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1 Introduction

The selection of new members of a board of directors, a corporation, a cooperative, a

trade or monetary union, an academic department or a polity, underlies institutional dynam-

ics and determines whether the organization succeeds or is consigned to oblivion. Most often,

new members are coopted,1 i.e., recruited by incumbent members according to a (formal or

informal) voting process, perhaps under constraints imposed by internal rules or external in-

tervention. Even in more hierarchical organizations, recruitment often reflects some degree

of collegiality, whereby whoever holds the formal authority on the recruitment decision puts

substantial weight on subordinates’ (candidates’ would-be colleagues) opinions. We aim at

studying the consequences of such collegiality.

This paper analyzes the Markovian dynamics, the discrimination in hiring (and promo-

tion), and the welfare properties of an organization whose members are forward-looking and

are driven by two motives in their cooptation decisions: talent and homophily. All else be-

ing equal, all members prefer a more talented candidate to a less talented one. However,

homophily along a "horizontal" trait (gender, religion, ethnicity, politics, scientific field or

approach, values, family, friendship, class loyalty...) makes members prefer an in-group can-

didate to an out-group one unless the latter is substantially more talented than the former.

This misalignment of horizontal preferences creates a benefit from controlling the organiza-

tion’s recruitments. Members of the majority group may favor an in-group candidate over

a more talented out-group one, so as to stuff the organization with their chums and thereby

entrench their grip on the organization’s recruitments. This violates meritocracy, defined here

as the selection of the more talented.

The first contribution of our paper is to derive theoretical predictions about the drivers

of entrenchment in the absence of public intervention. (a) Homophilic intensity. An obvi-

ous factor is the preference for homophily: agents who attach more importance to mingling

with their in-group are more likely to give up on meritocracy. (b) Weak-link principle. It

takes two to build meritocracy: the cooptation process is only as meritocratic as the group

with the strongest homophily preferences allows it. (c) Uncertainty about future control. A

thinner majority is more prone to depart from meritocratic hiring. The larger the majority
1We focus on “cooptation” in the sense of “periodic selection by incumbent members of new members, ac-

cording to a given voting rule”. A second and equally important acception of “cooptation”, associated with
Selznick (1948, 1949), argues that absorbing new elements in an organization can be a means of averting threats
to its stability or existence. We refer to the literature building on Acemoglu and Robinson (2000)’s celebrated
analysis on the extension of the franchise to avoid upheaval (threat-averting cooptation involves the entire
threatening group in Acemoglu-Robinson, and only a sub-group in Bertocchi-Spagat 2001). Introducing the
possibility that coopting outsiders may change their behaviour and safeguard the organization is a straightfor-
ward yet interesting extension of our model – for instance, the outsiders’ nuisance power could be captured by
assuming that the probability that the organization continues falls sharply when it is too monolithic (e.g., due
to the prospect of a "revolution").
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size, the tighter the majority’s grip on the organization, the milder the discrimination against

minority candidates. Moreover, when voting participation is uncertain or when allegiance to

the in-group is assessed with noise, the majority may optimally build a buffer against unex-

pected losses of control. This "buffer effect" will similarly drive some unintended consequences

of policy interventions (see below). (d) Homogamic evaluation capability. Talent evaluation

that is more accurate within the in-group (due to field expertise or familiarity) under weak

conditions raises entrenchment, as the majority is less able to identify talent within the pool

of minority candidates. (e) Patience. When facing a trade-off between coopting a minority

member or a less talented majority one, the majority members weigh the discounted bene-

fits from the talent differential against the future control benefits. We show that the former

have a relatively lower weight when agents have a more sustained relationship with the or-

ganization: a longer expected tenure (a longer time-horizon) within the organization makes

majority members more prone to entrench the organization. (f) Availability duration. When

rejected candidates are likely to re-apply, the cost for the majority to secure its entrenchment

by turning down a talented minority candidate decreases, making meritocracy violations more

attractive to the majority.

As allowed by our framework, entrenchment is not always socially detrimental – for in-

stance, friendship circles are often based on homophily in tastes. We emphasize a fundamental

asymmetry between entrenchment and meritocracy, though: While entrenchment always pre-

vails whenever it is socially desirable, there exists a range of parameter values such that

meritocracy is desirable and yet is violated in equilibrium. We refer to the cause of this dis-

crepancy as a collegial bias against meritocracy, which arises from talent being scarce and

strength lying in numbers.

Our second contribution is an analysis of familiar public policy interventions to promote

meritocracy. This paper provides an analysis (the first to the best of our knowledge) of three

common policy interventions on a collegial organization: the overruling of majority decisions,

quality assessment exercises and affirmative action. These interventions differ not only in the

information required to set them in motion, but also in their efficacy at achieving their meri-

tocratic objective.

Firstly, the occasional overruling of hiring decisions can backfire by increasing the ma-

jority’s incentive to entrench, as the majority builds a larger buffer to reduce the probability

of its losing control. The bottom line is that unless they take continuous control over the

recruitment, even well-intentioned and well-informed public officials may well do more harm

than good. Secondly, financial rewards for quality (for example through research assessment

exercises and research councils’ grants) promote meritocracy, but they must be targeted to
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where they have the most impact, that is organizations that under laissez-faire are neither

strongly entrenched nor naturally meritocratic. Thirdly, affirmative action (in the form of a

minority quota) can switch the organization’s regime from entrenchment to meritocracy by

reducing the value for majority members of controlling recruitments. The policy however is

costly when the meritocratic decision would select the majority candidate, but the minority

quota is binding, forcing the recruitment of the minority candidate. Overall, well-meaning

policies cannot be presumed to raise welfare without considering the organizational response

they trigger.

Technical contribution and roadmap.

Section 2 builds the baseline model under laissez-faire. As we later show, this model gives

the best chance to meritocracy by assuming that (i) the majority can perfectly predict prospec-

tive hires’ allegiance and there is no uncertainty about turnout in the recruitment elections,

and (ii) groups can identify talent equally well for out-group candidates and for in-group ones.

The organization has an arbitrary size. There are two horizontal groups, and two talent

levels (we later generalize the talent distribution to a continuum). Organization’s members en-

joy linear quality and homophily benefits from their colleagues’ attributes (we later generalize

to non-linear and asymmetric homophily benefits). Quality benefits exceed homophily ones

(the interesting case, as otherwise the majority only hires its in-group candidates). Section 2

fully characterizes pure-strategy Markov Perfect Equilibria. We show that MPEs satisfy the

following properties: (a) equilibrium strategies are "canonical", meaning that hires are merito-

cratic except perhaps for tight majorities (when a minority appointment may lead to a loss of

control); (b) a group is more inclined to be meritocratic if the other group also is (strategic com-

plementarity); (c) in the symmetric case, the organization is either meritocratic or entrenched,

and the two regimes coexist over a non-empty range of the quality-over-homophily-benefit ra-

tio.

Section 2 then computes the welfares of current minority and majority members. The two

equilibria, when coexisting, are Pareto-ranked with meritocracy dominating entrenchment,

which enables us to make a selection and perform comparative statics and policy evaluation.

A second measure of welfare is aggregate ergodic welfare. With this criterion as well, the

meritocratic equilibrium, while delivering lower homophily benefits on average, dominates the

entrenchment one.

Section 3 derives the implications of the three familiar public policies previously described.

Section 4 relaxes the assumptions of the baseline model. It extends the analysis to a continuous

quality space (4.1), homogamic evaluation capability (4.2.1), uncertain voting participation

(4.2.2), and “anterooms for appointments”, which can be external when rejected candidates
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may reapply or internal when junior members may be promoted to a senior position2 (4.3).

The paper concludes by discussing the related literature (Section 5) and avenues for future

theoretical and empirical research (Section 6). Omitted proofs can be found in the Online

Appendix.

2 Baseline model

There is an infinite time horizon with periods t ∈ (−∞,+∞). The organization is com-

posed of N = 2k members. At the beginning of each period, one member of the organization,

drawn randomly from the uniform distribution, departs. We denote by δ the "life-adjusted dis-

count factor", i.e. the pure-time discount factor times the probability of still being a member

of the organization in the following period: letting δ0 ∈ (0, 1) denote the pure-time discount

factor, then δ ≡ δ0(1 − 1/N). The departure is immediately followed by a recruitment. The

intra-period timing is summarized in Figure 1.

Each individual has a two-dimensional type. The vertical type captures talent or quality

and takes one of two possible values, 0 (mediocre) or s̃ (talented), where s̃ > 0 is the incre-

mental per-period contribution of a talented individual to each other member’s payoff. The

horizontal type stands for race/gender/tastes/opinions and can take two values {A,B}. A

member of horizontal type X ∈ {A,B} exerts per-period externality b̃X > 0 on members of

the same type,3 but not on members of the opposite type, and this regardless of their talent.4

We thus assume that each member derives utility from: (i) their colleagues’ talent, i.e.

the vertical attributes of members of the organization, and (ii) homophily over tastes: ceteris

paribus, each member prefers colleagues who share their horizontal type. So, member ι of

type X ∈ {A,B} receives date-t flow payoff

uι,t = n−ι,ts̃+m−ι,tb̃X

2In hierarchical organizations, the oft-made observation that minorities experience difficulties in rising above
a certain level suggests that meritocracy is more often violated at higher than at lower levels. Even if in-group
favoritism contributes to discrimination against minorities, it is not a priori obvious that it should imply a lower
rate of promotion for the latter (a "glass ceiling"). Nonetheless, Section 4.3.2 shows in the natural extension to
a two-level organization that a glass ceiling results from control being located at the senior level

3 The case b̃X < 0, corresponding to negative homophily – e.g., envy towards the likes, preference for diversity
or for a smaller in-group, etc. (see for instance Bagues and Esteve-Volart 2010) – can be accommodated in our
model. See Online Appendix Q.

4Members may enjoy direct homophily benefits, associated with the desire of sharing identity (political or
other) or interests (say, similar leisure activities) with fellow members. Alternatively, homophily benefits may
be more instrumental/indirect. Having like-minded members on board allows one to weigh on organizational
decisions and the sharing of private benefits: more committees are filled by in-group members and more
suggestions favorable to the group are made.

4



Figure 1: Timing.

where n−ι,t ≤ N − 1 is the number of talented colleagues and m−ι,t ≤ N − 1 is the number of

in-group colleagues at date t.5

In each period, there is at least one candidate of each type. Assuming then that there

is exactly one of each type involves no loss of generality as all members of the organization

always prefer the most talented candidate of a given horizontal type to any candidate of the

same type but with lesser talent, and are indifferent if there are multiple "most-talented" can-

didates of a given horizontal type. Moreover, we assume that candidates apply to become

members only once and that the candidates’ types are observable prior to the vote – we will

later relax these two assumptions.

Let s ≡ s̃/
[
1−δ0(1−2/N)

]
denote the expected incremental lifetime contribution of a new

talented (relative to mediocre) appointee to each incumbent member of the organization.6 We

similarly denote by bX ≡ b̃X/
[
1− δ0(1− 2/N)

]
the expected lifetime homophily benefit for an

incumbent member of type X ∈ {A,B} generated by a new in-group member.

The decision rule is the majority rule, with each of the 2k−1 members of the organization

at the time of the vote having one vote. Let M ∈ {k, k + 1, ..., 2k − 1} denote the size of

(number of individuals in) the majority. We say that the majority is tight if M = k.7

To make things interesting, we assume s > bX for all X ∈ {A,B}. Otherwise, if bX ≥ s,

systematically voting for the majority candidate would yield the highest possible continuation

payoff for majority X, and (in the absence of coordination failure) such a majority would

always move towards perfect homogeneity.

Candidates’ talents are i.i.d. across periods. We let x ∈ (0, 1/2] denote the probability

that the majority (or minority) candidate is more talented (i.e. has vertical type s while

the other candidate has vertical type 0), and thus (1 − 2x) is the probability that they are

equally talented (either both of quality s or both of quality 0). Let α ∈ [0, 1] denote the
5Our insights are unchanged if a talented member derives a "quality payoff" from her own talent.
6The term δ0(1 − 2/N) stems from the conditioning on both the current member and the newly recruited

one still being in the organization in the next period.
7We refer to a majority member as "he", to a minority member as "she", to a generic organization member

as "they", and to the principal – whenever there is one – as "it".
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probability that both are of talent s conditional on both being equally talented. The probabil-

ity of an in-group (or out-group) candidate being of quality s is thus equal to x ≡ x+(1−2x)α.

Our equilibrium concept is pure-strategy Markov Perfection. Given the other group’s

strategy, all members of a given group X ∈ {A,B} at date t have the same objective function.

Moreover, if they have not exited by date t + τ > t, they will have the same date-(t + τ)

continuation payoff function as the other members of the same group, regardless of their

respective cohort and talent. So, only the sizeM of the majority and its identity X are payoff-

relevant in the sense of Maskin-Tirole (2001). Markov strategies therefore depend neither on

time t, nor on the cohorts or talents of incumbent members.

In addition, we assume that each member votes as if they were pivotal, i.e., as if they alone

chose the candidate. Hence, we ignore coordination failures in which, say, a majority member

votes for an unfavored candidate because other majority members also do.8 Consequently,

at any date, all members of a given group vote unanimously to maximize their current-plus-

continuation payoff.9

2.1 Equilibrium characterization and existence results

2.1.1 Majority’s best response and strategic complementarities

The state variable for a majority of horizontal typeX ∈ {A,B} is its sizeM ∈ {k, ..., N−1}.

Let us then study the "best response" for a majority of type X ∈ {A,B} and size M ∈

{k, ..., N−1} to the other group’s strategy, summarized by the current majority’s continuation

value upon losing control (reaching size k − 1).

Since the present discounted value of benefits accruing from other incumbent members

plays no role in an MPE, we do not include the legacy terms in the expression of the value

functions. For any group size i ∈ {1, ..., N−1} just before candidacies are declared (see Figure

1), we denote by Vi,X the value function of an individual in group X: Vi,X is the expected

discounted value of flow payoffs brought about by colleagues who will be coopted later, in the

current period and in future periods.

A majority member’s continuation value at majority size M ≥ k is given by

bX + smaj + δ

[
M

N − 1VM,X +
(

1− M

N − 1

)
VM+1,X

]
8The assumption that agents vote as if they were pivotal could stem in particular from a trembling-hand

requirement as in Acemoglu et al. (2009), or from a coalition-proofness requirement among current members
of the same horizontal group (majority/minority).

9Since we thus rule out coordination failures within the majority, the minority’s behaviour is for now irrel-
evant (uncertain voting participation or identification of group allegiance will be considered in Section 4.2.2).
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if the majority candidate with talent (expected lifetime contribution) smaj ∈ {0, s} is recruited

in the current period, and by

smin + δ

[
M − 1
N − 1 VM−1,X +

(
1− M − 1

N − 1

)
VM,X

]

if the minority candidate with talent (expected lifetime contribution) smin ∈ {0, s} is. The

value function VM,X of a majority member at majority size M is the expectation of its con-

tinuation value over all current-period possible events (candidates’ profiles and recruitment

decisions).10 The majority’s choice between the two candidates is thus determined by the

following comparison:

bX + smaj − smin + δ

[
M − 1
N − 1 (VM,X − VM−1,X) +

(
1− M

N − 1

)
(VM+1,X − VM,X)

]
≶ 0. (1)

Canonical strategies. We will show that all pure-strategy, Markov Perfect best-responses

are canonical, i.e. strategies such that:

(i) Members of the majority (all) vote for the majority candidate if the latter is at least as

talented as the minority candidate,

(ii) When the minority candidate is more talented, members of a type-X majority, with X ∈

{A,B}, (all) vote for the majority candidate with probabilities {σX(M)}M∈{k,...,N−1}

with σX(k) ∈ {0, 1} and σX(M) = 0 if M > k.

Intuitively, the assumptions of the basic model ensure that control can be retained simply by

coopting a majority candidate when the majority is tight (M = k). In a canonical equilibrium,

hires are meritocratic except perhaps for tight majorities. We will say that a type-X majority

is

• meritocratic if σX(M) = 0 for all M ≥ k;

• entrenched if it favors a mediocre majority candidate over a talented minority one only

when the majority is tight (M = k), i.e. if σX(k) = 1 and σX(M) = 0 for all M ≥ k+ 1.

For future reference, we will also say that a type-X majority is entrenched at level l if σX(M) =

1 for M ∈ {k, ..., k + l}, and σX(M) = 0 for M ≥ k + l + 1. Correspondingly, a type-X

majority is super-entrenched (resp. fully entrenched) if it is entrenched at some level l ≥ 1

(resp. l = k − 1). Online Appendix A proves the following intuitive property:

Lemma 1. (Majority’s best response and canonical strategies) Fix Vk−1,X in the

feasible range (
[
0, ((x+x)s+(1−x)bX)/(1−δ)

]
). The majority’s best response to Vk−1,X among

pure Markov Perfect strategies is either canonical meritocracy or canonical entrenchment.
10Moreover, any continuation value Vi,X with i ∈ {1, ..., N − 1} thus lies in the interval

[
0, ((x+ x)s+ (1−

x)bX)/(1− δ)
]
.
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Put differently, unless control is immediately at stake (M = k), the majority’s best re-

sponse is always to recruit the most talented candidate, breaking ties in favor of the in-group

candidate.

Our next economic insight – the strategic complementarity of canonical strategies – builds

on this observation. Formally, let us, abusing notation, denote by V r,r’
i,X group X’s continua-

tion value function when it has size i and follows strategy r when it has the majority, with

r = m if the latter is canonical meritocracy and r = e if it is canonical entrenchment, and the

other group follows strategy r’ ∈ {m, e} when it has the majority. When r = e, control never

switches and the other group’s strategy is irrelevant, and so V e,m
k,X = V e,e

k,X .

When r = m and the other group is entrenched, the "flow" payoffs in V m,e
i,X for i ≤ k − 1

are bounded above by (x + x)s + xb and are strictly lower than the bound when i = k − 1,

while the "flow" payoffs in V m,m
i,X for i ≶ k − 1 are bounded below by (x + x)s + xb (and are

strictly higher than the bound when i ≥ k if x < 1/2). This implies that V m,m
k,X > V m,e

k,X . And

therefore,

V m,m
k,W − V e,m

k,X > V m,e
k,X − V

e,e
k,X .

Consequently, group X is more inclined to be meritocratic when it has a tight majority if the

other group is also meritocratic.

Proposition 1. (The strategic complementarity of canonical strategies) A given group

X ∈ {A,B} is more inclined to be meritocratic (resp. entrenched) if the other group is itself

meritocratic (resp. entrenched).

2.1.2 The symmetric case

Except in the asymmetric extension of Section 2.3 and for expositional conciseness, we

henceforth restrict our attention to the symmetric case in which both horizontal groups have

the same homophily preferences: bA = bB ≡ b.

In the symmetric case, Lemma 1 and Proposition 1 together imply that generically, any

pure-strategy MPE is canonical and symmetric,11 i.e. that the behaviors of A and B majorities

are the same, either canonically meritocratic or canonically entrenched. We therefore drop

the subscript X in the value function. We simply call such equilibria canonical and refer

equivalently to a meritocratic/entrenched majority or organization.

Before studying the existence regions of such equilibria, let us describe some properties

of the value functions of majority and minority members under such strategies. Figure 2
11Suppose that in equilibrium, group X is meritocratic and group Y is entrenched. Necessarily, V m,ek,X ≥ V

e,e
k,X

and V e,mk,Y ≥ V m,mk,Y . However, for any r, r′ ∈ {e,m}, V r,r
′

k,X = V r,r
′

k,Y as payoffs are symmetric. The equality
V e,ek,X = V e,mk,Y would imply that V m,ek,X ≥ V

m,m
k,X , which we know is impossible from the proof of Proposition 1.
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Figure 2: Properties of value functions in the meritocratic and in the entrenched equilibria.

illustrates the following lemma.

Lemma 2. (Properties of value functions in the meritocratic (m) and in the en-
trenched (e) equilibria)

(i) (Majority value function) For i ∈ {k, ..., 2k − 1}, V e
i is strictly increasing in i and has

strictly decreasing differences.12 Similarly, V m
i is increasing in i and has decreasing

differences, strictly so if and only if x < 1/2.

(ii) (Minority value function) For i ∈ {1, ..., k − 1}, V e
i is strictly decreasing in i and has

strictly increasing differences in i. By contrast, for i ∈ {1, ..., k − 1}, V m
i is increasing

in i and has increasing differences in i, strictly so if and only if x < 1/2.

(iii) (Control benefits) For r ∈ {e,m} and any i ≥ k, V r
i ≥ V r

N−1−i (strictly so when r = e,

and when r = m and x < 1/2).

Intuitively, the three parts of Lemma 2 stem from the following observations. Firstly, in a

canonical equilibrium, the majority always picks its "myopically favorite" candidate except in

the entrenchment equilibrium whenM = k, where "myopically favorite" refers to the choice the

majority would make in the absence of future elections or, equivalently, if future hiring decisions

did not hinge on the current one. The higher M is, the more remote the appointment of a
12By "decreasing differences" (resp. "increasing differences"), we refer to the following concavity (resp. con-

vexity) property:

|Vi+1 − Vi| ≤ |Vj+1 − Vj |
(
resp. |Vi+1 − Vi| ≥ |Vj+1 − Vj |

)
whenever j < i.
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Figure 3: Existence regions for meritocratic and entrenched equilibria over the s/b line.

myopically suboptimal candidate (entrenchment equilibrium) and the more remote a possible

loss of control (meritocratic equilibrium).

Secondly, for minority members, the impact of moving further away from the tight-majority

state (M = k) depends on the equilibrium: in the entrenched equilibrium, the further away

from minority size k − 1, the smaller the additional loss of getting one step closer to the

majority’s entrenched recruitment at k−1, whereas in the meritocratic equilibrium, the further

away from minority size k − 1, the smaller the additional benefit of getting one step closer to

possibly seizing control of the organization.

Thirdly, homophily induces a benefit from control for the majority whenever candidates

have the same talent – as the majority can then pick its in-group candidate at no cost in terms

of quality.13

Proposition 2. (The symmetric case: Canonical Equilibria)

(i) All pure-strategy Markov Perfect equilibria are canonical and symmetric.

There exists finite thresholds ρe and ρm satisfying: 1 ≤ ρm < ρe < +∞, such that

(ii) The entrenchment equilibrium exists if and only if s/b ≤ ρe,

(iii) The meritocratic equilibrium exists if and only if s/b ≥ ρm.

(iv) Patience fosters entrenchment: for any δ0, ∂ρm/∂δ0 ≥ 0, and ∂ρe/∂δ0 ≥ 0.14

Figure 3 describes the existence regions over the line s/b for given x, δ. For s/b close to 1,

selecting an untalented peer over a better qualified minority candidate comes at little cost for

the majority, and there is a benefit from keeping control, so the majority is entrenched. As the

ratio quality/homophily benefits s/b increases, the cooptation game moves from a (bounded)

region where only the entrenchment equilibrium exists, to an intermediate (bounded) interval

where, due to strategic complementarities, both equilibria coexist.15 As s/b continues to in-

crease, it reaches the (half-line) region where only the meritocratic equilibrium exists.
13The benefit from control persists with a continuum of vertical types (see Section 4.1) as the majority then

reaps a homophily benefit when recruiting its in-group candidate against a slightly more talented out-group
candidate.

14Furthermore, for δ0 small, ρm and ρe increase with the size of the organization N = 2k.
15As usual, there is then a third, mixed-strategy equilibrium with σ(k) ∈ (0, 1). (We focus on pure-strategy

equilibria throughout the paper. Besides, as will be clear shortly, this mixed-strategy equilibrium is dominated
by the pure-strategy meritocratic equilibrium.)
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As the discount factor increases, the existence region of the meritocratic equilibrium shrinks

while that of the entrenchment equilibrium widens. This comparative static is intuitive as when

members become more patient, the cost of losing the majority to the outgroup increases.

Remark. If x = 1/2, i.e. the probability that both candidates have the same vertical type is

nil, then ρm = 1: for any s ≥ b, there exists a meritocratic equilibrium. The result is intuitive,

as there is no pure benefit from control. By contrast, ρm > 1 whenever x < 1/2.

2.2 Welfare

2.2.1 Non-ergodic member welfare

We first consider current members’ welfare, defined as their expected discounted surplus

(from current and future hires), at any given legacy and period, therefore computed from the

continuation payoffs Vi. We refer to this welfare notion as "non-ergodic member welfare".

The next Proposition shows that, when they coexist, the meritocratic equilibrium is pre-

ferred to the entrenched one by all members of the organization. Intuitively, at any given

majority size, minority members prefer the meritocratic equilibrium, while majority members,

who can always select to be entrenched, weakly prefer the meritocratic equilibrium which

delivers a higher payoff when surrendering control.16

Proposition 3. (Non-ergodic welfare)Whenever the meritocratic and the entrenched MPE

coexist, i.e., for s/b ∈ (ρm, ρe), at any majority size the meritocratic equilibrium is preferred

by all current members of the organization to the entrenchment equilibrium.

As a consequence, from the perspective of current members, the meritocratic equilibrium

Pareto-dominates the entrenchment equilibrium whenever they coexist.

2.2.2 Ergodic aggregate welfare

We now draw an aggregate-welfare comparison between entrenchment and meritocracy in

their respective ergodic distribution from the perspective of a principal or third-party putting

at least as much weight on quality as on homophily benefits. Denoting by S the organiza-

tion’s ergodic per-period aggregate quality, by B the ergodic per-period aggregate homophily

benefits, the principal’s objective writes

W ≡ qS +B

16Regardless to the regime r ∈ {m, e}, the majority faces an optimal stochastic control problem with boundary
value Vk−1. All valuations Vk+l, with l ≥ 0, are therefore non-decreasing functions of Vk−1.
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where q ≥ 1 is the (relative) weight put by the principal on quality relative to homophily.

The "no-externality-on-third-parties case" q = 1 corresponds to the maximization of (ergodic)

total member surplus. But it often makes sense to assume that q > 1: homophily benefits are

fully appropriated by the members, while talent yields benefits for both members and their

organization or society (taxes, innovation, prestige, etc.).

We first describe the ergodic distributions of majority sizes. Since, by convention, payoffs

in a given period accrue after the current-period vote and before the next-period departure,

we are interested in the end-of-period distribution of majority sizes. Let us index the end-of-

period majority size by i ∈ {k, ..., N}. Let νr
i denote the ergodic probability of majority size

i at the end of a period in regime r ∈ {e,m} (see Online Appendix E for their expressions).

The next Lemma shows that entrenchment leads to larger majorities, as intuitive:

Lemma 3. (End-of-period ergodic distributions) The probability distribution {νe
i } strictly

first-order stochastically dominates {νm
i }.

Ergodic quality. By taking the fixed point of the dynamic equation for (expected) aggregate

quality in the ergodic state,17 aggregate per-period expected quality Sr, r ∈ {e,m} is


Sm ≡ N(N − 1)

(
x+ x

)
s̃

Se ≡ N(N − 1)
[
νe
k+1

k + 1
N

x+
(

1− νe
k+1

k + 1
N

)(
x+ x

)]
s̃

Unsurprisingly, the ergodic quality of a meritocratic organization exceeds that of an entrenched

one:

Sm − Se = N(N − 1)νe
k+1

k + 1
N

xs̃ > 0.

Ergodic homophily benefit. For regime r ∈ {e,m}, the aggregate per-period expected

homophily benefit Br writes

Br ≡
N∑
i=k

νr
i

[
i(i− 1) + (N − i)(N − i− 1)

]
b̃

17The aggregate quality at the end of period t+ 1 is the aggregate quality at the end of period t minus the
(expected) loss due to a member’s departure, plus the (expected) contribution of the recruited candidate. For
the meritocratic equilibrium,

Sm
t+1 = N − 1

N
Sm
t + (N − 1)[x+ x]s̃,

where x = x+ (1− 2x)α is the probability of an in-group (or out-group) candidate being of type s. Similarly
for the entrenchment equilibrium,

Se
t+1 = N − 1

N
Se
t + (N − 1)

[
νe
k+1

k + 1
N

x+
(

1− νe
k+1

k + 1
N

)[
x+ x

]]
s̃
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An entrenched organization always dominates a meritocratic one in terms of ergodic aggre-

gate homophily benefit (Bm < Be): (a) the function
(
i 7→ i(i − 1) + (N − i)(N − i − 1)

)
is

strictly increasing for i ∈ {k, ..., 2k}, and (b) the probability distribution {νe
i } strictly first-

order stochastically dominates {νm
i } from Lemma 3.

The following result compares the two laissez-faire equilibria’s ergodic welfares. It intu-

itively stems from s ≥ b and quality benefits accruing to all members while homophily ones

profit only the in-groups.

Proposition 4. (Ergodic per-period aggregate welfare) For any s ≥ b, Wm > W e, i.e.,

the meritocratic selection rule dominates the entrenchment one in terms of ergodic per-period

aggregate welfare.

The collegial bias against meritocracy. Let us emphasize an important asymmetry between

entrenchment and meritocracy. Indeed, Propositions 2 and 4 imply that while there exists an

entrenched equilibrium whenever entrenchment is desirable in terms of ergodic aggregate wel-

fare, there exists a non-empty range of values of s/b such that meritocracy is desirable and

yet equilibrium behavior leads to entrenchment.18 We interpret this discrepancy as a collegial

bias against meritocracy when talent is scarce and political strength lies in numbers.

Measuring meritocracy. We defined meritocracy as the recruitment of the most talented.

Considering an organization’s ergodic state, one may thus measure its degree of meritocracy

by computing the probability that the (or "a" in case of a tie) most talented candidate is

recruited. In the canonical-meritocracy and canonical-entrenchment equilibria, this probability

is equal respectively to 1 and to 1 − νe
k+1

k+1
N x (while with full entrenchment, which prevails

in equilibrium whenever s < b, it would be equal to 1− x).

2.3 General homophily benefits

Let us first consider two extensions regarding the shape of homophily benefits, relaxing

symmetry and linearity.

Asymmetric homophily benefits: It takes two to build meritocracy. Returning to

linear homophily benefits, suppose that type-A agents have stronger homophily preferences
18This result extends to the case s/b < 1: Wm > W e whenever s/b > ρW for some ρW < 1. Indeed, for

s/b < 1, full entrenchment is the unique equilibrium even when it is dominated in terms of ergodic aggregate
welfare by canonical meritocracy and/or canonical entrenchment (with meritocratic hires wheneverM ≥ k+1).
In other words, regardless of whether s/b is higher or lower than 1, there exists a range of values of s/b such
that a certain degree of meritocracy is desirable yet fails to exist in equilibrium.
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than type-B agents, i.e. that bA > bB. So, from the point of view of meritocracy, group A is

the "weak link".

Proposition 2’. (Asymmetric homophily benefits) With asymmetric homophily benefits

bA, bB such that bB < bA < s,

(i) The canonical meritocratic equilibrium exists if and only if s/bA ≥ ρm.

(ii) The canonical entrenchment equilibrium exists if and only if s/bB ≤ ρe,

(iii) If homophily benefits are sufficiently dissimilar (so that ρebB < ρmbA), the unique MPE

in pure strategies when ρebB < s < ρmbA is such that type-A members follow the canoni-

cal entrenchment strategy, while type-B members follow the canonical meritocratic strat-

egy. On path, type-A members eventually have the majority and the equilibrium becomes

observationally equivalent to canonical entrenchment.

(iv) If they are sufficiently similar (so that ρmbA < ρebB), the meritocratic and entrench-

ment equilibria coexist over a non-empty range of qualities s. Whenever they do, the

meritocratic equilibrium Pareto-dominates the entrenchment one.

As Proposition 2’ shows, it takes two to build meritocracy, and it takes only one to de-

stroy it. Indeed, when facing a rival group with strong homophily preferences, an otherwise

meritocratic group either anticipates the entrenched behavior of its rival, and thus deviates

from meritocracy to "preemptive entrenchment", or sticks to meritocratic recruitments, only

to eventually lose control to the other group who then entrenches its majority.19

Non-linear homophily benefits. Convex homophily benefits arise for instance when fa-

cilities or regulations must be added to accommodate the existence of a minority, or when a

group’s reaching a critical size delivers additional opportunities to its members, e.g., because

of supermajority clauses for some decisions.20 Conversely, concave homophily benefits arise

if there are decreasing returns to having one more in-group member (e.g., limited time for

"horizontal" interactions) or increasing returns to having one more out-group member (e.g.,

benefits from diversity).

Let us from now on return to the symmetric case (bA = bB = b). A non-linear homophily

benefit does not require enlarging the state space, as the size of the majority is still a sufficient

statistics looking forward. While the homophily benefit of an extra in-group member depends
19Put differently, an increase in bA can have long-term consequences on the organization’s dynamics, whereas

an increase in bB (still below bA) has at most short-term consequences.
20The case in which each period, a non-hiring decision is subject to a supermajority rule is indeed similar to

(locally) convex homophily benefits. We illustrate this by considering unanimity. Assume the decision yields
b̃+ for majority members, where b̃+ + b̃ is significantly larger than s̃ (and maybe yields something very negative
for minority members to justify the rule).
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on future hirings under a non-linear homophily benefit, the meritocracy-vs-control trade-off

remains. Let B̃(i) denote the flow homophily benefit enjoyed by a member whose in-group has

size i (thus, in the linear case, B̃(i) ≡ (i− 1)b̃).

Proposition 2”. (Non-linear homophily benefits)

(i) With strictly concave homophily benefits B̃, symmetric MPEs are still either meritocratic

or entrenched if B̃(k+ 1)− B̃(k) ≤ s̃, and are super-entrenched if B̃(k+ 2)− B̃(k+ 1) is

sufficiently large.

(ii) With strictly convex homophily benefits, when there exists a threshold size such that

B̃(M + 1) − B̃(M) < s̃ for any M below the threshold and B̃(M + 1) − B̃(M) > s̃ for

any M above the threshold,21 then in any symmetric MPE, there exists a threshold size

such that recruitments are entrenched for majority sizes above the threshold. On path,

equilibria eventually become observationally equivalent to full entrenchment.

For expositional simplicity, we henceforth resume the case of linear, symmetric homophily

benefits and we restrict our attention to symmetric equilibria. (As we have shown, all equilibria

are symmetric in the basic model.)

3 Policy

We next investigate the consequences of different interventions. To perform the policy

analysis, we need to select an equilibrium in the multiple-equilibria region (our insights however

do not depend on this particular selection). Motivating our choice is our previous result that

whenever meritocracy and entrenchment coexist, meritocracy Pareto-dominates entrenchment.

Assumption. (Equilibrium selection). Whenever two equilibria coexist, coordination oc-

curs on the meritocratic one. So, under laissez-faire, entrenchment prevails if and only if

1 < ρ < ρm.

Public interventions depend on the nature of the principal’s information. The principal

may use knowledge about vertical attributes either to overrule majority decisions or to provide

quality-based incentives: A provost uses external letters or a visiting committee to assess the

quality of a department or candidates’ talent; a government designs a research assessment

exercise to evaluate a university or its components. Alternatively, the principal may observe

horizontal types: Affirmative action policies are based on gender, race, disability, or religion,

but not necessarily on a measure of talent.
21The threshold can be equal to N − 1 for δ sufficiently low, and must be weakly below N − 2 otherwise.
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Next, we need to specify the principal’s objective function. As for our earlier computation

of ergodic welfare, we will base welfare on the surplus that the organization generates: W =

qS + B, where q ≥ 1 to accommodate the possible presence of externalities of quality on

the broader society. In the case of incentives, we may subtract their total cost T , and so,

W = qS +B − ξT , where the magnitude of the shadow cost of public funds ξ ≥ 0 depends on

whether the average compensation can be decreased accordingly when T increases.

A comment regarding our objective function is in order. Besides efficiency, other familiar

policy motivations include the quest for justice or the benefits from minority role models. In

our model, such goals are naturally included in q: for, policies that encourage meritocracy in

the sense of selecting the most talented also operate toward benefiting minorities.22

Previewing the formal analysis, the consequences of the interventions we investigate have

three drivers:

(1) A reduction in the value of decision rights: majorities cannot optimize as efficiently

when they face external constraints. This lower value from control reduces the appeal

of entrenchment (loss-of-control-value effect).

(2) The fear of an involuntary loss of control due to discretionary interventions in cooptation

decisions may encourage the current majority to build a buffer against such majority

transfers, i.e., to super- or fully entrench itself (precautionary-buffer effect).

(3) When the organization members are rewarded for overall quality, vertical considerations

are strenghtened with respect to horizontal ones, and thus quality-based rewards favor

meritocracy (higher-quality-relevance effect).

Remark: Internal equality favors external meritocracy. An interesting illustration of the loss-

of-control-value effect crops up when an organization’s majority controls not only recruit-

ments, but also the sharing of spoils among members (allocation of the organization’s sur-

plus). Mandating equal treatment of the organization’s members reduces the value of such

decision rights, lowers the majority’s payoff and raises the minority’s one for a given recruit-

ment policy, and thus fosters meritocracy. We thus infer that non-discrimination requirements

in non-appointment decisions favor meritocracy.

3.1 Quality-based interventions

Assuming that the principal has only talent information, we consider two policies for the

principal: (i) stepping in to choose the new member (which does not assume commitment by
22This need not hold in general. Suppose, say, that for legacy/discrimination reasons a minority group has

few highly qualified candidates. Then, promoting justice and generating role models can in the short run work
against making the organization more efficient. Such considerations could be embodied into the model. For
expositional simplicity, we focus on the current case in which incentivizing the hiring of the most talented also
benefits the minority.
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the principal), and (ii) rewarding quality (which does). These two policies feature respectively

the loss-of-control-value effect and the precautionary-buffer effect for the former, and the

higher-quality-relevance effect for the latter.

Discretionary overruling of majority decisions. Suppose that in each period, the ma-

jority selects among the two candidates, yet the principal can then overrule the majority and

pick the losing candidate. None of the players (principal, majority, and minority) can commit.

In each period, the principal learns the quality of the current candidates (or at least their

quality differential) with probability λ, and remains uninformed with probability (1− λ).

We will look for equilibria (a) with level of entrenchment l ≥ 0, and (b) in which the

principal overrules the majority if and only if it is informed that the majority is violating

meritocracy.

The principal’s willingness to intervene is tied to the availability of evaluative information.

In particular, in the absence of commitment, it is an equilibrium for the principal not to in-

tervene without (talent) information.23 Hence, for λ = 0, the meritocratic and entrenchment

equilibria exist for the same parameter values as in the absence of intervention. At the other

extreme, when λ = 1, the principal can (and will) select the best candidate in each period,

and there is no real “cooptation”. Hence, let us assume that 0 < λ < 1. Regardless of λ, the

existence condition of a meritocratic equilibrium is unchanged, as the principal has no reason

to intervene in such an equilibrium. This property however does not hold for the entrenchment

equilibrium. Intuitively, the possibility of intervention has two opposite effects on the princi-

pal’s welfare. By occasionally overruling the majority, it can impose the meritocratic choice.

But the majority may become wary of losing control when M = k and may thus decide to be

super-entrenched so as to lower the probability of its losing control (without annihilating it

completely, which is impossible). The next Proposition establishes that the ability to overrule

the majority systematically backfires by generating full entrenchment for s/b close to 1.24

Proposition 5. (Unintended effects of discretionary quality-based interventions)
Suppose x < 1/2 (there are benefits from control).

(i) Fix λ ∈ (0, 1). The possibility of an informed overruling of majority decisions (with a
23See Online Appendix I. Intuitively, (a) from the perspective of the principal (with q ≥ 1), the majority

takes the socially optimal decision for any majority size M ≥ k+ 1, and if it is meritocratic, also when M = k,
whereas if it is entrenched and tight, it takes the optimal decision with probability 1 − x ≥ 1/2; (b) if the
majority is entrenched and tight, then its choice of candidate reveals no information on the latter’s quality to
the principal, and thus a talent-blind principal cannot outperform the majority’s choice.

24A company’s board of directors may be subject to such interventions by the company’s shareholders. Our
results thus show that the shareholders’ threat of stepping in and appoint a minority candidate may backfire
and induce the current majority to further entrench itself. All other things equal, a board facing milder threats
would be more prone to opt for meritocratic hiring. In practice nonetheless, shareholders’ activism may have
an ambiguous impact as they may also influence – via their trading and voting decisions – the directors’ rewards
for quality, which is the intervention we study next.
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strictly positive probability) results in full entrenchment for any s/b ∈ [1, ρ] for some

ρ ∈ (1, ρm).

(ii) Fix s/b close to 1. Suppose the principal values quality enough (q large). For λ in an

intermediate range, the principal achieves a higher ergodic quality if it can commit not

to intervene.

Rewarding quality. We now assume that the principal implements a quality assessment

exercise after each period’s election with probability corresponding to a Poisson process of

rate η. A quality assessment exercise in period t results in an end-of-period bonus accruing

to the organization and shared equally among the N members. We assume without loss of

generality that the bonus earned at date t is immediately paid to the organization.25 For the

sake of simplicity, we also assume that the bonus is linear in the number of talented members

in the organization: for each talented member in the organization at the end of period t,

each member receives y. Consequently, the expected incremental lifetime contribution of a

new talented (relative to mediocre) addition to each current member of the organization now

writes as

s+(η, y) ≡ s+ η
y

1− δ0(1− 2/N) = s

(
1 + η

y

s̃

)
> s

while the expected lifetime utility for an incumbent member generated by the homophily

payoff per new member sharing their opinion is still given by b.26

Letting T denote the ergodic expected per-period transfer and ξ its shadow cost, the

ergodic welfare function in the presence of transfers becomes: W = qS +B − ξT .

Proposition 6. (Rewarding quality) For any positive cost of public funds ξ , there exists

ρξ ∈ [1, ρm), strictly increasing with ξ and satisfying ρ0 = 1, such that quality assessment

exercises raise welfare W if and only if s/b ∈ [ρξ, ρm).

The intuition behind Proposition 6 is that for high s/b, the organization embraces mer-

itocracy by itself and so spending public funds is wasteful. When instead the organization

has little appetence for meritocracy (s/b small), the principal must pour large amounts of

money on the organization to be effective, and this may prove too costly. It is thus only in

the intermediate range that a boost promotes meritocracy and quality at a reasonable cost.27

Thus, a rule that applies to all organizations is likely to lack efficiency.
25Alternatively, we could have assumed that the bonus is split across several periods. Yet, frontloading the

bonus is more efficient. Indeed, because members may quit, and thus δ ≤ (N − 1)/N < 1, frontloading the
bonus maximizes the incentive for good recruitment.

26Computations go through as in the main model with a quality-payoff-over-homophily-benefit ratio now given
by s+/b instead of s/b. Hence, for η, y sufficiently high, the ratio s+/b is sufficiently high for the organization
to reach the region where the canonical meritocratic equilibrium exists.

27The optimal transfer is equal to 0 for s/b below a certain threshold (which increases with the cost of public
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3.2 Affirmative action

Suppose that the principal mandates diversity by setting a "representation threshold" – i.e.

imposing that the minority count at least R members at the end of any given period. Since

it is suboptimal for the principal to impose parity,28 we focus on weaker forms of affirmative

action with representation thresholds R ≤ k − 1.

Quality is reduced if at the moment of the vote, the representation threshold binds (i.e.

M = N −R) and the majority candidate is more talented. Moreover, homophily benefits are

also reduced on average. However, there is an indirect effect: control is less appealing both

because the majority is constrained and because the minority is favored. That effect might lead

to a “constrained meritocratic” equilibrium (in which the recruitment choice is meritocratic

except perhaps when M = N − R at the moment of the vote), which might actually benefit

the principal.29 The policy however is costly when the meritocratic decision would select the

majority candidate, but the minority quota is binding, forcing the recruitment of the minority

candidate.

Proposition 7. (Affirmative action: Representation thresholds)
(i) Existence region. Affirmative action in the form of a representation threshold R ≤ k−1

expands the region for which majority alternance prevails in equilibrium.

(ii) Ergodic aggregate welfare. When s/b ≥ ρm, affirmative action comes at a cost, both

in terms of efficiency and homophily, and reduces welfare. When s/b < ρm and affirmative

action induces an otherwise entrenched organization to become meritocratic, there exists a

cut-off in the correlation of candidates’ vertical types such that affirmative action dominates

laissez-faire if and only if the correlation is below the cutoff, and is dominated otherwise. The

more ambitious the affirmative action, the lower the cut-off.30

funds ξ), jumps discontinuously strictly above zero at this threshold, and then decreases with s/b above the
threshold, down to zero when s/b = ρm.

28Suppose that the principal imposes parity (so at the end of any period the two groups are equally repre-
sented). Then, the average quality of the coopted member (xs) is smaller than in both the entrenched and
meritocratic equilibria and homophily benefits are minimized.

29When s/b is very high, the efficiency loss at M = N −R becomes extremely costly and majority members
may be willing to pick the minority candidate at lower majority sizes whenever the latter is as talented as
the majority one in order to avoid reaching a majority size of M = N − R at a later period. Meritocracy
with reverse favoritism may thus arise in equilibrium: majority members vote for their candidate if and only
if he is strictly more talented than the minority candidate. How relevant is such reverse favoritism? For s/b
high, meritocracy is likely to prevail in the organization and regulators unlikely to intervene on an ad hoc
basis. But an economy-wide affirmative action rule would apply even to organizations that would otherwise be
meritocratic, giving rise to reverse favoritism.

30Namely, we show that: (a) The homophily (ergodic aggregate) payoff is strictly lower in the meritocratic
equilibrium under affirmative action with representation threshold R than in the entrenchment equilibrium un-
der laissez-faire. (b) There exists xAA(R) ∈ (0, 1/2) such that for any x ∈ (0, xAA(R)) (resp. x ∈ (xAA(R), 1/2)),
the quality (ergodic aggregate) payoff is strictly lower (resp. strictly higher) in the meritocratic equilibrium
under affirmative action with representation threshold R than in the entrenchment equilibrium under laissez-
faire (the two being equal for x = xAA(R)). The cutoff xAA(R) strictly increases with R: the higher the
representation threshold, the thinner the range of correlations for which meritocracy under affirmative action
dominates entrenchment under laissez-faire.
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Interestingly, by reducing the value for majority members of controlling recruitments,

affirmative action can switch the organization’s regime from entrenchment to meritocracy,

thereby having an impact on recruitments above and beyond the immediate hiring constraint

when the threshold is reached. But the organization must trade off the benefit and the cost of

affirmative action. This may be difficult, in particular as the policymaker may be imperfectly

informed of the organization’s natural propensity to be meritocratic (and this difficulty may

be aggravated by the organization’s strategic response to the regulation if the intervention is

organization-specific).

4 The collegial bias against meritocracy: Further drivers

This section considers robustness results and extensions, causing organizations and their

members to depart from the (meritocratic and entrenched) canons we described in Section 2.

More pervasive and/or more intense forms of entrenchment arise, indicating that in practice,

one can expect (significantly) fewer meritocratic recruitments than described by these canons.

4.1 A continuum of vertical types

We have assumed so far that talent can take only two values. When talent is smoothly

distributed in R+, for the natural generalization of canonical equilibria developed below, full

meritocracy never prevails, as the majority always prefers an in-group candidate over a slightly

more talented out-group candidate. But, as we will see, we can still order equilibria in terms of

their "level of meritocracy". Our previous insights generalize: (i) a stronger majority engages

in more meritocratic recruitments, and (ii) whenever several equilibria coexist, they can be

ranked from more to less meritocratic and Pareto-compared.

Generalizing canonical equilibria to arbitrary talent distributions, equilibria can be de-

scribed as a sequence of strictly positive cut-offs (∆M )M∈{k,...,N−1} such that a majority of

sizeM recruits the out-group candidate with (discounted) talent ŝ against the in-group candi-

date with (discounted) talent s if and only if ŝ−s > ∆M . We show in Online Appendix L that

in any such equilibrium, ∆M > b for any M ∈ {k, ..., N − 1}. Intuitively, in-group recruiting

when b > ŝ− s yields a double dividend – a larger homophily payoff and a tighter grip on the

organization –, and thus for a minority candidate to be considered by the majority, her talent

must exceed the majority candidate’s by strictly more than the homophily benefit: ŝ− s > b.

We denote by ≺ the order relation defined over the set of decision rules such that ∆ ≺ ∆′

if and only if ∆M < ∆′M for all M ∈ {k, ..., N − 1}. We will then say that the former decision

rule is more meritocratic.

Definition. Let G be the set of continuous joint distributions of (s, ŝ), i.e. resp. the quality of
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the majority and the minority candidate, with support in [0,+∞)2 such that E[max(ŝ, s+b)] <

∞, and (ŝ − s) is symmetrically distributed around 0 with P(ŝ − s > b) > 0 and such that,

letting the function h be defined by

h(∆) ≡ E
[
(s+ ∆)1{ŝ− s ≤ ∆}

]
+ E

[
ŝ1{ŝ− s > ∆}

]
,

the functions [h(∆) − ∆/2] and [∆ − h(∆)] are strictly increasing with ∆ ∈ (b, s) where

s = sup(ŝ− s) ∈ (b,+∞].

The set G includes the set of (full support) continuous joint symmetric distributions with

finite-mean marginals. It also includes the case where the majority candidate has a fixed type

s ≥ 0 and the minority candidate a type s + D where D is a (full support) random variable

with a continuously differentiable distribution over (−s, s) symmetric around 0.

Proposition 8. (A continuum of vertical types) Assume talents are distributed accord-

ing to a joint distribution G ∈ G. Any symmetric MPE described by a sequence of cut-offs

(∆M )M∈{k,...,N−1} is such that ∆M > b for any M , and that the sequence (∆M )M is strictly

decreasing: a stronger majority discriminates less than a weaker majority.

Moreover, whenever they coexist, any two such equilibria with distinct decision rules ∆ and

∆′, can be ranked by the order relation ≺. If ∆ ≺ ∆′, then the equilibrium characterized by

the decision rule ∆ (which is more meritocratic than the one described by ∆′) is preferred at

any majority size by all current majority members, and for δ small, by all current minority

members as well.

4.2 Further drivers of super-entrenchment under laissez-faire

Returning to the binary-talent case, the most obvious case for super-entrenchment is s ≤ b,

which trivially leads to full entrenchment. Section 2.3 noted that, even for s > b, non-linear

homophily benefits may lead to super-entrenchment. Departing from laissez-faire, Section 3

showed that some well-meaning interventions may have the unintended consequence of incen-

tivizing the majority to be super-entrenched. Let us now describe two other drivers of super-

and full-entrenchment under laissez-faire: homogamic evaluation capability and uncertain vot-

ing participation or identification of group allegiance.31

31Further away from our environment, the organization’s horizontal homogeneity can stem from a lack of
attractiveness to minority candidates. Indeed, relaxing our assumption of exogenous candidacies, individuals
may apply only if they find the organization sufficiently attractive and their chances of being recruited suffi-
ciently high. For conciseness, we focus in this paper on control concerns and refer to Moisson-Tirole (2024) for
a study of attractiveness concerns and the "organizational spirals" they induce.

21



4.2.1 Homogamic evaluation capability

We assumed that all members are equally proficient at evaluating the talents of in- and

out-group candidates. However, some environments exhibit an asymmetry in this ability.

For example, econometricians are better placed than development economists to evaluate an

econometrician, and conversely.

When only in-group evaluation is feasible, the majority still selects the majority candidate

if the latter has quality s. So, we can focus on the situation in which the majority candidate

has quality 0. The conditional quality of the minority candidate is then

s† ≡ x

x+ (1− 2x)(1− α)s = x

1− xs ≤ s

Let us focus on the case of "pessimistic expectations" (or negative stereotypes): s† ≤ b.

This case arises when correlation is high (x low) and average quality low (x low), so the

majority is pessimistic about the minority candidate’s talent when its own candidate lacks

talent. [Departing from the Bayesian framework, this case would also be more likely if the

majority members had a negative stereotype about minority members’ talent.] When s† ≤ b,

the majority is fully entrenched: it keeps admitting solely majority candidates and ends up

being homogeneous. This implies that imperfect information (in the form of homogamic

evaluation capability) may transform an entrenched or meritocratic organization into a fully

entrenched one.

Online Appendix M studies the more complex case in which the minority candidate is in

expectation preferred to an untalented majority candidates (s† > b). Then, analogues of the

canonical (meritocratic and entrenched) equilibria exist, in which the minority candidate is

given the benefit of the doubt except perhaps when the majority is tight (M = k).32

Proposition 9. (Canonical equilibria with homogamic evaluation capability) If s† ≤

b (pessimistic expectations/negative stereotype), the majority coopts only candidates of the in-

group and therefore becomes homogeneous. Homogamic evaluation capability then lowers the

ergodic per-period aggregate welfare relative to perfect information.

Remark: Cheap talk. One may wonder whether communication could help the majority

select a candidate. The answer is that, in the complete absence of commitment, for x† ≤ 1/2,

one-shot cheap talk cannot operate in this environment due to a form of winner’s curse. Be-

cause the majority picks its candidate whenever talented, the minority infers that whatever

message it sends can only have an impact when the majority candidate is untalented. Con-

ditional on a low-quality majority candidate, the minority always prefers its own candidate,
32Online Appendix M further shows that the meritocratic and entrenchment equilibria with homogamic

evaluation capability yield a lower ergodic aggregate welfare than their perfect-information counterparts.
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and so any message sent to the majority is necessarily uninformative. Notwithstanding, more

elaborate communication or voting mechanisms than majority rule, designed to incentivize the

minority to reveal (some information about) the talent of its in-group candidate, may mitigate

some drawbacks of homogamic evaluation capability.33

4.2.2 Uncertain voting participation or identification of group allegiance

We have assumed so far that all members of the organization vote and that they vote as

expected. Relaxing the first assumption, we note that absenteeism, whether due to illness

or alternative obligations, may incentivize groups to secure majorities of more than one vote

so as to minimize the probability of a control switch. Consequently, with uncertain voting

participation, even large majorities may find it optimal to stand in the way of talented minority

candidates.

Returning to symmetric evaluation capability, for any majority size M ∈ {k, ..., N − 1},

let Λ(M) be the probability that, because of absenteeism, a majority of size M loses the vote,

i.e. that the minority’s choice prevails.34 We assume that the majority is strictly more likely

than the minority to win the vote, and the more so, the greater the majority size, with the

majority being certain to win for sufficiently large majority sizes (clearly so for N − 1):35


Λ decreases with respect to majority size M,

Λ(M) ∈ (0, 1/2) for any M ∈ {k, ..., k + l − 1}, and Λ(M) = 0 for any M ≥ k + l
(2)

While the Λ function can capture correlation in absenteeism, either within groups or across

the entire population of members, an interesting case occurs when absences are i.i.d. (the

Bernoulli case). That case satisfies (2) with Λ(M) > 0 for all M < N − 1. While we allow

for a wide range of absenteeism functions (in particular as we allow for correlation in voting

turnout), condition (2) may not be warranted if voting participation is strategic rather than

caused by exogenous events.

We look for monotonic (in the sense that a stronger majority makes more meritocratic
33Regarding such voting mechanisms, see for instance Jackson-Sonnenschein (2007), Casella et al (2008),

Lipnowski-Ramos (2020). We leave a detailed study of the optimal voting mechanisms in our environment for
future work.

34We assume that absenteeism in a given period is independent of the candidates’ qualities in that given
period: in particular, absenteeism does not result from members’ strategic decisions given candidates’ types.

35Absenteeism raises the question of what happens when the numbers of majority and minority members
who show up are equal (or if no-one shows up). The key assumption behind the statement of the Λ function is
that a process is in place, which will guarantee a decision in case of such draws. One can envision a variety of
such processes. For example, the majority leader might take the decision. Or the assembly of members might
reconvene as many times as is needed to break the tie (technically, an infinite number of times if one wants to
reach a decision with probability 1. Otherwise the results are just limit results). Similarly, one could add a
quorum rule given such reconvening; this quorum, for a given absenteeism process, would generate a different Λ
function, but still one satisfying our assumptions. The Λ function captures all kinds of processes and all forms
of correlation among members’ absences, as long as the process delivers an outcome.

23



recruitments), pure-strategy symmetric MPEs, which indeed exist. In contrast to the baseline

model, the minority’s strategy now matters at any majority sizeM at which Λ(M) > 0. When

looking for level-l super-entrenchment equilibria, we now look for equilibria in which (a) the

majority is entrenched to level l and (b) the minority always votes for its in-group candidate

whenever it is pivotal with a strictly positive probability, i.e. whenever M ≤ k + l − 1.

Proposition 10. (Absenteeism and super-entrenchment) Let Λ satisfy (2) and x < 1/2.

For s/b sufficiently close to 1, super-entrenchment at level l is the unique symmetric MPE such

that a stronger majority makes (weakly) more meritocratic recruitments.36 In particular, if

l = k− 1 as in the Bernoulli case, the possibility of absenteeism triggers full-entrenchment for

s/b sufficiently close to 1.

When Λ satisfies (2) with l < k−1, the majority is "safe" at any majority sizeM ≥ k+ l+1

as it will still control the outcome with probability 1 in the next period. Therefore, merito-

cratic recruitments are optimal at these majority sizes.

Remark: Fighting absenteeism. Interestingly, under the conditions of Proposition 10,

strong in-group discipline, inasmuch as it reduces voting uncertainty, makes hiring more mer-

itocratic. More generally, any policy intervention curbing absenteeism may make all members

better off by reducing the degree of entrenchment.

Imperfect identification of group allegiance. Our modelling of uncertain voting par-

ticipation also applies to imperfect identification of group allegiance. As an illustration, let

us introduce the possibility that a candidate be able to mascarade as belonging to the other

group and thereby be elected. Namely, let us assume there is a probability ϑ ∈ (0, 1/2) that

the best candidate of the majority group37 is incorrectly identified (tagged as belonging to

majority group, when actually belonging to the minority group). To avoid having to consider

complicated coming-out strategies of misidentified members, we further assume that the real

identity of the newly elected member is revealed after the vote and before curent-period pay-

offs accrue.

The probability of a fully-entrenched majority with size M = N − 1 losing control, is

strictly positive and proportional to ϑk, as it takes k consecutive occurrences of “bad luck” to

topple its grip on the organization. By the above argument on uncertain voting participation

(replacing the probability of the majority losing the vote with the probability of recruiting a

minority candidate incorrectly identified), there exists a non-empty neighbourhood of 1 such
36Furthermore, for s/b sufficiently close to 1, in any symmetric MPE, the majority is entrenched when it has

size k + l.
37We further assume that all candidates of the majority group are equally "unreliable" (incorrectly identified

with the same probability). Otherwise, an untalented yet fully "reliable" candidate (i.e. identified as perfectly
belonging to the majority) might then be preferred to a talented yet "unreliable" candidate.
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that for s/b in this neighbourhood, the only monotone equilibrium is the full-entrenchment

equilibrium.

This analysis of turncoats presumes that candidates identified as sympathetic to the ma-

jority may actually favor the minority. A milder version of the same idea is that candidates

identified as belonging to a given horizontal group still prefer in-group colleagues all else be-

ing equal, but that the intensity of candidates’ homophily-vs-quality preferences varies and is

not observable. So a majority recruit may for instance put a much higher weight on talent

relative to homophily than the average majority member38 and therefore resist the entrenched

strategy. Anticipating this possibility, the majority may again want to be super-entrenched,

so as to minimize the probability of a switch in control.

4.3 Anterooms for appointments

We have so far viewed the appointment process as an organizational choice between re-

cruiting a candidate and letting them go away for good. While a first step, this assumption

ignores the possibility that appointments may result from a dynamic process operating out-

side or inside the organization. First, turned-away candidates may be persistent and later

reapply. Second, the organization may groom junior members for possible promotion to senior

positions. This section analyzes these two possibilities, which display several similarities.

4.3.1 Candidates can re-apply

We investigate the consequences of unselected candidates being able to re-apply. Unsuc-

cessful candidates keep re-applying until they are recruited.39 For the sake of exposition, we

make a further simplifying assumption: α = 0, so that in any period, the new majority and

minority candidates are equally talented if and only if they both are untalented (which hap-

pens with probability (1 − 2x)), and the unconditional probability that a new candidate is

talented is given by x = x. This assumption implies that under meritocratic hiring, talented

candidates are always immediately hired and so the ability to re-apply is irrelevant on an equi-

librium path. However, the knowledge that talented minority candidates will reapply lowers

the cost of entrenchment and thus favors discrimination.

Proposition 11. (Reapplying for membership) Assume α = 0. Entrenchment yields the

majority a higher value function when candidates reapply than when they cannot: being able to

"keep in store" a talented minority candidate when the majority is tight reduces the cost for the
38For example, a small fraction of majority candidates might have homophily benefit zb, where z < 1, and

thus favor the meritocratic strategy over the entrenched one, despite their colleagues in the majority favoring
the latter over the former.

39Our results would still hold if we assumed instead that such candidates stopped re-applying following some
Poisson process.
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majority of turning down her application. Moreover, the existence region for the meritocratic

equilibrium shrinks when the organization can store applications.

4.3.2 Hierarchies and the glass ceiling

The expression “glass ceiling” refers to the difficulty for women (or minorities) to rise

beyond a certain level in a hierarchy. While there are various hypotheses for its existence,

whose relevance is reviewed e.g., in Bertrand (2018), we here investigate whether the desire

for the dominant group to retain control might be a factor.

Online Appendix P considers a (large) two-tier organization with (many) senior and junior

positions. At each point in time, a fraction of seniors exogenously departs and is replaced by

juniors promoted to seniority. A fraction of juniors exogenously quit the organization as well.

Flows out of the junior pool are offset by new recruitments. Seniors have control over hiring

and promotion decisions.

We say that a glass ceiling exists if the probability of promotion of talented majority

member is higher than the one of a minority member. Even if majority dominance and

favoritism contribute to hiring discrimination against minorities, it is not a priori obvious that

they imply a lower rate of promotion for the latter within the organization. Indeed, hiring

discrimination implies that minority recruits are fewer and more talented than majority ones.

We nonetheless show that a glass ceiling arises in our framework40 provided that at least one

of the following two effects operates:

• Concern for control: as earlier in the paper, control allows groups to engage in favoritism.

Because control is located at the senior level, this in turn implies some discrimination in

promotions, which in general exceeds that at the hiring level (if any).

• Differential mingling effect: for organizational reasons, senior members tend to hang

around more with senior members than with junior ones. Their homophily concerns are

therefore higher for promotions than for hiring decisions.

Proposition 12. (Glass ceiling) In the hierarchical organization’s steady state, hiring at

the junior level is fully meritocratic.41 By contrast, there exists a glass ceiling for minority

juniors: A talented minority junior is less likely to be promoted than a talented majority junior.
40This environment can be enriched in interesting ways. See Online Appendix P.
41In line with Carmichael (1988) and Friebel-Raith (2004), it is thus optimal for the seniors’ majority not to

let current juniors coopt new juniors as a majority of out-group juniors may engage in un-meritocratic hiring
in order to increase their chances of being appointed to the senior board. This optimality result may not hold
if for instance, juniors are better able than seniors at scouting talented candidates.

26



5 Related literature

Empirical evidence. There is growing evidence that meritocracy may not prevail even in

organizations that are incentivized to behave efficiently. Zinovyeva-Bagues (2015) shows that

in the Spanish centralized process for promoting researchers to the ranks of full and asso-

ciate professor, the promotion rate is higher when evaluated by the PhD advisor, a colleague

or coauthor and that the evaluation bias dominates the informational gain. Bagues et al.

(2017) find that in (Italian and Spanish) scientific committees, male evaluators become less

favorable to women if a woman joins the evaluation committee, suggesting horizontal control

concerns from male evaluators. Hoffman et al. (2018) show that under discretionary hiring,

the availability of test scores raises the quality of appointments (as measured by subsequent

job tenure), and that the overruling of test scores ranking lowers quality, suggesting either

poor judgement or (more interestingly for us) homophily objectives. Relatedly, Moreira-Pérez

(2022) study the consequences of the 1883 Pendleton Act, which mandated exams for some

employees in the largest US customs-collection districts, and find that although the act im-

proved targeted employees’ professional background, it incentivized hiring in exam-exempted

positions, distorting districts’ hierarchical structures. This countervailing response echoes our

study of the unintended consequences of well-meaning policy interventions. Rivera (2012)

finds evidence of biased hiring based on shared leisure activities. Bertrand et al. (2018)’s

study of affirmative action on Norwegian boards (a mandated 40% female representation),

together with the evidence showing that qualifications of women on boards increased rather

than decreased suggests that discrimination, perhaps based on prejudice, was at stake prior

to the reform.42

Theoretical literature. This research is related to several strands of the literature.

Discrimination theory. It shares with the literature on the economics of discrimination

initiated by Becker (1957) the idea that homophily may lead organizations to disfavor minor-

ity members in their hiring decisions. Becker, though, famously emphasized that competitive

market forces may make such discrimination vacuous, while we look at organizations facing

imperfect market pressure. Also, Becker’s analysis is static while the focus of our study is

on the evolution of the organization. In thinking about policies that protect minorities, our

work is akin to the extensive literature on affirmative action (see Fryer-Loury 2005 for an

overview). In Coate-Loury (1993), employers have a taste for discrimination and a principal
42The gender gap and glass ceiling have a number of potential explanations, as stressed by Bertrand in her

2018 survey: difference in education (mainly in the best educational tracks), in psychological traits (higher
aversion to competition/relative performance evaluation, higher risk aversion), women’s demand for flexibility
(particularly penalizing in professions that highly reward long hours), higher demands on time (non-market
work, child penalty).
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wants to boost minority workers’ incentives to invest in skills. Affirmative action gives the

minority prospects and, if modest, boosts its incentives, but if extensive, creates a “patron-

izing equilibrium” and reduces incentives. In Rosen (1997)’s statistical discrimination model,

a group of workers who find it hard to get a job in competition with candidates from the

outgroup become less choosy; they apply for jobs for which they are less suited, and knowing

this, firms rationally discriminate against group members and in favor of the outgroup.

Recruiting like-minded candidates. Our emphasis on cooptation is reminiscent of the the-

ories of clubs (initiated by Buchanan 1965) and of local public goods (e.g., Tiebout 1956,

Jehiel-Scotchmer 1997). A couple of contributions examine the dynamics of organizational

membership assuming, as we do, that current members think through the impact of joiners

on future recruitment decisions. They consider contexts rather different from ours, though.

In particular, they stress the time variation of the size of the organization. Barberà et al.

(2001) look at clubs in which each member can bring on board any candidate without the

assent of other members. They are interested in the forces that determine the growth or the

stagnation of organizations. A member’s (unilateral) decision of coopting a candidate hinges

on the number of additional candidates whom the newly admitted one brings in the future; for

instance, a member may not vote for his friend, because his friend may bring enemies to the

group. Roberts (2015), like us, assumes majority rule, but posits that individuals care only

about the (endogenous) size of the organization; there is a well-determined order of coopta-

tion, with new members being more favorable to expansion than previous ones and therefore,

if admitted, taking incumbent members into dynamics they may not wish43. Acemoglu et al.

(2012) also looks at the long-term consequences of reforms that benefit the rulers in the short

run, but may imply a transfer of control in the future; for instance, a controlling elite may

not want to liberalize (give political or religious rights to other citizens) by fear of a slippery

slope that would later entail a loss of control.

Recruiting talent under incomplete information. Section 4.2.1 on homogamic evaluation

capability bears resemblance with Board et al. (2020), which assumes that talented people are

better at identifying new talents, hence deriving rich dynamics. Section 4.2.1 also considers

homogamic evaluation capability, but in the horizontal dimension rather than the vertical one;

there may then be a separation between information and control, unlike in Board et al.44

43A small literature on organizational dynamics looks at factors of hysteresis other than control over member-
ship. In Tirole (1996) groups’ reputations reflect the past behavior of their members, while members themselves
have reputations based on incomplete data (that is why the individuals with whom they interact take into ac-
count the group’s reputation as well). That paper shows that (uniquely determined) dynamics may converge
to a high- or low- group reputation steady state, and that group reputations are fragile and hard to reconstruct
once destroyed, so that a temporary shock may permanently confine a group to a low-quality trap. Sobel
(2000) looks at an organization in which new recruits must "maintain the standard" of the existing population
of members. He shows how, with such a rule, shocks may decrease, but not increase standards.

44Moldovanu-Shi (2013) model also exhibits heterogeneous evaluation capabilities. Members of a committee
sequentially assessing candidates for a job and coopting using the unanimity rule each have a superior expertise

28



Trade-off between talent and like-mindedness. Cai et al. (2018) analyzes the dynamics of a

three-member club. Players are characterized by a vertical and a horizontal type, but unlike

in our paper, homophily benefits are constant-sum (they stand for the sharing of spoils), while

they are not in our model. Sections 2 and 4.1 generalize the analysis of Cai et al. to an

arbitrary-size organization, arbitrary homophily benefits and a larger set of talent distribu-

tions, deriving new insights. While Cai et al.’s model includes costly search for candidates,45

our model allows for a much larger scope of inquiry. Notably, in contrast with Cai et al., we

investigate super-entrenchment and explore its drivers – in particular, we show that super-

entrenchment can stem from non-linear homophily benefits, uncertain voting participation

or homogamic evaluation capability, or else be the unintended consequence of several policy

interventions. Moreover, while Cai et al. focus on finding the optimal voting rule in a three-

member club,46 we study a distinct and wide set of familiar policy interventions, including

affirmative action, quality-based rewards, discretionary overrulings of majority appointments,

curbing absenteeism, etc. In particular, we describe how such policies generate two conflicting

effects: the loss-of-control-value effect and the precautionary-buffer effect.

Glass ceiling. In Athey et al. (2000), players also have a horizontal (gender) and vertical

(talent) types. Ability to fill a senior position depends on intrinsic talent and on mentoring

received as a junior member. Mentoring is type-based, and so majority juniors receive more

mentoring and are favored in promotions. The upper level may therefore become homogenous.

The organizations however may (depending on the mentoring technology’s concavity) want to

bias the promotion decision in favor of minority juniors, so as to create diversity and more

in evaluating a candidate’s performance along the dimension he cares most about. The focus is on the acceptance
standards and the comparison between a dictator and a committee; given the focus on a single job opening,
the dynamics of control are not investigated. In Egorov-Polborn (2011), similar backgrounds (homophily
dimension) facilitate the estimation of others’ ability. A force pushing toward homogeneity of organizations is
then the winner’s curse: competition among employers makes it more likely that organizations will hire majority
candidates, on whom they have superior information. Modelling a single organization searching for candidates,
Fershtman-Pavan (2021) show that if the evaluation of minority candidates is noisier than the one of majority
candidates, then "soft affirmative action policies" tilting the search technology in favor of minority candidates
in the candidate pool can backfire and actually reduce the likelihood of a minority candidate being recruited.

45An interesting insight of their analysis that is not (but could be) present in our model is the possibility
of “intertemporal free riding”: Even in a homogenous population (which corresponds to b = 0 in our model),
current members will not maximize social welfare; for, in Cai et al., members engage in costly search for
candidates and as current members are not infinitely lived and thus do not enjoy the benefits of quality
recruitment as long as the organization, they underinvest in search. A similar effect is present in Schmeiser
(2012), who analyses the dynamics of board composition and the potential benefits of outside-directors rules
and nominating committee regulations. In his paper, even outside directors may not stand for shareholders’
best interests, even if they can be ascertained to have no connection with insiders. The point is that, in the
absence of delayed compensation, outside directors favor immediate benefits due to their limited tenure.

46Our model also allows for a general investigation of voting rules in clubs of arbitrary size. Consider for
instance supermajority voting rules. Suppose that a (completely uninformed) principal mandates that, to be
elected, a candidate must receive at least k+ l votes, where l ≥ 1. If no candidate reaches the election threshold,
the principal picks one among the two candidates at random. As intuitive from our analysis, such a super-
majority voting rule jeopardizes the majority’s control when it has a size below the threshold. Unsurprisingly,
it can be shown that for x < 1/2, for s/b sufficiently close to 1, super-entrenchment at level l is the unique
symmetric MPE such that a stronger majority makes (weakly) more meritocratic recruitments.
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efficient mentoring. Control is not a focus of their paper, unlike ours.

6 Future research

This paper studies homophily-induced control concerns in collegial organizations. It pro-

vides rich and testable insights as to where and when such concerns lead to violations of

meritocracy. It investigates several potential remedies, identifying conditions for their effec-

tiveness and warning about their (possibly dramatic) unintended consequences.

On the positive front, this paper’s insights belong to two main themes. Firstly, meritocracy

is at risk whenever control stakes are high. For instance, distrust of the outgroup jeopardizes

meritocracy as each group is more eager to cling to power if it suspects the other group would

not fulfil its part of the meritocratic deal. Relatedly, an organization is only as meritocratic

as its less-meritocracy-prone group (its weakest link). Similarly, longer tenures within the

organization heighten control stakes and foster entrenchment. Secondly, meritocracy is at risk

whenever control itself is at stake, i.e. either frail, uncertain or impeded. For instance, larger

majorities are more meritocratic than thinner ones; majorities with stronger group discipline

are more meritocratic than majorities unable to prevent absenteeism or turncoats; indepen-

dent majorities are more meritocratic than majorities exposed to outside overrulings.

On the normative front, how can discrimination be fought? Our first prediction is that

dominant groups will play cat-and-mouse with the social planner, possibly making well-

meaning policies backfire not only for society, but also for minorities. If control is at stake, the

dominant group can stuff the organization with its candidates much more than it would have

done in the absence of public intervention. Consequently, there may be no middle way and

the principal may have to run the organization if it starts meddling with appointments at all.

Our second prediction is that lowering control stakes can be effective. For instance, limiting

the majority’s power (while leaving control unchallenged) by mandating equal treatment of

members, or by setting a minority representation quota fosters meritocratic behavior. So does

raising non-control-related stakes via targeted subsidies. As these interventions entail different

costs – cost of public funds in case of transfers, cost of ensuring that equal treatment of wage

and working conditions is implemented, cost associated with inefficient recruitments (either

as a reaction against the threat of intervention, or to comply with a representation quota) –,

they may be optimally combined depending on the planner’s constraints.

Let us conclude by evoking some of the (many) areas that would benefit from future re-

search and in which we believe our model could be useful.

Theoretical research: (a) Heterogeneous time horizons. Heterogeneous time horizons may

stem from different preferences, different positions within the organization’s hierarchy, or dif-
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ferent outside options (due e.g., to heterogeneous sectorial or geographical mobility). Members’

heterogeneous time horizons affect their willingness to invest for the future. As we showed

(see Proposition 2.iv), discrimination against the minority is an investment benefitting pa-

tient majority members. Would "older" members (i.e. with a shorter time horizon) be more

meritocratic than "younger" members, and thus should they be allocated more power over re-

cruitments? Relatedly, in a hierarchy with control located at the senior level, would the glass

ceiling be shattered by a shorter time horizon for seniors (e.g., stemming from an internal rule

mandating that seniors only serve as such for a short duration)?

(b) Integrity of quality assessment exercises. One of our insights on the policy side is that

quality assessment exercises promote meritocracy and that, leaving their cost aside, they do

not generate the perverse entrenchment effects that plague some other interventions. We how-

ever presumed that these assessments were accurate. Casual empiricism suggest that integrity

is not to be taken for granted. Dominant groups may control not only the organizations

themselves, but also the panels that are supposed to assess them. At the same time, minority

groups may be minorities not only because they suffer from some innate trait that is unrelated

to quality (gender, ethnicity. . . ), but also because they are perceived as lower-quality agents

by the majority group. Mandating diversity in the assessment panels may then be less effective

than when differentiating (in/out-group) traits are perceived to be horizontal. Capturing this

may require a diversity of perhaps-motivated beliefs as to what constitutes high-quality work,

and would shed light on how science progresses.

(c) Coalitions. While a two-group structure is natural in a number of environments, ex-

ercising control over appointments may require building up a majoritarian coalition in others.

As is well-known from academic departments or politics, such coalitions may be unstable over

time, as a partner in a coalition may be evicted for the benefit of another or may be wary that

the dominant coalition group becomes hegemonic.

(d) Dismissals. We have assumed that the organization’s members have tenure. While

this is a reasonable approximation in a number of coopting organizations (academia, cooper-

atives, trade or monetary unions, academies, some civil service and/or judiciary positions in

some countries47), one could study the opposite polar case in which members have short-term

appointments that need to be renewed over time. The preferences of talented and untalented

members of a given horizontal group are then not perfectly aligned. The latter’s position is

more at risk in case of a change of majority, as the new majority can always replace them and

bring in its own untalented members (recall that talent is the scarce factor). Hence, talented

and untalented majority members may have diverging opinions on meritocracy, with the tal-
47In some countries (e.g., in France and in Spain), recruitment into some civil-service corps – which offer

permanent positions – is made via committees composed of incumbent members of the corps. See for instance
Bagues and Esteve-Volart (2010) on recruitments into the main corps of the Spanish judiciary.
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ented opting for meritocracy while untalented ones strongly prefer entrenchment. One could

even envision cases in which the untalented majority members would vote for one of their

clones over a talented majority candidate, giving rise to a new, vertical form of entrenchment.

We conjecture that meritocracy might be best promoted by awarding tenure and thereby se-

curing the positions of the less talented in case of a change in majority.

Empirical investigations. The model could be tested from its basic assumptions to its

predictions. For instance, the homophily incentive b has in recent years increased in some di-

mensions (e.g., political polarization) and decreased in others (as when social norms penalize

a lack of diversity). Depending on factors such as initial conditions, the nature of internal

interactions, the size of the organization48 or the competitiveness of the market for talent,

this evolution should impact dependent variables such as the quality of recruitments and the

heterogeneity within and across organizations. Does patience (e.g., longer-term perspectives

for members within the organization) foster entrenchment as the model predicts? For exam-

ple, the model’s predictions on the role of patience may be particularly relevant when applied

to local communities. People with low prospects of ever leaving a region or a neighborhood

(the "somewheres", to borrow from Goodhart 2017), should be expected to be more inclined

to entrench themselves, i.e. be opposed to a large immigration that would make them become

a minority, while by contrast, highly mobile individuals (the "anywheres") should be more tol-

erant/less sensitive. In addition, the model’s predictions on the impact of policy interventions

could be tested: How do organizations react in practice, and do policies backfire as predicted?

The model’s results regarding the collegial bias against meritocracy and its drivers could also

be tested. For instance, do uncertain voting participation and imperfect group allegiance trig-

ger super-entrenchment?49 Does homogamic evaluation capability threaten meritocracy and

harm welfare?50 We leave these empirical questions as well as the theoretical ones to future

investigation.
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50As the polarization of a society increases, reciprocal knowledge across groups may be expected to recede,
hence generating the asymmetric information structure of Section 4.2.1. As a consequence, polarization in
a society may jeopardize meritocracy both by raising homophily benefits, and by lowering information on
out-group individuals.
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Online Appendix

A Proof of Lemma 1

A.1 Value functions for majority and minority members with the canonical
strategies

Let us consider the canonical strategies:

(i) Members of the majority (all) vote for the majority candidate if the latter is at least as

talented as the minority candidate.

(ii) When the minority candidate is more talented, members of a type-X majority (all) vote

for the majority candidate with probabilities {σX(M)}M∈{k,...,N−1} with σX(k) ∈ {0, 1}

and σX(M) = 0 if M > k.

Value function for a majority member. Let V −i,X denote the expected value function con-

ditional on the minority candidate being more talented, and V +
i,X denote the expected value

function conditional on the complementary event. The value function for a majority member

writes for any k ≤M ≤ N − 1,51,

VM,X = xV −M,X + (1− x)V +
M,X (3)

where



V −M,X = σX(M)
[
bX + δ

(
M

N − 1VM,X +
(
1− M

N − 1
)
VM+1,X

)]
+(1− σX(M))

[
s+ δ

(
M − 1
N − 1 VM−1,X +

(
1− M − 1

N − 1
)
VM,X

)]

V +
M,X = bX + x

1− xs+ δ

(
M

N − 1VM,X +
(

1− M

N − 1

)
VM+1,X

)

With probability x, the (type-X) majority faces a trade-off between selecting a talented mi-

nority member (yielding payoff s) and picking the less talented majority candidate (yielding

payoff bX). With probability 1−x, the majority candidate is at least as talented as the minor-

ity one, and the majority candidate brings average payoff bX + xs/(1− x), where x/(1− x) is

the conditional probability of that candidate’s being talented. Recruiting a majority candidate

when the majority has sizeM in period t yields an end-of-period majority size ofM+1. From

the perspective of a majority member, three events might then happen at the beginning of

period t+ 1 before the vote takes place: (i) with probability 1/N (which is already embedded
51Equation (3) applies even when M = N − 1 as the majority size M + 1 becomes irrelevant (its probability

being nil).

36



in the discount factor δ ≡ δ0(1 − 1/N)), the majority member quits the organization, which

gives him zero payoff; (ii) with probability M/N , another majority member quits, and thus

the majority size decreases to M ; (iii) with probability (N −M − 1)/N , a minority member

quits, and thus the majority size remains equal to M + 1.

Value function for a minority member. If the majority recruits the majority candidate

in period t, then at the beginning of period t + 1: (i) with probability 1/N , the minority

member quits the organization, which gives her zero payoff; (ii) with probability (M + 1)/N ,

a majority member quits, and thus the majority size decreases to M ; (iii) with probability

(N −M − 2)/N , another minority member quits, and thus the majority size remains equal to

M + 1. The value function for a (type-X) minority member writes for any k ≤M ≤ N − 2:

VN−M−1,X = xV −N−M−1,X + (1− x)V +
N−M−1,X (4)

where



V −N−M−1,X = σY (M)δ
(
M + 1
N − 1 VN−M−1,X +

(
1− M + 1

N − 1
)
VN−M−2,X

)
+(1− σY (M))

[
s+ bX + δ

(
M

N − 1VN−M,X +
(
1− M

N − 1
)
VN−M−1,X

)]

V +
N−M−1,X = x

1− xs+ δ

(
M + 1
N − 1 VN−M−1,X +

(
1− M + 1

N − 1

)
VN−M−2,X

)

A.2 Continuation values with the canonical strategies

Let us begin with a useful result, which we will use repeatedly throughout our analysis. We

index the canonical strategies by r ∈ {m, e}, where m stands for the canonical meritocratic

strategy and e for the canonical entrenchment one. To alleviate the notation, we omit the

subscript X ∈ {A,B} as we restrict our attention to a single group.

Lemma A.1. (Majority continuation values with the canonical strategies) Fix Vk−1 ∈

R (continuation value upon losing control) and consider the value function (V r
M (Vk−1))M≥k

associated with the canonical strategy r ∈ {m, e} given Vk−1. Then,

(i) For r = e, the continuation value V e
M (Vk−1) increases with M ≥ k and has decreasing

differences (i.e., ueM (Vk−1) ≡ V e
M+1(Vk−1) − V e

M (Vk−1) decreases with M ≥ k), strictly

so if x > 0.

(ii) For r = m, if V m
k (Vk−1) ≥ Vk−1, the continuation value V m

M (Vk−1) increases with M ≥ k

and has decreasing differences (i.e., umM (Vk−1) ≡ V m
M+1(Vk−1)−V m

M (Vk−1) decreases with

M ≥ k), strictly so if V m
k (Vk−1) > Vk−1.
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Proof. Let r ∈ {m, e}. By definition of the canonical strategies, for anyM ∈ {k+1, ..., N−1},

V r
M (Vk−1) = (x+ x)s+ (1− x)b+ (1− x)δ

[
M

N − 1V
r
M (Vk−1) +

(
1− M

N − 1

)
V r
M+1(Vk−1)

]
+ xδ

[
M − 1
N − 1 V

r
M−1(Vk−1) +

(
1− M − 1

N − 1

)
V r
M (Vk−1)

]
.

ForM = k, the same recursive equation holds for the canonical meritocratic strategy (r = m),

while for the canonical entrenchment strategy (r = e),

V e
k (Vk−1) = xs+ b+ δ

[
k

N − 1V
e
k (Vk−1) +

(
1− k

N − 1

)
V e
k+1(Vk−1)

]
.

Consequently, for any M ∈ {k + 1, ..., N − 1}, letting urM (Vk−1) ≡ V r
M+1(Vk−1)− V r

M (Vk−1),

[
1− δx

(
1− M

N − 1

)
− δ(1− x) M

N − 1

]
urM (Vk−1)

= δx
M − 1
N − 1 u

r
M−1(Vk−1) + δ(1− x)

(
1− M + 1

N − 1

)
urM+1(Vk−1). (5)

Moreover, for M = k, the canonical meritocratic strategy (still) yields (5), i.e.

[
1− δx

(
1− k

N − 1

)
− δ(1− x) k

N − 1

]
umk (Vk−1)

= δx
k − 1
N − 1u

m
k−1(Vk−1) + δ(1− x)

(
1− k + 1

N − 1

)
umk+1(Vk−1).

whereas the canonical entrenchment strategy yields

uek(Vk−1) = x(s− b) + δ(1− x)
[(

1− k + 1
N − 1

)
uek+1(Vk−1) + k

N − 1u
e
k(Vk−1)

]
. (6)

We show the result by contradiction and by induction. Suppose urN−2(Vk−1) ≤ 0. Then,

Equation (5) for M = N − 2 implies

[
1− δ x

N − 1 − δ(1− x)N − 2
N − 1

]
urN−2(Vk−1) = δx

N − 3
N − 1u

r
N−3(Vk−1)

Therefore, urN−3(Vk−1) ≤ 0 and urN−3(Vk−1) ≤ u(
N−2Vk−1)r. We then proceed by induction to

show that for any M ∈ {k + 1, ..., N − 2}, urM−1(Vk−1) ≤ urM (Vk−1) ≤ 0. Suppose the result

holds for all indices in {M + 1, ..., N − 2}. Then, (5) implies

[
1− δx

(
1− M

N − 1

)
− δ(1− x) M

N − 1

]
urM (Vk−1)

≥ δxM − 1
N − 1 u

r
M−1(Vk−1) + δ(1− x)

(
1− M + 1

N − 1

)
urM (Vk−1)
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i.e.,

[
1− δx

(
1− M

N − 1

)
− δ(1− x)N − 2

N − 1

]
urM (Vk−1) ≥ δxM − 1

N − 1 u
r
M−1(Vk−1)

Consequently, urM−1(Vk−1) ≤ urM (Vk−1) ≤ 0. The result follows by induction. In particular,

one has urk(Vk−1) ≤ urk+1(Vk−1) ≤ 0.

However, consider the canonical entrenchment strategy and suppose x > 0 (the case x = 0

is analogous). (6) then implies that

0 ≥
[
1− δ(1− x)N − 2

N − 1

]
uek(Vk−1) ≥ x(s− b) > 0,

which is a contradiction. Similarly, consider the canonical meritocratic strategy and suppose

that V m
k (Vk−1) > Vk−1 (the weak inequality case is analogous). Using (5) in M = k al-

lows to extend the induction argument to show that umN−2 ≤ 0 implies umk−1(Vk−1) ≤ 0, i.e.

V m
k (Vk−1) ≤ Vk−1, which is a contradiction.

Therefore, for any r ∈ {m, e}, urN−2(Vk−1) < 0. Using (5), one then has by induction that

urk(Vk−1) > ... > urN−2(Vk−1) > 0.

as was to be shown.

A.3 Proof of Lemma 1

Let v (resp. w) denote the incremental value brought to a member of the majority by

the minority (resp. majority) candidate. So v ∈ {0, s}, w ∈ {b, b + s}, and v > w if and

only if (v, w) = (s, b) (otherwise v < w). Throughout the Online Appendix, we refer to

the incremental value brought by current-period hires as a "flow payoff" (slighlty abusing

vocabulary as this incremental value captures the discounted sum of present and future quality

and homophily benefits, if any).

Let C ≡
[
0, ((x + x)s + (1 − x)b)/(1 − δ)

]
. All vectors of value functions (Vk, .., VN−1)

necessarily belong to Ck as for any s ≥ b, Ev,w[max(v, w)] = (x+x)s+(1−x)b. By construction,

given any Vk−1 ∈ C, the majority faces an optimal control problem, and there exists a unique

sequence of majority value functions (Vk(Vk−1), ..., VN−1(Vk−1)) solving the Bellman equations:

∀i ≥ k, Vi = Ev,w
[

max
{
v + δ

(
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

)
,

w + δ

(
i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

)}]
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Hence, rewriting (1), the majority’s choice at size M between two candidates with profiles

(v, w) is determined by the following comparison:

v − w + δ

[
M − 1
N − 1 (VM − VM−1) +

(
1− M

N − 1

)
(VM+1 − VM )

]
≶ 0. (7)

Given any Vk−1 ∈ C, the majority can always guarantee a sequence of value functions such

that VM > Vk−1 for any M ≥ k, for instance by following the canonical meritocratic strategy

(making meritocratic recruitments at all majority sizes) as such a strategy yields a flow payoff

equal to Ev,w[max(v, w)] = (x+ x)s+ (1− x)b ≥ (1− δ)Vk−1 at all majority sizes.

Hence in particular, the solution to the Bellman equations given Vk−1 satisfies Vk+1(Vk−1) >

Vk−1, and thus for M = k, (7) writes as

v − w − δ k − 1
N − 1(Vk+1(Vk−1)− Vk−1) ≤ v − w.

Hence, it is never optimal for a majority with size k to recruit the minority candidate whenever

v < w (i.e. whenever the majority candidate is at least as talented as the minority one).

Fix Vk−1 ∈ C. Let us show that for any Vk−1 ∈ C, the majority’s best response among pure

Markov Perfect strategy is either canonical meritocracy or canonical entrenchment.

Consider the sequence of value functions (V e
M (Vk−1))M≥k generated by the canonical en-

trenchment strategy given Vk−1: the sequence (V e
M (Vk−1))M≥k is defined recursively by (5)-(6),

i.e. satisfies

V e
k (Vk−1) = E[w] + δ

[
k

N − 1V
e
k (Vk−1) + k − 1

N − 1V
e
k+1(Vk−1)

]

and for any M ≥ k + 1,

V e
M (Vk−1) = Ev,w[max(v, w)] + δx

[
M − 1
N − 1 V

e
M−1(Vk−1) + N −M

N − 1 V e
M (Vk−1)

]
+ δ(1− x)

[
M

N − 1V
e
M (Vk−1) + N −M − 1

N − 1 V e
M+1(Vk−1)

]

Let us distinguish three cases, depending on whether s − b − δ k − 1
N − 1

(
V e
k+1(Vk−1) − Vk−1

)
is

strictly negative, strictly positive, or nil.

Case 1. Suppose the following inequality holds:

s− b− δ k − 1
N − 1

(
V e
k+1(Vk−1)− Vk−1

)
< 0. (8)

Let us show that the sequence of majority value functions (V e
M (Vk−1))M≥k solves the Bellman
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equations given Vk−1. By Lemma A.1, ue
M ≡ V e

M+1 − V e
M > 0 and ueM+1 ≤ ueM for all M ≥ k.

Hence, (7) implies that given the continuation values induced by the canonical entrenchment

strategy, it is strictly optimal for the majority at any majority size M ≥ k to recruit its in-

group candidate whenever he is at least as talented as the minority one (as then v > w).

Moreover, (8) and (7) imply that given the continuation values induced by the canonical

entrenchment strategy, it is optimal for the majority at size M = k to recruit the majority

candidate even when he is less talented than the minority candidate. In addition, (6) together

with the inequality ue
k+1 ≤ ue

k imply that

[
1− δ(1− x)N − 2

N − 1

]
ue
k ≤ x(s− b)

and therefore, using again (6),

δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
≤

δxN−2
N−1

1− δ(1− x)N−2
N−1

(s− b) < s− b,

where the second inequality follows from δ < (N − 1)/N . Hence, by monotonicity of the

sequence (ue
M )M≥k, for any majority size M ≥ k + 1, (7) implies that, given the continuation

values induced by the canonical entrenchment strategy, it is strictly optimal for the majority

to recruit the minority candidate whenever she is more talented than the majority candidate.

Therefore, the sequence of majority value functions (V e
M (Vk−1))M≥k solves the Bellman

equations given Vk−1, and as the latter have a unique solution, VM (Vk−1) = V e
M (Vk−1) for

any M ≥ k. Identifying the strategies from the value functions (using (7)), if (8) holds, the

majority’s best response to Vk−1 among pure Markov Perfect strategies is thus the canonical

entrenchment strategy.

Case 2. Suppose the following inequality holds:

s− b− δ k − 1
N − 1

(
V e
k+1(Vk−1)− Vk−1

)
> 0, (9)

To alleviate the notation, let

∆ ≡ s− b− δ k − 1
N − 1

(
V e
k+1(Vk−1)− Vk−1

)
.

Consider the sequence of value functions (V m
M (Vk−1))M≥k generated by the canonical merito-

cratic strategy given Vk−1: the sequence (V m
M (Vk−1))M≥k is defined recursively by (5) for any
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M ≥ k, i.e. satisfies for all M ≥ k

V m
M (Vk−1) = Ev,w[max(v, w)] + δx

[
M − 1
N − 1 V

m
M−1(Vk−1) + N −M

N − 1 V m
M (Vk−1)

]
+ δ(1− x)

[
M

N − 1V
m
M (Vk−1) + N −M − 1

N − 1 V m
M+1(Vk−1)

]

with V m
k−1(Vk−1) ≡ Vk−1.

Then, using the recursive expressions of the continuation values induced by the canonical

meritocratic and canonical entrenchment strategies, for any M ≥ k + 1,

V m
M (Vk−1)− V e

M (Vk−1)

= δx

[
M − 1
N − 1

(
V m
M−1(Vk−1)− V e

M−1(Vk−1)
)

+ N −M
N − 1

(
V m
M (Vk−1)− V e

M (Vk−1)
)]

+ δ(1− x)
[

M

N − 1
(
V m
M (Vk−1)− V e

M (Vk−1)
)

+ N −M − 1
N − 1

(
V m
M+1(Vk−1)− V e

M+1(Vk−1)
)]

and for M = k,

V m
k (Vk−1)− V e

k (Vk−1)

= ∆ + δx
k

N − 1
(
V m
k (Vk−1)− V e

k (Vk−1)
)]

+ δ(1− x)
[

k

N − 1
(
V m
k (Vk−1)− V e

k (Vk−1)
)

+ k − 1
N − 1

(
V m
k+1(Vk−1)− V e

k+1(Vk−1)
)]
.

Using the recursive expressions of the (V m
M − V e

M )M yields that52

V m
k (Vk−1)− V e

k (Vk−1) > ... > V m
N−1(Vk−1)− V e

N−1(Vk−1) > 0.

As a consequence, by the recursive expression of V m
k+1(Vk−1)− V e

k+1(Vk−1),

[
1− δ(1− x)− δx k − 1

N − 1

](
V m
k+1(Vk−1)− V e

k+1(Vk−1)
)
< δx

k

N − 1
(
V m
k (Vk−1)− V e

k (Vk−1)
)
,

and thus by the recursive expression of V m
k (Vk−1)− V e

k (Vk−1),

[
1− δ(1− x)− δx k − 1

N − 1

](
V m
k+1(Vk−1)− V e

k+1(Vk−1)
)
<

δx k
N−1

1− δ(1− x)− δx k
N−1

x∆.

Therefore,

δ
k − 1
N − 1

(
V m
k+1(Vk−1)− V e

k+1(Vk−1)
)
< ∆,

52One may for instance proceed as in the proof of Lemma A.1 and suppose by contradiction that V m
N−1(Vk−1)−

V e
N−1(Vk−1) ≤ 0.
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and hence, by definition of ∆,

s− b− δ k − 1
N − 1

(
V m
k+1(Vk−1)− Vk−1

)
> 0. (10)

Consequently, (10) and (7) imply that given the continuation values induced by the canonical

meritocratic strategy, it is optimal for the majority at size M = k to recruit the minority

candidate whenever she is more talented than the majority candidate.

By construction, Vk−1 ∈ C, and thus Vk−1 ≤ Ev,w[max(v, w)]/(1 − δ). Therefore,

V m
k (Vk−1) ≥ Vk−1. Consequently, by Lemma A.1, umk−1 ≥ umk ≥ ... ≥ umN−2 ≥ 0. Hence, (7)

implies that given the continuation values induced by the canonical meritocratic strategy, it

is indeed strictly optimal at any majority size M ≥ k for the majority to recruit the majority

candidate whenever he is at least a talented as the minority candidate (as then v > w).

Moreover, (10), the monotonicity of the sequence (umM )M≥k−1, and (7) imply that given the

continuation values induced by the canonical meritocratic strategy, it is strictly optimal at

any majority size M ≥ k for the majority to recruit the minority candidate whenever she is

more talented than the minority candidate.

Therefore, the sequence of value functions (V m
M (Vk−1))M≥k generated by the canonical

meritocratic strategy given Vk−1 solves the Bellman equations, and as the latter have a

unique solution, Vi(Vk−1) = V m
i (Vk−1) for any i ≥ k. Identifying the strategies from the value

functions (using (7)), if (9) holds, the majority’s best response to Vk−1 among pure Markov

Perfect strategies is thus the canonical meritocratic strategy.

Case 3: Suppose that the following equality holds:

s− b− δ k − 1
N − 1

(
V e
k+1(Vk−1)− Vk−1

)
= 0,

i.e. the majority is indifferent between σ(k) = 0 and σ(k) = 1. Then, the above arguments

imply that the sequences of value functions induced by the canonical entrenchment and canon-

ical meritocratic strategies both solve the Bellman equations. Identifying the strategies from

the value functions (using (7)), the majority has then two best responses (yielding the same

continuation values): canonical meritocracy and canonical entrenchment.
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B Proof of Lemma 2

The result for N = 4 derives from straightforward computations.53 We assume in the

following that N ≥ 6.

Proof of (i). Consider first the canonical entrenchment strategies. For any M ∈ {k −

1, ..., N − 2}, let V e
M denote the continuation value function with the canonical entrenchment

strategy for both group, and let ueM ≡ V e
M+1−V e

M . As argued in the proof of Lemma A.1 (see

Online Appendix A.2), the recursive expressions of the continuation value function yield for

any M ∈ {k + 1, ..., N − 2},

[
1− δx

(
1− M

N − 1

)
− δ(1− x) M

N − 1

]
ueM = δx

M − 1
N − 1 u

e
M−1 + δ(1− x)

(
1− M + 1

N − 1

)
ueM+1,

(5)

and for M = k,

uek = x(s− b) + δ(1− x)
[(

1− k + 1
N − 1

)
uek+1 + k

N − 1u
e
k

]
(6)

Therefore, the result follows straightforwardly from claim (i) in Lemma A.1.

Consider now the canonical meritocratic strategies. Let let V e
M denote the continuation

value function with the canonical entrenchment strategy for both group, and let umi ≡ V m
i+1 −

V m
i for any i ∈ {1, ..., N −2}. By construction, Equation (5) holds for any M ∈ {k, ..., N −2}.

We use the same argument as in the proof of Lemma A.1 (by contradiction and by induction).

Hence, assume by contradiction that umN−2 ≤ 0. Then, by induction, this implies that for

any M ∈ {k, ..., N − 2}, umM−1 ≤ umM ≤ 0, and thus in particular umk−1 ≤ umk ≤ 0.

Consider now um1 . Writing the recursive expression of the value function in M ∈ {k +

1, ..., N − 1} (thus writing V m
N−M−1 as a function of V m

N−M−2, V m
N−M−1 and V m

N−M ), and then

substracting the expression in N −M − 1 from the expression in N −M (and rearranging)
53Using (3) and (4), the canonical entrenched strategies yield[

1− 2δ
3 (1− x)

]
(V e

3 − V e
2 ) = x(s− b)

and thus V e
1 = xs/(1− δ) < (b+ xs)/(1− δ) < V e

2 < V e
3 . Similarly for the meritocratic equilibrium:

[
1− xδ

3 −
2δ
3 (1− x)

]
(V m

3 − V m
2 ) = xδ

3 (V m
2 − V m

1 )[
1− δ(1− x)

]
(V m

2 − V m
1 ) = (1− 2x)b+ δ

(1− x)
3 (V m

3 − V m
2 )

and thus V m
1 < V m

2 < V m
3 , and V m

2 − V m
1 > V m

3 − V m
1 .
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yields for any M ∈ {k + 2, ..., N − 2}:

[
1− δ(1− x) M

N − 1 − δx
(

1− M

N − 1

)]
umN−M−1

= δ(1− x)
(

1− M + 1
N − 1

)
umN−M−2 + δx

M − 1
N − 1 u

m
N−M (11)

and in particular,

[
1− δ x

N − 1 − δ(1− x)N − 2
N − 1

]
um1 = δx

N − 3
N − 1u

m
2

By the usual induction argument using (11), um1 > 0 implies 0 < um1 < um2 < ... < umk−2 < umk−1,

which contradicts umk−1 ≤ 0. Hence um1 ≤ 0 and the same induction argument now implies

0 ≥ um1 ≥ um2 ≥ ... ≥ umk−2 ≥ umk−1.

However, substracting Equation (3) in k and Equation (4) in k−1 yields after rearranging:

[
1− δ(1− x)

]
umk−1 = (1− 2x)b+ δ(1− x)

[(
1− k

N − 1

)
umk +

(
1− k + 1

N − 1

)
umk−2

]
(12)

The contradiction then obtains by summing the above equation together with Equations (5)

and (11) over all indices i ∈ {1, ..., N − 2} (and rearranging), which gives:

(
1− δ x

N − 1 − δ(1− x)
)

(um1 + umN−2) +
(
1− δ

)N−3∑
i=2

umi = (1− 2x)b > 0

If x < 1/2, this contradicts the fact that umi ≤ 0 for all i ∈ {1, ..., N − 2}. Therefore,

umN−2 > 0. By induction, Equation (5) then implies that 0 < umN−2 < ... < umk−1.54

The proof of claim (ii) relies on the same induction arguments as the proof of (i) and is

thus omitted for the sake of brevity.

Claim (iii) again derives from arguments analogous to the ones used in the proofs of (i)

and (ii). The result is obvious with (i) for the meritocratic equilibrium. The result for the

entrenchment equilibrium obtains by considering the sequence V e
i −V e

N−1−i for i ∈ {k, ..., N−2}

and using (3)-(4).55

Suppose by contradiction that V e
k −V e

k−1 ≤ 0. This implies that V e
k+1−V e

k−2 < V e
k −V e

k−1 ≤
54If x = 1/2, the same argument yields that V mi = V mi+1 for all i.
55Namely, using that, for M ∈ {k + 1, ..., N − 3},[

1− δ(1− x) M

N − 1 − δx
(

1− M − 1
N − 1

)]
(V eM − V eN−M−1)− (1− 2x)b+ δ

N − 1

[
(1− x)ueN−M−2 + xueN−M−1

]
= δ(1− x)

(
1− M

N − 1

)
(V eM+1 − V eN−M−2) + δx

M − 1
N − 1 (V eM−1 − V eN−M )
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0, and thus by induction that V e
N−1 − V e

1 < V e
N−2 − V e

1 < ... < V e
k − V e

k−1 ≤ 0, which

contradicts V e
N−1 ≥ V e

N−2 as shown above. (Another contradiction would be reached by

summing as above the analogues of (5)-(11) and noting that the RHS is positive whenever

x ≤ 1/2.) Hence, V e
k − V e

k−1 > 0. If V e
k+1 − V e

k−2 ≤ 0, the same contradiction is reached

again as then V e
N−1 − V e

1 < V e
N−2 − V e

1 < ... < V e
k+1 − V e

k−2 ≤ 0 (Again, one could sum over

i ∈ {k + 1, ..., N − 2} the analogues of (5)-(11) and note that the RHS is positive whenever

x ≤ 1/2.) The result obtains by induction: for any i ∈ {k, ..., N − 2}, V e
i − V e

N−1−i > 0.

C Proof of Proposition 2

Lemma 1 implies that in any pure-strategy Markov Perfect equilibrium (if any), each

group plays a canonical strategy. Proposition 1 then implies that in the symmetric case

(bA = bB = b), both groups must play the same (canonical) strategy, i.e. any pure-strategy

Markov Perfect equilibrium (if any) is canonical and symmetric. This establishes claim (i).

Let us now study the existence regions of the canonical equilibria.

C.1 A necessary and sufficient condition for existence

Lemma C.1. There exists no profitable one-shot deviation from a canonical strategy at any

majority size and for any realization of the candidates’ vertical types if and only if there exists

no profitable deviation when M = k and the minority candidate is strictly more talented.

Proof. We know by Lemma 1 that a group’s best response when it has the majority (group

size i ≥ k) is a canonical strategy – either canonical meritocracy or canonical entrenchment.

The two canonical strategies coincide at all majority sizes and all profiles of current-period

candidates, except at majority size M = k when the minority candidate is strictly more

talented than the majority candidate. The result follows.

C.2 Existence regions

Let us introduce the notation for transition probabilities for group sizes from the perspective

of (in- or out-) group members: for any horizontal group within the organization, we refer

to the transition probability from group sizes i to j from an (in- or out-) group member’s

perspective as the probability that the group’s size goes from i to j conditional on the given

while for M = k and M = N − 2,[
1− δ k

N − 1

]
(V ek − V ek−1) = b− δ

N − 1u
e
k−2 + δ

(
1− k

N − 1

)
(V ek+1 − V ek−2),[

1− δ(1− x)N − 2
N − 1 − δx

2
N − 1

]
(V eN−2 − V e1 ) = (1− 2x)b− δx

N − 1u1 + δ
(1− x)
N − 1 (V eN−1 − V e1 ) + δx

N − 3
N − 1(V eN−3 − V e2 )

The result follows, as we know from above that in the entrenchment equilibrium, uei ≤ 0 for any i ≤ k − 2.
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member being still a member of the organization then.

Namely, for regime r ∈ {e,m}, let pr
i,j be the one-period transition probability from an

in-group member’s perspective, i.e. the probability that a group size moves from i ≥ 1 to

j ≥ 1 from one period to another conditional on the given group member still being in the

organization in the following period (which has probability (N − 1)/N). As an illustration,

for any M > k and in the entrenchment equilibrium (r = e), pr
i,j is the probability from a

majority member’s perspective that the majority size moves from i ≥ k to j ≥ k from one

period to another conditional on the majority member still being in the organization in the

following period. Consequently,



pe
M,M+1 = (1− x)

(
1− M + 1

N

)
N

N − 1 = (1− x)
(

1− M

N − 1

)
pe
M,M =

[
(1− x)M

N
+ x

(
1− M

N

)]
N

N − 1 = (1− x) M

N − 1 + x

(
1− M − 1

N − 1

)
pe
M,M−1 = x

M − 1
N

N

N − 1 = x
M − 1
N − 1

pe
M,j = 0 if |M − j| > 1.

(13)

and 

pe
k,k+1 =

(
1− k + 1

N

)
N

N − 1 = 1− k

N − 1

pe
k,k = k

N

N

N − 1 = k

N − 1
pe
k,k−1 = 0

(14)

For any i, j ∈ {1, ..., N−1} and t ≥ 0, let πr
i,j(t) be the t-period transition probability from

i to j in regime r from an in-group member’s perspective, i.e. the probability that starting

from i, the group’s size is equal to j after t periods conditional on the group member still

being in the organization. Hence, for any i, j ∈ {1, ..., N − 1} and t ≥ 1,

πr
i,j(t+ 1) = pr

j−1,jπ
r
i,j−1(t) + pr

j,jπ
r
i,j(t) + pr

j+1,jπ
r
i,j+1(t),

and πr
i,j(1) = pr

i,j .

Similarly, let p̂r
i,j be the transition probability from an out-group member’s perspective,

i.e. the probability that a group’s size moves from i ≥ k to j from one period to another

conditional on the other group member still being in the organization in the following period

(which has probability (N − 1)/N). As an illustration, for any M > k and in the entrenched
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equilibrium, p̂e
i,j is the transition probability from a minority member’s perspective, and thus



p̂e
M,M+1 = (1− x)

(
1− M + 2

N

)
N

N − 1 = (1− x)
(

1− M + 1
N − 1

)
p̂e
M,M =

[
(1− x)M + 1

N
+ x

(
1− M + 1

N

)]
N

N − 1 = (1− x)M + 1
N − 1 + x

(
1− M

N − 1

)
p̂e
M,M−1 = x

M

N

N

N − 1 = x
M

N − 1
pe
M,j = 0 if |M − j| > 1.

(15)

and 

p̂e
k,k+1 =

(
1− k + 2

N

)
N

N − 1 = 1− k + 1
N − 1

p̂e
k,k = k + 1

N

N

N − 1 = k + 1
N − 1

p̂e
k,k−1 = 0

(16)

For any i, j ∈ {1, ..., N − 1}, and t ≥ 0, let π̂r
i,j(t) be the t-period transition probability from

i to j in regime r from an out-group member’s perspective, i.e. the probability that starting

from i, the group’s size is equal to j after t periods conditional on the out-group member still

being in the organization. Hence, for any i, j ∈ {1, ..., N − 1} and t ≥ 1,

π̂r
i,j(t+ 1) = p̂r

j−1,j π̂
r
i,j−1(t) + p̂r

j,j π̂
r
i,j(t) + p̂r

j+1,j π̂
r
i,j+1(t)

and πr
i,j(1) = pr

i,j .

For the meritocratic equilibrium, transition probabilities are given by (13) for in-group

members, and by (15) for out-group members at all group sizes (i ∈ {1, ..., N − 1}).

Note that because probabilities sum to 1,



( N−1∑
i=k+1

π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)
= −

(
π̂e
k,k(t)− πe

k+1,k(t)
)

(N−1∑
i=k

πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)
= −

[( k−1∑
i=1

πm
k+1,i(t)

)
−
( k−1∑
i=1

πm
k−1,i(t)

)] (17)

C.2.1 Proof of claims (ii) and (iii)

We now turn to the statement of the existence result. Building on Lemma C.1, let us

examine the case in which the majority is tight (M = k) and the minority candidate is more

talented.

Necessary and sufficient condition for existence of the meritocratic equilibrium. Leaving
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control considerations aside, choosing the less-deserving majority candidate when the majority

is tight involves a cost s − b. To evaluate the impact of a potential switch of control, which

occurs with conditional probability (k−1)/(N−1), note that in a meritocratic equilibrium, the

present discounted expected quality of future appointees does not depend on the allocation

of control. The only impact of the change in control is thus linked to homophily benefits

when the two candidates equally talented (which has probability 1 − 2x), as control allows

one to select the in-group candidate. So, a necessary condition of existence of a meritocratic

equilibrium is:

s− b ≥ δ k − 1
N − 1(1− 2x)b

+∞∑
t=0

δt
[(N−1∑

i=k
πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)]
,

and the meritocratic equilibrium exists only if

s

b
≥ ρm ≡ 1 + δ

k − 1
N − 1(1− 2x)

+∞∑
t=0

δt
[(N−1∑

i=k
πm
k+1,i(t)

)
−
(N−1∑

i=k
πm
k−1,i(t)

)]

Lemma C.1 implies that this condition is in fact also sufficient: as intuitive, deviations from

meritocracy are less appealing further away from a tight majority size, i.e. from immediate

control considerations.

Necessary and sufficient condition for existence of the entrenched equilibrium. Choosing

the less talented majority candidate yields a direct payoff loss s − b. If the majority has

size k, then with probability (k − 1)/(N − 1), the surrendering of control translates into

a permanent loss of homophily benefits whenever the two candidates are equally talented,

which has probability 1− 2x. This cost is equal to

δ

1− δ (1− 2x)b

Moreover, because the new majority will itself be entrenched, i.e. always voting for its own

candidate whenever the majority is tight, the surrendering of control entails an additional

loss of homophily benefit proportional to 2xb whenever the majority is tight, along with the

difference in homophily benefits associated with meritocratic decisions, i.e. choosing a talented

minority candidate instead of an untalented majority candidate, at any majority sizeM ≥ k+1.

The latter would seem unwarranted as the two groups then agree on the decision to pick the

more talented candidate; its existence comes from the fact that transition probabilities depend
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on one’s perspective. Put together, these two terms add up to

δ
k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t)− δ

k − 1
N − 1xb

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

Another way to interpret the homophily payoff terms consists in noticing that the expected

per-period payoff of a majority (resp. minority) member is equal to (1 − x)b (resp. xb)

whenever the majority is not tight (M ≥ k+ 1), while it is equal to b (resp. 0) when majority

is tight (M = k).

Finally, because the new majority is itself entrenched, and since the shift in control implies

that perspectives change, the surrendering of control yields a differential quality payoff equal

to

δ
k − 1
N − 1(x+ x)s

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
π̂e
k,k(t)− πe

k+1,k(t)
)

So overall a necessary condition for the existence of an entrenched equilibrium is

b− s ≥ δ k − 1
N − 1(x+ x)s

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
π̂e
k,k(t)− πe

k+1,k(t)
)
− k − 1
N − 1

δ

1− δ (1− 2x)b

− δ k − 1
N − 12xb

+∞∑
t=0

δtπe
k+1,k(t) + δ

k − 1
N − 1xb

+∞∑
t=0

δt
[( N−1∑

i=k+1
π̂e
k,i(t)

)
−
( N−1∑
i=k+1

πe
k+1,i(t)

)]

Let Inequality (18) be the inequality:

1 + δ
k − 1
N − 1x

+∞∑
t=0

δt
(
πe
k+1,k(t)− π̂e

k,k(t)
)
> 0. (18)

Define ρe as

ρe ≡



1 + k − 1
N − 1

δ

1− δ (1− 2x) + δ
k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe
k+1,k(t) + π̂e

k,k(t)
)

1 + δ
k − 1
N − 1x

∑+∞
t=0 δ

t

(
πe
k+1,k(t)− π̂e

k,k(t)
) if (18) holds,

+∞ otherwise.

Hence, the entrenched equilibrium exists only if s/b ≤ ρe. As the series term in (18) is

negative for all t (see Lemma C.2 below), there might exist an entrenched equilibrium for
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all values of s and b for δ sufficiently close to 1, and thus we set ρe = +∞ if (18) fails.

Nonetheless, we show that for a positive rate of time preference (which we assumed) – i.e.

δ < (N − 1)/N –, the entrenched equilibrium exists only on a finite interval: ρe < +∞ (see

Section C.2.3 for the proof of this result).

Lemma C.1 yields that this necessary condition is also sufficient. Hence, the entrenched

(resp. meritocratic) equilibrium exists if and only if s/b ≤ ρe (resp. s/b ≥ ρm).

Lastly, we show that the cutoffs ρe and ρm satisfy the following inequalities:56

1 ≤ 1 + δ
k − 1
N − 1(1− 2x) ≤ ρm ≤ 1 + δ

1− δ
k − 1
N − 1(1− 2x) < ρe < +∞ (19)

The upper and lower bounds on ρm may be decomposed as follows: (1− 2x) is the probability

of a homophily benefit from control, (k − 1)/(N − 1) the (conditional) probability of losing

the majority when its end-of-period size is k, while δ (resp. δ/(1− δ)) are the time-discounted

weights corresponding to a transient (resp. permanent) loss of control.57

The bounds on ρe and ρm in Inequality (19) derive from the following lemma.

Lemma C.2. For all t ≥ 0,

(i) πe
k+1,k(t) ≤ π̂e

k,k(t)

(ii)
∑
i≥k

πm
k+1,i(t) ≥

∑
i≥k

πm
k−1,i(t)

Proof. We use a result relying on the properties of monotone Markov chains.58

(i) Define the process M(t) (resp. M̂(t)) as the probability distribution over majority sizes

{k, ..., N − 1} from a majority (resp. minority) member’s perspective. Hence, the i-th compo-

nent of M(t) is the probability (from the perspective of a majority member) that the majority

be of size k + 1− i at period t. In particular, if at time 0 the majority is known to have size

k + 1, then M(0) = (0, 1, 0, ..., 0), and at any later time t, M(t) =
(
πe
k+1,k(t), ..., πe

k+1,N−1(t)
)
.

Similarly, if at time 0 the majority is known to have size k, then M̂(0) = (1, 0, , ..., 0), and at

any later time t, M̂(t) =
(
π̂e
k,k(t), ..., π̂e

k,N−1(t)
)
.

Let P (resp. P̂ ) be the stochastic matrix associated with the process M(t) (resp. M̂(t)).

As a consequence, for any i, j ∈ {1, ..., k},

Pij = pe
k+i−1,k+j−1, and P̂ij = p̂e

k+i−1,k+j−1

56The proof that ρe < +∞ is delayed to Section C.2.3.
57Note that ρm reaches its upper bound as x goes to 0. In the limit, it is equal to 1 + δ

1− δ
k − 1
N − 1 , which

is intuitive: the majority weights the current-period payoff s− b against the constant homophily loss in future
periods due to the permanent loss of control (times its probability of occurrence (k − 1)/(N − 1)).

58See, e.g., Kijima, M. (1997). "Monotone Markov Chains". In: Markov Processes for Stochastic Modeling.
Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3132-0_3.
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We first note that for any i > i′ and any j∗ ∈ {1, ..., k},
∑
j≥j∗

Pij ≥
∑
j≥j∗

Pi′j , i.e. Pi· stochas-

tically dominates Pi′· whenever i > i′. Hence, P is stochastically monotone, and by the same

argument, so is P̂ .

We then note that P and P̂ are stochastically comparable, with Pi· stochastically domi-

nating P̂i· for any i ∈ {1, ..., k}. Furthermore, the process M(t) starts from the initial state

M(0) = (0, 1, 0, ...) which stochastically dominates the initial state of the process M̂(t), that

is M̂(0) = (1, 0, , 0, ...).

Hence, a standard argument implies that for any t > 0, the distribution M(t) stochasti-

cally dominates the distribution M̂(t) (see for instance Theorem 3.31 in Kijima 1997).59 In

particular, we have that for any t > 0,

N−1∑
i=k+1

πe
k+1,i(t) ≥

N−1∑
i=k+1

π̂e
k,i(t),

which is equivalent to: πe
k+1,k(t) ≤ π̂e

k,k(t).

(ii) In order to establish the lower bound on ρm and thus Inequality (19), we note that:

(∑
i≥k

πm
k+1,i(t)

)
−
(∑
i≥k

πm
k−1,i(t)

)
> 0 ∀t ≥ 0

This inequality can be shown with the same technique as the one used in the proof of claim (i)

by considering the process of one’s successive in-group sizes in the meritocratic equilibrium,

either starting from the initial state k+1 or k−1. Indeed, the same conditions are satisfied, as

(a) both processes (of probability distribution over one’s successive in-group sizes) share the

same transition matrix60 which is stochastically monotone, and (b) the initial state with mass

1 in k+1 stochastically dominates the initial state with mass 1 in k−1. Hence, the stochastic-

comparison argument applies, yielding that the process of one’s in-group size starting from

k + 1 stochastically dominates at any time t ≥ 0 the process starting from k − 1, and thus in

particular,

∑
i≥k

πm
k+1,i(t) >

∑
i≥k

πm
k−1,i(t)

59A sketch of the proof is as follows. Proceed by induction on t. The result for t = 0 holds as the initial
state M(0) = (0, 1, 0, ...) stochastically dominates the initial state M̂(0) = (1, 0, , 0, ...). Suppose that M(t)
stochastically dominates M̂(t). Then, since P stochastically dominates P̂ , we have that M̂(t)P stochastically
dominates M̂(t)P̂ . Since P is stochastically monotone, M(t)P stochastically dominates M̂(t)P . Thus, by
transitivity,M(t)P stochastically dominates M̂(t)P̂ . In other words,M(t+1) stochastically dominates M̂(t+1),
which concludes the proof.

60Namely, the matrix Pm with components Pij = pm
i,j for any i, j ∈ {1, ..., N − 1}.
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C.2.2 Proof of claim (iv)

The result derives from the explicit expressions of the existence thresholds together with

Lemma C.2. Indeed, by Lemma C.2, for all t ≥ 0,

πe
k+1,k(t)− π̂e

k,k(t) ≤ 0, and
(∑
i≥k

πm
k+1,i(t)

)
−
(∑
i≥k

πm
k−1,i(t)

)
≥ 0

Using term-by-term differentiation of the series yields the result: ∂ρm/∂δ0 ≥ 0, ∂ρe/∂δ0 ≥ 0

for all δ0 ∈ [0, 1). Moreover, using term-by-term differentiation of the series for ρm and explicit

computations for ρe yields

∂ρm

∂δ0

∣∣∣∣
δ0=0

= k − 1
N

(1− 2x) and ∂ρe

∂δ0

∣∣∣∣
δ0=0

= k − 1
N

Lastly, the explicit expressions of the existence thresholds yield that for δ0 close to 0, ρm and

ρe increase with the size of the organization N = 2k.

C.2.3 Entrenchment exists only on a finite interval (ρe <∞)

We show in this section that ρe < ∞.61 The result immediately follows from the explicit

expression of ρe for k = 2. Hence, let k ≥ 3. Let us stress that this result (for general

k) is not obvious as strategic complementarity could a priori induce the existence of the

entrenchment equilibrium even for arbitrarily large s/b. Checking that ρe < ∞ thus requires

some computations, in particular as the majority size has different transition probabilities

from the perspective of a majority member and from the one of a minority member (due to a

member’s conditioning on still being a member in the next periods).

Let V e
i denote the value function in the entrenched equilibrium, and define as before

ue
i ≡ V e

i+1 − V e
i . Fix s > 0. For any i ∈ {1, ..., N − 2}, ue

i is continuous with respect to

b ∈ [0,+∞).

The (one-shot) deviation differential payoff from entrenchment to meritocracy in M = k

is equal to

s− b+ δ
k − 1
N − 1(V e

k−1 − V e
k+1) = s− b− δ k − 1

N − 1(ue
k−1 + ue

k)

Fix b = 0. If the above payoff is strictly positive for b = 0, then by continuity, it must be so

on a neighbourhood of 0. Hence, there would exist ρ > 0 such that for any s/b > ρ, there

exists a strictly profitable deviation from entrenchment to meritocracy, which would yield the
61The proof also yields that ρe† |s†>b <∞ (thus in particular for x† ≥ 1/2), where ρe defined in Proposition

9 (see Section 4.2.1).
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result: ρe <∞. We thus show that for b = 0:

s− δ k − 1
N − 1(ue

k−1 + ue
k) > 0 (20)

Using (3)-(4) and (5)-(11), the above inequality can be written as

δx
k − 1
N − 1

1− δx− δ(1− x)
[
k + 1
N − 1 + k − 2

N − 1ak+1

] (21)

×
(

1−
δx

k

N − 1

1− δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

] − δx
k − 2
N − 1

1− δ(1− x)
[
k + 1
N − 1 + k − 3

N − 1bk+2

]) < 1

where the vectors (ak+l)k−2
l=1 , (bk+l)k−2

l=1 are defined recursively by



ak+l =
δx

k + l

N − 1

1− δ(1− x)
[
k + l + 1
N − 1 + k − l − 2

N − 1 ak+l+1

]
− δxk − l − 1

N − 1

aN−2 =
δx
N − 2
N − 1

1− δ(1− x)− δ x

N − 1

and 

bk+l =
δx
k + l − 1
N − 1

1− δ(1− x)
[
k + l

N − 1 + k − l − 2
N − 1 bk+l+1

]
− δxk − l − 1

N − 1

bN−2 =
δx
N − 3
N − 1

1− δ(1− x)N − 2
N − 1 − δ

x

N − 1

Indeed, computations using (3)-(4) and (5)-(11) for the entrenchment equilibrium, give that:



[
1− δ(1− x) k + 1

N − 1 − δx
](
V e
k+1 − V e

k−1
)

= xs+ δ(1− x) k − 2
N − 1

(
V e
k+2 − V e

k−2
)
− δx k

N − 1u
e
k + δx

k − 2
N − 1u

e
k−2

V e
k+2 − V e

k−2 = ak+1
(
V e
k+1 − V e

k−1
)

ue
k+1 = bk+1u

e
k

ue
k−3 = bk+2u

e
k−2
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and thus, by rearranging,62 (20) is equivalent to (21).

We thus show that for any x ∈ (0, 1) and δ ∈ [0, (N − 1)/N), inequality (21) is satisfied.63.

By construction, (ak+l)k−2
l=1 and (bk+l)k−2

l=1 are increasing with l, and for any l, bk+l < ak+l < 1.

Moreover, for any l, ak+l and bk+l are increasing with respect to x and δ.64 Therefore, the

term on the first line (resp. second line) in (21) is strictly increasing (resp. decreasing) with

respect to x and δ.

Using the inequality bk+1 < bk+2 < 1, a sufficient condition for (21) to be satisfied is

δx
k − 1
N − 1

(
1− δxN − 2

N − 1 − δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

])
(22)

/

[(
1− δ(1− x)

[
k

N − 1 + k − 2
N − 1bk+1

])(
1− δx− δ(1− x)

[
k + 1
N − 1 + k − 2

N − 1ak+1

])]
< 1

or equivalently,

δx
k − 1
N − 1

(
1− δxN − 2

N − 1 − δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

])
(23)

−
(

1− δ(1− x)
[

k

N − 1 + k − 2
N − 1bk+1

])(
1− δx− δ(1− x)

[
k + 1
N − 1 + k − 2

N − 1ak+1

])
< 0

The above inequalities are strictly stronger than (21) for any x ∈ (0, 1), and coincide with (21)

in x = 1.

We now show that for any x ∈ [0, 1], (i) the LHS in (23) increases with δ over [0, (N−1)/N ],

and (ii) its maximum (thus with δ = (N − 1)/N) is strictly negative.
62Using in particular that (3)-(4) imply:

ue
k = xs+ δ(1− x)

[(
1− k + 1

N − 1

)
ue
k+1 + k

N − 1u
e
k

]
ue
k−2 = −xs+ δ(1− x)

[
k + 1
N − 1u

e
k−2 +

(
1− k + 2

N − 1

)
ue
k−3

]
63The case x ≥ 1/2 is equivalent to the homogamic-evaluation-capability setting with x† ≥ 1/2. Indeed, the

homogamic-evaluation-capability equivalent of (20) is:

δx
k − 1
N − 1

1− δx† − δ(1− x†)
[
k + 1
N − 1 + k − 2

N − 1a
†
k+1

]

×

(
1−

δx†
k

N − 1

1− δ(1− x†)
[

k

N − 1 + k − 2
N − 1 b

†
k+1

] − δx†
k − 2
N − 1

1− δ(1− x†)
[
k + 1
N − 1 + k − 3

N − 1 b
†
k+2

]) <
x

x†

with the corresponding families (a†k+l)
k−2
l=1 , (b†k+l)

k−2
l=1 defined as before by replacing x with x†.

64These results can be shown by downward induction starting from l = N − 2.
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(i) In order to alleviate the notation, let Ca and Cb be defined as

Ca ≡
k + 1
N − 1 + k − 2

N − 1ak+1, and Cb ≡
k

N − 1 + k − 2
N − 1bk+1

Since bk+1 < ak+1 < 1, we have that Cb < Ca < 1. Using a downward induction argument on

the sequences (ak+l)l and (bk+l)l yields that ∂ak+1/∂δ > ∂bk+1/∂δ.65 As a consequence,

φ(δ) ≡ ∂ak+1
∂δ

[
1− δ(1− x)Cb

]
+ ∂bk+1

∂δ

[
1− δ(1− x)Ca − δx

(
1 + k − 1

N − 1

)]
≥ ∂bk+1

∂δ

[
2− δ(1− x)(Ca + Cb)− δx

(
1 + k − 1

N − 1

)]
> 0

Denoting by ϕ(δ) the partial derivative of the LHS in (23) with respect to δ, we have after

rearranging:

ϕ(δ) = x

(
1 + k − 1

N − 1

)
+ (1− x)(Ca + Cb)

− 2δ
[
x(1− x)

(
1 + k − 1

N − 1

)
Cb + (1− x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1

]

+ δ(1− x) k − 2
N − 1

(
∂ak+1
∂δ

[
1− δ(1− x)Cb

]
+ ∂bk+1

∂δ

[
1− δ(1− x)Ca − δx

(
1 + k − 1

N − 1

)])
65The result follows from the observation that

∂aN−2

∂δ
=

x
N − 2
N − 1(

1− δ(1− x)− δ x

N − 1

)2 >
x
N − 3
N − 1(

1− δ(1− x)N − 2
N − 1 − δ

x

N − 1

)2 = ∂bN−2

∂δ

and for any l ∈ {1, ..., k − 3},

∂ak+l

∂δ
=

x
k + l

N − 1 + δ2x(1− x) k + l

N − 1
k − l − 2
N − 1

∂ak+l+1

∂δ(
1− δ(1− x)

[
k + l + 1
N − 1 + k − l − 2

N − 1 ak+l+1

]
− δxk − l − 1

N − 1

)2

>
x
k + l − 1
N − 1 + δ2x(1− x)k + l − 1

N − 1
k − l − 2
N − 1

∂bk+l+1

∂δ(
1− δ(1− x)

[
k + l

N − 1 + k − l − 2
N − 1 bk+l+1

]
− δxk − l − 1

N − 1

)2 = ∂bk+l

∂δ
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Let ψ(δ) ≡ ϕ(δ)− δ(1−x) k − 2
N − 1φ(δ). We then note that ψ(δ) ≥ 0 66, and therefore, ϕ(δ) > 0

for any x ∈ [0, 1]. Consequently, the LHS in (23) is strictly increasing with respect to δ, and

thus reaches its maximum over [0, (N − 1)/N ] in δ = (N − 1)/N .

(ii) We now let δ = (N − 1)/N and show that the LHS in (23) with δ = (N − 1)/N is

strictly negative. Indeed, the latter then writes as

LHS ≡ xk − 1
N

(
1− xN − 2

N
− (1− x)

[
k

N
+ k − 2

N
bk+1

])

−
(

1− (1− x)
[
k

N
+ k − 2

N
bk+1

])(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

= x
k − 1
N

(
1
N

+ (1− x)k − 2
N

(ak+1 − bk+1)
)

−
(
k + 1
N
− 1− x

N
− (1− x)k − 2

N
bk+1

)(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

where bk+1 and ak+1 are evaluated in δ = (N − 1)/N . Using that bk+1 < 1, we get after

rearranging that

LHS ≤ xk − 1
N

(
1
N

+ (1− x)k − 2
N

(ak+1 − bk+1)
)

−
(

2
N

+ x
k − 1
N

)(
1− xN − 1

N
− (1− x)

[
k + 1
N

+ k − 2
N

ak+1

])

= − 2
N2 − (1− x) 2

N

k − 2
N

[
1− ak+1

]
− x(1− x)k − 1

N

k − 2
N

[
1− 2ak+1 + bk+1

]

Hence, a sufficient condition for the LHS in (23) to be strictly negative is that 1−2ak+1+bk+1 >

0. This actually holds,67 which concludes the proof.
66Indeed, the expressions of φ and ϕ yield after rearranging:

ψ(δ) = x

(
1 + k − 1

N − 1

)
+ (1− x)(Ca + Cb)− 2δ

[
x(1− x)

(
1 + k − 1

N − 1

)
Cb + (1− x)2CaCb + x2 k − 1

N − 1
N − 2
N − 1

]

= x

[
1 + k − 1

N − 1 − δ(1− x)
(

1 + k − 1
N − 1

)
Cb − δx

(
N − 2
N − 1

)2
]

+ (1− x)

[(
Ca − δxCb − δ(1− x)CaCb

)
+
(
Cb − δx

k − 1
N − 1Cb − δ(1− x)CaCb

)]
≥ 0

where the last inequality stems from the fact that k/(N − 1) < Cb < Ca < 1.
67The argument is as follows. One first notes that since for any l ∈ {1, ..., k − 2}, ∂ak+l/∂δ ≥ ∂bk+l/∂δ > 0,

the term [1− 2ak+l + bk+l] is strictly bounded below by its value for δ = (N − 1)/N . The rest of the argument
derives from downward induction showing the result for any l with δ = (N −1)/N . Explicit computations yield
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D Proof of Proposition 3

We first show the result for majority members. For any i ∈ {k, ..., N−1}, let vi ≡ V m
i −V e

i .

By construction, for any i ≥ k + 1, the recursive expressions of V m
i and V e

i yield:

[
1− δ(1− x) i

N − 1 − δx
(

1− i− 1
N − 1

)]
vi = δ(1− x)

(
1− i

N − 1

)
vi+1 + δx

i− 1
N − 1vi−1, (24)

while for i = k,

vk = ∆ + δ

[
k

N − 1vk +
(

1− k

N − 1

)
vk+1

]

where ∆ ≡ x(s−b)+δx
k − 1
N − 1

(
V m
k−1−V m

k+1
)
≥ 0, this last inequality stemming from s/b > ρm

(the inequality is strict whenever x > 0). Hence,

[
1− δ k

N − 1

]
vk = ∆ + δ

(
1− k

N − 1

)
vk+1 (25)

Assume by contradiction that vN−1 < 0. Then, Equation (24) for i = N − 1 implies that

vN−2 < vN−1 < 0, and thus by induction that vk < vk+1 < ... < vN−1 < 0. However,

Equation (25) then yields 0 > (1− δ)vk > ∆ ≥ 0, which is a contradiction. Hence, vN−1 ≥ 0,

and by induction using Equation (24), vk ≥ vk+1 ≥ ... ≥ vN−1 ≥ 0, which concludes the proof.

Note that the inequalities are strict whenever ∆ > 0, i.e. whenever x ∈ (0, 1/2) and s ≥ b, or

x = 1/2 and s > b. [Hence, whenever x ∈ (0, 1/2), the result holds by continuity for s < b

with s/b in a neighborhood of 1. This observation (which holds analogously for the minority

that for δ = (N − 1)/N ,

[
1− 2aN−2 + bN−2

]
=

(1− x) 2
N2(

1− (1− x)N − 1
N

− x

N

)(
1− (1− x)N − 2

N
− x

N

) ≥ 0

Then, for any l ∈ {1, ..., k − 3}, the term [1− 2ak+l + bk+l] with δ = (N − 1)/N has the same sign as(
1− (1− x)

[
k + l + 1

N
+ k − l − 2

N
ak+l+1

]
− xk − l − 1

N

)(
1− (1− x)

[
k + l

N
+ k − l − 2

N
bk+l+1

]
− xk − l − 1

N

)

− 2xk + l

N

(
1− (1− x)

[
k + l

N
+ k − l − 2

N
bk+l+1

]
− xk − l − 1

N

)

+ x
k + l − 1

N

(
1− (1− x)

[
k + l + 1

N
+ k − l − 2

N
ak+l+1

]
− xk − l − 1

N

)

= (1− x)
[
k − l − 1

N
− k − l − 2

N
ak+l+1

][
k − l
N
− xk − l − 2

N
− (1− x)k − l − 2

N
bk+l+1

]
+ x(1− x)k + l − 1

N

2
N

+ x(1− x)k + l − 1
N

k − l − 2
N

[
1− 2ak+l+1 + bk+l+1

]
≥ x(1− x)k + l − 1

N

k − l − 2
N

[
1− 2ak+l+1 + bk+l+1

]
.
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value function) establishes the comparison mentioned in the text between the meritocratic and

entrenchment selection rules.]

The result for minority members follows from analogous computations, noting that forM ≥

k + 1, meritocracy and entrenchment yield the same flow payoffs and transition probabilities,

while in M = k,

V m
k−1 − V e

k−1 = x(s+ b) + xδ

[
k − 2
N − 1(V m

k−1 − V m
k−2) + k

N − 1(V m
k − V m

k−1)
]

+ δ

[
k − 2
N − 1(V m

k−2 − V e
k−2) + k + 1

N − 1(V m
k−1 − V e

k−1)
]
,

where V m
k−2 ≤ V m

k−1 ≤ V m
k by Lemma 2. Hence, V m

i ≥ V e
i for any i ≤ k − 1.

Lastly, as a by-product of the proof, we have that the gap between the value functions in

the two equilibria, V m
i −V e

i , decreases as the majority size moves further away from M = k.68

E Proof of Lemma 3

We show successively that:

(i) νe
k = 0

(ii) for any i ≥ k + 1, we have that:
νe
i+1
νe
i

=
νm
i+1
νm
i

= 1− x
x

N − i
i+ 1 ,

(iii) νe
k + νe

k+1 < νm
k + νm

k+1

and so, that the probability distribution {νe
i } strictly first-order stochastically dominates {νm

i }.

Claim (i) derives from the fact that i refers to the size of the majority at the end of the

period i ∈ {k, ..., 2k}. Note that in regime r ∈ {e,m},

νr
N = (1− x)νr

N + 1− x
N

νr
N−1

and for k + 2 ≤ i < N, νr
i = (1− x)N − (i− 1)

N
νr
i−1 +

[
(1− x) i

N
+ x

N − i
N

]
νr
i + x

i+ 1
N

νr
i+1

Claim (ii) follows by backward induction starting from i = N and going down until k + 2

included. Note that the explicit expression of the ergodic distribution in the entrenched

equilibrium obtains with claims (i) and (ii) by writing ΣN
i=k+1ν

e
i = 1. The explicit expression

of the ergodic distribution in the meritocratic equilibrium obtains similarly noting that (1 −
68The result for i ≤ k − 1 can be established using analogous computations to the case i ≥ k, relying on the

recursive expressions of the minority value functions.
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x)Nνm
k = x(k + 1)νm

k+1. One has in particular that


νm
k+1

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
= 1

νe
k+1

[
1 +

k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
= 1

Lastly, claims (i) and (ii) together imply claim (iii).

Remark. The ergodic probability for the majority size to be equal to k at the beginning

of a period in the entrenched equilibrium writes as νe
k+1(k + 1)/N , and thus by the above

expression, decreases with k.

F Proof of Proposition 4

Let ρW be uniquely defined by

qN(N − 1)
[
1 + x

1− x
k + 1
N

+
k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
ρW

= 2
1− x

[
1 +

k−1∑
i=1

(i+ 1)2
(1− x

x

)i i∏
j=1

k − j
k + 1 + j

]

We show that Wm ≥ W e if and only if s/b ≥ ρW . The result then obtains by showing that

ρW < 1 for all parameter values.

Let us first establish the explicit expression of ρW . By construction, we have that

Bm −Be =
N∑
i=k

(
νm
i − νe

i

)[
i(i− 1) + (N − i)(N − i− 1)

]
b̃

Hence, computations using the explicit expressions of the ergodic distributions (see Section E

above) yield after rearranging:

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

][
1 +

k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

](
Bm −Be)

= − 2x
1− x

k + 1
N

[
1 +

k−1∑
i=1

(i+ 1)2
(1− x

x

)i i∏
j=1

k − j
k + 1 + j

]
b̃
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Similar computations for (Sm − Se) yield:

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

][
1 +

k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

](
Sm − Se)

= N(N − 1)xk + 1
N

[
x

1− x
k + 1
N

+ 1 +
k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
s̃

The expression of ρW follows. Lastly, the inequality ρW < 1 derives from the observations

that for any x ∈ [0, 1/2], N(N − 1) > 2(l + 1)2/(1− x) for any l ≤ k − 2, and that69

N(N − 1)
[
1 +

(1− x
x

)k−1 k−1∏
j=1

k − j
k + 1 + j

]
>

2
1− x

[
1 + k2

(1− x
x

)k−1 k−1∏
j=1

k − j
k + 1 + j

]
.

G Asymmetric homophily benefits: Proof of Proposition 2’

We know from Lemma 1 that in any pure-strategy MPE, any majority plays either the

canonical meritocracy strategy or the canonical entrenchment strategy.

Suppose bB < bA < s. The existence regions of canonical entrenchment and canonical

meritocracy are a corollary of Proposition 2. So is the uniqueness of canonical entrenchment

among MPEs in pure strategies whenever s < min
(
ρmbA, ρ

ebB
)
.

Let us consider the case ρebB < s < ρmbA. The canonical meritocratic strategy for type-B

agents and the canonical entrenchment strategy for type-A agents constitute an MPE in pure

strategies as s < ρebA and s > ρmbB (since ρm < ρe). Uniqueness follows from Lemma 1.

Lastly, if ρmbA < s < ρebB, then by Proposition 2, the meritocratic and entrenchment

equilibria coexist as ρe > s/bB > s/bA > ρm. The same argument as in the proof of Proposition

3 yields the Pareto-comparison.

H Non-linear homophily benefits: Proof of Proposition 2”

A non-linear homophily benefit does not require enlarging the state space, as the size of the

majority is still a sufficient statistics looking forward. (To alleviate the notation, as we consider

nonlinear yet symmetric benefits, we omit the horizontal-group subscript X ∈ {A,B}.)

Let B̃(i) denote the per-period homophily benefit enjoyed by a member whose in-group
69Indeed, as the inequality N(N − 1) < 2k2/(1 − x) holds if and only if x > (k − 1)/(N − 1), we have that

for any x ∈ [0, 1/2], the difference between the LHS minus the RHS is bounded below by

N(N − 1)

[
1 +

(
k

k − 1

)k−1 k−1∏
j=1

k − j
k + 1 + j

]
− 4

[
1 + k2

(
k

k − 1

)k−1 k−1∏
j=1

k − j
k + 1 + j

]
> N(N − 1)− 4−N > 0

where the first inequality derives from
(

k

k − 1

)k−1 k−1∏
j=1

k − j
k + 1 + j

< 1, while the second holds for any N ≥ 4.
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has size i (thus, in the linear case, B̃(i) ≡ (i− 1)b̃). In this Section – and only in this Section

–, we change the definition of the value function: let now Vi be the forward-looking discounted

sum of future homophily and quality payoff for a member with in-group size i net of the

quality stock alone (and not of the homophily stock). Indeed, the current quality stock (sum

of members’ talent) is still irrelevant looking forward, and we thus take it out of the value

function to alleviate the expressions. By contrast, the current homophily stock (majority size)

affects the incremental lifetime homophily contribution of a new in-group member.

With this new definition, the (forward-looking net-of-quality-stock) continuation value

function of a majority member at majority size M is given by

B̃(M + 1) + sM + δ

[
M

N − 1VM +
(

1− M

N − 1

)
VM+1

]

if the majority recruits the majority candidate with talent sM ∈ {0, s}, and by

B̃(M) + sm + δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]

if the majority recruits the minority candidate with talent sm ∈ {0, s}.

H.1 Concave homophily benefits

Let B̃(i) be strictly concave in the number of in-group members i, i.e. B̃(i+ 1)− B̃(i) be

strictly decreasing in i. Suppose B̃(k + 1)− B̃(k) ≤ s̃. Hence,

0 ≤ B̃(N)− B̃(N − 1) < B̃(N − 1)− B̃(N − 2) < ... < B̃(k + 1)− B̃(k) ≤ s̃. (26)

The proof follows from arguments similar to the ones in the proof of Lemma 1 (see Online

Appendix A). Consider first a given value of Vk−1 (in a well-chosen set), and the majority’s

optimal control problem given Vk−1. Let (VM (Vk−1))M≥k be the (unique) solution to this

problem, i.e. such that for all M ≥ k, the Bellman equation holds:

VM = EṽM ,w̃M
[

max
{
ṽM + δ

(
M

N − 1VM +
(

1− M

N − 1

)
VM+1

))
,

w̃M + δ

(
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

)}]
,

where ṽM ∈ {B̃(M), B̃(M) + s} (resp. w̃M ∈ {B̃(M + 1), B̃(M + 1) + s}) is the flow-homophily

and flow-and-future-quality value to a majority member when a minority (resp. majority)

candidate is recruited at majority size M .
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Consider then M = k, and suppose that:

δ
k − 1
N − 1

(
Vk+1(Vk−1)− Vk−1

)
> s−

(
B̃(k + 1)− B̃(k)

)
,

i.e. that, by the Bellman equation at M = k,

Vk(Vk−1) = B̃(k + 1) + xs+ δ

[
k

N − 1Vk(Vk−1) + k − 1
N − 1Vk+1(Vk−1)

]
.

Computations analogous to the ones in the proof of Lemma A.1 (see Online Appendix A)

then yield that the value function from the canonical entrenchment strategy satisfies the

above recursive equation for Vk and the Bellman equations for M ≥ k + 1. Indeed, for any

M ≥ k + 1, the value function with the entrenchment strategies satisfies:

V e
M+1 − V e

M =(1− x)(B̃(M + 2)− B̃(M + 1)) + x(B̃(M + 1)− B̃(M))

+ δ(1− x)
[

M

N − 1(V e
M+1 − V e

M ) +
(

1− M + 1
N − 1

)
(V e
M+2 − V e

M+1)
]

+ δx

[
M − 1
N − 1 (V e

M − V e
M−1) +

(
1− M

N − 1

)
(V e
M+1 − V e

M )
]

while for M = k,

V e
k+1 − V e

k =(1− x)
[
B̃(k + 2)− B̃(k + 1)

]
+ xs

+ δ(1− x)
[

k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]
.

Hence, using the same recursive technique as in Online Appendix A), V e
M+1 ≥ V e

M for all

M ≥ k, which implies that the majority’s recruitment of the in-group candidate whenever he

is at least as talented as the out-group candidate is optimal at any M ≥ k. Moreover, by the

same type of argument, the sequence (V e
M+1 − V e

M )M≥k is decreasing.70 Hence, by the same

argument as in the proof of Lemma 1 (Online Appendix A.3),

δ

[
k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]

≤
δN−2
N−1

1− δ(1− x)N−2
N−1

(
(1− x)

[
B̃(k + 2)− B̃(k + 1)

]
+ xs

)
.

70The result can be shown by contradiction and by induction, proceeding as in the proof of Lemma 2 and
using (26).
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As a consequence, since by construction, s = s̃/
(
1 − δ(N − 2)/(N − 1)

)
and by (26), s̃ >

B̃(k + 2)− B̃(k + 1), the above inequality yields that:

δ

[
k

N − 1(V e
k+1 − V e

k ) + k − 2
N − 1(V e

k+2 − V e
k+1)

]
≤ s−

[
B̃(k + 2)− B̃(k + 1)

]
.

Since the sequences (B̃(M + 1) − B̃(M))M≥k and (V e
M+1 − V e

M )M≥k are decreasing, we have

for all M ≥ k + 1,

s−
(
B̃(M + 1)− B̃(M)

)
≥ δ

[
M − 1
N − 1 (V e

M − V e
M−1) +

(
1− M

N − 1

)
(V e
M+1 − V e

M )
]
,

and thus the sequence (V e
M ) satisfies the Bellman equations for M ≥ k + 1.

Therefore, VM (Vk−1) = V e
M for all M ≥ k. It can then be checked that the only strategy

consistent with this value function is the one of canonical entrenchment.

Similarly, if on the opposite, the solution to the Bellman equations satisfies:

δ
k − 1
N − 1

(
Vk+1(Vk−1)− Vk−1

)
< s−

(
B̃(k + 1)− B̃(k)

)
, (27)

the same arguments as the ones used above and in the proofs of Lemma 1 show that

letting V m denote the value function corresponding to the canonical meritocratic strategies,

VM (Vk−1) = V m
M (Vk−1) for all M ≥ k. And again, the canonical meritocratic strategy is the

only one consistent with this value function.

Lastly, in a canonical equilibrium, VN−1 ≥ ... ≥ Vk+1 ≥ Vk ≥ Vk−1. Hence in particular,

a necessary condition for the equilibrium to be canonical meritocratic, i.e. for inequality (27)

to hold is:

B̃(k + 1)− B̃(k) ≤ s.

If instead, B̃(k+1)−B̃(k) > s, then canonical meritocracy cannot be an equilibrium. Moreover,

by the same logic, if B̃(k + 2) − B̃(k + 1) > s, canonical entrenchment cannot be an equilib-

rium (as recruiting an untalented majority candidate against a talented minority candidate at

majority size k + 1 then yields a strictly profitable deviation), and only super-entrenchment

can be an equilibrium.71

71Using the same recursive method as in the proof of Lemma 2 (see Online Appendix B), it can be shown
that the value function generated by the level-l super-entrenchment strategies increases with majority size for
any M ≥ k + l: Vk+l ≤ Vk+l+1 ≤ ... ≤ VN−1.
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H.2 Convex homophily benefits

Let us note that, by considering flow incremental payoffs, the result clearly holds for any

δ sufficiently low. In particular, for any δ sufficiently low, the unique equilibrium features

meritocratic recruitments below the threshold, and entrenched ones above.

Let us now consider the general case (δ ∈ (0, 1)). Let B̃(·) be convex, and let M ≥ k be

such that B̃(M + 1)− B̃(M) < s̃ (resp. > s̃) for any M < M (resp. M ≥M). Let us further

assume that M ≤ N − 2.

Consider a given value of Vk−1 (in a well-chosen set), and let (VM (Vk−1))M≥k be the

(unique) solution to the majority’s optimal control problem given Vk−1, i.e. such that for all

M ≥ k, the Bellman equation holds:

VM = EvM ,wM
[

max
{
ṽM + δ

(
M

N − 1VM +
(

1− M

N − 1

)
VM+1

))
,

w̃M + δ

(
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

)}]
,

where ṽM ∈ {B̃(M), B̃(M) + s} (resp. w̃M ∈ {B̃(M + 1), B̃(M + 1) + s}).

Consider the strategy consisting in always recruiting the majority candidate at any major-

ity size M ≥M (entrenched recruitments), denoting by (V ∗M )M≥M its induced value function.

For any M ≥M ,

V ∗M+1 − V ∗M = B̃(M + 2)− B̃(M + 1) + δ

[
M

N − 1(V ∗M+1 − V ∗M ) + N −M − 2
N − 1 (V ∗M+2 − V ∗M+1)

]

By convexity,

B̃(N)− B̃(N − 1) ≥ ... ≥ B̃(M + 1)− B̃(M) > s̃, (28)

and thus the sequence (V ∗M+1 − V ∗M )M≥M is positive and increasing. Moreover,

V ∗M+1 − V ∗M ≥
B̃(M + 2)− B̃(M + 1)

1− δN−2
N−1

≥ B̃(M + 1)− B̃(M)
1− δN−2

N−1
> s,

for any M ≥M . As a consequence, for any M ≥M + 1,

s− (B̃(M + 1)− B̃(M)) < δ

[
M − 1
N − 1 (V ∗M − V ∗M−1) +

(
1− M

N − 1

)
(V ∗M+1 − V ∗M )

]
.

Hence, if the solution to the Bellman equations satisfies

VM = B̃(M + 1) + xs+ δ

[
M

N − 1VM + N −M − 1
N − 1 VM+1

]
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for some M ≥M − 1, then the strategy of entrenched recruitments at majority sizes M ′ ≥M

solves the Bellman equations for M ′ ≥ M , and thus the unique solution to the Bellman

equations is such that the majority candidate is always recruited, regardless of his talent, at

all majority sizes M ′ ≥M .

Suppose by contradiction that there exists no such majority size, i.e. the solution to the

Bellman equations corresponds to meritocratic recruitments at all majority sizes M ≥M − 1.

Then, the same arguments as in the linear case apply to majority sizes M < M − 1, yielding

that the solution of the Bellman equations is given either by the canonical meritocratic or

canonical entrenched strategies. Yet, we now argue that with these strategies, the majority

has a profitable deviation whenever it has majority size N − 1 and its in-group candidate is

less talented.

Indeed, consider the value function (VM )M generated by one such strategy. Building on

previous arguments, VM+1 ≥ VM for all M ≥ k. In addition, using their recursive expressions

yields for any M ≥ max(k + 1,M),

VM = xs+ (1− x)B̃(M + 1) + xB̃(M) + xs

+ δ(1− x)
(

M

N − 1V
∗
M + N −M − 1

N − 1 V ∗M+1

)
+ δx

(
M − 1
N − 1 V

∗
M−1 + N −M

N − 1 V ∗M

)
< xs+ (1− x)B̃(N) + xB̃(N − 1)− (N −M − 1)s̃+ xs

+ δ(1− x)
(

M

N − 1V
∗
M + N −M − 1

N − 1 V ∗M+1

)
+ δx

(
M − 1
N − 1 V

∗
M−1 + N −M

N − 1 V ∗M

)

where the inequality follows from (28). Then, using the recursive expression of VM and that

VN−1 ≥ VN−2 ≥ ... ≥ Vk yields that

[
1− δ(1− x)N − 2

N − 1 − δx
]
VN−2

< xs+ (1− x)B̃(N) + xB̃(N − 1)− s̃+ xs+ δ
(1− x)
N − 1 VN−1

< xs+ B̃(N)− s̃+ x
δN−2
N−1

1− δN−2
N−1

s̃+ δ
(1− x)
N − 1 VN−1.

In addition, as the majority can secure at least the entrenchment payoff at M = N − 1,

(1− δ)VN−1 ≥ xs+ B̃(N).
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As a consequence,

B̃(N)− B̃(N − 1) + δ
N − 2
N − 1

[
VN−1 − VN−2

]
> s̃+ δ

N − 2
N − 1

[ 1−δ(1−x)N−2
N−1

1−δN−2
N−1

1− δ(1− x)N−2
N−1 − δx

]
s̃

> s̃+ δ
N − 2
N − 1

[ 1
1− δN−2

N−1

]
s̃

= s,

i.e. recruiting the in-group candidate against a more talented out-group candidate is a prof-

itable deviation for the majority when it has size N − 1.

I Proof of Proposition 5

We first show the validity of the remark in the text on a blind principal (λ = 0), before

establishing Proposition 5.

Let us first argue that given the organization members’ entrenchment strategy, there is

no current-period benefit for the principal to intervene at any majority size. Indeed, there

is no current-period benefit for the principal to intervene whenever the majority is not tight

(M ≥ k + 1) – or whenever it is tight and meritocratic – as then the majority’s choice

maximizes the organization’s quality and, by resolving ties in favor of the majority candidate,

it also maximizes the homophily payoff conditional on maximizing the organization’s quality.

Hence, for s > b and q ≥ 1, the majority’s choice is optimal from the principal’s point of

view.72

Similarly, there is no current-period benefit for the principal to intervene when the

majority is tight (M = k). Indeed, since a tight entrenched majority always votes for its

own candidate, its vote carries no information on the candidates’ respective talents. Hence,

the principal picks the (or "a" if there is a tie) most talented candidate with probability

1 − 2x + (1/2)(2x) = 1 − x, which is the same probability of the entrenched majority

choosing the most talented candidate. However, when the majority is tight, it takes the

homophily-maximizing decision with probability 1, while the principal can only do so with

probability 1/2 as it does not observe horizontal types.

Let us now consider the distribution of future majority sizes, to show that the principal

has no future-periods benefits from an intervention in the current period. At any majority

size M ≥ k, by picking the minority candidate instead of the majority one, the principal sets

the organization on a path on which the distribution of future majority sizes is stochastically
72Fix s > b. Since the quality payoff accrues to all members of the organization, while the homophily benefit

only accrues to the in-group members, this optimality persists for q in a lower neighbourhood of 1.
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dominated at any future time by the one on the no-intervention/original path (using the

same argument as in the proof of Proposition 2, see the proof of Lemma C.2 in Online

Appendix C.2.1). Hence, at any future time, the organization is more likely to be in the

tight-majority state (M = k) following the principal’s appointment of the minority candidate.

Yet, the (expected) current-period welfare-increment (for incumbent members from the

current-period recruit) is minimal at state M = k, equal to xs(N − 1) + bk, while it is equal

to (x + x)s(N − 1) + (1 − x)bM + xb(N − 1 −M) > xs(N − 1) + bk at any majority size

M ≥ k + 1.73

Hence, a blind principal cannot outperform the majority’s decision.74

We now turn to the proof of Proposition 5.

I.1 Proof of claim (i)

Let λ > 0 be the probability that the principal learns the quality of the candidates. We

look for equilibria in which the principal intervenes whenever informed that meritocracy is

violated (and only then). We consider the organization members’ strategy and we show that,

given such an intervention policy for the principal:

(a) for s/b sufficiently close to 1, there exists a profitable deviation from canonical entrench-

ment in k + 1 (the unique equilibrium when s/b is close to 1 and λ = 0) toward super-

entrenchment at level 1. The argument then extends to any level of super-entrenchment.

(b) for s/b sufficiently close to 1, full entrenchment is an equilibrium.

(c) for any s/b sufficiently close to 1, full-entrenchment equilibrium is the unique symmetric

MPE in pure strategies.

In the next Section, to prove claim (ii), we will show that for any s/b sufficiently close to 1 and

for any λ in an intermediate range, if the majority is (canonically, super or fully) entrenched,

it is optimal for the principal to intervene whenever it is informed that the current-period

recruitment violates meritocracy.

(a). For i ≥ k, let Vi be the majority value function in the canonical entrenchment equi-

librium when the principal is informed with probability λ and intervenes whenever informed
73At any majority size M ≥ k + 1, the principal "mistakenly" picking an untalented majority candidate

instead of a talented minority candidate yields a lower aggregate welfare as in equilibrium, the majority itself
prefers recruiting the talented minority candidate instead of an untalented majority candidate.

74Even if the principal observed horizontal types (but remained talent-blind), a non-intervention equilibrium
would still exist as the principal could not strictly improve on the entrenched majority’s choices. (The above
argument would go through as in particular, when the entrenched majority is tight, its recruitment choice does
not reveal any information about the quality of candidates.)
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that meritocracy is violated. Consider a deviation from canonical entrenchment to super-

entrenchment in k+ 1, i.e. the majority voting for its own, less talented candidate against the

strictly more talented minority one, and being overruled with probability λ. The (one-shot)

differential payoff from the deviation at M = k + 1 writes

∆ ≡ (1− λ)
[
b− s+ δ

(
k + 1
N − 1Vk+1 + k − 2

N − 1Vk+2

)
− δ

(
k

N − 1Vk + k − 1
N − 1Vk+1

)]
= (1− λ)

[
b− s+ δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)]

where ui ≡ Vi+1 − Vi. The sequence (ui)1≤i≤N−2 satisfies Equation (5) for any i ≥ k + 1, and

Equation (11) for any i ≤ k − 3, while



[
1− δ(1− x) k

N − 1 − δxλ
k − 1
N − 1

]
uk = x(1− λ)(s− b) + δ(1− x) k − 2

N − 1uk+1 + δxλ
k − 1
N − 1uk−1[

1− δ(1− xλ)
]
uk−1 = (1− 2xλ)b+ δ(1− xλ)

[
k − 2
N − 1uk−2 + k − 1

N − 1uk
]

[
1− δ(1− x) k + 1

N − 1 − δxλ
k − 2
N − 1

]
uk−2 = −x(1− λ)(s+ b) + δ(1− x) k − 3

N − 1uk−3 + δxλ
k

N − 1uk−1

(29)

Summing up on all indices yields75

[
1− δ x

N − 1 − δ(1− x)
]
(u1 + uN−2) +

(
1− δ

)N−3∑
i=2

ui = (1− 2x)b > 0 (30)

Fix b > 0. For any s ≥ b, the same argument as the one used in the proof of Lemma 2

yields uk > uk+1 > ... > uN−2 > 0.76 The differential deviation payoff is thus strictly positive

if and only if

δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)
> s− b (31)

Consequently, for s = b, (31) is satisfied as it writes

δ

(
k − 2
N − 1uk+1 + k

N − 1uk
)
> 0

Lastly, since for fixed b, (ui)i is continuous with respect to s, this implies that for any s/b

sufficiently close to 1, there exists a strictly profitable (one-shot) deviation from canonical
75Assuming k ≥ 4. The expression for k ∈ {2, 3} writes differently on the LHS but has the same implication.
76Put succinctly, one supposes by contradiction that uN−2 ≤ 0 and reaches a contradiction showing by

induction, using (5) together with the above system, that this implies uk−1 ≤ 0. Then, if u1 ≤ 0, (11) implies
ui ≤ 0 for all i, which contradicts (30); whereas if u1 > 0, (11) implies uk−1 > 0 and we reach again a
contradiction. Hence, uN−2 > 0 and the same induction argument using (5) thus brings the result.
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entrenchment to super-entrenchment.

The same argument can be adapted to show that, for s/b sufficiently close to 1, there exist

profitable deviations from any level l ≥ 0 of entrenchment toward entrenchment at a higher

level, and thus in particular toward full-entrenchment.

(b). We now show the existence of the full entrenchment equilibrium for s/b sufficiently

close to 1. Let now Vi, ui correspond to the full-entrenchment strategies. The deviation

differential payoff from full-entrenchment to entrenchment at a lower level in M = N − 1

whenever the minority candidate is more talented writes

∆ ≡ (1− λ)
[
s− b− δN − 2

N − 1uN−2

]

Explicit computation with (3)-(4) yield:

uN−2 = δ(1− xλ)N − 2
N − 1uN−2 + δxλ

[
N − 3
N − 1uN−3 + 1

N − 1uN−2

]

and more generally for any M ≥ k,

uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]

while for any i ≤ k − 2,

ui = δ(1− xλ)
[
i− 1
N − 1ui−1 +

(
1− i

N − 1

)
ui

]
+ δxλ

[
i− 1
N − 1ui +

(
1− i+ 1

N − 1

)
ui+1

]

with

[
1− δ

(
1− xλ

)]
uk−1 = (1− 2xλ)b+ δ(1− xλ)

[
k − 1
N − 1uk + k − 2

N − 1uk−2

]

Summing up over all indices yields

[
1− δ

(
1− xλN − 2

N − 1

)]
uN−2 +

[
1− δ

(
1− xλ

N − 1

)]
u1 + (1− δ)

N−3∑
i=2

ui = (1− 2xλ)b > 0

(32)

Fix b > 0 and let s = b. The usual argument implies that uN−2 > 0.77 Hence, the

differential deviation payoff when the majority has size N − 2 writes for s = b as

∆ = −(1− λ)δN − 2
N − 1uN−2 < 0.

77Indeed, if not, then the above equations imply by induction that uk ≤ uk+1 ≤ ... ≤ uN−2 ≤ 0 and thus
0 ≥ u1 ≥ u2 ≥ ... ≥ uk−1, which yields to a contradiction with (32). Therefore, uN−2 > 0, and by induction
again uk > uk+1 > ... > uN−2 > 0.
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By continuity, the inequality holds for s/b in a neighbourhood of 1.

Since uk > uk+1 > ... > uN−2 > 0, the most profitable (one-shot) deviation from

full-entrenchment is when the majority has size N − 1 and a talented minority candidate

faces an untalented majority candidate. As a consequence, the above necessary condition is

also sufficient.

Hence, full entrenchment is an equilibrium for s/b in a neighbourhood of 1.

(c). Lastly, we show that for s/b in a neighbourhood of 1, full-entrenchment equilib-

rium is the unique (pure-strategy) symmetric MPE. To this end, we show that, for s/b in a

neighbourhood of 1, any (pure-strategy) symmetric MPE is monotonic, in the sense that a

stronger majority makes more meritocratic recruitments. Together with (a), this establishes

the uniqueness of full entrenchment.

Let s = b > 0. We show that in any symmetric MPE, the differential value function

(uM )M≥k−1 is strictly positive and strictly decreases with M . Since the difference between

the payoffs from a meritocratic, resp. an entrenched recruitment at majority size M whenever

the minority candidate is strictly more talented than the majority one writes as

s− b− δ
[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
,

the monotonicity of (uM )M implies the monotonicity of the equilibrium. Moreover, if the

strict monotonicity of (uM )M obtains for s = b, then by continuity, it persists for s/b in a

neighbourhood of 1, which implies that, for s/b in such a neighbourhood, any symmetric MPE

is monotonic.

For s = b > 0, we have that



uk−1 = (1− 2xλ)b+ δ(1− xλ)
[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk
]

in an equilibrium in which the

majority is entrenched in k,

uk−1 = (1− 2x)b+ δ(1− x)
[
k − 2
N − 1uk−2 + uk−1 + k − 1

N − 1uk
]

in an equilibrium in which it

is meritocratic in k.
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and for any majority size M ≤ N − 2,



uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is entrenched in M,M + 1,

uM = δ(1− x)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is meritocratic in M,M + 1,

uM = δ(1− x)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δxλ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
in an equilibrium in which the majority is entrenched (resp. meritocratic) in M(resp. M + 1),

uM = δ(1− xλ)
[

M

N − 1uM +
(

1− M + 1
N − 1

)
uM+1

]
+ δx

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM+1

]
in an equilibrium in which the majority is meritocratic (resp. entrenched) in M(resp. M + 1),

together with similar expressions for ui when i ≤ k − 2.

Let us first show that ui > 0 for all i ∈ {k − 1, ..., N − 2}. We proceed by induction.

Suppose by contradiction that uN−2 < 0. Then, the above recursive expressions imply that

uk−1 < uk < ... < uN−2 < 0.78 Therefore, the majority is meritocratic at all majority sizes

M ≥ k.79 But then, Lemma 2 implies that uk−1 > uk > ... > uN−2, a contradiction.

Suppose now (again by contradiction) that uN−2 = 0. The above recursive ex-

pressions then imply that uk−2 < uk−1 = uk = ... = uN−2 = 0, and thus that

V k − 2 > Vk−1 = Vk = ... = VN−1. However, this implies that at all majority sizes

M ≥ k, the majority recruits the majority candidate whenever he is at least as talented as the

minority candidate (and the majority is indifferent when he is strictly less talented than the

minority candidate): since the majority recruits its own candidate at least a fraction 1− x of

the time, and the minority candidate at most a fraction x < 1− x of the time at all majority

sizes, VM must be strictly higher than Vk−1 for all M ≥ k, a contradiction.

Therefore, uN−2 > 0, and the above system then implies that ui > 0 for all

i ∈ {k − 1, ..., N − 2} as was to be shown.

Let us now show that uk − 1 > uk > ... > uN−2. Using that uN2 > 0 and uN−3 > 0, the
78Indeed, the above recursive expressions imply that there exists (a, b) ∈ {(1 − xλ, xλ), (1 − x, x), (1 −

x, xλ), (1− xλ, x)} such that

uN−3 =
1− δN−2

N−1a−
δ

N−1 b

δN−3
N−1 b

uN−2.

Hence, uN−2 < 0 implies uN−3 < uN−2 < 0. The result obtains by induction on the majority size.
79Indeed, as s = b, the differential payoff between recruiting a talented minority candidate instead of an

untalented majority candidate is equal to

−δ
[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
> 0.
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above system evaluated at M = N − 2 implies that, for any (pure) strategies, uN−2 < uN−3.

Proceeding recursively for M ≥ k, 0 < uM+1 < uM and uM−1 > 0 implies by the same

argument that uM < uM−1. Therefore, the sequence (uM )M≥k strictly decreases with M .

Remark: Non-ergodic welfare comparison. Proposition 3 yields that, whenever meritocracy

co-exists with entrenchment, the former is preferred by all members of the organization at any

majority size. The result goes through in this setting.

Namely, we show that for any l ≥ 2, whenever super-entrenchment at level l − 1 and

super-entrenchment at level l co-exist in equilibrium, the former is preferred by all (current)

members of the organization at any majority size. The result for majority members relies on

the same computations as in the proof of Proposition 3 (see Online Appendix D), using that

since super-entrenchment at level l − 1 is an equilibrium80,

s− b+ δ

(
k + l

N − 1u
e,l−1
k+l + k − l − 2

N − 1 ue,l−1
k+l+1

)
≥ 0

where ue,l−1
i = V e,l−1

i+1 − V e,l−1
i with V e,l−1

i the value function of being in a group of size i in

the super-entrenchment at level l− 1 equilibrium. The result for minority members also relies

on analogous computations to the ones in the proof of Proposition 3 (see Online Appendix

D): using the recursive expressions of the value function for minority members in a similar

fashion, we have that V e,l−1
i ≥ V e,l

i for any i ≤ k − 1 if

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ 0 (33)

We thus show that this inequality holds, using the recursive expressions of (ue,l−1
i )i. We

distinguish two cases.

(1) if ue,l−1
k−l ≥ 0, then 0 ≥ ue,l−1

1 ≥ ue,l−1
2 ≥ ... ≥ ue,l−1

k−l .81 Hence, inequality (33) holds.

(2) if ue,l−1
k−l ≤ 0, then ue,l−1

k−l ≤ u
e,l−1
k−l−1 and ue,l−1

k−l ≤ u
e,l−1
k−l+1. Indeed,

• consider the first inequality and suppose by contradiction that ue,l−1
k−l−1 < ue,l−1

k−l . By the

usual (contradiction and induction) argument, this implies that u1 < ... < ue,l−1
k−l ≤ 0.

However, by summing the recursive expressions of ue,l−1
i for i = 1, ...k − l − 1, and

80Indeed, this implies that in equilibrium, meritocratic recruitments are the majority’s best response whenever
it has size k + l, hence the inequality.

81This can be shown by the usual argument, supposing by contradiction that ue,l−1
1 < 0, which implies by the

recursive expressions of (ue,l−1
i )i, that 0 > ue,l−1

1 > ... > ue,l−1
k−l , hence a contradiction. Therefore, ue,l−1

1 ≥ 0,
and the recursive expressions of (ue,l−1

i )i now imply that 0 ≥ ue,l−1
1 ≥ ue,l−1

2 ≥ ... ≥ ue,l−1
k−l .
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rearranging, we get

[
1− δ x

N − 1 − δ(1− x)
]
ue,l−1

1 + (1− δ)
k−l−2∑
i=2

ue,l−1
i +

[
1− δ

(
1− (1− x)k − l − 1

N − 1

)]
ue,l−1
k−l−1

= δx
k + l − 1
N − 1 ue,l−1

k−l > δx
k + l − 1
N − 1 ue,l−1

k−l−1

Therefore, as ue,l−1
1 < ue,l−1

k−l−1, rearranging implies that

[
2− δ

(
1 + k + l

N − 1

)]
ue,l−1
k−l−1 + (1− δ)

k−l−2∑
i=2

ue,l−1
i > 0,

which is a contradiction, as ue,l−1
1 < ... < ue,l−1

k−l ≤ 0. Consequently, ue,l−1
k−l ≤ u

e,l−1
k−l−1.

• consider the second inequality and suppose by contradiction that ue,l−1
k−l > ue,l−1

k−l+1. Using

the recursive expression of ue,l−1
k−l+1, this implies that ue,l−1

k−l+2 < ue,l−1
k−l+1 < 0, and by

induction that 0 > ue,l−1
k−1 . However, we know from the above computations that ue,l−1

i >

0 for any i ≥ k − 1, and thus in particular, ue,l−1
k−1 > 0, which contradicts the above

implication. Hence, ue,l−1
k−l ≤ u

e,l−1
k−l+1.

Therefore, if ue,l−1
k−l ≤ 0, then ue,l−1

k−l ≤ u
e,l−1
k−l−1 and ue,l−1

k−l ≤ u
e,l−1
k−l+1, and thus

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ s+ b+ δ

N − 2
N − 1u

e,l−1
k−l ,

and using the recursive expression of ue,l−1
k−l ,82

[
1− δ

[
1− x(1− λ)

]N − 2
N − 1

]
ue,l−1
k−l ≥ −(1− λ)x(s− b).

As a consequence,

s+ b+ δ

(
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l − 1
N − 1 ue,l−1

k−l

)
≥ s+ b− δx(1− λ)(N − 2)

N − 1− δ
[
1− x(1− λ)

]
(N − 2)

(s− b)

≥ s+ b− k − 1
k + 1(s− b) > 0

Hence, inequality (33) holds in both cases (ue,l−1
k−l ≶ 0), as was to be shown.

82Namely,

ue,l−1
k−l =− (1− λ)x(s− b)

+ δ(1− x)
[
k − l − 1
N − 1 ue,l−1

k−l−1 + k + l + 1
N − 1 ue,l−1

k−l

]
+ δxλ

[
k − l
N − 1u

e,l−1
k−l + k + l − 2

N − 1 ue,l−1
k−l+1

]
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I.2 Proof of claim (ii)

Suppose the principal maximizes quality. With the above arguments, for any λ > 0,

the principal’s strategy "overruling whenever informed that meritocracy is violated" and the

majority’s full entrenchment is an equilibrium for s/b close to 1. But it may not be unique

– e.g., if λ is close to 0, no overruling and canonical entrenchment is an equilibrium for s/b

close to 1. We argue that for λ sufficiently close to 1, "overruling whenever informed that

meritocracy is violated" and full entrenchment is the unique equilibrium (with our equilibrium

concept).

Specifically, let us show that for any λ sufficiently close to 1, for any s/b sufficiently close

to 1, if the majority is (canonically, super or fully) entrenched, it is optimal for the principal

to intervene whenever it is informed that the current-period recruitment violates meritocracy.

Note first that the principal cannot expand the existence region of meritocracy by its

interventions as the prospect of its overruling a majority’s decision only scales down (by

a strictly positive factor) the one-shot deviation differential payoff from meritocracy to

entrenchment. Hence, under our assumption that the meritocratic equilibrium is selected

whenever it exists, the principal fails to expand the region where meritocracy prevails.

As noted in the text, for λ = 1 (perfectly informed principal), the principal can reproduce

the equilibrium path of (canonical) meritocracy, which strictly dominates in terms of quality

the equilibrium path of any level of entrenchment. Hence, by continuity, keeping members’

strategies fixed, for λ sufficiently close to 1, it is optimal for the principal to intervene

whenever informed. Moreover, by the same argument as in our initial remark about a

blind principal, whenever the principal is not informed, it cannot outperform an entrenched

majority’s choice in terms of aggregate welfare. Indeed, it selects the (or "a" in case of a tie)

most talented candidate with the same probability as the majority in the current period, while

making a choice that is suboptimal in terms of homophily payoffs in the current period, and

its intervention induces a distribution over future majority sizes that is dominated in terms of

future quality and homophily payoffs by the non-intervention distribution. Therefore, for λ

close to 1, given the members’ strategy (canonical, super- or full entrenchment), it is optimal

for the principal to intervene if and only if it is informed that the current-period recruitment

violates meritocracy.

Consequently, by claim (i), for s/b close to 1 (such that in particular, canonical entrench-

ment is the unique equilibrium under laissez-faire) and λ close to 1, the unique equilibrium

is for the principal to intervene if and only if it is informed that meritocracy is violated, and

for the majority to be fully entrenched.
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Let us now show that, for s/b close to 1 and λ in an intermediate range, the principal

achieves a higher ergodic quality when it commits not to intervene. To provide an intuition,

consider s/b close to 1 and λ close to 1 so that in the unique equilibrium, the organization

is fully-entrenched. Since the principal is only informed with probability strictly below 1,

it cannot compensate all the "un-meritocratic" recruitments made by the fully-entrenched

majority. Hence, at any majority size M ≥ k + 1, i.e. at which the majority would have

made meritocratic recruitments under laissez-faire, the principal would be better off in terms

of flow welfare, if it could commit not to intervene. By contrast, whenever the majority is

tight (M = k), entrenchment would have prevailed under laissez-faire, and so the principal’s

intervention improves the flow welfare.

To make things precise, let us consider s/b sufficiently close to 1 and λ sufficiently close to

1 such that the unique equilibrium is for the majority to fully entrench and for the principal

to intervene if and only if informed that the current-period recruitment violates meritocracy.

Ergodic aggregate quality is then strictly higher when the principal commits not to intervene

if and only if

N(N − 1)(1− λ)xs > N(N − 1)νe
k+1

k + 1
N

xs, i.e. λ < 1− νe
k+1

k + 1
N

,

which yields the result. The range of values of λ for which the result holds is non-empty in

particular whenever x is sufficiently small, as νe
k+1 goes to 0 when x goes to 0. It is also

non-empty whenever δ is sufficiently small, as it is then a strictly dominating strategy for the

principal to intervene whenever informed that the current recruitment violates meritocracy

(as s > b and quality benefits accrue to all organization members, while homophily ones only

to in-groups).

J Proof of Proposition 6

Consider an entrenched organization, i.e. by the equilibrium selection (by Proposition

3, meritocracy thus prevails whenever it exists as an equilibrium), suppose s/b < ρm. Let

T ≡ ηy denote equal the minimal expected bonus per member needed for the organization to

move from entrenchment to meritocracy83. For the sake of exposition, we first assume that

the principal does not value members’ homophily benefits, and thus letting ξ be the cost of

public funds84, the principal’s objective function writes as the ergodic welfare with per-period
83Namely,

s+(η, y)
b

= ρm, i.e. ηy =
(
b

s
ρm − 1

)
s̃ > 0

84The interpretation of ξ depends on the principal’s welfare objective. If it is solely concerned with maximizing
the (ergodic aggregate) quality of the organization, then ξ is the total cost of intervention, i.e. the sum of the
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welfare given by W = qS − ξT 85. Note that such an objective constitutes an upper bound

on the admissible cost of a policy as (ergodic aggregate) homophily payoffs decrease when

the organization goes from entrenchment to meritocracy (see Section 2.2.2). From previous

computations on ergodic welfare, the (ergodic) efficiency gain from disentrenchment writes as

Sm−Se = N(N−1)νe
k+1

k + 1
N

x
s̃

1− δ > 0. Rewarding quality is thus optimal for the principal

if and only if

ξηyN2(x+ x) ≤ N(N − 1)νe
k+1

k + 1
N

xs̃

where N [x + x] is the average number of talented members in a meritocratic organization,

and νe
k+1 the objective ergodic probability of majority size k+ 1 in the entrenched equilibrium

(see Section 2.2.2). The above inequality rewrites as a condition on the administrative cost of

public funds:86

ξ ≤ (k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
= (k + 1)(N − 1)

N2 .
xνe

k+1
x+ x

.

s

b

ρm − s

b

Note that the RHS strictly increases with s/b and goes to +∞ as s/b goes to ρm.87 The result

follows. The same argument applies if the principal’s objective writes as W = qS + B − ξT ,

yielding a higher threshold ρξ (as Bm < Be).

K Proof of Proposition 7

K.1 Proof of claim (i)

Whenever a representation threshold is implemented, we refer to the "existence region of

(constrained) meritocracy" as the set of values of s/b for which there exists an equilibrium in

which recruitments are meritocratic (i.e. a talented candidate is always recruited against a

strictly less talented candidate) whenever the representation threshold R is not binding. Put

payment and its shadow cost. By contrast, if the principal internalizes the "material" welfare of members, i.e.
the sum of their quality payoffs and (possibly) rewards for quality (as opposed to their non-material welfare
which consists of homophily benefits), then ξ is only the shadow cost of public funds.

85This objective may be interpreted as the limit of the main objective for q, ξ →∞.
86By Inequality (19), a lower bound on the RHS of the above equation is given by

(k + 1)(N − 1)
N2 .

xνe
k+1

x+ x
.
s̃

ηy
≥ (k + 1)(N − 1)2

(k − 1)N2 .
x(1− 2x)νe

k+1

x+ x
.
(1− δ)
δ

87The monotonicity of the RHS with respect to N is non-trivial. Namely, although the first two terms
decrease with N ≥ 4, so that (k + 1)(N − 1)νe

k+1/N
2 decreases with N , the comparative statics of ρm with

respect to N are non-trivial. Nonetheless, for N large, the first two terms (k+1)(N−1)νe
k+1/N

2 are in O(1/N),
while for δ0 < 1, ρm is in 0(1). Therefore, the RHS is in 0(1/N) for N large, which is intuitive: the upper
bound on the admissible cost of public funds is inversely proportional to the size of the organization, i.e. to
the number of individuals to whom the bonus must be distributed.
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differently, we thus focus on the region of values for s/b for which majority alternance can

exist in equilibrium. The result is (almost) immediate88 for a representation threshold of 1.

We thus focus on R ≥ 2.

Consider a representation threshold R = k − l with l ∈ {1, ..., k − 2}, and denote by Ṽ

the value function from recruiting the most talented candidate (and breaking ties in favor

of the majority candidate) at all majority sizes at which the representation threshold R is

not binding (omitting the superscript m), and let ũi ≡ Ṽi+1 − Ṽi. We will first show that

the sequence (ũi)i≥k−1 is such that ũk+l−1 < 0, and such that it satisfies at least one of the

following assertions: (A1) it decreases with i, or (A2) it is always strictly negative.89 As in the

baseline case, the monotonicity property (A1) would imply that the most tempting deviation

from meritocracy to entrenchment is when the majority has size k and the minority candidate

is strictly more talented than the majority candidate, while (A2) would imply that deviations

from constrained meritocracy to entrenchment at any size i ≥ k are non-profitable as they

yield a deviation payoff bounded above by

−(s− b) + δ

[(
1− i

N − 1

)
ũi + i− 1

N − 1 ũi−1

]
< 0

Lastly, that ũk+l−1 is negative suggests that there may be profitable deviations from

meritocracy with ties broken in favor of the majority candidate to meritocracy with ties

broken in favor of the minority candidate when s/b is high enough (more on this below).

We first suppose by contradiction that ũk+l−1 ≥ 0. The usual induction argument relying

on (5) then yields that ũk−1 > ũk > ... > ũk+l−1 ≥ 0. Yet, summing as in the proof of Lemma

2, the above recursive expression for ũk+l−1 with (12) and (5) over indices k to k + l− 2, and

rearranging, yields on the LHS a weighted sum of ũk−1, ..., ũk+l−1 which is strictly positive,

while on the RHS:

−xs− (1− x)b+ (1− 2x)b+ δ(1− x) k − 2
N − 1 ũk−2 = −x(s+ b) + δ(1− x) k − 2

N − 1 ũk−2,

and so ũk−2 > 0. Summing (11) at k − 2 to the above sum, and rearranging, yields on the
88As will be clear shortly, the argument is significantly shorter in this case than with R ≥ 2 since the minority’s

value function in the canonical entrenched equilibrium writes as in the baseline model with no affirmative action
(due to the conditioning on still being a member next period).

89By contrast, in the baseline setting without affirmative action, the sequence (ui)i≥k−1 is positive for any i
and decreases with i.
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LHS a weighted sum of ũk−1, ..., ũk+l−1 which is strictly positive, and on the RHS:

−x(s+ b) + δ(1− x) k − 3
N − 1 ũk−3,

Hence, ũk−3 > 0, and by repeating this argument, ũi > 0 for any i ∈ {k − l− 1, ..., k + l− 1}.

Yet summing the above recursive expressions of ũk−l−1 and ũk+l−1 together with (5)-(11)-(12)

for i ∈ {k − l, ..., k + l − 2}, yields after rearranging, on the LHS a weighted sum of all ũi
which is strictly positive, while on the RHS: −x(s + b) + xs − (1 − x)b = −b < 0, which is a

contradiction. Consequently, ũk+l−1 < 0.

To show that the sequence (ũi)i≥k−1 satisfies either (A1) or (A2) (or both), we proceed by

induction considering the lowest index i− such that ũi < 0 for any i ≥ i−. We first note that

if i− ≥ k, then (5) brings by induction that90

ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 < ũi−−1 < ũi−−2 < ... < ũk−1,

which yields that (A1) holds. If i− ≤ k − 1, then (A2) holds.

Consequently, to show that with affirmative action, the existence region of (constrained)

meritocracy expands towards lower values of s/b, it is sufficient to consider deviations from

meritocracy to entrenchment when the majority is tight and faces an untalented majority can-

didate and a talented minority candidate, and to show that the condition for non-profitability

is looser for any s/b with affirmative action than in the baseline setting (without affirmative

action).

Explicit computations yield91


ũk+l−1 = −xs− (1− x)b+ δx

[
k − l
N − 1 ũk+l−1 + k + l − 2

N − 1 ũk+l−2

]

ũk−l−1 = xs− (1− x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

] (34)

90The inequalities ũk+l−1 < ũk+l−2 < ... < ũi−+1 < ũi− < 0 can be established by induction using the
recursive expressions of the ũi from i = i− up to i = k + l − 2.

91By definition of affirmative action with representation threshold R, in any equilibrium
Ṽk+l = xs+ δ

[
k + l − 1
N − 1 Ṽk+l−1 + k − l

N − 1 Ṽk+l

]
Ṽk−l−1 = xs+ δ

[
k − l − 1
N − 1 Ṽk−l−1 + k + l

N − 1 Ṽk−l
]

Hence, in the meritocratic equilibrium,
ũk+l−1 = −xs− (1− x)b+ δx

[
k − l
N − 1 ũk+l−1 + k + l − 2

N − 1 ũk+l−2

]
ũk−l−1 = xs− (1− x)b+ δx

[
k − l − 1
N − 1 ũk−l−1 + k + l − 1

N − 1 ũk−l

]
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Thus using (5) at k + l − 1 and (11) at k − l − 1, together with the fact that ui ≥ 0 for all i

in the baseline setting, one gets92


[
1− δx k − l

N − 1

](
ũk+l−1 − uk+l−1

)
< −xs− (1− x)b+ δx

k + l − 2
N − 1

(
ũk+l−2 − uk+l−2

)
[
1− δxk − l − 1

N − 1

](
ũk−l−1 − uk−l−1

)
< xs− (1− x)b+ δx

k + l − 2
N − 1

(
ũk−l − uk−l

)
Therefore, using (5) at k + l − 2 and (11) at k − l, one gets



[
1− δxk − l + 1

N − 1 − δ(1− x)k + l − 2
N − 1 − δ(1− x) k − l

N − 1

δx
k + l − 2
N − 1

1− δx k − l
N − 1

](
ũk+l−2 − uk+l−2

)

<
δ(1− x) k − l

N − 1
1− δx k − l

N − 1

[
− xs− (1− x)b

]
+ δx

k + l − 3
N − 1

(
ũk+l−3 − uk+l−3

)

[
1− δx k − l

N − 1 − δ(1− x)k + l − 1
N − 1 − δ(1− x)k − l − 1

N − 1

δx
k + l − 1
N − 1

1− δxk − l − 1
N − 1

](
ũk−l − uk−l

)

<
δ(1− x)k − l − 1

N − 1
1− δxk − l − 1

N − 1

[
xs− (1− x)b

]
+ δx

k + l − 2
N − 1

(
ũk−l+1 − uk−l+1

)

We begin by noting that

k − l
N − 1

[
1− δxk − l − 1

N − 1

]
>
k − l − 1
N − 1

[
1− δx k − l

N − 1

]
,

92 Note that the omitted terms write for the first equation as

−δ(1− x)
[
k + l − 1
N − 1 uk+l−1 + k − l − 1

N − 1 uk+l

]
,

which is thus proportional to (−b) (see proof of Lemma 2 for details). Similarly for the second equation.
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and93

δxδ(1− x)
(
k − l
N − 1

)2k + l − 2
N − 1

[
1− δxk − l − 1

N − 1

]
> δxδ(1− x)k − l + 1

N − 1
k − l − 1
N − 1

k + l − 1
N − 1

[
1− δx k − l

N − 1

]
− δx

N − 1 ,

Hence, we have that94

k − l + 1
N − 1

[
1− δx k − l

N − 1 − δ(1− x)k + l − 1
N − 1 − δ(1− x)k − l − 1

N − 1

δx
k + l − 1
N − 1

1− δxk − l − 1
N − 1

]

>
k − l
N − 1

[
1− δxk − l + 1

N − 1 − δ(1− x)k + l − 2
N − 1 − δ(1− x) k − l

N − 1

δx
k + l − 2
N − 1

1− δx k − l
N − 1

]

By downward (resp. upward) induction on (ũi−ui) for i ≥ k (resp. for i ≤ k−2), we get that

C1
(
ũk−1 − uk−1

)
< −C2xs− C3(1− x)b < 0 (35)

where C1, C2 and C3 are strictly positive constants that depend on the parameters k, l and

x. Let us detail the induction argument. Using (5)-(11), we obtain two sequences (aj)0≤j≤l−2

93To see this, we observe that: (k − l)(k + l − 2) = (k − l + 1)(k + l − 1) − (2k − 1), and as a consequence,
using the above inequality,(

k − l
N − 1

)2
k + l − 2
N − 1

[
1− δxk − l − 1

N − 1

]
>
k − l + 1
N − 1

k − l − 1
N − 1

k + l − 1
N − 1

[
1− δx k − l

N − 1

]
− k − l
N − 1

[
1− δxk − l − 1

N − 1

]
1

N − 1 ,

The inequality thus obtains using that δ(1− x) k − l
N − 1 < 1− δx k − l

N − 1 .
94Note that

k − l + 1
N − 1

[
1− δ(1− x)k + l − 1

N − 1

]
= k − l
N − 1

[
1− δ(1− x)k + l − 2

N − 1

]
+ 1− δ(1− x)

N − 1
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and (bj)0≤j≤l−2 such that for any j ≤ l − 2,



aj
(
ũk+j − uk+j

)
< −

[
xs+ (1− x)b

]δ(1− x) k − l
N − 1

1− δx k − l
N − 1

l−2∏
n=j+1

(
δ(1− x)
an

k − n− 1
N − 1

)
+ δx

k + j − 1
N − 1

(
ũk+j−1 − uk+j−1

)

bj
(
ũk−j−2 − uk−j−2

)
<
[
xs− (1− x)b

]δ(1− x)k − l − 1
N − 1

1− δxk − l − 1
N − 1

l−2∏
n=j+1

(
δ(1− x)

bn

k − n− 2
N − 1

)
+ δx

k + j

N − 1
(
ũk−j−1 − uk−j−1

)

where 
aj−1 = 1− δx k − j

N − 1 − δ(1− x)k + j − 1
N − 1 − δ(1− x)k − j − 1

N − 1

δx
k + j − 1
N − 1
aj

bj−1 = 1− δxk − j − 1
N − 1 − δ(1− x) k + j

N − 1 − δ(1− x)k − j − 2
N − 1

δx
k + j

N − 1
bj

We first note that by induction95

∀j ≤ l − 1, δ(1− x)
aj

k − j − 1
N − 1 < 1, and δ(1− x)

bj

k − j − 2
N − 1 < 1 (36)

Hence, using (12), the coefficient C1 in (35) is given by

1− δ(1− x)− δ(1− x)
a0

k − 1
N − 1δx

k − 1
N − 1 −

δ(1− x)
b0

k − 2
N − 1δx

k

N − 1 > 1− δ > 0

Using (12) further implies that the coefficient C3 in (35) is strictly positive. We then show by

downward induction on j that for any j ≤ l − 1,

1
aj

k − j − 1
N − 1 >

1
bj

k − j − 2
N − 1 ,

which will yield that C2 > 0. The initialization (j = l − 1) derives from the observation in

footnote 95 (the case j = l − 2 has also been established above). As for the induction, i.e. to
95 The initialization with j = l − 1 stems from the observation that

δ(1− x) k − l
N − 1 < 1− δx k − l

N − 1 , and δ(1− x)k − l − 1
N − 1 < 1− δxk − l − 1

N − 1

Moreover,

δ(1− x) k − l
N − 1

[
1− δxk − l − 1

N − 1

]
> δ(1− x)k − l − 1

N − 1

[
1− δx k − l

N − 1

]
, i.e. 1

al−1

k − l
N − 1 >

1
bl−1

k − l − 1
N − 1
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show that aj−1(k− j − 1) < bj−1(k− j), we note that for any j ≥ 0, the induction hypothesis

implies that96

k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 >

k − j
N − 1

k + j

N − 1
1
bj

k − j − 2
N − 1 − 1

aj

k − j − 1
N − 1

1
N − 1

and thus, using (36),

δxδ(1− x)k − j − 1
N − 1

k + j − 1
N − 1

1
aj

k − j − 1
N − 1 > δxδ(1− x) k − j

N − 1
k + j

N − 1
1
bj

k − j − 2
N − 1 − δx

N − 1

Therefore, using the recursive expression of aj−1 and bj−1, we have that

aj−1(k − j − 1) < bj−1(k − j)− 1− δ
N − 1 < bj−1(k − j),

as was to be shown.

This in turn implies that
(
ũk − uk

)
< 0. Therefore,

s− b− δ k − 1
N − 1(uk−1 + uk) > s− b− δ k − 1

N − 1(ũk−1 − uk),

i.e., the non-profitability condition for a deviation from meritocracy to entrenchment is

(strictly) looser with a representation threshold R than without.

Remark: For s/b sufficiently high, meritocracy with reverse favoritism is an equilibrium:

the majority always picks the most talented candidate and breaks ties in favor of the minority

candidate. Let b = 0 < s. We first note that in the unconstrained meritocratic equilibrium,

this implies that ui = 0 for any i ∈ {1, ..., N − 2}. The above computations then apply,

switching the weights 1 − x and x (except for the flow payoffs of ũk+l−1 and ũk−l−1 which

remain respectively given by −xs and xs). Hence, ũi < 0 for any i ≥ k − 1. Consequently,

the deviation differential payoff from reverse-favoritism meritocracy to standard-favoritism

meritocracy at majority size M is given by

δ

(
M − 1
N − 1 ũ

m
M−1 + N − 1−M

N − 1 ũm
M

)
< 0,

which yields the result. By contrast, the same argument implies that meritocracy with

standard favoritism is no longer an equilibrium for s/b sufficiently high.97

96Indeed, we have that (k − j − 1)(k + j − 1) = (k − j)(k + j)− (2k − 1), and

k − j
N − 1

[
1− δ(1− x) k + j

N − 1

]
= k − j − 1

N − 1

[
1− δ(1− x)k + j − 1

N − 1

]
+ 1− δ(1− x)

N − 1

97Considering b = 0 < s, and observing that in the unconstrained meritocratic equilibrium, ui = 0 for any
i ∈ {1, ..., N − 2} and using the above computations in order to get that ũi < 0.
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Remark: Non-ergodic welfare comparison. The same computations as in the proof of

Proposition 3 (see Online Appendix D) apply. Therefore, whenever meritocracy and entrench-

ment coexist, at any majority size the meritocratic equilibrium is preferred to the entrenched

equilibrium by (current) majority members. Building on analogous computations, it can be

shown that the same preference also holds in several cases for all (current) minority members.

By mimicking the argument in Online Appendix D, we have that Ṽ m
i ≥ Ṽ e

i for any i ≤ k − 1

if

s+ b+ δ

(
k

N − 1 ũ
m
k−1 + k − 2

N − 1 ũ
m
k−2

)
> 0, (37)

This inequality holds in particular whenever δ is small. This dominance in terms of non-ergodic

welfare motivates the welfare analysis of Proposition 7-(ii).

K.2 Proof of claim (ii)

Let N ≥ 4 and 1 ≤ l ≤ k − 1. The ergodic aggregate efficiency of a canonically en-

trenched organization under laissez-faire and a meritocratic one under affirmative action with

representation threshold l write respectively:


Se = N(N − 1)

[
k + 1
N

νe
k+1x+

(
1− k + 1

N
νe
k+1

)(
x+ x

)]
s̃

Sm,AA = N(N − 1)
[
l

N
νm,AA
N−l x+

(
1− l

N
νm,AA
N−l

)(
x+ x

)]
s̃

and thus:

Sm,AA − Se = N(N − 1)
[
k + 1
N

νe
k+1 −

l

N
νm,AA
N−l

]
xs̃

Explicit computations (see Lemma 3 and its proof in Section E) yield:


νe
k+1

[
1 +

k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]
= 1

νm,AA
N−l

[
1 +

k−l−1∑
i=1

(
x

1− x

)i i∏
j=1

N − l + 1− j
l + j

+
(

x

1− x

)k−l k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]
= 1
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Consequently, Sm,AA − Se has same sign as

(k + 1)
[
1 +

k−l−1∑
i=1

(
x

1− x

)i i∏
j=1

N − l + 1− j
l + j

+
(

x

1− x

)k−l k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]

− l
[
1 +

k−1∑
i=1

(1− x
x

)i i∏
j=1

k − j
k + 1 + j

]

We then note that the above expression is strictly negative for x in a neighbourhood of 0, and

strictly positive for x in a neighbourhood of 1. Moreover, since x/(1 − x) (resp. (1 − x)/x)

strictly increases (resp. decreases) with x ∈ (0, 1/2), there exists a unique xAA(l) ∈ (0, 1/2]

such that for any x < xAA(l) (resp. x > xAA(l)), the above expression is strictly negative

(resp. positive).

Lastly, we note that by construction, xAA(l) is such that

(k + 1)
[
1 +

k−l−1∑
i=1

(
xAA(l)

1− xAA(l)

)i i∏
j=1

N − l + 1− j
l + j

+
(

xAA(l)
1− xAA(l)

)k−l k + 1
N

k−l−1∏
j=1

N − l + 1− j
l + j

]

= l

[
1 +

k−1∑
i=1

(1− xAA(l)
xAA(l)

)i i∏
j=1

k − j
k + 1 + j

]

The LHS in the above equation strictly decreases with l for any given x fixed, and strictly

increases with x for any fixed l. By contrast, the RHS strictly increases with l for any fixed

x, and strictly decreases with x for any fixed l. Hence xAA(l) strictly increases with l.

L Proof of Proposition 8

We use a fixed-point argument to prove the existence of a class of equilibria characterized

by a weakly decreasing decision rule (∆M )M 98. Let u be given by

u ≡ 1
1− δ

(
E
[
(s+ b)1{ŝ− s ≤ b}

]
+ E

[
ŝ1{ŝ− s > b}

])

Note that
(
E
[
(s+b)1{ŝ−s ≤ b}

]
+E

[
ŝ1{ŝ−s > b}

])
is the highest flow payoff a majority mem-

ber can guarantee, and consequently, u represents an upper bound on the majority’s expected

utility from a recruitment (i.e. its expected utility in the absence of control consideration).

We define K as the set of sequences (uM )M∈{k−1,...,N−2} such that (i) for any M , uM ∈
[
0, u

]
and (ii) the sequence (uM )M is weakly decreasing. By construction, the set K is non-empty,

compact and convex.

As earlier, let {Vi} denote the value functions and V ≡ (V1, ..., VN−1). For i ∈ {k −

1, ..., N − 2}, let ui ≡ Vi+1 − Vi. In the equilibria we look for, whenever the majority has
98We thus focus on equilibria such that the decision rule only depends on the majority size.
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size M ∈ {k, ..., N − 1}, it favors a majority candidate with (discounted) talent s against a

minority candidate with (discounted) talent ŝ if and only if99

ŝ+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
≤ s+ b+ δ

[
M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
,

i.e. if and only if

ŝ− s ≤ b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]

We denote by s ∈ [b,+∞) the lowest real number such that P(ŝ − s ≤ s) = 1 if it exists,

and let s = +∞ otherwise. We first consider the "decision-rule" (cutoff) mapping D : K −→[
0,min(b+ δu, s)

]k
, u 7−→ (DM )M∈{k,...,N−1}, where

DM (u) ≡


b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
if b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< s

s otherwise

Taking Vk−1 ≥ 0 as fixed, we consider the "value-function" mapping T defined as T :
[
0,+∞

]k×[
b, s
]k −→ [

0,+∞
]k
,
(
(VM )M , (∆M )M

)
7−→ (TM )M , where

TM (V,∆) ≡ E
[
(s+ b)1{ŝ− s ≤ ∆M}

]
+ δP(ŝ− s ≤ ∆M )

[
M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
+ E

[
ŝ1{ŝ− s > ∆M}

]
+ δP(ŝ− s > ∆M )

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]

In order to alleviate the notation, we define the functions h and h1 as


h(X) ≡ E

[
(s+X)1{ŝ− s ≤ X}

]
+ E

[
ŝ1{ŝ− s > X}

]
h1(X) ≡ X − h(X)

Fix Vk−1 ≥ 0. Given a sequence u ≡ (uM )M∈{k−1,...,N−2} ∈ K, we define the sequence

V (u) ≡ (VM )M∈{k,...,N−1} by upward induction by letting VM ≡ uM−1 + VM−1. Lastly, we

define the mapping Υ : u 7−→ Υ(u) from K into itself by

ΥM (u) ≡ min
{
TM+1

(
V (u), D(u)

)
− TM

(
V (u), D(u)

)
, h(b)/(1− δ)

}

for any M ∈ {k − 1, ..., N − 2} (with the convention that Tk−1
(
V (u), D(u)

)
≡ Vk−1). While

bounding above Υ(u) is necessary to the argument, it does not threaten the existence of an

equilibrium: indeed, h(b) is the highest flow payoff (quality and homophily) that a majority
99The assumption that ties are broken in favor of the majority candidate comes withouth loss of generality

when vertical types are continuously distributed within each group.
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member can guarantee.100 Hence, we have by construction that for any u ∈ K and any

i ∈ {k− 1, ..., N − 2}, Υi(u) ≤ u. With an abuse of notation, we omit in the following the min

operator.

We now check that the mapping Υ is well-defined, i.e. that Υ(u) ∈ K for any u ∈ K.

Rearranging the above expression for TM
(
V (u), D(u)

)
yields:

TM
(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM (u)}

]
+ E

[
ŝ1{ŝ− s > DM (u)}

]
+ P(ŝ− s ≤ DM (u))

[
b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]]
+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]

We thus distinguish two cases.

(A) If DM (u) < s for all M ≥ k, then101

TM
(
V (u), D(u)

)
= E

[
s1{ŝ− s ≤ DM}

]
+ E

[
ŝ1{ŝ− s > DM}

]
+ P(ŝ− s ≤ DM )DM

+ δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
= h(DM ) + δ

[
M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]
(38)

Consequently, if DM (u) < s 102, plugging the above expressions in the equality ΥM (u) =

TM+1(V,D)− TM (V,D), and using the expression of DM as a function of u, yields

ΥM (u) = h(DM+1)− h(DM ) + δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
= h(DM+1) + h1(DM )− b (39)

Since u ∈ K, we have that (i) uM ≥ 0 for any M and thus by construction DM ≥ b, and (ii)

the sequence (uM )M is decreasing, and thus so is the sequence (DM )M . As a consequence,

DM ≥ DM+1 ≥ b.

Henceforth, we restrict our attention to joint distributions such that the functions h1 and

(h−h1) are strictly increasing over [b,+∞)∩Supp(ŝ−s) 103. This set notably includes the set
100Indeed, for any joint distribution of types, the quantity

E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

decreases with X ≥ b.
101Note that in this case the mapping T can be defined as T :

[
0, Vk−1 +ku

]k×[b, b+u
]k −→ [0, Vk−1 +ku

]k.
102By monotonicity (as u ∈ K), DM (u) < s implies that DM′ < s for any M ′ > M .
103Note that (h−h1) being strictly increasing implies that h is strictly increasing, as h(X)−h1(X) = 2h(X)−X.
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of continuous joint symmetric distributions104, as well as the case where the majority candidate

has a fixed type s ≥ 0 and the minority candidate a type s + D where D is a (full support)

random variable with a continuously differentiable distribution over (−s, s) symmetric around

0.105

As a consequence, for any u ∈ K, ΥM (u) ≥ 0 and the sequence (ΥM (u))M≥k is decreasing

as it inherits the monotonicity of the sequence (DM )M . Moreover, for any M ≥ k,

ΥM (u) ≤ h(DM ) + h1(DM )− b = δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< δ

N − 2
N − 1uk−1 ≤ u

It thus remains to check that Υk−1(u) ≥ Υk(u). By monotonicity of h and (h− h1) and using

the above computations, a sufficient condition for this inequality to hold writes as:

(1− δ)Vk−1 ≤ h(b)

This condition imposes an upper bound on Vk−1. Recall that h(b) is the highest flow

payoff (quality and homophily) that a majority member can guarantee. Therefore, for any

symmetric joint distribution of types, any (increasing and concave) equilibrium value function

must satisfy Vk−1 < h(b)/(1− δ). Hence assuming this inequality hold does not threaten the

existence of an equilibrium. We thus fix in the following Vk−1 such that the above inequality

holds. Hence, under the above conditions, Υ(u) ∈ K.

(B) We now consider the case where s < +∞ and DM (u) = s for some M . (Note that as

uM ≤ u <∞, the case DM (u) = s can only arise when s <∞.)

We first note that, within the class of equilibria with u ∈ K (and thus a decreasing sequence

(∆M )M ), ∆k = s implies that ∆k+1 < s. Hence, whenever the majority is not tight, it recruits
104Indeed, letting F be the marginal c.d.f. of s and ŝ, then

∀∆ > 0, h(∆) =
ˆ s

0
(s+ ∆)F (s+ ∆)dF (s) +

ˆ s

∆
ŝF (ŝ−∆)dF (ŝ),

and thus, for any ∆ ∈ (0, s),

h′(∆) =
ˆ s

0
F (s+ ∆)dF (s) +

ˆ s−∆

0
(s+ ∆)f(s+ ∆)dF (s)−

ˆ s

∆
ŝf(ŝ−∆)dF (ŝ) =

ˆ s

0
F (s+ ∆)dF (s),

and thus h′(∆) ∈ (1/2, 1) since
ˆ s

0
F (s)dF (s) = 1/2.

105Indeed, denoting by F the c.d.f. of D, we have for any ∆ ∈ (0, s),

h(∆) =
ˆ ∆

−s
(s+ ∆)dF (D) +

ˆ s

∆
(s+D)dF (D), and thus h′(∆) = F (∆) ∈ (1/2, 1)
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a minority candidate with a strictly positive probability: ∆M < s for any M ≥ k + 1.106

Consequently, we only need to consider the case where Dk+1(u) < Dk(u) = s < ∞ 107.

We first show that Υk(u) ∈ [Υk+1(u), u]. By construction,

Tk
(
V (u), D(u)

)
= E[s] + b+ δ

[
k

N − 1Vk +
(

1− k

N − 1

)
Vk+1

]
,

and thus, since Dk+1 < s implies that Tk+1(V,D) is given by (38),

Υk(u) = h(Dk+1)− E[s]− b

By monotonicity of the sequence (DM )M and since the functions h and h1 are increasing, we

have that Υk(u) ≥ Υk+1(u). It thus remains to check that Υk−1(u) ≥ Υk(u). A sufficient

condition for this inequality to hold writes as108

(1− δ)Vk−1 ≤ E[s] + b+ k

N − 2(s− b)

106Indeed, suppose by contradiction that ∆k = ∆k+1 = s. Then, by construction,

uk = δ

[
k

N − 1uk + k − 2
N − 1uk+1

]
Since u ∈ K, this yields that uk = uk+1 = 0, which contradicts the initial assumption as b < s.

107Indeed, note that if Dk+1(u) < s, then Dk+1(Υ(u)) < s as

Dk+1(Υ(u)) < b+ δ

[
k

N − 1

(
h(Dk+1(u))− E[s]− b

)
+ k − 2
N − 1

(
h(Dk+2(u) + h1(Dk+1(u))− b

)]
<

(
1− δN − 2

N − 1

)
b+ δ

[
k

N − 1
(
h(Dk+1(u))− E[s]

)
+ k − 2
N − 1Dk+1(u)

]
<

(
1− δN − 2

N − 1

)
b+ δ

N − 2
N − 1s < s

108Indeed, a sufficient condition for Υk−1(u) ≥ Υk(u) is

2(E[s] + b)− (1− δ)Vk−1 + δuk−1 ≥ h
(
b+ δ

N − 2
N − 1uk

)
− δ k − 1

N − 1uk,

which by monotonicity of h and h− h1 holds in particular if

2(E[s] + b)− (1− δ)Vk−1 + δuk−1 ≥ h
(
b+ δ

N − 2
N − 1uk−1

)
− δ k − 1

N − 1uk−1,

i.e. (1− δ)Vk−1 ≤ 2(E[s] + b)− h
(
b+ δ

N − 2
N − 1uk−1

)
+ δ

(
1 + k − 1

N − 1

)
uk−1

Hence, by monotonicity of X 7→ X − h(X) and since uk−1 must satisfy δ(N − 2)/(N − 1)uk−1 ≥ (s − b), a
sufficient condition for this inequality to hold is

(1− δ)Vk−1 ≤ 2(E[s] + b)− h(s) + (s− b) + k

N − 2(s− b),

which yields the result as h(s) = E[s] + s.
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This second inequality is looser than the condition109 in case (A) and is thus satisfied for

Vk−1 ≤ h(b)/(1− δ) (which must be the case in any equilibrium as discussed above).

Therefore, fixing Vk−1 ∈ [0, h(b)/(1 − δ)], Υ is a well-defined continuous mapping from

K into itself. By Brouwer’s fixed point theorem, it admits a fixed point. This establishes

existence.

We now show that any equilibrium characterized by a sequence of cut-offs (∆M )M≥k is

such that (a) ∆M > b for any M ≥ k, and (b) the sequence (∆M )M is strictly decreasing.

(a) We first argue that in any equilibrium, ∆M > b for any M ≥ k. We show this by

downward induction. Suppose that ∆N−1 ≤ b. Then110, this implies that uN−2 ≤ 0, i.e.

VN−2 ≥ VN−1. Hence the continuation payoff for a majority of size N − 1 is bounded below

by δVN−1. By deviating from ∆N−1 to the value that maximizes the flow payoff, a majority

with size N − 1 gets a utility greater than

max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}
+ δVN−1

Hence this would imply that

(1− δ)VN−1 ≥ max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}

which is a contradiction as the RHS is the highest attainable flow payoff (and δ > 0). Therefore

VN−1 > VN−2, and thus ∆N−1 > b. Suppose now that VM ′+1 > VM ′ for any M ′ ≥ M , and

that VM ≤ VM−1. Therefore, the continuation payoff for a majority of size M is bounded

below by δVM . Hence, by deviating from ∆M to the value that maximizes the flow payoff, a

majority with size M gets a utility greater than

max
X

{
E[(s+ b)1{ŝ− s ≤ X}] + E[ŝ1{ŝ− s > X}]

}
+ δVM ,

which again leads to a contradiction. Consequently, uM−1 > 0, while uM > 0 by the induction
109Indeed, for any joint distribution such that (ŝ− s) is symmetrically distributed around 0,

h(b) ≤ E[s] + b+ k

N − 2(s− b)

110Using that by construction,

∆N−1 = b+ δ
N − 2
N − 1uN−2
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hypothesis. Hence, since by construction we have that either ∆M = s > b, or

∆M = b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
, (40)

this implies that ∆M > b. By induction, the inequality holds for any majority size M ≥ k.

(b) We thus show that the sequence (∆M )M≥k is strictly decreasing. We first consider the

case where for any M ≥ k, ∆M < s, and therefore (40) holds, and

uM = h(∆M+1) + ∆M − h(∆M )− b (41)

Suppose by contradiction that ∆N−1 ≥ ∆N−2. By the above equations,

∆N−1 = b+ δ
N − 2
N − 1uN−2

=
(

1− δN − 2
N − 1

)
b+ δ

N − 2
N − 1

[
h(∆N−1) + ∆N−2 − h(∆N−2)

]
≤
(

1− δN − 2
N − 1

)
b+ δ

N − 2
N − 1∆N−1

where the inequality derives from the strict monotonicity of h1. Hence ∆N−1 ≤ b, which

contradicts the above result. Therefore ∆N−1 < ∆N−2. We henceforth proceed by induction.

Suppose ∆M ′+1 < ∆M ′ for any M ′ ≥ M , and suppose by contradiction that ∆M ≥ ∆M−1.

By (41), using the monotonicity of h1, we have that

uM < ∆M − b, and uM−1 ≤ ∆M − b,

and therefore,

∆M <

(
1− δN − 2

N − 1

)
b+ δ

N − 2
N − 1∆M ,

i.e. ∆M < b, which is a contradiction. Hence for any M ≥ k, ∆M+1 < ∆M , as was to be

shown.

We now consider the case where there exists M ≥ k such that ∆M = s. This implies that

∆M+1 < s as otherwise the explicit expressions of VM and VM+1 would give that

δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
= 0, and thus ∆M = b < s,

which is a contradiction. Hence suppose by contradiction that ∆N−1 = s, then ∆N−2 < s =
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∆N−1. Yet the above computations111 thus yield that ∆N−1 ≤ b < s, which is a contradiction.

Therefore, ∆N−1 < s, and as a consequence, the above computations yield that ∆N−2 > ∆N−1.

We again proceed by induction. Suppose ∆M ′+1 < ∆M ′ for any M ′ ≥ M . If ∆M < s, the

above computations apply, yielding that ∆M < ∆M−1. Hence, suppose by contradiction that

∆M = s ≥ ∆M−1. As noted above, this implies that ∆M−1 < s and (41) holds in M − 1, and

thus uM−1 ≤ ∆M − b. Moreover, using the explicit expressions of VM+1 and VM ,

uM = h(∆M+1)− h(∆M ) + δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]

where the inequality follows from the monotonicity of h. Therefore, uM < uM−1. As a

consequence,

∆M = s ≤ b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
< b+ δ

N − 2
N − 1uM−1 <

(
1− δN − 2

N − 1

)
b+ δ

N − 2
N − 1∆M ,

i.e. ∆M < b < s, which is a contradiction. Hence, for any M ≥ k, ∆M+1 < ∆M , as was to be

shown.

We then turn to showing that equilibria can be ranked from more to less meritocratic.

Consider the class of equilibria characterized by a decreasing decision rule (∆M )M∈{k,...,N−1}.

We refer in the following to an equilibrium by its decision rule ∆ ≡ (∆M )M∈{k,...,N−1}. Let ∆

and ∆′ be two equilibria within this class. We now show that

(i) ∆k < ∆′k implies that ∆M < ∆′M for any M ≥ k + 1,

(ii) ∆k = ∆′k ∈ [b, s] implies that ∆M = ∆′M < s for any M ≥ k + 1,

(i) Assume that ∆k < ∆′k < s (computations are analogous in the case ∆k < ∆′k = s). By

monotonicity, ∆M < s and ∆′M < s for any M ≥ k + 1, and thus, with the above notation,

∆M = b+ δ

[
M − 1
N − 1 uM−1 +

(
1− M

N − 1

)
uM

]
=
(

1− δN − 2
N − 1

)
b+ δ

[
M − 1
N − 1

[
h(∆M ) + h1(∆M−1)

]
+
(

1− M

N − 1

)[
h(∆M+1) + h1(∆M )

]]
111Using that as ∆N−1 = s,

∆N−1 ≤ b+ δ
N − 2
N − 1uN−2 ≤

(
1− δN − 2

N − 1

)
b+ δ

N − 2
N − 1∆N−1
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Consequently, for any M ≥ k + 1,

h2,M (∆M )− h2,M (∆′M )

= δ
M − 1
N − 1

[
h1(∆M−1)− h1(∆′M−1)

]
+ δ

(
1− M

N − 1

)[
h(∆M+1)− h(∆′M+1)

]
(42)

where the function h2,M is given by

h2,M (X) ≡ X − δM − 1
N − 1 h(X)− δ

(
1− M

N − 1

)
h1(X),

We note that h2,M is strictly increasing over [b, s] 112. By monotonicity of h1, we get for

M = k + 1 that

h2,k+1(∆k+1)− h2,k+1(∆′k+1) < δ

(
1− k + 1

N − 1

)[
h(∆k+2)− h(∆′k+2)

]

Suppose by contradiction that ∆k+1 ≥ ∆′k+1. Then by monotonicity, ∆k+2 ≥ ∆′k+2. By

summing Equation (42) in k + 1 and k + 2 and rearranging, we get that

[
h2,k+1(∆k+1)− δ k + 1

N − 1h1(∆k+1)
]
−
[
h2,k+1(∆′k+1)− δ k + 1

N − 1h1(∆′k+1)
]

+
[
h2,k+2(∆k+2)− δ k − 2

N − 1h(∆k+2)
]
−
[
h2,k+2(∆′k+2)− δ k − 2

N − 1h(∆′k+2)
]

= δ
k

N − 1

[
h1(∆k)− h1(∆′k)

]
+ δ

(
1− k + 2

N − 1

)[
h(∆k+3)− h(∆′k+3)

]

Since for any M ≥ k + 1, the functions h2,M − δ
M

N − 1h1 and h2,M − δ
N −M
N − 1 h are strictly

increasing over [b, s], the above equality implies that ∆k+3 ≥ ∆′k+3. We now proceed by

induction: suppose that ∆j ≥ ∆′j for any j ∈ {k+ 1, ...,M}. Then by summing Equation (42)

over the indices k + 1, ...,M and rearranging,

[
h2,k+1(∆k+1)− δ k

N − 1h1(∆k+1)
]
−
[
h2,k+1(∆′k+1)− δ k

N − 1h1(∆′k+1)
]

+
[
h2,M (∆M )− δN −M

N − 1 h(∆M )
]
−
[
h2,M (∆′M )− δN −M

N − 1 h(∆′M )
]

+
M−1∑
j=k+2

([
h2,j(∆j)− δ

j

N − 1h1(∆j)− δ
N − j
N − 1h(∆j)

]

−
[
h2,j(∆′j)− δ

j

N − 1h1(∆′j)− δ
N − j
N − 1h(∆′j)

])

= δ
k − 1
N − 1

[
h1(∆k)− h1(∆′k)

]
+ δ

(
1− M

N − 1

)[
h(∆M+1)− h(∆′M+1)

]
112Indeed, we may rewrite the function h2,M as: h2,M (X) =

[
1−δ

(
1− M

N − 1

)]
h1(X)+

[
1−δM − 1

N − 1

]
h(X).
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Since for any j ≥ k+ 1, the functions h2,j − δ
j

N − 1h1 − δ
N − j
N − 1h are strictly increasing over

[b, s], we get that ∆M+1 ≥ ∆′M+1. Hence by induction, we have that ∆M ≥ ∆′M for any

M ≥ k + 1. But by summing (42) over all these indices and rearranging yields

0 ≤
[
h2,k+1(∆k+1)− δ k

N − 1h1(∆k+1)
]
−
[
h2,k+1(∆′k+1)− δ k

N − 1h1(∆′k+1)
]

+
[
h2,N−1(∆N−1)− δ 1

N − 1h(∆N−1)
]
−
[
h2,N−1(∆′N−1)− δ 1

N − 1h(∆′N−1)
]

+
N−2∑
j=k+2

([
h2,M (∆M )− δ M

N − 1h1(∆M )− δN −M
N − 1 h(∆M )

]

−
[
h2,M (∆′M )− δ M

N − 1h1(∆′M )− δN −M
N − 1 h(∆′M )

])

= δ
k − 1
N − 1

[
h1(∆k)− h1(∆′k)

]
< 0

which is a contradiction. Therefore, ∆k+1 < ∆′k+1. The result then obtains by induction,

supposing by contradiction that ∆j < ∆′j for any j ∈ {k, ...,M − 1} and that ∆M ≥ ∆′M , and

considering the sums of (42) over appropriate indices so as to reach a contradiction.

(ii) We note that the above argument yields that if ∆k = ∆′k ∈ [b, s], then ∆M = ∆′M for

any M ≥ k + 1. As a consequence, any two distinct equilibria with a decreasing decision rule

satisfy either "∆M < ∆′M for all M ≥ k", or "∆M > ∆′M for all M ≥ k".

Non-ergodic welfare. Lastly, we turn to comparing the equilibria in terms of non-ergodic

welfare. Consider two equilibria described by a decreasing decision rule denoted respectively by

∆ and ∆′ such that ∆ ≺ ∆′, and let (Vi)i∈{1,...,N−1} and (V ′i )i∈{1,...,N−1} be the corresponding

equilibrium value functions. For any M ≥ k, we have by construction that

VM = E[(s+ b)1{ŝ− s ≤ ∆M}] + E[ŝ1{ŝ− s > ∆M}]

+ δP(ŝ− s ≤ ∆M )
[

M

N − 1VM +
(

1− M

N − 1

)
VM+1

]
+ δ

(
1− P(ŝ− s ≤ ∆M )

)[M − 1
N − 1 VM−1 +

(
1− M − 1

N − 1

)
VM

]

We first note that ∆k < ∆′k implies that ∆k < s. Hence, for any M ≥ k,

∆M = b+ δ

[
M − 1
N − 1 uM−1 + N −M − 1

N − 1 uM

]
,
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and therefore, for any M ≥ k,

[
1− δ

(
1− M − 1

N − 1

)[
1− P(ŝ− s ≤ ∆′M )

]
− δ M

N − 1P(ŝ− s ≤ ∆′M )
)]

(VM − V ′M )

= E
[
(ŝ− s−∆M )1{∆M < ŝ− s ≤ ∆′M}

]
+ δP(ŝ− s ≤ ∆′M )

(
1− M

N − 1

)
(VM+1 − V ′M+1)

+ δ
(
1− P(ŝ− s ≤ ∆′M )

)M − 1
N − 1 (VM−1 − V ′M−1) (43)

Two cases arise depending on whether ∆′k = s. If so, then the result for majority members

follows by the usual argument (by contradiction and by induction). Hence, for any δ ∈

[0, (N − 1)/N), any "meritocratic" equilibrium (i.e. with ∆k < s) is preferred at any majority

size by all majority members to the entrenched equilibrium (∆′k = s).

If ∆′k < s, we need to adapt the arguments in the proof of Lemma 2 and Proposition 3.

Suppose by contradiction that VN−1 ≤ V ′N−1. Then equation (43) implies that VN−2−V ′N−2 ≤

VN−1 − V ′N−1 ≤ 0, and thus by induction that Vk−1 − V ′k−1 ≤ Vk − V ′k ≤ Vk+1 − V ′k+1 ≤ ... ≤

VN−1 − V ′N−1 ≤ 0. However, since ∆k < ∆′k < s, we have that

b+ δ
k − 1
N − 1

(
Vk+1 − Vk−1

)
< b+ δ

k − 1
N − 1

(
V ′k+1 − V ′k−1

)
,

and thus, Vk−1−V ′k−1 > Vk+1−V ′k+1, which contradicts the above inequality. Hence, VN−1 ≥

V ′N−1, and (43) implies by induction that Vk−1 − V ′k−1 ≥ Vk − V ′k ≥ ... ≥ VN−1 − V ′N−1 ≥ 0.

Therefore, a more meritocratic equilibrium is preferred at any majority size by all majority

members to a less meritocratic equilibrium.

Similarly, for any i ≤ k − 1, we have by construction that

Vi = E[s1{ŝ− s ≤ ∆N−1−i}] + E[(ŝ+ b)1{ŝ− s > ∆N−1−i}]

+ δP(ŝ− s ≤ ∆N−1−i)
[
i− 1
N − 1Vi−1 +

(
1− i− 1

N − 1

)
Vi

]
+ δ

(
1− P(ŝ− s ≤ ∆N−1−i)

)[ i

N − 1Vi +
(

1− i

N − 1

)
Vi+1

]
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Hence, for any i ≤ k − 1,

[
1− δ

(
1− i− 1

N − 1

)
P(ŝ− s ≤ ∆′N−1−i)− δ

i

N − 1
[
1− P(ŝ− s ≤ ∆′N−1−i)

]]
(Vi − V ′i )

= E
[[
ŝ− s+ b+ δ

(
i− 1
N − 1ui−1 + N − 1− i

N − 1 ui

)]
1{∆N−1−i < ŝ− s ≤ ∆′N−1−i}

]

+ δP(ŝ− s ≤ ∆′N−1−i)
i− 1
N − 1(Vi−1 − V ′i−1)

+ δ
(
1− P(ŝ− s ≤ ∆′N−1−i)

)(
1− i

N − 1

)
(Vi+1 − V ′i+1) (44)

Hence, for δ close to 0, the expectation term on the RHS of (44) is strictly positive. Suppose

by contradiction that V1 ≤ V ′1 . Then, by induction, equation (44) yields that Vk − V ′k ≤ ... ≤

V1 − V ′1 ≤ 0. However, we know from above that Vk−1 − V ′k−1 ≥ 0, hence a contradiction.

Therefore, V1 > V ′1 . Working in a similar fashion – by contradiction and by induction

using (44) – yields that, for δ small, Vi > V ′i for all i ∈ {1, ..., k − 2}.

M Homogamic evaluation capability: Proof of Proposition 9

and complements

Before stating the general result (for s† ≶ b), let us build the intuition for the case: s† > b.

For this case to arise, majority members need to be sufficiently optimistic about the average

quality of minority candidates. That is, the draws in talent must be sufficiently uncorrelated

(i.e. x large) and the average ability of a candidate high enough (i.e. x large). [Had we

assumed non-Bayesian beliefs, a further condition would have been the absence of prejudice

about the minority.]

Intuitively, when s† > b, the model becomes similar to our baseline setup, yet with two

key differences:

(i) The probability that the minority candidate is assessed by majority members as strictly

more talented (in expectation) than the majority one increases from x to x† ≡ x+ (1−

2x)(1− α) > x. In other words, minority candidates may get the benefit of the doubt.

(ii) The stand-alone cost of an entrenched vote is smaller as s† − b < s− b.

When s† > b, we show that, except perhaps when the majority is tight (M = k), whenever

the majority candidate lacks talent, the majority gives the benefit of the doubt to, and picks

the minority candidate. Consequently, the minority candidate may be selected even though

the two candidates are equally talented.

Proposition 9 in the text and its implications for welfare follow from the general results in

the next Proposition and its Corollary.
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Proposition M.1. (Canonical equilibria with homogamic evaluation capability)

(i) If s† ≤ b, the majority coopts only candidates of the in-group and therefore becomes

homogeneous.

(ii) If s† > b, there exist finite thresholds ρe† and ρm† such that113

• The entrenchment equilibrium – in which the majority always chooses the majority’s

candidate for M = k, while for all M ≥ k + 1, the majority chooses the majority’s

candidate if talented, and chooses the minority’s candidate (of unknown talent)

otherwise – exists if and only if s/b ≤ ρe†.

• The meritocratic equilibrium – in which the minority candidate is elected against

an untalented majority candidate for all M ≥ k – exists if and only if s/b ≥ ρm†.

Corollary M.2. (Canonical equilibria with homogamic evaluation capability: Wel-
fare) (i) Whenever s† ≤ b, by leading to full entrenchment, homogamic evaluation capability

lowers ergodic aggregate welfare relative to perfect information. (ii) As with perfect informa-

tion, the meritocratic equilibrium dominates the entrenchment equilibrium in terms of ergodic

aggregate welfare for any s/b whenever x† is below or close to 1/2, or close to 1.114 Further-

more, the meritocratic and entrenchment equilibria with homogamic evaluation capability yield

a lower ergodic aggregate welfare than their perfect-information counterparts.

M.1 Proof of Proposition M.1

The same arguments as with perfect information apply, with the appropriate changes in

payoffs and with x† replacing x in the transition probabilities. We focus on the following two

equilibria which are the analogs of the perfect-information canonical equilibria.115

The properties of the value functions of the two canonical equilibria with homogamic

evaluation capability depend on whether x† ≤ 1/2. If x† ≤ 1/2, they exhibit the same

features – monotonicity and concavity/convexity – as their perfect-information counterparts

(indeed, the proof of Lemma 2 goes through replacing x by x†). By contrast, if x† > 1/2,

the value function in the meritocratic equilibrium (if it exists) now decreases with group size

i ∈ {1, ..., N − 1} [This observation immediately gives that for x† > 1/2, the meritocratic

equilibrium exists for any s† > b.], and is concave for the minority (i ≤ k − 1) and convex
113If b < s† and x† ≤ 1/2, then ρm† < ρe†. If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the meritocratic

equilibrium exists for all s/b ≥ x†/x.
114Whenever they coexist, the meritocratic equilibrium is (still) preferred to the entrenchment equilibrium by

all members at any majority size.
115As with perfect information, our equilibrium concept rules out coordination failures within the majority,

and thus the minority’s behaviour becomes irrelevant.
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for the majority (i ≥ k). Similarly, in the entrenched equilibrium (if it exists), the value

function increases less over {k, ..., N − 1} than it decreases over {1, ..., k − 1}, whereas with

x† ≤ 1/2, the opposite holds: the distinction stems from the fact that the (weighted) sum

of differences V e
i+1 − V e

i is equal to (1 − 2x†)b. As a consequence, with x† ≥ 1/2, in the

entrenchment equilibrium, it is not the case in general that V e
i ≥ V e

N−i−1 for any i ≥ k, while

in the meritocratic equilibrium, V m
i ≤ V m

N−i−1 for any i ≥ k (the curse of control in action).

Let the quantities Y † and Z† be given by


Y † ≡ 1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂

e†
k,k(t)

)
Z† ≡ 1 + k − 1

N − 1
δ

1− δ (1− 2x†) + δ
k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t) + π̂e†

k,k(t)
)

where the probabilities πe†
i,j(t) (resp. π̂

e†
i,j(t)) are taken (a) following the entrenched equilibrium

strategies described in Proposition 9, and (b) from a majority member’s perspective (resp.

minority member’s perspective) with transition parameter x† instead of x. Define then ρe† as

ρe† ≡


x†

x

Z†

Y †
if Y † > 0

+∞ otherwise.

The same argument as the one used in the proof of ρe < +∞ 116 yields that for any δ ∈

[0, (N − 1)/N) and x† ∈ [0, 1), ρe† <∞.

Similarly, let ρm† be defined as

ρm† ≡ x†

x

[
1 + k − 1

N − 1(1− 2x†)δ
+∞∑
t=0

δt
[(N−1∑

i=k
πm†
k+1,i(t)

)
−
(N−1∑

i=k
πm†
k−1,i(t)

)]]

where the probabilities πm†
i,j (t) are taken (a) following the meritocratic equilibrium strategies

described in Proposition 9, and (b) from the perspective of a member of the group with initial

size i, with transition parameter x† instead of x. We show that the thresholds ρm† and ρe†

are the homogamic-evaluation-capability counterparts of ρm and ρe in the baseline setting.

The proof of Proposition 9 is analogous to that of Proposition 2. As mentioned, when

x† ≤ 1/2, the value functions in the entrenched and meritocratic equilibria with homogamic

evaluation capability exhibit features similar to the ones of their perfect-information coun-

terparts. Namely, the sequence (V e†
M )M≥k remains increasing and concave. By contrast, the

monotonicity of the sequence (V m†
M )M≥k may differ: it is increasing (and concave) if x† ≤ 1/2,

116Cf. Section C.2.3.
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whereas it is decreasing (and convex) if x† > 1/2. Moreover, in this latter case it may then be

that V e†
k < V e†

k−1. Nonetheless, for x
† > 1/2, the sequence (V m†

M )M≥k being decreasing implies

that its differences (V m†
M+1 − V m†

M ) are negative and thus recruiting the minority candidate

against an untalented majority candidate is optimal (as s† > b): hence, for x† > 1/2, the mer-

itocratic equilibrium exists whenever s† > b. Lastly, in both cases, because of discounting, a

talented majority candidate is still preferred to the minority candidate (with unknown talent)

at any majority size.

We thus consider x† ∈ [0, 1] henceforth. As noted above, the argument used in step 1

of the proof of Proposition 2 applies to both equilibria117, thus yielding that (except in the

meritocratic equilibrium for x† > 1/2), the most profitable deviation from these candidate

equilibria is when the majority is tight and faces an untalented majority candidate together

with an unknown-quality minority one. We thus focus on step 2 and consider one-shot devia-

tions in majority size M = k when the majority candidate is untalented.

A (one-shot) deviation in majority size k from the entrenched strategy (defined in Propo-

sition 9), i.e. picking the minority candidate (of unknown talent) instead of the untalented

majority candidate, yields a payoff equal to:118

∆e,† ≡ s† − b+ δ
k − 1
N − 1xs

+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂

e†
k,k(t)

)
+ δ

k − 1
N − 1x

†b
+∞∑
t=0

δt
( ∑
i≥k+1

π̂e†
k,i(t)

)

− δ k − 1
N − 1x

†b
+∞∑
t=0

δtπe†
k+1,k(t)−

k − 1
N − 1

δ

1− δ (1− x†)b

where the probabilities πe†
i,j(t) (resp. π̂

e†
i,j(t)) are taken (a) following the entrenched equilibrium

strategies described in Proposition 9, and (b) from a majority member’s perspective (resp.

minority member’s perspective) with transition parameter x† instead of x. By construction,

s†/s = x/x†. Rearranging yields

∆e,† = x

x†
s

[
1 + δ

k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t)− π̂

e†
k,k(t)

)]

− b
[
1 + k − 1

N − 1
δ

1− δ (1− 2x†) + δ
k − 1
N − 1x

†
+∞∑
t=0

δt
(
πe†
k+1,k(t) + π̂e†

k,k(t)
)]

117For both equilibria when x† ≤ 1/2 and for the entrenchment equilibrium when x† ≥ 1/2, the argument
goes through replacing x by x† and s by s† when appropriate. In particular, in the entrenched equilibrium, for
x† ∈ [0, 1], analogous computations yield that

δ

(
k − 2
N − 1u

e
k+1 + k

N − 1u
e
k

)
≤

δ
k

N − 1

1− δ k

N − 1

1
1− x

(
xs− (1− x)b

)
< s† − b

118Indeed, the difference between the expected maximum of both candidates’ talents and the expected quality
of the majority candidate writes as before (x+ (1− x)x/x†)s− xs = xs.
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which yields the result for the existence region of the entrenched equilibrium.

Similarly for the meritocratic equilibrium, consider the (one-shot) deviation of a majority

member voting in k the untalented majority candidate instead of the minority one. Such a

deviation yields a payoff equal to:

∆m,† = b− s† + δ
(k − 1)
N − 1 (1− x†)b

+∞∑
t=0

δt
[(∑

i≥k
πm†
k+1,i(t)

)
−
(∑
i≥k

πm†
k−1,i(t)

)]

+ δ
(k − 1)
N − 1 x

†b
+∞∑
t=0

δt
[( ∑

i≤k−1
πm†
k+1,i(t)

)
−
( ∑
i≤k−1

πm†
k−1,i(t)

)]

i.e. by rearranging,

∆m,† = − x

x†
s+ b

[
1 + δ(1− 2x†)(k − 1)

N − 1

+∞∑
t=0

δt
[(∑

i≥k
πm†
k+1,i(t)

)
−
(∑
i≥k

πm†
k−1,i(t)

)]]

The result for the existence region of the meritocratic equilibrium follows. Lastly, the proof

for ρe,† < +∞ is in Section C.2.3.

Note moreover that Lemma C.2 holds with the transition probabilities πe† and πm† 119,

and this establishes the inequality ρm† < ρe† for x† ≤ 1/2, as well as the inequality ρm† ≤ x†/x

for x† ≥ 1/2 (noted in the text).120

M.2 Proof of Corollary M.2

The same argument as the one used in the proof of Proposition (3) yields that, whenever

they co-exist, the meritocratic equilibrium is preferred to the entrenchment equilibrium by all

members at any majority size.

We now consider ergodic per-period aggregate welfare. We first show that with homogamic

evaluation capability, meritocracy dominates entrenchment. To this end, we show that the

result of Proposition 4, proved in Online Appendix F, holds replacing x with x† ∈ [0, 1].

Analogous computations to the ones in Online Appendix F show that meritocracy dominates
119Indeed, the proof holds for any x ∈ [0, 1] as the stochastic matrices P and P̂ (introduced in the proof of

Lemma C.2) remain stochastically monotone and stochastically comparable (with P stochastically dominating
P̂ ) for any x ∈ [0, 1].

120If b < s† and x† ≥ 1/2, then ρm† ≤ x†/x, and thus the meritocratic equilibrium exists for all s/b ≥ x†/x.
Lastly, s† and x† both depend on x, and thus the value of x† constrains the possible values of s†: in particular,
for x† ≥ 1/2 (and thus α ≤ 1/2), s† decreases with x†, and s† = 0 when x† = 1. As a consequence, for any
b > 0, the inequality s† > b can only hold for x† sufficiently below 1.
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entrenchment if and only if

N(N − 1)x
[

x†

1− x†
k + 1
N

+ 1 +
k−1∑
i=1

(1− x†

x†

)i i∏
l=1

k − l
k + 1 + l

]
qs̃

>
2x†

1− x†

[
1 +

k−1∑
i=1

(i+ 1)2
(1− x†

x†

)i i∏
l=1

k − l
k + 1 + l

]
b̃ (45)

where q ≥ 1. By Proposition 9, a necessary condition for meritocracy and entrenchment to

exist is b < s†, i.e. xs > x†b. Therefore, a sufficient condition for (45) to be satisfied is

N(N − 1)
[

x†

1− x†
k + 1
N

+ 1 +
k−1∑
i=1

(1− x†

x†

)i i∏
l=1

k − l
k + 1 + l

]

>
2

1− x†

[
1 +

k−1∑
i=1

(i+ 1)2
(1− x†

x†

)i i∏
l=1

k − l
k + 1 + l

]

By Online Appendix F, the above inequality holds for any x† ∈ [0, 1/2], as well as for x† greater

than but close to 1/2. Moreover, it clearly holds for x† close to 1. [Numerical simulations

suggest it holds for any x†[0, 1].]

We then turn to the ergodic aggregate welfare comparison of homogamic evaluation capa-

bility with respect to perfect information: we show that meritocracy and entrenchment with

homogamic evaluation capability are dominated by their perfect-information counterparts. We

proceed as in Section 2.2.2.

We first note that in both equilibria, the ergodic distribution of majority sizes with perfect

information first-order stochastically dominates the one with homogamic evaluation capabil-

ity. Using the notation introduced in Section 2.2.2, we denote by νr†
i the ergodic probability of

state i at the end of a period in regime r ∈ {e,m}, and show that for r ∈ {e,m}, the probability

distribution {νr
i} first-order stochastically dominates {νr†

i }. Indeed, for r ∈ {e,m}, consider

the stochastic matrices P r and P r† associated with the probability distribution over (end-of-

period) majority sizes in equilibrium r respectively with perfect information and homogamic

evaluation capability, from an outsider’s perspective121. By construction, both P r and P r† are

stochastically monotone, and the two are stochastically comparable, with P r
i. stochastically

dominating P r†
i. for any row index i as x† ≥ x. Therefore, the ergodic distribution of majority

sizes in equilibrium r with perfect information (first-order) stochastically dominates the one

with homogamic evaluation capability.

As a consequence, since the aggregate homophily payoff at a given majority size strictly in-

creases with the majority size, perfect information yields a higher ergodic aggregate homophily
121Namely, for any i, j ∈ {1, ..., k}, the matrix component P r

ij (resp. P r†
ij ) is the probability (from an outsider’s

perspective) that the (end-of-period) majority size moves from k+ i− 1 to k+ j− 1 from one period to another
in equilibrium r ∈ {e,m} with perfect information (resp. with homogamic evaluation capability).
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payoff than homogamic evaluation capability in equilibrium r ∈ {e,m}. Moreover, by Section

2.2.2, the difference in aggregate per-period expected quality between perfect information and

homogamic evaluation capability writes as

Sr − Sr† =


0 if r = m,

N(N − 1)
[
νe†
k+1 − ν

e
k+1

]k + 1
N

xs̃ if r = e.

Hence, since the probability distribution {νe
i } first-order stochastically dominates {νe†

i },

Sr−Sr† ≥ 0. Therefore, meritocracy and entrenchment with homogamic evaluation capability

are dominated by their perfect-information counterparts in terms of ergodic per-period

aggregate welfare.

In order to establish the welfare claim in (i), we show that (perfect-information) entrench-

ment dominates full-entrenchment. The aggregate ergodic quality in the full-entrenchment

equilibrium writes as Sf = N(N − 1)xs̃, and thus using the computations of Section 2.2.2, the

difference between the ergodic efficiency of an entrenched and fully-entrenched organization is

given by

Se − Sf = N(N − 1)
[
1− νe

k+1
k + 1
N

x

]
s̃

Similarly, the difference ergodic homophily benefits is given by

Be −Bf =
N∑

i=k+1
νe
i

[
i(i− 1) + (N − i)(N − i− 1)−N(N − 1)

]

Building on Online Appendix E, explicit computations122 then yield that q(Se−Sf)+Be−Bf >

0 for any s > b, hence the result.

The second part of the welfare claim in (ii) stems from the explicit expressions of ρm and
122With the explicit expressions for the ergodic probabilities νe

i derived in Online Appendix E, q(Se − Sf) +
Be −Bf has the same sign as[

N(N − 1)
(

1− k + 1
N

x

)
qs̃+ 2(k + 1)(1− k)b̃

]
+
k−1∑
i=1

(
1− x
x

)i i∏
l=1

k − l
k + 1 + l

[
N(N − 1)qs̃+ 2(i+ k + 1)(i− k + 1)b̃

]
The result obtains by noting that for any x ≤ 1/2,

N(N − 1)
(

1− k + 1
N

x

)
> 2(k + 1)(1− k),

and that for any i ∈ {1, ..., k − 1}, 2(i+ k + 1)(i− k + 1) > 2(k + 2)(2− k) > −N(N − 1).
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ρm† which imply that for δ close to 0,

ρm = 1 + (1− 2x) k − 1
N − 1δ +O(δ2), and ρm† = x†

x

[
1 + (1− 2x†) k − 1

N − 1

]
δ +O(δ2),

and thus ρm < ρm†. The first part derives from the above results, namely that meritoc-

racy and entrenchment with homogamic evaluation capability are dominated by their perfect-

information counterparts, and that meritocracy dominates entrenchment with homogamic

evaluation capability as well as with perfect information.

N Proof of Proposition 10

Let us define the strategy corresponding to "super-entrenchment to level l" for any group

with size i such that i ≥ k or Λ(N−1− i) > 0, as the strategy that coincides with the previous

level-l super-entrenchment strategy for the majority (group size i ≥ k), and that consists in

always voting for the in-group candidate for the minority whenever Λ(M) > 0, i.e. whenever

the minority is pivotal with a strictly positive probability. Formally, generalizing σ(i) to be

the probability that a group with size i ≥ 1 votes for the out-group candidate when the latter

is more talented than the out-group candidate, super-entrenchment strategies are defined by:

(i) σ(i) = 0 for all i ∈ {N − k − l, ..., k + l} and σ(i) = 1 for i ≥ k + l + 1,

(ii) at any group size i ≥ N − k − l, each group votes for its in-group candidate whenever

she is equally or more talented than the out-group candidate.

We denote by Vi the corresponding value function and ui its first-difference.

Proof for existence. Let s = b > 0. The usual computations123 (see proof of Lemma 2)

yield that for any i ≥ k+ l and for any i ≤ k−2− l, ui = 0. The usual argument then applies:

using that for group sizes i ∈ {k, ..., k + l − 1},

[
1− δΛ(i)

(
1− i

N − 1

)
− δ(1− Λ(i+ 1)) i

N − 1

]
ui

= [Λ(i)− Λ(i+ 1)]b+ δΛ(i) i− 1
N − 1ui−1 + δ(1− Λ(i+ 1))

(
1− i+ 1

N − 1

)
ui+1,

123This could be seen by using the recursive expressions for the sequence (ui)i and supposing by contradiction
that ui 6= 0 for some i ≥ k + l or ≤ k − 2− l.
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while for group sizes i ∈ {k − 2− l, ..., k − 2},

[
1− δΛ(N − i− 2) i

N − 1 − δ(1− Λ(N − i− 1))
(

1− i

N − 1

)]
ui

= [Λ(N − i− 2)− Λ(N − i− 1)]b+ δΛ(N − i− 2)
(

1− i+ 1
N − 1

)
ui+1

+ δ(1− Λ(N − i− 1)) i− 1
N − 1ui−1,

and lastly for group size k − 1:

[1− δ(1− Λ(k))]uk−1 = (1− 2Λ(k))b+ δ(1− Λ(k)) k − 1
N − 1uk + δ(1− Λ(k)) k − 2

N − 1uk−2,

one first shows that ui > 0 for any i ∈ {k − 1− l, ..., k + l − 1}. The only non-trivial case for

profitable deviations is thus when the out-group candidate is more talented than the in-group

one. Therefore, since in such a case, for s = b, the one-shot deviation differential payoff is

given by

−δ(1− Λ(i))
[(

1− i

N − 1

)
ui + i− 1

N − 1ui−1

]
< 0

at group size i ∈ {k, ..., N − 1}, and by

−δΛ(N − 1− i)
[(

1− i

N − 1

)
ui + i− 1

N − 1ui−1

]
< 0

at group size i ∈ {N − k − l, ..., k − 1}, super-entrenchment to level l is an equilibrium.

The result obtains by continuity for s/b in a neighbourhood of 1.

Proof for uniqueness. We now show that, for s/b close to 1, super-entrenchment at level l

is the unique symmetric MPE such that a stronger majority makes more meritocratic recruit-

ments. Hence, we consider the class of equilibria such that a stronger majority makes more

meritocratic recruitments, and show that, for any candidate equilibrium within this class, for

s/b close to 1, the majority is super-entrenched in k+ l. By monotonicity, this implies that all

candidate equilibria within this class must feature an entrenched majority at majority sizes

M ∈ {k, ..., k+ l}. We will then show that the minority best-replies to this strategy by voting

for the in-group candidate whenever it is pivotal with a strictly positive probability, i.e. at

any majority size M ≤ k + l − 1.

We henceforth consider a candidate equilibrium within the class of symmetric MPEs such

that a stronger majority makes more meritocratic recruitments. We begin by noting that when

s = b, a group’s flow payoff whenever it is pivotal does not depend on its making a meritocratic

or entrenched recruitment (as the difference between the two is equal to x(s− b) = 0) and is
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strictly positive (proportional to xs+b). Moreover, for s = b, the flow differential payoff in the

expression of ui writes as [Λ(i)−Λ(i+1)]b (resp. [Λ(i)−Λ(i+1)](1−2x)b) if the minority follows

entrenchment (resp. meritocracy) at majority sizes i and i+ 1, as [Λ(i)−Λ(i+ 1)]b− 2xΛ(i)b

if the minority follows meritocracy at majority size i and entrenchment at majority size i+ 1,

and as [Λ(i)−Λ(i+ 1)]b+ 2xΛ(i+ 1)b if the minority follows entrenchment at majority size i

and meritocracy at majority size i+ 1. In particular, the flow-payoff term in uk+l−1 writes as

Λ(k+ l−1)b if the minority is entrenched at majority size k+ l−1 (resp. Λ(k+ l−1)(1−2x)b

if it votes meritocratically). By contrast, for any i ≥ k + l, the flow-payoff term in ui is equal

to 0.

We now show that, for s = b, in any symmetric MPE such that a stronger majority makes

more meritocratic recruitments

k + l − 1
N − 1 uk+l−1 +

(
1− k + l

N − 1

)
uk+l > 0

Suppose by contradiction that the above LHS is weakly lower than 0, and thus that the

majority votes meritocratically at size k + l. Suppose first that uk+l ≤ 0. By monotonicity

within the equilibrium class, the majority votes meritocratically at any size i ≥ k + l, and

thus the recursive expression of ui for i ≥ k + l is given by (5) and yields124 that uk+l−1 ≤

uk+l ≤ ... ≤ uN−2 ≤ 0. Then, summing up (and rearranging) the recursive expression of

uk+l−1 and ui for i ≥ k+ l (and rearranging) yields on the LHS a (positively) weighted sum of

ui, i ≥ k + l − 1, which is thus (weakly) negative, and on the RHS the sum of the flow-payoff

term in uk+l−1, which is strictly positive (as noted above, since Λ(k + l − 1) > 0 = Λ(k + l)),

and of a term proportional to uk+l−2. Therefore, uk+l−2 < 0. We proceed by induction in

order to show that ui < 0 for any i ∈ {k − 1, ..., k + l − 2}. Let M ∈ {k, ..., k + l − 2}, and

suppose ui ≤ 0 for any i ≥M . Summing and rearranging as above the recursive expressions of

the differential value function ui over indices i ∈ {M, ..., N − 2} gives on the LHS a weighted

sum of ui for i ∈ {M, ..., N−2}, which is weakly negative with the induction hypothesis, while

on the RHS a first term proportional to uM−1 and a second term which is the sum of the

flow-differential payoffs, equal either to Λ(M)(1− 2x)b, Λ(M)b or [Λ(M) + Λ(M + 1)2x]b, and

is thus strictly positive. Therefore, uM−1 < 0.

Hence, by induction, ui < 0 for any i ∈ {k − 1, ..., k + l − 2}. Therefore, the majority is

meritocratic at any majority size i ≥ k. As a consequence, the flow differential payoffs in the

expression of ui for i ≤ k − 1 write as [Λ(N − i − 2) − Λ(N − i − 1)](1 − 2x)b > 0 for any

i ∈ {k − l − 1, ..., k − 2}, and 0 for any i ≤ k − l − 2.

Let us consider the minority’s incentives. Suppose by contradiction that uk−l−1 ≤ 0. Then,
124This can be seen by supposing by contradiction that uN−2 > 0, and reaching a contradiction using (5).

The result then obtains by downward induction, using again (5).
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the recursive expression of ui for i ≤ k−l−2 is given by (11) and yields that uk−l−1 ≤ ... ≤ u1 ≤

0. Furthermore, since the flow differential payoffs are positive for i ∈ {k − l− 1, ..., k − 2}, we

have that ui ≤ 0 for i ∈ {1, ..., k−1}. Therefore, the minority votes meritocratically whenever

it is pivotal with a strictly positive probability. Hence, the sum of the flow differential payoffs

over all indices i ∈ {1, ..., N − 2} writes as

2Λ(k)(1− 2x)b+ [1− 2Λ(k)](1− 2x)b = (1− 2x)b > 0

where the second term is the flow differential payoff in uk−1. Yet this contradicts ui ≤ 0 for

all i ∈ {1, ..., N − 2}.

Hence, uk−l−1 > 0. The recursive expressions of the differential value function (11) now

yield that 0 < u1 < ... < uk−l−1. Supposing by contradiction that uk−l ≤ 0 yields again

that ui ≤ 0 for i ∈ {k − l, ..., k − 1}. Hence, by summing the recursive expressions of ui for

i ∈ {k − l, ..., N − 2} and rearranging yields on the LHS a weighted sum of the differential

value function ui for i ∈ {k− l, ..., N −2}, which is weakly negative, while on the RHS, a term

proportional to uk−l−1 (and thus strictly positive) and the sum of the flow differential payoffs,

which is strictly positive. This is a contradiction, and thus uk−l > 0. Using repeatedly the

same argument, we have by induction that ui > 0 for any i ≤ k−2, and as a consequence, the

minority is entrenched whenever it has size i ∈ {k − l, ..., k − 2}, i.e. whenever the majority

has size i ∈ {k + 1, ..., k + l − 1}.

Back to the majority, summing again the recursive expression of the differential value

function ui over indices i ≥ k − 1 yields after rearranging, on the LHS a weighted sum of

the differential value function ui for i ∈ {k − 1, ..., N − 2}, which is weakly negative, while

on the RHS, a term proportional to uk−2 (and thus strictly positive) and the sum of the flow

differential payoffs, which is equal to [1−Λ(k)](1−2x) > 0. Hence, the RHS is strictly positive,

which is a contradiction. Therefore, uk+l > 0, and thus using the recursive expression of ui
for i ≥ k+ l (namely (5) as we suppose that the majority votes meritocratically at size k+ l),

we have that uk+l−1 > uk+l > uk+l+1 > ... > uN−2 > 0. Consequently, for s = b,

s− b+ δ

[
k + l − 1
N − 1 uk+l−1 +

(
1− k + l

N − 1

)
uk+l

]
> 0

and thus the majority is entrenched when it has size k+l.125 By continuity with respect to s/b,

this inequality holds for any s/b sufficiently close to 1, yielding the majority’s entrenchment

at size k + l.

Hence, for s/b > 1 sufficiently close to 1, any candidate equilibrium such that a larger
125Note that, as s = b, entrenchment at size k + l implies that uk+l = uk+l+1 = ... = uN−2 = 0 (as all

flow-payoff terms in the recursive expressions of ui for i ≥ k + l are thus nil).
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majority makes more meritocratic recruitments is such that the majority makes entrenched

recruitments at majority sizes M ≤ k + l, and using the same arguments as in the proof of

Proposition 2, meritocratic recruitments at majority sizes M ≥ k + l + 1.126

The usual recursive arguments (considering first s = b then using the value functions’ con-

tinuity with respect to s/b) then yield that for s/b sufficiently close to 1, the minority uniquely

best-replies to such strategies by being entrenched whenever it is pivotal with a strictly posi-

tive probability.

This establishes, for s/b sufficiently close to 1, the uniqueness of the level-l super-

entrenchment equilibrium within the class of equilibria such that a stronger majority makes

more meritocratic recruitments.

O Proof of Proposition 11

We first show that when candidates reapply, meritocratic strategies do not sustain an

equilibrium for s/b in some interval [1, ρm + ε) with ε > 0. We then show that the meritocratic

equilibrium path starting from an initial state with empty storage is no longer an equilibrium

path for s/b in some interval [1, ρm + ε) with ε > 0: an equilibrium may be observationally

equivalent to a meritocratic equilibrium by exhibiting the same recruitment path, without

necessarily being meritocratic off the equilibrium path (more on this below).

Let us define the meritocratic equilibrium as the equilibrium in which the majority always

recruits the best candidate available127 for any stocks of candidates, and look for necessary

conditions for the meritocratic equilibrium to exist. We show the latter are more often binding

when candidates reapply than when they cannot. Namely, when candidates reapply, we exhibit

one deviation that is profitable for s/b a bit above ρm (and for all s/b ∈ [1, ρm]). Note that

we do not derive a sufficient condition for existence.

Two effects (which we will successively illustrate) are at play, shrinking the existence region

of meritocracy: (i) the ability to recall a talented minority candidate increases the value of

entrenchment; and (ii) the preferential treatment given by the majority to its in-group talented

candidate(s) in store makes an incumbent majority with a large number of talented minority

candidates in store less willing to relinquish control.

To illustrate both forces at play, consider first x = 1/2 (so that ρm = 1), and s/b = 1.

Suppose the majority has size k, and no talented majority candidate available128 but an infinite
126In fact, the argument implies that for s/b sufficiently close to 1, in any symmetric, possibly non-monotonic

MPE, the majority makes entrenched recruitments when it has size k + l, and thus by the same arguments
as in the proof of Proposition 2, and makes meritocratic recruitments when it has size M ≥ k + l + 1. The
requirement that a stronger majority makes more meritocratic recruitments then yields that for s/b sufficiently
close to 1, the majority must make entrenched recruitments at sizes M ≤ k + l − 1 too.

127Namely the best candidate among current-period and stored candidates, breaking ties in favor of in-group
candidates as before.

128Namely, it has no such candidate in store, and the current-period majority candidate is untalented.
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number of talented minority ones in store. Recruiting a talented minority candidate instead

of an untalented majority one gives a differential payoff equal to

s− b+ δ
k − 1
N − 1

(
s

1− δ − Vk+1,0,∞

)
= δ

k − 1
N − 1

(
s

1− δ − Vk+1,0,∞

)

where Vk+1,0,∞ is the majority value function when it has size k + 1, no talented majority

candidate in store and an infinite number of talented minority ones in store. Since for

x = 1/2, a majority with size k + 1 can secure in each period an (expected) flow quality

payoff equal to s̃, and for at least the first two periods, an (expected) flow homophily payoff

equal to b̃/2 129, we have that Vk+1,0,∞ > s/(1 − δ). Furthermore, as the majority cannot

do better than s̃ in terms of flow quality payoff, the term [s/(1 − δ) − Vk+1,0,∞] does not

decrease with s, but strictly decreases with b. Therefore, the above differential payoff is

strictly negative for any s/b in an upper neighbourhood of 1. Because of time discounting

(δ0 < 1), the result holds when the majority has in store a sufficiently large finite number of

talented minority candidates. Hence, for x = 1/2, there exists a strictly profitable deviation

away from meritocracy for s/b ∈ [ρm, ρm + ε).

Consider now x < 1/2 (so that ρm > 1), and s/b = ρm. A necessary condition for the

meritocratic equilibrium to exist is that a repeated deviation towards entrenchment whenever

the majority is tight (M = k) and has no talented majority candidate available and exactly

one talented minority candidate available, be non profitable. Upon permanently deviating

to entrenchment, the majority has one talented minority candidate in store, and either size

k or k + 1. Yet, for x < 1/2, an entrenched majority’s value function strictly increases with

the number of talented minority candidates in store130. Hence, when candidates reapply,

a permanent deviation away from meritocracy becomes more profitable. Furthermore, an

inspection of the additional payoff due to storability shows that the latter increases with s

and decreases with b. Intuitively, this derives from the fact that having a talented minority

candidate in store leads to the latter being recruited (at some point, with strictly positive

probability) instead of a (talented or untalented) in-group candidate or an untalented

out-group candidate, thus yielding a positive quality gain and a positive homophily loss
129In particular, reverting to the meritocratic strategy yields to the current majority group an (expected) flow

payoff equal to s̃+ b̃/2 as long as it retains control over the organization, and equal to s̃ after it has relinquished
it to the other group.

130Indeed, an entrenched majority solves an optimal control problem. Moreover, as x < 1/2, the majority
faces two untalented current-period candidates with a strictly positive probability (1− 2x > 0), in which case,
whenever it is not tight (M > k) and whenever it has a talented minority candidate in store, it recruits the
latter, thus receiving a strictly positive differential payoff with respect to the empty-storage state. Indeed,
the differential payoff from recruiting a stored talented minority candidate instead of an untalented majority
candidate whenever the majority is not tight, is bounded below by:

s− b− x(s− b) δk/(N − 1)
1− δk/(N − 1) > (1− x)(s− b) > 0
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with respect to the payoff when candidates cannot reapply. Therefore, since in the absence

of storability, we have the equivalence between the profitability of one-shot and permanent

deviations131, there exists a profitable deviation away from meritocracy for s/b > ρm (and for

all s/b ∈ [1, ρm]) , i.e. the existence region of meritocracy shrinks.

Finally we show that the meritocratic equilibrium path starting from an initial state with

empty storage is no longer an equilibrium path for s/b in some interval [ρm, ρm +ε) with ε > 0.

We first note that, on the meritocratic equilibrium path starting from an initial state with

empty storage, storage is never used132. Considering the repeated deviation to entrenchment

described above yields that, for x < 1/2, there exists a strictly profitable deviation away

from this equilibrium path for s/b slightly above ρm (and for all s/b ∈ [1, ρm]). Hence, when

x < 1/2, then for s/b in some interval [ρm, ρm + ε) with ε > 0, the meritocratic equilibrium

path starting from an initial state with empty storage is no longer so.

P Hierarchies and the glass ceiling

For simplicity, we look at the continuous-time version of our model. Consider a large

two-tier organization with a mass 1 of senior positions and a mass J > 1 of junior positions.

A higher J corresponds to a “more pyramidal” organization. Between times t and t + dt, a

fraction χSdt of seniors departs and is replaced by juniors promoted to seniority; a fraction

χJJdt of juniors departs as well. To offset these two flows out of the junior pool, a fraction

χ̂Jdt of new juniors is recruited (where Jχ̂ = χS + JχJ). The flow of talented majority

(minority) candidates is Xdt. We will assume that X ≤ Jχ̂ (otherwise the organization would

be homogenous, and the absence of minority juniors would deprive us of an analysis of the

glass ceiling). Seniors have control over hiring and promotion decisions.

As noted in the text, a glass ceiling in such hierarchical organizations results from control

being located at the senior level. This operates through two channels:

• Concern for control: as earlier in the paper, control allows groups to engage in favoritism.

Because control is located at the senior level, this in turn implies some discrimination

in promotions, which in general exceeds that at the hiring level (if any). A concern for

control and the concomitant discrimination may arise even in large organizations, either

because of shocks, or because the talent pool is larger in the minority.

• Differential mingling effect: for organizational reasons, senior members tend to hang
131Hence, when candidates cannot reapply, the above repeated deviation yields a zero differential payoff for
s/b = ρm.

132Indeed, as we assume α = 0, the organization faces at most one new talented candidate each period, and
on the meritocratic equilibrium path, recruits her/him.
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around more with senior members than with junior ones. Their homophily concerns are

therefore higher for promotions than for hiring decisions.

Because the second effect is at this stage of the paper newer, we illustrate it through a simple

example, which can be much enriched in ways that we later discuss. Assume that senior mem-

bers enjoy (expected lifetime) homophily benefits from in-group senior and junior members,

which we denote respectively by bS and bJ . The differential mingling effect is captured by

bS > bJ . A fraction x ≤ 1/2 of new hires are in-group talented juniors, and similarly for the

out-group ones: xJχ̂dt = Xdt. Talent is observed prior to hiring. A talented member brings

quality benefits to seniors equal to sJ when junior, and sS > sJ when senior. Assume that

sl > bl at both levels l ∈ {J, S}, and that sS − sJ > bS − bJ (these two conditions generalize

the previous assumption that quality matters to the majority).

In this framework, majority members are never worried about losing control, as the pro-

motion of those who wil bring them the highest net benefits will always be tilted in favor of

in-group juniors. This leads us to focus on the majority’s pecking order : A promotion yields

discounted net benefit to a majority senior member equal to 1) sS − sJ + bS − bJ in the case

of an in-group talented member; 2) sS − sJ for an out-group talented member; 3) bS − bJ

for an in-group untalented member; 4) 0 for an out-group untalented member. This pecking

order implies that promotion decisions will be tilted in favor of in-group members (except in

the non-generic case in which all talented juniors are promoted and no untalented one is). In

contrast, the junior population is balanced in composition; indeed, there is no rationale for

the majority to discriminate at the hiring state as long as sJ > bJ .

When X < χS < 2X, i.e. equivalently x < 1
/[

1 + JχJ/χS
]
< 2x, in steady state the

organization promotes all talented in-group juniors, a fraction z of talented out-group juniors,

and no untalented juniors. The flows in and out of the junior and senior pools must balance,

yielding respectively: Jχ̂ = χS + JχJ , and Jχ̂x(1 + z) = χS .

We define the glass ceiling index as the relative probability of promotion of talented ma-

jority and minority members, minus 1:133

γ ≡ 1
z
− 1 = 2X − χS

χS −X
∈ (0,∞)

In this region, the glass ceiling index is invariant with how pyramidal the organization is

(J)134, decreases with the frequency of senior-level vacancies (χS) and increases with the flow
133This definition of the glass ceiling index only looks at flows and is a conservative estimate of the glass

ceiling; indeed, were we to look at stock, the glass ceiling effect would be stronger because the share of talented
minority juniors promoted to seniority (over the whole stock of such juniors) would be below z (whenever z < x,
the steady state of the junior pool features a mixture of talented minority and untalented majority juniors).

134An increase in J has two opposite effects: it makes it more difficult for a junior to be promoted, and
talented minority members are the first to be left out; but it also makes talented juniors scarcer in the junior
pool, increasing the minority members’ probability of promotion.
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of talented candidates (X). Covering all parameter regions, the glass ceiling index is monotonic

with χS/X.135

Proposition P.1. (Glass ceiling) In the hierarchical organization’s steady state, hiring at

the junior level is meritocratic. By contrast, there exists a glass ceiling for minority juniors.

This environment can be enriched in interesting ways. First, one may distinguish between

talent and "senior potential"; only a fraction of talented members have the potential to make

a more important contribution at the senior level; furthermore it may take time for the or-

ganization to discover who has such senior potential (there is a time of reckoning). Second,

talented members may have outside opportunities. Talented women may then quit the or-

ganization due to a discouragement effect: either they have been identified as lacking senior

potential (their male counterparts by contrast staying in the organization), or the delay in

being promoted is not worth the wait. Finally, the possibility of outside recruitment at the

senior level would impact the glass ceiling effect.

Q Negative homophily

As claimed in the text (see footnote 3), the case b̃ < 0, corresponding to negative homophily,

can be accommodated in our model. Indeed, the set of possible flow payoffs in any period still

writes as {s̃, 0, s̃+ b̃, b̃}. Hence, for b̃ < 0, two cases must be distinguished:

• s̃+ b̃ < 0 (i.e. −1 < s̃/b̃ < 0): the majority always votes for the minority candidate. The

(end-of-period) majority size converges to k, which is an absorbing state. The majority

then switches and control alternates between the two groups.

• s̃ + b̃ > 0 (i.e. s̃/b̃ < −1): there always exists an equilibrium in which the majority

votes for the most talented candidate with a tie-breaking rule in favor of the minority

candidate.

Let us provide a few more details on the second case (s̃/b̃ < −1). Indeed, the same computa-

tions as in the proof of Lemma 2 (see Online Appendix B) yield that, letting ui ≡ Vi+1 − Vi,

with Vi the value function with such strategies, 0 < u1 < ... < uk−1 and uk−1 > ... > uN−2 > 0,

with

uk−1 = −(1− 2x)b+ δx

[
k − 1
N − 1uk + uk−1 + k − 2

N − 1uk−2

]
,

135Indeed, for χS > 2X, the senior majority hires all talented juniors and (some) untalented in-group juniors,
and thus γ = 0, whereas for χS < X, it promotes no out-group talented juniors, only talented in-group ones,
and thus we set γ = +∞.
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and thus in particular,

[
1− 2δxN − 2

N − 1

]
uk−1 < −(1− 2x)b.

As a consequence, deviations that yield a lower current-period flow payoff, together with a

lower (in a first-order stochastic sense) distribution of next-period in-group sizes are strictly

unprofitable. Moreover, as 0 < uN−2 < ... < uk−1, the deviation differential payoff for

the majority from picking its in-group candidate instead of an at-least-as-talented out-group

candidate (hence opting for a higher distribution of next-period in-group sizes at the expense

of a lower current-period flow payoff) is maximal when both candidates have the same talent

and the majority has size k. It then writes as

b+ δ
k − 1
N − 1(uk−1 + uk) < b+ δ

N − 2
N − 1uk−1 < 0

using the above upper bound on uk−1. Therefore, such a deviation is never profitable for the

majority, and thus these strategies form an equilibrium.
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