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Abstract

We propose a procedure for testing the equality of several nonparametric multivariate

regressions. We allow the regressors' designs and the number of observations to di�er across

subsamples. The division into subsamples is de�ned through a variable C which can be

either �xed or random. For a random C, our procedure is a general test of signi�cance for

qualitative variables in a nonparametric regression. For a �xed C, our procedure provides

a \nonparametric analysis of covariance," which is valid for cross-section or panel data. In

both cases, the test is a one-sided normal test and is consistent against all alternatives.
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1 Introduction

A classic problem in econometrics is determining whether the form of a regression function re-

mains the same for two or more separate subsamples. Beginning with Chow's (1960) work, a

lot of attention has been devoted in the econometric literature to testing equality of regression

functions. The related procedures have been used for various economic problems, such as testing

for gender or race discrimination in earnings functions, testing for stability over time of eco-

nomic relationships, testing of disequilibrium models or testing for switching �rms' strategies in

microeconometric models derived from game theory. Classical procedures assume a parametric

form, usually a linear one, for the regression functions under test. As is well-known, specifying an

incorrect parametric form can lead to serious errors in inference. Indeed, rejection of the equality

hypothesis can be solely due to misspeci�cation of the model. Reversely, overacceptance of the

null hypothesis can appear as a consequence of misspeci�cation. Therefore, it is advisable to use

a testing procedure free of any parametric assumption.

The issue of comparing regression curves in a nonparametric context has been �rst addresed

in the particular setup of two subsamples with a one-dimensional regressor.1 When the regres-

sor's designs are identical, it is possible to use the di�erences in the dependent variable between

the two subsamples to build a test statistic. Hall and Hart (1990) propose a Cramer-von-Mises

type statistic while Delgado (1993) studies a Kolmogorov-Smirnov type statistic. Alternatively,

one can directly use the mean squared di�erence between nonparametric regression estimates.

This idea has been worked out in the �xed design case by King, Hart and Wehrly (1991), who

propose a test under the assumption of normal residuals, and by H�ardle and Marron (1990),

who consider testing whether two curves are equal up to a parametric transformation. Recent

work focuses on speci�c extensions of the initial setup. A �rst extension deals with more than

two subsamples. Young and Bowman's (1995) test compares several nonparametric regressions

depending on a one-dimensional random variable with normal residuals. Fan and Lin (1998) pro-

pose testing procedures based on the adaptive Neyman and the wavelet thresholding approaches

for comparing multiple curves indexed by time. A second extension deals with non-identical

designs. Kulasekera (1995) extends Hall and Hart's procedure to this case. Pinkse and Robinson

(1995) generalizes some of H�ardle and Marron's (1990) results to random designs and give some

guidelines for testing whether two regression functions are similar up to a linear transforma-

1Testing equality of nonparametric density functions is a closely related problem, see e.g. Mammen (1992).
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tion. Hall, Huber and Speckman (1997) build covariate-matching based tests that are taylored

against the speci�c alternative that one of the regression function is always greater than the

other. Koul and Schick (1997) propose analogous procedures that incorporate smoothing tech-

niques. Matching is actually used in an earlier illuminating paper by Quade (1982), who deals

simultaneously with non-identical designs and multiple subsamples. Other authors considering a

general setup are Baltagi, Hidalgo and Li (1996) on testing for poolability of panel data, Munk

and Dette (1998) and Yatchew (1999), whose test is based on the comparison of residual variance

estimators.

In applied econometrics, we often consider more than one explanatory variable and deal

simultaneously with more than two subsamples. More crucially, it is scarcely the case that we

have control on the design of explanatory variables. Furthermore, the division into subsamples

is also frequently governed by a random variable. In view of practical use in econometrics,

we propose a general asymptotic joint test of equality across nonparametric regressions that

is consistent against any alternative. It extends previous work in many directions. First, we

allow for di�erent unknown data distributions across subsamples. Second, we also allow for any

dimension of the explanatory variables. Third, we deal with any number of subsamples. Fourth,

we consider random explanatory variables and allow the regressors' designs and the number of

observations to di�er across subsamples. Fifth, in contrast to previous work that exclusively

focuses on the case where the division into subsamples is de�ned through a �xed variable C, we

consider as a leading case the situation where a random qualitative variable C de�nes the split

into di�erent subsamples, as frequently arises in economic applications. We subsequently extend

our procedure to the usual setup.

When C is �xed, our procedure provides a \nonparametric analysis of covariance" that has

numerous potential applications in and outside the �eld of econometrics. When C is random, our

procedure is a general signi�cance test for qualitative variables in a nonparametric regression.

This supplements previous work on testing for omitted continuous variables in nonparametric

regression, see A��t-Sahalia, Bickel and Stoker (1994), Fan and Li (1996), Gozalo (1995), Lavergne

and Vuong (2000) and Li (1999).2 However, our analysis has a distinctive feature with respect

to previous work on smooth tests for omitted variables. Indeed, our null and alternative models

2More generally, our test is in line with smooth speci�cation tests of parametric models previously proposed

in the literature, see Delgado, Dominguez and Lavergne (1998), H�ardle and Mammen (1993), Zheng (1996) and

some of the previous references.
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have the same e�ective dimension due to the discrete nature of C, whereas previous work on

nonparametric signi�cance testing compare models with di�erent dimensions.3 Hence in our

setup, nonparametric estimators of the null and the alternative models have similar rates of

convergence and both a�ect the asymptotic distribution of the test statistic, in contrast to what

happens when models have di�erent dimensions.

The paper is organised as follows. In Section 2, we consider the leading case where the split-

ting variable is random. We set up our testing framework and we derive the basic statistic for

testing equality of nonparametric regression functions. We characterize its asymptotic distribu-

tion not only under the null hypothesis but also under a sequence of local alternatives. We then

derive a consistent testing procedure and discuss its implementation. In Section 3, we treat the

case of a �xed splitting variable and relate it to a nonparametric analysis of covariance. We show

how the assumptions of Section 2 can be weakened to deal with cross-section and panel data.

Section 4 studies the small sample behavior of our test through some simulation experiments.

The Conclusion summarizes our main �ndings. All the proofs are relegated to Appendices.

2 Case of a random C

2.1 The testing framework

Let C be a discrete variable on C =
�
1; : : : ; �C

	
, with corresponding strictly positive probabilities

p1; : : : ; p �C . Let f(Ci; Xi; Yi); i = 1; : : : ; ng be a sample of i.i.d. observations from (C;X; Y ) taking

values on C � IRp � IR. Consider the general regression model

Yi = R(Xi; Ci) + Ui; E [UijXi; Ci] = 0 i = 1; : : : ; n; (2.1)

where R(�; �) denotes the regression function of Y on X and C. For any c, a nonparametric kernel

estimator of fc(�), the conditional density of X given C = c, is

fn;c(x) = (nch
p
c)
�1

nX
i=1

K

�
x�Xi

hc

�
1I [Ci = c]; 8x 2 IRp;

3This is also true for smooth speci�cation tests of parametric regression models.
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where nc =
Pn

i=1 1I [Ci = c], K(�) is a kernel on IRp and hc is a bandwidth parameter converging

to zero.4 A nonparametric kernel estimator of R(�; c) is obtained as

Rn(x; c) =
(nch

p
c)
�1

Pn
i=1 YiK(x�Xi

hc
)1I [Ci = c]

fn;c(x)
8x 2 IRp:

In the formulas, we use non-smoothing weights for the qualitative variable C. If there exists a

natural ranking of the modalities of C relevant for the regression model, non-smoothing weights

can be replaced by smooth ones without a�ecting the estimators' asymptotic properties, see

Bierens (1987) and Delgado and Mora (1995), or our test's validity.

If we overlook the information concerning the splitting as given by the Ci's, we would

consider instead the pooling regression model

Yi = r(Xi) + ui; E [uijXi] = 0; i = 1; : : : ; n: (2.2)

Thus we will estimate the function r(�) by a kernel estimate on the whole sample given by

rn(x) =
(nhp)�1

Pn
i=1 YiK(x�Xi

h )

fn(x)
; where fn(x) = (nhp)�1

nX
i=1

K

�
x�Xi

h

�
; 8x 2 IRp;

and h is a bandwidth parameter converging to zero. These estimators respectively converge to

r(�) and f(�), the marginal density of X.

The hypothesis of interest is the constancy of the regression function R(�; C = c) for di�erent

values of c. This means that we are not loosing any information by disregarding the Ci's and

estimating the simpler regression Model (2.2) instead of (2.1). Thus the null hypothesis reads

H0 : R(X;C) = r(X) a.s.

This intuitive formulation enables us to deal with the testing problem as a comparison of two

nested models, whatever the number of subsamples is. As H0 corresponds to the non-signi�cance

of the discrete variable C, we can built our test statistic in a way similar to Lavergne and Vuong

(2000), who test for omitted continuous variables. Let u � Y �r(X). We consider an estimate of

E
�
E2(ujX;C)	(X;C)� = E

h
(R(X;C)� r(X))2	(X;C)

i
, which is zero under H0 and strictly

positive under any alternative to H0, for any function 	(�; �) such that 	(�; c) is strictly positive
on the support of fc(�) for any c. Because of the form of the kernel estimate, it is convenient

4For exposition's ease, we do not make explicit the dependence of the bandwidths on the (sub)sample size.
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to use f2(X)fC(X) as a weighting function.5 This device is analogous to the one used in other

semiparametric estimation and testing problems, see e.g. Powell, Stock and Stoker (1989), Fan

and Li (1996), Lavergne and Vuong (2000) and Zheng (1996). If the quantities uif(Xi) were ob-

served, a sample analog of E
�
E2(uf(X)jX;C)fC (X)

�
= E [uf(X)E(uf(X)jX;C)fC (X)] would

be

V0n =
1

n(2)

X
a

uiujf(Xi)f(Xj)
1

h
p
Ci

~Knijwnij ; where ~Knij � (1=h
p
Ci
)K

�
Xi �Xj

hCi

�
;

wnij =
n�1

nCi�1
1I [Ci = Cj ],

P
a denotes summation over the arrangements of m distinct elements

fi1; : : : ; img from f1; : : : ; ng, and n(m) = n!=(n�m)! is the number of these arrangements. Now,

because we do not know the ui's and f(Xi)'s, we replace them by their kernel estimates, and

we drop equal indices in the �nal sum.6 We then obtain the statistic

Vn =
1

n(4)

X
a

(Yi � Yk)(Yj � Yl)KnikKnjl
~Knijwnij ; where Knij � (1=hp)K

�
Xi �Xj

h

�
: (2.3)

2.2 Asymptotic behavior of Vn

Theorem 1 gives the behavior of Vn under the set of hypotheses

H1n : R(X;C) = r(X) + Ænd(X;C); Æn 2 [0; 1]

A �xed alternative corresponds to Æn = 1 8n, while the null hypothesis corresponds to Æn = 0 8n.7
This general formulation allows to deal with some local alternatives whose rates of convergence

to H0 are given by the rate of decrease of Æn to zero.

We call Up the class of integrable uniformly continuous functions from IRp to IR, and Dp
m;q

the class of m-times di�erentiable functions from IRp to IR with derivatives of order m that are

uniformly Lipschitz continuous of order q, q 2 [0; 1). For m � 2, we de�ne Kp
m as the class of

integrable functions K(�) from IRp to IR with compact support, satisfying
R
K(s) ds = 1 andZ

s�11 : : : s�pp K(s) ds = 0 for �i 2 f0; 1; : : : ;m� 1g ; 8i = 1; : : : ; p; 0 <

pX
i=1

�i � m� 1:8

5We could also choose f2(X)fC(X)v(X), v(�) being a known function, used for instance to restrict attention

to a particular interval. Our results can be easily extended to this formulation.
6For signi�cance testing of continuous variables, Lavergne and Vuong (2000) show that dropping equal indices

does not change the asymptotic distribution of their statistic but reduces its small-sample bias. In our case,

dropping equal indices is essential to get an asymptotically unbiased statistic under H0.
7We let d(X;C) � 0 if Æn = 0.
8It suÆces that

R
K(s) ds > 0 to obtain a consistent test, but the unity integral assumption is not restrictive.
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We let �2C(X) � E
�
u2jX;C� = E

h
(Y � r(X))2 jX;C

i
and we label it the \conditional variance"

(with respect to both X and C) from Model (2.2). We also let wCC0 � 1
pC

1I [C = C 0] and

Ka(�) � (1=a)K (�=a). We de�ne � as the convolution operator, i.e. for kernels K(�) and L(�),

(K � L)(s) =
Z
IRp

K(v)L(s� v) dv:

Assumption 2.1 f(Ci;Xi; Yi); i = 1; : : : ; ng is an i.i.d. sample from a random variable (C;X; Y )

on C � IRp � IR, where C is a discrete variable on C =
�
1; : : : ; �C

	
, with corresponding strictly

positive probabilities p1; : : : ; p �C , and E
�
Y 8

�
<1.

Assumption 2.2 (i) For each c = 1; : : : ; �C, fc(�) and R(�; c)fc(�) belong to Up \ Dp
m;q, m � 2,

and also �2c (�)fc(�) belongs to Up. (ii) K 2 Kp
m, m � 2.

Our statistic involves one bandwidth h for the pooling null model as well as a set of �C bandwidths

for the alternative general model. We restrict our analysis to the following case.

Assumption 2.3 For c = 1; : : : ; �C, hc=h! ac with 0 < ac <1 and nhp ! +1.

Theorem 1 Under Assumptions 2.1, 2.2 and 2.3, if nh(p=2)+2(m+q) ! 0, then as n! +1,

(i) nhp=2Vn
d�! N(A�;!2) if Æ2nnh

p=2 ! A <1;

(ii) nhp=2Vn
p�! +1 if Æ2nnh

p=2 ! +1;

where � = E
�
d2(X;C)f2(X)fC(X)

�
, !2 = 2E

�
�2C(X)�2C0(X)f4(X)ECC0(X)

�
;

ECC0(X) =

Z "
KaC (s)wCC0 � 2(K �KaC )(s)

fC(X)

f(X)
+
g2(X; s)

f2(X)

#2
ds

and g2(X; s) =
P �C

c=1 pcf
2
c (X)(K �K �Kac)(s).

We postpone discussion of our assumptions to the next subsection. As shown in the proofs,

the behavior of Vn depends upon whether H0 holds or does not hold. Under the alternative, Vn

converges to a normal distribution with the usual
p
n-rate of convergence. But under the null,

the
p
n-asymptotic distribution of Vn is degenerate. This leads us to consider higher-order terms

in the asymptotic expansion of Vn. Similar situations also arise in parametric speci�cation test-

ing using functional estimation or signi�cance testing of continuous covariates in nonparametric

regression. In such procedures, one also compares two nested models with statistics similar to
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V0n, where the unknown elements of the null model are replaced by parametric or nonpara-

metric estimators. Because in the latter cases, the null model has a lower e�ective dimension

than the alternative model, estimators in the former have faster pointwise rates of convergence

than estimators in the latter. Thus plugging-in estimators in V0n does not a�ect its asymptotic

behavior. In contrast, both the general Model (2.1) and the restricted Model (2.2) have the

same e�ective dimension, so that estimators have similar rates of convergence in both models.

Consequently, the asymptotic behavior of Vn di�ers from the one of V0n. Nevertheless, our re-

sults show that plugging-in estimators inuences the asymptotic variance under H0, but a�ects

neither the asymptotic expectation nor the rate of convergence.

In writing the asymptotic variance !2, we have adopted the following conventions:

E
h
�2C(X)�2C0(X)	(X)

i
�
X
c;c0

pcpc0

Z
�2c (x)�

2
c0(x)	(x)fc(x)fc0(x) dx;

E
h
�2C(X)�2C0(X)	(X)1I

�
C = C 0

�i�X
c;c0

pcpc0

Z
�2c (x)�

2
c0(x)	(x)fc(x)fc0(x)1I

�
c = c0

�
dx:(2.4)

The asymptotic variance of Vn under H0 has a quite complicated form.9 First, it depends on the

cross-products between �2c (�) and �2c0(�) for di�erent c and c0, see H�ardle and Marron (1990) for a

similar feature. Second, it explicitely depends on the di�erence in designs between subsamples,

through the ratios fc(�)=f(�) and g2(�; �)=f2(�). The �rst quantity is the ratio of the conditional

density of X given C = c to the \average" marginal density f(�) =P �C
c=1 pcfc(�). To interpret the

second quantity, assume that ac = a for any c. Then g2(�; s)=f2(�) = G2(�)=f2(�)(K �K �Ka)(s),

where G2(�) =
�P �C

c=1 pcf
2
c (�)

�
. Thus the second ratio can be given the interpretation of a \nor-

malized variance" of fc(�). When X is independent of C, both fc(�)=f(�) and G2(�)=f2(�) equal
one for any x and c. As we do not require independence, the designs can markedly di�er across

subsamples and, in general, the latter ratios introduce di�erent weights across the subsamples

and the values of explanatory variables. Therefore, it seems impossible to �nd a kernel that

would minimize the variance irrespective of the regressors' designs.

9It is written in a way that suggests an estimator similar to Vn. See the Appendix for an extensive form of !2.
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2.3 Discussion on the assumptions and bandwidths' choice

Assumption 2.1 allows for any dependence between (X;Y ) and C.10 Hence, the residuals' dis-

tribution is not restricted to be identical for di�erent values of C. The residuals can also be

conditionally heteroskedastic. Assumption 2.2 requires smoothness conditions on the underlying

functions and kernels that are standard in nonparametric estimation. The compactness of the

support of K(�) could be relaxed, but this would lead to very tedious proofs. Our assumptions on

the bandwidth h include the usual ones, and speci�cally imply that h! 0 as n!1, while its

rate of decrease is restricted by nhp ! +1. The condition nh(p=2)+2(m+q) ! 0 relates the rate

of convergence of the statistic and its bias rate. When comparing two univariate nonparametric

regression curves, H�ardle and Marron (1990) obtain a statistic with a bias of order (1=nh), which

needs to be estimated to construct a test.11 In our case, the leading term that determines the

asymptotic distribution of Vn is unbiased under the null hypothesis. A bias of order h2(m+q)

appears in the remaining terms because of our ignorance of the true function r(�). This bias is
controlled through the aforementioned condition. With respect to the optimal rate for estima-

tion of the regression function, i.e. h / n�1=[p+2(m+q)], this condition implies undersmoothing as

is usual in semiparametric estimation, see Robinson (1988) and Powell, Stock and Stoker (1989)

among others.12 Finally, note that our conditions implicitely require m > p=4.

Assumption 2.3 ensures on the one hand that each bandwidth hc converges to zero at a

similar rate and on the other hand that the bandwidth h for the pooling model decreases at

the same rate. This allows for dependence of the bandwidths on the (sub)sample sizes. The �rst

condition is imposed in all work on the topic using smoothing techniques and is even strengthened

to equal bandwidths across subsamples in most papers, see the Introduction for references. The

second condition is also imposed in Young and Bowman (1995), where a pooled nonparametric

regression is compared to nonparametric regressions based upon subsamples. These authors

further argue for equal bandwidths when the design densities are identical across subsamples,

so as to equate estimation biases in all models under H0. By contrast, Baltagi, Hidalgo and Li

(1996) assume oversmoothing of the pooling model by imposing hc=h
2 = o(1).

10That is, it allows for Pr [(X;Y ) � (x; y); C = c] 6= Pr [(X;Y ) � (x; y); C = c0] for c 6= c0. In particular, the

distribution of the regressors can vary across subsamples. See the end of Section 3.1 for a discussion on this point.
11A similar feature would appear if we would have not dropped equal indices in Vn.
12However, the optimal bandwidth for testing is likely to be di�erent from the optimal bandwidth for estimation,

see Guerre and Lavergne (1999) for the case of nonparametric speci�cation testing.
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Why is it sensible to use similar amounts of smoothing for all estimators? From an estimation

viewpoint, there is no reason why we should employ di�erent smoothing rates in each model.

Indeed, a discrete variable does not a�ect the rate of convergence of nonparametric estimators

and does not create any bias in estimation, see e.g. Bierens (1987) and Delgado and Mora (1995).

Moreover, each subsample size increases at the same rate as the whole sample size. Therefore,

if one wants to select the parameters with respect to some optimality measure, the resulting

bandwidths, while depending on possibly di�erent unknown constants, should asymptotically

follow the same rate of decrease to zero.13

From a testing viewpoint, using bandwidths that ful�l Assumption 2.3 seems the easiest

way to put models on equal footing in the testing procedure, because the regressors' dimension

is the same between models. For a more theoretical justi�cation, let us consider what happens

if we use di�erent amounts of smoothing in the competing models. In this aim, we introduce a

new bandwidth a for the pooling model and consider the statistic

Vn =
1

n(4)

X
a

(Yi � Yk)(Yj � Yl)
1

a2p
K

�
Xi�Xk

a

�
K

�
Xj�Xl

a

�
~Knijwnij:

We maintain Assumption 2.3, which now only imposes similar rates of convergence for the hc's.

If we assume oversmoothing in the null model with respect to the general one by imposing

h=a = o(1), Vn is asymptotically equivalent to V0n and has a nhp=2 rate of convergence.14

Conversely, if we assume that a=h = o(1), we obtain a rate of convergence of nap=2 for Vn.
15 These

results, together with Theorem 1 under the assumption a = h, gives us a rate of convergence

for Vn of min
�
nhp=2; nap=2

�
. To get the most powerful test, we should clearly maximize this

rate by equating h and a, that is, by choosing similar amount of smoothing in the competing

models.16 Hence Assumption 2.3 allows our statistic to be as eÆcient as possible and in this

sense is not restrictive. From a practical viewpoint, our formal analysis under Assumption 2.3

leads to an approximation that is likely to be more useful than a result obtained under one of the

alternative assumptions a=h = o(1) or h=a = o(1). Each alternative assumption is akin to ignore

some interaction terms in the variance of the statistic, which are however present because these

13We are also using the same kernel for all estimators because, from their de�nitions, both functions r(�) and

R(�; �) have similar smoothness properties. Hence the order of the kernel should be the same for both models.

However, this restriction is not crucial, and a more general result could account for di�erent kernels.
14This easily follows by adapting our proof. See Lavergne and Vuong (2000) for a related result.
15This also follows by adapting our proof.
16The supplementary restrictions on the bandwidths are similar across cases.
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ratios are never zero in practice. By contrast, our approach explicitely takes these interaction

terms into account.

2.4 Testing procedure and extensions

From a reasoning analogous to the one leading to (2.3), the variance !2 can be estimated as

!2
n =

2

n(6)

X
a

(Yi � Yk)(Yi � Yk0)(Yj � Yl)(Yj � Yl0)KnikKnik0KnjlKnjl0KnijEnij ;

where Enij = 1I [fn(Xi) � bn]

Z "
K(s)wnij � 2(K �K)(s)

fn;Ci
(Xi)

fn(Xi)
+
g2n(Xi; s)

f2n(Xi)

#2
ds;

g2n(x; s) =
P �C

c=1 (nc=n)f
2
n;c(x)(K �K �Kac)(s); 8x 2 IRp; and bn is a trimming parameter such

that bn = o(1). This trimming is necessary to get rid of edge e�ects, that is, to avoid undue

inuence from observation points where the density f(�) is small.17 An alternative estimator,

which is computationally less demanding but more biased in small samples, is

!2
n =

2

n(2)

X
a

u2nif
2
niu

2
njf

2
ni
~KnijEnij; where unifni � [Yi � rn(Xi)] fn(Xi): (2.5)

Theorem 2 Under Assumptions 2.1, 2.2 and 2.3, if (bn
p
nhpn)

�1 ! 0, b�1
n hm+q ! 0 and

nh(p=2)+2(m+q) ! 0, then as n! +1,

(i) nhp=2Vn=!n
d�! N(A�=!; 1) if Æ2nnh

p=2 ! A <1;

(ii) nhp=2Vn=!n
p�! +1 if Æ2nnh

p=2 ! +1:

Theorem 2 provides an equality test across nonparametric regressions. By letting Æn = 0, the test

statistic is asymptotically N(0; 1) under H0 and, by letting Æn = 1, it diverges to +1 under any

�xed alternative to H0. The resulting test is therefore a one-sided normal test and is consistent

against any �xed alternative. In addition, the test has power to detect local alternatives of the

type H1n provided that Æ2nnh
p=2 ! +1. In practice, Vn can be more easily computed through

n(4)Vn =
X
a

unifniunjfnj ~Knijwnij + 2
X
a

unifni(Yi � Yj)Knij
~Knijwnij

�
X
a

(Yi � Yj)
2K2

nij
~Knijwnij �

X
a

(Yi � Yk)(Yj � Yk)KnikKnjk
~Knijwnij:

Di�erent extensions of the procedure can be proposed. First, the procedure can be applied

to test the signi�cance of any set of qualitative variables in a nonparametric regression. The

17Unreported simulation results indicate that trimming, though necessary in theory, is not crucial in practice.

10



variable C is used to recover any combination of the values of the initial discrete variables.

Second, one can easily introduce discrete variables in the regressors that are not under test.

That is, we can consider (X;D) instead of X, where D is a set of discrete covariates. In that

case, one should introduceD in the di�erent functions considered, so that r(X) becomes r(X;D),

. . . The asymptotic properties of Vn are as in Theorem 1. As noted before, we can equivalently

use either smooth or non-smoothing weights for the discrete variables in D without a�ecting

our procedure's properties. Third, though the theory is developped for generic bandwidths, our

result can be extended to vanishing individual bandwidths for each univariate regressor. Fourth,

as suggested by a referee, we can allow for data-driven bandwidths.

Theorem 3 If K(�) is di�erentiable with bounded partial derivatives, Theorem 2 extends to

the case of random data-driven bh and bhc, c = 1; : : : ; �C, if there exist deterministic sequences

h and hc, c = 1; : : : ; �C, that ful�l the assumptions of Theorem 2 such that
�bh� h

�
=h and�bhc � hc

�
=hc, c = 1; : : : ; �C, are all op(1).

Fifth, as detailled in the next section, both the independence assumption and the identical

distribution assumption can be relaxed to some extent.

3 Case of a �xed C

3.1 Cross-section data

There exist situations where the variable de�ning the division of subsamples is not random,

for instance when testing for poolability of cross-section data. This is also true for experiments

in which one can control for treatments. The results from the previous section can be adapted

to this context. Speci�cally, let C be a variable taking integer values in
�
1; : : : ; �C

	
. For each

c, assume that we have at hand an i.i.d. sample of size nc from a random variable (Xc; Yc) on

IRp�IR, such that Xc has marginal density fc(�). We employ similar notations as in Section 2, so

that, for each c, the sample from (Xc; Yc) is denoted
n
(Xi; Yi); i = 1 +

P
c0<c nc0; : : : ;

P
c0�c nc0

o
and

P �C
c=1 nc = n. We then consider the general regression model

Yi = R(Xi; c) + Ui; E [UijXi] = 0 i = 1; : : : ; n; (3.1)

so that now R(�; c) denotes the regression function of Yc on Xc. For each c, nonparametric

kernel estimators of R(�; c) and fc(�) are de�ned as in the previous section. Overlooking the

11



information given by C and assuming falsely that the observations constitute an i.i.d. sample

leads to consider the pooling regression model (2.2). Nonparametric kernel estimators of fn(�)
and rn(�) are de�ned as in the previous section, but their interpretation radically changes.

Here fn(�) estimates f(�) = P �C
c=1 ncfc(�)=n, which is not the marginal density of an observed

random variable X, but the density of a hypothetical variable constructed from the di�erent

Xc's. Similarly, rn(�) estimates r(�) =P �C
c=1 ncR(�; c)fc(�)=nf(�), which is no more a conditional

expectation function, but a weighted average of the regression functions R(�; c), c = 1; : : : ; �C.

While the two models are now interpreted di�erently, the framework is similar. The null

hypothesis of interest is still the constancy of the regression function R(�; c) for di�erent values
of c, so that it is possible to estimate it from the pooling model, even though the densities fc(�)
di�er for di�erent values of c. Thus, the null hypothesis of interest reads

H0 : R(X; c) = r(X) a.s. 8c = 1; : : : ; �C

and the statistic Vn is constructed as in (2.3). We let �2c (X) � E
h
(Yc � r(Xc))

2 jXc = X
i
. The

following assumption summarizes the considered setup for a �xed C.

Assumption 3.1 Let C be a �xed variable taking integer values in
�
1; : : : ; �C

	
. For c = 1; : : : ; �C,

each subsample
n
(Xi; Yi); i = 1 +

P
c0<c nc0; : : : ;

P
c0�c nc0

o
is an i.i.d. sample of size nc from a

random variable (Xc; Yc) on IRp� IR, such that Xc has marginal density fc(�) and E
�
Y 8
c

�
<1.

The subsamples are independent. For any c, nc=n! pc as n =
P �C

c=1 nc ! +1.

Theorem 4 Under Assumptions 3.1, 2.2 and 2.3, if nhp=2+2(m+q) ! 0, then as n! +1,

(i) nhp=2Vn
d�! N(A�;!2) if Æ2nnh

p=2 ! A <1;

(ii) nhp=2Vn
p�! +1 if Æ2nnh

p=2 ! +1;

where � =
P �C

c=1 pcE
�
d2(X; c)f2(X)fc(X)

�
, !2 = 2

P
c;c0 pcpc0E

�
�2c (X)�2c0(X)f4(X)Ecc0(X)

�
;

Ecc0(X) =

Z "
Kac(s)wcc0 � 2(K �Kac)(s)

fc(X)

f(X)
+
g2(X; s)

f2(X)

#2
ds;

wcc0 = (1=pc)1I [c = c0] and g2(X; s) =
P �C

c=1 pcf
2
c (X)(K �K �Kac)(s).

18

Compared to the previous section, we have relaxed the assumption of identically distributed

data across subsamples, but still assume independence across subsamples, which is typically

18In writing !2, we use similar conventions as in (2.4).
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the case for cross-section data. The proof of Theorem 4 mainly follows the one of Theorem 1,

see Appendix A for some brief explanations. Theorems 2 and 3 can be similarly extended. A

testing procedure can then be based on nhp=2Vn=!n, where !n is an estimator of the asymptotic

variance !2 analogous to the ones in Section 2.4. As before, the test is a one-sided normal test,

is consistent against any alternative and detects local alternatives of the type H1n approaching

the null at a rate slower than (nhp=2)�1=2.19

There are interesting connections between our procedure and analysis of covariance. The

simple analysis of variance model reads

Yi = �Ci
+ Ui; E [Ui] = 0:

For testing the hypothesis �c = �, for all c, the usual testing procedure is built upon

S = (1=n)
X
c

nc
�
�Yc � �Y

�2
;

where �Yc = (1=nc)
Pn

i=1 Yi1I[Ci = c] and �Y = (1=n)
Pn

i=1 Yi. Now S equivalently reads

S = (1=n4)
X
i;j;k;l

(Yi � Yk)(Yj � Yl)
n

nCi

1I [Ci = Cj] :

Our statistic Vn is analogous to S (with the slight di�erence that it excludes equal indices in

the sum), but weights the �rst di�erences in the dependent variable by quantities that depend

upon explanatory variables. Thus our testing procedure provides a nonparametric analysis of

covariance, which allows to detect any di�erential e�ect of the regressors on the dependent

variable across the considered subsamples without imposing any parametric assumption.

Three main remarks follow from this interpretation. The �rst remark is related to the choice

of weights in the null hypothesis

H0 : R(X; c) = r(X) �
P �C

c=1 pcR(X; c)fc(X)P �C
c=1 pcfc(X)

a.s. 8c = 1; : : : ; �C:

When the observations constitute a unique random sample, it is meaningful to use a weighting

scheme proportional to pcfc(:). When C is �xed, the use of \frequencies" as weights in H0

is no longer readily interpretable. Obviously, there exist other equivalent formulations of the

19By contrast, Yatchew's (1999) test can detect local alternatives that converges to the null at a rate slower

than n�1=4, which is in turn slower than (nhp=2)�1=2.
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hypothesis that R(�; c) is constant in c that use di�erent weighting schemes. To each formulation

corresponds a test statistic, whose relative merits generally depend on the data at hand.

The second remark concerns problems in application and interpretation of the procedure.

As noted by Sche��e (1959, p. 198), \it is sometimes said that the analysis of covariance is

valid only if the treatments do not a�ect the values of the concomitant variables. The dictum

that the analysis of covariance can be used only in this case would thus con�ne it to a very

restricted situation. The analysis of covariance can be applied to get tests of hypotheses that

have correct signi�cance level, but the sense of using these tests must be considered separately

in each application." This statement remains true for the nonparametric analysis of covariance

proposed here. Speci�cally, we allow the regressors' designs to vary across subsamples, so that the

\treatments" | i.e. the discrete variable C | may a�ect explanatory variables. The procedure

is widely applicable, but may give a right answer to a wrong question. If some of the regressors

are \part of the treatment", e.g. if the regressors have di�erent supports depending on the values

of C, then the null hypothesis H0 is no longer meaningful.20 This second remark is equally valid

in the case of a random C.

Third, our procedure only applies for testing the strict equality of regression functions. If

one wants to test equality up to some parametric transformations, one should build a speci�c test

statistic that accounts for this at the outset, as done by H�ardle and Marron (1990). Even in the

simple case of testing for parallelism of the regression curves, which is easily entertained within

the linear parametric analysis of covariance framework, adapting our test is not completely

straightforward. This extension is left for future work.

3.2 Panel data

A useful extension of our test is testing for poolability of panel data. Consider the model

Yit = Rt(Xit) + Uit; i = 1; : : : ; n0; t = 1; : : : ; T: (3.2)

At each period t, fXit; i = 1; : : : ; n0g is an i.i.d. sample from Xt with density ft(�). The number
T of time periods is �xed while the sample size for each period n0 goes to in�nity. This is the

standard case, which is of most practical relevance, since one usually has a large number of

20In Quade (1982), the �rst proposed method is valid only under the assumption that the distribution of X

does not vary conditionally to C. The second one does not require such an assumption and is close in spirit to

our analysis, with the major di�erence that the bandwidth is held �xed.
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cross-section units but data covering only a few time-periods.21 The null hypothesis of interest

is the constancy of the regression function Rt(�) over time, that is

H0 : Rt(X) = r(X) a.s.

where r(�) � (1=T )
PT

t=1 ft(�)Rt(�)=f(�) and f(�) � (1=T )
PT

t=1 ft(�). The statistic Vn is

Vn =
T

n(4)

X
a

(Yit � Ykr)(Yjt � Yls)
1

h2p
K

�
Xit�Xkr

h

�
1

h
p
t

K

�
Xjt�Xls

h

�
K

�
Xit�Xjt

ht

�
: (3.3)

Here n = n0T ,
P

a denotes summation over arrangements of distinct indices fit; jt; kr; lsg, h and

ht, t = 1; : : : ; T , are bandwidth parameters such that ht=h ! at, 0 < at < +1, for all t. The

results of the Section 3.1, where we imposed independence across subsamples, do not readily

apply in this context. Nevertheless, as we argue below, this assumption can be weakened and

the asymptotic behavior of Vn as n0 !1 is given by Theorem 4.22 Its asymptotic variance is

!2 = (2=T 2)
TX
t=1

TX
t0=1

E
h
�2t (X)�2t0(X)f4(X)Ett0(X)

i
;

where Ett0 =

Z "
T Kat(s)1I

�
t = t0

�� 2(K �Kat)(s)
ft(X)

f(X)
+
g2(X; s)

f2(X)

#2
ds

and g(X; s) = (1=T )
PT

t=1 f
2
t (�)(K �K �Kat)(s).

The usual way of considering panel data models in econometrics is to see Rt(�) as the

conditional expectation of Yt given all past explanatory variables fX1; : : : ;Xtg and a time-

independent latent variable l. This formulation is quite general, and in particular allows for

some lagged dependent variable in the regressors, so that further restrictions are usually imposed

on the model. Chamberlain (1984) distinguishes two main restrictions: lack of residual serial

correlation and no structural lagged dependent variables.

There is residual serial correlation conditional on a latent variable l if Yt is not independent of

fY1; : : : ; Yt�1g conditional on fX1; : : : ; Xt; lg.
The relationship of X to Y is static conditional on a latent variable l if X is strictly exogeneous

conditional on l and if Yt is independent of fX1; : : : ;Xt�1g conditional on Xt and l. If the

21The increasing availability of micropanels in which T is not negligible relative to n0 motivates rising interest

for further analysis. See e.g. Alvarez and Arellano (1998) for recent results and an account of issues that still need

to be addressed in a parametric context.
22A brief account of the necessary adaptations of the proof is given in Appendix A.
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relationship of X to Y is static conditional on a latent variable l, then there are no structural

lagged dependent variables.

Our analysis imposes the two restrictions of no serial residual correlation and of a static relation-

ship of X to Y (both conditional on a latent variable l). First, though Assumption 3.1 imposes

independence between subsamples, inspection of the proofs reveals that we can alleviate the in-

dependence requirement and replace it by the assumption of no serial residual correlation. This

assumption allows for �xed individual e�ects correlated with the regressors. In a nonparametric

context, such e�ects are not separately identi�able.23 Second, Model (3.2) also assumes that the

regression function does not depend on fX1; : : : ;Xt�1g. This is true when the relationship of X

to Y is static conditional on a latent variable l. But, as shown by Chamberlain (1984), there is

no restriction to assume a static conditional relationship in a fully nonparametric context. It is

restrictive only when combined with a speci�c functional form of the distribution. Hence, the

restrictions imposed in our analysis are not as stringent as they may appear at �rst.

Baltagi, Hidalgo and Li (1996) consider a statistic close to ours, with the crucial di�erence

that they use a smoothing parameter a for the pooling model and the same bandwidth h at

each period for Model (3.2). They subsequently impose h=a2 = o(1). As a consequence, the

asymptotic variance of the test statistic becomes

!2
0 = 2

Z
K2(s) ds

TX
t=1

E
h
�4t (X)f4(X)ft(X)

i
:

Contrary to !2, the variance !2
0 depends neither on cross-products of conditional variances

between periods nor explicitely on the designs' di�erences between periods.24 This occurs because

using di�erent amounts of smoothing in the null and the alternative model results in pulling out

any cross-e�ect between periods. This is why the previous authors do not need the assumption of

no serial residual correlation. As argued in Section 2.3, the restriction h=a2 = o(1) does not allow

to attain the maximum rate of convergence of the statistic. The only justi�cation advocated by

the authors is that otherwise one should estimate the expectation of Vn to recenter the test

statistic, and that this would introduce �nite-sample bias. This argument is invalid from both a

theoretical viewpoint, as our analysis demonstrates, and a practical viewpoint, as shown by the

following simulation results.

23On this topic, see the discussion of Baltagi, Hidalgo and Li (1996).
24Our formula gives the general form of the asymptotic variance !2

0 . The one given in Baltagi, Hidalgo and Li

(1996) assumes that the density of the regressors remains the same across time and has f5(�) in place of f4(�)ft(�).
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4 Small sample behavior

We now investigate the behavior of our test through a Monte-Carlo experiment in the case of a

random C taking two values 0 or 1 with equal probabilities. We generate the data through

Y = �X + X3 + 1I[C = 0] d(X) + U; (4.1)

where conditional on C,X is generated as N(C; 1) and U is independently distributed as N(0; 1).

We impose the restriction that E [d(X)jC = 0] = 0 and we set parameters � and  to -4 and 1

respectively, so that E (Y jC = 0) = E (Y jC = 1) = 0.

The null hypothesis corresponds to d(X) � 0. The alternatives are chosen to investigate

the power of our test when their magnitude or frequency vary. For the magnitude, we consider

three linear alternatives of the form

d(X) = �X;

with � = 0:5; 1 and 2 corresponding respectively to DGP1, DGP2 and DGP3. This allows to

compare the performances of our procedure to the standard Chow test based on the true Model

(4.1). Alternatives corresponding to varying frequencies are de�ned through

d(X) = sin(��X);

with � = 2; 1; 2=3 and 1=2 corresponding respectively to DGP4, DGP5, DGP6 and DGP7. These

departures from the null are of special interest, for it is known that smooth tests of parametric

speci�cation and nonparametric signi�cance tests for continuous regressors are sensitive to the

frequency of the alternative, see Hart (1997) and Lavergne and Vuong (2000).

We consider small (n = 100) and moderate (n = 200) sample sizes and run 2000 replications.

Unreported simulation results show that the trimming parameter has very little inuence on the

results, so that it is arbitrarily set to 0 in all experiments. The bandwidth parameter h is chosen

as h = ŝX n��, where ŝX is the estimated standard deviation for all observations of X. We

let h0 = h1, so that a0 = a1 = a. This choice allows to save much computations and has also

the advantage that it mimics the choice of an uninformed practitioner who only knows that

p0 = p1 = 1=2. For ease of computation, we choose the uniform kernel with support [�1=2; 1=2].
Appendix C gives the values with respect to a of the integrals that enter !2.25

25The Mathematica notebook used to compute the integrals can be adapted for other kernels, and is available

from the author upon request.
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We �rst focus on how bandwidths' choice for the alternative model, i.e. h0 = h1, inuence

the test's outcome, while keeping �xed the restricted model's bandwidth h, as done by Lavergne

and Vuong (2000) in another context. We then let a vary in the grid (0:5; 1; 1:5; 2), while keeping

h = bsXn�1=5.26 Table 1 reports our results for the null hypothesis (DGP0) and the linear

alternatives. For each case, the �rst row gives the mean of our test statistic with its standard

deviation in parentheses. The second row gives empirical rejection rates of the test, the �rst

�gure corresponds to a 5% nominal level and the second one to a 10% nominal level. The third

row gives corresponding size-corrected empirical rejection rates for the alternative, except for

DGP0 where it gives the empirical critical values at 5% and 10% levels. For each sample size,

the last row reports rejection rates of the Chow test for the same nominal levels.

The �rst column of Table 1 relates to the null hypothesis. For any choice of a, the test

statistic is very close to be unbiased. The standard deviation of our test statistic is close to,

but stays smaller than one. This is due partly to the fact that, to save computations, we use

the simplest estimator of the variance (2.5), which is positively biased in small samples. A

similar feature appears in the simulations performed by Lavergne and Vuong (2000) on their

nonparametric signi�cance test for continuous regressors.27 While the mean seems to have an

inversed U-shape with respect to a, no clear relationship appears to link the standard deviation

and a. Under the null hypothesis, empirical sizes are quite close to nominal levels. There is no

evidence of systematic under or overrejection at a 5% nominal level. At a 10% level, there is

slight underrejection for all our choices of a. Finally the empirical critical values are very close

to the ones derived from the normal approximation, with for instance a value of 1.645 at a 5%

level when a = 1 and n = 200.

Regarding the linear alternatives, we �nd as expected that power is increasing with the

sample size and the magnitude of the departure from the null, as measured by �. The choice

a = 0:5 leads to small power, especially for alternatives of little amplitude. Though, our test

can reasonably detect moderate linear alternatives for a bandwidth h0 = h1 at least as great

as h. Furthermore, for an alternative of amplitude � = 2, the power performance of our test

can equal that of the Chow test, although the design is ideal for the latter. The highest power

26This choice corresponds to a practical rule-of-thumb and is not supposed to be optimal for the testing problem

at hand. In our setup, we have m = 2 and q = 1, so that h ful�ls Theorem 1's conditions.
27In the latter study, it has also been observed that better estimators of the variance are obtained by using

K2(�) instead of K(�) times the integral of K2(�). A similar feature is expected to hold in our case.
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is attained for the largest considered bandwidth, which could be expected since the alternative

is linear and the kernel smoother is a straight line for large bandwidths. Though, too large a

bandwidth is likely to give low power.

Table 2 has the same structure as Table 1 and reports results relative to the sinus alterna-

tives. The empirical power of the test exhibits an inverse U-shape as a function of the bandwidth

h0 = h1 for the high frequency alternative DGP4. This suggests that the bandwidth should be

adapted to the frequency of the alternative. This is not surprising, as a similar feature appears

in other smooth tests, see e.g. the simulations results of Delgado, Dominguez and Lavergne

(1998) and Lavergne and Vuong (2000). For comparative purposes, we also provide the empiri-

cal rejection rates of the Chow test assuming a linear speci�cation in X. The lowest frequency

alternative DGP7 is close to a linear speci�cation in the range [�1; 1]. Given that X is N(0; 1)

when C = 0, the Chow test therefore performs quite well, while our test has high power for large

a. For higher frequency alternatives DGP4 and DGP5, the Chow test has either trivial or low

power irrespective of the sample size, while the empirical power of our test can exceed 85% for

a moderate sample size of 200.

We now focus on how the choice of h inuences our test, while keeping �xed the ratio

of bandwidths h0=h = h1=h = 1. We then let � vary in the grid (1=3; 1=4; 1=5; 1=6). Table 3

(respectively Table 4) has the same structure as Table 1 (Table 2) and report our results for the

null hypothesis and the linear alternatives (respectively the sinus alternatives). For a choice of

� of at least 1=5, the statistic is close to be unbiased under H0, while its expectation increases

when � decreases to 1=6 as expected. The variance is decreasing in �. On the whole, decreasing

� leads to more rejections. For linear alternatives, empirical power is decreasing in �, whether

it is size-adjusted or not. For sinus alternatives, empirical power can be low when � is large,

especially for a small sample size, while it highly increases when � decreases. For DGP4 and

n = 100, size-adjusted power exhibits an inverse U-shape as a function of h. In the other cases,

it highly increases when h increases.

5 Conclusion

In this paper we propose a general test of equality across nonparametric regressions. The proce-

dure is based on the comparison of the regression functions for each subsample with the general

one that pools all observations. It applies in a variety of situations, whether the division into
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subsamples is de�ned in a random way or not. In our presentation, we have �rst considered the

leading situation where a random qualitative variable de�nes the split into di�erent subsamples.

Then, by considering the case where the split depends on a �xed qualitative variable, we have

shown how our basic assumptions can be weakened so that our test applies to cross-section and

panel data. In summary, our testing procedure is applicable in any case where the observations

are i.i.d. within each subsample and where the residuals are uncorrelated across subsamples.

The characteristic feature of our testing problem is that both models (under the null and

under the alternative) have the same e�ective dimension. Hence our procedure uses similar

amount of smoothing for the pooling and the alternative model. We have justi�ed this assumption

and investigated thoroughly its implications. Though, bandwidths' choice is clearly a key issue

for application of the test. Bootstrap methods could be a way to bypass this problem, as they

usually provide better approximations to the null distribution than asymptotics do and can be

much less sensitive to bandwidths' choice, see e.g. Delgado, Dominguez and Lavergne (1998).

This possibility should be investigated from both a theoretical and a practical viewpoint.

Appendix A: Proofs

In what follows, ui � Yi � r(Xi), Ui � Yi � R(Xi; Ci), fi � f(Xi), ri � ri(Xi), di � d(Xi; Ci),

�2i � �2Ci
(Xi) and Zi � (Ci; Xi; Yi), i = 0; 1; : : : ; n. Also Knik � h�pK [(Xi �Xk)=h], hi � hnCi ,

K(�) � jK(�)j and i; j; k; l; i0; j0; k0; l0 refer to indices that are pairwise di�erent unless stated otherwise.

We let bfi � (n�1)�1
P

k 6=iKnik, and more generally for any index set I not containing i with cardinality

jI j, bf Ii � (n� 1� jI j)�1
P

k 6=i;k 62I Knik. To ease exposition, we assume hc=h = ac, for all c.

A.1 Proof of Theorem 2.1

As Yi � Yk = (ui � uk) + (ri � rk), and as K(�) is even by Assumption 2.2, we have from (2.3)

Vn =
1

n(4)

X
a

(ui � uk)(uj � ul)KnikKnjl
~Knijwnij +

2

n(4)

X
a

(ui � uk)(rj � rl)KnikKnjl
~Knijwnij

+
1

n(4)

X
a

(ri � rk)(rj � rl)KnikKnjl
~Knijwnij = I1 + 2I2 + I3;

where I1 =
n� 2

n� 3

1

n(2)

X
a

uiujfifj ~Knijwnij +
2(n� 2)

n� 3

1

n(2)

X
a

ui( bf ji � fi)ujfj ~Knijwnij

+
n� 2

n� 3

1

n(2)

X
a

ui( bf ji � fi)uj( bf ij � fj) ~Knijwnij �
2

n(3)

X
a

uifiulKnjl
~Knijwnij
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� 2

n(3)

X
a

ui( bf j;li � fi)ulKnjl
~Knijwnij +

1

n(4)

X
a

ukulKnikKnjl
~Knijwnij

� 1

n(4)

X
a

uiujKnikKnjk
~Knijwnij =

n� 2

n� 3
[V0n + 2I1;1 + I1;2]� 2I1;3 � 2I1;4 + I1;5 � I1;6;

I2 =
1

n(3)

X
a

uifi(rj � rl)Knjl
~Knijwnij +

1

n(3)

X
a

ui( bf j;li � fi)(rj � rl)Knjl
~Knijwnij

� 1

n(4)

X
a

uk(rj � rl)KnikKnjl
~Knijwnij = I2;1 + I2;2 � I2;3:

Propositions 1 to 12 study each of the above terms. Collecting results, it follows that

nhp=2 [V0n � 2I1;3 + I1;5] = Ln+Æ2nnh
p=2�n+Æn

p
nhp=2Op(1)+op(1); where Ln

d�!N(0; !2) and �n ! �

and nhp=2 [Vn � (V0n � 2I1;3 + I1;5)] = Æ2nnh
p=2op(1) + Æn

p
nhp=2Op(1) + Ænnh

p=2h(m+q)Op(1) + op(1):

If Æ2nnh
p=2 ! A, Æ2n

p
nhp=2 and Ænnh

p=2h(m+q) are both o(1), so that nhp=2Vn
d�!N(A�; !2).

If Æ2nnh
p=2 ! +1, Æ2n

p
nhp=2 and Ænnh

p=2h(m+q) are both o(Æ2nnh
p=2), so that nhp=2Vn

p�!+1. Q.E.D.

In the following proofs, we will rely on the following lemma.

Lemma 1 (Fan and Li, 1996) Let Un be a U-statistic of order m with symmetrical kernel Hn such

that E [Hn(Z1; : : : ; Zm)jZ1] = 0 a.s. and E
�
H2
n(Z1; : : : ; Zm)

�
<1 for each n.

Let Hn;s = E [Hn(Z1; : : : ; Zm)j(Z1; : : : ; Zs)], �s = Var [Hn;s(Z1; : : : ; Zs)] for s = 2; : : : ;m and Gn(Z1; Z2) =

E [Hn;2(Z1; Z0); Hn;2(Z2; Z0)j(Z1; Z2)]. If �s=�2 = o(ns�2) for s = 1; : : : ;m, and

E
�
G2
n(Z1; Z2)

�
+ n�1E

�
H4
n;2(Z1; Z2)

�
E2

�
H2
n;2(Z1; Z2)

� ! 0 as n!1;

then nUn is asymptotically normal with zero mean and variance (1=2)
�
m(2)

�2
�2.

As we consider U-statistics with non-symmetric kernel in our proofs, we briey explain how Lemma 1

extends to this case. One �rst needs to replace Hn(Z1; : : : ; Zm) by the symmetric kernel

~Hn(Z1; : : : ; Zm) =
1

m!

X
p

Hn(Zi1 ; : : : ; Zim);

where
P

p denotes summation over the m! permutations of (1; : : : ;m). If E
h
~Hn(Z1; : : : ; Zm)jZ1

i
= 0

a.s., the U-statistic is degenerate and under the assumptions of Lemma 1 converges in distribution to a

centered normal distribution. Its asymptotic variance is given by

(1=2)
�
m(2)

�2
�2 = (1=2)

�
m(2)

�2
(1=m!)2

X
p

X
p0

E
�
Hn(Zi1 ; : : : ; Zim)Hn(Zi0

1
; : : : ; Zi0m

)jZ1; Z2

�
:

Hence one needs to determine all the terms in the double summation. Similar expressions are derived for

�s; s = 3; : : : ;m. An analogous result also holds for two U-statistics of order m1 and m2 with respective

kernels H1;n and H2;n. Their asymptotic covariance is then given by

(1=2)m
(2)
1 m

(2)
2 (1=m1!)(1=m2!)

X
p

X
p0

E
h
H1;n(Zi1 ; : : : ; Zim1

)H2;n(Zi0
1
; : : : ; Zi0m2

)jZ1; Z2

i
:
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Proposition 1 nhp=2V0n = nhp=2U0n+Æ
2
nnh

p=2�n+Æn
p
nhp=2Bn; where �n �! �, nhp=2U0n

d�!N(0; !20)

and Bn
d�!2N(0; � � Æ2�2), with Æ = limn!1 Æn and �, !20 and � subsequently de�ned.

Proof: V0n = U0n +W0n � �n, where Hn(Zi; Zj) = uiujfifj ~Knijwnij , �n = E [Hn(Z1; Z0)], W0n =

(2=n)
P

iE [Hn(Zi; Z0)jZi] and

U0n =

�
n

2

��1X
i<j

~Hn(Zi; Zj) =

�
n

2

��1X
i<j

fHn(Zi; Zj)�E [Hn(Zi; Z0)jZi]�E [Hn(Z0; Zj)jZj ] + �ng :

(i) �n = E
h
uifiujfj ~Knijwnij

i
= E

h
(Ui + Ændi)fi(Uj + Ændj)fj ~Knijwnij

i
= Æ2nE

h
difidjfj ~Knijwnij

i
= Æ2nE

h
difiwnijE

�
djfj ~Knij jXi; Ci; Cj

�i
:

Now E
h
Ændjfj ~Knij jXi; Ci; Cj

i
= Ænd(Xi; Cj)f (Xi) fCj

(Xi) + o(Æn) uniformly in Xi by Lemma 2, as

Ænd(X;C)f(X)fC(X) 2 Up; 8C. Therefore �n = Æ2nE
�
d2i f

2
i E (wnij jCi) fCi

(Xi)
�
+ o(Æ2n) = Æ2n�n with

�n �! � = E
�
d2(X;C)f2(X)fC(X)

�
, as E (wnij jCi) = 1.

(ii) Distribution of W0n: E
�
E2 (Hn(Zi; Z0)jZi)

�
= E

h
u2i f

2
i E

2(u0f0 ~Kni0wni0jZi)
i
= Æ2n�n with �n �!

� = E
�
�2C(X)d2(X;C)f4(X)f2C(X)

�
, as Ænd(X;C)f(X)fC(X) 2 Up; 8C.

Now E j E [Hn(Zi; Zj)jZi] j�= E j u�i f�i E�
h
u0f0 ~Kni0wni0jZi

i
j= O(1) = o(n�=2�1) for some 2 < � � 4,

as E j Y 8 j<1. Thus, by Theorem 7.1 of Hoe�ding (1948),
p
n [W0n � 2�n]! 2ÆN

�
0; � � Æ2�2

�
:

(iii) Distribution of U0n: As E
h
~Hn(Zi; Zj)jZi

i
= 0, by Lemma 1,

nhp=2U0n
d�!N(0; �2) if

E[ ~G2
n] + n�1E[ ~H4

n]

E2[ ~H2
n]

= o(1);

where ~Gn(Zi; Zj) = E
h
~Hn(Zi; Z0) ~Hn(Zj ; Z0)jZi; Zj

i
and �2 = 2 limn!1 hpE( ~H2

n). By de�nition of

~Hn(Zi; Zj), the above is equivalent to

E[G2
n] + n�1E[H4

n]

E2[H2
n]

= o(1); (A.1)

where Gn(Zi; Zj) = E [Hn(Zi; Z0)Hn(Zj ; Z0)jZi; Zj ], and �2 = 2 limn!1 hpE(H2
n).

As �2C(X)f2(X)f2C(X) 2 Up; 8C, E
�
H2
n(Zi; Zj)

�
= E

h
�2Ci

(Xi)�
2
Cj
(Xj)f

2
i f

2
j
~K2
nijw

2
nij

i
= h�p!20;n=2;

where !20;n �! !20 = 2E
�
�2C(X)�2C0(X)w2

CC0f4(X)
R
K2

aC
(t) dt

�
, using (2.4).

Moreover, as E(u4jX;C)f4(X)fC(X) 2 Up; 8C,

E
�
H4
n

�
= E

h
u4iu

4
jf

4
i f

4
j
~K4
nijw

4
nij

i
= E

h
E(u4i jXi; Ci)f

4
i E(u

4
j jXj ; Cj)f

4
j
~K4
nijw

4
nij

i
= O(h�3p):

As Gn(Zi; Zj) = uifiujfjE
h
�2C0

(X0)f
2(X0) ~Kni0

~Knj0wni0wnj0jZi; Zj

i
, we have

E[G2
n] =

Z
�2i f

2
i �

2
j f

2
j E

�Z
�2C0

~Kni0
~Knj0f

2(X0)fC0
(X0) dX0 wni0wnj0jZi; Zj

�2
fifj dXidXj d� (Ci; Cj)
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= h�p
Z
�2i f

2
i �

2
Cj
(Xi + ht)f2(Xi + ht)

E

�Z
�2C0

(Xi � hs)KaC0
(s)KaC0

(s+ t) f2(Xi � hs)fC0
(Xi � hs) dswni0wnj0jZi; Zj

�2
fCi

(Xi)fCj
(Xi + ht) dXidt d� (Ci; Cj)

= h�pE

�
�8C(X)f8(X)f3C(X)

Z
(KaC �KaC )

2
(t) dt

�
+ o(h�p) = O(h�p);

where � (Ci; Cj) denotes the distribution of (Ci; Cj). Thus (A.1) holds as h! 0 and nhp !1. Q.E.D.

Proposition 2 nhp=2I1;3 = nhp=2U1n+ Æn
p
nhp=2Op(1)+ op(1) , where nh

p=2U1n is asymptotically cen-

tered normal with variance 2E
�
�2C(X)�2C0(X)f2(X)f2C(X)

R
(K �KaC )

2(t) dt
�
.

Proof: I1;3 is a U-statistic with kernel Hn(Zi; Zj ; Zl) = uifiulKnjl
~Knijwnij : We now compute the

corresponding �s, s = 1; 2; 3.

(i) �2 = h�p2E
h
�2C(X)�2C0(X)f2(X)f2C(X)

R
(K �KaC )

2
(t) dt

i
+o(h�p). Indeed we haveE(HnjZi; Zj) =

0, E(HnjZi; Zl) = uifiulE
�
Knjl

~Knijwnij jZi; Zl

�
and E(HnjZj ; Zl) = ÆnulKnjlE

�
difi ~Knijwnij jZj

�
.

Now E
�
E2(HnjZi; Zl)

�
= E

h
�2i f

2
i �

2
l E

2
�
Knjl

~Knijwnij jZi; Zl

�i
= h�pE

�
�2C(X)�2C0(X)f2(X)f2C(X)

Z
(K �KaC )

2
(t) dt

�
+ o(h�p);

E
�
E2(HnjZj ; Zl)

�
= Æ2nE

h
�2lK

2
njld

2
jf

2
j f

2
Cj
(Xj)

i
= Æ2nO(h

�p)E
h
u2lKnjld

2
jf

2
j f

2
Cj
(Xj)

i
= O(Æ2nh

�p);

E [E(HnjZi; Zl)E(HnjZj ; Zl)]

= Æ2nE
h
difi�

2
lKnjlE

�
Knjl

~Knijwnij jZi; Zl

�
E
�
difi ~Knijwnij jZj

�i
= Æ2nO(h

�p)E
h
jdijfi�2lKnjlE

�
~Knijwnij jZi; Zl

�
jE
�
difi ~Knijwnij jZj

�
j
i
= O(Æ2nh

�p):

(ii) �1 = O(Æ2n). Indeed E (HnjZi) = E (HnjZj) = 0 and E(HnjZl) = ÆnulE
�
difiKnjl

~Knijwnij jZl

�
:

Then E
�
E2(HnjZl)

�
= Æ2nE

h
u2lE

2
�
KnjlE(difi ~Knijwnij jZj ; Zl)jZl

�i
= O(Æ2n):

(iii) E [Hn] = 0.

(iv) �3 = O(h�2p), as E
�
H2
n

�
= O(h�2p)E

h
u2iu

2
l f

2
iKnjl

~Knijw
2
nij

i
= O(h�2p):

Thus E
�
nhp=2 (I1;3 � U1n)

�2
= Æ2nnh

pO(1), where U1n = (1=n(3))
P

a [Hn(Zi; Zj ; Zl)� E(HnjZl)]. Simi-

larly, E
�
H4
n;2

�
= O(h�3p) and E

�
G2
n

�
= O(h�p). The result then follows from Lemma 1. Q.E.D.

Proposition 3 nhp=2I1;5 is asymptotically centered normal with variance 2E
�
�2C(X)�2C0(X)

R
g4(X; t) dt

�
,

where g2(x; t) =
P

c pcf
2
c (x)(K �K �Kac)

2(t).

Proof: I1;5 is a U-statistic with kernel Hn(Zi; Zj ; Zk; Zl) = ukulKnikKnjl
~Knijwnij :

23



(i) �3 = O(h�2p). Indeed we have E(HnjZi; Zj ; Zk) = E(HnjZi; Zj ; Zl) = 0, and

E(HnjZi; Zk; Zl) = ukulKnikE
�
Knjl

~Knijwnij jZi; Zl

�
;

E(HnjZj ; Zk; Zl) = ukulKnjlE
�
Knik

~Knijwnij jZj ; Zk

�
:

Then E
�
E2(HnjZi; Zk; Zl)

�
= E

h
u2ku

2
lK

2
nikE

�
Knjl

~Knijwnij jZi; Zl

�
E
�
Knj0l

~Knij0wnij0 jZi; Zl

�i
= O(h�2p)E

h
u2ku

2
lKnikE

�
Knjl

~Knijwnij jZi; Zl

�
E
�
~Knij0wnij0 jZi; Zl

�i
= O(h�2p)E

h
u2ku

2
lKnikKnjl

~Knijwnijf
2
Ci(Xi)

i
= O(h�2p);

Similarly E
�
E2(HnjZj ; Zk; Zl)

�
and E [E(HnjZi; Zk; Zl)E(HnjZj ; Zk; Zl)] are O(h

�2p).

(ii) �2 = h�p2E
�
�2C(X)�2C0

R
g4(X; t) dt

�
+ op(h

�p). Indeed we have E(HnjZi; Zj) = E(HnjZi; Zk) =

E(HnjZi; Zl) = E(HnjZj ; Zk) = E(HnjZj ; Zl) = 0 andE(HnjZk; Zl) = ukulE
�
KnikKnjl

~Knijwnij jZk; Zl

�
;

so that E
�
E2(HnjZk; Zl)

�
= E

h
�2k�

2
l E

2
�
KnikKnjl

~Knijwnij jZk; Zl

�i
. Now

E
�
KnikKnjl

~Knijwnij jZk; Zl

�
= E

�
wnij

Z
KnikKnjl

~KnijfCi
(Xi)fCj

(Xj) dXidXj jZk; Zl

�
= E

�
wnijfCi

(Xk)fCj
(Xl)

Z
K(u)K(v)h�pKaCi

(u� v + h�1 (Xk �Xl)) dudvjZk; Zl

�
uniformly in (Xi; Xj) as fC(�) 2 Up; 8C. Therefore

E
�
E2(HnjZk; Zl)

�
=

Z
�2k�

2
l

�Z
wnijfCi

(Xk)fCj
(Xl)

Z
K(u)K(v)h�pKaCi

(u� v + h�1 (Xk �Xl)) dudv d�(Ci; Cj)

�2
fCk

(Xk)fCl
(Xl) dXkdXl d�(Ck ; Cl)

= h�p
Z

�2k�
2
Cl
(Xk � ht)

�Z
wnijfCi

(Xk)fCi
(Xk � ht)

Z
K(u)K(v)KaCi

(u� v + t) dudv d�(Ci; Cj)

�2
fCk

(Xk)fCl
(Xk � ht) dXkdt d�(Ck ; Cl)

= h�pE

�
�2C(X)�2C0(X)

Z
g4(X; s) ds

�
+ o(h�p);

where g2(x; s) =
P

c pcf
2
c (x)(K �K �Kac)

2(s).

(iii) �1 = 0, as E (HnjZi) = E (HnjZj) = E(HnjZk) = E(HnjZl) = 0.

(iv) E [Hn] = 0.

(v) �4 = O(h�3p), as E
�
H2
n

�
= E

h
u2ku

2
lK

2
nikK

2
njl

~K2
nijw

2
nij

i
= O(h�3p)E

h
u2ku

2
lKnikKnjl

~Knijw
2
nij

i
=

O(h�3p):

Similarly E
�
H4
n;2

�
= O(h�3p) and E

�
G2
n

�
= O(h�p). The result follows from Lemma 1. Q.E.D.

Proposition 4 nhp=2 (U0n � 2U1n + I1;5)
d�!N(0; !2).
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Proof: To show this, we apply the Cramer-Wold device. We compute the covariances between U0n, U1n

and I1;5.

Covariance between U0n and U1n: �2;2 is determined by

E
h
uifiulfl ~KnilwnilE

�
uifiulKnjl

~Knijwnij jZi; Zl

�i
= E

h
�2i f

2
i �

2
l fl

~KnilwnilE
�
Knjl

~Knijwnij jZi; Zl

�i
= h�pE

�
�2C(X)�2C0(X)wCC0f3(X)fC(X)

Z
KaC (t)(K �KaC )(t) dt

�
+ o(h�p):

Covariance between U0n and I1;5: �2;2 is determined by

E
h
ukfkulfl ~KnklwnklE

�
ukulKnikKnjl

~Knijwnij jZk; Zl

�i
= E

h
�2kfk�

2
l fl

~KnklwnklE
�
KnikKnjl

~Knijwnij jZk; Zl

�i
= h�pE

�
�2C(X)�2C0(X)wCC0f2(X)f2C00(X)

Z
KaC (t)(K �K �KaC00

)(t) dt

�
+ o(h�p):

Covariance between U1n and I1;5: �3;3 = O(h�p). and �2;2 is determined by

E
h
E
�
ukfkulKnjl

~Knkjwnkj jZk; Zl

�
E
�
ukulKnikKnj0l

~Knij0wnij0 jZk; Zl

�i
= E

h
�2kfk�

2
l E

�
Knjl

~Knkjwnkj jZk; Zl

�
E
�
KnikKnj0l

~Knij0wnij0 jZk; Zl

�i
= h�pE

�
�2C(X)�2C0(X)f(X)fC(X)f2C00(X)

Z
(K �KaC )(t)(K �K �Ka00

C
)(t) dt

�
+ o(h�p):

Hence nhp=2 [U0n � 2U1n + I1;5]
d�!N(0; !2), where

!2 = 2E

�
�2C(X)�2C0(X)w2

CC0f4(X)

Z
K2

aC
(t) dt

�
+ 2E

�
�2C(X)�2C0(X)

Z
g4(X; t) dt

�
+ 8E

�
�2C(X)�2C0(X)f2(X)f2C(X)

Z
(K �KaC )

2(t) dt

�
� 8E

�
�2C(X)�2C0(X)wCC0f3(X)fC(X)

Z
KaC (t)(K �KaC )(t) dt

�
+ 4E

�
�2C(X)�2C0(X)wCC0f2(X)f2C00(X)

Z
KaC (t)(K �K �Ka00

C
)(t) dt

�
� 8E

�
�2C(X)�2C0(X)f(X)fC(X)f2C00(X)

Z
(K �KaC )(t)(K �K �Ka00

C
)(t) dt

�
= 2E

�
�2C(X)�2C0f4(X)ECC0(X)

�
;

with ECC0(X) =

Z �
KaC (t)wCC0 � 2(K �KaC )(t)

fC(X)

f(X)
+
g2(X; t)

f2(X)

�2
dt: Q.E.D.

Proposition 5 nhp=2I1;6 = Æ2nnh
p=2op(1) + op(1):

Proposition 6 nhp=2I2;1 = Æn
p
nhp=2op(1) + Ænnh

p=2h(m+q)Op(1) + op(1):

Proposition 7 nhp=2I2;3 = op(1):
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Proposition 8 nhp=2I3 = nhp=2Op(h
2(m+q)) + op(1):

Proofs of Propositions 5{8: They follow the same lines as the ones of Proposition 4 to 7 by Lavergne

and Vuong (2000), provided that Knij is replaced by ~Knij , L(�) by K(�) and g by h.

Proposition 9 nhp=2I1;1 = Æ2nnh
p=2op(1) + Æn

p
nhp=2op(1) + op(1):

Proof: Let �f ji � ( bf ji � fi). We have I1;1 = (1=n(2))
P

a ui�f
j
i ujfj

~Knijwnij so that

E(I21;1) =

�
1

n(2)

�2
"X

a

ui�f
j
i ujfj

~Knijwnij

#"X
a

ui0�f
j0

i0 uj0fj0Kni0j0wni0j0

#
;

where the sums are taken over all arrangements of di�erent indices In what follows, ~Knij � ~Knijwnij .

(i) All indices are di�erent: n(4) terms.

E
h
ui�f

j
i ujfj

~Knijui0�f
j0

i0 uj0fj0
~Kni0j0

i
= Æ4nE

h
�f ji fj�f

j0

i0 fj0didjdi0dj0
~Knij

~Kni0j0

i
= Æ4nE

h
fjfj0didjdi0dj0 ~Knij

~Kni0j0E
�
�f

j
i �f

j0

i0 jZi; Zj ; Zi0 ; Zj0

�i
= Æ4n�nE

���fjfj0didjdi0dj0 ~Knij
~Kni0j0

��� = O(Æ4n�n);

where �n = E
h
�2f ji jZi; Zj ; Zi0 ; Zj0

i
.

(ii) One index is common to fi; jg and fi0; j0g: 4n(3) terms.

(i0 = i) E
h
u2i�f

j
i ujfj

~Knij�f
j0

i uj0fj0
~Knij0

i
= Æ2n�nE

���fjfj0u2i djdj0 ~Knij
~Knij0

��� = O(Æ2n�n);

(j0 = j) E
h
ui�f

j
i u

2
jf

2
j
~Knijui0�f

j
i0
~Kni0j

i
= Æ2n�nE

���f2j diu2jdi0 ~Knij
~Kni0j

��� = O(Æ2n�n);

(i0 = j) E
h
ui�f

j
i u

2
jfj

~Knij�f
j0

j uj0fj0
~Knjj0

i
= Æ2n�nE

���fjfj0diu2jdj0 ~Knij
~Knjj0

��� = O(Æ2n�n):

The case j0 = i is similar to i0 = j.

(iii) Two indices in common to fi; jg and fi0; j0g: 2n(2) terms. We have E

�
u2iu

2
j

�
�f ji

�2
f2j

~K2
nij

�
=

O(�n=h
p) and E

h
u2iu

2
j�f

j
i �f

i
jfifj

~K2
nij

i
= O(�n=h

p):

Therefore, E
�
nhp=2I1;1

�2
= Æ4nn

2hpO(�n) + Æ2nnh
pO(�n) + O(�n): The proposition then follows from

�n = o(1) uniformly, see Lemma 3. Q.E.D.

Proposition 10 nhp=2I1;2 = Æ2nnh
p=2op(1) + Æn

p
nhp=2op(1) + op(1):

Proposition 11 nhp=2I1;4 = Æ2nnh
p=2op(1) + Æn

p
nhp=2op(1) + op(1):

Proposition 12 nhp=2I2;2 = Æ2nnh
p=2op(1) + Æn

p
nhp=2op(1) + op(1):

Proofs of Propositions 10|12: They are very similar to Proposition 11's proof and are not reported.

The two last proofs use the second part of Lemma 3.
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A.2 Proof of Theorem 2

The consistency of both forms of !2n can be proven using similar arguments as in the proof of Theorem

1 and as in Part (i) of Theorem 1 of Lavergne and Vuong (1996) for the treatment of the trimming

parameter. In particular, (bn
p
nhpn)

�1 = o(1) and b�1n hm+q = o(1) ensures that b�1n sup
x2IRp jfn(x) �

f(x)j = op(1). Hence, fn(�) can be replaced by f(�) in Enij without changing the probability limit of !
2
n.

A.3 Proof of Theorem 3

We use similar arguments to that in Mammen (1992), who deals with testing equality of density functions.

However, the technical analysis is long and tedious, so that we only provide a brief sketch of the proof in

the special case where ac = 1, c = 1; : : : ; �C .

Let us explicit the dependence of Vn on the bandwidth. Under the null hypothesis, we shall show that

nbhp=2Vn(bh) � nhp=2Vn(h) = op(1). For this equality to hold, we need to show tightness of the process

n(�h)
p=2

Vn(�h) for � 2 [B1; B2], with 0 < B1 < 1 < B2 < 1. Now n(�h)
p=2

Vn(�h) converges in

distribution to the same limit for any �. Hence it is suÆcient to show that for �1; �2 2 [B1; B2],

E
h
n(�1h)

p=2Vn(�1h)� n(�2h)
p=2Vn(�2h)

i2
= O

�
(�1 � �2)

2
�
;

see Billingsley (1968). Now because
hP11

i=1 �i

i2
� 11

Pn
i=1 �

2
i , it is suÆcient to show an analogous result

for each of the eleven terms of Propositions 1 to 3 and 5 to 12. For instance, we can show that

E
h
n(�1h)

p=2V0n(�1h)� n(�2h)
p=2V0n(�2h)

i2
= O(1)

Z h
�
�p=2
1 K (x=�1)� �

�p=2
2 K (x=�2)

i
dx

is O
�
(�1 � �2)

2
�
by a Taylor expansion of �

�p=2
2 K [x=�2] around �1.

Under the alternative hypothesis, it is suÆcient to show that for �1; �2 2 [B1; B2],

E [Vn(�1h)� Vn(�2h)]
2
= O

�
(�1 � �2)

2
�
:

An analogous result for !2n then implies the desired result.

A.4 Proof of Theorem 4

The proof of Theorem 4 is analogous to the proof of Theorem 1. To deal with V0n, I1;3 and I1;5, we

use a straightforward generalization of Lemma 1, which accounts for the fact that observations may not

be identically distributed across subsamples, although they are independent. This result is not formally

stated, but one can easily check that it holds by examining the proofs of Lemma B.4 of Fan and Li (1996)

and of Theorem 1 of Hall (1984): the latter proof relies on a martingale central limit theorem that still

applies, see Hall and Heyde (1980, Chapter 3).
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A.5 Panel data

Under our assumptions, uit � Yit � r(Xit) is independent of Zit�1 = fYi1; : : : ; Yit�1; Xi1; : : : ; Xit�1g
conditionally on fXit; lg and E [uitjZit�1; Xit; l] = Rt(Xit)�r(Xit) is zero under H0. Also by assumption

E [uitujt0 jZit�1; Xit;Zjt0�1; Xjt0 ; l] = 0; 8i; j; t 6= t0. Then U0;n, U1;n and I1;5 are degenerate U-statistics

under H0 and a generalization of Lemma 1 can be applied. The remaining terms are dealt with as in the

proof of Theorem 1, using Lemma 4 for I1;1, I1;2, I1;4 and I2;2.

Appendix B: Technical lemmas

Lemma 2 For l(�) 2 Up, sup
x2IRp

��R l(X) 1
hp
K
�
x�X
h

�
dX � l(x)

��! 0 when h! 0.

Proof: This result comes from the well-known Bochner lemma. Q.E.D.

Lemma 3 E

�� bf ji � fi

�2
jZi; Zj ; Zi0 ; Zj0

�
= o(1) and E

�� bf j;li � fi

�2
jZi; Zj ; Zl; Zi0 ; Zj0 ; Zl0

�
= o(1)

uniformly in their arguments, if fc(X) 2 Up 8c and nhp !1.

Proof: The �rst expectation is

E

�� bf ji �E( bf ji jZi; Zj ; Zi0 ; Zj0)
�2
jZi; Zj ; Zi0 ; Zj0

�
+
h
E
� bf ji jZi; Zj ; Zi0 ; Zj0)

�
� fi

i2
:

Because bf ji �E( bf ji jZi; Zj ; Zi0 ; Zj0) = (n� 2)�1
P

k 62fi;j;i0;j0g

�
Knik �E(KnikjZi)

�
, whose summands are

independent with zero mean conditional on Zi,

E

�� bf ji �E( bf ji jZi; Zj ; Zi0 ; Zj0)
�2
jZi; Zj ; Zi0 ; Zj0

�
� (n� 2)�2

X
k 62fi;j;i0;j0g

E
h
(Knik �E(KnikjZi))

2 jZi

i
� (n� 2)�2

X
k 62fi;j;i0;j0g

E
�
K2

nikjZi

�
= O(nhp)�1:

Now
h
E
� bf ji jZi; Zj ; Zi0 ; Zj0

�
� fi

i2
=

�
1

n� 2
(Knii0 +Knij0 � fi) +

n� 4

n� 2
E(Knik � fijZi)

�2
�

�
O(n�1h�p) +O(n�1) + o(1)

�2
= o(1);

where we use fi =
P

c pcfc(Xi). The proof for the second part is similar and is not reported. Q.E.D.

Lemma 4 The result of Lemma 3 holds for panel data.

Proof: The proof follows Lemma 3's proof, with the di�erence that

E

�� bf ji �E( bf ji jZi; Zj ; Zi0 ; Zj0)
�2
jZi; Zj ; Zi0 ; Zj0

�
� (n� 2)�2

X
k;k0

62fi;j;i0;j0g

E [(Knik �E(KnikjZi)) (Knik0 �E(Knik0 jZi)) jZi] :
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By conditioning upon (Zi; Zk), all terms such that k and k0 correspond to di�erent individuals vanishes.

At most nT terms correspond to same individuals and all are O(hp)�1 by the Cauchy-Schwartz inequality.

Thus the right-hand side is O(nhp)�1 and Lemma 4 follows. Q.E.D.

Appendix C

We thereafter give the integrals that enter !2 when K(�) is uniform on [�1=2; 1=2].R
K2

a(s) ds = 1
aR

Ka(s)(K �Ka)(s) ds =

8<: 1 if a < 1=2

�1+4a
4a2

if a � 1=2R
(K �Ka)

2(s) ds =
R
Ka(s)(K �K �Ka)(s) ds

=

8<: 1� a
3

if a < 1

�1+3a
3a2

if a � 1

R
(K �Ka)(s)(K �K �Ka)(s) ds =

8>><>>:
3
4
� a2

6
if a < 1=2

3�24a+216a2�96a3+16a4

192a2
if 1=2 � a � 3=2

�13+32a2

32a2
if a > 3=2

R
(K �K �Ka)

2(s) ds =

8>><>>:
40�10a2+3a3

60
if a < 1

4�20a+80a2�40a3+10a4�a5

60a2
if 1 � a � 2

�7+15a2

15a2
if a > 2:
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Table 1: Null and Linear Alternatives | h / n�1=5

n a DGP0 DGP1 DGP2 DGP3

100 0.5 0.001 (0.854) 0.271 (0.935) 0.966 (1.116) 2.725 (1.334)

4.3% 7.6% 8.8% 14.3% 25.3% 36.4% 78.6% 86.2%

1.546 1.111 9.8% 17.9% 28.1% 42.2% 80.6% 88.2%

1.0 0.061 (0.846) 0.490 (1.048) 1.559 (1.404) 4.129 (1.792)

4.4% 8.3% 13.1% 19.7% 43.1% 53.6% 91.3% 94.4%

1.592 1.170 14.0% 22.5% 44.3% 57.0% 92.1% 95.2%

1.5 0.036 (0.876) 0.582 (1.158) 1.949 (1.641) 5.203 (2.159)

5.6% 8.9% 16.8% 23.7% 51.6% 61.7% 95.6% 97.5%

1.696 1.176 15.9% 26.0% 50.3% 64.0% 95.3% 97.8%

2.0 0.034 (0.875) 0.675 (1.230) 2.280 (1.826) 6.093 (2.469)

5.0% 8.6% 20.3% 26.0% 58.6% 66.6% 97.4% 98.4%

1.642 1.171 20.3% 28.8% 58.6% 68.8% 97.4% 98.7%

Chow test 4.4% 9.6% 51.2% 64.6% 98.7% 99.4% 100.0% 100.0%

200 0.5 0.031 (0.921) 0.595 (1.086) 2.063 (1.427) 5.771 (1.816)

5.1% 9.5% 16.3% 23.2% 59.8% 69.7% 98.7% 99.5%

1.655 1.241 16.2% 24.3% 59.7% 71.0% 98.6% 99.5%

1.0 0.042 (0.899) 0.932 (1.265) 3.200 (1.870) 8.667 (2.504)

5.0% 8.8% 24.5% 34.1% 79.8% 85.4% 99.9% 100.0%

1.645 1.224 24.5% 36.0% 79.8% 86.0% 99.9% 100.0%

1.5 0.053 (0.910) 1.175 (1.415) 4.031 (2.213) 10.838 (3.035)

5.9% 9.7% 32.5% 41.3% 86.4% 90.3% 100.0% 100.0%

1.725 1.262 30.1% 41.9% 85.2% 90.5% 100.0% 100.0%

2.0 0.042 (0.900) 1.354 (1.529) 4.694 (2.493) 12.624 (3.486)

5.6% 9.3% 36.0% 44.9% 89.8% 92.2% 100.0% 100.0%

1.718 1.237 34.3% 46.0% 89.3% 92.7% 100.0% 100.0%

Chow test 5.3% 9.8% 92.8% 96.6% 100.0% 100.0% 100.0% 100.0%

Each cell contains the empirical mean of the test statistic with its standard deviation in parentheses

on the �rst line, empirical rejection percentages at 5% and 10% nominal levels on the second line,

and size-corrected empirical rejection percentages at 5% and 10% levels on the third line. For the null

hypothesis, i.e. DGP0, empirical critical values for 5% and 10% levels are on the third line.



Table 2: Sinus Alternatives | h / n�1=5

n a DGP4 DGP5 DGP6 DGP7

100 0.5 0.981 (1.069) 0.877 (1.136) 0.956 (1.161) 0.934 (1.142)

25.6% 36.2% 23.9% 32.8 % 27.2% 36.2% 25.8% 35.0%

28.3% 42.1% 26.4% 38.2 % 29.2% 40.6% 28.2% 40.7%

1.0 1.241 (1.171) 1.353 (1.375) 1.529 (1.467) 1.510 (1.444)

32.9% 45.2% 36.2% 46.8% 40.7% 51.0% 41.9% 50.4%

34.2% 48.8% 37.6% 49.7% 42.0% 54.2% 42.9% 53.9%

1.5 0.943 (1.109) 1.535 (1.549) 1.853 (1.678) 1.861 (1.665)

23.1% 32.5% 42.0% 50.3 % 48.3% 57.5% 48.5% 57.7%

22.0% 36.2% 40.6% 52.9 % 47.2% 59.7% 47.5% 60.2%

2.0 0.346 (1.018) 1.575 (1.588) 2.085 (1.827) 2.142 (1.835)

10.1% 15.2% 41.3% 51.2 % 52.9% 61.6% 54.1% 63.0%

10.1% 17.1% 41.4% 54.3 % 53.0% 64.5% 54.3% 65.7%

Chow test 4.8% 9.5% 14.8% 21.2% 74.9% 82.3% 83.8% 90.9%

200 0.5 2.037 (1.389) 1.933 (1.427) 2.078 (1.452) 2.014 (1.429)

59.5% 69.8% 55.2% 64.5% 58.9% 68.5% 57.2% 68.2%

59.3% 70.7% 55.0% 65.8% 58.7% 69.5% 56.9% 68.9%

1.0 2.626 (1.577) 2.870 (1.825) 3.182 (1.917) 3.112 (1.882)

71.2% 79.4% 72.4% 79.0% 77.5% 84.0% 77.4% 84.2%

71.1% 80.4% 72.4% 80.3% 77.5% 84.9% 77.4% 84.9%

1.5 2.347 (1.498) 3.395 (2.082) 3.934 (2.242) 3.892 (2.216)

64.7% 74.4% 79.0% 84.3% 85.3% 89.6% 84.2% 88.8%

62.6% 74.7% 77.5% 84.5% 84.1% 89.8% 83.4% 89.2%

2.0 1.452 (1.299) 3.588 (2.192) 4.440 (2.491) 4.470 (2.484)

38.8% 48.4% 79.5% 85.8% 87.3% 91.4% 87.9% 91.5%

36.4% 50.2% 78.5% 86.6% 86.3% 92.0% 86.8% 91.9%

Chow test 5.5% 10.1% 13.4% 21.0% 93.3% 95.9% 99.6% 100.0%

Each cell contains the empirical mean of the test statistic with its standard deviation in parentheses

on the �rst line, empirical rejection percentages at 5% and 10% nominal levels on the second line, and

size-corrected empirical rejection percentages at 5% and 10% levels on the third line.



Table 3: Null and Linear Alternatives | h / n��, a = 1

n � DGP0 DGP1 DGP2 DGP3

100 1/3 0.013 (0.762) 0.252 (0.852) 0.874 (1.037) 2.398 (1.274)

3.2% 6.5% 6.7% 11.6% 21.1% 32.0% 72.1% 80.3%

1.420 1.027 9.9% 17.6% 27.8% 40.6% 77.5% 85.9%

1/4 0.019 (0.808) 0.365 (0.953) 1.248 (1.239) 3.394 (1.567)

3.8% 7.5% 10.7% 16.0% 33.8% 44.9% 86.0% 90.5%

1.517 1.072 12.2% 20.2% 37.6% 51.3% 88.1% 92.8%

1/5 0.061 (0.846) 0.490 (1.048) 1.559 (1.404) 4.129 (1.792)

4.4% 8.3% 13.1% 19.7% 43.1% 53.6% 91.3% 94.4%

1.592 1.170 14.0% 22.5% 44.3% 57.0% 92.1% 95.2%

1/6 0.094 (0.880) 0.578 (1.112) 1.777 (1.512) 4.653 (1.937)

5.7% 9.2% 16.2% 22.9% 48.4% 59.0% 94.1% 96.2%

1.744 1.221 14.2% 24.4% 46.1% 60.5% 93.4% 96.5%

200 1/3 0.029 (0.829) 0.546 (1.009) 1.881 (1.353) 5.130 (1.741)

4.1% 7.4% 13.2% 21.2% 54.1% 64.4% 97.9% 98.9%

1.486 1.096 16.8% 26.5% 58.8% 70.7% 98.5% 99.3%

1/4 0.014 (0.899) 0.745 (1.189) 2.630 (1.684) 7.194 (2.197)

4.7% 8.2% 19.7% 28.1% 69.6% 78.2% 99.6% 99.8%

1.622 1.138 20.2% 31.8% 70.1% 80.7% 99.6% 99.9%

1/5 0.042 (0.899) 0.932 (1.265) 3.200 (1.870) 8.667 (2.504)

5.0% 8.8% 24.5% 34.1% 79.8% 85.4% 99.9% 100.0%

1.645 1.224 24.5% 36.0% 79.8% 86.0% 99.9% 100.0%

1/6 0.104 (0.913) 1.112 (1.332) 3.654 (2.022) 9.772 (2.730)

6.0% 9.6% 30.5% 40.4% 84.2% 89.1% 99.9% 100.0%

1.777 1.258 28.1% 40.7% 82.0% 89.2% 99.9% 100.0%

Each cell contains the empirical mean of the test statistic with its standard deviation in paren-

theses on the �rst line, empirical rejection percentages at 5% and 10% nominal levels on the

second line, and size-corrected empirical rejection percentages at 5% and 10% levels on the third

line. For the null hypothesis, i.e. DGP0, empirical critical values for 5% and 10% levels are on

the third line.



Table 4: Sinus Alternatives | h / n��, a = 1

n � DGP4 DGP5 DGP6 DGP7

100 1/3 0.822 (1.006) 0.826 (1.080) 0.886 (1.098) 0.860 (1.075)

19.6% 29.4% 21.5% 30.6 % 23.8% 33.1% 22.2% 31.3%

25.3% 37.7% 26.6% 38.1 % 29.1% 40.2% 28.3% 39.0%

1/4 1.079 (1.122) 1.127 (1.261) 1.245 (1.313) 1.217 (1.283)

27.9% 38.1% 29.8% 40.2% 33.3% 43.3% 33.0% 42.7%

31.4% 45.5% 32.9% 46.6% 37.3% 48.9% 36.9% 48.4%

1/5 1.241 (1.171) 1.353 (1.375) 1.529 (1.467) 1.510 (1.444)

32.9% 45.2% 36.2% 46.8 % 40.7% 51.0% 41.9% 50.4%

34.2% 48.9% 37.6% 49.8 % 42.0% 54.2% 42.9% 54.0%

1/6 1.327 (1.179) 1.492 (1.464) 1.717 (1.576) 1.711 (1.553)

35.8% 46.6% 41.7% 50.5 % 45.8% 56.0% 45.8% 56.4%

32.7% 48.9% 39.0% 52.0 % 42.8% 58.0% 43.6% 57.9%

200 1/3 1.759 (1.324) 1.800 (1.355) 1.925 (1.378) 1.855 (1.358)

49.6% 60.5% 51.2% 61.8 % 54.7% 65.1% 52.0% 63.8%

53.9% 65.6% 55.8% 67.1 % 59.7% 70.1% 57.1% 69.3%

1/4 2.314 (1.535) 2.449 (1.677) 2.658 (1.722) 2.577 (1.690)

63.8% 72.7% 64.1% 73.8% 70.3% 78.4% 68.2% 77.2%

64.2% 76.0% 64.7% 77.3% 70.7% 80.5% 68.9% 80.5%

1/5 2.626 (1.577) 2.870 (1.825) 3.182 (1.917) 3.112 (1.882)

71.2% 79.4% 72.4% 79.0 % 77.5% 84.0% 77.4% 84.2%

71.2% 80.4% 72.4% 80.3 % 77.5% 84.9% 77.4% 84.9%

1/6 2.835 (1.595) 3.162 (1.942) 3.584 (2.058) 3.535 (2.026)

75.3% 83.5% 76.7% 83.7 % 82.4% 87.5% 81.8% 86.6%

72.5% 84.0% 73.9% 84.0 % 79.4% 88.0% 79.9% 87.0%

Each cell contains the empirical mean of the test statistic with its standard deviation in paren-

theses on the �rst line, empirical rejection percentages at 5% and 10% nominal levels on the

second line, and size-corrected empirical rejection percentages at 5% and 10% levels on the third

line.


