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1 Introduction

Applications of classical demand theory tend to treat each commodity either as a good or as

a bad. This implies that we can, if necessary, redefine the commodities so as to treat all of

them as goods.1 Thus leisure time is the flip side of hours worked, and clean air or water is

the flip side of pollution. Technically, this allows us to focus on preferences that are strictly

monotone in each commodity.2

However, even in this sense, the monotonicity of preferences cannot always be taken for

granted. If a consumer or a firm cannot freely dispose of a stock of unwanted commodities,

they will typically have to bear inventory costs for holding this stock; for instance, they may

need to acquire a new storage facility. In the presence of such costs, or, more generally, when

an individual’s objective function is an indirect utility function derived under technological

constraints, there may be situations where, beyond a certain point, more of a commodity

actually reduces his utility or profit. We can then no longer unambiguously classify such a

commodity as a good or as a bad.

Example 1 Nonmonotone preferences naturally arise in the modeling of portfolio decisions

under risk. From an investor’s viewpoint, larger holdings of a risk-free asset always increase

his utility, but this is not true of risky assets if he is risk-averse: for him, moderate holdings

of such assets are typically beneficial for hedging or speculative purposes, but larger holdings

involve excessive risk.

Example 2 Nonmonotone preferences also arise in the modeling of choices in groups such

as households, families, firms, unions, or clubs. In such situations, an individual is expected,

and to some extent willing, to contribute to a collective good at some privately borne cost:

for him, moderate contributions are directly or indirectly beneficial, but larger contributions

involve excessive costs.

In such situations, the classical construction of a complete space of smooth strictly convex

preferences (Mas-Colell (1985, Chapter 2)) needs to be amended. We provide a canonical

model of preferences in which, while there is at least one commodity that is always desirable,

this need not be the case for all the other commodities. Individual monetary transfers are

1See, for instance, Varian (1992, Chapter 7) or Mas-Colell, Whinston, and Green (1995, Chapter 3).
2To be fair, much of classical demand theory can be developed by relying on the weaker local-nonsatiation

assumption; yet strict monotonicity appears to be the rule in applications. The implications of nonmonotone
preferences for the existence and efficiency of competitive equilibria have been examined by Polemarchakis
and Siconolfi (1993), among others. However, they take individual preferences as given and do not provide
a framework for genericity analysis.
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a straightforward example of the first commodity, and we will stick to this interpretation in

most of the paper; this, in particular, is relevant for principal-agent models where transfers

are allowed. But other examples of such a commodity are easy to find: think of leisure time

in a household or the practice of a shared activity in a club.

Our construction gives rise to a topologically complete space of smooth strictly convex

nonmonotone preferences. This space in turn provides a natural framework for genericity

analyses: we may, for instance, use it when checking the robustness of results obtained in

portfolio-choice theory under the usual CARA-normal specification, with no need to assume

that investors’ primitive preferences over state-contingent consumption have an expected-

utility representation.3

An important topological property of our space of preferences is that it is contractible;

that is, it can be continuously deformed into a single preference relation. This reflects a

compensation principle requiring that, as long as his subsistence is not at stake, an individual

can, through appropriate transfers of some uniformly desirable commodity, be compensated

for holding any amounts of the other commodities. In line with Chichilnisky and Heal

(1983), contractibility can be interpreted as a topological unanimity condition; in particular,

profiles of such preferences can be continuously deformed into unanimous profiles. We show

that this implies the existence of a collective choice rule over individual preference profiles

that is anonymous, continuous, and respects unanimity. Although this finding is in line

with the literature on topological social choice initiated by Chichilnisky (1980), it is not a

direct consequence of known results; instead, it follows in a natural way from the specific

contraction we construct on the space of preferences.

The paper is organized as follows. Section 2 describes a space of basic preferences.

Section 3 introduces our compensation principle and a space of normalized preferences.

Section 4 achieves the construction of our complete space of preferences. Section 5 draws

the implications of our analysis for collective choice.

2 Basic Preferences

In this section, we introduce a space P of basic preferences. There are ` + 1 commodities,

the last of which is interpreted as transfers to the individual. We denote by q a vector of the

first ` commodities, by t a scalar amount of transfers, and by 0` the null vector in R`. We

3Notice in that respect that, when the state space is infinite, conducting a genericity analysis in the
finite-dimensional space of portfolio choices is mathematically much simpler than doing so in the infinite-
dimensional space of state-contingent consumption choices.
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will consider regular preference relations over an open subset V of R`+1. We require that V

contain the no-trade point (0`, 0), which corresponds to the individual’s endowment point,

that it be convex with a nonempty interior, and that it be comprehensive with respect to

transfers in the sense that, if (q, t) ∈ V and t′ > t, then (q, t′) ∈ V ; thus V is unbounded

from above in the direction of transfers. We let Q ≡ projR`V and, for each q ∈ Q, we let

t(q) ≡ inf {t ∈ R : (q, t) ∈ V }. Notice that, because V is convex, if t(q) = −∞ for some

q ∈ Q, then t(q′) = −∞ for all q′ ∈ Q. Figure 1 below illustrates these assumptions.

-

q

6
t

V

Figure 1.a An admissible domain V .

-

q

6
t

V

Figure 1.b A nonadmissible domain V .

We focus on complete, reflexive, and transitive preference relations over V , generically

denoted by �; we denote by � the corresponding strict preference relations. The following

axioms are maintained throughout the paper.

A1 � is closed relative to V × V .

A2 � is strictly monotone in transfers: if (q, t) ∈ V and t′ > t, then (q, t′) � (q, t).

A3 � is convex: if (q, t) � (q′, t′) and λ ∈ [0, 1], then λ(q, t) + (1− λ)(q′, t′) � (q′, t′).

A4 � has closed upper contour sets relative to R`+1.

A5 � has a boundary in V × V that is a C2 manifold.

A1 and A3 are standard. A2 requires that preferences be strictly monotone in transfers.

This generalizes the standard assumption that preferences be strictly monotone in each

commodity; if we were to impose this stronger requirement, we would obtain the class of
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preferences studied in Mas-Colell (1985, Chapter 2). A4 describes the boundary behavior of

preferences.4 Finally, A5 requires that preferences be sufficiently regular.

Example 3 Assume that a risk-averse investor with constant absolute risk-aversion α can

invest in ` risky assets with payoffs that are jointly normally distributed with mean vector

π and covariance matrix Γ, as well as in a risk-free asset with payoff 1. Then his preferences

over portfolios of risky and risk-free assets (q, t) ∈ V ≡ R`+1 are represented by

u(q, t) ≡ q>π − α

2
q>Γ q + t

and thus satisfy A1–A5. The nonmonotonity of u(q, t) in q reflects that the investor does

not want to hold an excessively risky asset position.

Although its role is mainly technical, A4 also has an economic interpretation, as the

following example suggests.

Example 4 Let V ≡
∏`

l=1 (q−l , q
+
l ) × R for some positive and negative numbers (q+

l )`l=1

and (q−l )`l=1, respectively. Figure 2 below illustrates a possible shape for the individual’s

indifference sets for � under A4.

-

q

6
t

q−1 q+
1

Figure 2 � satisfies A4 on a rectangular domain V .

In this example, A4 expresses that, if the consumption or sale of commodity l = 1, . . . , `

attain the thresholds q+
l or |q−l |, respectively, subsistence becomes impossible, in the sense

4It should be noted that A4 does not follow from A1 if V is a proper subset of R`+1; indeed, in this case,
� can be closed relative to V ×V , though its upper contour sets are adherent to the boundary of V in R`+1

and are thus not closed relative to R`+1.
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that the individual can no longer be compensated by transfers. As a result, the individual’s

indifference sets for � do not cross the hyperplanes ql = q+
l and ql = q−l ; in Figure 2, they

admit vertical asymptotes at the boundary of V . We may analogously introduce a negative

lower bound t− on transfers below which subsistence is impossible.

Our first task is to characterize the space P of preferences � that satisfy A1–A5. The

following notation will be useful. Let U(q,t) and L(q,t) be the upper and lower contour sets of

(q, t) for �, respectively, and let I(q,t) ≡ U(q,t) ∩ L(q,t) be the indifference set of (q, t) for �.

Observe by A2 that U(q,t) is comprehensive with respect to transfers, just as V . Also denote

by cl and ∂ the closure and boundary operators relative to V or V × V , depending on the

context. We start with two technical lemmas.

Lemma 1 If � satisfies A1–A2, then, for each (q, t) ∈ V, U(q,t) has a nonempty interior

relative to R`+1 and I(q,t) = ∂U(q,t).

Proof. To prove the first claim, observe that, as � is closed relative to V × V by A1,

V \ L(q,t) is open relative to V and thus also relative to R`+1 because V is an open subset

of R`+1. Hence, as V \ L(q,t) is nonempty by A2, U(q,t) ⊃ V \ L(q,t) has a nonempty interior

relative to R`+1. To prove the second claim, observe that, by A1 again, U(q,t) and L(q,t) are

closed relative to V . Therefore,

∂U(q,t) ≡ cl(U(q,t)) ∩ cl(V \ U(q,t)) = U(q,t) ∩ cl(V \ U(q,t)) ⊂ U(q,t) ∩ L(q,t) = I(q,t).

The reverse inclusion is satisfied if I(q,t) ⊂ cl(V \U(q,t)), which is obviously true because, for

each (q′, t′) ∈ I(q,t), t
′ − ε > t(q′) for any small enough ε > 0 as V is open, and (q′, t′) �

(q′, t′ − ε) for any such ε by A2. The result follows. �

Lemma 2 If � satisfies A1–A4, then, for each (q, t) ∈ V, I(q,t) is connected.

Proof. By Lemma 1, I(q,t) = ∂U(q,t), so that we can focus on the topological properties of

U(q,t). By A3–A4, U(q,t) is a closed convex subset of R`+1; moreover, U(q,t) has a nonempty

interior by Lemma 1. Hence two cases may arise (Klee (1953, III.1.6)).

Case 1 Either the asymptotic cone

AU(q,t) ≡ {x ∈ R`+1 : (q′, t′) + λx ∈ U(q,t) for all (q′, t′, λ) ∈ U(q,t) × R+}

of U(q,t) is not a linear subspace. Then U(q,t) is homeomorphic with R` × [0, 1) and ∂U(q,t)

with R`. In particular, ∂U(q,t) is connected.
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Case 2 Or the asymptotic cone AU(q,t) of U(q,t) is an `+1−k-dimensional linear subspace

for some integer k ≤ ` + 1. Because U(q,t) is comprehensive with respect to transfers, we

must have k ≤ ` and (0`, 1) ∈ AU(q,t). As AU(q,t) is a linear subspace, it follows that

(0`,−1) ∈ AU(q,t). This implies that (q, t′) � (q, t) for all t′ ∈ (t(q′), t), which is ruled out by

A2. This case is thus impossible. The result follows. �

Let U be the space of quasiconcave C2 functions u : V → R such that ∂u/∂t > 0 over

V and u−1([υ,∞)) is closed relative to R`+1 for all υ ∈ R. Lemmas 1–2 then imply the

following representation result.

Proposition 1 � satisfies A1–A5 if and only if it admits a utility function u ∈ U.

Proof. (Direct part) Suppose that � admits a utility function u ∈ U. Then � trivially

satisfies A1–A3. Moreover, as u−1([υ,∞)) is closed relative to R`+1 for all υ ∈ R, � satisfies

A4. Finally, because u clearly has no critical point, that is, ∂u 6= 0 over V , it follows as in

Mas-Colell (1985, Proposition 2.3.5) that � satisfies A5.

(Indirect part) By A2, � is locally nonsatiated, and by A5, ∂ � is a C2 manifold in

V × V . Thus � is of class C2 (Mas-Colell (1985, Definition 2.3.4)). Moreover, by Lemmas

1–2, � has connected indifference sets I(q,t). Hence � admits a C2 utility function u over V

with no critical point (Mas-Colell (1985, Proposition 2.3.9)). That u is quasiconcave follows

from A3. To show that ∂u/∂t > 0 over V , observe first that ∂u/∂t ≥ 0 over V by A2.

Now, suppose, by way of contradiction, that (∂u/∂t)(q, t) = 0 for some (q, t) ∈ V . Then

(∂u/∂q)(q, t) 6= 0` as u has no critical point. Thus the hyperplane through (q, t) orthogonal

to ∂u(q, t) that supports the convex set U(q,t) is vertical. It follows that the strict upper

contour set U(q,t) \L(q,t) of (q, t) for � strictly lies on one side or the other of this hyperplane.

But then it does not include the half line {(q, t′) : t′ > t}, which contradicts A2. Hence

∂u/∂t > 0 over V , as claimed. Finally, that u−1([υ,∞)) is closed relative to R`+1 for all

υ ∈ R is a direct consequence of A4. Hence the result. �

Proposition 1 states that any preference relation in P can be represented by some function

in U and, conversely, that any function in U represents a preference relation in P. For each

u ∈ U, let P (u) ⊂ V ×V be the preference relation represented by u. In line with Mas-Colell

(1985, Chapter 2, Section 4), a topology over P can be constructed as follows. Note that U

is a subspace of C2(V ), the Polish space of real-valued C2 functions over V endowed with

the topology of uniform convergence over compact subsets of V of functions and of their

derivatives up to the order 2 (Mas-Colell (1985, Chapter 1, K.1.2)). Then we can endow P
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with the identification topology from P ; that is, we let O be open in P if P−1(O) is open in

U. Notice that P is not one-to-one; however, we can show as in Mas-Colell (1985, Chapter

2, Proposition 2.4.2) that P is open, which implies that a sequence (�n)n∈N converges to

� in P if and only if there exists a sequence of representations (un)n∈N for the preferences

(�n)n∈N that converges in U to a representation u of �.

3 Normalized Preferences

In this section, we introduce a subspace Pv of P, the elements of which admit convenient

normalized representations. To this end, we add a further restriction on preferences in the

form of the following axiom.

A6 For all (q, t) ∈ V and q′ ∈ Q, there exists t′ > t(q′) such that (q′, t′) � (q, t).

A6 expresses a compensation principle: through appropriate transfers, the individual

can be compensated for holding any amounts of the first ` commodities, as long as they are

consistent with subsistence. The following lemma shows that exact compensation is then

possible up to any utility level.

Lemma 3 If � satisfies A1–A4 and A6, then, for all (q, t) ∈ V and q′ ∈ Q, there exists

t′ > t(q′) such that (q′, t′) ∼ (q, t).

Proof. Suppose, by way of contradiction, that the result does not hold for some (q, t) ∈ V
and q′ ∈ Q. Then, by A1–A2 and A6, (q′, t′) � (q, t) for all t′ > t(q′). Two cases may arise.

First, if t(q′) ∈ R, we have (q′, t′) � (q, t) for all t′ > t(q′). However, (q′, t(q′)) 6� (q, t) as

(q′, t(q′)) 6∈ V . But then U(q,t) is not closed relative to R`+1, which contradicts A4. Second,

if t(q′) = −∞, we have (q′, t′) � (q, t) for all t′ ∈ R; that is, U(q,t) contains a vertical line.

But then it must be that (
1 +

1

t′

)
(q, t)− 1

t′
(q′, t′) � (q, t)

for all t′ < −1 by A3. Letting t′ go to −∞, we obtain by A1 that (q, t − 1) � (q, t), which

contradicts A2. The result follows. �

The geometrical interpretation of Lemma 3 is that any vertical line that intersects V

must intersect all the indifference sets for �. That is, the indifference sets for � do not

admit vertical asymptotes, except perhaps at the boundary of V , as illustrated in Figure

2. This property plays a role analogous, in our model of possibly nonmonotone preferences,
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to the standard property that the indifference sets for strictly monotone preferences defined

over the interior of the positive orthant must intersect any ray in the latter that emanates

from the origin. Figure 3 below illustrates possible shapes for the individual’s indifference

sets for � when it satisfies or violates A6.

-

q

6
t

Figure 3.a � satisfies A6.

-

q

6
t

Figure 3.b � violates A6.

Our task in this section is to characterize the space Pv of preferences � that satisfy

A1–A6. Given Lemma 3, it will be convenient to work with a space of normalized utility

functions, defined as

Uv ≡ {u ∈ U : rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q and u(0`, t) = t if t > t(0`)}.

The normalization along the vertical axis satisfied by the utility functions in Uv differs from

the standard radial one (Wold and Juréen (1953), Kannai (1970)), reflecting that preferences

are strictly monotone in transfers, but not necessarily in the other commodities. We have

the following characterization result.

Proposition 2 Uv is homeomorphic with Pv under the natural map P .

Proof. As a preliminary remark, let us observe that, for each u ∈ Uv, P (u) satisfies A1–A5

by Proposition 1; moreover, the assumption that rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q
implies that P (u) satisfies the property stated in Lemma 3 and thus, a fortiori, A6. Hence

P (u) ∈ Pv for all u ∈ Uv. We must prove that the mapping P|Uv : Uv → Pv : u 7→ P (u) is

one-to-one, onto, continuous, and open.
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(One-to-one) Let (u, u′) ∈ Uv ×Uv be such that P (u) = P (u′). Then u = ζ ◦ u′, where

ζ : u′(V )→ R is C2, strictly increasing, and regular; that is, ∂ζ > 0 over u′(V ) (Mas-Colell

(1985, Proposition 2.3.11)). This implies that ζ(υ) = ζ(u′(0`, υ)) = u(0`, υ) = υ for all

υ ∈ u′(V ), so that u = u′.

(Onto) Let � ∈ Pv. By Proposition 1, there exists some u ∈ U such that � = P (u).

As rangeu(q, ·) = rangeu(0`, ·) for all q ∈ Q, we can implicitly define a function u′ : V →
R by u(q, t) = u(0`, u

′(q, t)). We clearly have P (u′) = �; there remains to check that

u′ ∈ Uv. That u′ is quasiconcave follows from the fact that {(q, t) ∈ V : u′(q, t) ≥ υ} =

{(q, t) ∈ V : u(q, t) ≥ u(0`, υ)} for all υ > t(0`); observe, moreover, that (u′)−1([υ,∞))

is closed relative to R`+1 for any such υ. That u′ is C2 follows from the implicit function

theorem, taking advantage of the fact that ∂u/∂t > 0 over V . We then have (∂u/∂t)(q, t) =

(∂u/∂t)(0`, u
′(q, t))(∂u′/∂t)(q, t), which in turn implies that ∂u′/∂t > 0 over V . We also

obtain that rangeu′(q, ·) = u−1(0`, rangeu(q, ·)) = u−1(0`, rangeu(0`, ·)) = rangeu′(0`, ·) for

all q ∈ Q. Last, by construction, u(0`, t) = u(0, u′(0`, t)) for all t > t(0`), so that, by A2,

u′(0`, t) = t for any such t. Thus u′ ∈ Uv, as claimed.

(Continuous) This follows from the definition of the topology of P.

(Open) Mimic the proof of Mas-Colell (1985, Proposition 2.4.2)). Hence the result. �

4 Differentiably Strictly Convex Preferences

We are now ready to complete the construction of the complete and contractible space of

preferences announced in the introduction. Preferences in Pv are not necessarily strictly

convex. We impose this as an additional restriction.

A7 � is strictly convex: if (q, t) � (q′, t′), (q, t) 6= (q′, t′), and λ ∈ (0, 1), then λ(q, t) +

(1− λ)(q′, t′) � (q′, t′).

Finally, to obtain a topologically complete space of preferences, we require preferences to

be nonlinear, even in a local sense. To this end, observe that, because a utility function u ∈
Uv representing a preference relation �∈ Pv has no critical point, the Gaussian curvature

of the indifference set I(q,t) of (q, t) for � is well defined and given by

c(q, t) ≡ 1

‖∂u(q, t)‖3

∣∣∣∣ −∂2u(q, t) ∂u(q, t)
−∂u>(q, t) 0

∣∣∣∣,
see, for instance, Debreu (1972). The last restriction we impose on preferences is that this
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curvature nowhere vanish.

A8 � is regular: for each (q, t) ∈ V, c(q, t) 6= 0.

Preferences that satisfy A7–A8 are said to be differentiably strictly convex (Mas-Colell

(1985, Definition 2.6.1)).

We can now define our fundamental space of preferences as the space Pv,dsc of preferences

over V that satisfy A1–A8. Our central theorem states two key topological properties of

Pv,dsc, namely, completeness and contractibility.

Theorem 1 Pv,dsc is a contractible Polish space.

Proof. As a preliminary remark, let us observe that, by Proposition 2, Uv,dsc ≡ P−1(Pv,dsc)

and Pv,dsc are homeomorphic under the natural map P , so that we can indifferently work

with preferences in Pv,dsc or their normalized representations in Uv,dsc.

(Polish) To prove that Uv,dsc is a Polish space, let (tn)n∈N be a sequence in R decreasing

to t(0`), and let (Kn)n∈N be an increasing sequence of compact convex subsets of V such

that
⋃
n∈NKn = V . Then Uv,dsc is the intersection of the following countable families of

open sets:{
u ∈ C2(V ) :

∂u

∂t
(q, t) > 0 for all (q, t) ∈ Kn

}
,

{
u ∈ C2(V ) : there exists ε > 0 such that u(q, t) < u(0`, tn) if (q, t) ∈ Kn

and inf
(q′,t′)∈R`+1\V

‖(q′, t′)− (q, t)‖ ≤ ε

}
,

{
u ∈ C2(V ) :

∣∣∣∣ min
(0`,t)∈Kn

u(0`, t)− min
(q,t)∈Kn

u(q, t)

∣∣∣∣ ∨ ∣∣∣∣ max
(0`,t)∈Kn

u(0`, t)− max
(q,t)∈Kn

u(q, t)

∣∣∣∣ < 1

n

}
,

{
u ∈ C2(V ) : max

(0`,t)∈Kn
|u(0`, t)− t| <

1

n

}
,

{
u ∈ C2(V ) : there exists ξ : u(V )→ R such that ∂ξ > 0 over u(V )

and ∂2(ξ ◦ u) is negative definite over Kn

}
.

The first family deals with the strict monotonicity in transfers (A2), the second family

with the boundary behavior of preferences (A4), the third and fourth families with the
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normalization (A6), and the fifth family with the differential strict convexity of preferences

(A7–A8), bearing in mind that differentiably strictly convex preferences can be represented

over any compact convex subset K of V by a C2 utility function u with no critical point such

that ∂2u is negative definite over K (Mas-Colell (1985, Proposition 2.6.4)). Hence Uv,dsc is a

Gδ in the Polish space C2(V ) and thus, by Alexandrov’s lemma (Mas-Colell (1985, Chapter

1, A.3.4)), a Polish space itself in the relative topology.

(Contractible) To prove that Uv,dsc is contractible, we show that the identity function

over Uv,dsc is homotopic to a constant function; that is, there exists some u ∈ Uv,dsc and a

continuous function hu : Uv,dsc × [0, 1]→ Uv,dsc, called a contraction, such that hu(u, 0) = u

and hu(u, 1) = u for all u ∈ Uv,dsc. Thus pick an arbitrary u ∈ Uv,dsc and, to each (u, ξ) ∈
Uv,dsc × [0, 1], associate a utility function uξ as follows. First, let u0 ≡ u and u1 ≡ u. Next,

for all ξ ∈ (0, 1) and (q, t) ∈ V , consider the following equation in µ:

u(q, µ) = u

(
q,
t− ξµ
1− ξ

)
. (1)

We claim that (1) has a unique solution in the admissible range for µ,

t(q) < µ < t(q) +
1

ξ
[t− t(q)],

with −∞+∞/ξ =∞ by convention. Indeed, the left-hand side of (1) is strictly increasing

in µ, whereas the right-hand side of (1) is strictly decreasing in µ. Moreover, as both u and

u belong to Uv,dsc, we have inf rangeu(q, ·) = inf rangeu(q, ·) = t(0`). Therefore,

lim
µ↓t(q)

u(q, µ) = t(0`) < lim
µ↓t(q)

u

(
q,
t− ξµ
1− ξ

)
,

whereas

lim
µ↑t(q)+ 1

ξ
[t−t(q)]

u(q, µ) > t(0`) = lim
µ↑t(q)+ 1

ξ
[t−t(q)]

u

(
q,
t− ξµ
1− ξ

)
,

so that there exists a unique solution µξ(q, t) to (1), as claimed. We can then define the

utility function uξ by

uξ(q, t) ≡ u(q, µξ(q, t)) = u

(
q,
t− ξµξ(q, t)

1− ξ

)
(2)

for all (q, t) ∈ V . Geometrically, to each t′ > t(0`), this transformation assigns the t′-

indifference set u−1
ξ ({t′}) for uξ, which is obtained by taking the vertical convex combination

with weights ξ and 1 − ξ of the t′-indifference sets u−1({t′}) and u−1({t′}) for u and u,
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respectively, bearing in mind that, by normalization, u(0`, t
′) = u(0`, t

′) = t′. Figure 4 below

illustrates this construction.

-

q

6
t

t′

u−1({t′})

u−1
ξ ({t′})

u−1({t′})

(q, µξ(q, t))
r

(
q,

t−ξµξ(q,t))
1−ξ

) r
r (q, t)

Figure 4 The contraction hu.

To complete the proof, we show that the mapping (u, ξ) 7→ uξ is an homotopy. The proof

consists of two steps.

Step 1 We first check that uξ ∈ Uv,dsc for all ξ ∈ [0, 1]. This is obvious for ξ = 0, 1.

Now, fix some ξ ∈ (0, 1). We must prove that rangeuξ(q, ·) = rangeuξ(0`, ·) for all q ∈ Q
and that uξ(0`, t) = t for all t > t(0`), that uξ is C2, with ∂uξ/∂t > 0 over V , and is strictly

quasiconcave, that u−1
ξ ([υ,∞)) is closed relative to V for all υ ∈ R, and that the curvature

of the indifference sets for uξ nowhere vanishes.

(Normalization) By construction, we have rangeuξ(q, ·) = rangeu(q, ·) = rangeu(q, ·) =

(t(0`),∞) for all q ∈ Q, and uξ(0`, t) = u(0`, t) = u(0`, t) = t for all t > t(0`). Hence uξ is

normalized.

(Regularity) By (1), for each (q, t) ∈ V , µξ(q, t) is the unique solution to f(q, t, µ) = 0,

where f(q, t, µ) ≡ u(q, µ) − u(q, (t − ξµ)/(1 − ξ)). That µξ is C2 follows from the implicit

function theorem along with the fact that ∂f/∂µ > 0 as ∂u/∂t > 0 and ∂u/∂t > 0 over V .

That uξ is C2 then follows from (2).

(Strict monotonicity in transfers) Differentiating (2) with respect to t and using the fact

12



that ∂u/∂t > 0 and ∂u/∂t > 0 over V yields, for each (q, t) ∈ V ,

∂µξ
∂t

(q, t) =

∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))

> 0.

That ∂uξ/∂t > 0 over V then follows from A2 and (2).

(Strict quasiconcavity) For each t′ > t(0`), the t′-indifference sets u−1({t′}), u−1({t′}),
and u−1

ξ ({t′}) for u, u, and uξ can be parameterized as t = τ(q, t′), t = τ(q, t′), and t =

τξ(q, t
′) = ξτ(q, t′) + (1− ξ)τ(q, t′), respectively. Because u and u are strictly quasiconcave,

the mappings q 7→ τ(q, t′) and q 7→ τ(q, t′) are strictly convex, and so is the mapping

q 7→ τξ(q, t
′) by convex combination. That uξ is strictly quasiconcave then follows from this

observation along with the strict monotonicity of uξ in transfers.

(Boundary behavior) Fix some υ ∈ rangeuξ = rangeu = rangeu and let ((qn, tn))n∈N

be a sequence in u−1
ξ ([υ,∞)) that converges to (q, t) ∈ R`+1. We must prove that (q, t) ∈

u−1
ξ ([υ,∞)). Because uξ is continuous over V , we only need to check that (q, t) does not

belong to the boundary of V in R`+1. Recall first that, by construction, (qn, tn) is for each

n ∈ N a convex combination with weights ξ and 1 − ξ of (qn, µξ(qn, tn)) ∈ u−1([υ,∞)) and

(qn, [tn− ξµξ(qn, tn)]/(1− ξ)) ∈ u−1([υ,∞)). We claim that an implication of this is that the

sequences ((qn, µξ(qn, tn)))n∈N and ((qn, [tn − ξµξ(qn, tn)]/(1− ξ)))n∈N are bounded. Indeed,

if they are not, then, as the sequence ((qn, tn))n∈N is bounded, we can extract two divergent

subsequences (µξ(qnk , tnk))k∈N and ([tnk−ξµξ(qnk , tnk)]/(1−ξ))k∈N of transfers with opposite

signs; suppose with no loss of generality that limk→∞ µξ(qnk , tnk) = −∞. Now, fix some

(q′, t′) such that u(q′, t′) = υ. Because u is quasiconcave and u(qnk , µξ(qnk , tnk)) ≥ υ,

u

([
1 +

1

µξ(qnk , tnk)

]
(q′, t′)− 1

µξ(qnk , tnk)
(qnk , µξ(qnk , tnk))

)
≥ υ

for all k such that µξ(qnk , tnk) < −1. Letting k go to ∞, we obtain by continuity of u that

u(q′, t′ − 1) ≥ υ = u(q′, t′), which contradicts the fact that u(q′, ·) is strictly increasing.

Thus the sequences ((qn, µξ(qn, tn)))n∈N and ((qn, [tn− ξµξ(qn, tn)]/(1− ξ)))n∈N are bounded,

as claimed. Extracting subsequences if necessary, let us denote by (q, tu) and (q, tu) their

respective limits; suppose with no loss of generality that tu ≤ t ≤ tu. As u−1([υ,∞)) is

closed and comprehensive with respect to transfers, and as (qn, µξ(qn, tn)) ∈ u−1([υ,∞)) for

all n ∈ N, we have (q, tu) ∈ u−1([υ,∞)) and thus (q, t) ∈ u−1([υ,∞)). That (q, t) cannot

belong to the common boundary of R`+1 \ V and V in R`+1 then follows from the fact that

the disjoint closed sets u−1([υ,∞)) and R`+1 \ V can be separated by open sets in R`+1.
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(Curvature) Given the parametrization t = τξ(q, t
′) = ξτ(q, t′) + (1 − ξ)τ(q, t′) of the

t′-indifference set u−1
ξ ({t′}) for uξ, the Hessian ∂2τξ(q, t

′) = ξ∂2τ(q, t′) + (1 − ξ)∂2τ(q, t′) is

positive definite, because so must be the Hessians ∂2τ(q, t′) and ∂2τ(q, t′) for the curvatures

of the t′-indifference sets u−1({t′}) and u−1({t′}) for u and u, respectively, to nowhere vanish

(Mas-Colell (1985, Chapter 1, H.3)). This proves that the curvature of the t′-indifference set

u−1
ξ ({t′}) for uξ nowhere vanishes.

Step 2 There remains to check that the mapping hu : Uv,dsc× [0, 1]→ Uv,dsc : (u, ξ) 7→ uξ

is continuous. Let ((un, ξn))n∈N be a sequence in Uv,dsc× [0, 1] converging to (u, ξ). To avoid

trivial cases, let us assume that, for each n ∈ N, there exists m ≥ n such that ξm 6= 0, 1.

We must prove that the sequences (hu(un, ξn))n∈N, (∂hu(un, ξn))n∈N, and (∂2hu(un, ξn))n∈N

converge uniformly to hu(u, ξ), ∂hu(u, ξ), and ∂2hu(u, ξ), respectively, over any compact

subset K of V . The proof consists of three substeps.

Step 2.1 For each n ∈ N such that ξn ∈ (0, 1) and for each (q, t) ∈ K, define µn,ξn(q, t) as

the unique solution to

u(q, µ) = un

(
q,
t− ξnµ
1− ξn

)
. (3)

We first claim that the sequences (µn,ξn(q, t))n∈N and ([t − ξnµn,ξn(q, t)]/(1 − ξn))n∈N are

bounded, uniformly in (q, t) ∈ K. Suppose for instance, by way of contradiction, that there

exists a divergent sequence (µnk,ξnk (qk, tk))k∈N such that (qk, tk) ∈ K for all k ∈ N; suppose

also with no loss of generality that the sequence ((qk, tk))k∈N converges to some (q, t) ∈ K
and that limk→∞ µnk,ξnk (qk, tk) = −∞. (The other cases can be handled in a similar way.)

Then, as the sequence (qk)k∈N converges to q, we have t(q) = −∞ and thus t(0`) = −∞,

which in turn implies rangeu(q, ·) = rangeu(0`, ·) = R by normalization. Now, for each

(t′, ε) ∈ R × R++, we have µnk,ξnk (qk, tk) ≤ t′ and u(qk, µnk,ξnk (qk, tk)) ≤ u(q, t′) + ε for k

large enough. Because t′ can take any value in R and rangeu(q, ·) = R, we obtain

lim
k→∞

u(qk, µnk,ξnk (qk, tk)) = −∞. (4)

On the other hand, as the sequence (tk)k∈N converges, limk→∞ µnk,ξnk (qk, tk) = −∞ implies

that µnk,ξnk (qk, tk) ≤ tk and thus [tk − ξnkµnk,ξnk (qk, tk)]/(1 − ξnk) ≥ tk for k large enough.

Therefore,

lim inf
k→∞

unk

(
qk,

tk − ξnkµnk,ξnk (qk, tk)

1− ξnk

)
≥ lim

k→∞
unk(qk, tk) = u(q, t), (5)

where the equality follows from the fact that the sequence (un)n∈N converges uniformly to

u over K and that the sequence ((qk, tk))k∈N converges to (q, t) ∈ K. But then, in light
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of (4)–(5), (3) cannot hold for (n, q, t, µ) = (nk, qk, tk, µnk,ξnk (qk, tk)) for k large enough, a

contradiction. The claim follows.

Step 2.2 We next claim that the sequence (µn,ξn)n∈N converges uniformly to µξ over K

when the sequence (ξn)n∈N converges to ξ ∈ (0, 1), so that ξn 6= 0, 1 for n ∈ N large enough.

For any such n and for each (q, t) ∈ K, we have, by (3),

u(q, µn,ξn(q, t))− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
= ∆1,n(q, t) + ∆2,n(q, t), (6)

where

∆1,n(q, t) ≡ un

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
− u
(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
and

∆2,n(q, t) ≡ u

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
.

By Step 2.1, there exists some compact subset K ′ of V such that

max
(q,t)∈K

|∆1,n(q, t)| ≤ ‖un − u‖K′

and

max
(q,t)∈K

|∆2,n(q, t)| ≤
∥∥∥∥∂u∂t

∥∥∥∥
K′

sup
(q,t)∈K

|(ξn − ξ)[t− µn,ξn(q, t)]|
(1− ξ)(1− ξn)

.

Taking limits as n goes to ∞ yields, by (6),

lim
n→∞

u(q, µn,ξn(q, t))− u
(
q,
t− ξµn,ξn(q, t)

1− ξ

)
= 0

= u(q, µξ(q, t)t)− u
(
q,
t− ξµξ(q, t)

1− ξ

)
,

uniformly in (q, t) ∈ K. By Step 2.1, this implies that

lim
n→∞

[
min

(q′,t′)∈K′

∂u

∂t
(q′, t′) +

ξ

1− ξ
min

(q′,t′)∈K′

∂u

∂t
(q′, t′)

]
|µn,ξn(q, t)− µξ(q, t)|= 0,

uniformly in (q, t) ∈ K, from which the claim follows as both ∂u/∂t and ∂u/∂t are positive

and bounded away from 0 over any compact subset of V .

Step 2.3 We are now ready to prove the required convergence results, first for the functions

(hu(un, ξn))n∈N, and then for their first- and second-order derivatives (∂hu(un, ξn))n∈N and

(∂2hu(un, ξn))n∈N.
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(Functions) Suppose first that the sequence (ξn)n∈N converges to ξ ∈ (0, 1). For all (q, t) ∈
K and n ∈ N, we have hu(un, ξn)(q, t) = u(q, µn,ξn(q, t)) and hu(u, ξ)(q, t) = u(q, µξ(q, t)).

Hence, by Step 2.1,

‖hu(un, ξn)− hu(u, ξ)‖K ≤
∥∥∥∥∂u∂t

∥∥∥∥
K′
‖µn,ξn − µξ‖K ,

which converges to 0 by Step 2.2. Suppose next that the sequence (ξn)n∈N converges to 0. We

can focus on the terms of the sequence (hu(un, ξn))n∈N such that ξn 6= 0, for the other terms

are equal to hu(un, 0) = un and the sequence (un)n∈N converges uniformly to u = hu(u, 0)

over K. Then (6) holds for ξ = 0, and reasoning as in Step 2.2 yields that

‖hu(un, ξn)− u‖K = ‖hu(un, ξn)− hu(u, 0)‖K

converges to 0. Suppose finally that the sequence (ξn)n∈N converges to 1. We can focus on

the terms of the sequence (hu(un, ξn))n∈N such that ξn 6= 1, for the other terms are equal to

hu(un, 1) = u. Then, letting νn,ξn(q, t) ≡ [t− ξnµn,ξn(q, t)]/(1− ξn) for all (q, t) ∈ K, we have

hu(un, ξn) = u(q, [t− (1− ξn)νn,ξn(q, t)]/ξn). Bearing in mind that, as shown in Step 2.1, the

sequence (νn,ξn(q, t))n∈N is bounded, uniformly in (q, t) ∈ K, we obtain as above that

‖hu(un, ξn)− u‖K = ‖hu(un, ξn)− hu(u, 1)‖K

converges to 0. Therefore, in any case, the sequence (hu(un, ξn))n∈N converges uniformly to

hu(u, ξ) over K.

(Derivatives) We focus on the first-order derivatives (∂hu(un, ξn))n∈N. (The proof for the

second-order derivatives (∂2hu(un, ξn))n∈N is similar and is, therefore, omitted.) Suppose

first that the sequence (ξn)n∈N converges to ξ ∈ (0, 1), so that ξn 6= 0, 1 for n ∈ N large

enough. For any such n and for each (q, t) ∈ K, we have, by the implicit function theorem,



...
∂µn,ξn
∂ql

(q, t)

...
∂µn,ξn
∂t

(q, t)

 =



...

(1− ξn)
[
∂un
∂ql

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
− ∂u

∂ql
(q, µn,ξn(q, t))

]
ξn

∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
+ (1− ξn)∂u

∂t
(q, µn,ξn(q, t))

...
∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
ξn

∂un
∂t

(
q,

t−ξnµn,ξn (q,t)

1−ξn

)
+ (1− ξn)∂u

∂t
(q, µn,ξn(q, t))


.

Because, as shown in Step 2.2, the sequence (µn,ξn)n∈N converges uniformly to µξ over K,

and the sequences (∂un/∂ql)n∈N and (∂un/∂t)n∈N converge uniformly to ∂u/∂ql and ∂u/∂t
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over compact subsets of V , this converges to

...

(1− ξ)
[
∂u
∂ql

(
q,

t−ξµξ(q,t)
1−ξ

)
− ∂u

∂ql
(q, µξ(q, t))

]
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))

...
∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
ξ ∂u
∂t

(
q,

t−ξµξ(q,t)
1−ξ

)
+ (1− ξ)∂u

∂t
(q, µξ(q, t))


=



...
∂µξ
∂ql

(q, t)

...
∂µξ
∂t

(q, t)

,

uniformly in (q, t) ∈ K. As a result,

∂hu(un, ξn)(q, t) =



...
∂u

∂ql
(q, µn,ξn(q, t)) +

∂u

∂t
(q, µn,ξn(q, t))

∂µn,ξn
∂ql

(q, t)

...
∂u

∂t
(q, µn,ξn(q, t))

∂µn,ξn
∂t

(q, t)


converges to

...
∂u

∂ql
(q, µξ(q, t)) +

∂u

∂t
(q, µξ(q, t))

∂µξ
∂ql

(q, t)

...
∂u

∂t
(q, µξ(q, t))

∂µξ
∂t

(q, t)

 = ∂hu(u, ξ)(q, t),

uniformly in (q, t) ∈ K. Suppose finally that the sequence (ξn)n∈N converges to 0. (The

proof for the case where the sequence (ξn)n∈N converges to 1 is similar and is, therefore,

omitted.) We can focus on the terms of the sequence (∂hu(un, ξn))n∈N such that ξn 6= 0,

for the other terms are equal to ∂hu(un, 0) = ∂un and the sequence (∂un)n∈N converges

uniformly to ∂u = ∂hu(u, 0) over K. For any such n and for each (q, t) ∈ K, we have

∂hu(un, ξn)(q, t) = ∂u(q, µn,ξn(q, t)) = ∂un

(
q,
t− ξnµn,ξn(q, t)

1− ξn

)
,

which converges to ∂u(q, t), uniformly in (q, t) ∈ K, because the sequence (µn,ξn(q, t))n∈N is

bounded, uniformly in (q, t) ∈ K, and the sequence (∂un)n∈N converges uniformly to ∂u over

compact subsets of V . Hence the result. �

Observe that the compensation principle expressed by A6 plays a key role in the proof

that Pv,dsc is contractible. Indeed, A6 ensures that the vertical convex combination of any

two indifference sets for u and u going through the same point of the vertical axis is well
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defined, which in turn allows us to construct the contraction hu in a straightforward way.

The first part of the proof of Theorem 1 shows that the space Pdsc of preferences that satisfy

A1–A5 and A7–A8, but not necessarily A6, is topologically complete. However, it is an open

question whether it is contractible.

5 Collective Choice

We now draw the implications of our analysis for the aggregation of individual preference

relations in Pv,dsc. The collective choice framework we have in mind is as follows. Consider a

group of I individuals i = 1, . . . , I, which may be thought of as a household, a family, a firm,

a union, or a club. Each individual in the group has preferences about the consumption of

private and collective goods within the group. In particular, an individual may care about

the consumption of private goods by other members of the group, as in Becker’s (1981)

model of altruism in the family or Chiappori’s (1988, 1992) collective model of household

labor supply. Individuals also privately contribute to the supply of collective goods, such as

household chores or meeting participations.

We allow individual preferences to be nonmonotone in such contributions. This captures

the idea that a small contribution comes at a negligible personal marginal cost but generate

a nonnegligible personal marginal benefit, both directly and perhaps also indirectly through

altruistic concerns. By contrast, larger contributions generate substantial marginal costs

that outweigh marginal benefits.5 Finally, although individuals may value in different ways

the consumption of private and collective goods, as well as their contributions to the supply

of collective goods, there is at least one collective good that is always desirable from each

individual’s viewpoint. An example in the case of a household or a family may be an index

of the amount and quality of time spent together on vacation; in the case of a club, the

practice of common-interest activities.

Formally, we will assume that, as in the general model of Section 2, individuals have

preferences defined over ` commodities representing the amounts of private and collective

goods consumed within the group as well as the private contributions to the latter, and a

uniformly desirable collective good denoted by ` + 1. Each individual i is endowed with

a preference relation �i ∈ Pv,dsc over V . The problem is how to aggregate a profile of

5Conversely, negative contributions to collective goods can, in the presence of altruistic concerns, come
at a personal cost in the form of guilt or shame. For instance, if we interpret q in Figure 2 as the individual’s
contribution to a collective good, then, for any fixed level of t, he equally loses from contributing too little,
q = q−1 + ε, as from contributing too much, q = q+1 − ε. A4 implies that both situations involve prohibitive
costs as ε > 0 converges to zero.
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individual preferences relations (�1, . . . ,�I) ∈ PI
v,dsc into a collective preference relation in

Pv,dsc through a collective choice rule

ΦI : PI
v,dsc → Pv,dsc : (�1, . . . ,�I) 7→ ΦI(�1, . . . ,�I). (7)

Following Chichilnisky’s (1980) classical formulation of the topological social choice problem,

we restrict ourselves to collective choice rules that satisfy the following axioms.

Anonymity For each (�1, . . . ,�I) ∈ PI
v,dsc and for any permutation σ of {1, . . . , I},

ΦI(�σ(1), . . . ,�σ(I)) = ΦI(�1, . . . ,�I).

Anonymity requires that, if individuals exchange their preferences, then the collective

preferences remain the same; this axiom is stronger than Arrow’s (1951) nondictatorship

axiom.

Unanimity For each � ∈ Pv,dsc, ΦI(�, . . . ,�) = � .

Unanimity requires that, if all individuals have the same preferences, then the collective

preferences coincide with the individual preferences; this axiom is weaker than Arrow’s (1951)

Pareto axiom.

Continuity ΦI is continuous.

Continuity requires that, if two individual preference profiles are close to each other, then

so are the collective preferences; this axiom replaces Arrow’s (1951) independence axiom as

the interprofile consistency condition.6

The question is then whether there exists a collective choice rule ΦI over PI
v,dsc that is

anonymous, continuous, and respects unanimity. Because Pv,dsc is contractible by Theorem

1, it is tempting to invoke Chichilnisky and Heal (1983, Theorem 1) to infer that such a

collective choice rule indeed exists. However, there are two important obstacles to such a

hasty conclusion.

The first obstacle is that, following Debreu (1972), each individual i’s preferences in

Chichilnisky and Heal (1983) are represented by a locally integrable C1 normalized vector

field gi over V , which locally describes the gradient of individual i’s utility function. When

the space of admissible preferences is convex, a natural collective choice rule simply consists

in averaging the vector fields gi, i = 1, . . . , I; clearly, this rule is anonymous, continuous, and

respects unanimity. Moreover, it can be extended to the case where the space of admissible

preferences is a retract of its convex hull. However, these operations typically do not preserve

6The surveys by Lauwers (2000, 2009) and Baigent (2011) offer useful discussions of these axioms.
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the convexity of preferences, as required by (7); besides, it is unclear whether Pv,dsc satisfies

the required retractability property.

The second obstacle is that the space of admissible preferences in Chichilnisky and Heal

(1983) is assumed to have a very particular topological structure; specifically, it must be a

path-connected parafinite CW complex.7 Roughly speaking, this means that this space is

built in a countable number of stages, each stage being obtained from the previous one by

adding cells of a given finite dimension; a typical example is the space of linear preferences

over V . Horwath (2001) allows for a much broader class of spaces of admissible preferences,

but it is unclear whether the space Pv,dsc belongs to it.

These difficulties prevent us from directly applying Chichilnisky and Heal’s (1983) result.

Fortunately, the explicit construction of the contraction hu for an arbitrary u ∈ Uv,dsc

suggests an easy alternative. As in the proof of Theorem 1, we identify preferences in Pv,dsc

with their representations in Uv,dsc. The following aggregation result then holds.

Theorem 2 Define inductively a sequence of collective choice rules as follows: for each

u1 ∈ Uv,dsc, let

Φ1(u1) ≡ u1,

and for all I ≥ 2 and (u1, . . . , uI) ∈ UI
v,dsc, let

ΦI(u1, . . . , uI) ≡ hΦI−1(u1,...,uI−1)

(
uI ,

I − 1

I

)
.

Then, for each I ≥ 1, ΦI : UI
v,dsc → Uv,dsc satisfies Anonymity, Unanimity, and Continuity.

Proof. We use a straightforward induction on I. Proceeding along the lines of the proof of

Theorem 1 first shows that ΦI(u1, . . . , uI) ∈ Uv,dsc for all I ≥ 1 and (u1, . . . , uI) ∈ UI
v,dsc.

We next check each axiom in turn.

(Anonymity) We only need to prove that, for all I and t′ > t(0`), the t′-indifference

set for ΦI(u1, . . . , uI) is the vertical convex combination with identical weights 1/I of the

indifference sets u−1
1 ({t′}), . . . , u−1

I ({t′}) for u1, . . . , uI , respectively; that ΦI is anonymous

then follows from the symmetry of this construction. The result trivially holds for Φ1. Let

then I ≥ 2, and suppose that the result holds for ΦI−1. By definition of the contraction

hΦI−1(u1,...,uI−1), the t′-indifference set for ΦI(u1, . . . , uI) is the vertical convex combination

with weights (I − 1)/I and 1/I of the t′-indifference sets (ΦI−1(u1, . . . , uI−1))−1({t′}) and

7See Spanier (1966) for precise definitions of these terms.
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u−1
I ({t′}) for ΦI−1(u1, . . . , uI−1) and uI , respectively. Using the induction hypothesis then

completes the induction step.

(Unanimity) The result trivially holds for Φ1. Let then I ≥ 2, and suppose that the result

holds for ΦI−1. Then, for each u ∈ Uv,dsc, we have ΦI(u, . . . , u) = hΦI−1(u,...,u)(u, (I−1)/I) =

hu(u, (I − 1)/I) = u. This completes the induction step.

(Continuity) The result trivially holds for Φ1. Let then I ≥ 2, and suppose that the

result holds for ΦI−1. Using similar arguments as for the contractibility part of Theorem

1, we can show that, for each ξ ∈ (0, 1), the mapping (u, u) 7→ hu(u, ξ) is continuous from

Uv,dsc ×Uv,dsc to Uv,dsc. Letting ξ ≡ (I − 1)/I, u ≡ ΦI−1(u1, . . . , uI−1), and u ≡ uI , and

using the induction hypothesis then completes the induction step. Hence the result. �

Observe again that, through the use of the contraction hu, the compensation principle

expressed by A6 plays a key role in the proof of Theorem 2. It is interesting, by contrast,

to consider what may happen when A6 is violated by each individual preference relation in

a profile. Figure 5 below illustrates this situation.

-

q

6
t

Figure 5 �1 and �2 violate A6.

The two individuals whose preferences are depicted in Figure 5 have opposite views

regarding the desirability of the first commodity, and transfers are not effective enough to

compensate either of them for holding large (in absolute value) undesired amounts of that

commodity. It is then unclear how to aggregate their preferences into a collective preference

relation that satisfies, in particular, strict convexity. Notice in that respect that the additive
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rule for gradient fields will not do. Indeed, suppose for instance that the preferences �1

and �2 admit utility functions u1(q, t) = −q − 1/(t + 1) and u2(q, t) = q − 1/(t + 1) for

(q, t) ∈ V ≡ R× (−1,∞), so that indifference sets are convex hyperbolas. Then the addition

of the normalized gradients of u1 and u2 is everywhere equal to (0, 1), which does not

correspond to strictly convex preferences: the candidate collective indifference sets are flat,

reflecting that, at each point of V , individuals 1 and 2 only agree on the fact that higher

transfers would be desirable. It is thus an open question whether the space Pdsc of preferences

that satisfy A1–A5 and A7–A8, but not necessarily A6, admits a collective choice rule that

is anonymous, continuous, and respects unanimity.
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