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CONSISTENT TESTS OF CONDITIONAL MOMENT

RESTRICTIONS

1 Introduction

Econometric models are frequently defined through conditional moment restrictions. This is the

case for models simultaneously parameterizing different conditional moments (e.g. conditional

mean and conditional variance) without specific distributional assumptions, transformation mod-

els, models identified by means of instrumental variables, and nonlinear-in-variables simultaneous

equation models. Estimation under conditional moment restrictions is considered by Chamberlain

(1987), Newey (1990), Robinson (1991), and Dominguez and Lobato (2004) among others. Checking

the validity of these moment restrictions is a central issue. Among the most popular specification

tests, M-tests, as proposed by Newey (1985a, 1985b), Tauchen (1985) and Wooldridge (1990), aim

at testing a finite number of arbitrary unconditional moment restrictions implied by the conditional

moment restrictions. These tests are “directional” in the sense that they are unable to detect some

misspecifications, though they may be optimal in the direction of precisely specified alternatives.

Omnibus specification tests, which are consistent against any misspecification, are useful when the

econometrician has no specific alternative in mind.

Two approaches have been developed in the recent literature to derive omnibus specifica-

tion tests of a parametric regression function. The first approach compares the fitted parametric

regression function with a nonparametric function estimated using smoothers, see Eubank and

Spiegelman (1990), Kozek (1991), Härdle and Mammen (1993), Hong and White (1995), Fan and

Li (1996), Zheng (1996), and Ellison and Ellison (2000) among others. Hart’s monograph (1997)

surveys part of the statistical literature on the topic. The second approach compares integral

transforms of the competing regression curves rather than the curves themselves. Indeed, a func-

tion can be uniquely characterized by an integral transform, see Apostol (1957, Chap 11). For

instance, there is a one-to-one relationship between the density and integral transforms such as the

probability distribution function or the characteristic function. The integral regression function

generalizes the distribution function concept to the regression case, see Prakasa Rao (1983 pp.

256-258), and is used for testing purposes by Buckley (1991), Hong-Zhy and Bin (1991), Delgado

(1993), Stute (1997), Koul and Stute (1999), and Whang (2000) to mention just a few. Bierens
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and coauthors use the generalization of the characteristic function to the regression case to build a

specification test, see Bierens (1982, 1990), de Jong and Bierens (1994) and Bierens and Ploberger

(1997). The smooth test approach leads to asymptotically pivotal tests statistics but that depends

on a smoothing parameter, while the integral-transform approach yields test statistics that have

case-dependent limiting distributions but do not depend on the choice of a smoothing parameter.

The two approaches can be interpreted as M-tests with an infinite number of moment restrictions.

Most work has focused on distribution and regression models, with few exceptions. Zheng (1998)

and Bierens and Ginther (2001) deal with quantile regression models. Stinchcombe and White

(1998), Koul and Stute (1999), and Whang (2001) propose tests for an univariate conditional

moment restriction. Chen and Fan (1999) and Delgado and González-Manteiga (2001) provide

consistent procedures for testing some conditional moment restrictions in semiparametric and

nonparametric models, e.g. testing for omitted variables, but do not allow the null hypothesis to

depend on unknown parameters.

Our aim is to propose tests for multiple conditional moment restrictions with unknown param-

eters and thus to provide useful procedures for econometric modeling. The innovative feature of our

study with respect to previous work is to simultaneously follow and generalize the two approaches

developed for specification testing of regression models. We restrict to an iid context. Extension

to a time-series context should follow along the lines of de Jong (1996), who considers Bierens’

(1990) test under data dependence, see also Dominguez and Lobato (2003), and Li (1999), who

generalizes Fan and Li’s (1996) results. Here, we focus on the particular features arising when the

conditional moment restrictions are multidimensional and possibly nonlinear in the endogenous

variables. This allows us to point out the inherent problems of the generalization and to raise some

open questions. From a practical viewpoint, we look throughout our paper at some examples of

applications and we explain how to implement each type of tests in practice. Finally, we compare

the behavior of the two types of tests by means of several Monte-Carlo experiments, as there is

little evidence in the econometric literature on the comparative small sample performances of the

competing approaches.

The paper is organized as follows. In Section 2, we detail our general testing framework and

we discuss examples of applications. In Section 3, we explain how the two testing approaches can

be generalized and we study the asymptotics of some tests statistics based upon either nonpara-

metric kernel estimation or integral-transform regression estimation. In Section 4, we explain the

difficulties in applying known bootstrap methods in our general framework and we propose instead

a simulation procedure to approximate critical values of each type of test. Section 5 reports the

results of our Monte-Carlo study. Section 6 gives some directions for further research. Technical

proofs are confined to Section 7.

2



2 Testing Framework

Let Zn = {Zi, i = 1, ..., n} be a random sample drawn from a random vector Z ∈ Rs, and let

X ∈ Rq be a subvector of Z. Following Newey (1985a, 1985b), Chamberlain (1987), Wooldridge

(1990) and White (1994), we consider a particular parametric model indexed by θ ∈ Θ ⊂ Rp,

defined through conditional moment restrictions of the form

H0 : E [ψ (Z, θ0) | X] = 0 a.s. for some θ0 ∈ Θ, (1)

where ψ(·, ·) : Rs×Rp→ Rm is a vector of known functions and 0 is the null vector of Rm. We call

ψ(·, ·) a generalized residual vector, as Wooldridge (1990) does by analogy with regression models,

because the null hypothesis specifies that its conditional expectation given X is zero. Our general

framework allows to deal with a wide range of models considered in the econometric literature.

Example 1 Our framework includes specification testing of models that jointly parameterize the

conditional mean and the conditional variance of a dependent variable. Such models are defined

as

Y = µ(X, θ0) + U, E [U |X] = 0 a.s. E
[
U2|X

]
= ω2(X, θ0) > 0 a.s.,

where µ(·, ·) and ω2(·, ·) are known functions up to the value of θ0, see e.g. Wooldridge (1990).

The parametric model is completely defined through restrictions (1) where Z = (Y,X ′)′ and

ψ(Z, θ) =

(
Y − µ(X, θ)

[Y − µ(X, θ)]2 − ω2(X, θ)

)
.

Testing H0 allows to check the full specification of the model. We may also be interested in testing

only a subset of these restrictions. If we consider only restrictions relative to the conditional mean,

we deal with specification testing of a standard regression model, as studied by many authors. If

we consider only the second set of restrictions, e.g. if we are sure about the functional form of

the conditional mean, we entertain a test about the functional form of the conditional variance, as

studied by Hong (1993). Finally, a particular application of our framework allows to test the null

hypothesis of homoskedasticity by considering the specific restriction

E
[
(Y − µ(X, θ0))

2 − σ2
0|X

]
= 0 a.s.

where σ2
0 = E

[
U2
]

is included in θ0.

Example 2 Consider the model

τ(Y, λ0) = µ(X,β0) + U, E [U |X] = 0 a.s.,
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where µ(·, ·) and τ(·, ·) are known functions. When λ0 is unknown and τ(·, ·) is a nonlinear trans-

form, this model is not a regression model. Choices for τ(·, ·) include the popular Box-Cox trans-

formation and the family of transformations defined by

τ(Y, λ) = κ(λY )/λ, κ(0) = 0, κ̇(0) = 1,

where κ̇ (·) denotes the first derivative of κ (·), see MacKinnon and Magee (1990). Simple instances

of such transformations are κ(y) = y2 + y and κ(y) = arcsinh(y), which have several advantages

over the Box-Cox transform, see e.g. Burbidge, Magee and Robb (1988). When the distribution of

U is unknown, the parametric model is simply defined through

E [U |X] = 0 a.s.,

that is through restrictions of the type (1). This allows to use any function of X as an instrumental

variable (IV) for estimation purposes. Rejecting the validity of the conditional moment restrictions

indicates that the functional form of the model is inadequate and then invalidates the IV estimation

method.

Example 3 Our framework further includes models defined through conditional moment restric-

tions given a set of instrumental variables, as considered by Newey (1990). An important example of

such a model is one where ψ(·, ·) is a vector (or subvector) of residuals from a (possibly nonlinear)

simultaneous equations system. As a benchmark, consider the simple equilibrium model

Q = a0P + b0I + U, a0 < 0 (Demand)

Q = α0P + β0W + V, α0 > 0 (Supply),

where Q and P respectively denote quantity and price, I and W are exogenous variables, and U

and V are the error terms. Here Z = (Q,P, I,W )′ is the vector of all variables entering the model

and X = (I,W )′ is the vector of exogenous variables. The model assumes that the error terms are

unpredictable given the exogenous variables, i.e.

E

(
Q− a0P − b0I

Q− α0P − β0W
| X

)
= 0 .

These restrictions ensure identification of the coefficients and constitute the basis of IV estima-

tion methods either in a parametric context, see e.g. Davidson and MacKinnon (1993) or in a

nonparametric setup, see Darolles, Florens and Renault (1999). Under the assumption that X is

exogenous, rejecting these conditional moment restrictions means that the postulated functional

forms of the demand and supply curves are incorrect.
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As seen from the above examples, our framework goes far beyond testing the parametric spec-

ification of an univariate regression function and applies to testing econometric models defined by

several conditional moment restrictions, which can be tested simultaneously or separately. Other

examples can be considered. Stinchcombe and White (1998) proposed detecting misspecification

of a conditional probability model by testing that the conditional score function is identically zero

or that the information matrix equality holds conditionally upon the independent variables. Al-

ternatively, for a correctly specified model, the latter restriction can be used to check whether a

root of the likelihood equations is a global maximizer of the likelihood function, see Gan and Jiang

(1999).

We now introduce some conditions upon the considered econometric model. To keep a great

level of applicability, we formulate general assumptions that can accommodate various models and

estimation methods. For the sake of simplicity, we focus on the case of cross-section data.

2.1 Zn is an iid sample from a random variable Z with support on Rs. The subvector X has a

distribution F (·) which admits an absolutely continuous density function f (·) with respect

to the Lebesgue measure.

2.2 There is a
√
n-consistent estimator θn of the pseudo-parameter θ∗, where θ∗ is a unique interior

point of Θ. Under H0, θ∗ = θ0.

2.3 (i) E ‖ψ(Z, θ∗)‖2 < ∞. For each component ψ(k)(·, ·) of ψ(·, ·), k = 1, ...,m, ψ̇(k)(·, ·) =

∂ψ(k)(·, ·)/∂θ and ψ̈(k)(·, ·) = ∂2ψ(k)(·, ·)/∂θ∂θ′ exist almost surely in an open neighborhood

N (θ∗) of θ∗, E
∥∥∥ψ̇(k)(Z, θ∗)

∥∥∥ < ∞ and supθ∈N (θ∗)

∥∥∥ψ̈(k)(·, θ)
∥∥∥ < S (·) , with E [S (Z)] < ∞,

where ‖·‖ denotes either a vector or matrix norm . (ii) For each k = 1, ...,m, ψ̈(k)(·, ·) are

continuous in θ for θ ∈ N (θ∗) and uniformly in Z almost everywhere.

Assumption 2.1 restricts our analysis to an iid context where the conditioning variables are

continuous. Allowing some discrete components in X is not difficult, but would involve a more

cumbersome notation.1 Assumption 2.2 says that we have at hand an estimator θn that is
√
n-

consistent for some uniquely defined θ∗ which is θ0 under H0. Since we are in a testing problem,

the uniqueness of θ∗ could be dropped at the price of introducing other technicalities, see e.g.

Guerre and Lavergne (2001). Our assumption allows for several estimation methods, such as non-

linear least-squares, instrumental variables, generalized method of moments, or pseudo-maximum

likelihood, see e.g. White (1994). Consider for instance an IV estimator θn solution to

1
n

n∑
i=1

M (Xi)ψ(Zi, θ) = 0 , (2)

1See Zheng (1996) or Stute (1997) for details.
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where M(X) is a suitable vector of instruments. Then θ∗ is defined as the unique solution to

E [M (X)ψ(Z, θ∗)] = 0.

Assumption 2.3 imposes some regularity on the functions entering the restrictions, see e.g. Newey

(1985b) or Robinson (1991) for similar conditions.

3 The two approaches: rationale and asymptotics

3.1 Smooth tests

The first step consist of formulating the conditional moment restrictions as a completely equivalent

(not arbitrary) unconditional moment restriction. Specifically, H0 is equivalent to

H0 : E
[
ψ′ (Z, θ0)E (ψ (Z, θ0) | X)wS (X)

]
= 0 for some θ0 ∈ Θ, (3)

for a suitable weight function wS(·) which is strictly positive almost surely onto the support of

f(·). The null hypothesis thus states the orthogonality between the generalized residuals ψ (·, θ0)
and their conditional expectation E (ψ (Z, θ0) | X = ·). Alternatively, one could weight each of the

generalized residuals differently but we here focus on the main arguments and delay our discussion

on weighting until Section 3.3. A possible and convenient choice for wS(·) is the density f(·) itself,

see e.g. Powell, Stock and Stoker (1989), Fan and Li (1996), Zheng (1996) and Lavergne and Vuong

(2000) for an analogous device, and we thereafter concentrate on this choice. Define

T (θ) = E
[
ψ′ (Z, θ)E (ψ (Z, θ) | X) f (X)

]
.

A test can then be built by checking whether an estimator of the latter quantity is significantly

different from 0. The sample analog of T (θ0) is

1
n

n∑
i=1

ψ′(Zi, θ0)E (ψ (Zi, θ0) | Xi) f (Xi) .

A feasible estimator thus requires on the one hand a consistent estimator for θ0 and on the other

hand a consistent estimator for E(ψ (Z, θ) | X)f(X). Substituting θn for θ0 and the kernel estimator

of E (ψ (Z, θ) | X = ·) f(·) into the last equation yields the estimator of T (θ0) defined as

Tn =
1

n (n− 1)hq

n∑
i=1

n∑
j=1,j 6=i

ψ′ (Zi, θn)ψ (Zj , θn)Kij ,

where Kij = K ((Xi −Xj) /h) , K(·) : Rq→ R is a kernel function and h = h (n) is a positive

bandwidth number. This statistic is easily computed from the estimated generalized residuals
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ψ(Zi, θn). It resembles the statistic proposed in Fan and Li (1996) and Zheng (1996) for testing

the specification of regression functions and is constructed similarly, with the generalized residual

vector ψ(Zi, θn) in place of standard regression residuals.

The statistic Tn is a U-statistic. Its asymptotic behavior is determined through its Hoeffding

decomposition and depends on whether H0 holds, see Serfling (1980). Under misspecification, the

first term of its Hoeffding decomposition determines the behavior of Tn, which is asymptotically
√
n-consistent for the unconditional moment in (3). Under H0 however, the first term in the

Hoeffding decomposition vanishes and higher order terms determine its asymptotic behavior. To

state our formal result, we introduce some standard assumptions on the kernel function and the

bandwidth parameter. We also impose some smoothness restrictions using the following definitions.

Definition 1 Gα, α > 0, is the class of functions g(·) : IRq → IR such that ∃ρ > 0 with for all

z ∈ IRq sup‖y−z‖≤ρ |g (y)− g (z)| / ‖y − z‖ ≤ G (z), where g(·) and G(·) have finite α-th moments

(or are bounded if α = +∞).

Let αk(X) = E
[∣∣ψ(k)(Z, θ∗)

∣∣ | X], γk(X) = E
[
ψ̇(k)(Z, θ∗) | X

]
, σ4

k(X) = E
[(
ψ(k)(Z, θ∗)

)4 | X],
σkl(X) = E

[
ψ(k)(Z, θ∗)ψ(l)(Z, θ∗) | X

]
for k, l = 1, . . . ,m, and let λ(X) = E [S(Z) | X].

2.4 K(·) is even and bounded, integrates to one and lim‖u‖→∞ ‖u‖q |K (u)| = 0.

2.5 limn→∞

{
h+ (nhq)−1

}
= 0.

2.6 f(·) ∈ G∞. For all k, l = 1, ...,m, σkl(·) ∈ G4, each element of γk(·) belong to G8/3, σ4
k(·),

αk(·) and λ(·) belong to G2 and E
[∥∥∥ψ̇(k)(Z, θ∗)

∥∥∥8/3
]
<∞.

Theorem 1 Under H0 and Assumptions 2.1 to 2.6,

nhq/2Tn
d→ N (0, V ) , where V = 2

m∑
k=1

m∑
l=1

E
[
σ2

kl (X) f (X)
] ∫

Rq

K2 (u) du .

To build an estimator for V , we note that

E
[
σ2

klf(X)
]

= E
{
ψ(k) (Z, θ0)ψ(l) (Z, θ0)E

[
ψ(k) (Z, θ0)ψ(l) (Z, θ0) |X

]
f(X)

}
.

Hence, using a reasoning similar to the one leading to Tn, we can propose an estimator for V as

Vn =
2

n (n− 1)
1
hq

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1,j 6=i

ψ(k) (Zi, θn)ψ(l) (Zi, θn)ψ(k) (Zj , θn)ψ(l) (Zj , θn)K2
ij .

One could alternatively use Kij

∫
K2(u) du rather than K2

ij in Vn. The key reason for our choice

is that the selected form of the estimator gives better small sample properties for the test in

preliminary simulations. Thus our test statistic is defined as tn = nhq/2Tn/V
1/2
n .
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Corollary 2 Under Assumptions 2.1 to 2.6, tn →d N (0, 1) under H0 and otherwise
(
nhq/2

)−1
tn →p

E [ψ′ (Z, θ∗)E [ψ (Z, θ∗) |X] f (X)] /V 1/2 > 0.

The resulting test is therefore a one-sided normal test and is asymptotically able to detect any

violation of H0.

Example 1 (continued) Given a consistent estimator θn of θ∗, e.g. a generalized nonlinear

least-squares estimator, the generalized residuals are

ψ(Zi, θn) =

(
Yi − µ(Xi, θn)

[Yi − µ(Xi, θn)]2 − ω2(Xi, θn)

)
=

(
Uni

U2
ni − ω2(Xi, θn)

)
.

The statistic Tn can be written as

Tn = T1n + T2n

=
1

n(n− 1)hq

∑
i6=j

{
UniUnj +

[
Un

2
i − ω2(Xi, θn)

] [
Un

2
j − ω2(Xj , θn)

]}
Kij .

Testing only the specification of the conditional mean is based upon T1n, as proposed by Zheng

(1996) and Li and Wang (1998). Testing only the specification of the conditional variance can be

based upon T2n. Our joint specification test of conditional mean and variance simply relies on the

addition of the latter two statistics. The asymptotic variance estimator is computed as

Vn =
2

n (n− 1)hq

∑
i6=j

{
U2

niU
2
nj +

[
U2

ni − ω2(Xi, θn)
]2 [

U2
nj − ω2(Xj , θn)

]2
+2Uni

[
U2

ni − ω2(Xi, θn)
]
Unj

[
U2

nj − ω2(Xj , θn)
]}
K2

ij .

Among the problems related to the practical implementation of our test is the choice of the

bandwidth parameter. First, though our general theory is developed for a generic bandwidth, our

test can be readily extended to vanishing individual bandwidths hj for each conditioning variable

X(j). The rate of convergence of Tn is then n
∏q

j=1 h
1/2
j . Second, a data-dependent bandwidth is

often used in practice. This allows to adapt smoothing to the variability of X(j), by considering

for instance hj = h × sj where s2j is the empirical variance of X(j). The following theorem shows

that this can be done without affecting the properties of our asymptotic test.

Theorem 3 If K(·) is differentiable, with bounded partial derivatives on its support, Corollary 2

extends to the case of a random ĥ if there exists a deterministic h that fulfills the assumptions of

Corollary 2 and such that
(
ĥ− h

)
/h = op (1) .
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3.2 Integral-transform tests

The null hypothesis of interest H0 is equivalent to the statement that E [ψ (Z, θ0)w(X)] = 0 for all

real-valued w (·) such that this expectation exists. Checking such a statement is clearly difficult.

Fortunately, as shown by Stinchcombe and White (1998), one can restrict to some particular class

of functions. Therefore a possible alternative equivalent way to write H0 is

H0 : E [ψ (Z, θ0)wP (X,x)] = 0 ∀x ∈ Rq for some θ0 ∈ Θ, (4)

where wP (·, x) is a well-chosen function depending on a nuisance parameter x. Stinchcombe

and White (1998) show that there exists different choices that yield consistent tests, for in-

stance wP (X,x) = G(X ′x) with G(·) the logistic cumulative distribution function or the expo-

nential employed by Bierens (1982). Here we use the computationally convenient step function

wP (X,x) = 1 (X ≤ x) =
∏q

j=1 1
(
X(j) ≤ x(j)

)
where 1(·) is the indicator function. Hence we con-

sider the integral-transform function R (x, θ) = E [ψ (Z, θ)1 (X ≤ x)], which is analogous to the

distribution function F (x) = E [1 (X ≤ x)]. Previous work where a similar choice is made includes

Stute (1997), Andrews (1997), Koul and Stute (1999), and Whang (2000). This is convenient

because the expectations in (4) are easily estimated by sample analogs of the form

1
n

n∑
i=1

ψ (Zi, θ0)1 (Xi ≤ x) .

To get a feasible estimator, we replace θ0 by θn and come up with

Rn (x) =
1
n

n∑
i=1

ψ (Zi, θn)1 (Xi ≤ x) ,

which is an empirical process of dimension m marked by the generalized residuals ψ(Zi, θn). A test

statistic for (4) can then be any well-chosen continuous functional of Rn (·). For instance, one may

consider a statistic of the form

n

∫
Rq

R′n(x)Rn(x) dν (x) .

where ν (·) is an arbitrary probability measure, as done by Bierens and Ploberger (1997). In our

formal analysis, we specifically choose a simple and natural measure as the empirical distribution

function of the Xi and we consider the Cramer-von-Mises type statistic2

cn = n

∫
Rq

R′n(x)Rn(x) dFn (x) =
n∑

i=1

Rn (Xi)
′Rn (Xi) ,

2This terminology is used by Stute (1997).
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where Fn (·) is the empirical distribution function of X. A Kolmogorov-Smirnov type test can also

be constructed, but we focus on the Cramer-von-Mises type test as Whang (2000) reports better

performances for this type of test in a regression context. Hence, our implicit null hypothesis is

H0 :
∫
E
[
ψ′ (Z, θ0)1 (X ≤ x)

]
E [ψ (Z, θ0)1 (X ≤ x)] dF (x) = 0 for some θ0 ∈ Θ,

an unconditional moment restriction equivalent to the original conditional moment restrictions.

We hereafter provide a functional central limit theorem for Rn (·) under the following assumption.

2.7 There is an estimator θn that admits the asymptotic expansion θn = θ∗+n−1
∑n

i=1 ` (Zi, θ
∗)+

op

(
n−1/2

)
for some unique interior point θ∗ of Θ, where the function ` (·, ·) is such that

E [` (Z, θ∗)] = 0 and E[` (Z, θ∗) `
′
(Z, θ∗)] exist. Under H0, θ0 = θ∗.

For instance, if θn is solution to (2), ` (Z, θ∗) = −
(
E
[
M (X) ψ̇ (Z, θ∗)

])−1
M (X)ψ (Z, θ∗) ,

where ψ̇ =
(
ψ̇(1)′, ..., ψ̇(m)′

)′
. We need Assumption 2.7 as the substitution of θ0 by θn has a first-

order effect on the behavior of Rn(x). Indeed under H0 ,
√
nRn (x) is, as a process indexed by x,

asymptotically equivalent to

1√
n

n∑
i=1

ri (x, θ0) , where ri (x, θ) = ψ (Zi, θ)1 (Xi ≤ x) + E
[
ψ̇ (Z, θ)1 (X ≤ x)

]
` (Zi, θ) . (5)

It is apparent that the second term of ri(x, θ) comes from the estimation error θn − θ∗.

Theorem 4 Under H0 and Assumptions 2.1, 2.3 (i), and 2.7,

n1/2Rn ⇒ R∞,

where ⇒ denotes weak convergence in the Skorohod space ×m
k=1D [−∞,∞]q and R∞ is a Gaussian

process centered at zero with covariance structure Ω (x, s) = E [r1 (x, θ0) r′1 (s, θ0)] , ∀ x, s ∈ Rq.

The following corollary gives the asymptotic behavior of our statistic cn.

Corollary 5 Under Assumptions 2.1, 2.3(i) and 2.7,

cn
d→ c∞ =

∫
Rq

R∞ (x)R′∞ (x) dF (x) under H0,

n−1cn →p

∫
Rq

E [ψ (Z, θ∗)1 (X ≤ x)]′E [ψ (Z, θ∗)1 (X ≤ x)] dF (x) > 0 otherwise.

An asymptotic test can be based on the statistic cn as soon as one can compute critical values.

However the asymptotic distribution of cn under H0 is known only in special cases, see e.g. Delgado

(1993). Hence, we propose in Section 4 a simulation method to approximate critical values. The

resulting test is thus one-sided and consistent against any alternative to H0.

10



Example 1 (continued) Recall that Uni = Yi − µ(Xi, θn). The statistic cn is then equal to

cn = c1n + c2n

=
n∑

i=1

 1
n

n∑
j=1

Unj1 (Xj ≤ Xi)

2

+
n∑

i=1

 1
n

n∑
j=1

[
U2

nj − ω2(Xj , θn)
]
1 (Xj ≤ Xi)

2

.

Testing only the specification of the conditional mean leads to consider c1n, which is exactly the

statistic proposed by Stute (1997) for univariate regression models and extended by Whang (2000)

to a multivariate context. Testing only the specification of the conditional variance is based upon

c2n. Our test statistic for testing the specification of both conditional mean and variance is the sum

of the two latter statistics.

3.3 Variations on two themes

It should be noted that a number of different valid test statistics can be built. First, many alterna-

tive equivalent formulations of the null hypothesis could be considered by replacing the generalized

residuals ψ(·, ·) by A(X)ψ(·, ·), where A(x) is a known m×m nonsingular matrix for almost all x.

For the smooth test, when A(X) = A∗(X)f1/2(X), the null hypothesis (3) writes

H0A : E
[
ψ′ (Z, θ0)W (X)E (ψ (Z, θ0) |X)

]
= 0

where W (x) = A′(x)A(x) = A′∗(x)A∗(x)f(x), which is positive definite for almost all x. The

asymptotic variance of the corresponding smooth test statistic would be

VA = 2tr
{
E
[
Σ2

A(X)
]} ∫

Rq

K2 (u) du

where ΣA(X) = A(X)Σ(X)A′(X) and Σ(X) is the m ×m matrix with generic element σkl(X).

Our weighting choice of Section 2.1 corresponds to an A∗(X) equal to the identity matrix. For the

integral-transform test, the null hypothesis writes

H0A : E
[
ψ′ (Z, θ0)A′(X)1 (X ≤ x)

]
E [A(X)ψ (Z, θ0)1 (X ≤ x)] dF (x) = 0 for some θ0 ∈ Θ,

and the covariance structure of the corresponding limiting process RA∞ would be

ΩA (x, s) = E
[
A(X)r1 (x, θ0) r′1 (s, θ0)A′(X)

]
, ∀ x, s ∈ Rq.

Such expressions might be a starting point for investigating the optimality of the weighting matrix

A(X), but this is outside the scope of this paper.3

3The results in this section can be easily derived using our Theorems 1 and 4.
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Second, as easily seen from our Example 1, one could consider testing (3) by smooth tests by

standardizing first each of the components of Tn, T1n and T2n in our example, and then determining

the asymptotically pivotal distribution of the sum of the standardized individual statistics. Yet

another possibility could be to show that the joint distribution of (T1n, T2n) is asymptotically

normal and to construct a normalized statistic with an asymptotic χ2 distribution. This approach

is adopted in Li (1999) when testing portfolio mean-variance efficiency. However, such a test ignores

the one-sided nature of the testing problem. Indeed, it can reject the null hypothesis for negative

values of T1n and T2n, which asymptotically arise under H0 only, so that the level of the test is

more difficult to control.

4 Simulated critical values

For both the smooth test and the integral-transform test, obtaining accurate small sample critical

values is crucial. On the one hand, the practical implementation of the asymptotic smooth test

involves some difficulties, as the asymptotic approximation of the null distribution can be slow,

depending upon the chosen bandwidth and the number of exogenous variables in the model, see

e.g. Härdle and Mammen (1993). On the other hand, the integral-transform statistic has a limit-

ing distribution under the null hypothesis that depends on the unknown data-generating process

and therefore cannot be tabulated in general. One way of solving the latter problem is to de-

rive case-independent upper-bounds of the asymptotic critical values as proposed by Bierens and

Ploberger (1997), but these are not sharp. Another possibility consists of applying a martingale

transformation to Rn (·) that yields an asymptotically pivotal distribution under H0, as studied

by Kamaladze (1993), Stute, Thies and Zhu (1998), Koul and Stute (1999) and Kamaladze and

Koul (2003) among others. However, the martingale transformation relies on some smoothing and

trimming parameters, thus weakening the main advantage of the integral-transform test compared

to the smooth test.

In what follows, we first briefly review bootstrap methods that has been proposed for computing

critical values for specification tests of regression functions and explain the difficulties that arise

for extending these methods to testing general conditional moment restrictions. We then propose

a simple simulation approach that yields asymptotically valid critical values for our tests.

4.1 Bootstrap methods for approximating critical values

For smooth specification tests of regression models, wild bootstrap procedures have been proposed

to compute accurate small sample critical values. When ψ (Z, θ) = Y − µ (X, θ) with Y scalar,

12



Härdle and Mammen (1993) propose to generate bootstrap resamples as {(Y ∗i , Xi) , i = 1, ..., n},
where Y ∗i = µ (Xi, θn) + ψ∗ni, with ψ∗ni = ψ (Zi, θn) ζi and

B1 The ζi are iid, independent of Zn, with zero mean and unit variance.

The zero mean condition ensures that Y ∗i −µ(Xi, θn) has zero mean conditional on the original

sample. This condition yields resampled observations that fulfill the null hypothesis. The unit

variance condition ensures that Y ∗i −µ(Xi, θn) has the same conditional variance as Yi−µ(Xi, θn).

Both conditions are crucial to obtain asymptotically valid critical values. These are then obtained

in three steps: (i) generate several resamples (ii) for each resample, compute the corresponding

estimate θ∗n and test statistic t∗n (iii) compute the empirical quantile of order (1− α) of the statistics

t∗n. This provides a critical value to be compared to the original test statistic tn. For given α the

estimation accuracy of the critical value increases with the number of resamples. Such a wild

bootstrap procedure is also applicable to statistics based on integral transforms of a regression,

see Stute, González-Manteiga and Presedo (1998) and Whang (2000).

To apply such a wild bootstrap procedure in our framework, we should first figure out how to

generate resamples with the same observations for the exogenous variables, but new observations

for the endogenous variables. The above presentation of the bootstrap suggests to generate an

artificial sample of generalized residuals as ψ∗ni = ψ (Yi, Xi, θn) ζi and to find the values Y ∗i such

that ψ∗ni = ψ (Y ∗i , Xi, θn). From such resamples, one could then proceed as in Steps (ii) and (iii)

above. However, in some cases such a resampling method may be infeasible or difficult to implement

from a practical point of view. First, practical difficulties arise when the model is nonlinear in

the endogenous variable as in the transformation model of Example 2, so that resampling and

subsequent computations can be time-consuming. Moreover, a reduced form for the endogenous

variables may not be available, as in a nonlinear simultaneous equation model. Second, when one

considers testing the specification of a single equation from a simultaneous equation system, say

the demand equation from Example 3, we confront the issue of how to generate price observations:

if we relied on the parametric supply equation, then we would actually test the whole specification

of the system. Lavergne and Thomas (2001) noted the same type of difficulty when testing the null

hypothesis E [Y |X] = 0 in the partially linear model

Y = α+Xβ + g(Z) + ε ,

where it is unclear how to generate observations for the variable Z. Third, a theoretical problem

arises as the equation ψ∗ni = ψ (y,Xi, θn) may not have a unique solution in y almost surely. It

is easily seen that such a solution does not exist in Example 1, where there are two generalized

residuals for only one endogenous variable. In other instances, the solution may not be unique.
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It may well be that a suitable resampling method can be tailored in some particular cases. Such

an issue has been dealt with in some specific contexts, as in parametric tests based on Generalized

Method of Moments estimators, see Hall and Horowitz (1996). In each situation, it would remain to

determine the conditions analogous to B1 necessary to obtain asymptotically valid critical values.

Since we aim at a general method for determining critical values, we use a simulation technique, the

conditional Monte-Carlo approach, proposed by Su and Wei (1991) and Hansen (1996) and used

by de Jong (1996) and Chen and Fan (1999) for integral-transform type statistics. This technique

is simple and generally applicable but is not likely to be as good as one tailored for a specific

model.

4.2 Smooth tests

Because the statistic Tn is a function of Yn = {(ψ (Zi, θn) , Xi) , i = 1, ..., n}, we directly simulate

resamples as Y∗n = {(ψ∗ni, Xi) , i = 1, ..., n} , where ψ∗ni = ψ (Zi, θn) ζi and the ζi satisfy Assumption

B1. This gives us statistics of the form

T ∗n =
1

n (n− 1)hq

∑
i6=j

ψ∗′niψ
∗
njKij =

1
n (n− 1)hq

∑
i6=j

ψ′ (Zi, θn)ψ (Zj , θn) ζiζjKij .

The simulated version of the test statistic is then

t∗n =
nhq/2T ∗n

V
1/2
n

.

Alternatively, t∗n could be computed using as a variance estimator

V ∗n =
2

n (n− 1)
1
hq

m∑
k=1

m∑
l=1

n∑
i=1

n∑
j=1,j 6=i

ψ(k) (Zi, θn)ψ(l) (Zi, θn)ψ(k) (Zj , θn)ψ(l) (Zj , θn) ζiζjK2
ij .

However, we keep the original variance estimator Vn for simplicity, since the asymptotic analysis

is similar and unreported simulations results reveal that there seems to be no substantial change

in the finite sample behavior of the test.

Critical values are computed as the corresponding empirical quantiles for the set of simulated

statistics. This gives a critical value to be compared to the original test statistic tn. The next

theorem shows that such a simulated critical value is asymptotically valid.

Theorem 6 Under the assumptions of Theorem 1 and Assumption B1,

sup
t
|Pr ( t∗n ≤ t| Zn)− Φ (t)| = op (1) ,

where Φ(·) is the standard normal distribution.

14



In the next section, we provide some evidence on the properties of the simulation technique

in different setups. Our theoretical result does not ensure that the simulation method yields more

accurate critical values than the asymptotic approximation. Such a study is outside the scope of

our paper. Finer theoretical properties of simulation or bootstrap methods have been established

only for testing a linear regression model. Li and Wang (1998) showed that moments up to order

four are accurately matched by the wild bootstrap under the supplementary condition E
(
ζ3
1

)
= 1.

Fan and Linton (1999) further provide Edgeworth’s expansions for the distribution of a similar

test statistic in a regression model with symmetric errors.

4.3 Integral-transform tests

The procedure used for the smooth test cannot be directly applied to the statistic cn. This is

because a version of Rn (·) based upon Y∗n would not mimic its covariance structure under the null

hypothesis. However,
√
nRn has a first-order asymptotic expansion that depends on ri (x, θ0) only.

This suggests to consider the statistic

c∗n =
n∑

i=1

R̄∗n (Xi)
′ R̄∗n (Xi) where R̄∗n (x) =

1
n

n∑
i=1

r∗ni (x) and

r∗ni (x) =

ψ (Zi, θn)1 (Xi ≤ x) +

 1
n

n∑
j=1

ψ̇ (Zi, θn) 1 (Xi ≤ x)

 ` (Zi, θn)

 ζi .

It is easy to see that conditional on Zn, n1/2R̄∗n (·) is centered at zero and with covariance structure

Ωn (x, s) = n−1
∑n

i=1 ri (x, θn) r′i (s, θn). Critical values for testing H0 at level α are obtained as

for the smooth test. In practice, computation of ri (x, θn) requires to evaluate `(Zi, θn), which

is unknown in general but can be adequately approximated for usual estimators. For instance,

if θn is solution to (2) then `(Zi, θn) can be replaced by −L−1
n M (Xi)ψ (Zi, θn), where Ln =

n−1
∑n

i=1M (Xi) ψ̇ (Zi, θn). When ψ (Z, θ) = Y − X ′θ and θn is the OLS estimator, `(Zi, θn) =

−
[
n−1

∑n
j=1XiX

′
i

]−1
Xiψ (Zi, θn) and

R∗n (x) =
1√
n

n∑
i=1

ψ (Zi, θn)1 (Xi ≤ x)−

 1
n

n∑
j=1

X ′
i1 (Xi ≤ x)

 1
n

n∑
j=1

XiX
′
i

−1

Xiψ (Zi, θn)

 ζi .

This is the wild bootstrap statistic proposed by Stute, González-Manteiga and Presedo (1998).

2.8 The function ` (·, ·) is such that E [` (Z, θ∗)] = 0 and E
[
` (Z, θ∗) ` (Z, θ∗)′

]
. (ii) ˙̀ (·, ·) =

∂`(·, ·)/∂θ exists almost surely in an open neighborhoodN (θ∗) of θ∗ and supθ∈N (θ∗)

∥∥∥ ˙̀(·, θ)
∥∥∥ <

L (·) with E [L (Z)] <∞.
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Theorem 7 Under the assumptions of Corollary 5 and Assumption 2.8, if |ζ1| ≤ c with probability

1 for some c <∞
sup

t
|Pr (c∗n ≤ t| Zn)− Pr (c∞ ≤ t)| = op (1) ,

where c∞ is as in Corollary 5 with θ∗ in place of θ0.

5 Monte-Carlo results

Even in the simplest case of testing a regression function, there is little evidence in the econometric

literature on the comparative small sample performances of the different approaches. A notable

exception is Whang (2000) who compares Kolmogorov-Smirnov and Cramer-von-Mises type tests

to the tests of Härdle and Mammen (1993) and Bierens and Ploberger (1997). In this section, we

investigate the small sample behavior of the tests considered in this paper within the setup of our

Examples 1 to 3.

Testing for linearity of a regression function We first consider testing the linear specification

of a regression function. In this case, the smooth test is identical to the test proposed by Zheng

(1996) and Li and Wang (1996), while the integral-transform test is the one studied by Stute

(1997). The null hypothesis of interest is

H0 : E [Y − α0 − β0X | X] = 0 a.s. for some (α0, β0) .

The data generating process is chosen as

Yi = 1 + 2Xi + sin (δπXi) + Ui, i = 1, ..., n,

where the Ui and Xi are independent identically distributed N (0, 1). The null hypothesis corre-

sponds to δ = 0 and is denoted by DGP0. We investigate three alternatives denoted as DGPδ for

δ = 1, 2 and 3. By increasing δ we obtain higher frequency alternatives that are more difficult to

distinguish from pure noise. This allows us to observe large variations in the tests’ behavior.

In each case two sample sizes, n = 50 and 100, are considered. For each experiment, i.e. each

data generating process and sample size, we run 2000 simulations. For each simulation, the critical

value is estimated using 500 bootstrap replications, where the ζi have a two-point distribution as in

Stute and alii (1998). The parameter vector (α0, β0) is estimated by ordinary least-squares. For the

test based on smoothers, we choose the bandwidth following the rule-of-thumb h = dn−1/5, with

d varying in the grid {0.025, 0.05, 0.1, 0.5, 1, 1.5, 2}. The kernel is the standard Gaussian density

function. The results of each experiment are reported on a graph that shows the empirical rejection

16



probabilities for the three tests at nominal level 5% with respect to d. The solid line corresponds

to the rejection probability for the test based upon cn (which does not depend upon d), the grey

solid line is the rejection probability for the smooth test based upon tn using simulated critical

values, and the dash line is the rejection probability for the smooth test using asymptotic critical

values.

FIGURES 1 TO 8 ABOUT HERE

Figures 1 and 2 report results for DGP0 and sample sizes n = 50 and 100 respectively. In both

cases, the test based on nonparametric estimation is too conservative. This is because the test

statistic is negatively biased in small samples, as already noted by Li and Wang (1998). We also

note that large bandwidths lead to large size distortions, a conclusion also reached by Fan and

Linton (2003). However, the empirical size of the test becomes closer to its nominal size when

the sample size increases. Using simulated critical values improves upon the asymptotic critical

values but generally not as much as required. The empirical level for Stute’s test is very close to

its nominal level even for a small sample size of n = 50.

Results for alternative hypotheses DGP1 to DGP3 are reported in Figures 3 to 8. For the low

frequency alternative DGP1, Stute’s test has high power even for a sample size of 50 observations,

and its power is very close to one when n = 100. When the frequency of the alternative increases,

the rejection probability for Stute’s test decreases. For DGP2 it is less than 20% when n = 50

but increases to nearly 40% when n = 100. A sample size of 500 is required to get a power over

95%. As expected, power of the smooth test varies with the bandwidth and the frequency of the

alternative. These phenomena have already been noted in other contexts, see e.g. Lavergne and

Vuong (2000). Small bandwidths correspond to low rejection frequencies, as also found by Fan and

Linton (2003), while large ones may yield low or high power depending upon the alternatives. The

smooth test has reasonably high power for a range of bandwidths that narrows as δ increases. As

was the case under the null hypothesis, using bootstrap critical values leads to some but limited

improvement in most cases.

Testing jointly for linearity of the regression function and for homoskedasticity We

now consider a similar regression model, where one aims to test jointly for the specification of the

regression function and homoskedasticity. The null hypothesis writes

H0 :

 E [Y − α0 − β0X |X ]

E
[
(Y − α0 − β0X)2 − σ2

0 |X
]  =

(
0

0

)
a.s. for some

(
α0, β0, σ

2
0

)
.

We consider the design

Yi = α0 + β0Xi + (1− δ)Ui + δUi(1 +X2
i )/

√
5, i = 1, ..., n,
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where the Ui and Xi are generated as before. The null hypothesis DGP ′0 corresponds to δ = 0

and the alternative DGP ′1 corresponds to δ = 1. Two sample sizes are considered, n = 100 and

250. Other details are otherwise similar than in the previous experiment. Results are reported

in Figures 9 to 12. Under the null hypothesis, the tests essentially exhibits the same features as

when testing for a linear regression only. That is, the smooth test is undersized and it makes little

difference to use bootstrap critical values, while the test based upon cn has an empirical level close

to the nominal one. Under the alternative hypothesis, there is much more difference between the

two tests. The smooth test is more powerful than the integral-transform test except for a very

small bandwidth, but power of the latter is larger than 70% when n = 250 and larger than 95%

for n = 350.

FIGURES 9 TO 12 ABOUT HERE

Testing the transformation model We now consider a model with a well-known nonlinear

transformation in the endogenous variable, namely the arcsinh transformation. The hypothesis of

interest here can be written as

H0 : E
[
arcsinh(λ0Y )

λ0
− α0 − β0X | X

]
= 0 a.s. for some (λ0, α0, β0) .

We consider the design

arcsinh(2Yi)
2

= 1 + 2Xi + sin (δπXi) + Ui, i = 1, ..., n,

where the Ui and Xi are generated as before, but the variance of the error term is 0.5. The

parameters are estimated by one-step GMM with vector of instruments
(
1, X,X2

)′. Two sample

sizes are considered, n = 100 and 250. The notation DGP
′′
δ denotes the model with δ = 0, 1, 2, 3.

Other details are otherwise similar than in previous experiments. Results are reported in Figures

13 to 20.

FIGURES 13 TO 20 ABOUT HERE

Under the null hypothesis (Figures 13 and 14), the only novel feature compared to the previous

cases is that the integral-transform test is now undersized for the smaller sample size. Under the

alternative hypothesis DGP
′′
1 (Figures 15 and 16), the power of the smooth test is essentially one

over the whole range of considered bandwidths, while the power of its competitor is around 20%

for n = 100 and increases to 50% when n = 250. Under the alternative hypothesis DGP ′′2 (Figures

17 and 18), the power function of the smooth test decreases sharply as the bandwidth increases

for n = 100 but when n = 250, the power is essentially one over the whole range of considered
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bandwidths. Concerning the test based on cn, it has low power for n = 100 but this power increases

up to 95% when n = 250. For the higher frequency alternative DGP
′′
3 (Figures 19 and 20), the

power of the smooth test is more dependent of the value of the smoothing parameter for both

sample sizes, going from 1 to 0 for small and large bandwidths respectively. The test based on cn
has essentially no power for n = 100, but its rejection probability reaches 70% when n = 250.

Testing the simultaneous equation model We finally consider the classic exactly identified

linear simultaneous equation model of Example 3

H0 :

(
E [Q− a0P − b0I |I,W ]

E [Q− α0P − β0W |I,W ]

)
=

(
0

0

)
a.s. for some (α0, β0, a0, b0) .

We generate the data according to

Qi = λ11Ii + λ12Wi + V1i

Pi = λ21Ii + λ22Wi +
δ

2
W 2

i + V2i i = 1, ..., n,

where Ii and Wi are independent standard Gaussian random variables while V1i and V2i are cor-

related standard Gaussian random variables with 2−1/2 covariance and independent of (Ii,Wi).

Parameters are estimated using Indirect Least Squares, which is equivalent to a Two-Stage Least

Squares procedure in this context. The null hypothesis corresponds to δ = 0 and is denoted DGP ′′′0 ,

while DGP ′′′δ denotes the alternative. Other details are otherwise unchanged.

FIGURES 21 TO 24 ABOUT HERE

Results are reported in Figures 21 to 24. The graphs show that under DGP ′′′0 the empirical level

of the smooth test is very close to the nominal one for all bandwidths even when the sample size

is as small as 100. On the other hand, the integral-transform test underrejects for n = 100 but the

level is fairly close to its nominal value for n = 250. Under the alternative hypothesis, we keep the

sample size fixed at n = 100 and allow δ to vary. The power of the smooth test increases with the

bandwidth, but the integral-transform test dominates its competitor under both alternatives with

a power as high as 95%.

Our results sheds light on the comparative behavior of the tests in varied situations. For the

smooth test, the choice of the smoothing parameter is revealed crucial. Moreover, use of simulated

critical values yields limited improvement for both size and power. Finally, no clear ranking emerges

between the two tests. The overall performances of the tests depend on the particular experiment’s

features.
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6 Conclusion

We have shown in this paper how the two approaches used for testing the specification of regression

function can be extended to testing a general set of conditional moment restrictions, which can

prove useful for many econometric models. Clearly, several problems warrant further research. First,

it seems important to determine whether there is some optimal and feasible way to combine the

conditional moment restrictions, as discussed in Section 3.3. Second, for the smooth test, it would

be helpful to have some data-driven methods of bandwidths’ choice, as investigated by Horowitz

and Spokoiny (2001) and Guerre and Lavergne (2001) for the regression model. Third, bootstrap

procedures for computing critical values should be investigated. We have explained the difficul-

ties related to resampling in a general context and we have subsequently proposed a simulation

technique for computing critical values in small samples. Our experiments results illustrate that

some limited improvement is expected using simulated critical values instead of asymptotic ones

for the smooth test. Unreported simulations results suggest that more sophisticated methods can

substantially improve upon our simulation technique, but the resampling scheme heavily depends

on the model at hand. In this respect, a general accurate resampling method is still required.

7 Proofs

Proof of Theorem 1 Henceforth, for i = 1, 2, ...n and k = 1, . . . ,m, ψ(k)
i = ψ(k) (Zi, θ0), ψ̂

(k)
i =

ψ(k) (Zi, θn), ψ̇(k)
i = ψ̇(k) (Zi, θ0), ψ̈

(k)
i (θ) = ψ̈(k) (Zi, θ), and

∑
i 6=j stand for

∑n
i=1

∑n
j=1,j 6=i. We have

Tn =
1

n (n− 1)

∑
i 6=j

Dn (Zi, Zj) +
m∑

k=1

(
2T (k)

1n + T
(k)
2n

)
, (6)

with Dn (Zi, Zj) =
∑m

k=1 ψ
(k)
i ψ

(k)
j h−qKij ,

T
(k)
1n =

1
n (n− 1)hq

∑
i 6=j

ψ
(k)
i

(
ψ̂

(k)
j − ψ

(k)
j

)
Kij ,

T
(k)
2n =

1
n (n− 1)hq

∑
i 6=j

(
ψ̂

(k)
i − ψ

(k)
i

)(
ψ̂

(k)
j − ψ

(k)
j

)
Kij .

We prove in a first step that T (k)
1n = Op

(
n−1

)
and T (k)

2n = Op

(
n−1

)
for all k = 1, ...,m. Using a mean value

theorem argument,

T
(k)
1n = (θn − θ)′ S1n + (θn − θ0)

′
S2n (θn − θ0) and T

(k)
2n = (θn − θ0)

′
S3n (θn − θ0) ,
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where S1n =
1

n (n− 1)hq

∑
i 6=j

ψ
(k)
i ψ̇

(k)
j Kij ,

S2n =
1

n (n− 1)hq

∑
i 6=j

ψ
(k)
i ψ̈

(k)
j

(
θ̄n

)
Kij ,

S3n =
1

n (n− 1)hq

∑
i 6=j

[
ψ̇

(k)
i + ψ̈

(k)
i

(
θ̃n

)
(θn − θ0)

] [
ψ̇

(k)
j + ψ̈

(k)
j

(
θ̄n

)
(θn − θ0)

]′
Kij ,

with
∥∥θ̄n − θ0

∥∥ ≤ ‖θn − θ0‖ and
∥∥∥θ̃n − θ0

∥∥∥ ≤ ‖θn − θ0‖ .

To study S1n, we use the following lemma.

Lemma 8 (Powell, Stock and Stoker, 1989) Let Un =
(
n
2

)−1∑n−1
i=1

∑n
j=i+1Hn (Zi, Zj) be a U -

statistic with symmetric kernel Hn (Zi, Zj) and let the Zi be iid. Let qn (Zi) = E [Hn (Zi, Zj) | Zi], q̄n =

E (qn (Zi)). If E
(
‖Hn (Z1, Z2)‖2

)
= o (n) , then Un = q̄n + (2/n)

∑n
i=1 [qn (Zi)− q̄n] + op

(
n−1/2

)
.

The quantity S1n is a U -statistic with kernel Hn (Z1, Z2) = h−q
(
ψ

(k)
1 ψ̇

(k)
2 + ψ

(k)
2 ψ̇

(k)
1

)
K12/2 and

E
(
‖Hn (Z1, Z2)‖2

)
=

1
h2q

E

[(
ψ̇

(k)
1

)2

σkk(X2)K2
12

]
=

1
hq
E

[(
ψ̇

(k)
1

)2
∫
σkk (X1 + hu) f (X1 + hu)K2 (u) du

]
=

1
hq
E

[(
ψ̇

(k)
1

)2

σkk (X1) f(X1)
] ∫

K2 (u) du+ o

(
1
hq

)
= O

(
1
hq

)
= o (n)

by Assumptions 2.4 to 2.6 together with Hölder’s inequality. As E [Hn(Zi, Zj)] = 0, Lemma 8 implies that

S1n = (2/n)
∑n

i=1 qn (Zi) + op

(
n−1/2

)
where qn (Zi) = E [Hn(Zi, Zj)|Zi]. Moreover

E
[
q2n (Z)

]
= E

[
σkk (X) γ2

k (X) f (X)
] [∫

K (u) du
]2

+ o(1) = O(1),

so that S1n = Op

(
n−1/2

)
. For S2n, we have

E |S2n| ≤
1
hq
E {S (Z2)E [αk (X1) |K12| | Z2]} = E {S (Z2)αk (X2) f (X2)}

∫
|K (u)| du+ o (1) = O (1) .

Hence, S2n = Op(1). Similarly, one can show that S3n = Op(1). These results imply that T (k)
1n and T (k)

2n are

both Op

(
n−1

)
, as θn − θ∗ = Op(n−1/2) by Assumption 2.2.

We now determine the asymptotic distribution of the first term in (6). We use of the following result

for degenerate U -statistics.

Lemma 9 (Hall, 1984) Let Un be as in Lemma 8, with E [Hn (Zi, Zj) | Zi] = 0 a.s. Let Gn (Z1, Z2) =

E [Hn (Z3, Z1)Hn (Z3, Z2) | Z1, Z2].

If lim
n→∞

EG2
n (Z1, Z2) + n−1EH4

n (Z1, Z2)
E2H2

n (Z1, Z2)
= 0 then

nUn

2E1/2H2
n (Z1, Z2)

d−→N (0, 1) .
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The first term of (6) is a degenerate U -statistic with kernel Dn(·, ·), and the corresponding Gn(·, ·) is

such that E
[
Gn (Z1, Z2)

2
]

=
∑m

k=1

∑m
l=1

∑m
k′=1

∑m
l′=1 λkk′ll′ , where

λkk′ll′ = h−4qE {σkk′ (X1)σll′ (X2)E [K13K23σkl (X3) | X1, X2]E [K13K23σk′l′ (X3) | X1, X2]}

=
1
h2q

E

{
σkk′ (X1)σll′ (X2)

[∫
K (u)K

(
u+

X2 −X1

h

)
σkl (X1 + hu) f (X1 + hu) du

]
[∫

K (u′)K
(
u′ +

X2 −X1

h

)
σk′l′ (X1 + hu′) f (X1 + hu′) du′

]}
=

1
hq
E

{
σkk′ (X1)σll′ (X1 + hv)

[∫
K (u)K (u+ v)σkl (X1 + hu) f (X1 + hu) du

]
[∫

K (u′)K (u′ + v)σk′l′ (X1 + hu′) f (X1 + hu′) du′
]
f (X1 + hv) dv

}
=

1
hq
E
{
σkk′ (X1)σll′ (X1)σkl (X1)σk′l′ (X1) f3 (X1)

}
[∫ ∫ ∫

K (u)K (u+ v)K (u′)K (u′ + v) du du′ dv
]

+ o
(
h−q

)
= O

(
1
hq

)
,

by Assumptions 2.4–2.6. Moreover,

E
[
Hn (Z1, Z2)

2
]

=
m∑

k=1

m∑
l=1

1
h2q

E

(
K2

(
X1 −X2

h

)
σkl (X1)σkl (X2)

)

=
m∑

k=1

m∑
l=1

1
hq
E

(
σkl (X1)

∫
K2 (u)σkl (X1 + hu) f (X1 + hu) du

)

=
m∑

k=1

m∑
l=1

1
hq
E
[
σ2

kl (X1) f (X1)
] ∫

K2 (u) du+ o
(
h−q

)
= O

(
1
hq

)
,

E
[
Hn (Z1, Z2)

4
]

=
m∑

k=1

m∑
l=1

m∑
k′=1

m∑
l′=1

1
h4q

E

[
K4

12ψ
(k)
1 ψ

(k)
2 ψ

(k′)
1 ψ

(k′)
2 ψ

(l)
1 ψ

(l)
2 ψ

(l′)
1 ψ

(l′)
2

]

≤
m∑

k=1

m∑
l=1

m∑
k′=1

m∑
l′=1

1
h3q

∏
p∈{k,l,k′,l′}

{
E
[
h−qK16

12σ
4
p (X1)σ4

p (X2)
]}1/4

≤
m∑

k=1

m∑
l=1

m∑
k′=1

m∑
l′=1

O(1)
h3q

∏
p∈{k,l,k′,l′}

{
E
[
σ4

p (X1)σ4
p (X1) f (X1)

]}1/4
+ o

(
h−3q

)
≤ O

(
1
h3q

)
.

Assumption 2.5 ensures that the conditions of Lemma 9 are fulfilled, and Theorem 1 follows.

Proof of Corollary 2 Let us first consider the properties of Tn when H0 does not hold. Notice that

(6) holds with θ∗ in place of θ0. By a weak law of large numbers, it is straightforward to check that the

corresponding S1n, S2n and S3n are all Op(1), so that T (k)
1n = Op

(
n−1/2

)
and T

(k)
2n = Op

(
n−1

)
for all

k = 1, ...,m using Assumption 2.2. Similarly,

1
n(n− 1)

∑
i 6=j

Dn (Zi, Zj) →p E [D (Z1, Z2)] =
m∑

k=1

E
[
E2
[
ψ(k) (Z, θ∗) |X

]
f (X)

]
+ o (1) ,
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and Tn converges to a strictly positive limit when H0 does not hold. A similar reasoning shows that Vn →p V

whether H0 holds or not.

Proof of Theorem 3 Under the null hypothesis, we shall show that nĥq/2Tn(ĥ) − nhq/2Tn(h) = op(1),

where the dependence of Tn on the bandwidth is made explicit. For this equality to hold, we need to show

tightness of the process n(νh)q/2Tn(νh) for ν ∈ [B1, B2] with 0 < B1 < 1 < B2 < ∞. It can be seen that

the second and third term in (6) are both Op(n−1) uniformly for ν ∈ [B1, B2]. Let T̃n (h) be the first term

in (6). It is asymptotically normal at a fixed point and converges to the same limit for any ν. Moreover for

ν1, ν2 ∈ [B1, B2],

E
[
n(ν1h)q/2T̃n(ν1h)− n(ν2h)q/2T̃n(ν2h)

]2
=

4n
n− 1

m∑
k=1

m∑
l=1

E

{
σkl (X1)σkl (X2)

[
(ν1h)−q/2K

(
X1 −X2

ν1h

)
− (ν2h)−q/2K

(
X1 −X2

ν2h

)]2}

is O
[
(ν1 − ν2)2

]
by a Taylor expansion of ν−q/2

2 K [x/ν2] around ν1, using Assumption 2.6 and Hölder’s

inequality. Hence n (νh)p/2
T̃n is tight for ν ∈ [B1, B2], see Billingsley (1968). Under the alternative hypoth-

esis, it is sufficient to show that Tn(νh) is tight for ν1, ν2 ∈ [B1, B2], which is shown similarly. An analogous

result for Vn then implies the desired result.

Proof of Theorem 4 We have uniformly in x

n1/2Rn (x) =
1

n1/2

n∑
i=1

ψ (Zi, θ
∗)1 (Xi ≤ x) +G (x, θ∗)

1
n1/2

n∑
i=1

l (Zi, θ
∗) + op (1)

= R0
n (x) +R1

n (x) + op (1) ,

where G(x, θ) = E
[
ψ̇ (Z, θ)1 (X ≤ x)

]
. The limit process is identified by the convergence of the finite

dimensional distributions. Choose (x1, ..., xp) ∈ Rq and normalized vectors (a1, ..., ap) ∈ Rm. Then apply a

Central Limit Theorem to obtain that

n1/2
p∑

j=1

a′j
[
R0

n (xj) +R1
n (xj)

]
→d

p∑
j=1

a′jR∞ (xj) .

We now show tightness of the process. Note that the index parameter in R1
n is included in a deterministic

continuous bounded function. Therefore, R1
n is tight. For R0

n, tightness will be proved when the marginal

distributions of each component of X are uniform in [0, 1] . The general case is dealt with applying the

usual quantile transformation coordinate by coordinate. When the marginal distributions of X are uniform

in the interval [0, 1], R0
n takes its values in ×m

k=1D [0, 1]q . Let R0
n (x) =

(
R0

n1 (x) , ..., R0
nm (x)

)′
. Since we

endow ×m
k=1D [0, 1]q with the product topology (generated by the metric dm (f, g) = max{d (fk, gk) :

k = 1, ...,m}, where fk, gk are the k-th coordinate of f, g respectively and d is the metric in the Skorohod
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Space D [0, 1]q), tightness follows if each coordinate is tight. The increment of the process R0
nk around

B = (s, t] = ×m
j=1 (sj , tj) is defined in Bickel and Wichura (1971) as

R0
nk(B) =

1∑
e1=0

· · ·
1∑

eq=0

(−1)q−
∑

p ep R0
nk (s1 + e1(t1 − s1), . . . , sq + eq(tq − sq)) .

Then it suffices to check the tightness condition in Bickel and Wichura (1971). That is, we have to show

that for any two neighbor intervals B and B′ = (s′, t′], i.e. they abut and for some j ∈ {1, ..., q} they have

the same j-th face ×k 6=j (sk, tk) = ×k 6=j (s′k, t
′
k) ,

E
(
R0

nk (B)2R0
nk (B′)2

)
≤ 3µ (B)µ (B′) ,

for all k = 1, ...,m, where µ is an arbitrary measure. Applying Stute’s (1997) Lemma 1,

E
(
R0

nk (B)2R0
nk (B′)2

)
≤ nE

(
α2

1β
2
1

)
+ 3n (n− 1)E

(
α2

1

)
E
(
β2

1

)
,

with αi = n−1/2ψ
(k)
i 1 (Xi ∈ B) and βi = n−1/2ψ

(k)
i 1 (Xi ∈ B′) with ψ(k)

i = ψ(k) (Zi, θ
∗) . Since αiβi = 0,

E
(
R0

nk (B)2R0
nk (B′)2

)
≤ 3E

[(
ψ

(k)
1

)2

1 (X1 ∈ B)
]
E

[(
ψ

(k)
1

)2

1 (X1 ∈ B′)
]
.

Proof of Corollary 5 By Lemma in Kieffer (1959, p. 424),
∫

Rq Rn (x)′Rn (x) [dFn (x)− dF (x)] =

op (1) . The result is then an immediate consequence of the continuous mapping theorem.

Proof of Theorem 6 Henceforth, for i = 1, 2, ...n and k = 1, . . . ,m, ψ∗(k)
i = ψ(k) (Zi, θ

∗) ζi, ψ̂
∗(k)
i =

ψ(k) (Zi, θn) ζi, ψ̇
∗(k)
i = ψ̇(k) (Zi, θ

∗) ζi and E∗ [.] ≡ E [.|Zn]. We have a decomposition similar to (6), that

is,

T ∗n =
(
n

2

)−1∑
i 6=j

D∗(k)
n (Zi, Zj) +

m∑
k=1

2T ∗(k)
1n + T

∗(k)
2n , (7)

where D∗(k)
n , T ∗(k)

1n and T
∗(k)
2n are defined similarly to D(k)

n , T (k)
1n and T

(k)
2n in (6), with ψ

∗(k)
i and ψ̂

∗(k)
i in

place of ψ(k)
i and ψ̂

(k)
i . We now show that T ∗(k)

1n and T
∗(k)
2n are both op

(
n−1h−q/2

)
for all k = 1, . . . ,m.

Using a mean value theorem argument,

T
∗(k)
1n = (θn − θ∗)′ S∗1n + (θn − θ∗)′S∗2n (θn − θ∗) ,

where S∗1n =
1

n (n− 1)hq

∑
i 6=j

ψ
∗(k)
i ψ̇

∗(k)
j Kij ,

S∗2n =
1

n (n− 1)hq

∑
i 6=j

ψ
∗(k)
i ψ̈

∗(k)
j

(
θ̄n

)
Kij ,

∥∥θ̄n − θ∗
∥∥ ≤ ‖θn − θ∗‖
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and ψ̈∗(k)
j (θ) = ψ̈(k) (Zj , θ) ζi. Since E∗ (ζiζj) = 0 for j 6= i, S∗1n and S∗2n are degenerate U -statistics. Hence,

E∗ [S∗1n] = 0 and as E∗ (ζi)
2 = 1 for all i,

E∗
[
S∗21n

]
=
[

1
n (n− 1)hq

]2 n∑
i=1

n∑
j 6=i

(
ψ

(k)
i

)2 (
ψ̇

(k)
j

)2

K2
ij .

Using similar arguments as in the proof of Theorem 1,

E
[
E∗
[
S∗21n

]]
=
[

1
n (n− 1)hq

]2
n(n− 1)O(hq) = O(n−2h−q).

Similarly, E
[
E∗
∣∣S∗22n

∣∣] = O(1). As (θn − θ∗) = Op

(
n−1/2

)
, we get that nhq/2T

∗(k)
1n = op (1) and nT

∗(k)
2n =

op (1). These terms are then negligible conditional upon the initial sample.

Let us now determine the asymptotic distribution of the first term in (7). For the sake of simplicity, we

treat the case where m = 1. We then consider

T̃ ∗n =
1

n(n− 1)

∑
i 6=j

D∗
n (Zi, Zj) =

1
n(n− 1)

∑
i 6=j

h−q
j ψ∗i ψ

∗
jKij ,

where E∗ [D∗
n (Zi, Zj) |ξi] = 0, for all i. By Proposition 3.2 in De Jong (1987), σ−1

n T̃ ∗n converges in distribution

to a N (0, 1) in probability conditional upon Zn if G1, G2 and G3 are of lower order in probability than(
σ2

n

)2, where

σ2
n ≡ E∗

[
T̃ 2

n

]
=
[

1
n(n− 1)

]2∑
i 6=j

n−1∑
k=1

n∑
l=k+1

E∗ [D∗
n (Zi, Zj)D∗

n (Zk, Zl)] =
1

n(n− 1)hq
Vn,

G1 ≡
[

1
n(n− 1)

]4∑
i 6=j

E∗
[
D∗4

n (Zi, Zj)
]

= E2
(
V 4

1

) [ 1
n(n− 1)

]2∑
i 6=j

h−4q
j ψ4

i ψ
4
jK

4
ij ,

G2 ≡
(
n

2

)−4 n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

E∗
[
D∗2

n (Zi, Zj)D∗2
n (Zi, Zk)

]
= E

(
V 4

1

)(n
2

)−4 n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

h−4q
j ψ4

i ψ
2
jψ

2
kK

2
ijK

2
ik,

G3 ≡
(
n

2

)−4 n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

E∗ [D∗
n (Zi, Zj)D∗

n (Zi, Zk)D∗
n (Zl, Zj)D∗

n (Zl, Zk)]

=
(
n

2

)−4 n−3∑
i=1

n−2∑
j=i+1

n−1∑
k=j+1

n∑
l=k+1

h−4q
j ψ2

i ψ
2
jψ

2
kψ

2
l KijKikKljKlk.

Now, G1, G2 and
(
σ2

n

)2 are positive and it is easily checked as in the proof of Theorem 1 that

E
[(
σ2

n

)2]
= E

(n
2

)−2 n∑
i=1

n∑
j 6=i

h−2q
j ψ2

i ψ
2
jK

2
ij

2

= n−8O
[
n2h−3q + n3h−2q + n4h−2q

]
= O(n−4h−2q),

and that similarly E [G1] = O
(
n−6h−3q

)
, E [G2] = O

(
n−5h−2q

)
and E |G3| = O

(
n−4h−q

)
. The conver-

gence of the distribution function is then uniform by Polya’s theorem.
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Proof of Theorem 7 It is immediate that supx,s ‖Ωn (x, s)− Ω (x, s)‖ = op (1) and supx

∥∥R̄∗n (x)− R̄0∗
n (x)

∥∥ =

op

(
n−1/2

)
with R̄0∗

n (x) = n−1
∑n

i=1 ri (x, θ∗) ζi, where ri(x, θ) is defined by (5). Fix some (x1, ..., xp) ∈ Rq

and normalized vectors (a1, ..., ap) ∈ Rm, and define ψ∗i = ψiζi with ψi = ψ (Zi, θ
∗) . By the Cràmer-Wold

device, the convergence of the finite distributions follows from the convergence of

n1/2

p∑
j=1

a′jR̄
0∗
n (xj) =

1
n1/2

n∑
i=1

 p∑
j=1

a′j ri (xj , θ
∗)

 ζi =
1

n1/2

n∑
i=1

Wiζi.

Asymptotic normality is proved by showing the Lindeberg-Lévy condition, i.e., for each δ > 0,

Ln (δ) =
1
n

n∑
i=1

W 2
i E
[
ζ2
i 1
(
|Wiζi| > n1/2δ

)∣∣∣Zn

]
= op (1) .

Since |ζi| ≤ c for all i and some c > 0,

Ln (δ) ≤ c2

n

n∑
i=1

W 2
i 1
(
|Wi| ≥

n1/2δ

c

)
= op (1) ,

using the fact that the W 2
i are iid with finite first moment. Then Theorem 7 follows from the tightness

of n1/2R̄0∗
n . As in the proof of Theorem 3, assume without loss of generality that each coordinate in X is

uniform in the interval [0, 1] . We have

n1/2R̄0∗
n (x) =

1
n1/2

n∑
i=1

ψi1 (Xi ≤ x) ζi +G (x, θ∗)
1

n1/2

n∑
i=1

l (Zi, θ
∗) ζi = R00∗

n (x) +R01∗
n (x) .

The tightness of R01∗
n follows from the continuity of G(·, ·) and applying a Central Limit Theorem to the

random sum, which does not depend on x. Consider the increment R00∗
nk (B) around the interval B, as in

Theorem 2. Bickel and Wichura’s (1971) tightness condition is satisfied, since for two neighbor intervals B

and B′,

E
[
R00∗

nk (B)2R00∗
nk (B′)2

]
≤ 3µn (B)µn (B′) ,

where µn (B) = n−1
∑n

i=1 ψ
2
i 1 (Xi ∈ B) . Applying the uniform law of large numbers,

sup
B
|µn (B)− µ (B)| = op (1) ,

where µ (B) = E
[
ψ2

1 (X ∈ B)
]

is a continuous measure.
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Figure 1: Results for DGP0 and n = 50.
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Figure 2: Results for DGP0 and n = 100.
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Figure 3: Results for DGP1 and n = 50.
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Figure 4: Results for DGP1 and n = 100.
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Figure 5: Results for DGP2 and n = 50.
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Figure 6: Results for DGP2 and n = 100.
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Figure 7: Results for DGP3 and n = 50.
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Figure 8: Results for DGP3 and n = 100.
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Figure 9: Results for DGP 0
0 and n = 100.
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Figure 10: Results for DGP 0
0 and n = 250.
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Figure 11: Results for DGP 0
1 and n = 100.
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Figure 12: Results for DGP 0
1 and n = 250.
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Figure 13: Results for DGP
00
0 and n = 100.
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Figure 14: Results for DGP
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Figure 15: Results for DGP
00
1 and n = 100.
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Figure 16: Results for DGP
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1 and n = 250.
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Figure 17: Results for DGP
00
2 and n = 100.
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Figure 18: Results for DGP
00
2 and n = 250.
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Figure 19: Results for DGP
00
3 and n = 100.
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Figure 20: Results for DGP
00
3 and n = 250.
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Figure 21: Results for DGP
000
0 and n = 100.
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Figure 22: Results for DGP
000
0 and n = 250.
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Figure 23: Results for DGP
000
1,0.5 and n = 100.
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Figure 24: Results for DGP
000
1,1 and n = 100.


