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Abstract

We show that even in the absence of data on individual decisions, the distribution of

individual attitudes towards risk can be identified from the aggregate conditions that

characterize equilibrium on markets for risky assets. Taking parimutuel horse races

as a textbook model of contingent markets, we allow for heterogeneous bettors with

very general risk preferences, including non-expected utility. Under a standard single-

crossing condition on preferences, we identify the distribution of preferences among the

population of bettors and we derive testable implications. We estimate the model on

data from US races. Specifications based on expected utility fit the data very poorly.

Our results stress the crucial importance of nonlinear probability weighting. They also

suggest that several dimensions of heterogeneity may be at work.
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Introduction

The literature devoted to the empirical estimation of individual attitudes to risk is by now

quite large. To quote but a few recent examples1, Barsky et al. (1997) use survey questions

and observations of actual behavior to measure relative risk aversion. Results indicate that

this parameter varies between 2 (for the first decile) and 25 (for the last decile), and that

this heterogeneity is poorly explained by demographic variables. Guiso and Paiella (2006)

report similar findings, and use the term “massive unexplained heterogeneity”. Chiappori

and Paiella (2011) observe the financial choices of a sample of households across time, and use

these panel data to show that while a model with constant relative risk aversion well explains

each household’s choices, the corresponding coefficient is highly variable across households

(its mean is 4.2, for a median of 1.7.) Distributions of risk aversions have also been estimated

using data on television games (Beetsma and Schotman, 2001), insurance markets (Cohen

and Einav, 2007; Barseghyan et al., 2013, 2016) or risk sharing within closed communities

(Bonhomme et al., 2012; Chiappori et al. 2012).

These papers, and many others, rely on data on individual behavior. Indeed, a widely

shared view posits that microdata are indispensable to analyze attitudes towards risk, partic-

ularly in the presence of observed or unobserved heterogeneity. The present paper challenges

this claim. It argues that, in many contexts, the distribution of risk attitudes can be non-

parametrically identified, even in the absence of data on individual decisions. We only need

to use the aggregate conditions that characterize an equilibrium, provided that such equi-

libria can be observed on a large set of different menus of choices for the same population.

The crux of our argument is that the equilibrium mapping reveals information about the

distribution of risk attitudes within the population under consideration. While a related

approach has often been used in other fields (e.g., empirical industrial organization), it is

much less common for the estimation of a distribution of individual attitudes towards risk2.

In practice, we focus on “win bets” placed in horse races that use parimutuel betting.

Bettors choose which horse to bet on, and those who bet on the winning horse share the

total amount wagered in the race (minus the organizer’s take.) This has several attractive

properties for our purposes. First, a win bet is simply a state-contingent asset. Second,

1Among earlier attempts to measure the dispersion of risk aversion, one may mention for instance Bin-
swanger (1980), Hey and Orme (1994), and the references in Wik et al. (2004). We thank an anonymous
referee for suggesting some of these references.

2Chabi-Yo, Leisen and Renault (2014) is a notable exception. They extend the standard CAPM analysis
to allow for skewness risk. By applying small noise expansions to get closed-form formulas, the authors show
how the cross-sectional distribution of preferences maps into equilibrium prices.
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observing the odds of a horse—the rate of return if it wins—is equivalent to observing its

market share. Third, large samples of races are readily available. Finally, the decision we

model is discrete (which horse to bet on), and the stochastic process that generates a win is

very simple.

Each race can be represented as a menu of choices, which consists of probabilities and

odds; we can simultaneously observe or at least estimate both the odds and the winning prob-

ability of each horse. Bettors choose between high return/low probability horses (longshots)

and low return/high probability horses (favorites). If bettors were risk-neutral, equilibrium

odds would be directly proportional to winning probabilities. In general, the mapping from

probabilities to odds is more complex; it reflects the response of bettors to given menus of

risky choices. If we observe a large enough number of races with enough variation in odds

and winning probabilities, and the population of bettors has the same distribution of prefer-

ences in all races, then we can learn about this distribution by observing the mapping from

race odds to probabilities.

We analyze two sets of questions. The first one is testability : given any representation of

individual decision under uncertainty, does our general model generate testable restrictions

on equilibrium patterns—as summarized by the relationship between probabilities and odds?

And can more specific formulations (e.g., expected utility) be tested against the general

model? The second is identifiability : under which conditions is it possible to recover the

distribution of individual preferences from equilibrium patterns? Our goal here is to minimize

the restrictions we a priori impose on the distribution of preferences.

We show that only four surprisingly mild assumptions are needed. The first one is

that when choosing between bets, agents only consider their direct outcomes: the utility

derived from betting on a horse with a given winning probability does not depend on the

characteristics of other horses. While this assumption does rule out a few existing frameworks

(e.g., those based on regret theory), it is compatible with the vast majority of models of

decision-making under uncertainty. Second, we assume that each agent bets the same amount

in every race. Whether nonparametric tests and identification like those we develop below

could be constructed with endogenous bet amounts or would require information at the

individual level is an open question. Third, agents’ decisions regarding bets are, in our

model, based on the true distribution of winning probabilities. Note, however, that we

do not impose that valuations be linear in probabilities; on the contrary, we allow for the

type of probability weighting emphasized by modern decision theory, starting with Yaari’s

dual model or Kahneman and Tversky’s cumulative prospect theory. Finally, we assume
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that heterogeneity of preferences is one-dimensional, and satisfies a standard single-crossing

condition. The corresponding heterogeneity may affect utility, probability weighting, or both;

in that sense, our framework is compatible with a wide range of theories. Our methods can

also be extended to at least some forms of multi-dimensional heterogeneity; we address this

briefly, but we leave a more general treatment for future research.

Our main theoretical result states that, under these conditions, an equilibrium always

exists and is unique. We then show that we can both identify and test the model. We derive

strong testable restrictions on equilibrium patterns. When these restrictions are fulfilled, we

can identify the distribution of preferences in the population of bettors; in particular, we

can compare various classes of preferences and distributions.

We then provide an empirical application of these results. In our setting, the concept of

normalized fear of ruin (NF) provides the most adequate representation of the risk/return

trade off. Normalized fear of ruin directly generalizes the fear of ruin index introduced in an

expected utility setting by Aumann and Kurz (1977). Bettors value returns (odds) as well

as the probability of winning. The NF simply measures the elasticity of required return with

respect to probability along an indifference curve in this space. As such, it can be defined

under expected utility maximization, in which case it does not depend on probabilities; but

also in more general frameworks, with probability weightings or various non-separabilities.

We show that the identification problem boils down to recovering the NF index as a function

of odds, probabilities and a one-dimensional heterogeneity parameter. We provide a set of

necessary and sufficient conditions for a given such function to be rationalizable as an NF.

These conditions provide the testable restrictions mentioned above, both for the general

model and for specific versions. We also show that under these conditions, the distribution

of NF is nonparametrically identified.3

Finally, we estimate our model on a sample of more than 25,000 races involving some

200,000 horses. Since the populations in the various “markets” must, in our approach,

have similar distributions of preferences, we focus on races taking place during weekdays,

on urban racetracks. Since we observe market shares, the single-crossing assumption allows

us to characterize the one-dimensional index of each marginal bettor (i.e., the rank of the

bettor indifferent between two horses). We specify a very general value function that depends

on the winning probability, the corresponding return, and this index, based on orthogonal

polynomials. We use the indifference conditions to estimate the winning probabilities and

3Online Appendix B extends these results to the case when bettors decide which races they will bet on.
For reasons discussed below, we do not explicitly consider that decision in our empirical exercise.
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parameters by a simple log-likelihood maximization. The advantage of such a strategy is that

it allows for non parametric estimation of both a general model (involving unrestricted non

expected utility with general one-dimensional heterogeneity) and several nested submodels

(including homogeneous and heterogenous versions of expected utility maximization, Yaari’s

dual model, and rank-dependent expected utility).

Our empirical conclusions are quite striking. First, the type of preferences that are

routinely used in the applied literature (e.g., constant relative or absolute risk aversion)

are incompatible with the data. They imply restrictive conditions on the shape of the NF

functions that our estimates clearly reject4. This suggests that the parametric approaches

adopted in much applied work should be handled with care, as they may imply unduly

restrictive assumptions.

Secondly, models relying on an expected utility (EU) framework do not perform well;

their fit is quite poor, even for heterogeneous versions of the model. Moreover, single-

crossing restrictions are violated for approximately half of our sample, thus casting a doubt

on whether a one-dimensional index is enough to capture the impact of heterogeneity. In fact,

our preferred models are relatively parsimonious versions of homogeneous rank-dependent

expected utility (RDEU) preferences, and of homogeneous NEU preferences. In both cases,

the main role is played by distortions of probabilities.5 Introducing heterogeneity within

the NEU framework further improves the fit, but only slightly; this last conclusion must be

taken with a pinch of salt, since we may be reaching the limits of what our data can robustly

say.

Related Literature

The notion that testable restrictions may be generated regarding the form of the equi-

librium manifold is not new, and can be traced back to Brown and Matzkin (1996) and

Chiappori et al. (2002, 2004); the latter, in addition, introduce the idea of recovering in-

dividual preferences from the structure of the manifold. But to the best of our knowledge,

these papers have not led to empirical applications. Our contributions here are most closely

related to the literature on estimating and evaluating theories of individual risk preferences,

and also to the literature on identification of random utility models. There is now a large

4For instance, under such commonly used representations as CARA or CRRA preferences, any given
individual is either always risk-averse or always risk-loving. However, under our preferred specification a
given bettor may be risk averse for some bets and risk loving for others.

5See Barberis (2013) for a recent analysis of probability weighting,
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literature that tests and measures theories of individual risk preference using laboratory

methods (see e.g. Camerer and Kunreuther, 1989; Harless and Camerer, 1994; and Bruhin

et al., 2010). There is also a sizable literature that directly elicits individual risk preferences

through survey questions (see e.g., Barsky et al., 1997; Bonin et al., 2007; Dohmen et al.,

2011) and correlates these measures with other economic behaviors. The literature that

studies risk preferences as revealed by market transactions is much more limited. Most of

it has focused on insurance choices (see e.g., Cohen and Einav, 2007; Sydnor, 2010; and

Barseghyan et al., 2013 and 2016) and gambling behavior (see e.g., Andrikogiannopoulou

and Papakonstantinou, 2016). However all of these studies fundamentally exploit individual

level demand data to estimate risk preferences and document heterogeneity.

The literature on estimating risk preferences from market level data has almost exclusively

used a representative agent paradigm. Starting with Weitzman (1965), betting markets have

served as a natural source of data for representative agent studies of risk preferences due

to the textbook nature of the gambles that are offered. In the context of racetrack betting,

Jullien and Salanié (2000) and Snowberg and Wolfers (2010) provide evidence showing that

a representative agent with non-linear probability weighting better explains the pattern of

prices at the racetrack as compared to an expected utility maximizing representative agent.

Aruoba and Kearney (2011) present similar findings using cross sectional prices and quan-

tities from state lotteries. These representative agent studies of betting markets stand in

contrast to a strand of research that has emphasized belief heterogeneity as an important

determinant of equilibrium in security markets. Ottaviani and Sorensen (2010) and Gandhi

and Serrano-Padial (2015) argue that heterogeneity of beliefs and/or information of risk

neutral agents can explain the well-known favorite-longshot bias that characterizes many

betting markets. Gandhi and Serrano-Padial furthermore estimate the degree of belief het-

erogeneity revealed by equilibrium patterns. In contrast, our aim here is to fully explore the

consequences of heterogeneity in preferences. Specifically, we nonparametrically identify and

estimate heterogeneous risk preferences from market level data. Furthermore, our theoretical

framework, while excluding heterogeneity in beliefs, allows for heterogeneity in probability

weighting across agents; and our nonparametric approach allows us to compare this and

other theories (such as heterogeneity in risk preferences in an expected utility framework.)

Finally, our paper makes a contribution to the identification of random utility models of

demand. Random utility models have become a popular way to model market demand for

differentiated products following Bresnahan (1987), Berry (1994), and Berry et al. (1995).

A lingering question in this literature is whether preference heterogeneity can indeed be
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identified from market level observations alone. Along with Chiappori, Gandhi, Salanié

and Salanié (2009), our paper shows that a non-parametric model of vertically differen-

tiated demand can be identified from standard variation in the set of products available

across markets. In particular we exploit a one dimensional source of preference heterogene-

ity that satisfies a standard single crossing condition consistent with vertically differentiated

demand. We show that the identification of inverse demand from the data allows us to non-

parametrically recover this class of preferences. This stands in contrast to the work by Berry

and Haile (2014, 2016), which relies on a combination of index restrictions and instrumental

variables6. We instead show identification of random utility by imposing the single crossing

structure.

We present the institution, assumptions, and the structure of market equilibrium in sec-

tion 1. In section 2, we explain the testable restrictions on observed demand behavior implied

by the model, and we show that these restrictions are sufficient to identify preferences. Sec-

tion 3 describes the data, while Section 4 discusses the estimation strategy. We describe

our results in Section 5, and we end with some concluding remarks. Some proofs are in the

Appendix. The text also refers to an Online Appendix for additional elements.

1 Theoretical framework

Parimutuel We start with the institutional organization of parimutuel betting. Consider

a race with horses i = 1, . . . , n. We focus on “win bets”, i.e. bets on the winning horse: each

dollar bet on horse i pays a net return of Ri dollars if horse i wins, and is lost otherwise. Ri

is called the odds of horse i, and in parimutuel races it is determined by the following rule:

all money wagered by bettors constitutes a pool that is redistributed to those who bet on the

winning horse, apart from a share t corresponding to taxes and a “house take”. Accordingly,

if si is the share of the pool corresponding to the sums wagered on horse i, the payment to

a winning bet of $1 is

Ri + 1 =
1− t
si

(1)

Hence odds are not set by bookmakers; instead they are determined by the distribution (s1,

. . . , sn) of bets among horses. Odds are mechanically low for those horses on which many

6See also Gautier and Kitamura (2013) on the binary choice model and Kitamura and Stoye (2016) for
the Random Utility Model.
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bettors laid money (favorites), and they are high for longshots7. Since market shares sum to

one, these equations together imply

1

1− t
=
∑
i

1

Ri + 1
(2)

Hence knowing the odds (R1, . . . , Rn) allows to compute both the take t and the shares in

the pool (s1, . . . , sn).

Probabilities We now define a n-horse race (p, t) by a vector of positive probabilities p =

(p1, . . . , pn) in the n-dimensional simplex, and a take t ∈ (0, 1). Note that pi is the objective

probability that horse i wins the race. Our setting is thus compatible with traditional models

of decision under uncertainty, in which all agents agree on the probabilities of the various

states of the world, and these probabilities are correct. This framework singles out preferences

as the driving determinant of odds; it accords well with empirical work that shows how odds

reflect most relevant information about winning probabilities8. It is also consistent with the

familiar rational expectations hypothesis; in fact, we will show that a rational expectations

equilibrium exists and is unique in our setting. It is important to stress, however, that our

framework is also compatible with more general models of decision-making. In particular,

it allows for the type of probability weighting that characterizes many non-expected utility

functionals, whereby the actual decision process may involve arbitrary increasing functions

of the probabilities. Moreover, these probability weights may be agent-specific, as we shall

see. In other words, our general framework encompasses both “traditional” models, in which

agents always refer to objective probability and heterogeneity only affects preferences, and

more general versions in which different agents weigh probabilities differently. The only

strong restriction we will impose bears on the dimension of the heterogeneity, not on its

nature.

Following the literature to date9, we endow each bettor with a standardized bet amount

that he allocates to his most preferred horse in the race. In particular, we do not allow

participants to bet heterogeneous amounts. Therefore the shares (si) in the pool defined

above can be identified to market shares. Any bettor looks on a bet on horse i as a lottery

that pays Ri with probability pi, and pays (−1) with probability (1 − pi). We denote this

7According to this formula odds can even be negative, if si is above (1− t); it never happens in our data.
8See Sung and Johnson (2008) and Ziemba (2008) for recent surveys on the informational efficiency of

betting markets.
9See Weitzman (1965), Jullien and Salanié (2000), Snowberg and Wolfers (2010), among others.
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lottery by (Ri, pi), and call it a gamble. By convention, throughout the paper we index

horses by decreasing probabilities (p1 > · · · > pn > 0), so that horse 1 is the favorite.

Risk neutral bettors As a benchmark, consider the case when bettors are risk-neutral,

and thus only consider the expected gain associated to any specific bet10. Equilibrium then

requires expected values to be equalized across horses. Since bets (net of the take) are

redistributed, this yields:

piRi − (1− pi) = −t

which, together with (2), gives probabilities equal to

pni (R1, . . . , Rn) =

1

Ri + 1∑
j

1

Rj + 1

=
1− t

1 +Ri

= si. (3)

By extension, for any set of odds (R1, . . . , Rn) we will call the above probabilities pni risk-

neutral probabilities. These probabilities are exactly equal to the shares si in the betting pool,

as defined in (1) and (2). Many stylized facts (for instance, the celebrated favorite-longshot

bias) can easily be represented by comparing the “true” probabilities with the risk-neutral

ones—more on this below.

1.1 Preferences over gambles

We consider a continuum of bettors, indexed by a parameter θ. Each bettor θ is char-

acterized by a valuation function V (R, p, θ), defined over the set of all possible gambles

(R, p). In a given race, θ bets on the horse i that gives the highest value to V (Ri, pi, θ). As

usual, V (·, ·, θ) is only defined ordinally, i.e. up to an increasing transform. We consequently

normalize to zero the value V (−1, p, θ) ≡ 0 of losing 1 with certainty.

Note that each V (·, ·, θ) is a utility function defined on the space of gambles. As such,

it is compatible with expected utility, but also with most non expected utility frameworks;

one goal of this paper is precisely to compare the respective performances of these various

models on our data. Finally, the main restriction implicit in our assumption is that the

10Clearly, a risk neutral player will not take a bet with a negative expected value unless she derives some
fixed utility from gambling (see Conlisk 1993). The assumption we maintain in this paper is that this “utility
of gambling” does not depend on the particular horse on which the bet is placed: conditional on betting,
bettors still select the horse that generates the highest expected gain.
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utility derived from betting on a given horse does not depend on the other horses in the

race; we thus rule out models based for instance on regret theory11, and more generally any

framework in which the valuation of a bet depends not only on the characteristics of the bet

but also on the whole set of bets available.

We will impose several assumptions on V . We start with very weak ones:

Assumption 1 For each θ, (R, p) 7→ V (R, p, θ) is continuously differentiable almost every-

where; and it is increasing with R and p.

Differentiability is not crucial; its only role is to simplify some of the equations. Our

framework allows for a kink at some reference point for instance, as implied by prospect

theory. The second part of the assumption reflects first-order stochastic dominance: bettors

prefer bets that are more likely to win, or that have higher returns when they do. We now

introduce another technical requirement, which we will use when proving the existence of a

rational expectations equilibrium:

Assumption 2 For any θ, R, p > 0:

• for any p′ > 0, there exists R′ such that V (R, p, θ) < V (R′, p′, θ);

• for any R′, there exists p′ > 0 such that V (R, p, θ) > V (R′, p′, θ).

Assumption 2 is very weak: it only requires that any higher return can be compensated

by a lower probability of winning, and vice versa.

The Normalized Fear of Ruin (NF) The trade-off between risk and return is crucial in

decision-making under uncertainty; and we aim to quantify it using observed choices. This

trade-off can be described in several ways. One is the marginal rate of substitution12 w:

w(R, p, θ) ≡ Vp
VR

(R, p, θ) > 0

Since each utility function V (·, ·, θ) is only defined up to an increasing transform, the proper-

ties of w fully determine the bettors’ choices among gambles. We chose to focus on a slightly

different index, that we call the normalized fear-of-ruin (NF):

11See e.g. Gollier and Salanié (2006).
12Throughout the paper we use subscripts to indicate partial derivatives.
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NF (R, p, θ) ≡ p

R + 1

Vp
VR

(R, p, θ) =
p

R + 1
w(R, p, θ) > 0

Using NF rather than more traditional measures of risk-aversion has several advantages.

It is unit-free, as it is the elasticity of required return with respect to probability on an

indifference curve:

NF = − ∂ log(R + 1)

∂ log p

∣∣∣∣
V

.

As such, it measures the local trade off between risk and return. Moreover, it has a “global”

interpretation for the type of binomial lotteries we are dealing with. The NF index of a

risk-neutral agent is identically equal to one. An index above one indicates that the agent

is willing to accept a lower expected return p(R + 1)− 1 in exchange for an increase in the

probability p. Conversely, if an agent with an index below one is indifferent between betting

on a favorite (p, R) and a longshot (p′ < p, R′ > R), then it must be that the expected return

on the longshot is below that on the favorite. For instance, in a representative agent context,

the favorite-longshot bias can be explained by the representative agent having a NF index

below one. However, our approach allows for heterogeneous bettors and can accommodate

the existence of bettors with different NF indices.

The expected utility case In an expected utility framework, the NF index has a simple

expression. With a zero utility u(−1, θ) = 0 from losing the bet, we have that:

V (R, p, θ) = pu (R, θ)

and therefore

NF (R, p, θ) =
1

R + 1

u

uR
(R, θ)

so that the NF index13 is independent from the probability p. Geometrically, NF(R) is the

ratio of two slopes on the graph of the utility function: that of the chord linking the points

(−1, 0) (losing the bet) and (R, u (R)) (winning it), and that of the tangent to the utility

graph at (R, u (R)) (see Figure 1.)

The properties of the NF index in the expected utility case are well-known14. A sufficient

condition for an agent to have a higher NF index than another agent at all values of R is that

13The ratio u/uR was called the fear of ruin index by Aumann and Kurz (1977)—hence our choice of the
name for NF.

14See Foncel and Treich, 2005.
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Figure 1: The fear of ruin
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the former be more risk-averse than the latter15. Consequently, if the agent is risk averse,

then his NF index is larger than 1; if he is risk-loving, it is smaller than 1.

While the NF index need not be monotonic in R, specific functional forms generate

additional properties. For example, an agent with constant absolute risk-aversion is either

risk-averse (her NF(R) is above 1 and increasing) or risk-loving (and then her NF is below 1

and decreasing). The same “fanning out” holds with constant relative risk-aversion. These

are testable predictions; and as we shall see, our more flexible estimates show NF indices

that tend to fan in rather than fan out, and sometimes cross the NF = 1 line.

1.2 Single crossing assumption

Our next assumption imposes a single-crossing property that drives our approach to

identification.

Assumption 3 (single-crossing)

1. the heterogeneity parameter θ is a scalar.

2. consider two gambles (R, p) and (R′, p′), with p′ < p. If for some θ we have

V (R, p, θ) ≤ V (R′, p′, θ)

then for all θ′ > θ

V (R, p, θ′) < V (R′, p′, θ′).

Given first-order stochastic dominance as per Assumption 1, if θ prefers the gamble with

the lowest winning probability (p′ < p) then it must be that its odds are higher (R′ > R), so

that the gamble (R′, p′) is riskier. Assumption 3 states that if θ prefers the riskier gamble,

any agent θ′ above θ will too. The single-crossing assumption thus imposes that agents can

be sorted according to their “taste for risk”: higher θ’s prefer longshots, while lower θ’s

prefer favorites.

Assumption 3 has a well-known differential characterization, which we state without

proof:16

15Recall that u is more risk-averse than v if there exists an increasing and concave function k such that
u = k(v). Given our normalization u(0) = v(0) = 0, this implies that k is such that k(x)/x decreases with
x. This property is equivalent to u having a higher NF index than v at any value of R (Foncel and Treich,
2005).

16See for instance Athey (2001, 2002).

13



Lemma 1 Suppose that V is differentiable everywhere on some open set O. Then Assump-

tion 3 holds on O if and only if, for any (R, p, θ) in O, the marginal rate of substitution

w(R, p, θ), or equivalently the normalized fear-of-ruin index NF(R, p, θ), is decreasing in θ.

Since Assumption 3 only refers to an ordering of θ, without loss of generality we normalize

θ to be uniformly distributed on the interval [0, 1]. This essentially makes θ a quantile of

the distribution of “preference for riskier bets.” The precise scope of the single-crossing

condition can be better seen on a few examples.

1. Expected utility: As above, we normalize to zero the utility of losing the bet, so that

V (R, p, θ) = pu(R, θ).

Single-crossing holds if and only if the normalized fear-of-ruin is decreasing in θ. A sufficient

condition is that lower θ’s be more risk-averse at any value of R. For instance, in the CARA

case, consider a population of bettors indexed by their absolute risk-aversion λ:

u(R, λ) =
exp(λ)− exp(−λR)

λ

where λ has a c.d.f. Fλ. Then

NF(R, p, λ) =
1

R + 1

u

uR
=

exp (λ (1 +R))− 1

λ(1 +R)

increases with λ. If we define θ = 1−Fλ(λ), then by construction θ is uniformly distributed

on [0, 1] and NF decreases in θ, so that Assumption 3 holds. Note also that NF is in fact an

increasing function of λ(R+ 1), so that the normalized fear of ruin “fans out”: for any given

λ (or θ) it moves away from the risk-neutral level of 1 as odds increase.

A similar result holds for CRRA functions, with an additional twist. If W > 1 denotes

the agent’s wealth, then easy calculations give

NF (R, p, γ,W ) =
W +R

1− γ

(
1−

(
W − 1

W +R

)1−γ
)

which is increasing in the relative risk-aversion index γ. Again, Assumption 3 holds if we

define θ as 1− Fγ(γ) where Fγ is the cdf of γ. However, an agent’s choice now also depends

on the agent’s wealth. The latter can be seen as either an alternative or an additional source
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of heterogeneity. That is, we can model a population of bettors with identical relative risk

aversion γ but different initial wealth W and define θ = FW (W ); since NF(R, p, γ,W ) is also

increasing in W , the model will still satisfy the single crossing assumption. More ambitiously,

we could move beyond Assumption 3 and consider agents who differ in both wealth and risk

aversion, generating bidimensional heterogeneity; we will return to this issue in section 2.3.

This point is more general: in the absence of individual data, we cannot possibly distin-

guish between heterogeneity in “preferences”, in wealth, and in background risk for instance;

we can only estimate the resulting heterogeneity in attitudes towards lotteries.

2. Rank-Dependent Expected Utility Theory: RDEU enriches the previous frame-

work by allowing for a nonlinear weighting of probabilities: the utility V can be written

V (R, p, θ) = G (p, θ)u(R, θ).

For Assumption 1 to hold, the probability weighting function G must increase in p and the

utility function u must increase in R. In general, both functions may vary with θ.

Now remember that V is only defined up to an increasing transformation: we can only

hope to identify its indifference curves, whose slope is NF. In the RDEU case, the NF index

is a product of two terms:

NF (R, p, θ) =
p

R + 1

Vp
VR

=
1

R + 1

u

uR

pGp

G
. (4)

The first term is the NF index for an expected utility maximizer with utility u, which is

the elasticity of u(R, θ) with respect to the gross return (R + 1). The second term is the

elasticity of G(p, θ) with respect to the probability p of a win. It is the NF index that would

obtain if u were linear in R for all θ, as in the “dual expected utility” model of Yaari (1987):

V (R, p, θ) = G(p, θ)(R + 1).

For Yaari-like preferences, the NF index is independent of R; and single-crossing requires

that Gp/G, which is positive, be decreasing in θ. In words, this means that larger θ’s put

more weight on small probabilities. Again, this allows us to account for some heterogeneity

in beliefs. Note that since Yaari’s model sets the elasticity of u to one, we can identify the

elasticity of G and its variations with θ in this more restricted model. However, with only

one dimension of variation in θ, it is difficult to account for heterogeneity in both u and G
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simultaneously in the RDEU model. What we can and will do is test heterogeneity in u

versus heterogeneity in G.

3. Extensions and limitations Many other families of preferences, such as cumulative

prospect theory, also fit within our setting—although the single-crossing condition becomes

more complicated. Others may only be accommodated under some restrictions. For instance,

the reference-dependent theory of choice under risk of Köszegi and Rabin (2007) yields a

choice functional that fits our framework as long as it respects stochastic dominance. We

could also incorporate ambiguity-aversion in the “exponential tilting” form introduced by

Hansen and Sargent (e.g. in their 2007 book, or Hansen 2007). However, in our very simple

choice problems with static decision-making it is observationally equivalent to increased

risk-aversion17.

Our approach has two main limitations. First, we require that agents only pay attention

to realized consequences. Some models of decision under uncertainty relax this assumption;

regret theory and disappointment aversion for instance are only compatible with our setting

in restricted cases. Second, we only allow for one dimension of heterogeneity. Our approach

is only compatible with models involving heterogeneity in both preferences and beliefs if

these two dimensions are governed by the same parameter. Multidimensional nonparametric

heterogeneity is a very difficult problem, which is left for future work; for the time being, we

shall simply provide a short discussion of a possible approach (see Section 2.3).

1.3 Market Shares and Equilibrium

The winning probabilities p and the take t are assumed exogenous and characterize a

race. In contrast, the odds are endogenous: the bettors’ behavior determines market shares,

which in turn determine odds through the parimutuel rule (1). In this setting, it is natural

to rely on the concept of rational expectations equilibria: agents determine their behavior

given their anticipations on odds, and these anticipations are fulfilled in equilibrium. We

now show that for our framework, a rational expectations equilibrium exists. Moreover, our

characterization of the equilibrium condition in terms of the single crossing assumption will

provide the key to the identification of preferences.

17If we let ambiguity-aversion depend on observables (for instance, it may be more prominent in races
with younger horses), then we could distinguish it from risk-aversion. Gandhi and Serrano-Padial (2015)
made use of a related strategy.
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Focus on a given race with n horses, and assume that the win probabilities p and odds

R are given, and known to all agents. Each agent then optimizes on which horse to bet on.

As a simple consequence of the single crossing condition, the choices bettors make partition

them into a sequence of intervals:

Lemma 2 Suppose that p and R are such that all market shares are positive: si > 0 for

all i = 1, . . . , n. Then under Assumptions 1, 2, and 3, there exists a family (θj)j=0,...,n, with

θ0 = 0 < θ1 < · · · < θn−1 < θn = 1, such that:

• for all i = 1, . . . , n, if θi−1 < θ < θi then bettor θ strictly prefers to bet on horse i than

on any other horse;

• for all i = 1, . . . , n− 1 we have

V (pi, Ri, θi) = V (pi+1, Ri+1, θi). (5)

Lemma 2 states that if we rank horses by increasing odds in a race, bettors will self-

select into n intervals; in each interval, all bettors bet for the same horse. The bounds of the

intervals are defined by an indifference condition: for i = 1, . . . , n−1, there exists a marginal

bettor θi who is indifferent between betting on horses i and i + 1. As a simple corollary

and since we normalized the distribution of θ to be uniform, the market shares si of horse

i = 1, . . . , n is

si = θi − θi−1

which yields

θi =
i∑

j=1

sj.

Recall that odds are determined from market shares as in (1) and (2); theerefore in

equilibrium one must have θi = θi(R), where

θi(R) ≡
∑

j≤i
1

Rj+1∑
j

1
Rj+1

i = 1, . . . , n. (6)

At a rational expectations market equilibrium, bettors must choose optimally given odds

and probabilities, as expressed in (5); and odds must result from market shares, which is
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what the equalities θi = θi(R) impose. This motivates the following definition:

Definition 1 Consider a race (p, t). R = (R1, . . . , Rn) is a family of equilibrium odds if

and only if (2) holds and

∀ i < n V (pi, Ri, θi(R)) = V (pi+1, Ri+1, θi(R)). (7)

We then prove existence and uniqueness. The result is a particular instance of a more

general result in Gandhi (2006), but its proof in our setting is quite direct:

Proposition 1 Under Assumptions 1, 2, and 3, for any race (p, t), there exists a unique

family −t < R1 ≤ . . . ≤ Rn of equilibrium odds.

Hence to each race one can associate a unique rational expectations equilibrium, with

positive market shares. This result gives a foundation to our assumption that bettors share

common, correct beliefs. From an empirical viewpoint, however, only the odds are directly

observable; probabilities have to be estimated. Fortunately, probabilities can be uniquely

recovered from odds:

Proposition 2 Under Assumptions 1, 2, and 3, for any R ranked in increasing odds, there

exists a unique race (p, t) such that R is a family of equilibrium odds for (p, t).

As already observed, the rules of parimutuel betting allow us to infer the value of the

track take t from odds, using (2). On the other hand, the relationship between odds and

probabilities results from preferences. The function p(R) = (p1(R), . . . , pn(R)) implicitly

defined in Proposition 2 thus conveys some information on the underlying preferences of

bettors. Since choices are fully determined by the marginal rates of substitution w = VR/Vp,

we shall say hereafter that p(R) characterizes any market equilibrium associated to V .

Finally, Propositions 1 and 2 extend in a straightforward manner to the homogeneous case

in which bettors are identical: each bettor must then be indifferent among all horses, in the

spirit of Jullien and Salanié (2000).
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2 Testable implications and identifiability

Assume for the moment that we observe the same population of bettors18 faced with a

large number of races (p, t). In each race, individual betting behavior leads to equilibrium

oddsR and market shares s, which are observable; we also observe the identity of the winning

horse for each race. We also assume that the relationship between winning probabilities and

equilibrium odds p(R) is known. In fact, this relationship could be estimated very flexibly

from a rich enough data set; but our actual estimation strategy, which we expose in section 4,

will not rely on such a direct estimation of probabilities.

We focus here on the empirical content of our general framework. Specifically, we consider

two questions. One is testability: does the theory impose testable restrictions on the form of

the function p(R)? The second issue relates to identifiability: given p(R), is it possible to

uniquely recover the distribution of individual preferences, i.e. in our setting the normalized

fear-of-ruin NF (R, p, θ)? We shall now see that the answer to both questions is positive.

2.1 Testable implications

We start with testability. Since V increases in p, we can define Γ as the inverse of V with

respect to p:

∀ R, p, θ Γ(V (R, p, θ), R, θ) = p

One can then define a function G as

G (R, p,R′, θ) = Γ(V (R, p, θ), R′, θ) (8)

In words, G (R, p,R′, θ) is the winning probability p′ that would make a gamble (R′, p′)

equivalent, for bettor θ, to the gamble (R, p). Now we can rewrite the equilibrium conditions

in Definition 1 as

∀ i < n pi+1(R) = G(Ri, pi(R), Ri+1, θi(R)) (9)

where θi(R) was defined in (6). We immediately obtain several properties of G:

18Strictly speaking, we only need the distribution of preferences to be constant. Online Appendix B
considers the case when bettors endogenously decide whether to bet in each race, so that the distribution of
preferences of bettors in a race depends on some of its characteristics. We provide assumptions under which
the identification result still holds.
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Proposition 3 Let Assumptions 1, 2, and 3 hold. If p(R) characterizes market equilibria

associated to some family V , then there exists a function G(R, p,R′, θ) such that

i) G is continuously differentiable, increasing with R and p, decreasing with θ if R′ > R,

and decreasing with R′;

ii) Gp/GR is independent of R′;

iii) G(R, p,R, θ) = p;

iv) (9) holds for any family R1 < R2 < · · · < Rn.

Of the four properties in Proposition 3, (ii) and (iv) are the main restrictions that our

theory imposes on observed odds and probabilities. Property (iv) states that the winning

probability pi+1(R), which could depend on the whole family of odds (R1, . . . , Rn), can be

computed from only four numbers: the pair of odds Ri and Ri+1, the index of the marginal

consumer θi(R) (which can be directly inferred from market shares, as argued above), and

the probability pi(R) of the horse ranked by bettors just above (i + 1). Hence pi(R) and

θi(R) are sufficient statistics for the (n− 2) odds that are missing from this list. Moreover,

G does not depend on the index i, on the number of horses n, nor on the take t. Finally,

property (ii) dramatically restricts the variation in G. These and the other two properties

of G listed in Proposition 3 will provide directly testable predictions of our model.19

2.2 Exhaustiveness and identification

Take some function p(R) that satisfies the conditions we just derived. Pick a particular i

(say, i = 1); then by Proposition 3, for each race and each horse i, pi+1(R) can only depend

on the four variables (Ri, pi(R), Ri+1, θi(R)). The corresponding relationship nonparamet-

rically identifies the function G and generates a first set of testable restrictions; a second set

follows from the fact that the resulting G does not depend on the choice of i.

We now show that the four properties in Proposition 3 are sufficient. From any p(R) ass-

sociated to a G function that satisfies all four properties we can recover a function NF(R, p, θ)

such that p(R) characterizes the market equilibria associated to any risk preferences V whose

normalized fear-of-ruin is NF. In turn, recovering the normalized fear of ruin NF allows to

nonparametrically identify preferences, i.e. to ordinally identify the function V . Specifically:

19In the homogenous case in which bettors are identical, the results extend directly, with the only change
that G does not depend on θ anymore. Similar statements are valid for the following results.
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Proposition 4 Suppose that the function p(R) satisfies the restrictions in (9) for some

function G. Let S4 be the domain over which (9) defines G, and assumes that properties

(i)-(iii) in Proposition 3 hold for G over S4. Define S3 to be the set of (R, p, θ) such that

(R, p,R′, θ) belongs to S4 for some R′ > R.

Then there exists a unique (up to increasing transforms) function V (p,R, θ) defined on

S3 such that p(R) characterizes the market equilibria associated to V .

Moreover, V verifies the single-crossing property, and its normalized fear-of-ruin NF is

NF (R, p, θ) =
p

R + 1

Gp

GR

(R, p,R′, θ).

From an empirical viewpoint, Proposition 4 proves two results. First, the properties

i)-iv) stated in Proposition 3 are in fact sufficient: since they are strong enough to ensure

the existence of a family V satisfying our assumptions, no other testable implications can be

found. Second, the MRS function w is uniquely identified. Indeed for (8) to hold, it must

be that

Vp
VR

(R, p, θ) =
Gp

GR

(R, p,R′, θ) for all R′,

which property (ii) of Proposition 3 makes possible. This defines w (and NF) uniquely,

and consequently the family V is identified up to an increasing function of θ. Hence under

our assumptions, aggregate data are enough to recover heterogeneous individual preferences

without any parametric assumption.20

Proposition 4 qualifies this conclusion in one respect: identification only holds on the

support S3 of the random variables that we defined. This has an important consequence

in our setting. Assume that no race has more than n horses. The favorite in each race,

by definition, has the largest market share, and so we will always observe θ1 > 1/n. Since

identification relies on boundary conditions in the θi’s, it follows that we cannot hope to

recover the family of functions V (·, ·, θ) for θ < 1/n. (More formally, the set S3 contains no

point (R, p, θ) with θ < 1/n.)

20The Online Appendix A specializes this result to the case of Expected Utility.
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2.3 Multidimensional heterogeneity

We assumed so far that heterogeneity was one-dimensional, and could be described by a

single parameter θ. As already mentioned in section 1.2, we might want to go beyond this

and allow for more dimensions of heterogeneity. We sketch here how it can be done in two

dimensions. Assume that agents differ in two characteristics, described by scalar parameters

θ and η. Without loss of generality, we normalize the marginal distributions of θ and η to

be independent uniform distributions over [0, 1]. This can be done by applying the quantile

transforms θ′ = Fθ(θ) and η′ = Fη|θ(η|θ).

Now consider two gambles (R, p) and (R′, p′) such that p′ < p (therefore R′ > R). We

impose the single crossing property in each of the two dimensions. That is, if for some (θ, η)

we have

V (R, p, θ, η) < V (R′, p′, θ, η)

then for all θ′ > θ

V (R, p, θ, η) < V (R′, p′, θ′, η)

and for all η′ > η

V (R, p, θ, η) < V (R′, p′, θ, η′).

The interpretation is as before: for any given η, higher θ’s prefer longer shots; and similarly,

for any given θ, higher η’s prefer longer shots. These conditions imply that the equation for

the marginal bettor(s) (θ, η)

V (R, p, θ, η) = V (R′, p′, θ, η)

implicitly defines a function

η = φ (θ;R, p,R′, p′)

that can be represented by a decreasing curve in the (θ, η) plane. Figure 2 shows how bettors

select horses in the plane for a three-horse race R1 < R2 < R3. The main difficulty is that

the total market share of horse i = 2, . . . , n − 1 is given by the area between two isolevel

curves of the function φ, so that for i < n, the cumulative market shares are

Si =
i∑

j=1

sj =

∫ 1

0

φ (θ;Ri, pi, Ri+1, pi+1) dθ
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and we can only identify (and in fact overidentify) the function

Φ(R, p,R′, p′) ≡
∫ 1

0

φ(θ;R, p,R′, p′)dθ = E (Si|Ri = R, pi = p,Ri+1 = R′, pi+1 = p′) .

This contrasts with the one-dimensional case: if θ is irrelevant then these isolevel curves are

horizontal lines and market shares directly identify the relevant structure of the distribution

of preferences. Identification is still possible under specific assumptions regarding the form

of the heterogeneity. Assume for instance that

Figure 2: Market shares with two-dimensional heterogeneity (n = 3)

θ

η

φ(θ;R1, p1, R2, p2)
s1

φ(θ;R2, p2, R3, p3)
s2

s3

V (R, p, θ, η) = p exp(θa(R, p) + ηb(R, p)),

or, equivalently (since any increasing transformation can be applied to V ):

log V (R, p, θ, η) = log p+ θa(R, p) + ηb(R, p). (10)

This quasi-linear representation, while restrictive, is standard in industrial organization

and in contract theory. It is easy to see that if the functions a and b are increasing in R and

do not vary too much in p (deviations from expected utility are small), then bettors with

higher θ and η bet on longer shots. Moreover the function φ is affine:

φ (θ;R, p,R′, p′) = − 1

b(R′, p′)− b(R, p)

(
θ (a (R′, p′)− a (R, p)) + log

p

p′

)
.
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and we can integrate over θ to get the following equation:

Si = Φ(Ri, pi, Ri+1, pi+1) = −
1
2

(a (Ri+1, pi+1)− a (Ri, pi)) + log pi
pi+1

b(Ri+1, pi+1)− b(Ri, pi)
. (11)

This equation identifies (in fact overidentifies) the functions a and b, up to some constants

that are irrelevant for the identification of preferences.21

3 Data

Our entire analysis up to now has assumed a stable family of preferences V (R, p, θ) across

the races in the data. This family of preferences can change with observable covariates X,

and thus we should interpret the analysis up to now as being done conditional on X.

The race dataconsist of a large sample of thoroughbred races (the dominant form of or-

ganized horse racing worldwide) in the United States, spanning the years 2001 through 2004.

The data were collected by professional handicappers from the racing portal paceadvantage.com,

and a selection of the race variables that they collect were shared with us. In particular, for

each horse race in the data, we have the date of the race, the track name, the race number in

the day, the number of horses in the race, the final odds for each horse, and finishing position

for each horse that ran. Excluded from the data are variables that the handicappers use for

their own competitive purpose, such as various measures of the racing history of each horse.

For the present analysis we focus on the data from year 2001. For this year we have

races from 77 tracks spread over 33 states. There were 100 races in which at least one horse

was “purse only” meaning that it ran but was not bet upon and hence was not assigned

betting odds. In 461 races two horses were declared winners; and in 3 races there was no

winner. After eliminating these three small subsamples, we had 447,166 horses in 54,169

races, an average of about 8.3 horses per race. Figure 3 shows that almost all races have 5 to

12 horses. We eliminated the other 606 races. We also dropped 44 races in which one horse

has odds larger than 200—a very rare occurrence. That leaves us with a sample of 442,636

horses in 53,523 races.

Table 1 gives some descriptive statistics. The betting odds over horses in the data range

from extreme favorites (odds equaling 0.05, i.e., horses paying 5 cents on the dollar), to

21Online Appendix C includes a proof of this claim.
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Figure 3: Frequency distribution of the number of horses per race
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Table 1: Characteristics of the sample

Number of horses in race Odds θ

Min 5 0.05 0.145
P25 7 3.70 0.623
P50 8 8.10 0.851
P75 10 18.80 0.964
Max 12 200.00 1.000
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Figure 4: Distribution of odds, R ≤ 100
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extreme longshots (odds equaling 200, i.e., horses paying 200 dollars on the dollar). The

mean and median odds on a horse are 15.23 and 8.10 respectively: the distribution of odds

is highly skewed to the right. In our sample, 18.3% of horses have R ≥ 25 (odds of 20 or

more), 6.2% of horses have R ≥ 50, but only 0.7% have R ≥ 100. Also, the race take (t

in our notation) is heavily concentrated around 0.18: the 10th and 90th percentile of its

distribution are 0.165 and 0.209.

Figure 4 plots the raw distribution of odds up to R = 100. It seems fairly regular, with

a mode at odds of R = 2.5; but this is slightly misleading. Unlike market shares, odds are

not a continuously distributed variable: they are rounded at the track. This rounding is of

no consequence for the econometric methods we use in this paper.22

We built two 0-1 covariates. The first one uses the date at which a race was run to

separate weekday and weekend races. To build our second covariate, we hand-collected the

zip code of each racetrack, and we used it to classify each track on an urban/rural scale,

thanks to the 2000 Rural-Urban Commuting Area Codes classification of the Census Bureau.

22See Online Appendix D for more information on rounding.
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Table 2: Number of horses in each subsample

Weekday Weekend

Rural 42, 027 31, 663

Urban 216, 802 152, 144

Thus our two main covariates for a race are Weekend/Weekday and Urban/Rural. Table 2

shows that most races are run in an urban setting, and slightly more on weekdays than on

weekends. In order to focus on a relatively homogeneous sample, the results we report in the

rest of this paper were obtained on the largest subsample: the 26,525 races run on weekdays

in an urban setting, with 216,802 horses.

4 Estimation Strategy

The fundamental equation of our model can be seen as determining all win probabilities

recursively in any given race:

∀ i < n pi+1(R) = G(Ri, pi(R), Ri+1, θi(R)). (12)

In this relationship, the odds R and interval limits θ are directly recovered from the

data. Our empirical strategy aims at estimating both the probabilities p and the function

G.

If the value function V is known (possibly up to some parameters), then the function

G can be derived from (8). Then for each race the system of equations (12), along with

the adding up constraint
∑n

i=1 pi = 1, allow us to compute the winning probabilities and

therefore the likelihood of the event that the observed winner has indeed won the race.

Maximizing the likelihood over all races then yields estimates of the relevant parameters.

Note that this approach is a direct generalization of Jullien and Salanié (2000), in two

directions: we consider heterogeneous preferences, instead of assuming homogeneous bettors;

and we represent preferences in a much more flexible manner than that paper, which focused

on specific classes of EU (CARA, HARA) and non-EU (RDEU, CPT) functions.
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The flexible form we use for the function V is based on orthogonal polynomials. To

motivate it, let us start with the benchmark of risk neutrality. Then V coincides with the

expected gain, up to normalization. We choose again to normalize the utility of losing the

bet to zero, and we normalize the utility of winning to be one when odds are RM = 6, which

is close to the median odds for the marginal bettors in the sample. Then risk neutrality

would give

V (R, p, θ) = p
R + 1

RM + 1

This suggests that a flexible generalization could use the following form:

V (R, p, θ) = p
R + 1

RM + 1
exp(K (R, p, θ))

with the specification

K(R, p, θ) =
∑
k,m≥0

αkmAk(R)Bm(p) +
∑

k,l≥1;m≥0

βklmPk(Rθ)Ql(θ)Bm(p). (13)

The first sum corresponds to the homogenous case for which all types share the same utility

functions. In this formula, (Ak) is a family of polynomials chosen to be orthogonal over the

distribution of R; we normalize them so that Ak(RM) = 0 for all degrees k ≥ 0. Departures

from the expected utility case are captured by the family (Bm) of polynomials, which we

chose to be orthogonal over the distribution of the risk-neutral probabilities given by (3).

The heterogeneous case requires a third argument θ, which appears in the second sum.

Here utilities depend directly on θ through the family (Ql) of orthogonal polynomials over the

distribution of marginal bettors’ types (θ). Since higher θ’s tend to bet on horses with higher

odds R, we center and standardize the distribution on odds for each value of θ. That is, we

define the variable Rθ = (R − E(R|θ))/
√
V (R|θ) and instead of using the 3-tuple (R, p, θ)

we use (Rθ, p, θ) as argument of the specification23. We chose a family of polynomials (Pk)

to be orthogonal over the distribution of Rθ, and once more we normalize them to equal zero

when R = RM . As in the homogeneous case, departures from the expected utility case are

captured by the family (Bm) of orthogonal polynomials.

These are very flexible specifications, that could approximate any continuous value func-

tion to any degree of precision. Even in an expected utility context, we do not impose that

23We estimate the conditional expectation and dispersion over the sample (θi, Ri), (θi, Ri+1), excluding
the longest shot i = n in each race.
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the von Neuman-Morgenstern utility be either always concave or always convex; and the

normalized fear or ruin may cross the threshold of 1 and fan in or fan out. The price to

pay for flexibility is that the monotonicity conditions on V cannot be directly imposed on

this form, and will have therefore to be tested ex post on the estimated models. Specifically,

V must be increasing in p (which requires that 1 + pKp ≥ 0) and in R (which requires

1 + (R + 1)KR ≥ 0). Similarly, our single crossing assumption cannot be translated into

simple restrictions on the parameters; rather, we shall check the empirical relevance of the

assumption on our preferred estimates. The normalized fear-of-ruin is

NF(R, p, θ) =
1 + pKp(R, p, θ)

1 + (R + 1)KR(R, p, θ)

and Assumption 3 requires that it decrease in θ. We will check this condition on all horses

i < n in each race. Finally, the indifference conditions are, in each race and for i < n:

log(pi) + log(Ri + 1) +K(Ri, pi, θi) = log(pi+1) + log(Ri+1 + 1) +K(Ri+1, pi+1, θi) (14)

which we need to solve for the probabilities pi. Define

Xi =
1

Ri + 1
exp

(∑
j<i

(K(Rj, pj, θj)−K(Rj+1, pj+1, θj))

)

with the usual convention
∑
∅ = 0. Since probabilities must sum to one in each race, we get

pi =
Xi∑n
j=1Xj

. (15)

Under EU, this explicitly gives probabilities, since K and therefore the X terms do not

depend on p. Under NEU, the system of equations has to be solved numerically for each

race.24 Recovering the probabilities allows to compute the log-likelihood function for each

race, and therefore for the total sample, as follows:

logL =
∑
c

log pcw(c)

where w(c) stands for the index of the winning horse in race c. Maximizing this likelihood

provides estimates of the coefficients α and β. Notice that this likelihood function, as well as

24We used the R package nleqslv for that purpose.

29



the one in Jullien and Salanié (2000), assumes serial independence between consecutive races.

However, the presence of a varying number of horses in common between two races would

make accounting for this potential correlation very complex. Another important limitation

we share with the existing literature is the assumption that each bettor bets a fixed amount.

If bettors were to bet different amounts, but these amounts only depended on say, individual

wealth and were independent of horse and race characteristics, this could be fixed with a

re-weighting of the distribution of bettors’ types. In that case, each marginal bettor would

still be identified, as would his preferences. On the other hand, in the absence of data on

individual decisions we do not have much to say in the case when the amount bet depends

on probabilities and odds.

5 Results

We estimate six classes of models, all of which are nested in the general specification given

above. Four classes are defined by the distinction between expected utility models and non-

expected utility models, and the distinction between homogeneous preferences (whereby all

agents have the same attitude toward risk) and heterogeneous preferences (for which we will

have to check ex-post the validity of the single-crossing assumption). We also introduce two

subclasses in the non-expected utility homogeneous class, corresponding to the Yaari (1987)

dual model and to the rank-dependent expected utility model (Quiggin, 1982; Abdellaoui,

2002). In each class, we still face multiple degrees of freedom, as we can freely vary the

number and degrees of the various polynomials. Since many of these models are nested, we

shall use of the Bayesian information criterion (BIC) to select the best model in each class,

and to compare the performances of these models across classes.25

Table 3 provides an overview of our results. We multiplied the value of the log-likelihood

by 2 in order to facilitate χ2 tests. The first line summarizes the benchmark of risk-neutrality,

for which the expected return is the same for each horse in any given race. This specification

is parameter-free of course. Each of the following lines describes the best model (as selected

by BIC) in a given class. For each class we list the gain in the value of BIC relative to the

25We could have used the Akaike information criterion (AIC) instead. These two criteria mainly differ in
parsimony. The AIC criterion subtracts twice the number of parameters from the log-likelihood, whereas
the BIC criterion penalizes it by the logarithm of the number of observations. With our 26,525 races, this
amounts to 10.2 rather than 2 times the number of parameters. Our experience with AIC is that the number
of parameters in the selected models becomes unwieldy, leading to estimates that are sometimes wiggly and
do not seem very robust.
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Table 3: An overview of models’ fit

Family BIC Number of parameters 2 logL
Risk-neutral −92124.3 0 −92124.3
EU homogeneous +49.9 2 +70.3
EU heterogeneous +56.7 3 +87.3
Yaari homogeneous +29.7 2 +50.1
RDEU homogeneous +61.2 2 +81.6
NEU homogeneous +73.1 1 +83.3
NEU heterogeneous idem idem idem

risk-neutral benchmark, the number of parameters, and the gain in (twice the) likelihood,

compared to the risk-neutral benchmark. It is clear that all selected models perform signif-

icantly better in terms of likelihood than the risk-neutral model. What matters, though, is

how they perform once the number of parameters they use is taken into account.

This table suggests some surprising conclusions. First, heterogeneity does not seem to

play a major role. Indeed, the BIC criterion indicates that, in the comparison between

homogeneous EU and heterogeneous EU or between homogeneous NEU and heterogeneous

NEU, adding heterogeneity helps little or not at all. Second, non-expected utility seems

to matter much more, when compared to expected utility. This is all the more remarkable

that while we were able to estimate thousands of models under EU, we only estimated a few

hundreds under NEU. From a computational point of view each NEU model is much more

costly to estimate than a EU model since we need to solve a nonlinear system of equations for

each race. As a result, Table 3 underestimates how much NEU overperforms over EU. Third

and finally, two homogeneous models dominate: a homogeneous RDEU model with two

parameters, and a general homogeneous NEU specification with only one parameter. The

next subsections give more information about the estimated shape of preferences in each

class. They also discuss whether our preferred models satisfy our theoretical requirements,

and in particular the single-crossing condition.

5.1 Homogenous Expected Utility

We start with the simplest specification, in which all bettors are expected utility maxi-

mizers with the same attitude toward risk. This can be compared with the “representative

agent” model in Jullien and Salanié (2000). The only restriction we have to check ex-post is

whether utilities are indeed increasing with respect to odds and probabilities. This turns out
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Figure 5: Normalized fear-of-ruin in the homogenous expected utility case
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to hold for all models we estimated.26 The estimated parameters are significantly different

from zero at a 5% confidence level; the risk-neutral benchmark is thus clearly rejected. The

same remark holds for all estimated models.

Figure 5 plots the normalized fear-of-ruin as a function of odds, along with a 95% confi-

dence band. Remember that NF above one reflects risk-aversion. The representative agent

appears to be first risk-loving, then slightly risk-averse, then risk-loving again. These esti-

mates are quite different from those reported in Jullien and Salanié (2000). The explanation

for this discrepancy lies in their parametric approach; they only considered HARA pref-

erences, and they found that within that class a risk-loving CARA function fit their data

best. Our flexible approach shows that assuming a specific functional form is dangerous.

For instance, HARA preferences imply a “fanning out” patterns for the fear-of-ruin: it in-

creases with the odds if and only if it is larger than 1. But our estimated fear-of-ruin is non

monotonic and crosses the value 1: the data clearly rejects the HARA framework.

These preferences indicate that when comparing horses with odds around 6 the represen-

26For brevity, we relegate to Online Appendix F the values and standard errors of the parameter estimates
(Table 1).
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tative agent basically only cares about the expected return; while for other comparisons he

behaves in a more risk-loving way, thereby giving a risk premium to relative outsiders. This

is consistent with the pattern of expected returns. Figure 8 plots various estimates of the

expected return p(R + 1)− 1 on each horse as a function of its odds R only. The reference

“non-parametric” curve is computed from the raw data on odds and on the identity of the

winners. The other curves use the estimated probabilities from our preferred model in each

class, instead of the observed frequency of winning. The general picture conforms to the

well-known favorite-longshot bias: bettors choose longshots too frequently, so that favorites

offer a better expected return. But the nonparametric curve appears to flatten for odds

between 5 and 10; this helps explain why the NF index of our “representative agent”goes

slightly above 1 on this interval.27

5.2 Heterogeneous Expected Utility

We now turn to heterogeneous expected utility models. Since preferences are now indexed

by θ, it is important to examine first the distribution of θi, i.e. of the types of the bettors

who are indifferent between a horse and the next one in a race. The quantiles of θi are

collected in Table 4. As Figure 6 makes clear, the distribution of θi in our sample is much

more skewed to the right than the distribution of θ among bettors, which is normalized to

be uniform over [0, 1]. There are very few small θi’s: in fact, since none of our races has

more than 12 horses, we cannot observe any θi below 1/12. More generally, our observations

correspond to the edges of “market share” intervals; and there are many more for outsiders,

whose market share by definition is smallest.

The preferred model according to BIC only has four parameters28. Figure 7 plots the

estimated normalized fear of ruin.The five Pxx solid curves plot NF(R, θ) as a function of R

for the heterogenous EU preferences that correspond to the quantiles given in Table 4. The

“homogeneous” curve plots the values of NF we found in the homogeneous case.

Figure 5 showed that the estimated preferences under homogeneity were quite complex.

Under heterogeneity, these preferences appear as the aggregation of heterogeneous prefer-

ences of bettors whose attitude towards risk leads them to self-select into different betting

27In an experimental study that examines individual choices between binomial lotteries, Chark et al (2016)
observe that the favorite-longshot bias is reversed for small probabilities when the expected return is high
enough. We do not observe such a reversal; this may be because the expected return in horse races is low,
and even negative, while they only proposed lotteries with positive expected returns.

28See Table 2 in Online Appendix F.
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Table 4: Quantiles of the marginal bettors’ types θi

Quantile Value of θ

P10 0.375

P25 0.600

P50 0.821

P75 0.938

P90 0.976

Figure 6: Density of the marginal bettors’ types θi
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Figure 7: Normalized fear-of-ruin in the heterogenous expected utility case
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Heterogeneous: P10
Heterogeneous: P25
Heterogeneous: P50
Heterogeneous: P75
Heterogeneous: P90

patterns. The individual preferences now are simpler: in particular, for each type the fear-of-

ruin is almost systematically monotonic with the odds. On the other hand, the fear-of-ruin

index often crosses the value 1 that separates risk-aversion from risk-loving. The rejection of

HARA preferences seems to be a robust finding, even after we account for aggregation and

self-selection. Heterogeneity of preferences also modifies the analysis of the favorite-longshot

bias illustrated on Figure 8. Since those bettors who bet on a particular range of horses set

the relative price (i.e., the relative odds) for these horses only, allowing for heterogeneity

leads to a better fit to the observed expected return. Still, the range 4–8 for odds appears

to be special.

An important caveat in our analysis is that the single-crossing property is not always

satisfied. This can be seen directly on Figure 7, since some of the curves intersect each

other, or are even ranked in the “wrong” order. This is especially true for high types and

high odds. We computed analytically the derivative of NF with respect to θ for our preferred

estimates. The normalized fear of ruin increases significantly in θ for more than half of
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Figure 8: The Favorite-Longshot Bias
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marginal bettors θi, which indicates a robust violation of our single-crossing assumption29.

One natural interpretation is that the expected utility assumption is simply not supported

by our data, leading to spurious violations of the single-crossing assumption. An alternative

explanation is that a more complex, multidimensional form of heterogeneity is required to

adequately model betting patterns; this calls for further work30.

5.3 Homogeneous Non-Expected Utility

In the NEU case, the results in Table 3 also support the view that heterogeneity plays

at best a minor role. This is why we focus in this part on the homogeneous case.

5.3.1 Yaari’s dual model

Yaari’s (1987) model is a natural entry point into the very rich class of non-expected

utility models. Comparing the nonlinearity in odds V (p,R) = pu(R) of expected utility to

nonlinearity in probabilities V (p,R) = G(p)(R + 1) as in the dual theory nicely frames the

question posed by Snowberg and Wolfers (2010): what matters most, preferences or percep-

tions? By comparing choice patterns across types of bets, they found that a representative

“dual” bettor explained the data better than a representative expected-utility bettor. Relat-

edly, Gandhi and Serrano–Padial (2015) assume that bettors are risk-neutral but in contrast

to our rational expectations equilibrium, they allow for heterogeneous beliefs. They estimate

a model in which roughly 70% of the agents have correct beliefs, while beliefs are noisier for

the remaining bettors. Note however that they do not impose as much structure as we do,

through our single-crossing assumption.

In our richer framework, we can benchmark these two theories using only win bets. As

shown in Table 3, under homogeneity expected utility fits the data better than the dual

model, although the estimated model allows for quite complex distortions31. In a sense,

preferences thus seem to matter more than probability distortions in this comparison of

opposite models; but we will see that further estimates will lead us to qualify this statement.

29Recall that we selected specifications by rewarding parsimony. It is possible that this exacerbates the
violations of the restrictions, in that more flexible specifications would have been more likely to accommodate
the restrictions. We chose to err on the side of a more aggressive approach to testing.

30Online Appendix E gives more information on the pattern of these violations.
31See Table 3 in the Online Appendix F. Here V is the product of p(R + 1) and of the exponential of a

polynomial of degree 3 in p.
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Figure 9: The probability distortion function (up to a multiplicative constant) in the Yaari
case
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We can study these distortions through the lens of the normalized fear-of-ruin index.

With a functional V (p,R) = G(p)(R+1), the indifference equations V (pi, Ri) = V (pi+1, Ri+1)

identify G up to a multiplicative constant. In principle, this constant could be recovered

by imposing G(1) = 1; but this point is too far out of the range of observed (risk-neutral)

probabilities to be of any use. This should be kept in mind when looking at Figure 9,

which plots G(p) as obtained from our preferred model. The Figure does suggest that higher

probabilities are more likely to be underweighted; this is in accordance with the favorite-

longshot bias, and with numerous empirical and experimental observations (see e.g., Wakker,

2010).

5.3.2 The RDEU model

The RDEU model allows for nonlinearities in both the probability distortion function

and the utility from a gain:

V (R, p) = G(p)u(R)

where as usual u is normalized to have u(−1) = 0. It clearly offers much more latitude

than expected utility; but it still incorporates much more structure than the general NEU

specification we shall discuss next. As explained in section 1.2, both functions G and u
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Figure 10: The elasticity of the probability distortion function (up to a multiplicative con-
stant in the RDEU case)
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jointly determine the normalized fear of ruin index:

NF(R, p) =
pG′(p)

G(p)

u(R)

(R + 1)u′(R)
;

and in the above product, both terms (the elasticity of G with respect to p, and the fear of

ruin index associated to an expected utility maximizer) are only identified up to a common

positive constant. Figure 10 draws this elasticity as a function of the winning probability

on our preferred Yaari and RDEU homogeneous estimates. In the Yaari specification, this

elasticity is uniquely identified; in the RDEU specifications, we can only draw conclusions

on its variations. In both cases, the elasticity is rather flat at first, and then decreases for

probabilities above 0.3.
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5.3.3 The general NEU model

Table 3 also shows that a general, homogeneous NEU model performs better than a ho-

mogeneous RDEU model. The former model also requires only one parameter, which makes

it especially parsimonious. This should be contrasted to the findings in Barseghyan, Moli-

nari, and O’Donoghue (2013) and many other works, who argue that probability distortions

are sufficient to explain the choices of deductible in car or auto insurance. These new esti-

mates may point to directions for which the RDEU model is too demanding. Unfortunately,

they are difficult to summarize, and we could not find a general feature that would make the

NEU model appear superior based on arguments other than statistical fit.32

A simple way to contrast the patterns predicted by the different homogeneous models is

to plot the normalized fear of ruin NF(R, p) as a function of p for several fixed values of R.

This is done in Figure 11 for our four homogeneous specifications, from EU to NEU via Yaari

and RDEU. In each panel, we plotted p 7→ NF(R, p) for the nine deciles of R (P10 to P90)

and the nine deciles of p conditional on R. Since NF does not depend on p for EU, the first

panel plots horizontal segments for each value of R. For Yaari NF only depends on p and

the points align nicely on a single curve. Clearly, that curve is the exception to an inverse U-

shaped pattern that appears for EU, RDEU, and NEU. NEU seems to require less departure

from smoothness than EU and to accomodate more moderately negative risk-aversion than

RDEU, giving the main role to probability distortions.

At this point, our impression is that it is difficult to identify a pattern when comparing

these two estimated models. A natural extension would be to test for popular specifications

like cumulative prospect theory:

V (p,R, θ) = G+(p, θ)u+(R, θ) +G−(1− p, θ)u−(θ).

Nonparametric estimation of three separate functions is out of reach, for numerical reasons.

We could of course resort to parametric specifications, but this is precisely what we have

tried to avoid in this paper.

32Here is a curious illustration of this similarity. Recall from (13) that all models are the product of
p(R+ 1) and of the exponential of a polynomial K in (R, p). For the RDEU model, K is a linear polynomial
in R, plus a quadratic polynomial in p (Table 4 in the Online Appendix F); while for the NEU model, K is a
polynomial in R, times a quadratic polynomial in p (Table 5). This shows both the power of our estimation
strategy and the difficulty of understanding analytically the different effects.
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Figure 11: Normalized fear-of-ruin for four homogeneous models
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Concluding remarks

We have argued that it is possible to recover information on the distribution of individ-

ual preferences from the sole structure of the equilibrium relationship between prices (in our

case odds) and economic fundamentals (here probabilities), even in the absence of micro data

about individual behavior. We only used four assumptions: agents only care about direct

outcomes; the amounts they bet are statistically independent of the lottery they face; they

evaluate their decisions using the true probabilities (possibly up to agent-dependent system-

atic deformations); and a standard single crossing restriction applies. Then an equilibrium

always exists and is unique. Moreover, the observation of equilibrium patterns overidenti-

fies the distribution of preferences in the population; and underlying assumptions can be

tested. Similar ideas have been suggested in several theoretical contributions; but to our

knowledge they have not been taken to data in a systematic way. We provided an empirical

investigation of a textbook example, namely horse races. Our approach could presumably

be generalized to more complex frameworks, including insurance and financial markets—but

much remains to be done in this direction.

The following three points give a concise summary of our empirical findings:

• It is possible to provide a pretty good description of observed behavior using parsi-

monious models. While the functional forms we use are highly flexible, the models

selected by the BIC criterion rely on a very small number of parameters.

• However, obtaining a good empirical fit requires departing not only from standard

functional forms such as CARA and CRRA, but from the expected utility framework

altogether.

• A simple RDEU model performs as well as the most general NEU specifications. On

the other hand, the Yaari dual model is clearly dominated.

Finally, a distinctive feature of our approach is that we consider heterogeneous models as

well as homogenous ones. Our conclusions are mixed on this point. From a methodological

standpoint, we show that one-dimensional heterogeneous models of this type can be identified

from the data. However, the single-crossing restriction that underlies our approach is not

always satisfied by our estimates. Moreover, heterogeneous models do not perform much

better than homogeneous ones. It remains to be seen whether this conclusion is linked to

the restrictions we impose, most notably the one-dimensionality of heterogeneity. As we
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showed in section 2.3, some models with multidimensional heterogeneity can be estimated

using strategies that directly generalize our approach. This should be a fruitful program for

future research.
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Appendix: Proofs

Proof of Lemma 2: from the single-crossing assumption, the set of agents that strictly prefer

horse i to horse j > i is an interval containing 0. Similarly, the set of agents that strictly

prefer horse i to horse j < i is an interval containing 1. Therefore the set of agents that

strictly prefer horse i to all other horses is an interval. The single-crossing assumption also

implies that these intervals are ranked by increasing i; and that the set of agents indifferent

between horse i and horse (i+ 1) is a singleton. Q.E.D.

Proof of Proposition 1: from Definition 1, given a race (p, t) we have to find a family R

such that, for all i < n,

V

(
pi, Ri, (1− t)

∑
j≤i

1

Rj + 1

)
= V

(
pi+1, Ri+1, (1− t)

∑
j≤i

1

Rj + 1

)

From the first-order stochastic dominance assumption, the right-hand-side is increasing

with Ri+1, and is strictly below the left-hand-side at Ri+1 = Ri. Moreover Assumption 2 im-

plies that the right-hand-side is strictly above the left-hand-side for Ri+1 high enough. Thus

this equality defines a unique Ri+1, such that Ri+1 > Ri. The single-crossing assumption then

ensures that the difference between the right-hand-side and the left-hand-side is growing in θ

at the right of (1−t)
∑

j≤i
1

Rj+1
. Since in addition VR > 0, this proves that Ri+1 is an increas-

ing function of Ri, and a non-decreasing function of each Rj, j < i. Iterating this remark, we

get that each Ri+1 is an increasing function of R1. Replacing in (2), we get an equation in

R1 which has at most one solution. Existence follows from the fact that (R1, . . . , Rn) forms

an increasing sequence, so that by setting R1 high enough we get 1/(1− t) >
∑

j 1/(1 +Rj);

and from the fact that when R1 goes to −t we get 1/(1− t) <
∑

j 1/(1 +Rj). Q.E.D.

Proof of Proposition 2: If we know the odds, then we know the take and the market shares,

from (1) and (2); and we also know the indexes θi(R) of marginal bettors, from (6). There

only remains to find a family p solution to the system

∀ i < n V (Ri, pi, θi) = V (Ri+1, pi+1, θi)

Let us focus on positive probabilities. From the first-order stochastic dominance assump-

tion, the right-hand-side is increasing with pi+1, and is strictly above the left-hand-side at
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pi+1 = pi. From Assumption 1, it is also strictly below the left-hand-side when pi+1 goes

to zero: therefore pi+1 is uniquely defined, and pi+1 < pi. Moreover pi+1 is an increasing

function of pi, and thus of p1. Finally p1 is uniquely determined by p1 +
∑

i<n pi+1 = 1

(existence follows from checking the cases p1 → 0 and p1 = 1). Q.E.D.

Proof of Proposition 3: Property iv) holds, as a simple rewriting of (7). Properties i-ii-iii

follow directly from Assumptions 1-3 and the definition of G in (8). For example, recall that

the single-crossing assumption states that for all R < R′ and θ < θ′,

V (R, p, θ) ≤ V (R′, p′, θ) ⇒ V (R, p, θ′) < V (R′, p′, θ′)

This is equivalent to

p′ ≥ G(R, p,R′, θ) ⇒ p′ > G(R, p,R′, θ′)

and thus G must be decreasing with θ, as required in property i).

Proof of Proposition 4: let us define a function w by

w(R, p, θ) =
Gp

GR

(R, p,R′, θ),

where by property (ii) of Proposition 3 the RHS does not depend on R′.

The function w is positive by property i) in Proposition 3. Now, choose some V whose

marginal rate of substitution Vp/VR is equal to w. We can impose VR > 0 and Vp > 0. Since

Vp
VR

(R, p, θ) =
Gp

GR

(R, p,R′, θ)

there must exists a function G̃ such that

G(R, p,R′, θ) = G̃(V (R, p, θ), R′, θ)

Then i) implies that G̃ is increasing with V . Moreover, from iii) it must be the case that G̃

is the inverse of V with respect to p. Let us now prove that V verifies the single-crossing

assumption. Assume that V (R, p, θ) ≤ V (R′, p′, θ), for R < R′. Since G̃ is the inverse of V ,
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we get

G̃(V (R, p, θ), R′, θ) = G(R, p,R′, θ) ≤ p′

Since from property i) G is decreasing with θ when R < R′, we obtain that for θ′ > θ

G̃(V (R, p, θ′), R′) = G(R, p,R′, θ′) < p′

Since G̃ is the inverse of V we get V (R, p, θ′) < V (R′, p′, θ′), so that V verifies the single-

crossing assumption, as announced. Finally, since G̃ is the inverse of V property iv) can be

rewritten as

∀ i < n V (Ri, pi(R), θi(R)) = V (Ri+1, pi+1(R), θi(R))

which is exactly the set of equilibrium conditions in Definition 1. Thus p(R) characterizes

the market equilibria associated to V . Q.E.D.

Proof of Lemma B.1: note that the take t is uniquely defined by the odds R, thanks to

(B.1). Now let us proceed by contradiction. Consider two races (R,p) and (R,p′) with the

same odds, but different probabilities. Without loss of generality, assume p1 ≤ p′1. Since

p 6= p′, there must exist a horse i < n such that the first condition in Assumption A holds.

The type θ defined in the second condition is H(Ri, pi, Ri+1, pi+1), so we get

F (H(Ri, pi, Ri+1, pi+1))|R,p) ≤ F (H(Ri, pi, Ri+1, pi+1)|R,p′)

Also, because H is increasing with pi and decreasing with pi+1, we have

H(Ri, pi, Ri+1, pi+1) < H(Ri, p
′
i, Ri+1, p

′
i+1)

and therefore

F (H(Ri, pi, Ri+1, pi+1))|R,p) < F (H(Ri, p
′
i, Ri+1, p

′
i+1)|R,p′)

or equivalently Si(R) < Si(R) from (B.2), a contradiction. Q.E.D.
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