Continuation values with the canonical strategies

Let us begin with a useful result, which we will use repeatedly throughout our analysis.
We index the canonical strategies by r ∈ {m, e}, where m stands for the meritocratic
strategy and e for the basic-entrenchment one. To alleviate the notation, we omit the
subscript X ∈ {A,B} as we restrict our attention to a single group.
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Lemma A.1. (Majority continuation values) Fix Vk−1 ∈ R (continuation value
upon losing control) and consider the value function (V r

M(Vk−1))M≥k associated with the
canonical strategy r ∈ {m, e} given Vk−1. Then,

(i) For r = e, the continuation value V e
M(Vk−1) increases with M ≥ k and has decreas-

ing differences (i.e., ue
M(Vk−1) ≡ V e

M+1(Vk−1) − V e
M(Vk−1) decreases with M ≥ k),

strictly so if x > 0.

(ii) For r = m, if V m
k (Vk−1) ≥ Vk−1, the continuation value V m

M (Vk−1) increases with
M ≥ k and has decreasing differences (i.e., um

M(Vk−1) ≡ V m
M+1(Vk−1) − V m

M (Vk−1)
decreases with M ≥ k), strictly so if V m

k (Vk−1) > Vk−1.

Proof. Let r ∈ {m, e}. By definition of the canonical strategies, for any M ∈ {k +
1, ..., N − 1},

V r
M(Vk−1) = (x+ x)s+ (1 − x)b+ (1 − x)δ

[
M

N − 1V
r

M(Vk−1) +
(

1 − M

N − 1

)
V r

M+1(Vk−1)
]

+ xδ

[
M − 1
N − 1 V

r
M−1(Vk−1) +

(
1 − M − 1

N − 1

)
V r

M(Vk−1)
]
.

For M = k, the same recursive equation holds for the meritocratic strategy (r = m),
while for the basic-entrenchment strategy (r = e),

V e
k (Vk−1) = xs+ b+ δ

[
k

N − 1V
e

k (Vk−1) +
(

1 − k

N − 1

)
V e

k+1(Vk−1)
]
.

Consequently, for any M ∈ {k+1, ..., N−1}, letting ur
M(Vk−1) ≡ V r

M+1(Vk−1)−V r
M(Vk−1),

[
1 − δx

(
1 − M

N − 1

)
− δ(1 − x) M

N − 1

]
ur

M(Vk−1)

= δx
M − 1
N − 1 u

r
M−1(Vk−1) + δ(1 − x)

(
1 − M + 1

N − 1

)
ur

M+1(Vk−1). (5)

Moreover, for M = k, the meritocratic strategy (still) yields (5), i.e.

[
1 − δx

(
1 − k

N − 1

)
− δ(1 − x) k

N − 1

]
um

k (Vk−1)

= δx
k − 1
N − 1u

m
k−1(Vk−1) + δ(1 − x)

(
1 − k + 1

N − 1

)
um

k+1(Vk−1).
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whereas the basic-entrenchment strategy yields

ue
k(Vk−1) = x(s− b) + δ(1 − x)

[(
1 − k + 1

N − 1

)
ue

k+1(Vk−1) + k

N − 1u
e
k(Vk−1)

]
. (6)

We show the result by contradiction and by induction. Suppose ur
N−2(Vk−1) ≤ 0.

Then, Equation (5) for M = N − 2 implies

[
1 − δ

x

N − 1 − δ(1 − x)N − 2
N − 1

]
ur

N−2(Vk−1) = δx
N − 3
N − 1u

r
N−3(Vk−1)

Therefore, ur
N−3(Vk−1) ≤ 0 and ur

N−3(Vk−1) ≤ ur
N−2(Vk−1). We then proceed by induction

to show that for any M ∈ {k + 1, ..., N − 2}, ur
M−1(Vk−1) ≤ ur

M(Vk−1) ≤ 0. Suppose the
result holds for all indices in {M + 1, ..., N − 2}. Then, (5) implies

[
1 − δx

(
1 − M

N − 1

)
− δ(1 − x) M

N − 1

]
ur

M(Vk−1)

≥ δx
M − 1
N − 1 u

r
M−1(Vk−1) + δ(1 − x)

(
1 − M + 1

N − 1

)
ur

M(Vk−1)

i.e.,
[
1 − δx

(
1 − M

N − 1

)
− δ(1 − x)N − 2

N − 1

]
ur

M(Vk−1) ≥ δx
M − 1
N − 1 u

r
M−1(Vk−1)

Consequently, ur
M−1(Vk−1) ≤ ur

M(Vk−1) ≤ 0. The result follows by induction. In particu-
lar, one has ur

k(Vk−1) ≤ ur
k+1(Vk−1) ≤ 0.

However, consider the basic-entrenchment strategy and suppose x > 0 (the case x = 0
is analogous). (6) then implies that

0 ≥
[
1 − δ(1 − x)N − 2

N − 1

]
ue

k(Vk−1) ≥ x(s− b) > 0,

which is a contradiction. Similarly, consider the meritocratic strategy and suppose that
V m

k (Vk−1) > Vk−1 (the weak inequality case is analogous). Using (5) in M = k allows
to extend the induction argument to show that um

N−2 ≤ 0 implies um
k−1(Vk−1) ≤ 0, i.e.

V m
k (Vk−1) ≤ Vk−1, which is a contradiction.

Therefore, for any r ∈ {m, e}, ur
N−2(Vk−1) > 0. Using (5), one then has by induction

that

ur
k(Vk−1) > ... > ur

N−2(Vk−1) > 0.
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as was to be shown.

A.3 Proof of Lemma 1

Let v (resp. w) denote the incremental value brought to a member of the majority by
the minority (resp. majority) candidate. So v ∈ {0, s}, w ∈ {b, b+ s}, and v > w if and
only if (v, w) = (s, b) (otherwise v < w). Throughout the Online Appendix, we refer to
the incremental value brought by current-period hires as a "flow payoff" (slighlty abusing
vocabulary as this incremental value captures the discounted sum of present and future
quality and homophily benefits, if any).

Let C ≡
[
0, ((x+ x)s+ (1 − x)b)/(1 − δ)

]
. All vectors of value functions (Vk, .., VN−1)

necessarily belong to Ck as for any s ≥ b, Ev,w[max(v, w)] = (x+ x)s+ (1 − x)b. By con-
struction, given any Vk−1 ∈ C, the majority faces an optimal control problem, and there
exists a unique sequence of majority value functions (Vk(Vk−1), ..., VN−1(Vk−1)) solving
the Bellman equations:

∀i ≥ k, Vi = Ev,w

[
max

{
v + δ

(
i− 1
N − 1Vi−1 +

(
1 − i− 1

N − 1

)
Vi

)
,

w + δ

(
i

N − 1Vi +
(

1 − i

N − 1

)
Vi+1

)}]

Hence, rewriting (1), the majority’s choice at size M between two candidates with profiles
(v, w) is determined by the following comparison:

v − w − δ

[
M − 1
N − 1 (VM − VM−1) +

(
1 − M

N − 1

)
(VM+1 − VM)

]
≶ 0. (7)

Given any Vk−1 ∈ C, the majority can always guarantee a sequence of value functions
such that VM > Vk−1 for any M ≥ k, for instance by following the meritocratic strat-
egy (making meritocratic recruitments at all majority sizes) as such a strategy yields a
flow payoff equal to Ev,w[max(v, w)] = (x+x)s+(1−x)b ≥ (1−δ)Vk−1 at all majority sizes.

Hence in particular, the solution to the Bellman equations given Vk−1 satisfies Vk+1(Vk−1) >
Vk−1, and thus for M = k, (7) writes as

v − w − δ
k − 1
N − 1(Vk+1(Vk−1) − Vk−1) ≤ v − w.

Hence, it is never optimal for a majority with size k to recruit the minority candidate
whenever v < w (i.e. whenever the majority candidate is at least as talented as the
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minority one).

Fix Vk−1 ∈ C. Let us show that for any Vk−1 ∈ C, the majority’s best response among
pure Markov Perfect strategy is either meritocracy or basic entrenchment.

Consider the sequence of value functions (V e
M(Vk−1))M≥k generated by the basic-

entrenchment strategy given Vk−1: the sequence (V e
M(Vk−1))M≥k is defined recursively

by (5)-(6), i.e. satisfies

V e
k (Vk−1) = E[w] + δ

[
k

N − 1V
e

k (Vk−1) + k − 1
N − 1V

e
k+1(Vk−1)

]

and for any M ≥ k + 1,

V e
M(Vk−1) = Ev,w[max(v, w)] + δx

[
M − 1
N − 1 V

e
M−1(Vk−1) + N −M

N − 1 V e
M(Vk−1)

]

+ δ(1 − x)
[

M

N − 1V
e

M(Vk−1) + N −M − 1
N − 1 V e

M+1(Vk−1)
]

Let us distinguish three cases, depending on whether s− b− δ
k − 1
N − 1

(
V e

k+1(Vk−1) −Vk−1
)

is strictly negative, strictly positive, or nil.
Case 1. Suppose the following inequality holds:

s− b− δ
k − 1
N − 1

(
V e

k+1(Vk−1) − Vk−1
)
< 0. (8)

Let us show that the sequence of majority value functions (V e
M(Vk−1))M≥k solves the

Bellman equations given Vk−1. By Lemma A.1, ue
M ≡ V e

M+1 − V e
M > 0 and ue

M+1 ≤ ue
M

for all M ≥ k. Hence, (7) implies that given the continuation values induced by the
basic-entrenchment strategy, it is strictly optimal for the majority at any majority size
M ≥ k to recruit its in-group candidate whenever he is at least as talented as the minority
one (as then w ≥ v).

Moreover, (8) and (7) imply that given the continuation values induced by the basic-
entrenchment strategy, it is optimal for the majority at size M = k to recruit the majority
candidate even when he is less talented than the minority candidate. In addition, (6)
together with the inequality ue

k+1 ≤ ue
k imply that

[
1 − δ(1 − x)N − 2

N − 1

]
ue

k ≤ x(s− b)
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and therefore, using again (6),

δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
≤

δxN−2
N−1

1 − δ(1 − x)N−2
N−1

(s− b) < s− b,

where the second inequality follows from δ < (N − 1)/N . Hence, by monotonicity of
the sequence (ue

M)M≥k,3 for any majority size M ≥ k + 1, (7) implies that, given the
continuation values induced by the basic-entrenchment strategy, it is strictly optimal for
the majority to recruit the minority candidate whenever she is more talented than the
majority candidate.

Therefore, the sequence of majority value functions (V e
M(Vk−1))M≥k solves the Bellman

equations given Vk−1, and as the latter have a unique solution, VM(Vk−1) = V e
M(Vk−1) for

any M ≥ k. Identifying the strategies from the value functions (using (7)), if (8) holds,
the majority’s best response to Vk−1 among pure Markov Perfect strategies is thus the
basic-entrenchment strategy.

Case 2. Suppose the following inequality holds:

s− b− δ
k − 1
N − 1

(
V e

k+1(Vk−1) − Vk−1
)
> 0, (9)

To alleviate the notation, let

∆ ≡ s− b− δ
k − 1
N − 1

(
V e

k+1(Vk−1) − Vk−1
)
.

Consider the sequence of value functions (V m
M (Vk−1))M≥k generated by the meritocratic

strategy given Vk−1: the sequence (V m
M (Vk−1))M≥k is defined recursively by (5) for any

M ≥ k, i.e. satisfies for all M ≥ k

V m
M (Vk−1) = Ev,w[max(v, w)] + δx

[
M − 1
N − 1 V

m
M−1(Vk−1) + N −M

N − 1 V m
M (Vk−1)

]

+ δ(1 − x)
[

M

N − 1V
m

M (Vk−1) + N −M − 1
N − 1 V m

M+1(Vk−1)
]

with V m
k−1(Vk−1) ≡ Vk−1.

3As ue
M+1 ≤ ue

M for all M ≥ k + 1,

δ

(
N −M − 1
N − 1 ue

M + M − 1
N − 1 u

e
M−1

)
≤ δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
< s− b.
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Then, using the recursive expressions of the continuation values induced by the mer-
itocratic and basic-entrenchment strategies, for any M ≥ k + 1,

V m
M (Vk−1) − V e

M(Vk−1)

= δx

[
M − 1
N − 1

(
V m

M−1(Vk−1) − V e
M−1(Vk−1)

)
+ N −M

N − 1
(
V m

M (Vk−1) − V e
M(Vk−1)

)]

+ δ(1 − x)
[

M

N − 1
(
V m

M (Vk−1) − V e
M(Vk−1)

)
+ N −M − 1

N − 1
(
V m

M+1(Vk−1) − V e
M+1(Vk−1)

)]

and for M = k,

V m
k (Vk−1) − V e

k (Vk−1)

= x∆ + δx
k

N − 1
(
V m

k (Vk−1) − V e
k (Vk−1)

)
+ δ(1 − x)

[
k

N − 1
(
V m

k (Vk−1) − V e
k (Vk−1)

)
+ k − 1
N − 1

(
V m

k+1(Vk−1) − V e
k+1(Vk−1)

)]
.

Using the recursive expressions of the (V m
M − V e

M)M yields that4

V m
k (Vk−1) − V e

k (Vk−1) > ... > V m
N−1(Vk−1) − V e

N−1(Vk−1) > 0.

As a consequence, by the recursive expression of V m
k+1(Vk−1) − V e

k+1(Vk−1),

[
1 − δ(1 − x) − δx

k − 1
N − 1

](
V m

k+1(Vk−1) − V e
k+1(Vk−1)

)
< δx

k

N − 1
(
V m

k (Vk−1) − V e
k (Vk−1)

)
,

and thus by the recursive expression of V m
k (Vk−1) − V e

k (Vk−1),5

[
1 − δ(1 − x) − δx

k − 1
N − 1

](
V m

k+1(Vk−1) − V e
k+1(Vk−1)

)
<

δx k
N−1

1 − δ(1 − x) − δx k
N−1

x∆.

Therefore,

δ
k − 1
N − 1

(
V m

k+1(Vk−1) − V e
k+1(Vk−1)

)
< ∆,

4One may for instance proceed as in the proof of Lemma A.1 and suppose by contradiction that
V m

N−1(Vk−1) − V e
N−1(Vk−1) ≤ 0.

5Indeed, as V m
k+1(Vk−1) − V e

k+1(Vk−1) < V m
k (Vk−1) − V e

k (Vk−1),

V m
k (Vk−1) − V e

k (Vk−1) < x∆ +
(
δx

k

N − 1 + δ(1 − x)
)(
V m

k (Vk−1) − V e
k (Vk−1)

)
.
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and hence, by definition of ∆,

s− b− δ
k − 1
N − 1

(
V m

k+1(Vk−1) − Vk−1
)
> 0. (10)

Consequently, (10) and (7) imply that given the continuation values induced by the
meritocratic strategy, it is optimal for the majority at size M = k to recruit the minority
candidate whenever she is more talented than the majority candidate.

By construction, Vk−1 ∈ C, and thus Vk−1 ≤ Ev,w[max(v, w)]/(1 − δ). Therefore,
V m

k (Vk−1) ≥ Vk−1. Consequently, by Lemma A.1, um
k−1 ≥ um

k ≥ ... ≥ um
N−2 ≥ 0. Hence,

(7) implies that given the continuation values induced by the meritocratic strategy, it
is indeed strictly optimal at any majority size M ≥ k for the majority to recruit the
majority candidate whenever he is at least a talented as the minority candidate (as then
v > w). Moreover, (10), the monotonicity of the sequence (um

M)M≥k−1, and (7) imply
that given the continuation values induced by the meritocratic strategy, it is strictly
optimal at any majority size M ≥ k for the majority to recruit the minority candidate
whenever she is more talented than the minority candidate.

Therefore, the sequence of value functions (V m
M (Vk−1))M≥k generated by the merito-

cratic strategy given Vk−1 solves the Bellman equations, and as the latter have a unique
solution, Vi(Vk−1) = V m

i (Vk−1) for any i ≥ k. Identifying the strategies from the value
functions (using (7)), if (9) holds, the majority’s best response to Vk−1 among pure
Markov Perfect strategies is thus the meritocratic strategy.

Case 3: Suppose that the following equality holds:

s− b− δ
k − 1
N − 1

(
V e

k+1(Vk−1) − Vk−1
)

= 0,

i.e. the majority is indifferent between σ(k) = 0 and σ(k) = 1. Then, the above ar-
guments imply that the sequences of value functions induced by the basic-entrenchment
and meritocratic strategies both solve the Bellman equations. Identifying the strategies
from the value functions (using (7)), the majority has then two best responses (yielding
the same continuation values): meritocracy and basic entrenchment.

9



B Proof of Lemma 2

The result for N = 4 derives from straightforward computations.6 We assume in the
following that N ≥ 6.

Proof of (i). Consider first the basic-entrenchment strategies. For any M ∈ {k −
1, ..., N − 2}, let V e

M denote the continuation value function with the basic-entrenchment
strategy for both group, and let ue

M ≡ V e
M+1 −V e

M . As argued in the proof of Lemma A.1
(see Online Appendix A.2), the recursive expressions of the continuation value function
yield for any M ∈ {k + 1, ..., N − 2},

[
1 − δx

(
1 − M

N − 1

)
− δ(1 − x) M

N − 1

]
ue

M = δx
M − 1
N − 1 u

e
M−1 + δ(1 − x)

(
1 − M + 1

N − 1

)
ue

M+1,

(5)

and for M = k,

ue
k = x(s− b) + δ(1 − x)

[(
1 − k + 1

N − 1

)
ue

k+1 + k

N − 1u
e
k

]
(6)

Therefore, the result follows straightforwardly from claim (i) in Lemma A.1.

Consider now the meritocratic strategies. Let let V m
M denote the continuation value

function with the basic-entrenchment strategy for both group, and let um
i ≡ V m

i+1 −V m
i for

any i ∈ {1, ..., N−2}. By construction, Equation (5) holds for any M ∈ {k, ..., N−2}. We
use the same argument as in the proof of Lemma A.1 (by contradiction and by induction).

Hence, assume by contradiction that um
N−2 ≤ 0. Then, by induction, this implies that

for any M ∈ {k, ..., N − 2}, um
M−1 ≤ um

M ≤ 0, and thus in particular um
k−1 ≤ um

k ≤ 0.
Consider now um

1 . Writing the recursive expression of the value function in M ∈
6Using (3) and (4), the basic-entrenchment strategies yield[

1 − 2δ
3 (1 − x)

]
(V e

3 − V e
2 ) = x(s− b)

and thus V e
1 = xs/(1 − δ) < (b+ xs)/(1 − δ) < V e

2 < V e
3 . Similarly for the meritocratic equilibrium:

[
1 − xδ

3 − 2δ
3 (1 − x)

]
(V m

3 − V m
2 ) = xδ

3 (V m
2 − V m

1 )[
1 − δ(1 − x)

]
(V m

2 − V m
1 ) = (1 − 2x)b+ δ

(1 − x)
3 (V m

3 − V m
2 )

and thus V m
1 < V m

2 < V m
3 , and V m

2 − V m
1 > V m

3 − V m
1 .
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{k + 1, ..., N − 1} (thus writing V m
N−M−1 as a function of V m

N−M−2, V m
N−M−1 and V m

N−M),
and then substracting the expression in N −M − 1 from the expression in N −M (and
rearranging) yields for any M ∈ {k + 1, ..., N − 2}:

[
1 − δ(1 − x) M

N − 1 − δx

(
1 − M

N − 1

)]
um

N−M−1

= δ(1 − x)
(

1 − M + 1
N − 1

)
um

N−M−2 + δx
M − 1
N − 1 u

m
N−M (11)

and in particular,
[
1 − δ

x

N − 1 − δ(1 − x)N − 2
N − 1

]
um

1 = δx
N − 3
N − 1u

m
2

By the usual induction argument using (11), um
1 > 0 implies 0 < um

1 < um
2 < ... < um

k−2 <

um
k−1, which contradicts um

k−1 ≤ 0. Hence um
1 ≤ 0 and the same induction argument now

implies 0 ≥ um
1 ≥ um

2 ≥ ... ≥ um
k−2 ≥ um

k−1.
However, substracting Equation (3) in k and Equation (4) in k − 1 yields after rear-

ranging:
[
1 − δ(1 − x)

]
um

k−1 = (1 − 2x)b+ δ(1 − x)
[(

1 − k

N − 1

)
um

k +
(

1 − k + 1
N − 1

)
um

k−2

]
(12)

The contradiction then obtains by summing the above equation together with Equations
(5) and (11) over all indices i ∈ {1, ..., N − 2} (and rearranging), which gives:

(
1 − δ

x

N − 1 − δ(1 − x)
)

(um
1 + um

N−2) +
(
1 − δ

)N−3∑
i=2

um
i = (1 − 2x)b > 0

If x < 1/2, this contradicts the fact that um
i ≤ 0 for all i ∈ {1, ..., N − 2}. Therefore,

um
N−2 > 0. By induction, Equation (5) then implies that 0 < um

N−2 < ... < um
k−1.7

The proof of claim (ii) relies on the same induction arguments as the proof of (i) and
is thus omitted for the sake of brevity.

Claim (iii) again derives from arguments analogous to the ones used in the proofs of
(i) and (ii). The result is obvious with (i) for the meritocratic equilibrium. The result
for the basic-entrenchment equilibrium obtains by considering the sequence V e

i − V e
N−1−i

7If x = 1/2, the same argument yields that V m
i = V m

i+1 for all i.
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for i ∈ {k, ..., N − 2} and using (3)-(4).8

Suppose by contradiction that V e
k − V e

k−1 ≤ 0. This implies with (5)-(11) that V e
k+1 −

V e
k−2 < V e

k − V e
k−1 ≤ 0, and thus by induction that V e

N−1 − V e
1 < V e

N−2 − V e
1 < ... <

V e
k −V e

k−1 ≤ 0, which contradicts V e
N−1 ≥ V e

N−2 as shown above.9 Hence, V e
k −V e

k−1 > 0. If
V e

k+1−V e
k−2 ≤ 0, the same contradiction is reached again as then V e

N−1−V e
1 < V e

N−2−V e
1 <

... < V e
k+1 − V e

k−2 ≤ 0 (Again, one could sum over i ∈ {k + 1, ..., N − 2} the analogues
of (5)-(11) and note that the RHS is positive whenever x ≤ 1/2.) The result obtains by
induction: for any i ∈ {k, ..., N − 2}, V e

i − V e
N−1−i > 0.

C Proof of Proposition 2

Lemma 1 implies that in any pure-strategy Markov Perfect equilibrium (if any), each
group plays either the meritocratic, or the basic-entrenchment strategy. Proposition 1
then implies that in the symmetric case (bA = bB = b), both groups must play the same
trategy, i.e. any pure-strategy Markov Perfect equilibrium (if any) is symmetric, and
either meritocratic or basically entrenched. This establishes claim (i).

Let us now characterize the existence regions of these two equilibria.

C.1 A necessary and sufficient condition for existence

Lemma C.1. There exists no profitable one-shot deviation from the meritocratic strategy
(resp. the basic-entrenchment strategy) at any majority size and for any realization of the
candidates’ vertical types if and only if there exists no profitable deviation when M = k

and the minority candidate is strictly more talented.
8Namely, using that, for M ∈ {k + 1, ..., N − 3},[

1 − δ(1 − x) M

N − 1 − δx

(
1 − M − 1

N − 1

)]
(V e

M − V e
N−M−1) − (1 − 2x)b+ δ

N − 1

[
(1 − x)ue

N−M−2 + xue
N−M−1

]
= δ(1 − x)

(
1 − M

N − 1

)
(V e

M+1 − V e
N−M−2) + δx

M − 1
N − 1 (V e

M−1 − V e
N−M )

while for M = k and M = N − 2,[
1 − δ

k

N − 1

]
(V e

k − V e
k−1) = b− δ

N − 1u
e
k−2 + δ

(
1 − k

N − 1

)
(V e

k+1 − V e
k−2),[

1 − δ(1 − x)N − 2
N − 1 − δx

2
N − 1

]
(V e

N−2 − V e
1 ) = (1 − 2x)b− δx

N − 1u1 + δ
(1 − x)
N − 1 (V e

N−1 − V e
1 ) + δx

N − 3
N − 1(V e

N−3 − V e
2 )

The result follows, as we know from above that in the basic-entrenchment equilibrium, ue
i ≤ 0 for any

i ≤ k − 2.
9Another contradiction would be reached by summing as above the analogues of (5)-(11) and noting

that the RHS is positive whenever x ≤ 1/2.
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Proof. We know by Lemma 1 that a group’s best response when it has the majority (group
size i ≥ k) is either meritocracy or basic entrenchment. The two strategies coincide at all
majority sizes and all profiles of current-period candidates, except at majority size M = k

when the minority candidate is strictly more talented than the majority candidate. The
result follows.

C.2 Existence regions

Let us introduce the notation for transition probabilities for group sizes from the per-
spective of (in- or out-) group members: for any horizontal group within the organization,
we refer to the transition probability from group sizes i to j from an (in- or out-) group
member’s perspective as the probability that the group’s size goes from i to j conditional
on the given member being still a member of the organization then.10

Namely, for regime r ∈ {e,m}, let pr
i,j be the one-period transition probability from

an in-group member’s perspective, i.e., the probability that a group size moves from i ≥ 1
to j ≥ 1 from one period to another conditional on the given group member still being
in the organization in the following period (which has probability (N − 1)/N). As an
illustration, for any M > k and in the basic-entrenchment equilibrium (r = e), pr

i,j is
the probability from a majority member’s perspective that the majority size moves from
i ≥ k to j ≥ k from one period to another conditional on the majority member still being
in the organization in the following period. Consequently,



pe
M,M+1 = (1 − x)

(
1 − M + 1

N

)
N

N − 1 = (1 − x)
(

1 − M

N − 1

)

pe
M,M =

[
(1 − x)M

N
+ x

(
1 − M

N

)]
N

N − 1 = (1 − x) M

N − 1 + x

(
1 − M − 1

N − 1

)

pe
M,M−1 = x

M − 1
N

N

N − 1 = x
M − 1
N − 1

pe
M,j = 0 if |M − j| > 1.

(13)

and


pe
k,k+1 =

(
1 − k + 1

N

)
N

N − 1 = 1 − k

N − 1
pe

k,k = k

N

N

N − 1 = k

N − 1
pe

k,k−1 = 0

(14)

10We use the same convention as for the value functions, denoting by i a post-departure, pre-vote size.
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For any i, j ∈ {1, ..., N −1} and t ≥ 0, let πr
i,j(t) be the t-period transition probability

from i to j in regime r from an in-group member’s perspective, i.e. the probability that
starting from i, the group’s size is equal to j after t periods conditional on the group
member still being in the organization. Hence, for any i, j ∈ {1, ..., N − 1} and t ≥ 1,

πr
i,j(t+ 1) = pr

j−1,jπ
r
i,j−1(t) + pr

j,jπ
r
i,j(t) + pr

j+1,jπ
r
i,j+1(t),

and πr
i,j(1) = pr

i,j.
Similarly, let p̂r

i,j be the transition probability from an out-group member’s perspective,
i.e. the probability that a group’s size moves from i ≥ k to j from one period to another
conditional on the other group member still being in the organization in the following
period (which has probability (N − 1)/N). As an illustration, for any M > k and in
the basic-entrenchment equilibrium, p̂e

i,j is the transition probability from a minority
member’s perspective, and thus



p̂e
M,M+1 = (1 − x)

(
1 − M + 2

N

)
N

N − 1 = (1 − x)
(

1 − M + 1
N − 1

)

p̂e
M,M =

[
(1 − x)M + 1

N
+ x

(
1 − M + 1

N

)]
N

N − 1 = (1 − x)M + 1
N − 1 + x

(
1 − M

N − 1

)

p̂e
M,M−1 = x

M

N

N

N − 1 = x
M

N − 1
p̂e

M,j = 0 if |M − j| > 1.

(15)

and


p̂e
k,k+1 =

(
1 − k + 2

N

)
N

N − 1 = 1 − k + 1
N − 1

p̂e
k,k = k + 1

N

N

N − 1 = k + 1
N − 1

p̂e
k,k−1 = 0

(16)

For any i, j ∈ {1, ..., N − 1}, and t ≥ 0, let π̂r
i,j(t) be the t-period transition probability

from i to j in regime r from an out-group member’s perspective, i.e. the probability that
starting from i, the group’s size is equal to j after t periods conditional on the out-group
member still being in the organization. Hence, for any i, j ∈ {1, ..., N − 1} and t ≥ 1,

π̂r
i,j(t+ 1) = p̂r

j−1,jπ̂
r
i,j−1(t) + p̂r

j,jπ̂
r
i,j(t) + p̂r

j+1,jπ̂
r
i,j+1(t)
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and πr
i,j(1) = pr

i,j.
For the meritocratic equilibrium, transition probabilities are given by (13) for in-

group members, and by (15) for out-group members at all group sizes (i ∈ {1, ..., N−1}).

Note that because probabilities sum to 1,


(
N−1∑

i=k+1
π̂e

k,i(t)
)

−
(

N−1∑
i=k+1

πe
k+1,i(t)

)
= −

(
π̂e

k,k(t) − πe
k+1,k(t)

)
(

N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)
= −

( k−1∑
i=1

πm
k+1,i(t)

)
−
(

k−1∑
i=1

πm
k−1,i(t)

) (17)

C.2.1 Proof of claims (ii) and (iii)

We now turn to the statement of the existence result. Building on Lemma C.1, let us
examine the case in which the majority is tight (M = k) and the minority candidate is
more talented.

Necessary and sufficient condition for existence of the meritocratic equilibrium. Leav-
ing control considerations aside, choosing the less-deserving majority candidate when the
majority is tight involves a cost s − b. To evaluate the impact of a potential switch of
control, which occurs with conditional probability (k − 1)/(N − 1), note that in a mer-
itocratic equilibrium, the present discounted expected quality of future appointees does
not depend on the allocation of control. The only impact of the change in control is
thus linked to homophily benefits when the two candidates equally talented (which has
probability 1−2x), as control allows one to select the in-group candidate. So, a necessary
condition of existence of a meritocratic equilibrium is:

s− b ≥ δ
k − 1
N − 1(1 − 2x)b

+∞∑
t=0

δt

[(
N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)]
,

and the meritocratic equilibrium exists only if

s

b
≥ ρm ≡ 1 + δ

k − 1
N − 1(1 − 2x)

+∞∑
t=0

δt

[(
N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)]

Lemma C.1 implies that this condition is in fact also sufficient: as intuitive, deviations
from meritocracy are less appealing further away from a tight majority size, i.e. from
immediate control considerations.
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Necessary and sufficient condition for existence of the basic-entrenchment equilibrium.
Choosing the less talented majority candidate yields a direct payoff loss s − b. If the
majority has size k, then with probability (k − 1)/(N − 1), the surrendering of control
translates into a permanent loss of homophily benefits whenever the two candidates are
equally talented, which has probability 1 − 2x. This cost is equal to

δ

1 − δ
(1 − 2x)b

Moreover, because the new majority will itself be basically entrenched, i.e. always voting
for its own candidate whenever the majority is tight, the surrendering of control entails an
additional loss of homophily benefit proportional to 2xb whenever the majority is tight,
along with the difference in homophily benefits associated with meritocratic decisions,
i.e. choosing a talented minority candidate instead of an untalented majority candidate,
at any majority size M ≥ k + 1. The latter would seem unwarranted as the two groups
then agree on the decision to pick the more talented candidate; its existence comes from
the fact that transition probabilities depend on one’s perspective. Put together, these
two terms add up to

δ
k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t) − δ

k − 1
N − 1xb

+∞∑
t=0

δt

[(
N−1∑

i=k+1
π̂e

k,i(t)
)

−
(

N−1∑
i=k+1

πe
k+1,i(t)

)]

Another way to interpret the homophily payoff terms consists in noticing that the ex-
pected per-period payoff of a majority (resp. minority) member is equal to (1−x)b (resp.
xb) whenever the majority is not tight (M ≥ k+ 1), while it is equal to b (resp. 0) when
majority is tight (M = k).

Finally, because the new majority is itself basically entrenched, and since the shift in
control implies that perspectives change, the surrendering of control yields a differential
quality payoff equal to

δ
k − 1
N − 1(x+ x)s

+∞∑
t=0

δt

[(
N−1∑

i=k+1
π̂e

k,i(t)
)

−
(

N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt

(
π̂e

k,k(t) − πe
k+1,k(t)

)

So overall a necessary condition for the existence of the basic-entrenchment equilibrium
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is

b− s ≥ δ
k − 1
N − 1(x+ x)s

+∞∑
t=0

δt

[(
N−1∑

i=k+1
π̂e

k,i(t)
)

−
(

N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt

(
π̂e

k,k(t) − πe
k+1,k(t)

)
− k − 1
N − 1

δ

1 − δ
(1 − 2x)b

− δ
k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t) + δ

k − 1
N − 1xb

+∞∑
t=0

δt

[(
N−1∑

i=k+1
π̂e

k,i(t)
)

−
(

N−1∑
i=k+1

πe
k+1,i(t)

)]

Let Inequality (18) be the inequality:

1 + δ
k − 1
N − 1x

+∞∑
t=0

δt

(
πe

k+1,k(t) − π̂e
k,k(t)

)
> 0. (18)

Define ρe as

ρe ≡



1 + k − 1
N − 1

δ

1 − δ
(1 − 2x) + δ

k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe

k+1,k(t) + π̂e
k,k(t)

)

1 + δ
k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe

k+1,k(t) − π̂e
k,k(t)

) if (18) holds,

+∞ otherwise.

Hence, the basic-entrenchment equilibrium exists only if s/b ≤ ρe. As the series term
in (18) is negative for all t (see Lemma C.2 below), the basic-entrenchment equilibrium
might exist for all values of s and b for δ sufficiently close to 1, and thus we set ρe = +∞
if (18) fails. Nonetheless, we show that for a positive rate of time preference (which we
assumed) – i.e. δ < (N − 1)/N –, the basic-entrenchment equilibrium exists only on a
finite interval: ρe < +∞ (see Section C.2.3 for the proof of this result).

Lemma C.1 yields that this necessary condition is also sufficient. Hence, the
basic-entrenchment (resp. meritocratic) equilibrium exists if and only if s/b ≤ ρe (resp.
s/b ≥ ρm).

Lastly, we show that the cutoffs ρe and ρm satisfy the following inequalities:11

1 ≤ 1 + δ
k − 1
N − 1(1 − 2x) ≤ ρm ≤ 1 + δ

1 − δ

k − 1
N − 1(1 − 2x) < ρe < +∞ (19)

The upper and lower bounds on ρm may be decomposed as follows: (1 − 2x) is the prob-
ability of a homophily benefit from control, (k− 1)/(N − 1) the (conditional) probability

11The proof that ρe < +∞ is delayed to Section C.2.3.
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of losing the majority when its end-of-period size is k, while δ (resp. δ/(1 − δ)) are the
time-discounted weights corresponding to a transient (resp. permanent) loss of control.12

The bounds on ρe and ρm in Inequality (19) derive from the following lemma.

Lemma C.2. For all t ≥ 0,

(i) πe
k+1,k(t) ≤ π̂e

k,k(t)

(ii)
∑
i≥k

πm
k+1,i(t) ≥

∑
i≥k

πm
k−1,i(t)

Proof. We use a result relying on the properties of monotone Markov chains.13

(i) Define the process M(t) (resp. M̂(t)) as the probability distribution over majority
sizes {k, ..., N − 1} from a majority (resp. minority) member’s perspective. Hence, the
i-th component of M(t) is the probability (from the perspective of a majority member)
that the majority be of size k − 1 + i at period t. In particular, if at time 0 the majority
is known to have size k + 1, then M(0) = (0, 1, 0, ..., 0), and at any later time t, M(t) =(
πe

k+1,k(t), ..., πe
k+1,N−1(t)

)
. Similarly, if at time 0 the majority is known to have size k,

then M̂(0) = (1, 0, , ..., 0), and at any later time t, M̂(t) =
(
π̂e

k,k(t), ..., π̂e
k,N−1(t)

)
.

Let P (resp. P̂ ) be the stochastic matrix associated with the process M(t) (resp.
M̂(t)). As a consequence, for any i, j ∈ {1, ..., k},

Pij = pe
k+i−1,k+j−1, and P̂ij = p̂e

k+i−1,k+j−1

We first note that for any i > i′ and any j∗ ∈ {1, ..., k},
∑
j≥j∗

Pij ≥
∑
j≥j∗

Pi′j, i.e. Pi·

stochastically dominates Pi′· whenever i > i′. Hence, P is stochastically monotone, and
by the same argument, so is P̂ .

We then note that P and P̂ are stochastically comparable, with Pi· stochastically
dominating P̂i· for any i ∈ {1, ..., k}. Furthermore, the process M(t) starts from the
initial state M(0) = (0, 1, 0, ...) which stochastically dominates the initial state of the
process M̂(t), that is M̂(0) = (1, 0, , 0, ...).

Hence, a standard argument implies that for any t > 0, the distribution M(t) stochas-
tically dominates the distribution M̂(t) (see for instance Theorem 3.31 in Kijima 1997).14

12Note that ρm reaches its upper bound as x goes to 0. In the limit, it is equal to 1+ δ

1 − δ

k − 1
N − 1 , which

is intuitive: the majority weights the current-period payoff s− b against the constant homophily loss in
future periods due to the permanent loss of control (times its probability of occurrence (k− 1)/(N − 1)).

13See, e.g., Kijima, M. (1997). "Monotone Markov Chains". In: Markov Processes for Stochastic
Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3132-0_3.

14A sketch of the proof is as follows. Proceed by induction on t. The result for t = 0 holds as the
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In particular, we have that for any t > 0,

N−1∑
i=k+1

πe
k+1,i(t) ≥

N−1∑
i=k+1

π̂e
k,i(t),

which is equivalent to: πe
k+1,k(t) ≤ π̂e

k,k(t).

(ii) The second inequality can be shown with the same technique as the one used in the
proof of claim (i), by considering the process of one’s successive in-group sizes in the
meritocratic equilibrium, either starting from the initial state k + 1 or k − 1. Indeed,
the same conditions are satisfied, as (a) both processes (of probability distribution over
one’s successive in-group sizes) share the same transition matrix15 which is stochastically
monotone, and (b) the initial state with mass 1 in k+1 stochastically dominates the initial
state with mass 1 in k − 1. Hence, the stochastic-comparison argument applies, yielding
that the process of one’s in-group size starting from k+1 stochastically dominates at any
time t ≥ 0 the process starting from k − 1, and thus in particular,

∑
i≥k

πm
k+1,i(t) ≥

∑
i≥k

πm
k−1,i(t).

C.2.2 Proof of claim (iv)

The result derives from the explicit expressions of the existence thresholds together
with Lemma C.2. Indeed, by Lemma C.2, for all t ≥ 0,

πe
k+1,k(t) − π̂e

k,k(t) ≤ 0, and
(∑

i≥k

πm
k+1,i(t)

)
−
(∑

i≥k

πm
k−1,i(t)

)
≥ 0

Using term-by-term differentiation of the series yields the result: ∂ρm/∂δ0 ≥ 0, ∂ρe/∂δ0 ≥
0 for all δ0 ∈ [0, 1). Moreover, using term-by-term differentiation of the series for ρm and

initial state M(0) = (0, 1, 0, ...) stochastically dominates the initial state M̂(0) = (1, 0, , 0, ...). Sup-
pose that M(t) stochastically dominates M̂(t). Then, since P stochastically dominates P̂ , we have that
M̂(t)P stochastically dominates M̂(t)P̂ . Since P is stochastically monotone, M(t)P stochastically dom-
inates M̂(t)P . Thus, by transitivity, M(t)P stochastically dominates M̂(t)P̂ . In other words, M(t+ 1)
stochastically dominates M̂(t+ 1), which concludes the proof.

15Namely, the matrix Pm with components Pij = pm
i,j for any i, j ∈ {1, ..., N − 1}.
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explicit computations for ρe yields

∂ρm

∂δ0

∣∣∣∣∣
δ0=0

= k − 1
N

(1 − 2x) and ∂ρe

∂δ0

∣∣∣∣∣
δ0=0

= k − 1
N

.

C.2.3 Basic entrenchment exists only on a finite interval (ρe < ∞)

We show in this section that ρe < ∞.16 The result immediately follows from the
explicit expression of ρe for k = 2. Hence, let k ≥ 3. Let us stress that this result
(for general k) is not obvious as strategic complementarity could a priori induce the
existence of the basic-entrenchment equilibrium even for arbitrarily large s/b. Checking
that ρe < ∞ thus requires some computations, in particular as the majority size has
different transition probabilities from the perspective of a majority member and from the
one of a minority member (due to a member’s conditioning on still being a member in
the next periods).

Let V e
i denote the value function in the basic-entrenchment equilibrium, and define

as before ue
i ≡ V e

i+1 − V e
i . Fix s > 0. For any i ∈ {1, ..., N − 2}, ue

i is continuous with
respect to b ∈ [0,+∞).

The (one-shot) deviation differential payoff from basic entrenchment to meritocracy
in M = k is equal to

s− b+ δ
k − 1
N − 1(V e

k−1 − V e
k+1) = s− b− δ

k − 1
N − 1(ue

k−1 + ue
k)

Fix b = 0. If the above payoff is strictly positive for b = 0, then by continuity, it must be
so on a neighbourhood of 0. Hence, there would exist ρ > 0 such that for any s/b > ρ,
there exists a strictly profitable deviation from basic entrenchment to meritocracy, which
would yield the result: ρe < ∞. We thus show that for b = 0:

s− δ
k − 1
N − 1(ue

k−1 + ue
k) > 0 (20)

16The proof also yields that ρe† |s†>b < ∞ (thus in particular for x† ≥ 1/2), where ρe† defined in
Proposition 11 (see Section 4.4.1).
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Using (3)-(4) and (5)-(11), the above inequality can be written as

δx
k − 1
N − 1

1 − δx− δ(1 − x)
[
k + 1
N − 1 + k − 2

N − 1ak+1

] (21)

×

1 −
δx

k

N − 1

1 − δ(1 − x)
[

k

N − 1 + k − 2
N − 1bk+1

] −
δx

k − 2
N − 1

1 − δ(1 − x)
[
k + 1
N − 1 + k − 3

N − 1bk+2

]
 < 1

where the vectors (ak+l)k−2
l=1 , (bk+l)k−2

l=1 are defined recursively by



ak+l =
δx

k + l

N − 1

1 − δ(1 − x)
[
k + l + 1
N − 1 + k − l − 2

N − 1 ak+l+1

]
− δx

k − l − 1
N − 1

aN−2 =
δx
N − 2
N − 1

1 − δ(1 − x) − δ
x

N − 1

and


bk+l =
δx
k + l − 1
N − 1

1 − δ(1 − x)
[
k + l

N − 1 + k − l − 2
N − 1 bk+l+1

]
− δx

k − l − 1
N − 1

bN−2 =
δx
N − 3
N − 1

1 − δ(1 − x)N − 2
N − 1 − δ

x

N − 1

Indeed, computations using (3)-(4) and (5)-(11) for the basic entrenchment equilibrium,
give that:



[
1 − δ(1 − x) k + 1

N − 1 − δx

](
V e

k+1 − V e
k−1

)
= xs+ δ(1 − x) k − 2

N − 1
(
V e

k+2 − V e
k−2

)
− δx

k

N − 1u
e
k + δx

k − 2
N − 1u

e
k−2

V e
k+2 − V e

k−2 = ak+1
(
V e

k+1 − V e
k−1

)
ue

k+1 = bk+1u
e
k

ue
k−3 = bk+2u

e
k−2
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and thus, by rearranging,17 (20) is equivalent to (21).
We thus show that for any x ∈ (0, 1) and δ ∈ [0, (N − 1)/N), inequality (21) is

satisfied.18. By construction, (ak+l)k−2
l=1 and (bk+l)k−2

l=1 are increasing with l, and for any l,
bk+l < ak+l < 1. Moreover, for any l, ak+l and bk+l are increasing with respect to x and
δ.19 Therefore, the term on the first line (resp. second line) in (21) is strictly increasing
(resp. decreasing) with respect to x and δ.

Using the inequality bk+1 < bk+2 < 1, a sufficient condition for (21) to be satisfied is

δx
k − 1
N − 1

1 − δx
N − 2
N − 1 − δ(1 − x)

[
k

N − 1 + k − 2
N − 1bk+1

] (22)

/

1 − δ(1 − x)
[

k

N − 1 + k − 2
N − 1bk+1

]1 − δx− δ(1 − x)
[
k + 1
N − 1 + k − 2

N − 1ak+1

] < 1

or equivalently,

δx
k − 1
N − 1

1 − δx
N − 2
N − 1 − δ(1 − x)

[
k

N − 1 + k − 2
N − 1bk+1

] (23)

−

1 − δ(1 − x)
[

k

N − 1 + k − 2
N − 1bk+1

]1 − δx− δ(1 − x)
[
k + 1
N − 1 + k − 2

N − 1ak+1

] < 0

The above inequalities are strictly stronger than (21) for any x ∈ (0, 1), and coincide
with (21) in x = 1.

We now show that for any x ∈ [0, 1], (i) the LHS in (23) increases with δ over
17Using in particular that (3)-(4) imply:

ue
k = xs+ δ(1 − x)

[(
1 − k + 1

N − 1

)
ue

k+1 + k

N − 1u
e
k

]
ue

k−2 = −xs+ δ(1 − x)
[
k + 1
N − 1u

e
k−2 +

(
1 − k + 2

N − 1

)
ue

k−3

]
18The case x ≥ 1/2 is equivalent to the homogamic-evaluation-capability setting with x† ≥ 1/2.

Indeed, the homogamic-evaluation-capability equivalent of (20) is:

δx
k − 1
N − 1

1 − δx† − δ(1 − x†)
[
k + 1
N − 1 + k − 2

N − 1a
†
k+1

]

×

(
1 −

δx† k

N − 1

1 − δ(1 − x†)
[

k

N − 1 + k − 2
N − 1b

†
k+1

] −
δx† k − 2

N − 1

1 − δ(1 − x†)
[
k + 1
N − 1 + k − 3

N − 1b
†
k+2

]) <
x

x†

with the corresponding families (a†
k+l)

k−2
l=1 , (b†

k+l)
k−2
l=1 defined as before by replacing x with x†.

19These results can be shown by downward induction starting from l = N − 2.
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[0, (N − 1)/N ], and (ii) its maximum (thus with δ = (N − 1)/N) is strictly negative.
(i) In order to alleviate the notation, let Ca and Cb be defined as

Ca ≡ k + 1
N − 1 + k − 2

N − 1ak+1, and Cb ≡ k

N − 1 + k − 2
N − 1bk+1

Since bk+1 < ak+1 < 1, we have that Cb < Ca < 1. Using a downward induction argument
on the sequences (ak+l)l and (bk+l)l yields that ∂ak+1/∂δ > ∂bk+1/∂δ.20 As a consequence,

ϕ(δ) ≡ ∂ak+1

∂δ

[
1 − δ(1 − x)Cb

]
+ ∂bk+1

∂δ

[
1 − δ(1 − x)Ca − δx

(
1 + k − 1

N − 1

)]

≥ ∂bk+1

∂δ

[
2 − δ(1 − x)(Ca + Cb) − δx

(
1 + k − 1

N − 1

)]
> 0

Denoting by φ(δ) the partial derivative of the LHS in (23) with respect to δ, we have
after rearranging:

φ(δ) = x

(
1 + k − 1

N − 1

)
+ (1 − x)(Ca + Cb)

− 2δ
x(1 − x)

(
1 + k − 1

N − 1

)
Cb + (1 − x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1


+ δ(1 − x) k − 2

N − 1

∂ak+1

∂δ

[
1 − δ(1 − x)Cb

]
+ ∂bk+1

∂δ

[
1 − δ(1 − x)Ca − δx

(
1 + k − 1

N − 1

)]
20The result follows from the observation that

∂aN−2

∂δ
=

x
N − 2
N − 1(

1 − δ(1 − x) − δ
x

N − 1

)2 >
x
N − 3
N − 1(

1 − δ(1 − x)N − 2
N − 1 − δ

x

N − 1

)2 = ∂bN−2

∂δ

and for any l ∈ {1, ..., k − 3},

∂ak+l

∂δ
=

x
k + l

N − 1 + δ2x(1 − x) k + l

N − 1
k − l − 2
N − 1

∂ak+l+1

∂δ(
1 − δ(1 − x)

[
k + l + 1
N − 1 + k − l − 2

N − 1 ak+l+1

]
− δx

k − l − 1
N − 1

)2

>
x
k + l − 1
N − 1 + δ2x(1 − x)k + l − 1

N − 1
k − l − 2
N − 1

∂bk+l+1

∂δ(
1 − δ(1 − x)

[
k + l

N − 1 + k − l − 2
N − 1 bk+l+1

]
− δx

k − l − 1
N − 1

)2 = ∂bk+l

∂δ
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Let ψ(δ) ≡ φ(δ) − δ(1 − x) k − 2
N − 1ϕ(δ). We then note that ψ(δ) ≥ 0 21, and therefore,

φ(δ) > 0 for any x ∈ [0, 1]. Consequently, the LHS in (23) is strictly increasing with
respect to δ, and thus reaches its maximum over [0, (N − 1)/N ] in δ = (N − 1)/N .

(ii) We now let δ = (N − 1)/N and show that the LHS in (23) with δ = (N − 1)/N
is strictly negative. Indeed, the latter then writes as

LHS ≡ x
k − 1
N

1 − x
N − 2
N

− (1 − x)
[
k

N
+ k − 2

N
bk+1

]
−

1 − (1 − x)
[
k

N
+ k − 2

N
bk+1

]1 − x
N − 1
N

− (1 − x)
[
k + 1
N

+ k − 2
N

ak+1

]
= x

k − 1
N

 1
N

+ (1 − x)k − 2
N

(ak+1 − bk+1)


−
(
k + 1
N

− 1 − x

N
− (1 − x)k − 2

N
bk+1

)1 − x
N − 1
N

− (1 − x)
[
k + 1
N

+ k − 2
N

ak+1

]
where bk+1 and ak+1 are evaluated in δ = (N − 1)/N . Using that bk+1 < 1, we get after
rearranging that

LHS ≤ x
k − 1
N

 1
N

+ (1 − x)k − 2
N

(ak+1 − bk+1)


−

 2
N

+ x
k − 1
N

1 − x
N − 1
N

− (1 − x)
[
k + 1
N

+ k − 2
N

ak+1

]
= − 2

N2 − (1 − x) 2
N

k − 2
N

[
1 − ak+1

]
− x(1 − x)k − 1

N

k − 2
N

[
1 − 2ak+1 + bk+1

]

Hence, a sufficient condition for the LHS in (23) to be strictly negative is that 1−2ak+1 +
bk+1 > 0. This actually holds,22 which concludes the proof.

21Indeed, the expressions of ϕ and φ yield after rearranging:

ψ(δ) = x

(
1 + k − 1

N − 1

)
+ (1 − x)(Ca + Cb) − 2δ

[
x(1 − x)

(
1 + k − 1

N − 1

)
Cb + (1 − x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1

]

= x

[
1 + k − 1

N − 1 − δ(1 − x)
(

1 + k − 1
N − 1

)
Cb − δx

(
N − 2
N − 1

)2
]

+ (1 − x)
[(

Ca − δxCb − δ(1 − x)CaCb

)
+
(
Cb − δx

k − 1
N − 1Cb − δ(1 − x)CaCb

)]
≥ 0

where the last inequality stems from the fact that k/(N − 1) < Cb < Ca < 1.
22The argument is as follows. One first notes that since for any l ∈ {1, ..., k − 2}, ∂ak+l/∂δ ≥

∂bk+l/∂δ > 0, the term [1 − 2ak+l + bk+l] is strictly bounded below by its value for δ = (N − 1)/N . The
rest of the argument derives from downward induction showing the result for any l with δ = (N − 1)/N .
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D Proof of Proposition 3

We first show the result for majority members. For any i ∈ {k, ..., N − 1}, let vi ≡
V m

i − V e
i . By construction, for any i ≥ k + 1, the recursive expressions of V m

i and V e
i

yield:
[
1 − δ(1 − x) i

N − 1 − δx

(
1 − i− 1

N − 1

)]
vi = δ(1 − x)

(
1 − i

N − 1

)
vi+1 + δx

i− 1
N − 1vi−1,

(24)

while for i = k,

vk = ∆ + δ

[
k

N − 1vk +
(

1 − k

N − 1

)
vk+1

]

where ∆ ≡ x(s − b) + δx
k − 1
N − 1

(
V m

k−1 − V m
k+1

)
> 0, this last inequality stemming from

s/b > ρm. Hence,

[
1 − δ

k

N − 1

]
vk = ∆ + δ

(
1 − k

N − 1

)
vk+1 (25)

Assume by contradiction that vN−1 ≤ 0. Then, Equation (24) for i = N − 1 implies that
vN−2 ≤ vN−1 ≤ 0, and thus by induction that vk ≤ vk+1 ≤ ... ≤ vN−1 ≤ 0. However,

Explicit computations yield that for δ = (N − 1)/N ,

[
1 − 2aN−2 + bN−2

]
=

(1 − x) 2
N2(

1 − (1 − x)N − 1
N

− x

N

)(
1 − (1 − x)N − 2

N
− x

N

) ≥ 0

Then, for any l ∈ {1, ..., k − 3}, the term [1 − 2ak+l + bk+l] with δ = (N − 1)/N has the same sign as(
1 − (1 − x)

[
k + l + 1

N
+ k − l − 2

N
ak+l+1

]
− x

k − l − 1
N

)(
1 − (1 − x)

[
k + l

N
+ k − l − 2

N
bk+l+1

]
− x

k − l − 1
N

)

− 2xk + l

N

(
1 − (1 − x)

[
k + l

N
+ k − l − 2

N
bk+l+1

]
− x

k − l − 1
N

)

+ x
k + l − 1

N

(
1 − (1 − x)

[
k + l + 1

N
+ k − l − 2

N
ak+l+1

]
− x

k − l − 1
N

)

= (1 − x)
[
k − l − 1

N
− k − l − 2

N
ak+l+1

][
k − l

N
− x

k − l − 2
N

− (1 − x)k − l − 2
N

bk+l+1

]
+ x(1 − x)k + l − 1

N

2
N

+ x(1 − x)k + l − 1
N

k − l − 2
N

[
1 − 2ak+l+1 + bk+l+1

]
≥ x(1 − x)k + l − 1

N

k − l − 2
N

[
1 − 2ak+l+1 + bk+l+1

]
.
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Equation (25) then yields 0 ≥ (1 − δ)vk ≥ ∆ > 0, which is a contradiction. Hence,
vN−1 > 0, and by induction using Equation (24), vk > vk+1 > ... > vN−1 > 0, which
concludes the proof.

The result for minority members follows from analogous computations, noting that
for M ≥ k + 1, meritocracy and basic entrenchment yield the same flow payoffs and
transition probabilities, while in M = k (minority size N −M − 1 = k − 1),

V m
k−1 − V e

k−1 = x(s+ b) + xδ

[
k − 2
N − 1(V m

k−1 − V m
k−2) + k

N − 1(V m
k − V m

k−1)
]

+ δ

[
k − 2
N − 1(V m

k−2 − V e
k−2) + k + 1

N − 1(V m
k−1 − V e

k−1)
]
,

where V m
k−2 ≤ V m

k−1 ≤ V m
k by Lemma 2. Hence, V m

i ≥ V e
i for any i ≤ k − 1.

Lastly, as a by-product of the proof, we have that the gap between the value functions
in the two equilibria, V m

i − V e
i , decreases as the majority size moves further away from

M = k.23

E Complements on Section 2.2.2

We first describe the ergodic distributions of majority sizes. Since, by convention,
payoffs in a given period accrue after the current-period vote and before the next-period
departure, we are interested in the end-of-period distribution of majority sizes. Let us
index the end-of-period majority size by i ∈ {k, ..., N}. Let νr

i denote the ergodic proba-
bility of majority size i at the end of a period in regime r ∈ {e,m} (see Online Appendix
E for their expressions). The next Lemma shows that basic entrenchment leads to larger
majorities, as intuitive:

Lemma E.1. (End-of-period ergodic distributions) The probability distribution
{νe

i } strictly first-order stochastically dominates {νm
i }.

Ergodic quality. By taking the fixed point of the dynamic equation for (expected)
aggregate quality in the ergodic state,24 aggregate per-period expected quality Sr, r ∈

23The result for i ≤ k − 1 can be established using analogous computations to the case i ≥ k, relying
on the recursive expressions of the minority value functions.

24The aggregate quality at the end of period t + 1 is the aggregate quality at the end of period t
minus the (expected) loss due to a member’s departure, plus the (expected) contribution of the recruited
candidate. For the meritocratic equilibrium,

Sm
t+1 = N − 1

N
Sm

t + (N − 1)[x+ x]s̃,
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{e,m} is


Sm ≡ N(N − 1)

(
x+ x

)
s̃

Se ≡ N(N − 1)
[
νe

k+1
k + 1
N

x+
(

1 − νe
k+1

k + 1
N

)(
x+ x

)]
s̃

Unsurprisingly, the ergodic quality of a meritocratic organization exceeds that of a
basically-entrenched one:

Sm − Se = N(N − 1)νe
k+1

k + 1
N

xs̃ > 0.

Ergodic homophily benefit. A basically-entrenched organization always dominates a
meritocratic one in terms of ergodic aggregate homophily benefit (Bm < Be): (a) the
function

(
i 7→ i(i−1)+(N−i)(N−i−1)

)
is strictly increasing for i ∈ {k, ..., 2k}, and (b)

the probability distribution {νe
i } strictly first-order stochastically dominates {νm

i } from
Lemma E.1.

E.1 Proof of Lemma E.1

We show successively that:

(i) νe
k = 0

(ii) for any i ≥ k + 1, we have that: ν
e
i+1
νe

i

= νm
i+1
νm

i

= 1 − x

x

N − i

i+ 1 ,

(iii) νe
k + νe

k+1 < νm
k + νm

k+1

and so, that the probability distribution {νe
i } strictly first-order stochastically dominates

{νm
i }.

Claim (i) derives from the fact that i refers to the size of the majority at the end of

where x = x + (1 − 2x)α is the probability of an in-group (or out-group) candidate being of type s.
Similarly for the basic-entrenchment equilibrium,

Se
t+1 = N − 1

N
Se

t + (N − 1)
[
νe

k+1
k + 1
N

x+
(

1 − νe
k+1

k + 1
N

)[
x+ x

]]
s̃
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the period i ∈ {k, ..., 2k}. Note that in regime r ∈ {e,m},

νr
N = (1 − x)νr

N + 1 − x

N
νr

N−1

and for k + 2 ≤ i < N, νr
i = (1 − x)N − (i− 1)

N
νr

i−1 +
[
(1 − x) i

N
+ x

N − i

N

]
νr

i + x
i+ 1
N

νr
i+1

Claim (ii) follows by backward induction starting from i = N and going down until
k+ 2 included. Note that the explicit expression of the ergodic distribution in the basic-
entrenchment equilibrium obtains with claims (i) and (ii) by writing ΣN

i=k+1ν
e
i = 1. The

explicit expression of the ergodic distribution in the meritocratic equilibrium obtains
similarly noting that (1 − x)Nνm

k = x(k + 1)νm
k+1. One has in particular that


νm

k+1

[
x

1 − x

k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

]
= 1

νe
k+1

[
1 +

k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

]
= 1

Lastly, claims (i) and (ii) together imply claim (iii).

Remark. The ergodic probability for the majority size to be equal to k at the beginning
of a period in the basic-entrenchment equilibrium writes as νe

k+1(k + 1)/N , and thus by
the above expression, decreases with k.

F Proof of Proposition 4

Let ρW be uniquely defined by

qN(N − 1)
[
1 + x

1 − x

k + 1
N

+
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

]
ρW

= 2
1 − x

[
1 +

k−1∑
i=1

(i+ 1)2
(

1 − x

x

)i i∏
j=1

k − j

k + 1 + j

]

We show that Wm ≥ W e if and only if s/b ≥ ρW . The result then obtains by showing
that ρW < 1 for all parameter values.

Let us first establish the explicit expression of ρW . By construction, we have that

Bm −Be =
N∑

i=k

(
νm

i − νe
i

)[
i(i− 1) + (N − i)(N − i− 1)

]
b̃
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Hence, computations using the explicit expressions of the ergodic distributions (see Sec-
tion E above) yield after rearranging:

 x

1 − x

k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

(Bm −Be
)

= − 2x
1 − x

k + 1
N

1 +
k−1∑
i=1

(i+ 1)2
(

1 − x

x

)i i∏
j=1

k − j

k + 1 + j

b̃
Similar computations for (Sm − Se) yield:

 x

1 − x

k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

(Sm − Se
)

= N(N − 1)xk + 1
N

 x

1 − x

k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

s̃
The expression of ρW follows. Lastly, the inequality ρW < 1 derives from the observations
that for any x ∈ [0, 1/2], N(N − 1) > 2(l + 1)2/(1 − x) for any l ≤ k − 2, and that25

N(N − 1)
1 +

(
1 − x

x

)k−1 k−1∏
j=1

k − j

k + 1 + j

 > 2
1 − x

1 + k2
(

1 − x

x

)k−1 k−1∏
j=1

k − j

k + 1 + j

.

G Proof of Proposition 5

Let us formalize equal-treatment rules. Suppose that the majority controls in each
period not only recruitment, but also the allocation of a nonrival, excludable common
good (e.g., allocating a given facility, or resource to specific groups, with the two groups
favoring distinct uses for the facility or resource). That is, suppose that, in each pe-
riod, the majority can adapt a facility to its members’ exclusive preferences: namely,
choose its location on a Hotelling segment (l ∈ [0, 1]), with the bliss points of the two

25Indeed, as the inequality N(N − 1) < 2k2/(1 − x) holds if and only if x > (k − 1)/(N − 1), we have
that for any x ∈ [0, 1/2], the difference between the LHS minus the RHS is bounded below by

N(N − 1)
[

1 +
(

1 − x

x

)k−1 k−1∏
j=1

k − j

k + 1 + j

]
− 4
[

1 + k2
(

1 − x

x

)k−1 k−1∏
j=1

k − j

k + 1 + j

]

> N(N − 1)
[

1 +
(

k

k − 1

)k−1 k−1∏
j=1

k − j

k + 1 + j

]
− 4
[

1 + k2
(

k

k − 1

)k−1 k−1∏
j=1

k − j

k + 1 + j

]
> N(N − 1) − 4 −N > 0,

where the second inequality derives from
(

k
k−1

)k−1
k−1∏
j=1

k−j
k+1+j < 1, while the third holds for any N ≥ 4.
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horizontal groups located at the extremes (resp. at 0 and 1).26 An equal-treatment rule
thus forces the facility to be located at an equal distance of both extremes (l = 1/2).
Access to the facility yields a per-period payoff ς̃ − c̃(l) to a member when the facility
is located at distance l from the member’s bliss point, where the transportation cost c̃
is strictly increasing and convex. Therefore, locating the facility at a group’s bliss point
instead of at the other group’s bliss point delivers an extra per-period payoff equal to
the cost differential, c̃(1) − c̃(0), to all majority members, which constitutes an extra
benefit from being in the majority.27 Thus, unequal treatment magnifies the incentive for
entrenchment. Conversely, mandating equal treatment of the organization’s members –
here, equal access/distance to the resource – reduces the value of the majority’s decision
rights, lowers the majority’s payoff and raises the minority’s one for a given recruitment
policy, and thus fosters meritocracy.

Lastly, the sum of members’ payoffs from accessing the facility (leaving aside quality
and homophily payoffs) when it is located at a distance l from the majority’s bliss point
is equal to Nς̃−Mc̃(l)− (N−M)c̃(1− l). Consequently, allocative efficiency may involve
locating the facility at the majority’s bliss point – e.g., for sufficiently large M when c̃ is
strictly convex.

The proof of Proposition 2 goes through (see Online Appendix C), adding the dis-
counted payoff ς − c(l), where ς ≡ ς̃/

[
1 − δ0(1 − 2/N)

]
, and c(l) ≡ c̃(l)/

[
1 − δ0(1 − 2/N)

]
with c(l) = c(0) for a majority member, and c(l) = c(1) for a minority member unless
equal treatment is enforced, in which case c(l) = c(1/2) for both majority and minor-
ity members. Hence, the existence regions of basic entrenchment and meritocracy now
depend on the transportation cost. In particular, when equal treatment is not enforced,
meritocracy exists if and only if

s ≥ b+ δ
k − 1
N − 1

[
(1 − 2x)b+ c(1) − c(0)

] +∞∑
t=0

δt

[(
N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)]
.

where the transition probabilities πm induced by the meritocratic equilibrium do not
depend on ς, c(1), c(0). By contrast, when equal treatment is enforced, meritocracy exists

26The allocation is decided at the start of the period, after the departure has occurred and prior to
the recruitment (i.e., among the N − 1 members left, so that the majority is clearly defined), and holds
for the period.

27It can in fact be interpreted as a special case of nonlinear homophily benefits (see Section 4.3).
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if and only if

s ≥ b+ δ
k − 1
N − 1(1 − 2x)b

+∞∑
t=0

δt

[(
N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)]
,

which is the same condition as in our baseline model.
As noted in the proof of Proposition 2 (see Lemma C.2), for all t ≥ 0,

(
N−1∑
i=k

πm
k+1,i(t)

)
−
(

N−1∑
i=k

πm
k−1,i(t)

)
≥ 0,

with a strict inequality for t = 0. Consequently, when equal treatment is not enforced, the
existence region of meritocracy increases as the cost differential c(1)− c(0) > 0 decreases,
and it is always strictly smaller than when equal treatment is enforced.

The results for ergodic payoffs follows from the same computations as in the proof of
Proposition 4 (see Online Appendix F).

H Proof of Proposition 6

H.1 Proof of claim (i)

Whenever a minority quota is implemented, we refer to the "existence region of (con-
strained) meritocracy" as the set of values of s/b for which there exists an equilibrium in
which recruitments are meritocratic (i.e., a talented candidate is always recruited against
a strictly less talented candidate) whenever the quota R is not binding. The result is
(almost) immediate for a quota of 1.28 We thus focus on R ≥ 2.

Consider a quota R = k− l with l ∈ {1, ..., k−2}, and denote by Ṽ the value function
from recruiting the most talented candidate (and breaking ties in favor of the majority
candidate) at all majority sizes at which the quota R is not binding (omitting the super-
script m), and let ũi ≡ Ṽi+1 − Ṽi. We will first show that the sequence (ũi)i≥k−1 is such
that ũk+l−1 < 0, and such that it satisfies at least one of the following assertions: (A1) it
decreases with i, or (A2) it is always strictly negative.29 As in the baseline case, the mono-
tonicity property (A1) would imply that the most tempting deviation from meritocracy to
basic entrenchment is when the majority has size k and the minority candidate is strictly

28As will be clear shortly, the argument is significantly shorter in this case than with R ≥ 2 since the
minority’s value function in the basic-entrenchment equilibrium writes as in the baseline model with no
affirmative action (due to the conditioning on still being a member next period).

29By contrast, in the baseline setting without affirmative action, the sequence (ui)i≥k−1 is positive for
any i and decreases with i.
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more talented than the majority candidate, while (A2) would imply that deviations from
constrained meritocracy to basic entrenchment at any size i ≥ k are non-profitable as
they yield a deviation payoff bounded above by

−(s− b) + δ

[(
1 − i

N − 1

)
ũi + i− 1

N − 1 ũi−1

]
< 0

Lastly, that ũk+l−1 is negative suggests that there may be profitable deviations from
meritocracy with ties broken in favor of the majority candidate to meritocracy with ties
broken in favor of the minority candidate when s/b is high enough (more on this below).

We first suppose by contradiction that ũk+l−1 ≥ 0. The usual induction argument
relying on (5) then yields that ũk−1 > ũk > ... > ũk+l−1 ≥ 0. Yet, summing as in the
proof of Lemma 2, the above recursive expression for ũk+l−1 with (12) and (5) over indices
k to k+ l−2, and rearranging, yields on the LHS a weighted sum of ũk−1, ..., ũk+l−1 which
is strictly positive, while on the RHS:

−xs− (1 − x)b+ (1 − 2x)b+ δ(1 − x) k − 2
N − 1 ũk−2 = −x(s+ b) + δ(1 − x) k − 2

N − 1 ũk−2,

and so ũk−2 > 0. Summing (11) at k − 2 to the above sum, and rearranging, yields on
the LHS a weighted sum of ũk−1, ..., ũk+l−1 which is strictly positive, and on the RHS:

−x(s+ b) + δ(1 − x) k − 3
N − 1 ũk−3,

Hence, ũk−3 > 0, and by repeating this argument, ũi > 0 for any i ∈ {k−l−1, ..., k+l−1}.
Yet summing the above recursive expressions of ũk−l−1 and ũk+l−1 together with (5)-(11)-
(12) for i ∈ {k − l, ..., k + l − 2}, yields after rearranging, on the LHS a weighted sum of
all ũi which is strictly positive, while on the RHS: −x(s + b) + xs − (1 − x)b = −b < 0,
which is a contradiction. Consequently, ũk+l−1 < 0.

To show that the sequence (ũi)i≥k−1 satisfies either (A1) or (A2) (or both), we proceed
by induction considering the lowest index i− such that ũi < 0 for any i ≥ i−. We first
note that if i− ≥ k, then (5) brings by induction that30

ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 < ũi−−1 < ũi−−2 < ... < ũk−1,

30The inequalities ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 can be established by induction using the
recursive expressions of the ũi from i = i− up to i = k + l − 2.
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which yields that (A1) holds. If i− ≤ k − 1, then (A2) holds.
Consequently, to show that with affirmative action, the existence region of (con-

strained) meritocracy expands towards lower values of s/b, it is sufficient to consider
deviations from meritocracy to basic entrenchment when the majority is tight and faces
an untalented majority candidate and a talented minority candidate, and to show that
the condition for non-profitability is looser for any s/b with affirmative action than in the
baseline setting (without affirmative action).

Explicit computations yield31


ũk+l−1 = −xs− (1 − x)b+ δx

[
k − l

N − 1 ũk+l−1 + k + l − 2
N − 1 ũk+l−2

]

ũk−l−1 = xs− (1 − x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

] (26)

Thus using (5) at k + l − 1 and (11) at k − l − 1, together with the fact that ui ≥ 0 for
all i in the baseline setting, one gets32



[
1 − δx

k − l

N − 1

](
ũk+l−1 − uk+l−1

)
< −xs− (1 − x)b+ δx

k + l − 2
N − 1

(
ũk+l−2 − uk+l−2

)
[
1 − δx

k − l − 1
N − 1

](
ũk−l−1 − uk−l−1

)
< xs− (1 − x)b+ δx

k + l − 2
N − 1

(
ũk−l − uk−l

)
31By definition of affirmative action with quota R, in any equilibrium

Ṽk+l = xs+ δ

[
k + l − 1
N − 1 Ṽk+l−1 + k − l

N − 1 Ṽk+l

]
Ṽk−l−1 = xs+ δ

[
k − l − 1
N − 1 Ṽk−l−1 + k + l

N − 1 Ṽk−l

]
Hence, in the meritocratic equilibrium,

ũk+l−1 = −xs− (1 − x)b+ δx

[
k − l

N − 1 ũk+l−1 + k + l − 2
N − 1 ũk+l−2

]
ũk−l−1 = xs− (1 − x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

]
32 Note that the omitted terms write for the first equation as

−δ(1 − x)
[
k + l − 1
N − 1 uk+l−1 + k − l − 1

N − 1 uk+l

]
,

which is thus proportional to (−b) (see proof of Lemma 2 for details). Similarly for the second equation.
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Therefore, using (5) at k + l − 2 and (11) at k − l, one gets



1 − δx
k − l + 1
N − 1 − δ(1 − x)k + l − 2

N − 1 − δ(1 − x) k − l

N − 1

δx
k + l − 2
N − 1

1 − δx
k − l

N − 1

(ũk+l−2 − uk+l−2
)

<
δ(1 − x) k − l

N − 1
1 − δx

k − l

N − 1

[
− xs− (1 − x)b

]
+ δx

k + l − 3
N − 1

(
ũk+l−3 − uk+l−3

)

1 − δx
k − l

N − 1 − δ(1 − x)k + l − 1
N − 1 − δ(1 − x)k − l − 1

N − 1

δx
k + l − 1
N − 1

1 − δx
k − l − 1
N − 1

(ũk−l − uk−l

)

<
δ(1 − x)k − l − 1

N − 1
1 − δx

k − l − 1
N − 1

[
xs− (1 − x)b

]
+ δx

k + l − 2
N − 1

(
ũk−l+1 − uk−l+1

)

We begin by noting that

k − l

N − 1

[
1 − δx

k − l − 1
N − 1

]
>
k − l − 1
N − 1

[
1 − δx

k − l

N − 1

]
,

and33

δxδ(1 − x)
(
k − l

N − 1

)2
k + l − 2
N − 1

[
1 − δx

k − l − 1
N − 1

]

> δxδ(1 − x)k − l + 1
N − 1

k − l − 1
N − 1

k + l − 1
N − 1

[
1 − δx

k − l

N − 1

]
− δx

N − 1 ,

33To see this, we observe that: (k− l)(k+ l−2) = (k− l+1)(k+ l−1)− (2k−1), and as a consequence,
using the above inequality,(

k − l

N − 1

)2
k + l − 2
N − 1

[
1 − δx

k − l − 1
N − 1

]
>
k − l + 1
N − 1

k − l − 1
N − 1

k + l − 1
N − 1

[
1 − δx

k − l

N − 1

]
− k − l

N − 1

[
1 − δx

k − l − 1
N − 1

]
1

N − 1 ,

The inequality thus obtains using that δ(1 − x) k − l

N − 1 < 1 − δx
k − l

N − 1 .
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Hence, we have that34

k − l + 1
N − 1

1 − δx
k − l

N − 1 − δ(1 − x)k + l − 1
N − 1 − δ(1 − x)k − l − 1

N − 1

δx
k + l − 1
N − 1

1 − δx
k − l − 1
N − 1



>
k − l

N − 1

1 − δx
k − l + 1
N − 1 − δ(1 − x)k + l − 2

N − 1 − δ(1 − x) k − l

N − 1

δx
k + l − 2
N − 1

1 − δx
k − l

N − 1



By downward (resp. upward) induction on (ũi − ui) for i ≥ k (resp. for i ≤ k − 2), we
get that

C1
(
ũk−1 − uk−1

)
< −C2xs− C3(1 − x)b < 0 (27)

where C1, C2 and C3 are strictly positive constants that depend on the parameters k, l
and x. Let us detail the induction argument. Using (5)-(11), we obtain two sequences
(aj)0≤j≤l−2 and (bj)0≤j≤l−2 such that for any j ≤ l − 2,



aj

(
ũk+j − uk+j

)

< −
[
xs+ (1 − x)b

]δ(1 − x) k − l

N − 1
1 − δx

k − l

N − 1

l−2∏
n=j+1

(
δ(1 − x)
an

k − n− 1
N − 1

)
+ δx

k + j − 1
N − 1

(
ũk+j−1 − uk+j−1

)

bj

(
ũk−j−2 − uk−j−2

)

<
[
xs− (1 − x)b

]δ(1 − x)k − l − 1
N − 1

1 − δx
k − l − 1
N − 1

l−2∏
n=j+1

(
δ(1 − x)

bn

k − n− 2
N − 1

)
+ δx

k + j

N − 1
(
ũk−j−1 − uk−j−1

)

where


aj−1 = 1 − δx
k − j

N − 1 − δ(1 − x)k + j − 1
N − 1 − δ(1 − x)k − j − 1

N − 1

δx
k + j − 1
N − 1
aj

bj−1 = 1 − δx
k − j − 1
N − 1 − δ(1 − x) k + j

N − 1 − δ(1 − x)k − j − 2
N − 1

δx
k + j

N − 1
bj

34Note that

k − l + 1
N − 1

[
1 − δ(1 − x)k + l − 1

N − 1

]
= k − l

N − 1

[
1 − δ(1 − x)k + l − 2

N − 1

]
+ 1 − δ(1 − x)

N − 1 .
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We first note that by induction35

∀j ≤ l − 1, δ(1 − x)
aj

k − j − 1
N − 1 < 1, and δ(1 − x)

bj

k − j − 2
N − 1 < 1 (28)

Hence, using (12), the coefficient C1 in (27) is given by

1 − δ(1 − x) − δ(1 − x)
a0

k − 1
N − 1δx

k − 1
N − 1 − δ(1 − x)

b0

k − 2
N − 1δx

k

N − 1 > 1 − δ > 0

Using (12) further implies that the coefficient C3 in (27) is strictly positive. We then
show by downward induction on j that for any j ≤ l − 1,

1
aj

k − j − 1
N − 1 >

1
bj

k − j − 2
N − 1 ,

which will yield that C2 > 0. The initialization (j = l − 1) derives from the observation
in footnote 35 (the case j = l− 2 has also been established above). As for the induction,
i.e. to show that aj−1(k− j − 1) < bj−1(k− j), we note that for any j ≥ 0, the induction
hypothesis implies that36

k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 >

k − j

N − 1
k + j

N − 1
1
bj

k − j − 2
N − 1 − 1

aj

k − j − 1
N − 1

1
N − 1

and thus, using (28),

δxδ(1 − x)k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 > δxδ(1 − x) k − j

N − 1
k + j

N − 1
1
bj

k − j − 2
N − 1 − δx

N − 1

Therefore, using the recursive expression of aj−1 and bj−1, we have that

aj−1(k − j − 1) < bj−1(k − j) − 1 − δ

N − 1 < bj−1(k − j),

35 The initialization with j = l − 1 stems from the observation that

δ(1 − x) k − l

N − 1 < 1 − δx
k − l

N − 1 , and δ(1 − x)k − l − 1
N − 1 < 1 − δx

k − l − 1
N − 1

Moreover,

δ(1 − x) k − l

N − 1

[
1 − δx

k − l − 1
N − 1

]
> δ(1 − x)k − l − 1

N − 1

[
1 − δx

k − l

N − 1

]
, i.e. 1

al−1

k − l

N − 1 >
1
bl−1

k − l − 1
N − 1

36Indeed, we have that (k − j − 1)(k + j − 1) = (k − j)(k + j) − (2k − 1), and

k − j

N − 1

[
1 − δ(1 − x) k + j

N − 1

]
= k − j − 1

N − 1

[
1 − δ(1 − x)k + j − 1

N − 1

]
+ 1 − δ(1 − x)

N − 1
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as was to be shown.
This in turn implies that

(
ũk − uk

)
< 0. Therefore,

s− b− δ
k − 1
N − 1(uk−1 + uk) > s− b− δ

k − 1
N − 1(ũk−1 − uk),

i.e., the non-profitability condition for a deviation from meritocracy to basic entrench-
ment is (strictly) looser with a quota R than without.

Remark: For s/b sufficiently high, meritocracy with reverse favoritism is an equilib-
rium: the majority always picks the most talented candidate and breaks ties in favor of
the minority candidate. Let b = 0 < s. We first note that in the unconstrained, mer-
itocratic equilibrium, this implies that ui = 0 for any i ∈ {1, ..., N − 2}. The above
computations then apply, switching the weights 1 − x and x (except for the flow payoffs
of ũk+l−1 and ũk−l−1 which remain respectively given by −xs and xs). Hence, ũi < 0
for any i ≥ k − 1. Consequently, the deviation differential payoff from reverse-favoritism
meritocracy to standard-favoritism meritocracy at majority size M is given by

δ

(
M − 1
N − 1 ũ

m
M−1 + N − 1 −M

N − 1 ũm
M

)
< 0,

which yields the result. By contrast, the same argument implies that meritocracy with
standard favoritism is no longer an equilibrium for s/b sufficiently high.37

Remark: Comparing the continuation value functions. The same computations as in
the proof of Proposition 3 apply (see Online Appendix D). Therefore, whenever (con-
strained) meritocracy and (constrained) basic entrenchment coexist, at any majority
size the (constrained) meritocratic equilibrium is preferred to the (constrained) basic-
entrenchment equilibrium by (current) majority members.38

37Considering b = 0 < s, and observing that in the meritocratic equilibrium, ui = 0 for any i ∈
{1, ..., N − 2} and using the above computations in order to get that ũi < 0.

38Building on analogous computations, it can be shown that the same preference also holds in several
cases for all (current) minority members. By mimicking the argument in Online Appendix D, we have
that Ṽ m

i ≥ Ṽ e
i for any i ≤ k − 1 if

s+ b+ δ

(
k

N − 1 ũ
m
k−1 + k − 2

N − 1 ũ
m
k−2

)
> 0,

This inequality holds in particular whenever δ is small.
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H.2 Proof of claim (ii)

Let N ≥ 4 and 1 ≤ l ≤ k− 1. The ergodic aggregate quality of a basically-entrenched
organization under laissez-faire and a meritocratic one under affirmative action with quota
l write respectively:


Se = N(N − 1)

[
k + 1
N

νe
k+1x+

(
1 − k + 1

N
νe

k+1

)(
x+ x

)]
s̃

Sm,AA = N(N − 1)
[
l

N
νm,AA

N−l x+
(

1 − l

N
νm,AA

N−l

)(
x+ x

)]
s̃

and thus:

Sm,AA − Se = N(N − 1)
[
k + 1
N

νe
k+1 − l

N
νm,AA

N−l

]
xs̃

Explicit computations (see Lemma E.1 and its proof in Section E) yield:


νe
k+1

1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j

 = 1

νm,AA
N−l

1 +
k−l−1∑

i=1

(
x

1 − x

)i i∏
j=1

N − l + 1 − j

l + j
+
(

x

1 − x

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1 − j

l + j

 = 1

Consequently, Sm,AA − Se has same sign as

(k + 1)
1 +

k−l−1∑
i=1

(
x

1 − x

)i i∏
j=1

N − l + 1 − j

l + j
+
(

x

1 − x

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1 − j

l + j


− l

1 +
k−1∑
i=1

(
1 − x

x

)i i∏
j=1

k − j

k + 1 + j


We then note that the above expression is strictly negative for x in a neighbourhood of
0, and strictly positive for x in a neighbourhood of 1. Moreover, since x/(1 − x) (resp.
(1 − x)/x) strictly increases (resp. decreases) with x ∈ (0, 1/2), there exists a unique
xAA(l) ∈ (0, 1/2] such that for any x < xAA(l) (resp. x > xAA(l)), the above expression
is strictly negative (resp. positive).
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Lastly, we note that by construction, xAA(l) is such that

(k + 1)
1 +

k−l−1∑
i=1

(
xAA(l)

1 − xAA(l)

)i i∏
j=1

N − l + 1 − j

l + j
+
(

xAA(l)
1 − xAA(l)

)k−l
k + 1
N

k−l−1∏
j=1

N − l + 1 − j

l + j


= l

1 +
k−1∑
i=1

(
1 − xAA(l)
xAA(l)

)i i∏
j=1

k − j

k + 1 + j


The LHS strictly decreases with l for any given x fixed, and strictly increases with x for
any fixed l. By contrast, the RHS strictly increases with l for any fixed x, and strictly
decreases with x for any fixed l. Hence, xAA(l) strictly increases with l.

I Proof of Proposition 7

Proof of claim (i). With blind hiring, recruiting the candidate with the highest talent
signal z is a dominant strategy, strictly so when there is a unique such candidate. The
welfare analysis depends on the precision of the talent signal (z).

If the signal z perfectly reveals a candidate’s talent, blind hiring thus leads to the
(or "a") most talented candidate being recruited in each period, breaking ties randomly
between equally talented candidates. Blind hiring then achieves the same ergodic quality
(S) as meritocracy (strictly higher than basic entrenchment), but a lower ergodic aggre-
gate homophily (B) than both meritocracy and basic entrenchment.

If the signal z does not perfectly reveal a candidate’s talent, blind hiring leads to
another candidate than the most talented one(s) being recruited with strictly positive
probability. The less precise the signal, the higher this probability, and thus the larger
the quality loss. When the signal is pure noise and thus uninformative about the candi-
dates’ talent, blind hiring leads to the (or "a") most talented candidate being recruited
with probability at most (1 − x).39 By contrast, under basic entrenchment, the most
talented candidate is selected with probability 1 at any majority size M ≥ k + 1, and
with probability (1 − x) at M = k.

Proof of claim (ii). Suppose s = b. We show that for any Vk−1 in the feasible range,
the full-entrenchment strategy is a strictly dominant strategy for the majority, within the

39This probability is strictly lower than (1−x) if and only if the probability that the two candidates of
each horizontal group are equally talented is strictly lower than 1. Indeed, the majority then randomly
recruits one candidate among the four available (with uniform distribution), and the probability that a
given candidate among the four is a most talented candidate is bounded above by (1 − x), strictly so
unless the two candidates of each type always have the same talent.
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set of level-l super-entrenchment strategies, where l ≥ 0. Specifically, in the case of semi-
blind hiring, we define level-l super-entrenchment strategies as in Section 2.1.1 whenever
the majority faces exactly one candidate from each horizontal group, and extend these
strategies to the events in which the majority faces either two majority candidates, or
two minority candidates, by assuming that in any such event, the majority picks a most
talented candidate among the two.40 Let us first observe that because the probability
that at the first round, the two minority candidates have strictly higher signals z than
the two majority candidates is strictly positive, the transition probability from any two
majority size M ≥ k to M − 1 is strictly positive regardless of the majority’s strategy.

When s = b, the full-entrenchment strategy yields the highest feasible flow payoff at
any majority size M ≥ k. Hence, for any strategy by the other group, Vk−1 ≤ V fe

k (Vk−1),
where V fe

M(Vk−1) is the majority’s continuation value at size M given the full-entrenchment
strategy and Vk−1.

Moreover, suppose by contradiction that there exists Vk−1 in the feasible range such
that Vk−1 = V fe

k (Vk−1). Then, starting from group size k − 1, a group must receive the
maximum flow payoff at the current and at all future periods. However, as x < 1/2,
the probability that the majority faces in the second round a majority candidate and a
minority candidate who are equally talented is strictly positive, and the majority then
chooses the majority candidate, which yields a strictly lower flow payoff to the (current-
period) minority members than to the (current-period) majority members. Therefore, for
any Vk−1 in the feasible range, Vk−1 < V fe

k (Vk−1).
Lastly, for any majority size M ≥ k, the full-entrenchment strategy is the unique

strategy to minimize among all level-l entrenchment strategies the probability that start-
ing from M , group size k − 1 is reached.

Therefore, for s/b = 1, full entrenchment is a strictly dominant strategy for the
majority. By continuity, it remains a strictly dominant strategy for any s/b > 1 in a
neighborhood of 1, which yields the result.

J Proof of Proposition 8

We first show that, as claimed in the text, it is an equilibrium for the principal not
to intervene when it is uninformed.

Let us first argue that given the members’ basic-entrenchment strategy, there is no
40In any such event, choosing a most talented candidate is a dominant strategy, strictly so when one

candidate is strictly more talented than the other.
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current-period benefit for the principal to intervene at any majority size. Indeed, there
is no current-period benefit for the principal to intervene whenever the majority is not
tight (M ≥ k + 1) – or whenever it is tight and meritocratic – as then the majority’s
choice maximizes the organization’s quality and, by resolving ties in favor of the majority
candidate, it also maximizes the homophily payoff conditional on maximizing the orga-
nization’s quality. Hence, for s > b and q ≥ 1, the majority’s choice is optimal from the
principal’s point of view.41

Similarly, there is no current-period benefit for the principal to intervene when the
majority is tight (M = k). Indeed, since a tight entrenched majority always votes for
its own candidate, its vote carries no information on the candidates’ respective talents.
Hence, the principal picks the (or "a" if there is a tie) most talented candidate with proba-
bility 1−2x+(1/2)(2x) = 1−x, which is the same probability of the basically-entrenched
majority choosing the most talented candidate. However, when the majority is tight, it
takes the homophily-maximizing decision with probability 1, while the principal can only
do so with probability 1/2 as it does not observe horizontal types.

Let us now consider the distribution of future majority sizes, to show that the prin-
cipal has no future-periods benefits from an intervention in the current period. At
any majority size M ≥ k, by picking the minority candidate instead of the major-
ity one, the principal sets the organization on a path on which the distribution of fu-
ture majority sizes is stochastically dominated at any future time by the one on the
no-intervention/original path (using the same argument as in the proof of Proposi-
tion 2, see the proof of Lemma C.2 in Online Appendix C.2.1). Hence, at any fu-
ture time, the organization is more likely to be in the tight-majority state (M = k)
following the principal’s appointment of the minority candidate. Yet, the (expected)
current-period welfare-increment (for incumbent members from the current-period re-
cruit) is minimal at state M = k, equal to xs(N − 1) + bk, while it is equal to
(x + x)s(N − 1) + (1 − x)bM + xb(N − 1 − M) > xs(N − 1) + bk at any majority
size M ≥ k + 1.42

Hence, an uninformed principal cannot outperform the majority’s decision.43

41Fix s > b. Since the quality payoff accrues to all members of the organization, while the homophily
benefit only accrues to the in-group members, this optimality persists for q in a lower neighbourhood of
1.

42At any majority size M ≥ k+1, the principal "mistakenly" picking an untalented majority candidate
instead of a talented minority candidate yields a lower aggregate welfare as in equilibrium, the majority
itself prefers recruiting the talented minority candidate instead of an untalented majority candidate.

43Even if the principal observed horizontal types (still without observing the vertical types), a non-
intervention equilibrium would still exist as the principal could not strictly improve on the basically-
entrenched majority’s choices. (The above argument would go through as in particular, when the
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J.1 Proof of claim (i)

Let λ > 0 be the probability that the principal learns the quality of the candidates. We
look for equilibria in which the principal intervenes whenever informed that meritocracy
is violated (and only then). We consider the organization members’ strategy and we show
that, given such an intervention policy for the principal:

(a) for s/b sufficiently close to 1, there exists a profitable deviation from basic en-
trenchment in k + 1 (the unique equilibrium when s/b is close to 1 and λ = 0)
toward super-entrenchment at level 1. The argument then extends to any level of
super-entrenchment.

(b) for s/b sufficiently close to 1, full entrenchment is an equilibrium.

(c) for any s/b sufficiently close to 1, the full-entrenchment equilibrium is the unique
symmetric MPE in pure strategies.

In the next Section, to prove claim (ii), we will show that for any s/b sufficiently close
to 1 and for any λ in an intermediate range, if the majority is (basically, super- or fully)
entrenched, it is optimal for the principal to intervene whenever it is informed that the
current-period recruitment violates meritocracy.

(a). For i ≥ k, let Vi be the majority value function in the basic-entrenchment
equilibrium when the principal is informed with probability λ and intervenes whenever
informed that meritocracy is violated. Consider a deviation at M = k + 1 from basic-
entrenchment to level-1 super-entrenchment. The (one-shot) differential payoff from the
deviation at M = k + 1 writes

∆ ≡ (1 − λ)
[
b− s+ δ

(
k + 1
N − 1Vk+1 + k − 2

N − 1Vk+2

)
− δ

(
k

N − 1Vk + k − 1
N − 1Vk+1

)]

= (1 − λ)
[
b− s+ δ

(
k − 2
N − 1uk+1 + k

N − 1uk

)]

where ui ≡ Vi+1 − Vi. The sequence (ui)1≤i≤N−2 satisfies Equation (5) for any i ≥ k + 1,

basically-entrenched majority is tight, its recruitment choice does not reveal any information about
the quality of candidates.)
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and Equation (11) for any i ≤ k − 3, while



[
1 − δ(1 − x) k

N − 1 − δxλ
k − 1
N − 1

]
uk = x(1 − λ)(s− b) + δ(1 − x) k − 2

N − 1uk+1 + δxλ
k − 1
N − 1uk−1[

1 − δ(1 − xλ)
]
uk−1 = (1 − 2xλ)b+ δ(1 − xλ)

[
k − 2
N − 1uk−2 + k − 1

N − 1uk

]
[
1 − δ(1 − x) k + 1

N − 1 − δxλ
k − 2
N − 1

]
uk−2 = −x(1 − λ)(s+ b) + δ(1 − x) k − 3

N − 1uk−3 + δxλ
k

N − 1uk−1

(29)

Summing up on all indices yields44

[
1 − δ

x

N − 1 − δ(1 − x)
]
(u1 + uN−2) +

(
1 − δ

)N−3∑
i=2

ui = (1 − 2x)b > 0 (30)

Fix b > 0. For any s ≥ b, the same argument as the one used in the proof of Lemma
2 yields uk > uk+1 > ... > uN−2 > 0.45 The differential deviation payoff is thus strictly
positive if and only if

δ

(
k − 2
N − 1uk+1 + k

N − 1uk

)
> s− b (31)

Consequently, for s = b, (31) is satisfied as it writes

δ

(
k − 2
N − 1uk+1 + k

N − 1uk

)
> 0

Lastly, since for fixed b, (ui)i is continuous with respect to s, this implies that for any s/b
sufficiently close to 1, there exists a strictly profitable (one-shot) deviation from basic-
entrenchment to level-1 super-entrenchment.

The same argument can be adapted to show that, for s/b sufficiently close to 1,
there exist profitable deviations from any level l ∈ {1, ..., k − 2} of super-entrenchment
toward super-entrenchment at a higher level l′ > l, and thus in particular toward full-
entrenchment.

(b). We now show the existence of the full-entrenchment equilibrium for s/b suffi-
44Assuming k ≥ 4. The expression for k ∈ {2, 3} writes differently on the LHS but has the same

implication.
45Put succinctly, one supposes by contradiction that uN−2 ≤ 0 and reaches a contradiction showing

by induction, using (5) together with the above system, that this implies uk−1 ≤ 0. Then, if u1 ≤ 0,
(11) implies ui ≤ 0 for all i, which contradicts (30); whereas if u1 > 0, (11) implies uk−1 > 0 and we
reach again a contradiction. Hence, uN−2 > 0 and the same induction argument using (5) thus brings
the result.
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ciently close to 1. Let now Vi, ui correspond to the full-entrenchment strategies. The
deviation differential payoff from full-entrenchment to super-entrenchment at a lower level
(l ≤ k − 2) in M = N − 1 whenever the minority candidate is more talented writes

∆ ≡ (1 − λ)
[
s− b− δ

N − 2
N − 1uN−2

]

Explicit computation with (3)-(4) yield:

uN−2 = δ(1 − xλ)N − 2
N − 1uN−2 + δxλ

[
N − 3
N − 1uN−3 + 1

N − 1uN−2

]

and more generally for any M ≥ k,

uM = δ(1 − xλ)
[

M

N − 1uM +
(

1 − M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

while for any i ≤ k − 2,

ui = δ(1 − xλ)
[
i− 1
N − 1ui−1 +

(
1 − i

N − 1

)
ui

]
+ δxλ

[
i− 1
N − 1ui +

(
1 − i+ 1

N − 1

)
ui+1

]

with
[
1 − δ

(
1 − xλ

)]
uk−1 = (1 − 2xλ)b+ δ(1 − xλ)

[
k − 1
N − 1uk + k − 2

N − 1uk−2

]

Summing up over all indices yields

[
1 − δ

(
1 − xλ

N − 2
N − 1

)]
uN−2 +

[
1 − δ

(
1 − xλ

N − 1

)]
u1 + (1 − δ)

N−3∑
i=2

ui = (1 − 2xλ)b > 0

(32)

Fix b > 0 and let s = b. The usual argument implies that uN−2 > 0.46 Hence, the
differential deviation payoff when the majority has size N − 2 writes for s = b as

∆ = −(1 − λ)δN − 2
N − 1uN−2 < 0.

By continuity, the inequality holds for s/b in a neighbourhood of 1.
Since uk > uk+1 > ... > uN−2 > 0, the most profitable (one-shot) deviation from

46Indeed, if not, then the above equations imply by induction that uk ≤ uk+1 ≤ ... ≤ uN−2 ≤ 0 and
thus 0 ≥ u1 ≥ u2 ≥ ... ≥ uk−1, which yields to a contradiction with (32). Therefore, uN−2 > 0, and by
induction again uk > uk+1 > ... > uN−2 > 0.
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full-entrenchment is when the majority has size N − 1 and a talented minority candidate
faces an untalented majority candidate. As a consequence, the above necessary condition
is also sufficient.

Hence, full-entrenchment is an equilibrium for s/b in a neighbourhood of 1.

(c). Lastly, we show that for s/b in a neighbourhood of 1, full-entrenchment equilib-
rium is the unique (pure-strategy) symmetric MPE. To this end, we show that, for s/b
in a neighbourhood of 1, any (pure-strategy) symmetric MPE is monotonic, in the sense
that a stronger majority makes more meritocratic recruitments. Together with (a), this
establishes the uniqueness of full entrenchment.

Let s = b > 0. We show that in any symmetric MPE, the differential value func-
tion (uM)M≥k−1 is strictly positive and strictly decreases with M . Since the difference
between the payoffs from a meritocratic, resp. an entrenched recruitment at majority
size M whenever the minority candidate is strictly more talented than the majority one
writes as

s− b− δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
,

the monotonicity of (uM)M implies the monotonicity of the equilibrium. Moreover, if the
strict monotonicity of (uM)M obtains for s = b, then by continuity, it persists for s/b in a
neighbourhood of 1, which implies that, for s/b in such a neighbourhood, any symmetric
MPE is monotonic.

For s = b > 0, we have that


uk−1 = (1 − 2xλ)b+ δ(1 − xλ)
[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk

]
in an equilibrium in which the

majority is entrenched in k,

uk−1 = (1 − 2x)b+ δ(1 − x)
[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk

]
in an equilibrium in which it

is meritocratic in k.
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and for any majority size M ≤ N − 2,


uM = δ(1 − xλ)
[

M

N − 1uM +
(

1 − M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

in an equilibrium in which the majority is entrenched in M,M + 1,

uM = δ(1 − x)
[

M

N − 1uM +
(

1 − M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

in an equilibrium in which the majority is meritocratic in M,M + 1,

uM = δ(1 − x)
[

M

N − 1uM +
(

1 − M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

in an equilibrium in which the majority is entrenched (resp. meritocratic) in M(resp. M + 1),

uM = δ(1 − xλ)
[

M

N − 1uM +
(

1 − M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM+1

]

in an equilibrium in which the majority is meritocratic (resp. entrenched) in M(resp. M + 1),

together with similar expressions for ui when i ≤ k − 2.
Let us first show that ui > 0 for all i ∈ {k − 1, ..., N − 2}. We proceed by induction.

Suppose by contradiction that uN−2 < 0. Then, the above recursive expressions imply
that uk−1 < uk < ... < uN−2 < 0.47 Therefore, the majority is meritocratic at all
majority sizes M ≥ k.48 But then, Lemma 2 implies that uk−1 > uk > ... > uN−2, a
contradiction.

Suppose now (again by contradiction) that uN−2 = 0. The above recursive
expressions then imply that uk−2 < uk−1 = uk = ... = uN−2 = 0, and thus that
V k − 2 > Vk−1 = Vk = ... = VN−1. However, this implies that at all majority sizes
M ≥ k, the majority recruits the majority candidate whenever he is at least as talented
as the minority candidate (and the majority is indifferent when he is strictly less talented
than the minority candidate): since the majority recruits its own candidate at least a
fraction 1 − x of the time, and the minority candidate at most a fraction x < 1 − x of

47Indeed, the above recursive expressions imply that there exists (a, b) ∈ {(1−xλ, xλ), (1−x, x), (1−
x, xλ), (1 − xλ, x)} such that

uN−3 =
1 − δN−2

N−1a− δ
N−1b

δN−3
N−1b

uN−2.

Hence, uN−2 < 0 implies uN−3 < uN−2 < 0. The result obtains by induction on the majority size.
48Indeed, as s = b, the differential payoff between recruiting a talented minority candidate instead of

an untalented majority candidate is equal to

−δ
[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
> 0.
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the time at all majority sizes, VM must be strictly higher than Vk−1 for all M ≥ k, a
contradiction.

Therefore, uN−2 > 0, and the above system then implies that ui > 0 for all
i ∈ {k − 1, ..., N − 2} as was to be shown.

Let us now show that uk − 1 > uk > ... > uN−2. Using that uN2 > 0 and uN−3 > 0,
the above system evaluated at M = N − 2 implies that, for any (pure) strategies,
uN−2 < uN−3. Proceeding recursively for M ≥ k, 0 < uM+1 < uM and uM−1 > 0 implies
by the same argument that uM < uM−1. Therefore, the sequence (uM)M≥k strictly
decreases with M .

Remark: Non-ergodic welfare comparison. Proposition 3 yields that, whenever meri-
tocracy co-exists with basic entrenchment, the former is preferred by all members of the
organization at any majority size. The result goes through in this setting.

Namely, we show that for any l ≥ 2, whenever super-entrenchment at level l − 1 and
super-entrenchment at level l co-exist in equilibrium, the former is preferred by all (cur-
rent) members of the organization at any majority size. The result for majority members
relies on the same computations as in the proof of Proposition 3 (see Online Appendix
D), using that since super-entrenchment at level l − 1 is an equilibrium49,

s− b− δ

(
k + l − 1
N − 1 ue,l−1

k+l−1 + k − l − 1
N − 1 ue,l−1

k+l

)
≥ 0

where ue,l−1
i = V e,l−1

i+1 −V e,l−1
i with V e,l−1

i the value function of being in a group of size i in
the super-entrenchment at level l − 1 equilibrium. The result for minority members also
relies on analogous computations to the ones in the proof of Proposition 3 (see Online
Appendix D): using the recursive expressions of the value function for minority members
in a similar fashion, we have that V e,l−1

i ≥ V e,l
i for any i ≤ k − 1 if

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ 0 (33)

We thus show that this inequality holds, using the recursive expressions of (ue,l−1
i )i. We

distinguish two cases.
(1) if ue,l−1

k−l ≥ 0, then 0 ≥ ue,l−1
1 ≥ ue,l−1

2 ≥ ... ≥ ue,l−1
k−l .50 Hence, inequality (33) holds.

49Indeed, this implies that in equilibrium, meritocratic recruitments are the majority’s best response
whenever it has size k + l, hence the inequality.

50This can be shown by the usual argument, supposing by contradiction that ue,l−1
1 < 0, which implies

by the recursive expressions of (ue,l−1
i )i, that 0 > ue,l−1

1 > ... > ue,l−1
k−l , hence a contradiction. Therefore,
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(2) if ue,l−1
k−l ≤ 0, then ue,l−1

k−l ≤ ue,l−1
k−l−1 and ue,l−1

k−l ≤ ue,l−1
k−l+1. Indeed,

• consider the first inequality and suppose by contradiction that ue,l−1
k−l−1 < ue,l−1

k−l . By
the usual (contradiction and induction) argument, this implies that u1 < ... <

ue,l−1
k−l ≤ 0. However, by summing the recursive expressions of ue,l−1

i for i = 1, ...k−
l − 1, and rearranging, we get

[
1 − δ

x

N − 1 − δ(1 − x)
]
ue,l−1

1 + (1 − δ)
k−l−2∑

i=2
ue,l−1

i +
[
1 − δ

(
1 − (1 − x)k − l − 1

N − 1

)]
ue,l−1

k−l−1

= δx
k + l − 1
N − 1 ue,l−1

k−l > δx
k + l − 1
N − 1 ue,l−1

k−l−1

Therefore, as ue,l−1
1 < ue,l−1

k−l−1, rearranging implies that

[
2 − δ

(
1 + k + l

N − 1

)]
ue,l−1

k−l−1 + (1 − δ)
k−l−2∑

i=2
ue,l−1

i > 0,

which is a contradiction, as ue,l−1
1 < ... < ue,l−1

k−l ≤ 0. Consequently, ue,l−1
k−l ≤ ue,l−1

k−l−1.

• consider the second inequality and suppose by contradiction that ue,l−1
k−l > ue,l−1

k−l+1.
Using the recursive expression of ue,l−1

k−l+1, this implies that ue,l−1
k−l+2 < ue,l−1

k−l+1 < 0, and
by induction that 0 > ue,l−1

k−1 . However, we know from the above computations that
ue,l−1

i > 0 for any i ≥ k − 1, and thus in particular, ue,l−1
k−1 > 0, which contradicts

the above implication. Hence, ue,l−1
k−l ≤ ue,l−1

k−l+1.

Therefore, if ue,l−1
k−l ≤ 0, then ue,l−1

k−l ≤ ue,l−1
k−l−1 and ue,l−1

k−l ≤ ue,l−1
k−l+1, and thus

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ s+ b+ δ

N − 2
N − 1u

e,l−1
k−l ,

and using the recursive expression of ue,l−1
k−l ,51

[
1 − δ

[
1 − x(1 − λ)

]N − 2
N − 1

]
ue,l−1

k−l ≥ −(1 − λ)x(s− b).

ue,l−1
1 ≥ 0, and the recursive expressions of (ue,l−1

i )i now imply that 0 ≥ ue,l−1
1 ≥ ue,l−1

2 ≥ ... ≥ ue,l−1
k−l .

51Namely,

ue,l−1
k−l = − (1 − λ)x(s− b)

+ δ(1 − x)
[
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l + 1
N − 1 ue,l−1

k−l

]
+ δxλ

[
k − l

N − 1u
e,l−1
k−l + k + l − 2

N − 1 ue,l−1
k−l+1

]
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As a consequence,

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ s+ b− δx(1 − λ)(N − 2)

N − 1 − δ
[
1 − x(1 − λ)

]
(N − 2)

(s− b)

≥ s+ b− k − 1
k + 1(s− b) > 0

Hence, inequality (33) holds in both cases (ue,l−1
k−l ≶ 0), as was to be shown.

J.2 Proof of claim (ii)

Suppose the principal maximizes quality. With the above arguments, for any λ > 0,
the principal’s strategy "overruling whenever informed that meritocracy is violated" and
the majority’s full entrenchment is an equilibrium for s/b close to 1. But it may not be
unique – e.g., if λ is close to 0, no overruling and basic entrenchment is an equilibrium
for s/b close to 1. We argue that for λ sufficiently close to 1, "overruling whenever
informed that meritocracy is violated" and full entrenchment is the unique equilibrium
(with our equilibrium concept).

Specifically, let us show that for any λ sufficiently close to 1, for any s/b sufficiently
close to 1, if the majority is (basically, super or fully) entrenched, it is optimal for
the principal to intervene whenever it is informed that the current-period recruitment
violates meritocracy.

Note first that the principal cannot expand the existence region of meritocracy by
its interventions as the prospect of its overruling a majority’s decision only scales down
(by a strictly positive factor) the one-shot deviation differential payoff from meritocracy
to entrenchment. Hence, under our assumption that the meritocratic equilibrium is
selected whenever it exists, the principal fails to expand the region where meritocracy
prevails.

As noted in the text, for λ = 1 (perfectly informed principal), the principal can
reproduce the equilibrium path of the meritocratic regime, which strictly dominates
in terms of quality the equilibrium path of the basic-entrenchment regime. Hence, by
continuity, keeping members’ strategies fixed, for λ sufficiently close to 1, it is optimal for
the principal to intervene whenever informed. Moreover, by the same argument as in our
initial remark about a blind principal, whenever the principal is not informed, it cannot
outperform an entrenched majority’s choice in terms of aggregate welfare. Indeed, it

49



selects the (or "a" in case of a tie) most talented candidate with the same probability as
the majority in the current period, while making a choice that is suboptimal in terms of
homophily payoffs in the current period, and its intervention induces a distribution over
future majority sizes that yields the same future quality payoffs as the non-intervention
distribution,52 but that is dominated by the latter in terms of future homophily
payoffs. Therefore, for λ close to 1, given the members’ strategy (basic, super- or full
entrenchment), it is optimal for the principal to intervene if and only if it is informed
that the current-period recruitment violates meritocracy.

Consequently, by claim (i), for s/b close to 1 (such that in particular, basic en-
trenchment is the unique equilibrium under laissez-faire) and λ close to 1, the unique
equilibrium is for the principal to intervene if and only if it is informed that meritocracy
is violated, and for the majority to be fully entrenched.

Let us now show that, for s/b close to 1 and λ in an intermediate range, the prin-
cipal achieves a higher ergodic quality when it commits not to intervene. To provide
an intuition, consider s/b close to 1 and λ close to 1 so that in the unique equilibrium,
the organization is fully-entrenched. Since the principal is only informed with probability
strictly below 1, it cannot compensate all the "un-meritocratic" recruitments made by the
fully-entrenched majority. Hence, at any majority size M ≥ k + 1, i.e. at which the ma-
jority would have made meritocratic recruitments under laissez-faire, the principal would
be better off in terms of flow welfare, if it could commit not to intervene. By contrast,
whenever the majority is tight (M = k), basic entrenchment would have prevailed under
laissez-faire, and so the principal’s intervention improves the flow welfare.

To make things precise, let us consider s/b sufficiently close to 1 and λ sufficiently
close to 1 such that the unique equilibrium is for the majority to fully entrench and for
the principal to intervene if and only if informed that the current-period recruitment
violates meritocracy. Ergodic aggregate quality is then strictly higher when the principal
commits not to intervene if and only if

N(N − 1)(1 − λ)xs > N(N − 1)νe
k+1

k + 1
N

xs, i.e. λ < 1 − νe
k+1

k + 1
N

,

which yields the result. The range of values of λ for which the result holds is non-empty
in particular whenever x is sufficiently small, as νe

k+1 goes to 0 when x goes to 0. It is also
non-empty whenever δ is sufficiently small, as it is then a strictly dominating strategy

52With full entrenchment, the expected talent of the recruit does not depend on majority size.
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for the principal to intervene whenever informed that the current recruitment violates
meritocracy (as s > b and quality benefits accrue to all organization members, while
homophily ones only to in-groups).

K Proof of Proposition 9

We successively consider the three incentive schemes mentioned in the text.

K.1 Material rewards for talent in the organization

K.1.1 Non-budget-balanced incentives

Letting T denote the ergodic expected per-period transfer and ξ its shadow cost, the
ergodic welfare function in the presence of transfers becomes: W = qS + B − ξT . (The
budget-neutral case described in the text thus corresponds to ξ = 0.)

Proposition K.1. (Rewarding quality: Costly incentives) Costly incentives raise
welfare W only if the organization is neither naturally meritocratic nor too recalcitrant
to meritocracy: For any cost of public funds ξ ≥ 0 (ξ = 0 for budget-neutral incentives),
there exists ρξ ∈ [1, ρm), strictly increasing with ξ and satisfying ρ0 = 1, such that quality
assessment exercises raise welfare W if and only if s/b ∈ [ρξ, ρ

m).

The intuition behind Proposition K.1 is that for high s/b, the organization embraces
meritocracy by itself and so spending public funds is wasteful. When instead the orga-
nization has little appetence for meritocracy (s/b small), the principal must pour large
amounts of money on the organization to be effective, and this may prove too costly. It
is thus only in the intermediate range that a boost promotes meritocracy and quality at
a reasonable cost.53

K.1.2 Proofs of Propositions 9 and K.1

Consider a basically-entrenched organization, i.e. by the equilibrium selection (by
Proposition 3, meritocracy thus prevails whenever it exists as an equilibrium), suppose
s/b < ρm. Let T/N ≡ ηy denote equal the minimal expected bonus per member needed

53The optimal transfer is equal to 0 for s/b below a certain threshold (which increases with the cost
of public funds ξ), jumps discontinuously strictly above zero at this threshold, and then decreases with
s/b above the threshold, down to zero when s/b = ρm.
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for the organization to move from basic entrenchment to meritocracy.54 For the sake
of exposition, we first assume that the principal does not value members’ homophily
benefits, and thus letting ξ be the cost of public funds,55 the principal’s objective function
writes as the ergodic welfare with per-period welfare given by W = qS − ξT .56 Note
that such an objective constitutes an upper bound on the admissible cost of a policy as
(ergodic aggregate) homophily payoffs decrease when the organization goes from basic
entrenchment to meritocracy (see Section 2.2.2). From previous computations on ergodic
welfare, the (ergodic) efficiency gain from moving from basic entrenchment to meritocracy
writes as Sm − Se = N(N − 1)νe

k+1
k + 1
N

x
s̃

1 − δ
> 0. Rewarding quality is thus optimal

for the principal if and only if

ξηyN2(x+ x) ≤ N(N − 1)νe
k+1

k + 1
N

xs̃

where N [x+x] is the average number of talented members in a meritocratic organization,
and νe

k+1 the objective ergodic probability of majority size k+1 in the basic-entrenchment
equilibrium (see Section 2.2.2). The above inequality rewrites as a condition on the
administrative cost of public funds:57

ξ ≤ (k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
= (k + 1)(N − 1)

N2 .
xνe

k+1
x+ x

.

s

b

ρm − s

b

54Namely,

s+(η, y)
b

= ρm, i.e. ηy =
(
b

s
ρm − 1

)
s̃ > 0

55The interpretation of ξ depends on the principal’s welfare objective. If it is solely concerned with
maximizing the (ergodic aggregate) quality of the organization, then ξ is the total cost of intervention,
i.e. the sum of the payment and its shadow cost. By contrast, if the principal internalizes the "material"
welfare of members, i.e. the sum of their quality payoffs and (possibly) rewards for quality (as opposed
to their non-material welfare which consists of homophily benefits), then ξ is only the shadow cost of
public funds.

56This objective may be interpreted as the limit of the main objective as qs/b and ξ/b go to +∞, with
qs/ξ constant.

57By Inequality (19), a lower bound on the RHS of the above equation is given by

(k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
≥ (k + 1)(N − 1)2

(k − 1)N2 .
x(1 − 2x)νe

k+1
x+ x

.
(1 − δ)
δ
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Note that the RHS strictly increases with s/b and goes to +∞ as s/b goes to ρm.58

The result follows. The same argument applies if the principal’s objective writes as
W = qS +B − ξT , yielding a higher threshold ρξ (as Bm < Be).

K.2 Fines for unequal treatment & reputational (symbolic) in-

centives

The two incentive schemes can be modelled in the same way. For conciseness, we focus
on reputational (symbolic) incentives. Proposition 9 obtains from the same arguments as
in the proof of Proposition 2 (see Online Appendix C). Adding a reputational cost ϑ

M
for

each majority member (present at the moment of the vote) for recruiting an untalented
majority candidate against a talented minority one, and a corresponding reputational
gain ϑ

N−1−M
for minority members.59 Our analysis goes through if the reputation gain

accrues not (only) to minority members, but (also) to individuals external to the orga-
nization (e.g., members of a meritocratic majority in another organization). [Similarly,
our analysis of fines goes through whether the proceeds redistributed to all members, to
minority members alone, or to members of other organizations.]

The proof of Proposition 2 goes through for ϑ below a threshold. In particular, mer-
itocracy then exists if and only if for all M ≥ k,60

s ≥ b− ϑ

M
+ δ

(
M − 1
N − 1 (V m

M − V m
M−1) + N − 1 −M

N − 1 (V m
M+1 − V m

M )
)
,

where V m
M is the continuation value in the meritocratic equilibrium for a majority member

at majority size M , and does not depend on ϑ.
58The monotonicity of the RHS with respect to N is non-trivial. Namely, although the first two terms

decrease with N ≥ 4, so that (k + 1)(N − 1)νe
k+1/N

2 decreases with N , the comparative statics of ρm

with respect to N are non-trivial. Nonetheless, for N large, the first two terms (k + 1)(N − 1)νe
k+1/N

2

are in O(1/N), while for δ0 < 1, ρm is in O(1). Therefore, the RHS is in O(1/N) for N large, which is
intuitive: the upper bound on the admissible cost of public funds is inversely proportional to the size of
the organization, i.e. to the number of individuals to whom the bonus must be distributed.

59The normalization captures a fixed loss of reputation, ϑ, for the majority following its decision to
discriminate, shared equally among the M majority members who took part in the vote. Similarly, to
ensure that reputations are zero-sum, the minority enjoys a (relative) reputation boost, shared equally
within the minority.

60When ϑ is sufficiently small, the necessary and sufficient condition is the inequality with M = k (as
in our baseline specification):

s ≥ b− ϑ

k
+ δ

k − 1
N − 1(1 − 2x)b

+∞∑
t=0

δt

[(N−1∑
i=k

πm
k+1,i(t)

)
−
(N−1∑

i=k

πm
k−1,i(t)

)]
.

By contrast, for larger ϑ, as the individual reputation loss, ϑ
M , decreases with the majority size, larger

majorities may be more tempted to discriminate than thinner majorities.
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Consequently, the existence region of meritocracy increases as ϑ increases, i.e., as
discrimination becomes more salient.

L "Weak link" principle: Proof of Proposition 2’

We know from Lemma 1 that in any pure-strategy MPE, any majority plays either
the meritocratic strategy or the basic-entrenchment strategy.

Suppose bB < bA < s. The existence regions of basic entrenchment and meri-
tocracy are a corollary of Proposition 2. So is the uniqueness of basic entrenchment
(resp. meritocracy) among MPEs in pure strategies whenever s < min

(
ρmbA, ρ

ebB

)
(resp. s > min

(
ρmbA, ρ

ebB

)
).

Let us consider the case ρebB < s < ρmbA.61 The basic-entrenchment strategy for
type-A agents and the meritocratic strategy for type-B agents constitute an MPE in
pure strategies as s < ρmbA (implying that type-A members best-reply to type-B mem-
bers’ meritocratic strategy with the basic-entrenchment strategy), and s > ρebB (implying
that type-B members best-reply to type-A members’ basic-entrenchment strategy with
the meritocratic strategy). Uniqueness follows from Lemma 1, and the inequality ρm < ρe

(from Proposition 2).
Lastly, if ρmbA < s < ρebB, then by Proposition 2, the meritocratic and basic-

entrenchment equilibria coexist as ρe > s/bB > s/bA > ρm. The same argument as
in the proof of Proposition 3 yields the Pareto-comparison.

Remark: Asymmetric patience. The proof for the result with asymmetric patience
(mentioned in Section 4.1) follows from analogous arguments, noting that Proposition
2.(iv) yields that ρe(δ0) and ρm(δ0) increase with δ0.

M Proof of Proposition 10

We use a fixed-point argument to prove the existence of a class of equilibria charac-
terized by a weakly decreasing decision rule (∆M)M

62. Let u be given by

u ≡ 1
1 − δ

(
E
[
(s+ b)1{ŝ− s ≤ b}

]
+ E

[
ŝ1{ŝ− s > b}

])
61The thresholds are those computed in the proof of Proposition 2 (see Online Appendix C) and do

not depend on s, nor bA, bB .
62We thus focus on equilibria such that the decision rule only depends on the majority size.
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Note that
(
E
[
(s + b)1{ŝ − s ≤ b}

]
+ E

[
ŝ1{ŝ − s > b}

])
is the highest flow payoff a

majority member can guarantee, and consequently, u represents an upper bound on the
majority’s expected utility from a recruitment (i.e. its expected utility in the absence
of control consideration). We define K as the set of sequences (uM)M∈{k−1,...,N−2} such
that (i) for any M , uM ∈

[
0, u

]
and (ii) the sequence (uM)M is weakly decreasing. By

construction, the set K is non-empty, compact and convex.
As earlier, let {Vi} denote the value functions and V ≡ (V1, ..., VN−1). For i ∈ {k −

1, ..., N − 2}, let ui ≡ Vi+1 − Vi. In the equilibria we look for, whenever the majority has
size M ∈ {k, ..., N − 1}, it favors a majority candidate with (discounted) talent s against
a minority candidate with (discounted) talent ŝ if and only if63

ŝ+ δ

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]
≤ s+ b+ δ

[
M

N − 1VM +
(

1 − M

N − 1

)
VM+1

]
,

i.e. if and only if

ŝ− s ≤ b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

We denote by s ∈ [b,+∞) the lowest real number such that P(ŝ − s ≤ s) = 1 if it
exists, and let s = +∞ otherwise. We first consider the "decision-rule" (cutoff) mapping
D : K −→

[
0,min(b+ δu, s)

]k
, u 7−→ (DM)M∈{k,...,N−1}, where

DM(u) ≡


b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
if b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
< s

s otherwise

Taking Vk−1 ≥ 0 as fixed, we consider the "value-function" mapping T defined as T :[
0,+∞

]k
×
[
b, s
]k

−→
[
0,+∞

]k
,
(
(VM)M , (∆M)M

)
7−→ (TM)M , where

TM(V,∆) ≡ E
[
(s+ b)1{ŝ− s ≤ ∆M}

]
+ δP(ŝ− s ≤ ∆M)

[
M

N − 1VM +
(

1 − M

N − 1

)
VM+1

]

+ E
[
ŝ1{ŝ− s > ∆M}

]
+ δP(ŝ− s > ∆M)

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]
63The assumption that ties are broken in favor of the majority candidate comes withouth loss of

generality when vertical types are continuously distributed within each group.

55



In order to alleviate the notation, we define the functions h and h1 as


h(X) ≡ E
[
(s+X)1{ŝ− s ≤ X}

]
+ E

[
ŝ1{ŝ− s > X}

]
h1(X) ≡ X − h(X)

Fix Vk−1 ≥ 0. Given a sequence u ≡ (uM)M∈{k−1,...,N−2} ∈ K, we define the sequence
V (u) ≡ (VM)M∈{k,...,N−1} by upward induction by letting VM ≡ uM−1 + VM−1. Lastly, we
define the mapping Υ : u 7−→ Υ(u) from K into itself by

ΥM(u) ≡ min
{
TM+1

(
V (u), D(u)

)
− TM

(
V (u), D(u)

)
, h(b)/(1 − δ)

}

for anyM ∈ {k−1, ..., N−2} (with the convention that Tk−1
(
V (u), D(u)

)
≡ Vk−1). While

bounding above Υ(u) is necessary to the argument, it does not threaten the existence of
an equilibrium: indeed, h(b) is the highest flow payoff (quality and homophily) that a
majority member can guarantee.64 Hence, we have by construction that for any u ∈ K

and any i ∈ {k − 1, ..., N − 2}, Υi(u) ≤ u. With an abuse of notation, we omit in the
following the min operator.

We now check that the mapping Υ is well-defined, i.e. that Υ(u) ∈ K for any u ∈ K.
Rearranging the above expression for TM

(
V (u), D(u)

)
yields:

TM

(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM(u)}

]
+ E

[
ŝ1{ŝ− s > DM(u)}

]
+ P(ŝ− s ≤ DM(u))

[
b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]]

+ δ

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]
64Indeed, for any joint distribution of types, the quantity

E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

decreases with X ≥ b.

56



We thus distinguish two cases.
(A) If DM(u) < s for all M ≥ k, then65

TM

(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM}

]
+ E

[
ŝ1{ŝ− s > DM}

]
+ P(ŝ− s ≤ DM)DM

+ δ

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]

= h(DM) + δ

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]
(34)

Consequently, if DM(u) < s 66, plugging the above expressions in the equality ΥM(u) =
TM+1(V,D) − TM(V,D), and using the expression of DM as a function of u, yields

ΥM(u) = h(DM+1) − h(DM) + δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

= h(DM+1) + h1(DM) − b (35)

Since u ∈ K, we have that (i) uM ≥ 0 for any M and thus by construction DM ≥ b,
and (ii) the sequence (uM)M is decreasing, and thus so is the sequence (DM)M . As a
consequence, DM ≥ DM+1 ≥ b.

Henceforth, we restrict our attention to the set G of joint distributions such that the
functions h1 and (h − h1) are strictly increasing over [b,+∞) ∩ Supp(ŝ − s) 67. This
set notably includes the set of continuous joint symmetric distributions68, as well as the
case where the majority candidate has a fixed type s ≥ 0 and the minority candidate a
type s+D where D is a (full support) random variable with a continuously differentiable

65Note that in this case the mapping T can be defined as T :
[
0, Vk−1 + ku

]k ×
[
b, b + u

]k −→[
0, Vk−1 + ku

]k.
66By monotonicity (as u ∈ K), DM (u) < s implies that DM ′ < s for any M ′ > M .
67Note that (h− h1) being strictly increasing implies that h is strictly increasing, as h(X) − h1(X) =

2[h(X) −X/2].
68Indeed, letting F be the marginal c.d.f. of s and ŝ, then

∀∆ > 0, h(∆) =
ˆ s

0
(s+ ∆)F (s+ ∆)dF (s) +

ˆ s

∆
ŝF (ŝ− ∆)dF (ŝ),

and thus, for any ∆ ∈ (0, s),

h′(∆) =
ˆ s

0
F (s+ ∆)dF (s) +

ˆ s−∆

0
(s+ ∆)f(s+ ∆)dF (s) −

ˆ s

∆
ŝf(ŝ− ∆)dF (ŝ) =

ˆ s

0
F (s+ ∆)dF (s),

and thus h′(∆) ∈ (1/2, 1) since
ˆ s

0
F (s)dF (s) = 1/2.
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distribution over (−s, s) symmetric around 0.69

As a consequence, for any u ∈ K, ΥM(u) ≥ 0 and the sequence (ΥM(u))M≥k is
decreasing as it inherits the monotonicity of the sequence (DM)M . Moreover, for any
M ≥ k,

ΥM(u) ≤ h(DM) + h1(DM) − b = δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
< δ

N − 2
N − 1uk−1 ≤ u

It thus remains to check that Υk−1(u) ≥ Υk(u). By monotonicity of h and (h− h1) and
using the above computations, a sufficient condition for this inequality to hold writes as:

(1 − δ)Vk−1 ≤ h(b).

This condition imposes an upper bound on Vk−1. Recall that h(b) is the highest flow
payoff (quality and homophily) that a majority member can guarantee. Therefore, for
any symmetric joint distribution of types, any (increasing and concave) equilibrium
value function must satisfy Vk−1 < h(b)/(1 − δ). Hence assuming this inequality
hold does not threaten the existence of an equilibrium. We thus fix in the following
Vk−1 such that the above inequality holds. Hence, under the above conditions, Υ(u) ∈ K.

(B) We now consider the case where s < +∞ and DM(u) = s for some M . (Note that
as uM ≤ u < ∞, the case DM(u) = s can only arise when s < ∞.)

We first note that, within the class of equilibria with u ∈ K (and thus a decreasing
sequence (∆M)M), ∆k = s implies that ∆k+1 < s. Hence, whenever the majority is not
tight, it recruits a minority candidate with a strictly positive probability: ∆M < s for
any M ≥ k + 1.70

69Indeed, denoting by F the c.d.f. of D, we have for any ∆ ∈ (0, s),

h(∆) =
ˆ ∆

−s

(s+ ∆)dF (D) +
ˆ s

∆
(s+D)dF (D), and thus h′(∆) = F (∆) ∈ (1/2, 1)

70Indeed, suppose by contradiction that ∆k = ∆k+1 = s. Then, by construction,

uk = δ

[
k

N − 1uk + k − 2
N − 1uk+1

]
Since u ∈ K, this yields that uk = uk+1 = 0, which contradicts the initial assumption as b < s.
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Consequently, we only need to consider the case where Dk+1(u) < Dk(u) = s < ∞ 71.
We first show that Υk(u) ∈ [Υk+1(u), u]. By construction,

Tk

(
V (u), D(u)

)
= E[s] + b+ δ

[
k

N − 1Vk +
(

1 − k

N − 1

)
Vk+1

]
,

and thus, since Dk+1 < s implies that Tk+1(V,D) is given by (34),

Υk(u) = h(Dk+1) − E[s] − b

By monotonicity of the sequence (DM)M and since the functions h and h1 are increasing,
we have that Υk(u) ≥ Υk+1(u). It thus remains to check that Υk−1(u) ≥ Υk(u). A
sufficient condition for this inequality to hold writes as72

(1 − δ)Vk−1 ≤ E[s] + b+ k

N − 2(s− b)

This second inequality is looser than the condition73 in case (A) and is thus satisfied for
71Indeed, note that if Dk+1(u) < s, then Dk+1(Υ(u)) < s as

Dk+1(Υ(u)) < b+ δ

[
k

N − 1

(
h(Dk+1(u)) − E[s] − b

)
+ k − 2
N − 1

(
h(Dk+2(u) + h1(Dk+1(u)) − b

)]
<

(
1 − δ

N − 2
N − 1

)
b+ δ

[
k

N − 1
(
h(Dk+1(u)) − E[s]

)
+ k − 2
N − 1Dk+1(u)

]
<

(
1 − δ

N − 2
N − 1

)
b+ δ

N − 2
N − 1s < s

72Indeed, a sufficient condition for Υk−1(u) ≥ Υk(u) is

2(E[s] + b) − (1 − δ)Vk−1 + δuk−1 ≥ h

(
b+ δ

N − 2
N − 1uk

)
− δ

k − 1
N − 1uk,

which by monotonicity of h and h− h1 holds in particular if

2(E[s] + b) − (1 − δ)Vk−1 + δuk−1 ≥ h

(
b+ δ

N − 2
N − 1uk−1

)
− δ

k − 1
N − 1uk−1,

i.e. (1 − δ)Vk−1 ≤ 2(E[s] + b) − h

(
b+ δ

N − 2
N − 1uk−1

)
+ δ

(
1 + k − 1

N − 1

)
uk−1

Hence, by monotonicity of X 7→ X − h(X) and since uk−1 must satisfy δ(N − 2)/(N − 1)uk−1 ≥ (s− b),
a sufficient condition for this inequality to hold is

(1 − δ)Vk−1 ≤ 2(E[s] + b) − h(s) + (s− b) + k

N − 2(s− b),

which yields the result as h(s) = E[s] + s.
73Indeed, for any joint distribution such that (ŝ− s) is symmetrically distributed around 0,

h(b) ≤ E[s] + b+ k

N − 2(s− b)
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Vk−1 ≤ h(b)/(1 − δ) (which must be the case in any equilibrium as discussed above).
Therefore, fixing Vk−1 ∈ [0, h(b)/(1−δ)], Υ is a well-defined continuous mapping from

K into itself. By Brouwer’s fixed point theorem, it admits a fixed point.
Moreover, as the functions h and h1 are strictly increasing over (b, s), Υ is order-

preserving on the complete lattice K. Hence, fixing Vk−1 ∈ [0, h(b)/(1 − δ)], by Tarski’s
fixed point theorem, there exists a unique least fixed point of Υ, u∗(Vk−1). We select this
least fixed point for the equilibrium condition.

By construction, the mapping (Vk−1, u) 7→ ΥVk−1(u) is continuous on [0, h(b)/(1−δ)]×
K. Hence, since Υ is order-preserving, the mapping Vk−1 7→ u∗(Vk−1) is continuous.

Given u∗ and the corresponding sequence of cutoffs D(u∗), define for M ≥ k + 1,

V ∗
M(Vk−1) = V ∗

M−1(Vk−1) + u∗
M−1(Vk−1),

and V ∗
k (Vk−1) = Vk−1 + u∗

k−1(Vk−1). Then, using the recursive expression of the value
function for group size i ≤ k − 1, define (V ∗

i (Vk−1))i≤k−1 such that for all i ≤ k − 1,

V ∗
i = E[s1{ŝ− s ≤ DN−1−i(u∗)}] + E[(ŝ+ b)1{ŝ− s > DN−1−i(u∗)}]

+ δP(ŝ− s ≤ DN−1−i(u∗))
[
i− 1
N − 1V

∗
i−1 +

(
1 − i− 1

N − 1

)
V ∗

i

]

+ δ
(
1 − P(ŝ− s ≤ DN−1−i(u∗))

)[ i

N − 1V
∗

i +
(

1 − i

N − 1

)
V ∗

i+1

]
.

By construction, the mapping defined from [0, h(b)/(1 − δ)] into itself that assigns to
Vk−1 ∈ [0, h(b)/(1 − δ)] the value V ∗

k−1(Vk−1) is continuous. By Brouwer’s fixed-point
theorem, it admits a fixed point. This establishes existence.

We now show that any equilibrium characterized by a sequence of cut-offs (∆M)M≥k is
such that (a) ∆M > b for any M ≥ k, and (b) the sequence (∆M)M is strictly decreasing.

(a) We first argue that in any equilibrium, ∆M > b for any M ≥ k. We show this
by downward induction. Suppose that ∆N−1 ≤ b. Then74, this implies that uN−2 ≤ 0,
i.e. VN−2 ≥ VN−1. Hence the continuation payoff for a majority of size N − 1 is bounded
below by δVN−1. By deviating from ∆N−1 to the value that maximizes the flow payoff, a

74Using that by construction,

∆N−1 = b+ δ
N − 2
N − 1uN−2
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majority with size N − 1 gets a utility greater than

max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}
+ δVN−1

Hence, this would imply that

(1 − δ)VN−1 ≥ max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}

which is a contradiction as the RHS is the highest attainable flow payoff (and δ > 0).75

Therefore VN−1 > VN−2, and thus ∆N−1 > b. Suppose now that VM ′+1 > VM ′ for any
M ′ ≥ M , and that VM ≤ VM−1. Therefore, the continuation payoff for a majority of size
M is bounded below by δVM . Hence, by deviating from ∆M to the value that maximizes
the flow payoff, a majority with size M gets a utility greater than

max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}
+ δVM ,

which again leads to a contradiction. Consequently, uM−1 > 0, while uM > 0 by the
induction hypothesis. Hence, since by construction we have that either ∆M = s > b, or

∆M = b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
, (36)

this implies that ∆M > b. By induction, the inequality holds for any majority size M ≥ k.
(b) We thus show that the sequence (∆M)M≥k is strictly decreasing. We first consider

the case where for any M ≥ k, ∆M < s, and therefore (36) holds, and

uM = h(∆M+1) + ∆M − h(∆M) − b (37)

Suppose by contradiction that ∆N−1 ≥ ∆N−2. By the above equations,

∆N−1 = b+ δ
N − 2
N − 1uN−2

=
(

1 − δ
N − 2
N − 1

)
b+ δ

N − 2
N − 1

[
h(∆N−1) + ∆N−2 − h(∆N−2)

]

≤
(

1 − δ
N − 2
N − 1

)
b+ δ

N − 2
N − 1∆N−1

75Indeed, the above inequality holds only if ∆M = arg max
X

{
E[(s+b)1{ŝ−s ≤ X}]+E[ŝ1{ŝ−s > X}]

}
for all M ≥ k, and Vi = VN−1 for all i ∈ {1, ..., N − 2}, which is impossible.
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where the inequality derives from the strict monotonicity of h1. Hence ∆N−1 ≤ b, which
contradicts the above result. Therefore ∆N−1 < ∆N−2. We henceforth proceed by in-
duction. Suppose ∆M ′+1 < ∆M ′ for any M ′ ≥ M , and suppose by contradiction that
∆M ≥ ∆M−1. By (37), using the monotonicity of h1, we have that

uM < ∆M − b, and uM−1 ≤ ∆M − b,

and therefore,

∆M <

(
1 − δ

N − 2
N − 1

)
b+ δ

N − 2
N − 1∆M ,

i.e. ∆M < b, which is a contradiction. Hence for any M ≥ k, ∆M+1 < ∆M , as was to be
shown.

We now consider the case where there exists M ≥ k such that ∆M = s. This implies
that ∆M+1 < s as otherwise the explicit expressions of VM and VM+1 would give that

δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]
= 0, and thus ∆M = b < s,

which is a contradiction. Hence suppose by contradiction that ∆N−1 = s, then ∆N−2 <

s = ∆N−1. Yet the above computations76 thus yield that ∆N−1 ≤ b < s, which is a
contradiction. Therefore, ∆N−1 < s, and as a consequence, the above computations
yield that ∆N−2 > ∆N−1. We again proceed by induction. Suppose ∆M ′+1 < ∆M ′ for
any M ′ ≥ M . If ∆M < s, the above computations apply, yielding that ∆M < ∆M−1.
Hence, suppose by contradiction that ∆M = s ≥ ∆M−1. As noted above, this implies
that ∆M−1 < s and (37) holds in M − 1, and thus uM−1 ≤ ∆M − b. Moreover, using the
explicit expressions of VM+1 and VM ,

uM = h(∆M+1) − h(∆M) + δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

< δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

where the inequality follows from the monotonicity of h. Therefore, uM < uM−1. As a
76Using that as ∆N−1 = s,

∆N−1 ≤ b+ δ
N − 2
N − 1uN−2 ≤

(
1 − δ

N − 2
N − 1

)
b+ δ

N − 2
N − 1∆N−1
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consequence,

∆M = s ≤ b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

< b+ δ
N − 2
N − 1uM−1 <

(
1 − δ

N − 2
N − 1

)
b+ δ

N − 2
N − 1∆M ,

i.e. ∆M < b < s, which is a contradiction. Hence, for any M ≥ k, ∆M+1 < ∆M , as was
to be shown.

We then turn to showing that equilibria can be ranked from more to less meri-
tocratic. Consider the class of equilibria characterized by a decreasing decision rule
(∆M)M∈{k,...,N−1}. We refer in the following to an equilibrium by its decision rule
∆ ≡ (∆M)M∈{k,...,N−1}. Let ∆ and ∆′ be two equilibria within this class. We now
show that

(i) ∆k < ∆′
k implies that ∆M < ∆′

M for any M ≥ k + 1,

(ii) ∆k = ∆′
k ∈ [b, s] implies that ∆M = ∆′

M < s for any M ≥ k + 1,

(i) Assume that ∆k < ∆′
k < s (computations are analogous in the case ∆k < ∆′

k = s).
By monotonicity, ∆M < s and ∆′

M < s for any M ≥ k + 1, and thus, with the above
notation,

∆M = b+ δ

[
M − 1
N − 1 uM−1 +

(
1 − M

N − 1

)
uM

]

=
(

1 − δ
N − 2
N − 1

)
b+ δ

[
M − 1
N − 1

[
h(∆M) + h1(∆M−1)

]
+
(

1 − M

N − 1

)[
h(∆M+1) + h1(∆M)

]]

Consequently, for any M ≥ k + 1,

h2,M(∆M) − h2,M(∆′
M)

= δ
M − 1
N − 1

[
h1(∆M−1) − h1(∆′

M−1)
]

+ δ

(
1 − M

N − 1

)[
h(∆M+1) − h(∆′

M+1)
]

(38)

where the function h2,M is given by

h2,M(X) ≡ X − δ
M − 1
N − 1 h(X) − δ

(
1 − M

N − 1

)
h1(X),
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We note that h2,M is strictly increasing over [b, s] 77. By monotonicity of h1, we get for
M = k + 1 that

h2,k+1(∆k+1) − h2,k+1(∆′
k+1) < δ

(
1 − k + 1

N − 1

)[
h(∆k+2) − h(∆′

k+2)
]

Suppose by contradiction that ∆k+1 ≥ ∆′
k+1. Then by monotonicity, ∆k+2 ≥ ∆′

k+2. By
summing Equation (38) in k + 1 and k + 2 and rearranging, we get that

[
h2,k+1(∆k+1) − δ

k + 1
N − 1h1(∆k+1)

]
−
[
h2,k+1(∆′

k+1) − δ
k + 1
N − 1h1(∆′

k+1)
]

+
[
h2,k+2(∆k+2) − δ

k − 2
N − 1h(∆k+2)

]
−
[
h2,k+2(∆′

k+2) − δ
k − 2
N − 1h(∆′

k+2)
]

= δ
k

N − 1

[
h1(∆k) − h1(∆′

k)
]

+ δ

(
1 − k + 2

N − 1

)[
h(∆k+3) − h(∆′

k+3)
]

Since for any M ≥ k+1, the functions h2,M −δ
M

N − 1h1 and h2,M −δ
N −M

N − 1 h are strictly
increasing over [b, s], the above equality implies that ∆k+3 ≥ ∆′

k+3. We now proceed by
induction: suppose that ∆j ≥ ∆′

j for any j ∈ {k+1, ...,M}. Then by summing Equation
(38) over the indices k + 1, ...,M and rearranging,

[
h2,k+1(∆k+1) − δ

k + 1
N − 1h1(∆k+1)

]
−
[
h2,k+1(∆′

k+1) − δ
k + 1
N − 1h1(∆′

k+1)
]

+
[
h2,M(∆M) − δ

N −M

N − 1 h(∆M)
]

−
[
h2,M(∆′

M) − δ
N −M

N − 1 h(∆′
M)
]

+
M−1∑

j=k+2

[h2,j(∆j) − δ
j

N − 1h1(∆j) − δ
N − j

N − 1h(∆j)
]

−
[
h2,j(∆′

j) − δ
j

N − 1h1(∆′
j) − δ

N − j

N − 1h(∆′
j)
]

= δ
k

N − 1

[
h1(∆k) − h1(∆′

k)
]

+ δ

(
1 − M

N − 1

)[
h(∆M+1) − h(∆′

M+1)
]

Since for any j ≥ k + 1, the functions h2,j − δ
j

N − 1h1 − δ
N − j

N − 1h are strictly increasing
over [b, s], we get that ∆M+1 ≥ ∆′

M+1. Hence by induction, we have that ∆M ≥ ∆′
M for

77Indeed, we may rewrite the function h2,M as: h2,M (X) =
[
1 − δ

(
1 − M

N − 1

)]
h1(X) +

[
1 −

δ
M − 1
N − 1

]
h(X).
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Figure 5: Decision rules for two distinct equilibria.

any M ≥ k + 1. But by summing (38) over all these indices and rearranging yields

0 ≤
[
h2,k+1(∆k+1) − δ

k + 1
N − 1h1(∆k+1)

]
−
[
h2,k+1(∆′

k+1) − δ
k + 1
N − 1h1(∆′

k+1)
]

+
[
h2,N−1(∆N−1) − δ

1
N − 1h(∆N−1)

]
−
[
h2,N−1(∆′

N−1) − δ
1

N − 1h(∆′
N−1)

]

+
N−2∑

j=k+2

[h2,M(∆M) − δ
M

N − 1h1(∆M) − δ
N −M

N − 1 h(∆M)
]

−
[
h2,M(∆′

M) − δ
M

N − 1h1(∆′
M) − δ

N −M

N − 1 h(∆′
M)
]

= δ
k

N − 1

[
h1(∆k) − h1(∆′

k)
]
< 0

which is a contradiction. Therefore, ∆k+1 < ∆′
k+1. The result then obtains by induction,

supposing by contradiction that ∆j < ∆′
j for any j ∈ {k, ...,M − 1} and that ∆M ≥ ∆′

M ,
and considering the sums of (38) over appropriate indices so as to reach a contradiction.
(ii) We note that the above argument yields that if ∆k = ∆′

k ∈ [b, s], then ∆M = ∆′
M for

any M ≥ k+ 1. As a consequence, any two distinct equilibria with a decreasing decision
rule satisfy either "∆M < ∆′

M for all M ≥ k", or "∆M > ∆′
M for all M ≥ k". Figure 5

provides an illustration.

65



Non-ergodic welfare. Lastly, we turn to comparing the equilibria in terms of non-
ergodic welfare. Consider two equilibria described by a decreasing decision rule denoted
respectively by ∆ and ∆′ such that ∆ ≺ ∆′, and let (Vi)i∈{1,...,N−1} and (V ′

i )i∈{1,...,N−1} be
the corresponding equilibrium value functions. For any M ≥ k, we have by construction
that

VM = E[(s+ b)1{ŝ− s ≤ ∆M}] + E[ŝ1{ŝ− s > ∆M}]

+ δP(ŝ− s ≤ ∆M)
[

M

N − 1VM +
(

1 − M

N − 1

)
VM+1

]

+ δ
(
1 − P(ŝ− s ≤ ∆M)

)[M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]

We first note that ∆k < ∆′
k implies that ∆k < s. Hence, for any M ≥ k,

∆M = b+ δ

[
M − 1
N − 1 uM−1 + N −M − 1

N − 1 uM

]
,

and therefore, for any M ≥ k,
[
1 − δ

(
1 − M − 1

N − 1

)[
1 − P(ŝ− s ≤ ∆′

M)
]

− δ
M

N − 1P(ŝ− s ≤ ∆′
M)
)]

(VM − V ′
M)

= E
[
(ŝ− s− ∆M)1{∆M < ŝ− s ≤ ∆′

M}
]

+ δP(ŝ− s ≤ ∆′
M)
(

1 − M

N − 1

)
(VM+1 − V ′

M+1)

+ δ
(
1 − P(ŝ− s ≤ ∆′

M)
)M − 1
N − 1 (VM−1 − V ′

M−1) (39)

Two cases arise depending on whether ∆′
k = s. If so, then the result for majority members

follows by the usual argument (by contradiction and by induction). Hence, for any
δ ∈ [0, (N − 1)/N), any "meritocratic" equilibrium (i.e. with ∆k < s) is preferred at any
majority size by all majority members to the basic-entrenchment equilibrium (∆′

k = s).
If ∆′

k < s, we need to adapt the arguments in the proof of Lemma 2 and Proposition
3. Suppose by contradiction that VN−1 ≤ V ′

N−1. Then equation (39) implies that VN−2 −
V ′

N−2 ≤ VN−1 − V ′
N−1 ≤ 0, and thus by induction that Vk−1 − V ′

k−1 ≤ Vk − V ′
k ≤ Vk+1 −

V ′
k+1 ≤ ... ≤ VN−1 − V ′

N−1 ≤ 0. However, since ∆k < ∆′
k < s, we have that

b+ δ
k − 1
N − 1

(
Vk+1 − Vk−1

)
< b+ δ

k − 1
N − 1

(
V ′

k+1 − V ′
k−1

)
,

and thus, Vk−1 − V ′
k−1 > Vk+1 − V ′

k+1, which contradicts the above inequality. Hence,
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VN−1 ≥ V ′
N−1, and (39) implies by induction that Vk−1 − V ′

k−1 ≥ Vk − V ′
k ≥ ... ≥

VN−1 − V ′
N−1 ≥ 0. Therefore, a more meritocratic equilibrium is preferred at any

majority size by all majority members to a less meritocratic equilibrium.

Similarly, for any i ≤ k − 1, we have by construction that

Vi = E[s1{ŝ− s ≤ ∆N−1−i}] + E[(ŝ+ b)1{ŝ− s > ∆N−1−i}]

+ δP(ŝ− s ≤ ∆N−1−i)
[
i− 1
N − 1Vi−1 +

(
1 − i− 1

N − 1

)
Vi

]

+ δ
(
1 − P(ŝ− s ≤ ∆N−1−i)

)[ i

N − 1Vi +
(

1 − i

N − 1

)
Vi+1

]

Hence, for any i ≤ k − 1,
[
1 − δ

(
1 − i− 1

N − 1

)
P(ŝ− s ≤ ∆′

N−1−i) − δ
i

N − 1
[
1 − P(ŝ− s ≤ ∆′

N−1−i)
]]

(Vi − V ′
i )

= E

[ŝ− s+ b+ δ

(
i− 1
N − 1ui−1 + N − 1 − i

N − 1 ui

)]
1{∆N−1−i < ŝ− s ≤ ∆′

N−1−i}


+ δP(ŝ− s ≤ ∆′

N−1−i)
i− 1
N − 1(Vi−1 − V ′

i−1)

+ δ
(
1 − P(ŝ− s ≤ ∆′

N−1−i)
)(

1 − i

N − 1

)
(Vi+1 − V ′

i+1) (40)

Hence, for δ close to 0, the expectation term on the RHS of (40) is strictly positive, and
thus Vi > V ′

i for all i ∈ {1, ..., k − 1}.

N Complements on non-linear homophily benefits

A non-linear homophily benefit does not require enlarging the state space, as the size
of the majority is still a sufficient statistics looking forward. (To alleviate the notation,
as we consider nonlinear yet symmetric benefits, we omit the horizontal-group subscript
X ∈ {A,B}.)

Let B̃(i) denote the per-period homophily benefit enjoyed by a member whose in-group
has size i (thus, in the linear case, B̃(i) ≡ (i − 1)b̃). In this Section – and only in this
Section –, we change the definition of the value function: let now Vi be the forward-looking
discounted sum of future homophily and quality payoff for a member with in-group size
i net of the quality stock alone (and not of the homophily stock). Indeed, the current
quality stock (sum of members’ talent) is still irrelevant looking forward, and we thus
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take it out of the value function to alleviate the expressions. By contrast, the current
homophily stock (majority size) affects the incremental lifetime homophily contribution
of a new in-group member.

With this new definition, the (forward-looking net-of-quality-stock) continuation value
function of a majority member at majority size M is given by

B̃(M + 1) + sM + δ

[
M

N − 1VM +
(

1 − M

N − 1

)
VM+1

]

if the majority recruits the majority candidate with talent sM ∈ {0, s}, and by

B̃(M) + sm + δ

[
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

]

if the majority recruits the minority candidate with talent sm ∈ {0, s}.

Proposition N.1. (Non-linear homophily benefits)

(i) With strictly concave homophily benefits B̃, symmetric MPEs are still either meri-
tocratic or basically-entrenched if B̃(k + 1) − B̃(k) ≤ s̃, and are super-entrenched if
B̃(k + 2) − B̃(k + 1) is sufficiently large.

(ii) With strictly convex homophily benefits, when there exists a threshold size such that
B̃(M +1)−B̃(M) < s̃ for any M below the threshold and B̃(M +1)−B̃(M) > s̃ for
any M above the threshold,78 then in any symmetric MPE, there exists a threshold
size such that recruitments are entrenched for majority sizes above the threshold.
In any equilibrium, on path, a group eventually forms a fully-entrenched majority.

With convex homophily benefits such as considered in claim (ii) of Proposition N.1,
and a low discount factor, thin majorities are meritocratic, while large ones are en-
trenched. In other words, larger majorities then discriminate more than thinner ones.

N.0.1 Proof of Proposition N.1: Concave homophily benefits

Let B̃(i) be strictly concave in the number of in-group members i, i.e. B̃(i+ 1) − B̃(i)
be strictly decreasing in i. Suppose B̃(k + 1) − B̃(k) ≤ s̃. Hence,

0 ≤ B̃(N) − B̃(N − 1) < B̃(N − 1) − B̃(N − 2) < ... < B̃(k + 1) − B̃(k) ≤ s̃. (41)

78The threshold can be equal to N−1 for δ sufficiently low, and must be weakly below N−2 otherwise.
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The proof follows from arguments similar to the ones in the proof of Lemma 1 (see
Online Appendix A). Consider first a given value of Vk−1 (in a well-chosen set), and
the majority’s optimal control problem given Vk−1. Let (VM(Vk−1))M≥k be the (unique)
solution to this problem, i.e. such that for all M ≥ k, the Bellman equation holds:

VM = EṽM ,w̃M

[
max

{
w̃M + δ

(
M

N − 1VM +
(

1 − M

N − 1

)
VM+1

))
,

ṽM + δ

(
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

)}]
,

where ṽM ∈ {B̃(M), B̃(M) + s} (resp. w̃M ∈ {B̃(M + 1), B̃(M + 1) + s}) is the flow-
homophily and flow-and-future-quality value to a majority member when a minority (resp.
majority) candidate is recruited at majority size M .

Consider then M = k, and suppose that:

δ
k − 1
N − 1

(
Vk+1(Vk−1) − Vk−1

)
> s−

(
B̃(k + 1) − B̃(k)

)
,

i.e. that, by the Bellman equation at M = k,

Vk(Vk−1) = B̃(k + 1) + xs+ δ

[
k

N − 1Vk(Vk−1) + k − 1
N − 1Vk+1(Vk−1)

]
.

Computations analogous to the ones in the proof of Lemma A.1 (see Online Appendix
A) then yield that the value function from the basic-entrenchment strategy satisfies the
above recursive equation for Vk and the Bellman equations for M ≥ k + 1. Indeed, for
any M ≥ k + 1, the value function with the basic-entrenchment strategies satisfies:

V e
M+1 − V e

M =(1 − x)(B̃(M + 2) − B̃(M + 1)) + x(B̃(M + 1) − B̃(M))

+ δ(1 − x)
[

M

N − 1(V e
M+1 − V e

M) +
(

1 − M + 1
N − 1

)
(V e

M+2 − V e
M+1)

]

+ δx

[
M − 1
N − 1 (V e

M − V e
M−1) +

(
1 − M

N − 1

)
(V e

M+1 − V e
M)
]

while for M = k,

V e
k+1 − V e

k =(1 − x)
[
B̃(k + 2) − B̃(k + 1)

]
+ xs

+ δ(1 − x)
[

k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]
.
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Hence, using the same recursive technique as in Online Appendix A), V e
M+1 ≥ V e

M for all
M ≥ k, which implies that the majority’s recruitment of the in-group candidate whenever
he is at least as talented as the out-group candidate is optimal at any M ≥ k. Moreover,
by the same type of argument, the sequence (V e

M+1 − V e
M)M≥k is decreasing.79 Hence, by

the same argument as in the proof of Lemma 1 (Online Appendix A.3),

δ

[
k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]

≤
δN−2

N−1

1 − δ(1 − x)N−2
N−1

(
(1 − x)

[
B̃(k + 2) − B̃(k + 1)

]
+ xs

)
.

As a consequence, since by construction, s = s̃/
(
1 − δ(N − 2)/(N − 1)

)
and by (41),

s̃ > B̃(k + 2) − B̃(k + 1), the above inequality yields that:

δ

[
k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]
≤ s−

[
B̃(k + 2) − B̃(k + 1)

]
.

Since the sequences (B̃(M + 1) − B̃(M))M≥k and (V e
M+1 − V e

M)M≥k are decreasing, we
have for all M ≥ k + 1,

s−
(
B̃(M + 1) − B̃(M)

)
≥ δ

[
M − 1
N − 1 (V e

M − V e
M−1) +

(
1 − M

N − 1

)
(V e

M+1 − V e
M)
]
,

and thus the sequence (V e
M) satisfies the Bellman equations for M ≥ k + 1.

Therefore, VM(Vk−1) = V e
M for all M ≥ k. It can then be checked that the only

strategy consistent with this value function is the one of basic-entrenchment.

Similarly, if on the opposite, the solution to the Bellman equations satisfies:

δ
k − 1
N − 1

(
Vk+1(Vk−1) − Vk−1

)
< s−

(
B̃(k + 1) − B̃(k)

)
, (42)

the same arguments as the ones used above and in the proofs of Lemma 1 show that
letting V m denote the value function corresponding to the meritocratic strategies,
VM(Vk−1) = V m

M (Vk−1) for all M ≥ k. And again, the meritocratic strategy is the only
one consistent with this value function.

Lastly, in the meritocratic and in the basic-entrenchment equilibria, VN−1 ≥ ... ≥
79The result can be shown by contradiction and by induction, proceeding as in the proof of Lemma 2

and using (41).
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Vk+1 ≥ Vk ≥ Vk−1. Hence in particular, a necessary condition for the equilibrium to be
meritocratic, i.e., for inequality (42) to hold is:

B̃(k + 1) − B̃(k) ≤ s.

If instead, B̃(k+1)−B̃(k) > s, then meritocracy cannot be an equilibrium. Moreover, by
the same logic, if B̃(k + 2) − B̃(k + 1) > s, basic entrenchment cannot be an equilibrium
(as recruiting an untalented majority candidate against a talented minority candidate at
majority size k+1 then yields a strictly profitable deviation), and only super-entrenchment
can be an equilibrium.80

N.0.2 Proof of Proposition N.1: Convex homophily benefits

Let us note that, by considering flow incremental payoffs, the result clearly holds for
any δ sufficiently low. In particular, for any δ sufficiently low, the unique equilibrium
features meritocratic recruitments below the threshold, and entrenched ones above.

Let us now consider the general case (δ ∈ (0, 1)). Let B̃(·) be convex, and let M ≥ k

be such that B̃(M + 1) − B̃(M) < s̃ (resp. > s̃) for any M < M (resp. M ≥ M). Let us
further assume that M ≤ N − 2.

Consider a given value of Vk−1 (in a well-chosen set), and let (VM(Vk−1))M≥k be the
(unique) solution to the majority’s optimal control problem given Vk−1, i.e. such that for
all M ≥ k, the Bellman equation holds:

VM = EvM ,wM

[
max

{
ṽM + δ

(
M

N − 1VM +
(

1 − M

N − 1

)
VM+1

))
,

w̃M + δ

(
M − 1
N − 1 VM−1 +

(
1 − M − 1

N − 1

)
VM

)}]
,

where ṽM ∈ {B̃(M), B̃(M) + s} (resp. w̃M ∈ {B̃(M + 1), B̃(M + 1) + s}).
Consider the strategy consisting in always recruiting the majority candidate at any

majority size M ≥ M (entrenched recruitments), denoting by (V ∗
M)M≥M its induced value

function. For any M ≥ M ,

V ∗
M+1 − V ∗

M = B̃(M + 2) − B̃(M + 1) + δ

[
M

N − 1(V ∗
M+1 − V ∗

M) + N −M − 2
N − 1 (V ∗

M+2 − V ∗
M+1)

]
80Using the same recursive method as in the proof of Lemma 2 (see Online Appendix B), it can

be shown that the value function generated by the level-l super-entrenchment strategies increases with
majority size for any M ≥ k + l: Vk+l ≤ Vk+l+1 ≤ ... ≤ VN−1.
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By convexity,

B̃(N) − B̃(N − 1) ≥ ... ≥ B̃(M + 1) − B̃(M) > s̃, (43)

and thus the sequence (V ∗
M+1 − V ∗

M)M≥M is positive and increasing. Moreover,

V ∗
M+1 − V ∗

M ≥ B̃(M + 2) − B̃(M + 1)
1 − δN−2

N−1
≥ B̃(M + 1) − B̃(M)

1 − δN−2
N−1

> s,

for any M ≥ M . As a consequence, for any M ≥ M + 1,

s− (B̃(M + 1) − B̃(M)) < δ

[
M − 1
N − 1 (V ∗

M − V ∗
M−1) +

(
1 − M

N − 1

)
(V ∗

M+1 − V ∗
M)
]
.

Hence, if the solution to the Bellman equations satisfies

VM = B̃(M + 1) + xs+ δ

[
M

N − 1VM + N −M − 1
N − 1 VM+1

]
(44)

for some M ≥ M − 1, then the strategy of entrenched recruitments at majority sizes
M ′ ≥ M solves the Bellman equations for M ′ ≥ M , and thus the unique solution to the
Bellman equations is such that the majority candidate is always recruited, regardless of
his talent, at all majority sizes M ′ ≥ M .81

Suppose by contradiction that there exists no such majority size, i.e. the solution
to the Bellman equations corresponds to meritocratic recruitments at all majority sizes
M ≥ M − 1. Then, the same arguments as in the linear case apply to majority sizes
M < M − 1, yielding that the solution of the Bellman equations is given either by
the meritocratic or basic-entrenchment strategies. Yet, we now argue that with these
strategies, the majority has a profitable deviation whenever it has majority size N − 1
and its in-group candidate is less talented.

Indeed, consider the value function (VM)M generated by one such strategy. Building
on previous arguments, VM+1 ≥ VM for all M ≥ k. In addition, using their recursive

81In other words, a sufficient condition for entrenched recruitments to obtain at all majority sizes above
a threshold is that there exists M ≥ M − 1 such that the solution to the Bellman equations satisfies (44)
at majority size M .
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expressions yields for any M ≥ max(k + 1,M),

VM = xs+ (1 − x)B̃(M + 1) + xB̃(M) + xs

+ δ(1 − x)
(

M

N − 1V
∗

M + N −M − 1
N − 1 V ∗

M+1

)
+ δx

(
M − 1
N − 1 V

∗
M−1 + N −M

N − 1 V ∗
M

)

< xs+ (1 − x)B̃(N) + xB̃(N − 1) − (N −M − 1)s̃+ xs

+ δ(1 − x)
(

M

N − 1V
∗

M + N −M − 1
N − 1 V ∗

M+1

)
+ δx

(
M − 1
N − 1 V

∗
M−1 + N −M

N − 1 V ∗
M

)

where the inequality follows from (43). Then, using the recursive expression of VM and
that VN−1 ≥ VN−2 ≥ ... ≥ Vk yields that

[
1 − δ(1 − x)N − 2

N − 1 − δx

]
VN−2

< xs+ (1 − x)B̃(N) + xB̃(N − 1) − s̃+ xs+ δ
(1 − x)
N − 1 VN−1

< xs+ B̃(N) − s̃+ x
δN−2

N−1

1 − δN−2
N−1

s̃+ δ
(1 − x)
N − 1 VN−1.

In addition, as the majority can secure at least the entrenchment payoff at M = N − 1,

(1 − δ)VN−1 ≥ xs+ B̃(N).

As a consequence,

B̃(N) − B̃(N − 1) + δ
N − 2
N − 1

[
VN−1 − VN−2

]
> s̃+ δ

N − 2
N − 1

[ 1−δ(1−x) N−2
N−1

1−δ N−2
N−1

1 − δ(1 − x)N−2
N−1 − δx

]
s̃

> s̃+ δ
N − 2
N − 1

[
1

1 − δN−2
N−1

]
s̃

= s,

i.e. recruiting the in-group candidate against a more talented out-group candidate is a
profitable deviation for the majority when it has size N − 1.
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O Homogamic evaluation capability: Proof of

Proposition 11 and complements

Before stating the general result (for s† ≶ b), let us build the intuition for the case:
s† > b. For this case to arise, majority members need to be sufficiently optimistic about
the average quality of minority candidates. That is, the draws in talent must be suffi-
ciently uncorrelated (i.e. x large) and the average ability of a candidate high enough (i.e.
x large). [Had we assumed non-Bayesian beliefs, a further condition would have been the
absence of prejudice about the minority.]

Intuitively, when s† > b, the model becomes similar to our baseline setup, yet with
two key differences:

(i) The probability that the minority candidate is assessed by majority members as
strictly more talented (in expectation) than the majority one increases from x to
x† ≡ x + (1 − 2x)(1 − α) > x. In other words, minority candidates may get the
benefit of the doubt.

(ii) The stand-alone cost of an entrenched vote is smaller as s† − b < s− b.

When s† > b, we show that, except perhaps when the majority is tight (M = k), whenever
the majority candidate lacks talent, the majority gives the benefit of the doubt to, and
picks the minority candidate. Consequently, the minority candidate may be selected even
though the two candidates are equally talented.

Proposition 11 in the text and its implications for welfare follow from the general
results in the next Proposition and its Corollary.

Proposition O.1. (Meritocratic and basic-entrenchment equilibria with ho-
mogamic evaluation capability)

(i) If s† ≤ b, the majority coopts only candidates of the in-group and therefore becomes
homogeneous.

(ii) If s† > b, there exist finite thresholds ρe† and ρm† such that82

• The basic-entrenchment equilibrium – in which the majority always chooses the
majority’s candidate for M = k, while for all M ≥ k+ 1, the majority chooses

82If b < s† and x† ≤ 1/2, then ρm† < ρe†. If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the
meritocratic equilibrium exists for all s/b ≥ x†/x.
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the majority’s candidate if talented, and chooses the minority’s candidate (of
unknown talent) otherwise – exists if and only if s/b ≤ ρe†.

• The meritocratic equilibrium – in which the minority candidate is elected
against an untalented majority candidate for all M ≥ k – exists if and only if
s/b ≥ ρm†.

Corollary O.2. (Welfare) (i) Whenever s† ≤ b, by leading to full entrenchment, ho-
mogamic evaluation capability lowers ergodic aggregate welfare relative to perfect infor-
mation. (ii) As with perfect information, the meritocratic equilibrium dominates the
basic-entrenchment equilibrium in terms of ergodic aggregate welfare for any s/b > 1
whenever x† is below or close to 1/2, or close to 1.83 Furthermore, the meritocratic and
basic-entrenchment equilibria with homogamic evaluation capability yield a lower ergodic
aggregate welfare than their perfect-information counterparts.

O.1 Proof of Proposition O.1

The same arguments as with perfect information apply, with the appropriate changes
in payoffs and with x† replacing x in the transition probabilities.

The properties of the value functions of the meritocratic and basic-entrenchment
equilibria with homogamic evaluation capability depend on whether x† ≤ 1/2. If
x† ≤ 1/2, they exhibit the same features – monotonicity and concavity/convexity –
as their perfect-information counterparts (indeed, the proof of Lemma 2 goes through
replacing x by x†). By contrast, if x† > 1/2, the value function in the meritocratic
equilibrium (if it exists) now decreases with group size i ∈ {1, ..., N−1} [This observation
immediately gives that for x† > 1/2, the meritocratic equilibrium exists for any s† > b.],
and is concave for the minority (i ≤ k−1) and convex for the majority (i ≥ k). Similarly,
in the basic-entrenchment equilibrium (if it exists), the value function increases less over
{k, ..., N − 1} than it decreases over {1, ..., k − 1}, whereas with x† ≤ 1/2, the opposite
holds: the distinction stems from the fact that the (weighted) sum of differences V e

i+1 −V e
i

is equal to (1 − 2x†)b. As a consequence, with x† ≥ 1/2, in the basic-entrenchment
equilibrium, it is not the case in general that V e

i ≥ V e
N−i−1 for any i ≥ k, while in the

meritocratic equilibrium, V m
i ≤ V m

N−i−1 for any i ≥ k (the curse of control in action).

83Whenever they coexist, the meritocratic equilibrium is (still) preferred to the basic-entrenchment
equilibrium by all members at any majority size.
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Let the quantities Y † and Z† be given by


Y † ≡ 1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt

(
πe†

k+1,k(t) − π̂e†
k,k(t)

)

Z† ≡ 1 + k − 1
N − 1

δ

1 − δ
(1 − 2x†) + δ

k − 1
N − 1x

†
+∞∑
t=0

δt

(
πe†

k+1,k(t) + π̂e†
k,k(t)

)

where the probabilities πe†
i,j(t) (resp. π̂e†

i,j(t)) are taken (a) following the basic-
entrenchment equilibrium strategies described in Proposition 11, and (b) from a majority
member’s perspective (resp. minority member’s perspective) with transition parameter
x† instead of x. Define then ρe† as

ρe† ≡


x†

x

Z†

Y † if Y † > 0

+∞ otherwise.

The same argument as the one used in the proof of ρe < +∞ 84 yields that for any
δ ∈ [0, (N − 1)/N) and x† ∈ [0, 1), ρe† < ∞.

Similarly, let ρm† be defined as

ρm† ≡ x†

x

[
1 + k − 1

N − 1(1 − 2x†)δ
+∞∑
t=0

δt

[(
N−1∑
i=k

πm†
k+1,i(t)

)
−
(

N−1∑
i=k

πm†
k−1,i(t)

)]]

where the probabilities πm†
i,j (t) are taken (a) following the meritocratic equilibrium

strategies described in Proposition 11, and (b) from the perspective of a member of the
group with initial size i, with transition parameter x† instead of x. We show that the
thresholds ρm† and ρe† are the homogamic-evaluation-capability counterparts of ρm and
ρe in the baseline setting.

The proof of Proposition 11 is analogous to that of Proposition 2. As mentioned,
when x† ≤ 1/2, the value functions in the basic entrenchment and meritocratic equi-
libria with homogamic evaluation capability exhibit features similar to the ones of their
perfect-information counterparts. Namely, the sequence (V e†

M )M≥k remains increasing and
concave. By contrast, the monotonicity of the sequence (V m†

M )M≥k may differ: it is in-
creasing (and concave) if x† ≤ 1/2, whereas it is decreasing (and convex) if x† > 1/2.
Moreover, in this latter case it may then be that V e†

k < V e†
k−1. Nonetheless, for x† > 1/2,

the sequence (V m†
M )M≥k being decreasing implies that its differences (V m†

M+1 − V m†
M ) are

84Cf. Section C.2.3.
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negative and thus recruiting the minority candidate against an untalented majority can-
didate is optimal (as s† > b): hence, for x† > 1/2, the meritocratic equilibrium exists
whenever s† > b. Lastly, in both cases, because of discounting, a talented majority can-
didate is still preferred to the minority candidate (with unknown talent) at any majority
size.

We thus consider x† ∈ [0, 1] henceforth. As noted above, the argument used in step
1 of the proof of Proposition 2 applies to both equilibria85, thus yielding that (except in
the meritocratic equilibrium for x† > 1/2), the most profitable deviation from these can-
didate equilibria is when the majority is tight and faces an untalented majority candidate
together with an unknown-quality minority one. We thus focus on step 2 and consider
one-shot deviations in majority size M = k when the majority candidate is untalented.

A (one-shot) deviation in majority size k from the basic-entrenchment strategy (de-
fined in Proposition 11), i.e. picking the minority candidate (of unknown talent) instead
of the untalented majority candidate, yields a payoff equal to:86

∆e,† ≡ s† − b+ δ
k − 1
N − 1xs

+∞∑
t=0

δt

(
πe†

k+1,k(t) − π̂e†
k,k(t)

)
+ δ

k − 1
N − 1x

†b
+∞∑
t=0

δt

( ∑
i≥k+1

π̂e†
k,i(t)

)

− δ
k − 1
N − 1x

†b
+∞∑
t=0

δtπe†
k+1,k(t) − k − 1

N − 1
δ

1 − δ
(1 − x†)b

where the probabilities πe†
i,j(t) (resp. π̂e†

i,j(t)) are taken (a) following the basic-
entrenchment equilibrium strategies described in Proposition 11, and (b) from a majority
member’s perspective (resp. minority member’s perspective) with transition parameter
x† instead of x. By construction, s†/s = x/x†. Rearranging yields

∆e,† = x

x† s

[
1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt

(
πe†

k+1,k(t) − π̂e†
k,k(t)

)]

− b

[
1 + k − 1

N − 1
δ

1 − δ
(1 − 2x†) + δ

k − 1
N − 1x

†
+∞∑
t=0

δt

(
πe†

k+1,k(t) + π̂e†
k,k(t)

)]
85For both equilibria when x† ≤ 1/2 and for the basic-entrenchment equilibrium when x† ≥ 1/2, the

argument goes through replacing x by x† and s by s† when appropriate. In particular, in the basic-
entrenchment equilibrium, for x† ∈ [0, 1], analogous computations yield that at majority size M = k+ 1,

δ

(
k − 2
N − 1u

e†
k+1 + k

N − 1u
e†
k

)
≤

δ
k

N − 1

1 − δ
k

N − 1

1
1 − x

(
xs− (1 − x)b

)
< s† − b.

86Indeed, the difference between the expected maximum of both candidates’ talents and the expected
quality of the majority candidate writes as before (x+ (1 − x)x/x†)s− xs = xs.
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which yields the result for the existence region of the basic-entrenchment equilibrium.

Similarly for the meritocratic equilibrium, consider the (one-shot) deviation of a ma-
jority member voting in k the untalented majority candidate instead of the minority one.
Such a deviation yields a payoff equal to:

∆m,† = b− s† + δ
(k − 1)
N − 1 (1 − x†)b

+∞∑
t=0

δt

[(∑
i≥k

πm†
k+1,i(t)

)
−
(∑

i≥k

πm†
k−1,i(t)

)]

+ δ
(k − 1)
N − 1 x

†b
+∞∑
t=0

δt

[( ∑
i≤k−1

πm†
k+1,i(t)

)
−
( ∑

i≤k−1
πm†

k−1,i(t)
)]

i.e. by rearranging,

∆m,† = − x

x† s+ b

[
1 + δ(1 − 2x†)(k − 1)

N − 1

+∞∑
t=0

δt

[(∑
i≥k

πm†
k+1,i(t)

)
−
(∑

i≥k

πm†
k−1,i(t)

)]]

The result for the existence region of the meritocratic equilibrium follows. Lastly, the
proof for ρe,† < +∞ is in Section C.2.3.

Note moreover that Lemma C.2 holds with the transition probabilities πe† and πm†

87, and this establishes the inequality ρm† < ρe† for x† ≤ 1/2, as well as the inequality
ρm† ≤ x†/x for x† ≥ 1/2 (noted in the text).88

O.2 Proof of Corollary O.2

The same argument as the one used in the proof of Proposition (3) yields that, when-
ever they co-exist, the meritocratic equilibrium is preferred to the basic-entrenchment
equilibrium by all members at any majority size.

We now consider ergodic per-period aggregate welfare. We first show that with ho-
mogamic evaluation capability, meritocracy dominates basic entrenchment. To this end,
we show that the result of Proposition 4, proved in Online Appendix F, holds replacing
x with x† ∈ [0, 1]. Analogous computations to the ones in Online Appendix F show that

87Indeed, the proof holds for any x ∈ [0, 1] as the stochastic matrices P and P̂ (introduced in the proof
of Lemma C.2) remain stochastically monotone and stochastically comparable (with P stochastically
dominating P̂ ) for any x ∈ [0, 1].

88If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the meritocratic equilibrium exists for all
s/b ≥ x†/x. Lastly, s† and x† both depend on x, and thus the value of x† constrains the possible values
of s†: in particular, for x† ≥ 1/2 (and thus α ≤ 1/2), s† decreases with x†, and s† = 0 when x† = 1. As
a consequence, for any b > 0, the inequality s† > b can only hold for x† sufficiently below 1.
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meritocracy dominates basic entrenchment if and only if

N(N − 1)x
 x†

1 − x†
k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x†

x†

)i i∏
l=1

k − l

k + 1 + l

qs̃
>

2x†

1 − x†

1 +
k−1∑
i=1

(i+ 1)2
(

1 − x†

x†

)i i∏
l=1

k − l

k + 1 + l

b̃ (45)

where q ≥ 1. By Proposition 11, a necessary condition for meritocracy and basic en-
trenchment to exist is b < s†, i.e. xs > x†b. Therefore, a sufficient condition for (45) to
be satisfied is

N(N − 1)
 x†

1 − x†
k + 1
N

+ 1 +
k−1∑
i=1

(
1 − x†

x†

)i i∏
l=1

k − l

k + 1 + l


>

2
1 − x†

1 +
k−1∑
i=1

(i+ 1)2
(

1 − x†

x†

)i i∏
l=1

k − l

k + 1 + l


By Online Appendix F, the above inequality holds for any x† ∈ [0, 1/2], as well as for x†

greater than but close to 1/2. Moreover, it clearly holds for x† close to 1. [Numerical
simulations suggest it holds for any x†[0, 1].]

We then turn to the ergodic aggregate welfare comparison of homogamic evalua-
tion capability with respect to perfect information: we show that meritocracy and ba-
sic entrenchment with homogamic evaluation capability are dominated by their perfect-
information counterparts. We proceed as in Section 2.2.2.

We first note that in both equilibria, the ergodic distribution of majority sizes with
perfect information first-order stochastically dominates the one with homogamic evalu-
ation capability. Using the notation introduced in Section 2.2.2, we denote by νr†

i the
ergodic probability of state i at the end of a period in regime r ∈ {e,m}, and show
that for r ∈ {e,m}, the probability distribution {νr

i } first-order stochastically dominates
{νr†

i }. Indeed, for r ∈ {e,m}, consider the stochastic matrices P r and P r† associated with
the probability distribution over (end-of-period) majority sizes in equilibrium r respec-
tively with perfect information and homogamic evaluation capability, from an outsider’s
perspective89. By construction, both P r and P r† are stochastically monotone, and the
two are stochastically comparable, with P r

i. stochastically dominating P r†
i. for any row

index i as x† ≥ x. Therefore, the ergodic distribution of majority sizes in equilibrium r
89Namely, for any i, j ∈ {1, ..., k}, the matrix component P r

ij (resp. P r†
ij ) is the probability (from an

outsider’s perspective) that the (end-of-period) majority size moves from k+ i− 1 to k+ j − 1 from one
period to another in equilibrium r ∈ {e,m} with perfect information (resp. with homogamic evaluation
capability).
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with perfect information (first-order) stochastically dominates the one with homogamic
evaluation capability.

As a consequence, since the aggregate homophily payoff at a given majority size strictly
increases with the majority size, perfect information yields a higher ergodic aggregate ho-
mophily payoff than homogamic evaluation capability in equilibrium r ∈ {e,m}. More-
over, by Section 2.2.2, the difference in aggregate per-period expected quality between
perfect information and homogamic evaluation capability writes as

Sr − Sr† =


0 if r = m,

N(N − 1)
[
νe†

k+1 − νe
k+1

]k + 1
N

xs̃ if r = e.

Hence, since the probability distribution {νe
i } first-order stochastically dominates {νe†

i },
Sr −Sr† ≥ 0. Therefore, meritocracy and basic entrenchment with homogamic evaluation
capability are dominated by their perfect-information counterparts in terms of ergodic
per-period aggregate welfare.

In order to establish the welfare claim in (i), we show that (perfect-information) basic
entrenchment dominates full entrenchment. The aggregate ergodic quality in the full-
entrenchment equilibrium writes as Sf = N(N − 1)xs̃, and thus using the computations
of Section 2.2.2, the difference between the ergodic efficiency of a basically-entrenched
and fully-entrenched organization is given by

Se − Sf = N(N − 1)
[
1 − νe

k+1
k + 1
N

x

]
s̃

Similarly, the difference ergodic homophily benefits is given by

Be −Bf =
N∑

i=k+1
νe

i

[
i(i− 1) + (N − i)(N − i− 1) −N(N − 1)

]

Building on Online Appendix E, explicit computations90 then yield that q(Se −Sf)+Be −
Bf > 0 for any s > b, hence the result.

90With the explicit expressions for the ergodic probabilities νe
i derived in Online Appendix E, q(Se −

Sf) +Be −Bf has the same sign as[
N(N − 1)

(
1 − k + 1

N
x

)
qs̃+ 2(k + 1)(1 − k)b̃

]
+

k−1∑
i=1

(
1 − x

x

)i i∏
l=1

k − l

k + 1 + l

[
N(N − 1)qs̃+ 2(i+ k + 1)(i− k + 1)b̃

]
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The second part of the welfare claim in (ii) stems from the explicit expressions of ρm

and ρm† which imply that for δ close to 0,

ρm = 1 + (1 − 2x) k − 1
N − 1δ +O(δ2), and ρm† = x†

x

[
1 + (1 − 2x†) k − 1

N − 1δ
]

+O(δ2),

and thus ρm < ρm†. The first part derives from the above results, namely that meritocracy
and basic entrenchment with homogamic evaluation capability are dominated by their
perfect-information counterparts, and that meritocracy dominates basic entrenchment
with homogamic evaluation capability as well as with perfect information.

P Complements on uncertain voting participation or

identification of group allegiance

Imperfect identification of group allegiance. Our modelling of uncertain voting
participation also applies to imperfect identification of group allegiance. As an illustra-
tion, let us introduce the possibility that a candidate be able to mascarade as belonging
to the other group and thereby be elected. Namely, let us assume there is a probability
ϑ ∈ (0, 1/2) that the best candidate of the majority group91 is incorrectly identified
(tagged as belonging to majority group, when actually belonging to the minority group).
To avoid having to consider complicated coming-out strategies of misidentified members,
we further assume that the real identity of the newly elected member is revealed after
the vote and before curent-period payoffs accrue.

The probability of a fully-entrenched majority with size M = N − 1 losing control,
is strictly positive and proportional to ϑk, as it takes k consecutive occurrences of
“bad luck” to topple its grip on the organization. By the above argument on uncertain
voting participation (replacing the probability of the majority losing the vote with
the probability of recruiting a minority candidate incorrectly identified), there exists
a non-empty neighbourhood of 1 such that for s/b in this neighbourhood, the only
monotone equilibrium is the full-entrenchment equilibrium.
The result obtains by noting that for any x ≤ 1/2,

N(N − 1)
(

1 − k + 1
N

x

)
> 2(k + 1)(1 − k),

and that for any i ∈ {1, ..., k − 1}, 2(i+ k + 1)(i− k + 1) > 2(k + 2)(2 − k) > −N(N − 1).
91We further assume that all candidates of the majority group are equally "unreliable" (incorrectly iden-

tified with the same probability). Otherwise, an untalented yet fully "reliable" candidate (i.e. identified
as perfectly belonging to the majority) might then be preferred to a talented yet "unreliable" candidate.
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This analysis of turncoats presumes that candidates identified as sympathetic to
the majority may actually favor the minority. A milder version of the same idea is
that candidates identified as belonging to a given horizontal group still prefer in-group
colleagues all else being equal, but that the intensity of candidates’ homophily-vs-quality
preferences varies and is not observable. So a majority recruit may for instance put a
much higher weight on talent relative to homophily than the average majority member92

and therefore resist an entrenched strategy. Anticipating this possibility, the majority
may again want to be super-entrenched, so as to minimize the probability of a switch in
control.

Remark on our model of absenteeism. Absenteeism raises the question of what hap-
pens when the numbers of majority and minority members who show up are equal (or if
no-one shows up). The key assumption behind the statement of the Λ function is that a
process is in place, which will guarantee a decision in case of such draws. One can envision
a variety of such processes. For example, the majority leader might take the decision. Or
the assembly of members might reconvene as many times as is needed to break the tie
(technically, an infinite number of times if one wants to reach a decision with probability
1. Otherwise, the results are just limit results). Similarly, one could add a quorum rule
given such reconvening; this quorum, for a given absenteeism process, would generate a
different Λ function, but still one satisfying our assumptions. The Λ function captures
all kinds of processes and all forms of correlation among members’ absences, as long as
the process delivers an outcome.

P.1 Proof of Proposition 12

We look for monotonic (in the sense that a stronger majority makes more merito-
cratic recruitments), pure-strategy symmetric MPEs. When looking for level-l super-
entrenchment equilibria, we now look for equilibria in which (a) the majority is super-
entrenched to level l and (b) the minority always votes for its in-group candidate whenever
it is pivotal with a strictly positive probability, i.e. whenever M ≤ k + l − 1.

Let us thus define the strategy corresponding to "super-entrenchment to level l" for
any group with size i such that i ≥ k or Λ(N − 1 − i) > 0, as the strategy that coincides
with the previous level-l super-entrenchment strategy for the majority (group size i ≥ k),

92For example, a small fraction of majority candidates might have homophily benefit zb, where z < 1,
and thus favor the meritocratic strategy over an entrenched one, despite their colleagues in the majority
favoring the latter over the former.
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and that consists in always voting for the in-group candidate for the minority whenever
Λ(M) > 0, i.e. whenever the minority is pivotal with a strictly positive probability.
Formally, generalizing σ(i) to be the probability that a group with size i ≥ 1 votes for
the out-group candidate when the latter is more talented than the out-group candidate,
super-entrenchment strategies are defined by:

(i) σ(i) = 0 for all i ∈ {N − k − l, ..., k + l} and σ(i) = 1 for i ≥ k + l + 1,

(ii) at any group size i ≥ N−k−l, each group votes for its in-group candidate whenever
she is equally or more talented than the out-group candidate.

We denote by Vi the corresponding value function and ui its first-difference.
Proof for existence. Let s = b > 0. The usual computations93 (see proof of Lemma 2)

yield that for any i ≥ k + l and for any i ≤ k − 2 − l, ui = 0. The usual argument then
applies: using that for group sizes i ∈ {k, ..., k + l − 1},

[
1 − δΛ(i)

(
1 − i

N − 1

)
− δ(1 − Λ(i+ 1)) i

N − 1

]
ui

= [Λ(i) − Λ(i+ 1)]b+ δΛ(i) i− 1
N − 1ui−1 + δ(1 − Λ(i+ 1))

(
1 − i+ 1

N − 1

)
ui+1,

while for group sizes i ∈ {k − 2 − l, ..., k − 2},

[
1 − δΛ(N − i− 2) i

N − 1 − δ(1 − Λ(N − i− 1))
(

1 − i

N − 1

)]
ui

= [Λ(N − i− 2) − Λ(N − i− 1)]b+ δΛ(N − i− 2)
(

1 − i+ 1
N − 1

)
ui+1

+ δ(1 − Λ(N − i− 1)) i− 1
N − 1ui−1,

and lastly for group size k − 1:

[1 − δ(1 − Λ(k))]uk−1 = (1 − 2Λ(k))b+ δ(1 − Λ(k)) k − 1
N − 1uk + δ(1 − Λ(k)) k − 2

N − 1uk−2,

one first shows that ui > 0 for any i ∈ {k− 1 − l, ..., k+ l− 1}. The only non-trivial case
for profitable deviations is thus when the out-group candidate is more talented than the
in-group one. Therefore, since in such a case, for s = b, the one-shot deviation differential

93This could be seen by using the recursive expressions for the sequence (ui)i and supposing by
contradiction that ui ̸= 0 for some i ≥ k + l or ≤ k − 2 − l.
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payoff is given by

−δ(1 − Λ(i))
[(

1 − i

N − 1

)
ui + i− 1

N − 1ui−1

]
< 0

at group size i ∈ {k, ..., N − 1}, and by

−δΛ(N − 1 − i)
[(

1 − i

N − 1

)
ui + i− 1

N − 1ui−1

]
< 0

at group size i ∈ {N − k − l, ..., k − 1}, super-entrenchment to level l is an equilibrium.
The result obtains by continuity for s/b in a neighbourhood of 1.

Proof for uniqueness. We now show that, for s/b close to 1, super-entrenchment at
level l is the unique symmetric MPE such that a stronger majority makes more mer-
itocratic recruitments. Hence, we consider the class of equilibria such that a stronger
majority makes more meritocratic recruitments, and show that, for any candidate equi-
librium within this class, for s/b close to 1, the majority is super-entrenched in k + l.
By monotonicity, this implies that all candidate equilibria within this class must feature
an entrenched majority at majority sizes M ∈ {k, ..., k + l}. We will then show that the
minority best-replies to this strategy by voting for the in-group candidate whenever it is
pivotal with a strictly positive probability, i.e. at any majority size M ≤ k + l − 1.

We henceforth consider a candidate equilibrium within the class of symmetric MPEs
such that a stronger majority makes more meritocratic recruitments. We begin by noting
that when s = b, a group’s flow payoff whenever it is pivotal does not depend on its
making a meritocratic or entrenched recruitment (as the difference between the two is
equal to x(s − b) = 0) and is strictly positive (proportional to xs + b). Moreover, for
s = b, the flow differential payoff in the expression of ui writes as [Λ(i) − Λ(i + 1)]b
(resp. [Λ(i) − Λ(i + 1)](1 − 2x)b) if the minority follows entrenchment (resp. meri-
tocracy) at majority sizes i and i + 1, as [Λ(i) − Λ(i + 1)]b − 2xΛ(i)b if the minority
follows meritocracy at majority size i and entrenchment at majority size i + 1, and as
[Λ(i) − Λ(i + 1)]b + 2xΛ(i + 1)b if the minority follows entrenchment at majority size
i and meritocracy at majority size i + 1. In particular, the flow-payoff term in uk+l−1

writes as Λ(k + l − 1)b if the minority is entrenched at majority size k + l − 1 (resp.
Λ(k + l − 1)(1 − 2x)b if it votes meritocratically). By contrast, for any i ≥ k + l, the
flow-payoff term in ui is equal to 0.

We now show that, for s = b, in any symmetric MPE such that a stronger majority
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makes more meritocratic recruitments

k + l − 1
N − 1 uk+l−1 +

(
1 − k + l

N − 1

)
uk+l > 0

Suppose by contradiction that the above LHS is weakly lower than 0, and thus that
the majority votes meritocratically at size k + l. Suppose first that uk+l ≤ 0. By
monotonicity within the equilibrium class, the majority votes meritocratically at any size
i ≥ k + l, and thus the recursive expression of ui for i ≥ k + l is given by (5) and
yields94 that uk+l−1 ≤ uk+l ≤ ... ≤ uN−2 ≤ 0. Then, summing up (and rearranging)
the recursive expression of uk+l−1 and ui for i ≥ k + l (and rearranging) yields on the
LHS a (positively) weighted sum of ui, i ≥ k + l − 1, which is thus (weakly) negative,
and on the RHS the sum of the flow-payoff term in uk+l−1, which is strictly positive (as
noted above, since Λ(k + l − 1) > 0 = Λ(k + l)), and of a term proportional to uk+l−2.
Therefore, uk+l−2 < 0. We proceed by induction in order to show that ui < 0 for any
i ∈ {k − 1, ..., k + l − 2}. Let M ∈ {k, ..., k + l − 2}, and suppose ui ≤ 0 for any
i ≥ M . Summing and rearranging as above the recursive expressions of the differential
value function ui over indices i ∈ {M, ..., N − 2} gives on the LHS a weighted sum of ui

for i ∈ {M, ..., N − 2}, which is weakly negative with the induction hypothesis, while on
the RHS a first term proportional to uM−1 and a second term which is the sum of the
flow-differential payoffs, equal either to Λ(M)(1−2x)b, Λ(M)b or [Λ(M)+Λ(M +1)2x]b,
and is thus strictly positive. Therefore, uM−1 < 0.

Hence, by induction, ui < 0 for any i ∈ {k − 1, ..., k + l− 2}. Therefore, the majority
is meritocratic at any majority size i ≥ k. As a consequence, the flow differential payoffs
in the expression of ui for i ≤ k − 1 write as [Λ(N − i− 2) − Λ(N − i− 1)](1 − 2x)b > 0
for any i ∈ {k − l − 1, ..., k − 2}, and 0 for any i ≤ k − l − 2.

Let us consider the minority’s incentives. Suppose by contradiction that uk−l−1 ≤ 0.
Then, the recursive expression of ui for i ≤ k − l − 2 is given by (11) and yields that
uk−l−1 ≤ ... ≤ u1 ≤ 0. Furthermore, since the flow differential payoffs are positive for
i ∈ {k− l−1, ..., k−2}, we have that ui ≤ 0 for i ∈ {1, ..., k−1}. Therefore, the minority
votes meritocratically whenever it is pivotal with a strictly positive probability. Hence,
the sum of the flow differential payoffs over all indices i ∈ {1, ..., N − 2} writes as

2Λ(k)(1 − 2x)b+ [1 − 2Λ(k)](1 − 2x)b = (1 − 2x)b > 0

94This can be seen by supposing by contradiction that uN−2 > 0, and reaching a contradiction using
(5). The result then obtains by downward induction, using again (5).
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where the second term is the flow differential payoff in uk−1. Yet this contradicts ui ≤ 0
for all i ∈ {1, ..., N − 2}.

Hence, uk−l−1 > 0. The recursive expressions of the differential value function (11)
now yield that 0 < u1 < ... < uk−l−1. Supposing by contradiction that uk−l ≤ 0 yields
again that ui ≤ 0 for i ∈ {k − l, ..., k − 1}. Hence, by summing the recursive expressions
of ui for i ∈ {k − l, ..., N − 2} and rearranging yields on the LHS a weighted sum of the
differential value function ui for i ∈ {k − l, ..., N − 2}, which is weakly negative, while
on the RHS, a term proportional to uk−l−1 (and thus strictly positive) and the sum of
the flow differential payoffs, which is strictly positive. This is a contradiction, and thus
uk−l > 0. Using repeatedly the same argument, we have by induction that ui > 0 for
any i ≤ k − 2, and as a consequence, the minority is entrenched whenever it has size
i ∈ {k − l, ..., k − 2}, i.e. whenever the majority has size i ∈ {k + 1, ..., k + l − 1}.

Back to the majority, summing again the recursive expression of the differential value
function ui over indices i ≥ k − 1 yields after rearranging, on the LHS a weighted sum
of the differential value function ui for i ∈ {k − 1, ..., N − 2}, which is weakly negative,
while on the RHS, a term proportional to uk−2 (and thus strictly positive) and the sum
of the flow differential payoffs, which is equal to [1 − Λ(k)](1 − 2x) > 0. Hence, the RHS
is strictly positive, which is a contradiction. Therefore, uk+l > 0, and thus using the
recursive expression of ui for i ≥ k+ l (namely (5) as we suppose that the majority votes
meritocratically at size k + l), we have that uk+l−1 > uk+l > uk+l+1 > ... > uN−2 > 0.

Consequently, for s = b,

s− b+ δ

[
k + l − 1
N − 1 uk+l−1 +

(
1 − k + l

N − 1

)
uk+l

]
> 0

and thus the majority is entrenched when it has size k + l.95 By continuity with respect
to s/b, this inequality holds for any s/b sufficiently close to 1, yielding the majority’s
entrenchment at size k + l.

Hence, for s/b > 1 sufficiently close to 1, any candidate equilibrium such that a
larger majority makes more meritocratic recruitments is such that the majority makes
entrenched recruitments at majority sizes M ≤ k+ l, and using the same arguments as in
the proof of Proposition 2, meritocratic recruitments at majority sizes M ≥ k + l + 1.96

95Note that, as s = b, entrenchment at size k + l implies that uk+l = uk+l+1 = ... = uN−2 = 0 (as all
flow-payoff terms in the recursive expressions of ui for i ≥ k + l are thus nil).

96In fact, the argument implies that for s/b sufficiently close to 1, in any symmetric, possibly non-
monotonic MPE, the majority makes entrenched recruitments when it has size k + l, and thus by the
same arguments as in the proof of Proposition 2, and makes meritocratic recruitments when it has
size M ≥ k + l + 1. The requirement that a stronger majority makes more meritocratic recruitments
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The usual recursive arguments (considering first s = b then using the value functions’
continuity with respect to s/b) then yield that for s/b sufficiently close to 1, the minority
uniquely best-replies to such strategies by being entrenched whenever it is pivotal with a
strictly positive probability.

This establishes, for s/b sufficiently close to 1, the uniqueness of the level-l super-
entrenchment equilibrium within the class of equilibria such that a stronger majority
makes more meritocratic recruitments.

Q Proof of Proposition 13

We first show that when candidates reapply, meritocratic strategies do not sustain
an equilibrium for s/b in some interval [1, ρm + ϵ) with ϵ > 0. We then show that
the meritocratic equilibrium path starting from an initial state with empty storage is no
longer an equilibrium path for s/b in some interval [1, ρm + ϵ) with ϵ > 0: an equilibrium
may be observationally equivalent to a meritocratic equilibrium by exhibiting the same
recruitment path, without necessarily being meritocratic off the equilibrium path (more
on this below).

Let us define the meritocratic equilibrium as the equilibrium in which the majority
always recruits the best candidate available97 for any stocks of candidates, and look for
necessary conditions for the meritocratic equilibrium to exist. We show the latter are
more often binding when candidates reapply than when they cannot. Namely, when
candidates reapply, we exhibit one deviation that is profitable for s/b a bit above ρm

(and for all s/b ∈ [1, ρm]). Note that we do not derive a sufficient condition for existence.
Two effects (which we will successively illustrate) are at play, shrinking the existence

region of meritocracy: (i) the ability to recall a talented minority candidate increases the
value of basic entrenchment; and (ii) the preferential treatment given by the majority
to its in-group talented candidate(s) in store makes an incumbent majority with a large
number of talented minority candidates in store less willing to relinquish control.

To illustrate both forces at play, consider first x = 1/2 (so that ρm = 1), and s/b = 1.
Suppose the majority has size k, and no talented majority candidate available98 but
an infinite number of talented minority ones in store. Recruiting a talented minority

then yields that for s/b sufficiently close to 1, the majority must make entrenched recruitments at sizes
M ≤ k + l − 1 too.

97Namely the best candidate among current-period and stored candidates, breaking ties in favor of
in-group candidates as before.

98Namely, it has no such candidate in store, and the current-period majority candidate is untalented.
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candidate instead of an untalented majority one gives a differential payoff equal to

s− b+ δ
k − 1
N − 1

(
s

1 − δ
− Vk+1,0,∞

)
= δ

k − 1
N − 1

(
s

1 − δ
− Vk+1,0,∞

)

where Vk+1,0,∞ is the majority value function when it has size k+ 1, no talented majority
candidate in store and an infinite number of talented minority ones in store. Since for
x = 1/2, a majority with size k + 1 can secure in each period an (expected) flow quality
payoff equal to s̃, and for at least the first two periods, an (expected) flow homophily
payoff equal to b̃/2 99, we have that Vk+1,0,∞ > s/(1 − δ). Furthermore, as the majority
cannot do better than s̃ in terms of flow quality payoff, the term [s/(1 − δ) − Vk+1,0,∞]
does not decrease with s, but strictly decreases with b. Therefore, the above differential
payoff is strictly negative for any s/b in an upper neighbourhood of 1. Because of time
discounting (δ0 < 1), the result holds when the majority has in store a sufficiently large
finite number of talented minority candidates. Hence, for x = 1/2, there exists a strictly
profitable deviation away from meritocracy for s/b ∈ [ρm, ρm + ϵ).

Consider now x < 1/2 (so that ρm > 1), and s/b = ρm. A necessary condition
for the meritocratic equilibrium to exist is that a repeated deviation towards basic
entrenchment whenever the majority is tight (M = k) and has no talented majority
candidate available and exactly one talented minority candidate available, be non
profitable. Upon permanently deviating to basic entrenchment, the majority has one
talented minority candidate in store, and either size k or k + 1. Yet, for x < 1/2,
a basically-entrenched majority’s value function strictly increases with the number of
talented minority candidates in store100. Hence, when candidates reapply, a permanent
deviation away from meritocracy becomes more profitable. Furthermore, an inspection
of the additional payoff due to storability shows that the latter increases with s and
decreases with b. Intuitively, this derives from the fact that having a talented minority

99In particular, reverting to the meritocratic strategy yields to the current majority group an (expected)
flow payoff equal to s̃+ b̃/2 as long as it retains control over the organization, and equal to s̃ after it has
relinquished it to the other group.

100Indeed, a basically-entrenched majority solves an optimal control problem. Moreover, as x < 1/2, the
majority faces two untalented current-period candidates with a strictly positive probability (1 − 2x > 0),
in which case, whenever it is not tight (M > k) and whenever it has a talented minority candidate
in store, it recruits the latter, thus receiving a strictly positive differential payoff with respect to the
empty-storage state. Indeed, the differential payoff from recruiting a stored talented minority candidate
instead of an untalented majority candidate whenever the majority is not tight, is bounded below by:

s− b− x(s− b) δk/(N − 1)
1 − δk/(N − 1) > (1 − x)(s− b) > 0
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candidate in store leads to the latter being recruited (at some point, with strictly positive
probability) instead of a (talented or untalented) in-group candidate or an untalented
out-group candidate, thus yielding a positive quality gain and a positive homophily
loss with respect to the payoff when candidates cannot reapply. Therefore, since in the
absence of storability, we have the equivalence between the profitability of one-shot and
permanent deviations101, there exists a profitable deviation away from meritocracy for
s/b > ρm (and for all s/b ∈ [1, ρm]) , i.e. the existence region of meritocracy shrinks.

Finally we show that the meritocratic equilibrium path starting from an initial state
with empty storage is no longer an equilibrium path for s/b in some interval [ρm, ρm + ϵ)
with ϵ > 0. We first note that, on the meritocratic equilibrium path starting from
an initial state with empty storage, storage is never used102. Considering the repeated
deviation to basic-entrenchment described above yields that, for x < 1/2, there exists a
strictly profitable deviation away from this equilibrium path for s/b slightly above ρm.
Hence, when x < 1/2, then for s/b in some interval [ρm, ρm+ϵ) with ϵ > 0, the meritocratic
equilibrium path starting from an initial state with empty storage is no longer so.

R Hierarchies and the glass ceiling

For simplicity, we look at the continuous-time version of our model. Consider a large
two-tier organization with a mass 1 of senior positions and a mass J > 1 of junior
positions. A higher J corresponds to a “more pyramidal” organization. Between times
t and t + dt, a fraction χSdt of seniors departs and is replaced by juniors promoted to
seniority; a fraction χJJdt of juniors departs as well. To offset these two flows out of the
junior pool, a fraction χ̂Jdt of new juniors is recruited (where Jχ̂ = χS + JχJ). The
flow of talented majority (minority) candidates is Xdt. We will assume that X ≤ Jχ̂

(otherwise the organization would be homogenous, and the absence of minority juniors
would deprive us of an analysis of the glass ceiling). Seniors have control over hiring and
promotion decisions.

As noted in the text, a glass ceiling in such hierarchical organizations results from
control being located at the senior level. This operates through two channels:

101Hence, when candidates cannot reapply, the above repeated deviation yields a zero differential payoff
for s/b = ρm.

102Indeed, as we assume α = 0, the organization faces at most one new talented candidate each period,
and on the meritocratic equilibrium path, recruits her/him.
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• Concern for control: as earlier in the paper, control allows groups to engage in
favoritism. Because control is located at the senior level, this in turn implies some
discrimination in promotions, which in general exceeds that at the hiring level (if
any). A concern for control and the concomitant discrimination may arise even in
large organizations, either because of shocks, or because the talent pool is larger in
the minority.

• Differential mingling effect: for organizational reasons, senior members tend to
hang around more with senior members than with junior ones. Their homophily
concerns are therefore higher for promotions than for hiring decisions.

Because the second effect is at this stage of the paper newer, we illustrate it through a
simple example, which can be much enriched in ways that we later discuss. Assume that
senior members enjoy (expected lifetime) homophily benefits from in-group senior and
junior members, which we denote respectively by bS and bJ . The differential mingling
effect is captured by bS > bJ . A fraction x ≤ 1/2 of new hires are in-group talented
juniors, and similarly for the out-group ones: xJχ̂dt = Xdt. Talent is observed prior to
hiring. A talented member brings quality benefits to seniors equal to sJ when junior,
and sS > sJ when senior. Assume that sl > bl at both levels l ∈ {J, S}, and that
sS − sJ > bS − bJ (these two conditions generalize the previous assumption that quality
matters to the majority).

In this framework, majority members are never worried about losing control, as the
promotion of those who wil bring them the highest net benefits will always be tilted
in favor of in-group juniors. This leads us to focus on the majority’s pecking order : A
promotion yields discounted net benefit to a majority senior member equal to 1) sS −
sJ + bS − bJ in the case of an in-group talented member; 2) sS − sJ for an out-group
talented member; 3) bS − bJ for an in-group untalented member; 4) 0 for an out-group
untalented member. This pecking order implies that promotion decisions will be tilted in
favor of in-group members (except in the non-generic case in which all talented juniors
are promoted and no untalented one is). In contrast, the junior population is balanced in
composition; indeed, there is no rationale for the majority to discriminate at the hiring
state as long as sJ > bJ .

When X < χS < 2X, i.e. equivalently x < 1
/[

1 + JχJ/χS
]
< 2x, in steady state the

organization promotes all talented in-group juniors, a fraction z of talented out-group
juniors, and no untalented juniors. The flows in and out of the junior and senior pools
must balance, yielding respectively: Jχ̂ = χS + JχJ , and Jχ̂x(1 + z) = χS.
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We define the glass ceiling index as the relative probability of promotion of talented
majority and minority members, minus 1:103

γ ≡ 1
z

− 1 = 2X − χS

χS −X
∈ (0,∞).

In this region, the glass ceiling index is invariant with how pyramidal the organization is
(J)104, decreases with the frequency of senior-level vacancies (χS) and increases with the
flow of talented candidates (X). Covering all parameter regions, the glass ceiling index
is monotonic with χS/X.105

Proposition R.1. (Glass ceiling) In the hierarchical organization’s steady state, hiring
at the junior level is meritocratic. By contrast, there exists a glass ceiling for minority
juniors.

This environment can be enriched in interesting ways. First, one may distinguish
between talent and "senior potential"; only a fraction of talented members have the po-
tential to make a more important contribution at the senior level; furthermore it may
take time for the organization to discover who has such senior potential (there is a time of
reckoning). Second, talented members may have outside opportunities. Talented women
may then quit the organization due to a discouragement effect: either they have been
identified as lacking senior potential (their male counterparts by contrast staying in the
organization), or the delay in being promoted is not worth the wait. Finally, the possi-
bility of outside recruitment at the senior level would impact the glass ceiling effect.

S Negative homophily

As claimed in the text (see footnote 6), the case b̃ < 0, corresponding to negative
homophily, can be accommodated in our model. Indeed, the set of possible flow payoffs in
any period still writes as {s̃, 0, s̃+ b̃, b̃}. Hence, for b̃ < 0, two cases must be distinguished:

103This definition of the glass ceiling index only looks at flows and is a conservative estimate of the
glass ceiling; indeed, were we to look at stock, the glass ceiling effect would be stronger because the
share of talented minority juniors promoted to seniority (over the whole stock of such juniors) would be
below z (whenever z < x, the steady state of the junior pool features a mixture of talented minority and
untalented majority juniors).

104An increase in J has two opposite effects: it makes it more difficult for a junior to be promoted, and
talented minority members are the first to be left out; but it also makes talented juniors scarcer in the
junior pool, increasing the minority members’ probability of promotion.

105Indeed, for χS > 2X, the senior majority hires all talented juniors and (some) untalented in-group
juniors, and thus γ = 0, whereas for χS < X, it promotes no out-group talented juniors, only talented
in-group ones, and thus we set γ = +∞.
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• s̃+ b̃ < 0 (i.e. −1 < s̃/b̃ < 0): the majority always votes for the minority candidate.
The (end-of-period) majority size converges to k, which is an absorbing state. The
majority then switches and control alternates between the two groups.

• s̃+ b̃ > 0 (i.e. s̃/b̃ < −1): there always exists an equilibrium in which the majority
votes for the most talented candidate with a tie-breaking rule in favor of the minority
candidate.

Let us provide a few more details on the second case (s̃/b̃ < −1). Indeed, the same
computations as in the proof of Lemma 2 (see Online Appendix B) yield that, letting
ui ≡ Vi+1 − Vi, with Vi the value function with such strategies, 0 < u1 < ... < uk−1 and
uk−1 > ... > uN−2 > 0, with

uk−1 = −(1 − 2x)b+ δx

[
k − 1
N − 1uk + uk−1 + k − 2

N − 1uk−2

]
,

and thus in particular,
[
1 − 2δxN − 2

N − 1

]
uk−1 < −(1 − 2x)b.

As a consequence, deviations that yield a lower current-period flow payoff, together with
a lower (in a first-order stochastic sense) distribution of next-period in-group sizes are
strictly unprofitable. Moreover, as 0 < uN−2 < ... < uk−1, the deviation differential payoff
for the majority from picking its in-group candidate instead of an at-least-as-talented out-
group candidate (hence opting for a higher distribution of next-period in-group sizes at
the expense of a lower current-period flow payoff) is maximal when both candidates have
the same talent and the majority has size k. It then writes as

b+ δ
k − 1
N − 1(uk−1 + uk) < b+ δ

N − 2
N − 1uk−1 < 0

using the above upper bound on uk−1. Therefore, such a deviation is never profitable for
the majority, and thus these strategies form an equilibrium.

T More than two horizontal groups

Suppose three groups X ∈ {A,B,C} are located along the Hotelling line at −1, 0
and 1 respectively. The homophily benefit for a group X when the hired candidate is X ′

is b[1 − d(X,X ′)] where d(X,X ′) is the distance between the group and the candidate’s
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locations. Each period, one member quits and is replaced by one of the candidates
through majority voting. As preferences are single-peaked, we assume that the Condorcet
winner is elected. But, as with two groups, group preferences embody not only the static
preference among current candidates, but also possible losses of control in the future.

There is either no talented candidate (probability 1−3x) or a single talented candidate
(probability x ≤ 1/3 that it belongs to any of the three groups).

One can show that for s/b < 1, s/b > 1 and close to 1, and s/b large, the unique
equilibria are the analogs of the equilibria in the two-group environment.

Indeed, for s/b < 1, the unique equilibrium is full entrenchment, i.e., each group
fully entrenches itself when majoritarian on its own, and if neither group A nor C has
a majority on its own, the smallest flank sides with group B against the largest flank,
and group B eventually reaches a majority on its own (and subsequently fully entrenches
itself).

For s/b close to 1, the unique equilibrium is basic entrenchment with two flanks and
a center:

• Groups A and C entrench themselves when majoritarian on their own: if they obtain
the majority alone (they have at least N/2 members), they keep it. When their
majority is not at stake, they vote for group B’s candidate when (s)he is strictly
more talented than their own candidate, and they vote for their own candidate
otherwise.

• If neither group A nor group C has a majority on its own, group B is pivotal,
i.e., has a de facto although not necessarily a de jure majority. It then behaves
meritocratically as long as its majority is not tight.

• Group B has a "tight de facto majority" if the largest flank is in a position of
acquiring control next period, were its candidate selected today. When group B

has a tight de facto majority, the smallest flank sides with it to block the potential
formation of an entrenched majority of members of the largest flank.

In this equilibrium, the smallest flank, which has an even higher stake than the center
in preventing entrenchment by the opposite flank, always sides with the moderate group
against the largest flank, and allows the moderate group to retain control even if it does
not by itself enjoy majority control. Just like the basically-entrenched majority in the
two-group paradigm, the center with respect to both flanks, and each flank with respect
to the center behave meritocratically as long as their majority (whether on its own for a
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flank, or with another group’s support for the center) is not tight.
Lastly, for s/b sufficiently large, the unique equilibrium is meritocracy:

• All groups always vote for the (single) talented candidate whenever there is one.

• In the absence of a talented candidate, group B’s in-group candidate is elected.
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